1 /*
2 * sparse/evaluate.c
3 *
4 * Copyright (C) 2003 Transmeta Corp.
5 * 2003-2004 Linus Torvalds
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 *
25 * Evaluate constant expressions.
26 */
27 #include <stdlib.h>
28 #include <stdarg.h>
29 #include <stddef.h>
30 #include <stdio.h>
31 #include <string.h>
32 #include <ctype.h>
33 #include <unistd.h>
34 #include <fcntl.h>
35 #include <limits.h>
36
37 #include "evaluate.h"
38 #include "lib.h"
39 #include "allocate.h"
40 #include "parse.h"
41 #include "token.h"
42 #include "symbol.h"
43 #include "target.h"
44 #include "expression.h"
45
46 struct symbol *current_fn;
47
48 struct ident bad_address_space = { .len = 6, .name = "bad AS", };
49
50 static struct symbol *degenerate(struct expression *expr);
51 static struct symbol *evaluate_symbol(struct symbol *sym);
52
valid_expr_type(struct expression * expr)53 static inline int valid_expr_type(struct expression *expr)
54 {
55 return expr && valid_type(expr->ctype);
56 }
57
valid_subexpr_type(struct expression * expr)58 static inline int valid_subexpr_type(struct expression *expr)
59 {
60 return valid_expr_type(expr->left)
61 && valid_expr_type(expr->right);
62 }
63
evaluate_symbol_expression(struct expression * expr)64 static struct symbol *evaluate_symbol_expression(struct expression *expr)
65 {
66 struct expression *addr;
67 struct symbol *sym = expr->symbol;
68 struct symbol *base_type;
69
70 if (!sym) {
71 expression_error(expr, "undefined identifier '%s'", show_ident(expr->symbol_name));
72 return NULL;
73 }
74
75 examine_symbol_type(sym);
76
77 base_type = get_base_type(sym);
78 if (!base_type) {
79 expression_error(expr, "identifier '%s' has no type", show_ident(expr->symbol_name));
80 return NULL;
81 }
82
83 addr = alloc_expression(expr->pos, EXPR_SYMBOL);
84 addr->symbol = sym;
85 addr->symbol_name = expr->symbol_name;
86 addr->ctype = &lazy_ptr_ctype; /* Lazy evaluation: we need to do a proper job if somebody does &sym */
87 addr->flags = expr->flags;
88 expr->type = EXPR_PREOP;
89 expr->op = '*';
90 expr->unop = addr;
91 expr->flags = CEF_NONE;
92
93 /* The type of a symbol is the symbol itself! */
94 expr->ctype = sym;
95 return sym;
96 }
97
evaluate_string(struct expression * expr)98 static struct symbol *evaluate_string(struct expression *expr)
99 {
100 struct symbol *sym = alloc_symbol(expr->pos, SYM_NODE);
101 struct symbol *array = alloc_symbol(expr->pos, SYM_ARRAY);
102 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
103 struct expression *initstr = alloc_expression(expr->pos, EXPR_STRING);
104 unsigned int length = expr->string->length;
105
106 sym->array_size = alloc_const_expression(expr->pos, length);
107 sym->bit_size = bytes_to_bits(length);
108 sym->ctype.alignment = 1;
109 sym->string = 1;
110 sym->ctype.modifiers = MOD_STATIC;
111 sym->ctype.base_type = array;
112 sym->initializer = initstr;
113
114 initstr->ctype = sym;
115 initstr->string = expr->string;
116
117 array->array_size = sym->array_size;
118 array->bit_size = bytes_to_bits(length);
119 array->ctype.alignment = 1;
120 array->ctype.modifiers = MOD_STATIC;
121 array->ctype.base_type = &char_ctype;
122
123 addr->symbol = sym;
124 addr->ctype = &lazy_ptr_ctype;
125 addr->flags = CEF_ADDR;
126
127 expr->type = EXPR_PREOP;
128 expr->op = '*';
129 expr->unop = addr;
130 expr->ctype = sym;
131 return sym;
132 }
133
134 /* type has come from classify_type and is an integer type */
integer_promotion(struct symbol * type)135 static inline struct symbol *integer_promotion(struct symbol *type)
136 {
137 unsigned long mod = type->ctype.modifiers;
138 int width = type->bit_size;
139
140 /*
141 * Bitfields always promote to the base type,
142 * even if the bitfield might be bigger than
143 * an "int".
144 */
145 if (type->type == SYM_BITFIELD) {
146 type = type->ctype.base_type;
147 }
148 mod = type->ctype.modifiers;
149 if (width < bits_in_int)
150 return &int_ctype;
151
152 /* If char/short has as many bits as int, it still gets "promoted" */
153 if (mod & (MOD_CHAR | MOD_SHORT)) {
154 if (mod & MOD_UNSIGNED)
155 return &uint_ctype;
156 return &int_ctype;
157 }
158 return type;
159 }
160
161 /*
162 * integer part of usual arithmetic conversions:
163 * integer promotions are applied
164 * if left and right are identical, we are done
165 * if signedness is the same, convert one with lower rank
166 * unless unsigned argument has rank lower than signed one, convert the
167 * signed one.
168 * if signed argument is bigger than unsigned one, convert the unsigned.
169 * otherwise, convert signed.
170 *
171 * Leaving aside the integer promotions, that is equivalent to
172 * if identical, don't convert
173 * if left is bigger than right, convert right
174 * if right is bigger than left, convert right
175 * otherwise, if signedness is the same, convert one with lower rank
176 * otherwise convert the signed one.
177 */
bigger_int_type(struct symbol * left,struct symbol * right)178 static struct symbol *bigger_int_type(struct symbol *left, struct symbol *right)
179 {
180 unsigned long lmod, rmod;
181
182 left = integer_promotion(left);
183 right = integer_promotion(right);
184
185 if (left == right)
186 goto left;
187
188 if (left->bit_size > right->bit_size)
189 goto left;
190
191 if (right->bit_size > left->bit_size)
192 goto right;
193
194 lmod = left->ctype.modifiers;
195 rmod = right->ctype.modifiers;
196 if ((lmod ^ rmod) & MOD_UNSIGNED) {
197 if (lmod & MOD_UNSIGNED)
198 goto left;
199 } else if ((lmod & ~rmod) & (MOD_LONG_ALL))
200 goto left;
201 right:
202 left = right;
203 left:
204 return left;
205 }
206
same_cast_type(struct symbol * orig,struct symbol * new)207 static int same_cast_type(struct symbol *orig, struct symbol *new)
208 {
209 return orig->bit_size == new->bit_size &&
210 orig->bit_offset == new->bit_offset;
211 }
212
base_type(struct symbol * node,unsigned long * modp,struct ident ** asp)213 static struct symbol *base_type(struct symbol *node, unsigned long *modp, struct ident **asp)
214 {
215 unsigned long mod = 0;
216 struct ident *as = NULL;
217
218 while (node) {
219 mod |= node->ctype.modifiers;
220 combine_address_space(node->pos, &as, node->ctype.as);
221 if (node->type == SYM_NODE) {
222 node = node->ctype.base_type;
223 continue;
224 }
225 break;
226 }
227 *modp = mod & ~MOD_IGNORE;
228 *asp = as;
229 return node;
230 }
231
is_same_type(struct expression * expr,struct symbol * new)232 static int is_same_type(struct expression *expr, struct symbol *new)
233 {
234 struct symbol *old = expr->ctype;
235 unsigned long oldmod, newmod;
236 struct ident *oldas, *newas;
237
238 old = base_type(old, &oldmod, &oldas);
239 new = base_type(new, &newmod, &newas);
240
241 /* Same base type, same address space? */
242 if (old == new && oldas == newas) {
243 unsigned long difmod;
244
245 /* Check the modifier bits. */
246 difmod = (oldmod ^ newmod) & ~MOD_NOCAST;
247
248 /* Exact same type? */
249 if (!difmod)
250 return 1;
251
252 /*
253 * Not the same type, but differs only in "const".
254 * Don't warn about MOD_NOCAST.
255 */
256 if (difmod == MOD_CONST)
257 return 0;
258 }
259 if ((oldmod | newmod) & MOD_NOCAST) {
260 const char *tofrom = "to/from";
261 if (!(newmod & MOD_NOCAST))
262 tofrom = "from";
263 if (!(oldmod & MOD_NOCAST))
264 tofrom = "to";
265 warning(expr->pos, "implicit cast %s nocast type", tofrom);
266 }
267 return 0;
268 }
269
270 static void
warn_for_different_enum_types(struct position pos,struct symbol * typea,struct symbol * typeb)271 warn_for_different_enum_types (struct position pos,
272 struct symbol *typea,
273 struct symbol *typeb)
274 {
275 if (!Wenum_mismatch)
276 return;
277 if (typea->type == SYM_NODE)
278 typea = typea->ctype.base_type;
279 if (typeb->type == SYM_NODE)
280 typeb = typeb->ctype.base_type;
281
282 if (typea == typeb)
283 return;
284
285 if (typea->type == SYM_ENUM && typeb->type == SYM_ENUM) {
286 warning(pos, "mixing different enum types");
287 info(pos, " %s versus", show_typename(typea));
288 info(pos, " %s", show_typename(typeb));
289 }
290 }
291
292 static int cast_flags(struct expression *expr, struct expression *target);
293 static struct symbol *cast_to_bool(struct expression *expr);
294
295 /*
296 * This gets called for implicit casts in assignments and
297 * integer promotion. We often want to try to move the
298 * cast down, because the ops involved may have been
299 * implicitly cast up, and we can get rid of the casts
300 * early.
301 */
cast_to(struct expression * old,struct symbol * type)302 static struct expression * cast_to(struct expression *old, struct symbol *type)
303 {
304 struct expression *expr;
305
306 warn_for_different_enum_types (old->pos, old->ctype, type);
307
308 if (old->ctype != &null_ctype && is_same_type(old, type))
309 return old;
310
311 /*
312 * See if we can simplify the op. Move the cast down.
313 */
314 switch (old->type) {
315 case EXPR_PREOP:
316 if (old->ctype->bit_size < type->bit_size)
317 break;
318 if (old->op == '~') {
319 old->ctype = type;
320 old->unop = cast_to(old->unop, type);
321 return old;
322 }
323 break;
324
325 case EXPR_IMPLIED_CAST:
326 warn_for_different_enum_types(old->pos, old->ctype, type);
327
328 if (old->ctype->bit_size >= type->bit_size) {
329 struct expression *orig = old->cast_expression;
330 if (same_cast_type(orig->ctype, type))
331 return orig;
332 if (old->ctype->bit_offset == type->bit_offset) {
333 old->ctype = type;
334 old->cast_type = type;
335 return old;
336 }
337 }
338 break;
339
340 default:
341 /* nothing */;
342 }
343
344 expr = alloc_expression(old->pos, EXPR_IMPLIED_CAST);
345 expr->ctype = type;
346 expr->cast_type = type;
347 expr->cast_expression = old;
348 expr->flags = cast_flags(expr, old);
349
350 if (is_bool_type(type))
351 cast_to_bool(expr);
352
353 return expr;
354 }
355
356 enum {
357 TYPE_NUM = 1,
358 TYPE_BITFIELD = 2,
359 TYPE_RESTRICT = 4,
360 TYPE_FLOAT = 8,
361 TYPE_PTR = 16,
362 TYPE_COMPOUND = 32,
363 TYPE_FOULED = 64,
364 TYPE_FN = 128,
365 };
366
classify_type(struct symbol * type,struct symbol ** base)367 static inline int classify_type(struct symbol *type, struct symbol **base)
368 {
369 static int type_class[SYM_BAD + 1] = {
370 [SYM_PTR] = TYPE_PTR,
371 [SYM_FN] = TYPE_PTR | TYPE_FN,
372 [SYM_ARRAY] = TYPE_PTR | TYPE_COMPOUND,
373 [SYM_STRUCT] = TYPE_COMPOUND,
374 [SYM_UNION] = TYPE_COMPOUND,
375 [SYM_BITFIELD] = TYPE_NUM | TYPE_BITFIELD,
376 [SYM_RESTRICT] = TYPE_NUM | TYPE_RESTRICT,
377 [SYM_FOULED] = TYPE_NUM | TYPE_RESTRICT | TYPE_FOULED,
378 };
379 if (type->type == SYM_NODE)
380 type = type->ctype.base_type;
381 if (type->type == SYM_TYPEOF) {
382 type = evaluate_expression(type->initializer);
383 if (!type)
384 type = &bad_ctype;
385 else if (type->type == SYM_NODE)
386 type = type->ctype.base_type;
387 }
388 if (type->type == SYM_ENUM)
389 type = type->ctype.base_type;
390 *base = type;
391 if (type->type == SYM_BASETYPE) {
392 if (type->ctype.base_type == &int_type)
393 return TYPE_NUM;
394 if (type->ctype.base_type == &fp_type)
395 return TYPE_NUM | TYPE_FLOAT;
396 }
397 return type_class[type->type];
398 }
399
400 #define is_int(class) ((class & (TYPE_NUM | TYPE_FLOAT)) == TYPE_NUM)
401
is_string_type(struct symbol * type)402 static inline int is_string_type(struct symbol *type)
403 {
404 if (type->type == SYM_NODE)
405 type = type->ctype.base_type;
406 return type->type == SYM_ARRAY && is_byte_type(type->ctype.base_type);
407 }
408
bad_expr_type(struct expression * expr)409 static struct symbol *bad_expr_type(struct expression *expr)
410 {
411 switch (expr->type) {
412 case EXPR_BINOP:
413 case EXPR_COMPARE:
414 if (!valid_subexpr_type(expr))
415 break;
416 sparse_error(expr->pos, "incompatible types for operation (%s)", show_special(expr->op));
417 info(expr->pos, " left side has type %s", show_typename(expr->left->ctype));
418 info(expr->pos, " right side has type %s", show_typename(expr->right->ctype));
419 break;
420 case EXPR_PREOP:
421 case EXPR_POSTOP:
422 if (!valid_expr_type(expr->unop))
423 break;
424 sparse_error(expr->pos, "incompatible types for operation (%s)", show_special(expr->op));
425 info(expr->pos, " argument has type %s", show_typename(expr->unop->ctype));
426 break;
427 default:
428 break;
429 }
430
431 expr->flags = CEF_NONE;
432 return expr->ctype = &bad_ctype;
433 }
434
restricted_value(struct expression * v,struct symbol * type)435 static int restricted_value(struct expression *v, struct symbol *type)
436 {
437 if (v->type != EXPR_VALUE)
438 return 1;
439 if (v->value != 0)
440 return 1;
441 return 0;
442 }
443
restricted_binop(int op,struct symbol * type)444 static int restricted_binop(int op, struct symbol *type)
445 {
446 switch (op) {
447 case '&':
448 case '=':
449 case SPECIAL_AND_ASSIGN:
450 case SPECIAL_OR_ASSIGN:
451 case SPECIAL_XOR_ASSIGN:
452 return 1; /* unfoul */
453 case '|':
454 case '^':
455 case '?':
456 return 2; /* keep fouled */
457 case SPECIAL_EQUAL:
458 case SPECIAL_NOTEQUAL:
459 return 3; /* warn if fouled */
460 default:
461 return 0; /* warn */
462 }
463 }
464
restricted_unop(int op,struct symbol ** type)465 static int restricted_unop(int op, struct symbol **type)
466 {
467 if (op == '~') {
468 if ((*type)->bit_size < bits_in_int)
469 *type = befoul(*type);
470 return 0;
471 } if (op == '+')
472 return 0;
473 return 1;
474 }
475
476 /* type should be SYM_FOULED */
unfoul(struct symbol * type)477 static inline struct symbol *unfoul(struct symbol *type)
478 {
479 return type->ctype.base_type;
480 }
481
restricted_binop_type(int op,struct expression * left,struct expression * right,int lclass,int rclass,struct symbol * ltype,struct symbol * rtype)482 static struct symbol *restricted_binop_type(int op,
483 struct expression *left,
484 struct expression *right,
485 int lclass, int rclass,
486 struct symbol *ltype,
487 struct symbol *rtype)
488 {
489 struct symbol *ctype = NULL;
490 if (lclass & TYPE_RESTRICT) {
491 if (rclass & TYPE_RESTRICT) {
492 if (ltype == rtype) {
493 ctype = ltype;
494 } else if (lclass & TYPE_FOULED) {
495 if (unfoul(ltype) == rtype)
496 ctype = ltype;
497 } else if (rclass & TYPE_FOULED) {
498 if (unfoul(rtype) == ltype)
499 ctype = rtype;
500 }
501 } else {
502 if (!restricted_value(right, ltype))
503 ctype = ltype;
504 }
505 } else if (!restricted_value(left, rtype))
506 ctype = rtype;
507
508 if (ctype) {
509 switch (restricted_binop(op, ctype)) {
510 case 1:
511 if ((lclass ^ rclass) & TYPE_FOULED)
512 ctype = unfoul(ctype);
513 break;
514 case 3:
515 if (!(lclass & rclass & TYPE_FOULED))
516 break;
517 case 0:
518 ctype = NULL;
519 default:
520 break;
521 }
522 }
523
524 return ctype;
525 }
526
unrestrict(struct expression * expr,int class,struct symbol ** ctype)527 static inline void unrestrict(struct expression *expr,
528 int class, struct symbol **ctype)
529 {
530 if (class & TYPE_RESTRICT) {
531 if (class & TYPE_FOULED)
532 *ctype = unfoul(*ctype);
533 warning(expr->pos, "%s degrades to integer",
534 show_typename(*ctype));
535 *ctype = (*ctype)->ctype.base_type; /* get to arithmetic type */
536 }
537 }
538
usual_conversions(int op,struct expression * left,struct expression * right,int lclass,int rclass,struct symbol * ltype,struct symbol * rtype)539 static struct symbol *usual_conversions(int op,
540 struct expression *left,
541 struct expression *right,
542 int lclass, int rclass,
543 struct symbol *ltype,
544 struct symbol *rtype)
545 {
546 struct symbol *ctype;
547
548 warn_for_different_enum_types(right->pos, left->ctype, right->ctype);
549
550 if ((lclass | rclass) & TYPE_RESTRICT)
551 goto Restr;
552
553 Normal:
554 if (!(lclass & TYPE_FLOAT)) {
555 if (!(rclass & TYPE_FLOAT))
556 return bigger_int_type(ltype, rtype);
557 else
558 return rtype;
559 } else if (rclass & TYPE_FLOAT) {
560 unsigned long lmod = ltype->ctype.modifiers;
561 unsigned long rmod = rtype->ctype.modifiers;
562 if (rmod & ~lmod & (MOD_LONG_ALL))
563 return rtype;
564 else
565 return ltype;
566 } else
567 return ltype;
568
569 Restr:
570 ctype = restricted_binop_type(op, left, right,
571 lclass, rclass, ltype, rtype);
572 if (ctype)
573 return ctype;
574
575 unrestrict(left, lclass, <ype);
576 unrestrict(right, rclass, &rtype);
577
578 goto Normal;
579 }
580
lvalue_expression(struct expression * expr)581 static inline int lvalue_expression(struct expression *expr)
582 {
583 return expr->type == EXPR_PREOP && expr->op == '*';
584 }
585
evaluate_ptr_add(struct expression * expr,struct symbol * itype)586 static struct symbol *evaluate_ptr_add(struct expression *expr, struct symbol *itype)
587 {
588 struct expression *index = expr->right;
589 struct symbol *ctype, *base;
590 int multiply;
591
592 classify_type(degenerate(expr->left), &ctype);
593 base = examine_pointer_target(ctype);
594
595 /*
596 * An address constant +/- an integer constant expression
597 * yields an address constant again [6.6(7)].
598 */
599 if ((expr->left->flags & CEF_ADDR) && (expr->right->flags & CEF_ICE))
600 expr->flags = CEF_ADDR;
601
602 if (!base) {
603 expression_error(expr, "missing type information");
604 return NULL;
605 }
606 if (is_function(base)) {
607 expression_error(expr, "arithmetics on pointers to functions");
608 return NULL;
609 }
610
611 /* Get the size of whatever the pointer points to */
612 multiply = is_void_type(base) ? 1 : bits_to_bytes(base->bit_size);
613
614 if (ctype == &null_ctype)
615 ctype = &ptr_ctype;
616 expr->ctype = ctype;
617
618 if (multiply == 1 && itype->bit_size >= bits_in_pointer)
619 return ctype;
620
621 if (index->type == EXPR_VALUE) {
622 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
623 unsigned long long v = index->value, mask;
624 mask = 1ULL << (itype->bit_size - 1);
625 if (v & mask)
626 v |= -mask;
627 else
628 v &= mask - 1;
629 v *= multiply;
630 mask = 1ULL << (bits_in_pointer - 1);
631 v &= mask | (mask - 1);
632 val->value = v;
633 val->ctype = ssize_t_ctype;
634 expr->right = val;
635 return ctype;
636 }
637
638 if (itype->bit_size < bits_in_pointer)
639 index = cast_to(index, ssize_t_ctype);
640
641 if (multiply > 1) {
642 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
643 struct expression *mul = alloc_expression(expr->pos, EXPR_BINOP);
644
645 val->ctype = ssize_t_ctype;
646 val->value = multiply;
647
648 mul->op = '*';
649 mul->ctype = ssize_t_ctype;
650 mul->left = index;
651 mul->right = val;
652 index = mul;
653 }
654
655 expr->right = index;
656 return ctype;
657 }
658
659 static void examine_fn_arguments(struct symbol *fn);
660
661 #define MOD_IGN (MOD_QUALIFIER | MOD_PURE)
662
type_difference(struct ctype * c1,struct ctype * c2,unsigned long mod1,unsigned long mod2)663 const char *type_difference(struct ctype *c1, struct ctype *c2,
664 unsigned long mod1, unsigned long mod2)
665 {
666 struct ident *as1 = c1->as, *as2 = c2->as;
667 struct symbol *t1 = c1->base_type;
668 struct symbol *t2 = c2->base_type;
669 int move1 = 1, move2 = 1;
670 mod1 |= c1->modifiers;
671 mod2 |= c2->modifiers;
672 for (;;) {
673 unsigned long diff;
674 int type;
675 struct symbol *base1 = t1->ctype.base_type;
676 struct symbol *base2 = t2->ctype.base_type;
677
678 /*
679 * FIXME! Collect alignment and context too here!
680 */
681 if (move1) {
682 if (t1 && t1->type != SYM_PTR) {
683 mod1 |= t1->ctype.modifiers;
684 combine_address_space(t1->pos, &as1, t1->ctype.as);
685 }
686 move1 = 0;
687 }
688
689 if (move2) {
690 if (t2 && t2->type != SYM_PTR) {
691 mod2 |= t2->ctype.modifiers;
692 combine_address_space(t2->pos, &as2, t2->ctype.as);
693 }
694 move2 = 0;
695 }
696
697 if (t1 == t2)
698 break;
699 if (!t1 || !t2)
700 return "different types";
701
702 if (t1->type == SYM_NODE || t1->type == SYM_ENUM) {
703 t1 = base1;
704 move1 = 1;
705 if (!t1)
706 return "bad types";
707 continue;
708 }
709
710 if (t2->type == SYM_NODE || t2->type == SYM_ENUM) {
711 t2 = base2;
712 move2 = 1;
713 if (!t2)
714 return "bad types";
715 continue;
716 }
717
718 move1 = move2 = 1;
719 type = t1->type;
720 if (type != t2->type)
721 return "different base types";
722
723 switch (type) {
724 default:
725 sparse_error(t1->pos,
726 "internal error: bad type in derived(%d)",
727 type);
728 return "bad types";
729 case SYM_RESTRICT:
730 return "different base types";
731 case SYM_UNION:
732 case SYM_STRUCT:
733 /* allow definition of incomplete structs and unions */
734 if (t1->ident == t2->ident)
735 return NULL;
736 return "different base types";
737 case SYM_ARRAY:
738 /* XXX: we ought to compare sizes */
739 break;
740 case SYM_PTR:
741 if (as1 != as2)
742 return "different address spaces";
743 /* MOD_SPECIFIER is due to idiocy in parse.c */
744 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SPECIFIER)
745 return "different modifiers";
746 /* we could be lazier here */
747 base1 = examine_pointer_target(t1);
748 base2 = examine_pointer_target(t2);
749 mod1 = t1->ctype.modifiers;
750 as1 = t1->ctype.as;
751 mod2 = t2->ctype.modifiers;
752 as2 = t2->ctype.as;
753 break;
754 case SYM_FN: {
755 struct symbol *arg1, *arg2;
756 int i;
757
758 if (as1 != as2)
759 return "different address spaces";
760 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS)
761 return "different modifiers";
762 mod1 = t1->ctype.modifiers;
763 as1 = t1->ctype.as;
764 mod2 = t2->ctype.modifiers;
765 as2 = t2->ctype.as;
766
767 if (t1->variadic != t2->variadic)
768 return "incompatible variadic arguments";
769 examine_fn_arguments(t1);
770 examine_fn_arguments(t2);
771 PREPARE_PTR_LIST(t1->arguments, arg1);
772 PREPARE_PTR_LIST(t2->arguments, arg2);
773 i = 1;
774 for (;;) {
775 const char *diffstr;
776 if (!arg1 && !arg2)
777 break;
778 if (!arg1 || !arg2)
779 return "different argument counts";
780 diffstr = type_difference(&arg1->ctype,
781 &arg2->ctype,
782 MOD_IGN, MOD_IGN);
783 if (diffstr) {
784 static char argdiff[80];
785 sprintf(argdiff, "incompatible argument %d (%s)", i, diffstr);
786 return argdiff;
787 }
788 NEXT_PTR_LIST(arg1);
789 NEXT_PTR_LIST(arg2);
790 i++;
791 }
792 FINISH_PTR_LIST(arg2);
793 FINISH_PTR_LIST(arg1);
794 break;
795 }
796 case SYM_BASETYPE:
797 if (as1 != as2)
798 return "different address spaces";
799 if (base1 != base2)
800 return "different base types";
801 diff = (mod1 ^ mod2) & ~MOD_IGNORE;
802 if (!diff)
803 return NULL;
804 if (diff & MOD_SIZE)
805 return "different type sizes";
806 else if (diff & ~MOD_SIGNEDNESS)
807 return "different modifiers";
808 else
809 return "different signedness";
810 }
811 t1 = base1;
812 t2 = base2;
813 }
814 if (as1 != as2)
815 return "different address spaces";
816 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS)
817 return "different modifiers";
818 return NULL;
819 }
820
bad_null(struct expression * expr)821 static void bad_null(struct expression *expr)
822 {
823 if (Wnon_pointer_null)
824 warning(expr->pos, "Using plain integer as NULL pointer");
825 }
826
target_qualifiers(struct symbol * type)827 static unsigned long target_qualifiers(struct symbol *type)
828 {
829 unsigned long mod = type->ctype.modifiers & MOD_IGN;
830 if (type->ctype.base_type && type->ctype.base_type->type == SYM_ARRAY)
831 mod = 0;
832 return mod;
833 }
834
evaluate_ptr_sub(struct expression * expr)835 static struct symbol *evaluate_ptr_sub(struct expression *expr)
836 {
837 const char *typediff;
838 struct symbol *ltype, *rtype;
839 struct expression *l = expr->left;
840 struct expression *r = expr->right;
841 struct symbol *lbase;
842
843 classify_type(degenerate(l), <ype);
844 classify_type(degenerate(r), &rtype);
845
846 lbase = examine_pointer_target(ltype);
847 examine_pointer_target(rtype);
848 typediff = type_difference(<ype->ctype, &rtype->ctype,
849 target_qualifiers(rtype),
850 target_qualifiers(ltype));
851 if (typediff)
852 expression_error(expr, "subtraction of different types can't work (%s)", typediff);
853
854 if (is_function(lbase)) {
855 expression_error(expr, "subtraction of functions? Share your drugs");
856 return NULL;
857 }
858
859 expr->ctype = ssize_t_ctype;
860 if (lbase->bit_size > bits_in_char) {
861 struct expression *sub = alloc_expression(expr->pos, EXPR_BINOP);
862 struct expression *div = expr;
863 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
864 unsigned long value = bits_to_bytes(lbase->bit_size);
865
866 val->ctype = size_t_ctype;
867 val->value = value;
868
869 if (value & (value-1)) {
870 if (Wptr_subtraction_blows) {
871 warning(expr->pos, "potentially expensive pointer subtraction");
872 info(expr->pos, " '%s' has a non-power-of-2 size: %lu", show_typename(lbase), value);
873 }
874 }
875
876 sub->op = '-';
877 sub->ctype = ssize_t_ctype;
878 sub->left = l;
879 sub->right = r;
880
881 div->op = '/';
882 div->left = sub;
883 div->right = val;
884 }
885
886 return ssize_t_ctype;
887 }
888
889 #define is_safe_type(type) ((type)->ctype.modifiers & MOD_SAFE)
890
evaluate_conditional(struct expression * expr,int iterator)891 static struct symbol *evaluate_conditional(struct expression *expr, int iterator)
892 {
893 struct symbol *ctype;
894
895 if (!expr)
896 return NULL;
897
898 if (!iterator && expr->type == EXPR_ASSIGNMENT && expr->op == '=')
899 warning(expr->pos, "assignment expression in conditional");
900
901 ctype = evaluate_expression(expr);
902 if (!valid_type(ctype))
903 return NULL;
904 if (is_safe_type(ctype))
905 warning(expr->pos, "testing a 'safe expression'");
906 if (is_func_type(ctype)) {
907 if (Waddress)
908 warning(expr->pos, "the address of %s will always evaluate as true", "a function");
909 } else if (is_array_type(ctype)) {
910 if (Waddress)
911 warning(expr->pos, "the address of %s will always evaluate as true", "an array");
912 } else if (!is_scalar_type(ctype)) {
913 sparse_error(expr->pos, "incorrect type in conditional (non-scalar type)");
914 info(expr->pos, " got %s", show_typename(ctype));
915 return NULL;
916 }
917
918 ctype = degenerate(expr);
919 return ctype;
920 }
921
evaluate_logical(struct expression * expr)922 static struct symbol *evaluate_logical(struct expression *expr)
923 {
924 if (!evaluate_conditional(expr->left, 0))
925 return NULL;
926 if (!evaluate_conditional(expr->right, 0))
927 return NULL;
928
929 /* the result is int [6.5.13(3), 6.5.14(3)] */
930 expr->ctype = &int_ctype;
931 expr->flags = expr->left->flags & expr->right->flags;
932 expr->flags &= ~(CEF_CONST_MASK | CEF_ADDR);
933 return &int_ctype;
934 }
935
evaluate_binop(struct expression * expr)936 static struct symbol *evaluate_binop(struct expression *expr)
937 {
938 struct symbol *ltype, *rtype, *ctype;
939 int lclass = classify_type(expr->left->ctype, <ype);
940 int rclass = classify_type(expr->right->ctype, &rtype);
941 int op = expr->op;
942
943 /* number op number */
944 if (lclass & rclass & TYPE_NUM) {
945 expr->flags = expr->left->flags & expr->right->flags;
946 expr->flags &= ~CEF_CONST_MASK;
947
948 if ((lclass | rclass) & TYPE_FLOAT) {
949 switch (op) {
950 case '+': case '-': case '*': case '/':
951 break;
952 default:
953 return bad_expr_type(expr);
954 }
955 }
956
957 if (op == SPECIAL_LEFTSHIFT || op == SPECIAL_RIGHTSHIFT) {
958 // shifts do integer promotions, but that's it.
959 unrestrict(expr->left, lclass, <ype);
960 unrestrict(expr->right, rclass, &rtype);
961 ctype = ltype = integer_promotion(ltype);
962 rtype = integer_promotion(rtype);
963 } else {
964 // The rest do usual conversions
965 const unsigned left_not = expr->left->type == EXPR_PREOP
966 && expr->left->op == '!';
967 const unsigned right_not = expr->right->type == EXPR_PREOP
968 && expr->right->op == '!';
969 if ((op == '&' || op == '|') && (left_not || right_not))
970 warning(expr->pos, "dubious: %sx %c %sy",
971 left_not ? "!" : "",
972 op,
973 right_not ? "!" : "");
974
975 ltype = usual_conversions(op, expr->left, expr->right,
976 lclass, rclass, ltype, rtype);
977 ctype = rtype = ltype;
978 }
979
980 expr->left = cast_to(expr->left, ltype);
981 expr->right = cast_to(expr->right, rtype);
982 expr->ctype = ctype;
983 return ctype;
984 }
985
986 /* pointer (+|-) integer */
987 if (lclass & TYPE_PTR && is_int(rclass) && (op == '+' || op == '-')) {
988 unrestrict(expr->right, rclass, &rtype);
989 return evaluate_ptr_add(expr, rtype);
990 }
991
992 /* integer + pointer */
993 if (rclass & TYPE_PTR && is_int(lclass) && op == '+') {
994 struct expression *index = expr->left;
995 unrestrict(index, lclass, <ype);
996 expr->left = expr->right;
997 expr->right = index;
998 return evaluate_ptr_add(expr, ltype);
999 }
1000
1001 /* pointer - pointer */
1002 if (lclass & rclass & TYPE_PTR && expr->op == '-')
1003 return evaluate_ptr_sub(expr);
1004
1005 return bad_expr_type(expr);
1006 }
1007
evaluate_comma(struct expression * expr)1008 static struct symbol *evaluate_comma(struct expression *expr)
1009 {
1010 expr->ctype = degenerate(expr->right);
1011 if (expr->ctype == &null_ctype)
1012 expr->ctype = &ptr_ctype;
1013 expr->flags &= expr->left->flags & expr->right->flags;
1014 return expr->ctype;
1015 }
1016
modify_for_unsigned(int op)1017 static int modify_for_unsigned(int op)
1018 {
1019 if (op == '<')
1020 op = SPECIAL_UNSIGNED_LT;
1021 else if (op == '>')
1022 op = SPECIAL_UNSIGNED_GT;
1023 else if (op == SPECIAL_LTE)
1024 op = SPECIAL_UNSIGNED_LTE;
1025 else if (op == SPECIAL_GTE)
1026 op = SPECIAL_UNSIGNED_GTE;
1027 return op;
1028 }
1029
1030 enum null_constant_type {
1031 NON_NULL,
1032 NULL_PTR,
1033 NULL_ZERO,
1034 };
1035
is_null_pointer_constant(struct expression * e)1036 static inline int is_null_pointer_constant(struct expression *e)
1037 {
1038 if (e->ctype == &null_ctype)
1039 return NULL_PTR;
1040 if (!(e->flags & CEF_ICE))
1041 return NON_NULL;
1042 return is_zero_constant(e) ? NULL_ZERO : NON_NULL;
1043 }
1044
evaluate_compare(struct expression * expr)1045 static struct symbol *evaluate_compare(struct expression *expr)
1046 {
1047 struct expression *left = expr->left, *right = expr->right;
1048 struct symbol *ltype, *rtype, *lbase, *rbase;
1049 int lclass = classify_type(degenerate(left), <ype);
1050 int rclass = classify_type(degenerate(right), &rtype);
1051 struct symbol *ctype;
1052 const char *typediff;
1053
1054 /* Type types? */
1055 if (is_type_type(ltype) && is_type_type(rtype)) {
1056 /*
1057 * __builtin_types_compatible_p() yields an integer
1058 * constant expression
1059 */
1060 expr->flags = CEF_SET_ICE;
1061 goto OK;
1062 }
1063
1064 if (is_safe_type(left->ctype) || is_safe_type(right->ctype))
1065 warning(expr->pos, "testing a 'safe expression'");
1066
1067 expr->flags = left->flags & right->flags & ~CEF_CONST_MASK & ~CEF_ADDR;
1068
1069 /* number on number */
1070 if (lclass & rclass & TYPE_NUM) {
1071 ctype = usual_conversions(expr->op, expr->left, expr->right,
1072 lclass, rclass, ltype, rtype);
1073 expr->left = cast_to(expr->left, ctype);
1074 expr->right = cast_to(expr->right, ctype);
1075 if (ctype->ctype.modifiers & MOD_UNSIGNED)
1076 expr->op = modify_for_unsigned(expr->op);
1077 goto OK;
1078 }
1079
1080 /* at least one must be a pointer */
1081 if (!((lclass | rclass) & TYPE_PTR))
1082 return bad_expr_type(expr);
1083
1084 /* equality comparisons can be with null pointer constants */
1085 if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) {
1086 int is_null1 = is_null_pointer_constant(left);
1087 int is_null2 = is_null_pointer_constant(right);
1088 if (is_null1 == NULL_ZERO)
1089 bad_null(left);
1090 if (is_null2 == NULL_ZERO)
1091 bad_null(right);
1092 if (is_null1 && is_null2) {
1093 int positive = expr->op == SPECIAL_EQUAL;
1094 expr->type = EXPR_VALUE;
1095 expr->value = positive;
1096 goto OK;
1097 }
1098 if (is_null1 && (rclass & TYPE_PTR)) {
1099 left = cast_to(left, rtype);
1100 goto OK;
1101 }
1102 if (is_null2 && (lclass & TYPE_PTR)) {
1103 right = cast_to(right, ltype);
1104 goto OK;
1105 }
1106 }
1107 /* both should be pointers */
1108 if (!(lclass & rclass & TYPE_PTR))
1109 return bad_expr_type(expr);
1110 expr->op = modify_for_unsigned(expr->op);
1111
1112 lbase = examine_pointer_target(ltype);
1113 rbase = examine_pointer_target(rtype);
1114
1115 /* they also have special treatment for pointers to void */
1116 if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) {
1117 if (ltype->ctype.as == rtype->ctype.as) {
1118 if (lbase == &void_ctype) {
1119 right = cast_to(right, ltype);
1120 goto OK;
1121 }
1122 if (rbase == &void_ctype) {
1123 left = cast_to(left, rtype);
1124 goto OK;
1125 }
1126 }
1127 }
1128
1129 typediff = type_difference(<ype->ctype, &rtype->ctype,
1130 target_qualifiers(rtype),
1131 target_qualifiers(ltype));
1132 if (!typediff)
1133 goto OK;
1134
1135 expression_error(expr, "incompatible types in comparison expression (%s):", typediff);
1136 info(expr->pos, " %s", show_typename(ltype));
1137 info(expr->pos, " %s", show_typename(rtype));
1138 return NULL;
1139
1140 OK:
1141 /* the result is int [6.5.8(6), 6.5.9(3)]*/
1142 expr->ctype = &int_ctype;
1143 return &int_ctype;
1144 }
1145
1146 /*
1147 * NOTE! The degenerate case of "x ? : y", where we don't
1148 * have a true case, this will possibly promote "x" to the
1149 * same type as "y", and thus _change_ the conditional
1150 * test in the expression. But since promotion is "safe"
1151 * for testing, that's OK.
1152 */
evaluate_conditional_expression(struct expression * expr)1153 static struct symbol *evaluate_conditional_expression(struct expression *expr)
1154 {
1155 struct expression **cond;
1156 struct symbol *ctype, *ltype, *rtype, *lbase, *rbase;
1157 int lclass, rclass;
1158 const char * typediff;
1159 int qual;
1160
1161 if (!evaluate_conditional(expr->conditional, 0))
1162 return NULL;
1163 if (!evaluate_expression(expr->cond_false))
1164 return NULL;
1165
1166 ctype = degenerate(expr->conditional);
1167 rtype = degenerate(expr->cond_false);
1168
1169 cond = &expr->conditional;
1170 ltype = ctype;
1171 if (expr->cond_true) {
1172 if (!evaluate_expression(expr->cond_true))
1173 return NULL;
1174 ltype = degenerate(expr->cond_true);
1175 cond = &expr->cond_true;
1176 }
1177
1178 expr->flags = (expr->conditional->flags & (*cond)->flags &
1179 expr->cond_false->flags & ~CEF_CONST_MASK);
1180 /*
1181 * A conditional operator yields a particular constant
1182 * expression type only if all of its three subexpressions are
1183 * of that type [6.6(6), 6.6(8)].
1184 * As an extension, relax this restriction by allowing any
1185 * constant expression type for the condition expression.
1186 *
1187 * A conditional operator never yields an address constant
1188 * [6.6(9)].
1189 * However, as an extension, if the condition is any constant
1190 * expression, and the true and false expressions are both
1191 * address constants, mark the result as an address constant.
1192 */
1193 if (expr->conditional->flags & (CEF_ACE | CEF_ADDR))
1194 expr->flags = (*cond)->flags & expr->cond_false->flags & ~CEF_CONST_MASK;
1195
1196 lclass = classify_type(ltype, <ype);
1197 rclass = classify_type(rtype, &rtype);
1198 if (lclass & rclass & TYPE_NUM) {
1199 ctype = usual_conversions('?', *cond, expr->cond_false,
1200 lclass, rclass, ltype, rtype);
1201 *cond = cast_to(*cond, ctype);
1202 expr->cond_false = cast_to(expr->cond_false, ctype);
1203 goto out;
1204 }
1205
1206 if ((lclass | rclass) & TYPE_PTR) {
1207 int is_null1 = is_null_pointer_constant(*cond);
1208 int is_null2 = is_null_pointer_constant(expr->cond_false);
1209
1210 if (is_null1 && is_null2) {
1211 *cond = cast_to(*cond, &ptr_ctype);
1212 expr->cond_false = cast_to(expr->cond_false, &ptr_ctype);
1213 ctype = &ptr_ctype;
1214 goto out;
1215 }
1216 if (is_null1 && (rclass & TYPE_PTR)) {
1217 if (is_null1 == NULL_ZERO)
1218 bad_null(*cond);
1219 *cond = cast_to(*cond, rtype);
1220 ctype = rtype;
1221 goto out;
1222 }
1223 if (is_null2 && (lclass & TYPE_PTR)) {
1224 if (is_null2 == NULL_ZERO)
1225 bad_null(expr->cond_false);
1226 expr->cond_false = cast_to(expr->cond_false, ltype);
1227 ctype = ltype;
1228 goto out;
1229 }
1230 if (!(lclass & rclass & TYPE_PTR)) {
1231 typediff = "different types";
1232 goto Err;
1233 }
1234 /* OK, it's pointer on pointer */
1235 if (ltype->ctype.as != rtype->ctype.as) {
1236 typediff = "different address spaces";
1237 goto Err;
1238 }
1239
1240 /* need to be lazier here */
1241 lbase = examine_pointer_target(ltype);
1242 rbase = examine_pointer_target(rtype);
1243 qual = target_qualifiers(ltype) | target_qualifiers(rtype);
1244
1245 if (lbase == &void_ctype) {
1246 /* XXX: pointers to function should warn here */
1247 ctype = ltype;
1248 goto Qual;
1249
1250 }
1251 if (rbase == &void_ctype) {
1252 /* XXX: pointers to function should warn here */
1253 ctype = rtype;
1254 goto Qual;
1255 }
1256 /* XXX: that should be pointer to composite */
1257 ctype = ltype;
1258 typediff = type_difference(<ype->ctype, &rtype->ctype,
1259 qual, qual);
1260 if (!typediff)
1261 goto Qual;
1262 goto Err;
1263 }
1264
1265 /* void on void, struct on same struct, union on same union */
1266 if (ltype == rtype) {
1267 ctype = ltype;
1268 goto out;
1269 }
1270 typediff = "different base types";
1271
1272 Err:
1273 expression_error(expr, "incompatible types in conditional expression (%s):", typediff);
1274 info(expr->pos, " %s", show_typename(ltype));
1275 info(expr->pos, " %s", show_typename(rtype));
1276 /*
1277 * if the condition is constant, the type is in fact known
1278 * so use it, as gcc & clang do.
1279 */
1280 switch (expr_truth_value(expr->conditional)) {
1281 case 1: expr->ctype = ltype;
1282 break;
1283 case 0: expr->ctype = rtype;
1284 break;
1285 default:
1286 break;
1287 }
1288 return NULL;
1289
1290 out:
1291 expr->ctype = ctype;
1292 return ctype;
1293
1294 Qual:
1295 if (qual & ~ctype->ctype.modifiers) {
1296 struct symbol *sym = alloc_symbol(ctype->pos, SYM_PTR);
1297 *sym = *ctype;
1298 sym->ctype.modifiers |= qual;
1299 ctype = sym;
1300 }
1301 *cond = cast_to(*cond, ctype);
1302 expr->cond_false = cast_to(expr->cond_false, ctype);
1303 goto out;
1304 }
1305
1306 /* FP assignments can not do modulo or bit operations */
compatible_float_op(int op)1307 static int compatible_float_op(int op)
1308 {
1309 return op == SPECIAL_ADD_ASSIGN ||
1310 op == SPECIAL_SUB_ASSIGN ||
1311 op == SPECIAL_MUL_ASSIGN ||
1312 op == SPECIAL_DIV_ASSIGN;
1313 }
1314
evaluate_assign_op(struct expression * expr)1315 static int evaluate_assign_op(struct expression *expr)
1316 {
1317 struct symbol *target = expr->left->ctype;
1318 struct symbol *source = expr->right->ctype;
1319 struct symbol *t, *s;
1320 int tclass = classify_type(target, &t);
1321 int sclass = classify_type(source, &s);
1322 int op = expr->op;
1323
1324 if (tclass & sclass & TYPE_NUM) {
1325 if (tclass & TYPE_FLOAT && !compatible_float_op(op)) {
1326 expression_error(expr, "invalid assignment");
1327 return 0;
1328 }
1329 if (tclass & TYPE_RESTRICT) {
1330 if (!restricted_binop(op, t)) {
1331 warning(expr->pos, "bad assignment (%s) to %s",
1332 show_special(op), show_typename(t));
1333 expr->right = cast_to(expr->right, target);
1334 return 0;
1335 }
1336 /* allowed assignments unfoul */
1337 if (sclass & TYPE_FOULED && unfoul(s) == t)
1338 goto Cast;
1339 if (!restricted_value(expr->right, t))
1340 return 1;
1341 } else if (op == SPECIAL_SHR_ASSIGN || op == SPECIAL_SHL_ASSIGN) {
1342 // shifts do integer promotions, but that's it.
1343 unrestrict(expr->right, sclass, &s);
1344 target = integer_promotion(s);
1345 goto Cast;
1346 } else if (!(sclass & TYPE_RESTRICT))
1347 goto usual;
1348 /* source and target would better be identical restricted */
1349 if (t == s)
1350 return 1;
1351 warning(expr->pos, "invalid assignment: %s", show_special(op));
1352 info(expr->pos, " left side has type %s", show_typename(t));
1353 info(expr->pos, " right side has type %s", show_typename(s));
1354 expr->right = cast_to(expr->right, target);
1355 return 0;
1356 }
1357 if (tclass == TYPE_PTR && is_int(sclass)) {
1358 if (op == SPECIAL_ADD_ASSIGN || op == SPECIAL_SUB_ASSIGN) {
1359 unrestrict(expr->right, sclass, &s);
1360 evaluate_ptr_add(expr, s);
1361 return 1;
1362 }
1363 expression_error(expr, "invalid pointer assignment");
1364 return 0;
1365 }
1366
1367 expression_error(expr, "invalid assignment");
1368 return 0;
1369
1370 usual:
1371 target = usual_conversions(op, expr->left, expr->right,
1372 tclass, sclass, target, source);
1373 Cast:
1374 expr->right = cast_to(expr->right, target);
1375 return 1;
1376 }
1377
whitelist_pointers(struct symbol * t1,struct symbol * t2)1378 static int whitelist_pointers(struct symbol *t1, struct symbol *t2)
1379 {
1380 if (t1 == t2)
1381 return 0; /* yes, 0 - we don't want a cast_to here */
1382 if (t1 == &void_ctype)
1383 return 1;
1384 if (t2 == &void_ctype)
1385 return 1;
1386 if (classify_type(t1, &t1) != TYPE_NUM)
1387 return 0;
1388 if (classify_type(t2, &t2) != TYPE_NUM)
1389 return 0;
1390 if (t1 == t2)
1391 return 1;
1392 if (t1->ctype.modifiers & t2->ctype.modifiers & MOD_CHAR)
1393 return 1;
1394 if ((t1->ctype.modifiers ^ t2->ctype.modifiers) & MOD_SIZE)
1395 return 0;
1396 return !Wtypesign;
1397 }
1398
check_assignment_types(struct symbol * target,struct expression ** rp,const char ** typediff)1399 static int check_assignment_types(struct symbol *target, struct expression **rp,
1400 const char **typediff)
1401 {
1402 struct symbol *source = degenerate(*rp);
1403 struct symbol *t, *s;
1404 int tclass = classify_type(target, &t);
1405 int sclass = classify_type(source, &s);
1406
1407 if (tclass & sclass & TYPE_NUM) {
1408 if (tclass & TYPE_RESTRICT) {
1409 /* allowed assignments unfoul */
1410 if (sclass & TYPE_FOULED && unfoul(s) == t)
1411 goto Cast;
1412 if (!restricted_value(*rp, target))
1413 return 1;
1414 if (s == t)
1415 return 1;
1416 } else if (!(sclass & TYPE_RESTRICT))
1417 goto Cast;
1418 if (t == &bool_ctype) {
1419 if (is_fouled_type(s))
1420 warning((*rp)->pos, "%s degrades to integer",
1421 show_typename(s->ctype.base_type));
1422 goto Cast;
1423 }
1424 *typediff = "different base types";
1425 return 0;
1426 }
1427
1428 if (tclass == TYPE_PTR) {
1429 unsigned long mod1, mod2;
1430 struct symbol *b1, *b2;
1431 // NULL pointer is always OK
1432 int is_null = is_null_pointer_constant(*rp);
1433 if (is_null) {
1434 if (is_null == NULL_ZERO)
1435 bad_null(*rp);
1436 goto Cast;
1437 }
1438 if (!(sclass & TYPE_PTR)) {
1439 *typediff = "different base types";
1440 return 0;
1441 }
1442 b1 = examine_pointer_target(t);
1443 b2 = examine_pointer_target(s);
1444 mod1 = target_qualifiers(t);
1445 mod2 = target_qualifiers(s);
1446 if (whitelist_pointers(b1, b2)) {
1447 /*
1448 * assignments to/from void * are OK, provided that
1449 * we do not remove qualifiers from pointed to [C]
1450 * or mix address spaces [sparse].
1451 */
1452 if (t->ctype.as != s->ctype.as) {
1453 *typediff = "different address spaces";
1454 return 0;
1455 }
1456 /*
1457 * If this is a function pointer assignment, it is
1458 * actually fine to assign a pointer to const data to
1459 * it, as a function pointer points to const data
1460 * implicitly, i.e., dereferencing it does not produce
1461 * an lvalue.
1462 */
1463 if (b1->type == SYM_FN)
1464 mod1 |= MOD_CONST;
1465 if (mod2 & ~mod1) {
1466 *typediff = "different modifiers";
1467 return 0;
1468 }
1469 goto Cast;
1470 }
1471 /* It's OK if the target is more volatile or const than the source */
1472 *typediff = type_difference(&t->ctype, &s->ctype, 0, mod1);
1473 if (*typediff)
1474 return 0;
1475 return 1;
1476 }
1477
1478 if ((tclass & TYPE_COMPOUND) && s == t)
1479 return 1;
1480
1481 if (tclass & TYPE_NUM) {
1482 /* XXX: need to turn into comparison with NULL */
1483 if (t == &bool_ctype && (sclass & TYPE_PTR))
1484 goto Cast;
1485 *typediff = "different base types";
1486 return 0;
1487 }
1488 *typediff = "invalid types";
1489 return 0;
1490
1491 Cast:
1492 *rp = cast_to(*rp, target);
1493 return 1;
1494 }
1495
compatible_assignment_types(struct expression * expr,struct symbol * target,struct expression ** rp,const char * where)1496 static int compatible_assignment_types(struct expression *expr, struct symbol *target,
1497 struct expression **rp, const char *where)
1498 {
1499 const char *typediff;
1500 struct symbol *source = degenerate(*rp);
1501
1502 if (!check_assignment_types(target, rp, &typediff)) {
1503 warning(expr->pos, "incorrect type in %s (%s)", where, typediff);
1504 info(expr->pos, " expected %s", show_typename(target));
1505 info(expr->pos, " got %s", show_typename(source));
1506 *rp = cast_to(*rp, target);
1507 return 0;
1508 }
1509
1510 return 1;
1511 }
1512
compatible_transparent_union(struct symbol * target,struct expression ** rp)1513 static int compatible_transparent_union(struct symbol *target,
1514 struct expression **rp)
1515 {
1516 struct symbol *t, *member;
1517 classify_type(target, &t);
1518 if (t->type != SYM_UNION || !t->transparent_union)
1519 return 0;
1520
1521 FOR_EACH_PTR(t->symbol_list, member) {
1522 const char *typediff;
1523 if (check_assignment_types(member, rp, &typediff))
1524 return 1;
1525 } END_FOR_EACH_PTR(member);
1526
1527 return 0;
1528 }
1529
compatible_argument_type(struct expression * expr,struct symbol * target,struct expression ** rp,const char * where)1530 static int compatible_argument_type(struct expression *expr, struct symbol *target,
1531 struct expression **rp, const char *where)
1532 {
1533 if (compatible_transparent_union(target, rp))
1534 return 1;
1535
1536 return compatible_assignment_types(expr, target, rp, where);
1537 }
1538
mark_assigned(struct expression * expr)1539 static void mark_assigned(struct expression *expr)
1540 {
1541 struct symbol *sym;
1542
1543 if (!expr)
1544 return;
1545 switch (expr->type) {
1546 case EXPR_SYMBOL:
1547 sym = expr->symbol;
1548 if (!sym)
1549 return;
1550 if (sym->type != SYM_NODE)
1551 return;
1552 sym->ctype.modifiers |= MOD_ASSIGNED;
1553 return;
1554
1555 case EXPR_BINOP:
1556 mark_assigned(expr->left);
1557 mark_assigned(expr->right);
1558 return;
1559 case EXPR_CAST:
1560 case EXPR_FORCE_CAST:
1561 mark_assigned(expr->cast_expression);
1562 return;
1563 case EXPR_SLICE:
1564 mark_assigned(expr->base);
1565 return;
1566 default:
1567 /* Hmm? */
1568 return;
1569 }
1570 }
1571
evaluate_assign_to(struct expression * left,struct symbol * type)1572 static void evaluate_assign_to(struct expression *left, struct symbol *type)
1573 {
1574 if (type->ctype.modifiers & MOD_CONST)
1575 expression_error(left, "assignment to const expression");
1576
1577 /* We know left is an lvalue, so it's a "preop-*" */
1578 mark_assigned(left->unop);
1579 }
1580
evaluate_assignment(struct expression * expr)1581 static struct symbol *evaluate_assignment(struct expression *expr)
1582 {
1583 struct expression *left = expr->left;
1584 struct symbol *ltype;
1585
1586 if (!lvalue_expression(left)) {
1587 expression_error(expr, "not an lvalue");
1588 return NULL;
1589 }
1590
1591 ltype = left->ctype;
1592
1593 if (expr->op != '=') {
1594 if (!evaluate_assign_op(expr))
1595 return NULL;
1596 } else {
1597 if (!compatible_assignment_types(expr, ltype, &expr->right, "assignment"))
1598 return NULL;
1599 }
1600
1601 evaluate_assign_to(left, ltype);
1602
1603 expr->ctype = ltype;
1604 return ltype;
1605 }
1606
examine_fn_arguments(struct symbol * fn)1607 static void examine_fn_arguments(struct symbol *fn)
1608 {
1609 struct symbol *s;
1610
1611 FOR_EACH_PTR(fn->arguments, s) {
1612 struct symbol *arg = evaluate_symbol(s);
1613 /* Array/function arguments silently degenerate into pointers */
1614 if (arg) {
1615 struct symbol *ptr;
1616 switch(arg->type) {
1617 case SYM_ARRAY:
1618 case SYM_FN:
1619 ptr = alloc_symbol(s->pos, SYM_PTR);
1620 if (arg->type == SYM_ARRAY)
1621 ptr->ctype = arg->ctype;
1622 else
1623 ptr->ctype.base_type = arg;
1624 combine_address_space(s->pos, &ptr->ctype.as, s->ctype.as);
1625 ptr->ctype.modifiers |= s->ctype.modifiers & MOD_PTRINHERIT;
1626
1627 s->ctype.base_type = ptr;
1628 s->ctype.as = NULL;
1629 s->ctype.modifiers &= ~MOD_PTRINHERIT;
1630 s->bit_size = 0;
1631 s->examined = 0;
1632 examine_symbol_type(s);
1633 break;
1634 default:
1635 /* nothing */
1636 break;
1637 }
1638 }
1639 } END_FOR_EACH_PTR(s);
1640 }
1641
convert_to_as_mod(struct symbol * sym,struct ident * as,int mod)1642 static struct symbol *convert_to_as_mod(struct symbol *sym, struct ident *as, int mod)
1643 {
1644 /* Take the modifiers of the pointer, and apply them to the member */
1645 mod |= sym->ctype.modifiers;
1646 if (sym->ctype.as != as || sym->ctype.modifiers != mod) {
1647 struct symbol *newsym = alloc_symbol(sym->pos, SYM_NODE);
1648 *newsym = *sym;
1649 newsym->ctype.as = as;
1650 newsym->ctype.modifiers = mod;
1651 sym = newsym;
1652 }
1653 return sym;
1654 }
1655
create_pointer(struct expression * expr,struct symbol * sym,int degenerate)1656 static struct symbol *create_pointer(struct expression *expr, struct symbol *sym, int degenerate)
1657 {
1658 struct symbol *node = alloc_symbol(expr->pos, SYM_NODE);
1659 struct symbol *ptr = alloc_symbol(expr->pos, SYM_PTR);
1660
1661 node->ctype.base_type = ptr;
1662 ptr->bit_size = bits_in_pointer;
1663 ptr->ctype.alignment = pointer_alignment;
1664
1665 node->bit_size = bits_in_pointer;
1666 node->ctype.alignment = pointer_alignment;
1667
1668 access_symbol(sym);
1669 if (sym->ctype.modifiers & MOD_REGISTER) {
1670 warning(expr->pos, "taking address of 'register' variable '%s'", show_ident(sym->ident));
1671 sym->ctype.modifiers &= ~MOD_REGISTER;
1672 }
1673 if (sym->type == SYM_NODE) {
1674 combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as);
1675 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1676 sym = sym->ctype.base_type;
1677 }
1678 if (degenerate && sym->type == SYM_ARRAY) {
1679 combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as);
1680 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1681 sym = sym->ctype.base_type;
1682 }
1683 ptr->ctype.base_type = sym;
1684
1685 return node;
1686 }
1687
1688 /* Arrays degenerate into pointers on pointer arithmetic */
degenerate(struct expression * expr)1689 static struct symbol *degenerate(struct expression *expr)
1690 {
1691 struct symbol *ctype, *base;
1692
1693 if (!expr)
1694 return NULL;
1695 ctype = expr->ctype;
1696 if (!ctype)
1697 return NULL;
1698 base = examine_symbol_type(ctype);
1699 if (ctype->type == SYM_NODE)
1700 base = ctype->ctype.base_type;
1701 /*
1702 * Arrays degenerate into pointers to the entries, while
1703 * functions degenerate into pointers to themselves.
1704 * If array was part of non-lvalue compound, we create a copy
1705 * of that compound first and then act as if we were dealing with
1706 * the corresponding field in there.
1707 */
1708 switch (base->type) {
1709 case SYM_ARRAY:
1710 if (expr->type == EXPR_SLICE) {
1711 struct symbol *a = alloc_symbol(expr->pos, SYM_NODE);
1712 struct expression *e0, *e1, *e2, *e3, *e4;
1713
1714 a->ctype.base_type = expr->base->ctype;
1715 a->bit_size = expr->base->ctype->bit_size;
1716 a->array_size = expr->base->ctype->array_size;
1717
1718 e0 = alloc_expression(expr->pos, EXPR_SYMBOL);
1719 e0->symbol = a;
1720 e0->ctype = &lazy_ptr_ctype;
1721
1722 e1 = alloc_expression(expr->pos, EXPR_PREOP);
1723 e1->unop = e0;
1724 e1->op = '*';
1725 e1->ctype = expr->base->ctype; /* XXX */
1726
1727 e2 = alloc_expression(expr->pos, EXPR_ASSIGNMENT);
1728 e2->left = e1;
1729 e2->right = expr->base;
1730 e2->op = '=';
1731 e2->ctype = expr->base->ctype;
1732
1733 if (expr->r_bitpos) {
1734 e3 = alloc_expression(expr->pos, EXPR_BINOP);
1735 e3->op = '+';
1736 e3->left = e0;
1737 e3->right = alloc_const_expression(expr->pos,
1738 bits_to_bytes(expr->r_bitpos));
1739 e3->ctype = &lazy_ptr_ctype;
1740 } else {
1741 e3 = e0;
1742 }
1743
1744 e4 = alloc_expression(expr->pos, EXPR_COMMA);
1745 e4->left = e2;
1746 e4->right = e3;
1747 e4->ctype = &lazy_ptr_ctype;
1748
1749 expr->unop = e4;
1750 expr->type = EXPR_PREOP;
1751 expr->op = '*';
1752 }
1753 case SYM_FN:
1754 if (expr->op != '*' || expr->type != EXPR_PREOP) {
1755 expression_error(expr, "strange non-value function or array");
1756 return &bad_ctype;
1757 }
1758 *expr = *expr->unop;
1759 ctype = create_pointer(expr, ctype, 1);
1760 expr->ctype = ctype;
1761 default:
1762 /* nothing */;
1763 }
1764 return ctype;
1765 }
1766
evaluate_addressof(struct expression * expr)1767 static struct symbol *evaluate_addressof(struct expression *expr)
1768 {
1769 struct expression *op = expr->unop;
1770 struct symbol *ctype;
1771
1772 if (op->op != '*' || op->type != EXPR_PREOP) {
1773 expression_error(expr, "not addressable");
1774 return NULL;
1775 }
1776 ctype = op->ctype;
1777 *expr = *op->unop;
1778
1779 if (expr->type == EXPR_SYMBOL) {
1780 struct symbol *sym = expr->symbol;
1781 sym->ctype.modifiers |= MOD_ADDRESSABLE;
1782 }
1783
1784 /*
1785 * symbol expression evaluation is lazy about the type
1786 * of the sub-expression, so we may have to generate
1787 * the type here if so..
1788 */
1789 if (expr->ctype == &lazy_ptr_ctype) {
1790 ctype = create_pointer(expr, ctype, 0);
1791 expr->ctype = ctype;
1792 }
1793 return expr->ctype;
1794 }
1795
1796
evaluate_dereference(struct expression * expr)1797 static struct symbol *evaluate_dereference(struct expression *expr)
1798 {
1799 struct expression *op = expr->unop;
1800 struct symbol *ctype = op->ctype, *node, *target;
1801
1802 /* Simplify: *&(expr) => (expr) */
1803 if (op->type == EXPR_PREOP && op->op == '&') {
1804 *expr = *op->unop;
1805 expr->flags = CEF_NONE;
1806 return expr->ctype;
1807 }
1808
1809 examine_symbol_type(ctype);
1810
1811 /* Dereferencing a node drops all the node information. */
1812 if (ctype->type == SYM_NODE)
1813 ctype = ctype->ctype.base_type;
1814
1815 target = ctype->ctype.base_type;
1816 examine_symbol_type(target);
1817
1818 switch (ctype->type) {
1819 default:
1820 expression_error(expr, "cannot dereference this type");
1821 return NULL;
1822 case SYM_FN:
1823 *expr = *op;
1824 return expr->ctype;
1825 case SYM_PTR:
1826 node = alloc_symbol(expr->pos, SYM_NODE);
1827 node->ctype.modifiers = target->ctype.modifiers & MOD_SPECIFIER;
1828 merge_type(node, ctype);
1829 break;
1830
1831 case SYM_ARRAY:
1832 if (!lvalue_expression(op)) {
1833 expression_error(op, "non-lvalue array??");
1834 return NULL;
1835 }
1836
1837 /* Do the implied "addressof" on the array */
1838 *op = *op->unop;
1839
1840 /*
1841 * When an array is dereferenced, we need to pick
1842 * up the attributes of the original node too..
1843 */
1844 node = alloc_symbol(expr->pos, SYM_NODE);
1845 merge_type(node, op->ctype);
1846 merge_type(node, ctype);
1847 break;
1848 }
1849
1850 node->bit_size = target->bit_size;
1851 node->array_size = target->array_size;
1852
1853 expr->ctype = node;
1854 return node;
1855 }
1856
1857 /*
1858 * Unary post-ops: x++ and x--
1859 */
evaluate_postop(struct expression * expr)1860 static struct symbol *evaluate_postop(struct expression *expr)
1861 {
1862 struct expression *op = expr->unop;
1863 struct symbol *ctype = op->ctype;
1864 int class = classify_type(ctype, &ctype);
1865 int multiply = 0;
1866
1867 if (!class || class & TYPE_COMPOUND) {
1868 expression_error(expr, "need scalar for ++/--");
1869 return NULL;
1870 }
1871 if (!lvalue_expression(expr->unop)) {
1872 expression_error(expr, "need lvalue expression for ++/--");
1873 return NULL;
1874 }
1875
1876 if ((class & TYPE_RESTRICT) && restricted_unop(expr->op, &ctype))
1877 unrestrict(expr, class, &ctype);
1878
1879 if (class & TYPE_NUM) {
1880 multiply = 1;
1881 } else if (class == TYPE_PTR) {
1882 struct symbol *target = examine_pointer_target(ctype);
1883 if (!is_function(target))
1884 multiply = bits_to_bytes(target->bit_size);
1885 }
1886
1887 if (multiply) {
1888 evaluate_assign_to(op, op->ctype);
1889 expr->op_value = multiply;
1890 expr->ctype = ctype;
1891 return ctype;
1892 }
1893
1894 expression_error(expr, "bad argument type for ++/--");
1895 return NULL;
1896 }
1897
evaluate_sign(struct expression * expr)1898 static struct symbol *evaluate_sign(struct expression *expr)
1899 {
1900 struct symbol *ctype = expr->unop->ctype;
1901 int class = classify_type(ctype, &ctype);
1902 unsigned char flags = expr->unop->flags & ~CEF_CONST_MASK;
1903
1904 /* should be an arithmetic type */
1905 if (!(class & TYPE_NUM))
1906 return bad_expr_type(expr);
1907 if (class & TYPE_RESTRICT)
1908 goto Restr;
1909 Normal:
1910 if (!(class & TYPE_FLOAT)) {
1911 ctype = integer_promotion(ctype);
1912 expr->unop = cast_to(expr->unop, ctype);
1913 } else if (expr->op != '~') {
1914 /* no conversions needed */
1915 } else {
1916 return bad_expr_type(expr);
1917 }
1918 if (expr->op == '+')
1919 *expr = *expr->unop;
1920 expr->flags = flags;
1921 expr->ctype = ctype;
1922 return ctype;
1923 Restr:
1924 if (restricted_unop(expr->op, &ctype))
1925 unrestrict(expr, class, &ctype);
1926 goto Normal;
1927 }
1928
evaluate_preop(struct expression * expr)1929 static struct symbol *evaluate_preop(struct expression *expr)
1930 {
1931 struct symbol *ctype = expr->unop->ctype;
1932
1933 switch (expr->op) {
1934 case '(':
1935 *expr = *expr->unop;
1936 return ctype;
1937
1938 case '+':
1939 case '-':
1940 case '~':
1941 return evaluate_sign(expr);
1942
1943 case '*':
1944 return evaluate_dereference(expr);
1945
1946 case '&':
1947 return evaluate_addressof(expr);
1948
1949 case SPECIAL_INCREMENT:
1950 case SPECIAL_DECREMENT:
1951 /*
1952 * From a type evaluation standpoint the preops are
1953 * the same as the postops
1954 */
1955 return evaluate_postop(expr);
1956
1957 case '!':
1958 ctype = degenerate(expr->unop);
1959 expr->flags = expr->unop->flags & ~CEF_CONST_MASK;
1960 /*
1961 * A logical negation never yields an address constant
1962 * [6.6(9)].
1963 */
1964 expr->flags &= ~CEF_ADDR;
1965
1966 if (is_safe_type(ctype))
1967 warning(expr->pos, "testing a 'safe expression'");
1968 if (is_float_type(ctype)) {
1969 struct expression *arg = expr->unop;
1970 expr->type = EXPR_COMPARE;
1971 expr->op = SPECIAL_EQUAL;
1972 expr->left = arg;
1973 expr->right = alloc_expression(expr->pos, EXPR_FVALUE);
1974 expr->right->ctype = ctype;
1975 expr->right->fvalue = 0;
1976 } else if (is_fouled_type(ctype)) {
1977 warning(expr->pos, "%s degrades to integer",
1978 show_typename(ctype->ctype.base_type));
1979 }
1980 /* the result is int [6.5.3.3(5)]*/
1981 ctype = &int_ctype;
1982 break;
1983
1984 default:
1985 break;
1986 }
1987 expr->ctype = ctype;
1988 return ctype;
1989 }
1990
find_identifier(struct ident * ident,struct symbol_list * _list,int * offset)1991 struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, int *offset)
1992 {
1993 struct ptr_list *head = (struct ptr_list *)_list;
1994 struct ptr_list *list = head;
1995
1996 if (!head)
1997 return NULL;
1998 do {
1999 int i;
2000 for (i = 0; i < list->nr; i++) {
2001 struct symbol *sym = (struct symbol *) list->list[i];
2002 if (sym->ident) {
2003 if (sym->ident != ident)
2004 continue;
2005 *offset = sym->offset;
2006 return sym;
2007 } else {
2008 struct symbol *ctype = sym->ctype.base_type;
2009 struct symbol *sub;
2010 if (!ctype)
2011 continue;
2012 if (ctype->type != SYM_UNION && ctype->type != SYM_STRUCT)
2013 continue;
2014 sub = find_identifier(ident, ctype->symbol_list, offset);
2015 if (!sub)
2016 continue;
2017 *offset += sym->offset;
2018 return sub;
2019 }
2020 }
2021 } while ((list = list->next) != head);
2022 return NULL;
2023 }
2024
evaluate_offset(struct expression * expr,unsigned long offset)2025 static struct expression *evaluate_offset(struct expression *expr, unsigned long offset)
2026 {
2027 struct expression *add;
2028
2029 /*
2030 * Create a new add-expression
2031 *
2032 * NOTE! Even if we just add zero, we need a new node
2033 * for the member pointer, since it has a different
2034 * type than the original pointer. We could make that
2035 * be just a cast, but the fact is, a node is a node,
2036 * so we might as well just do the "add zero" here.
2037 */
2038 add = alloc_expression(expr->pos, EXPR_BINOP);
2039 add->op = '+';
2040 add->left = expr;
2041 add->right = alloc_expression(expr->pos, EXPR_VALUE);
2042 add->right->ctype = &int_ctype;
2043 add->right->value = offset;
2044
2045 /*
2046 * The ctype of the pointer will be lazily evaluated if
2047 * we ever take the address of this member dereference..
2048 */
2049 add->ctype = &lazy_ptr_ctype;
2050 /*
2051 * The resulting address of a member access through an address
2052 * constant is an address constant again [6.6(9)].
2053 */
2054 add->flags = expr->flags;
2055
2056 return add;
2057 }
2058
2059 /* structure/union dereference */
evaluate_member_dereference(struct expression * expr)2060 static struct symbol *evaluate_member_dereference(struct expression *expr)
2061 {
2062 int offset;
2063 struct symbol *ctype, *member;
2064 struct expression *deref = expr->deref, *add;
2065 struct ident *ident = expr->member;
2066 struct ident *address_space;
2067 unsigned int mod;
2068
2069 if (!evaluate_expression(deref))
2070 return NULL;
2071 if (!ident) {
2072 expression_error(expr, "bad member name");
2073 return NULL;
2074 }
2075
2076 ctype = deref->ctype;
2077 examine_symbol_type(ctype);
2078 address_space = ctype->ctype.as;
2079 mod = ctype->ctype.modifiers;
2080 if (ctype->type == SYM_NODE) {
2081 ctype = ctype->ctype.base_type;
2082 combine_address_space(deref->pos, &address_space, ctype->ctype.as);
2083 mod |= ctype->ctype.modifiers;
2084 }
2085 if (!ctype || (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION)) {
2086 expression_error(expr, "expected structure or union");
2087 return NULL;
2088 }
2089 offset = 0;
2090 member = find_identifier(ident, ctype->symbol_list, &offset);
2091 if (!member) {
2092 const char *type = ctype->type == SYM_STRUCT ? "struct" : "union";
2093 const char *name = "<unnamed>";
2094 int namelen = 9;
2095 if (ctype->ident) {
2096 name = ctype->ident->name;
2097 namelen = ctype->ident->len;
2098 }
2099 if (ctype->symbol_list)
2100 expression_error(expr, "no member '%s' in %s %.*s",
2101 show_ident(ident), type, namelen, name);
2102 else
2103 expression_error(expr, "using member '%s' in "
2104 "incomplete %s %.*s", show_ident(ident),
2105 type, namelen, name);
2106 return NULL;
2107 }
2108
2109 /*
2110 * The member needs to take on the address space and modifiers of
2111 * the "parent" type.
2112 */
2113 member = convert_to_as_mod(member, address_space, mod);
2114 ctype = get_base_type(member);
2115
2116 if (!lvalue_expression(deref)) {
2117 if (deref->type != EXPR_SLICE) {
2118 expr->base = deref;
2119 expr->r_bitpos = 0;
2120 } else {
2121 expr->base = deref->base;
2122 expr->r_bitpos = deref->r_bitpos;
2123 }
2124 expr->r_bitpos += bytes_to_bits(offset);
2125 expr->type = EXPR_SLICE;
2126 expr->r_nrbits = member->bit_size;
2127 expr->r_bitpos += member->bit_offset;
2128 expr->ctype = member;
2129 return member;
2130 }
2131
2132 deref = deref->unop;
2133 expr->deref = deref;
2134
2135 add = evaluate_offset(deref, offset);
2136 expr->type = EXPR_PREOP;
2137 expr->op = '*';
2138 expr->unop = add;
2139
2140 expr->ctype = member;
2141 return member;
2142 }
2143
is_promoted(struct expression * expr)2144 static int is_promoted(struct expression *expr)
2145 {
2146 while (1) {
2147 switch (expr->type) {
2148 case EXPR_BINOP:
2149 case EXPR_SELECT:
2150 case EXPR_CONDITIONAL:
2151 return 1;
2152 case EXPR_COMMA:
2153 expr = expr->right;
2154 continue;
2155 case EXPR_PREOP:
2156 switch (expr->op) {
2157 case '(':
2158 expr = expr->unop;
2159 continue;
2160 case '+':
2161 case '-':
2162 case '~':
2163 return 1;
2164 default:
2165 return 0;
2166 }
2167 default:
2168 return 0;
2169 }
2170 }
2171 }
2172
2173
2174 static struct symbol *evaluate_cast(struct expression *);
2175
evaluate_type_information(struct expression * expr)2176 static struct symbol *evaluate_type_information(struct expression *expr)
2177 {
2178 struct symbol *sym = expr->cast_type;
2179 if (!sym) {
2180 sym = evaluate_expression(expr->cast_expression);
2181 if (!sym)
2182 return NULL;
2183 /*
2184 * Expressions of restricted types will possibly get
2185 * promoted - check that here
2186 */
2187 if (is_restricted_type(sym)) {
2188 if (sym->bit_size < bits_in_int && is_promoted(expr))
2189 sym = &int_ctype;
2190 } else if (is_fouled_type(sym)) {
2191 sym = &int_ctype;
2192 }
2193 }
2194 examine_symbol_type(sym);
2195 if (is_bitfield_type(sym)) {
2196 expression_error(expr, "trying to examine bitfield type");
2197 return NULL;
2198 }
2199 return sym;
2200 }
2201
evaluate_sizeof(struct expression * expr)2202 static struct symbol *evaluate_sizeof(struct expression *expr)
2203 {
2204 struct symbol *type;
2205 int size;
2206
2207 type = evaluate_type_information(expr);
2208 if (!type)
2209 return NULL;
2210
2211 size = type->bit_size;
2212
2213 if (size < 0 && is_void_type(type)) {
2214 if (Wpointer_arith)
2215 warning(expr->pos, "expression using sizeof(void)");
2216 size = bits_in_char;
2217 }
2218
2219 if (is_bool_type(type)) {
2220 if (Wsizeof_bool)
2221 warning(expr->pos, "expression using sizeof _Bool");
2222 size = bits_to_bytes(bits_in_bool) * bits_in_char;
2223 }
2224
2225 if (is_function(type->ctype.base_type)) {
2226 if (Wpointer_arith)
2227 warning(expr->pos, "expression using sizeof on a function");
2228 size = bits_in_char;
2229 }
2230
2231 if (is_array_type(type) && size < 0) { // VLA, 1-dimension only
2232 struct expression *base, *size;
2233 struct symbol *base_type;
2234
2235 if (type->type == SYM_NODE)
2236 type = type->ctype.base_type; // strip the SYM_NODE
2237 base_type = get_base_type(type);
2238 if (!base_type)
2239 goto error;
2240 if (base_type->bit_size <= 0) {
2241 base = alloc_expression(expr->pos, EXPR_SIZEOF);
2242 base->cast_type = base_type;
2243 if (!evaluate_sizeof(base))
2244 goto error;
2245 } else {
2246 base = alloc_expression(expr->pos, EXPR_VALUE);
2247 base->value = bits_to_bytes(base_type->bit_size);
2248 base->ctype = size_t_ctype;
2249 }
2250 size = alloc_expression(expr->pos, EXPR_CAST);
2251 size->cast_type = size_t_ctype;
2252 size->cast_expression = type->array_size;
2253 if (!evaluate_expression(size))
2254 goto error;
2255 expr->left = size;
2256 expr->right = base;
2257 expr->type = EXPR_BINOP;
2258 expr->op = '*';
2259 return expr->ctype = size_t_ctype;
2260 }
2261
2262 error:
2263 if ((size < 0) || (size & (bits_in_char - 1)))
2264 expression_error(expr, "cannot size expression");
2265
2266 expr->type = EXPR_VALUE;
2267 expr->value = bits_to_bytes(size);
2268 expr->taint = 0;
2269 expr->ctype = size_t_ctype;
2270 return size_t_ctype;
2271 }
2272
evaluate_ptrsizeof(struct expression * expr)2273 static struct symbol *evaluate_ptrsizeof(struct expression *expr)
2274 {
2275 struct symbol *type;
2276 int size;
2277
2278 type = evaluate_type_information(expr);
2279 if (!type)
2280 return NULL;
2281
2282 if (type->type == SYM_NODE)
2283 type = type->ctype.base_type;
2284 if (!type)
2285 return NULL;
2286 switch (type->type) {
2287 case SYM_ARRAY:
2288 break;
2289 case SYM_PTR:
2290 type = get_base_type(type);
2291 if (type)
2292 break;
2293 default:
2294 expression_error(expr, "expected pointer expression");
2295 return NULL;
2296 }
2297 size = type->bit_size;
2298 if (size & (bits_in_char-1))
2299 size = 0;
2300 expr->type = EXPR_VALUE;
2301 expr->value = bits_to_bytes(size);
2302 expr->taint = 0;
2303 expr->ctype = size_t_ctype;
2304 return size_t_ctype;
2305 }
2306
evaluate_alignof(struct expression * expr)2307 static struct symbol *evaluate_alignof(struct expression *expr)
2308 {
2309 struct symbol *type;
2310
2311 type = evaluate_type_information(expr);
2312 if (!type)
2313 return NULL;
2314
2315 expr->type = EXPR_VALUE;
2316 expr->value = type->ctype.alignment;
2317 expr->taint = 0;
2318 expr->ctype = size_t_ctype;
2319 return size_t_ctype;
2320 }
2321
evaluate_arguments(struct symbol * fn,struct expression_list * head)2322 static int evaluate_arguments(struct symbol *fn, struct expression_list *head)
2323 {
2324 struct expression *expr;
2325 struct symbol_list *argument_types = fn->arguments;
2326 struct symbol *argtype;
2327 int i = 1;
2328
2329 PREPARE_PTR_LIST(argument_types, argtype);
2330 FOR_EACH_PTR (head, expr) {
2331 struct expression **p = THIS_ADDRESS(expr);
2332 struct symbol *ctype, *target;
2333 ctype = evaluate_expression(expr);
2334
2335 if (!ctype)
2336 return 0;
2337
2338 target = argtype;
2339 if (!target) {
2340 struct symbol *type;
2341 int class = classify_type(ctype, &type);
2342 if (is_int(class)) {
2343 *p = cast_to(expr, integer_promotion(type));
2344 } else if (class & TYPE_FLOAT) {
2345 unsigned long mod = type->ctype.modifiers;
2346 if (!(mod & (MOD_LONG_ALL)))
2347 *p = cast_to(expr, &double_ctype);
2348 } else if (class & TYPE_PTR) {
2349 if (expr->ctype == &null_ctype)
2350 *p = cast_to(expr, &ptr_ctype);
2351 else
2352 degenerate(expr);
2353 }
2354 } else if (!target->forced_arg){
2355 static char where[30];
2356 examine_symbol_type(target);
2357 sprintf(where, "argument %d", i);
2358 compatible_argument_type(expr, target, p, where);
2359 }
2360
2361 i++;
2362 NEXT_PTR_LIST(argtype);
2363 } END_FOR_EACH_PTR(expr);
2364 FINISH_PTR_LIST(argtype);
2365 return 1;
2366 }
2367
convert_index(struct expression * e)2368 static void convert_index(struct expression *e)
2369 {
2370 struct expression *child = e->idx_expression;
2371 unsigned from = e->idx_from;
2372 unsigned to = e->idx_to + 1;
2373 e->type = EXPR_POS;
2374 e->init_offset = from * bits_to_bytes(e->ctype->bit_size);
2375 e->init_nr = to - from;
2376 e->init_expr = child;
2377 }
2378
convert_ident(struct expression * e)2379 static void convert_ident(struct expression *e)
2380 {
2381 struct expression *child = e->ident_expression;
2382 int offset = e->offset;
2383
2384 e->type = EXPR_POS;
2385 e->init_offset = offset;
2386 e->init_nr = 1;
2387 e->init_expr = child;
2388 }
2389
convert_designators(struct expression * e)2390 static void convert_designators(struct expression *e)
2391 {
2392 while (e) {
2393 if (e->type == EXPR_INDEX)
2394 convert_index(e);
2395 else if (e->type == EXPR_IDENTIFIER)
2396 convert_ident(e);
2397 else
2398 break;
2399 e = e->init_expr;
2400 }
2401 }
2402
excess(struct expression * e,const char * s)2403 static void excess(struct expression *e, const char *s)
2404 {
2405 warning(e->pos, "excessive elements in %s initializer", s);
2406 }
2407
2408 /*
2409 * implicit designator for the first element
2410 */
first_subobject(struct symbol * ctype,int class,struct expression ** v)2411 static struct expression *first_subobject(struct symbol *ctype, int class,
2412 struct expression **v)
2413 {
2414 struct expression *e = *v, *new;
2415
2416 if (ctype->type == SYM_NODE)
2417 ctype = ctype->ctype.base_type;
2418
2419 if (class & TYPE_PTR) { /* array */
2420 if (!ctype->bit_size)
2421 return NULL;
2422 new = alloc_expression(e->pos, EXPR_INDEX);
2423 new->idx_expression = e;
2424 new->ctype = ctype->ctype.base_type;
2425 } else {
2426 struct symbol *field, *p;
2427 PREPARE_PTR_LIST(ctype->symbol_list, p);
2428 while (p && !p->ident && is_bitfield_type(p))
2429 NEXT_PTR_LIST(p);
2430 field = p;
2431 FINISH_PTR_LIST(p);
2432 if (!field)
2433 return NULL;
2434 new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2435 new->ident_expression = e;
2436 new->field = new->ctype = field;
2437 new->offset = field->offset;
2438 }
2439 *v = new;
2440 return new;
2441 }
2442
2443 /*
2444 * sanity-check explicit designators; return the innermost one or NULL
2445 * in case of error. Assign types.
2446 */
check_designators(struct expression * e,struct symbol * ctype)2447 static struct expression *check_designators(struct expression *e,
2448 struct symbol *ctype)
2449 {
2450 struct expression *last = NULL;
2451 const char *err;
2452 while (1) {
2453 if (ctype->type == SYM_NODE)
2454 ctype = ctype->ctype.base_type;
2455 if (e->type == EXPR_INDEX) {
2456 struct symbol *type;
2457 if (ctype->type != SYM_ARRAY) {
2458 err = "array index in non-array";
2459 break;
2460 }
2461 type = ctype->ctype.base_type;
2462 if (ctype->bit_size >= 0 && type->bit_size >= 0) {
2463 unsigned offset = array_element_offset(type->bit_size, e->idx_to);
2464 if (offset >= ctype->bit_size) {
2465 err = "index out of bounds in";
2466 break;
2467 }
2468 }
2469 e->ctype = ctype = type;
2470 ctype = type;
2471 last = e;
2472 if (!e->idx_expression) {
2473 err = "invalid";
2474 break;
2475 }
2476 e = e->idx_expression;
2477 } else if (e->type == EXPR_IDENTIFIER) {
2478 int offset = 0;
2479 if (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION) {
2480 err = "field name not in struct or union";
2481 break;
2482 }
2483 ctype = find_identifier(e->expr_ident, ctype->symbol_list, &offset);
2484 if (!ctype) {
2485 err = "unknown field name in";
2486 break;
2487 }
2488 e->offset = offset;
2489 e->field = e->ctype = ctype;
2490 last = e;
2491 if (!e->ident_expression) {
2492 err = "invalid";
2493 break;
2494 }
2495 e = e->ident_expression;
2496 } else if (e->type == EXPR_POS) {
2497 err = "internal front-end error: EXPR_POS in";
2498 break;
2499 } else
2500 return last;
2501 }
2502 expression_error(e, "%s initializer", err);
2503 return NULL;
2504 }
2505
2506 /*
2507 * choose the next subobject to initialize.
2508 *
2509 * Get designators for next element, switch old ones to EXPR_POS.
2510 * Return the resulting expression or NULL if we'd run out of subobjects.
2511 * The innermost designator is returned in *v. Designators in old
2512 * are assumed to be already sanity-checked.
2513 */
next_designators(struct expression * old,struct symbol * ctype,struct expression * e,struct expression ** v)2514 static struct expression *next_designators(struct expression *old,
2515 struct symbol *ctype,
2516 struct expression *e, struct expression **v)
2517 {
2518 struct expression *new = NULL;
2519
2520 if (!old)
2521 return NULL;
2522 if (old->type == EXPR_INDEX) {
2523 struct expression *copy;
2524 unsigned n;
2525
2526 copy = next_designators(old->idx_expression,
2527 old->ctype, e, v);
2528 if (!copy) {
2529 n = old->idx_to + 1;
2530 if (array_element_offset(old->ctype->bit_size, n) == ctype->bit_size) {
2531 convert_index(old);
2532 return NULL;
2533 }
2534 copy = e;
2535 *v = new = alloc_expression(e->pos, EXPR_INDEX);
2536 } else {
2537 n = old->idx_to;
2538 new = alloc_expression(e->pos, EXPR_INDEX);
2539 }
2540
2541 new->idx_from = new->idx_to = n;
2542 new->idx_expression = copy;
2543 new->ctype = old->ctype;
2544 convert_index(old);
2545 } else if (old->type == EXPR_IDENTIFIER) {
2546 struct expression *copy;
2547 struct symbol *field;
2548 int offset = 0;
2549
2550 copy = next_designators(old->ident_expression,
2551 old->ctype, e, v);
2552 if (!copy) {
2553 field = old->field->next_subobject;
2554 if (!field) {
2555 convert_ident(old);
2556 return NULL;
2557 }
2558 copy = e;
2559 *v = new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2560 /*
2561 * We can't necessarily trust "field->offset",
2562 * because the field might be in an anonymous
2563 * union, and the field offset is then the offset
2564 * within that union.
2565 *
2566 * The "old->offset - old->field->offset"
2567 * would be the offset of such an anonymous
2568 * union.
2569 */
2570 offset = old->offset - old->field->offset;
2571 } else {
2572 field = old->field;
2573 new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2574 }
2575
2576 new->field = field;
2577 new->expr_ident = field->ident;
2578 new->ident_expression = copy;
2579 new->ctype = field;
2580 new->offset = field->offset + offset;
2581 convert_ident(old);
2582 }
2583 return new;
2584 }
2585
2586 static int handle_initializer(struct expression **ep, int nested,
2587 int class, struct symbol *ctype, unsigned long mods);
2588
2589 /*
2590 * deal with traversing subobjects [6.7.8(17,18,20)]
2591 */
handle_list_initializer(struct expression * expr,int class,struct symbol * ctype,unsigned long mods)2592 static void handle_list_initializer(struct expression *expr,
2593 int class, struct symbol *ctype, unsigned long mods)
2594 {
2595 struct expression *e, *last = NULL, *top = NULL, *next;
2596 int jumped = 0;
2597
2598 FOR_EACH_PTR(expr->expr_list, e) {
2599 struct expression **v;
2600 struct symbol *type;
2601 int lclass;
2602
2603 if (e->type != EXPR_INDEX && e->type != EXPR_IDENTIFIER) {
2604 struct symbol *struct_sym;
2605 if (!top) {
2606 top = e;
2607 last = first_subobject(ctype, class, &top);
2608 } else {
2609 last = next_designators(last, ctype, e, &top);
2610 }
2611 if (!last) {
2612 excess(e, class & TYPE_PTR ? "array" :
2613 "struct or union");
2614 DELETE_CURRENT_PTR(e);
2615 continue;
2616 }
2617 struct_sym = ctype->type == SYM_NODE ? ctype->ctype.base_type : ctype;
2618 if (Wdesignated_init && struct_sym->designated_init)
2619 warning(e->pos, "%s%.*s%spositional init of field in %s %s, declared with attribute designated_init",
2620 ctype->ident ? "in initializer for " : "",
2621 ctype->ident ? ctype->ident->len : 0,
2622 ctype->ident ? ctype->ident->name : "",
2623 ctype->ident ? ": " : "",
2624 get_type_name(struct_sym->type),
2625 show_ident(struct_sym->ident));
2626 if (jumped) {
2627 warning(e->pos, "advancing past deep designator");
2628 jumped = 0;
2629 }
2630 REPLACE_CURRENT_PTR(e, last);
2631 } else {
2632 next = check_designators(e, ctype);
2633 if (!next) {
2634 DELETE_CURRENT_PTR(e);
2635 continue;
2636 }
2637 top = next;
2638 /* deeper than one designator? */
2639 jumped = top != e;
2640 convert_designators(last);
2641 last = e;
2642 }
2643
2644 found:
2645 lclass = classify_type(top->ctype, &type);
2646 if (top->type == EXPR_INDEX)
2647 v = &top->idx_expression;
2648 else
2649 v = &top->ident_expression;
2650
2651 mods |= ctype->ctype.modifiers & MOD_STORAGE;
2652 if (handle_initializer(v, 1, lclass, top->ctype, mods))
2653 continue;
2654
2655 if (!(lclass & TYPE_COMPOUND)) {
2656 warning(e->pos, "bogus scalar initializer");
2657 DELETE_CURRENT_PTR(e);
2658 continue;
2659 }
2660
2661 next = first_subobject(type, lclass, v);
2662 if (next) {
2663 warning(e->pos, "missing braces around initializer");
2664 top = next;
2665 goto found;
2666 }
2667
2668 DELETE_CURRENT_PTR(e);
2669 excess(e, lclass & TYPE_PTR ? "array" : "struct or union");
2670
2671 } END_FOR_EACH_PTR(e);
2672
2673 convert_designators(last);
2674 expr->ctype = ctype;
2675 }
2676
is_string_literal(struct expression ** v)2677 static int is_string_literal(struct expression **v)
2678 {
2679 struct expression *e = *v;
2680 while (e && e->type == EXPR_PREOP && e->op == '(')
2681 e = e->unop;
2682 if (!e || e->type != EXPR_STRING)
2683 return 0;
2684 if (e != *v && Wparen_string)
2685 warning(e->pos,
2686 "array initialized from parenthesized string constant");
2687 *v = e;
2688 return 1;
2689 }
2690
2691 /*
2692 * We want a normal expression, possibly in one layer of braces. Warn
2693 * if the latter happens inside a list (it's legal, but likely to be
2694 * an effect of screwup). In case of anything not legal, we are definitely
2695 * having an effect of screwup, so just fail and let the caller warn.
2696 */
handle_scalar(struct expression * e,int nested)2697 static struct expression *handle_scalar(struct expression *e, int nested)
2698 {
2699 struct expression *v = NULL, *p;
2700 int count = 0;
2701
2702 /* normal case */
2703 if (e->type != EXPR_INITIALIZER)
2704 return e;
2705
2706 FOR_EACH_PTR(e->expr_list, p) {
2707 if (!v)
2708 v = p;
2709 count++;
2710 } END_FOR_EACH_PTR(p);
2711 if (count != 1)
2712 return NULL;
2713 switch(v->type) {
2714 case EXPR_INITIALIZER:
2715 case EXPR_INDEX:
2716 case EXPR_IDENTIFIER:
2717 return NULL;
2718 default:
2719 break;
2720 }
2721 if (nested)
2722 warning(e->pos, "braces around scalar initializer");
2723 return v;
2724 }
2725
2726 /*
2727 * deal with the cases that don't care about subobjects:
2728 * scalar <- assignment expression, possibly in braces [6.7.8(11)]
2729 * character array <- string literal, possibly in braces [6.7.8(14)]
2730 * struct or union <- assignment expression of compatible type [6.7.8(13)]
2731 * compound type <- initializer list in braces [6.7.8(16)]
2732 * The last one punts to handle_list_initializer() which, in turn will call
2733 * us for individual elements of the list.
2734 *
2735 * We do not handle 6.7.8(15) (wide char array <- wide string literal) for
2736 * the lack of support of wide char stuff in general.
2737 *
2738 * One note: we need to take care not to evaluate a string literal until
2739 * we know that we *will* handle it right here. Otherwise we would screw
2740 * the cases like struct { struct {char s[10]; ...} ...} initialized with
2741 * { "string", ...} - we need to preserve that string literal recognizable
2742 * until we dig into the inner struct.
2743 */
handle_initializer(struct expression ** ep,int nested,int class,struct symbol * ctype,unsigned long mods)2744 static int handle_initializer(struct expression **ep, int nested,
2745 int class, struct symbol *ctype, unsigned long mods)
2746 {
2747 int is_string = is_string_type(ctype);
2748 struct expression *e = *ep, *p;
2749 struct symbol *type;
2750
2751 if (!e)
2752 return 0;
2753
2754 /* scalar */
2755 if (!(class & TYPE_COMPOUND)) {
2756 e = handle_scalar(e, nested);
2757 if (!e)
2758 return 0;
2759 *ep = e;
2760 if (!evaluate_expression(e))
2761 return 1;
2762 compatible_assignment_types(e, ctype, ep, "initializer");
2763 /*
2764 * Initializers for static storage duration objects
2765 * shall be constant expressions or a string literal [6.7.8(4)].
2766 */
2767 mods |= ctype->ctype.modifiers;
2768 mods &= (MOD_TOPLEVEL | MOD_STATIC);
2769 if (mods && !(e->flags & (CEF_ACE | CEF_ADDR)))
2770 if (Wconstexpr_not_const)
2771 warning(e->pos, "non-constant initializer for static object");
2772
2773 return 1;
2774 }
2775
2776 /*
2777 * sublist; either a string, or we dig in; the latter will deal with
2778 * pathologies, so we don't need anything fancy here.
2779 */
2780 if (e->type == EXPR_INITIALIZER) {
2781 if (is_string) {
2782 struct expression *v = NULL;
2783 int count = 0;
2784
2785 FOR_EACH_PTR(e->expr_list, p) {
2786 if (!v)
2787 v = p;
2788 count++;
2789 } END_FOR_EACH_PTR(p);
2790 if (count == 1 && is_string_literal(&v)) {
2791 *ep = e = v;
2792 goto String;
2793 }
2794 }
2795 handle_list_initializer(e, class, ctype, mods);
2796 return 1;
2797 }
2798
2799 /* string */
2800 if (is_string_literal(&e)) {
2801 /* either we are doing array of char, or we'll have to dig in */
2802 if (is_string) {
2803 *ep = e;
2804 goto String;
2805 }
2806 return 0;
2807 }
2808 /* struct or union can be initialized by compatible */
2809 if (class != TYPE_COMPOUND)
2810 return 0;
2811 type = evaluate_expression(e);
2812 if (!type)
2813 return 0;
2814 if (ctype->type == SYM_NODE)
2815 ctype = ctype->ctype.base_type;
2816 if (type->type == SYM_NODE)
2817 type = type->ctype.base_type;
2818 if (ctype == type)
2819 return 1;
2820 return 0;
2821
2822 String:
2823 p = alloc_expression(e->pos, EXPR_STRING);
2824 *p = *e;
2825 type = evaluate_expression(p);
2826 if (ctype->bit_size != -1) {
2827 if (ctype->bit_size + bits_in_char < type->bit_size)
2828 warning(e->pos,
2829 "too long initializer-string for array of char");
2830 else if (Winit_cstring && ctype->bit_size + bits_in_char == type->bit_size) {
2831 warning(e->pos,
2832 "too long initializer-string for array of char(no space for nul char)");
2833 }
2834 }
2835 *ep = p;
2836 return 1;
2837 }
2838
evaluate_initializer(struct symbol * ctype,struct expression ** ep)2839 static void evaluate_initializer(struct symbol *ctype, struct expression **ep)
2840 {
2841 struct symbol *type;
2842 int class = classify_type(ctype, &type);
2843 if (!handle_initializer(ep, 0, class, ctype, 0))
2844 expression_error(*ep, "invalid initializer");
2845 }
2846
cast_to_bool(struct expression * expr)2847 static struct symbol *cast_to_bool(struct expression *expr)
2848 {
2849 struct expression *old = expr->cast_expression;
2850 struct expression *zero;
2851 struct symbol *otype;
2852 int oclass = classify_type(degenerate(old), &otype);
2853 struct symbol *ctype;
2854
2855 if (oclass & TYPE_COMPOUND)
2856 return NULL;
2857
2858 zero = alloc_const_expression(expr->pos, 0);
2859 expr->op = SPECIAL_NOTEQUAL;
2860 ctype = usual_conversions(expr->op, old, zero,
2861 oclass, TYPE_NUM, otype, zero->ctype);
2862 expr->type = EXPR_COMPARE;
2863 expr->left = cast_to(old, ctype);
2864 expr->right = cast_to(zero, ctype);
2865
2866 return expr->ctype;
2867 }
2868
cast_flags(struct expression * expr,struct expression * old)2869 static int cast_flags(struct expression *expr, struct expression *old)
2870 {
2871 struct symbol *t;
2872 int class;
2873 int flags = CEF_NONE;
2874
2875 class = classify_type(expr->ctype, &t);
2876 if (class & TYPE_NUM) {
2877 flags = old->flags & ~CEF_CONST_MASK;
2878 /*
2879 * Casts to numeric types never result in address
2880 * constants [6.6(9)].
2881 */
2882 flags &= ~CEF_ADDR;
2883
2884 /*
2885 * As an extension, treat address constants cast to
2886 * integer type as an arithmetic constant.
2887 */
2888 if (old->flags & CEF_ADDR)
2889 flags = CEF_ACE;
2890
2891 /*
2892 * Cast to float type -> not an integer constant
2893 * expression [6.6(6)].
2894 */
2895 if (class & TYPE_FLOAT)
2896 flags &= ~CEF_CLR_ICE;
2897 /*
2898 * Casts of float literals to integer type results in
2899 * a constant integer expression [6.6(6)].
2900 */
2901 else if (old->flags & CEF_FLOAT)
2902 flags = CEF_SET_ICE;
2903 } else if (class & TYPE_PTR) {
2904 /*
2905 * Casts of integer literals to pointer type yield
2906 * address constants [6.6(9)].
2907 *
2908 * As an extension, treat address constants cast to a
2909 * different pointer type as address constants again.
2910 *
2911 * As another extension, treat integer constant
2912 * expressions (in contrast to literals) cast to
2913 * pointer type as address constants.
2914 */
2915 if (old->flags & (CEF_ICE | CEF_ADDR))
2916 flags = CEF_ADDR;
2917 }
2918
2919 return flags;
2920 }
2921
evaluate_cast(struct expression * expr)2922 static struct symbol *evaluate_cast(struct expression *expr)
2923 {
2924 struct expression *source = expr->cast_expression;
2925 struct symbol *ctype;
2926 struct symbol *ttype, *stype;
2927 int tclass, sclass;
2928 struct ident *tas = NULL, *sas = NULL;
2929
2930 if (!source)
2931 return NULL;
2932
2933 /*
2934 * Special case: a cast can be followed by an
2935 * initializer, in which case we need to pass
2936 * the type value down to that initializer rather
2937 * than trying to evaluate it as an expression
2938 *
2939 * A more complex case is when the initializer is
2940 * dereferenced as part of a post-fix expression.
2941 * We need to produce an expression that can be dereferenced.
2942 */
2943 if (source->type == EXPR_INITIALIZER) {
2944 struct symbol *sym = expr->cast_type;
2945 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
2946
2947 sym->initializer = source;
2948 evaluate_symbol(sym);
2949
2950 addr->ctype = &lazy_ptr_ctype; /* Lazy eval */
2951 addr->symbol = sym;
2952 if (sym->ctype.modifiers & MOD_TOPLEVEL)
2953 addr->flags |= CEF_ADDR;
2954
2955 expr->type = EXPR_PREOP;
2956 expr->op = '*';
2957 expr->unop = addr;
2958 expr->ctype = sym;
2959
2960 return sym;
2961 }
2962
2963 ctype = examine_symbol_type(expr->cast_type);
2964 expr->ctype = ctype;
2965 expr->cast_type = ctype;
2966
2967 evaluate_expression(source);
2968 degenerate(source);
2969
2970 tclass = classify_type(ctype, &ttype);
2971
2972 expr->flags = cast_flags(expr, source);
2973
2974 /*
2975 * You can always throw a value away by casting to
2976 * "void" - that's an implicit "force". Note that
2977 * the same is _not_ true of "void *".
2978 */
2979 if (ttype == &void_ctype)
2980 goto out;
2981
2982 stype = source->ctype;
2983 if (!stype) {
2984 expression_error(expr, "cast from unknown type");
2985 goto out;
2986 }
2987 sclass = classify_type(stype, &stype);
2988
2989 if (expr->type == EXPR_FORCE_CAST)
2990 goto out;
2991
2992 if (tclass & (TYPE_COMPOUND | TYPE_FN))
2993 warning(expr->pos, "cast to non-scalar");
2994
2995 if (sclass & TYPE_COMPOUND)
2996 warning(expr->pos, "cast from non-scalar");
2997
2998 /* allowed cast unfouls */
2999 if (sclass & TYPE_FOULED)
3000 stype = unfoul(stype);
3001
3002 if (ttype != stype) {
3003 if ((tclass & TYPE_RESTRICT) && restricted_value(source, ttype))
3004 warning(expr->pos, "cast to %s",
3005 show_typename(ttype));
3006 if (sclass & TYPE_RESTRICT) {
3007 if (ttype == &bool_ctype) {
3008 if (sclass & TYPE_FOULED)
3009 warning(expr->pos, "%s degrades to integer",
3010 show_typename(stype));
3011 } else {
3012 warning(expr->pos, "cast from %s",
3013 show_typename(stype));
3014 }
3015 }
3016 }
3017
3018 if ((ttype == &ulong_ctype || ttype == uintptr_ctype) && !Wcast_from_as)
3019 tas = &bad_address_space;
3020 else if (tclass == TYPE_PTR) {
3021 examine_pointer_target(ttype);
3022 tas = ttype->ctype.as;
3023 }
3024
3025 if ((stype == &ulong_ctype || stype == uintptr_ctype))
3026 sas = &bad_address_space;
3027 else if (sclass == TYPE_PTR) {
3028 examine_pointer_target(stype);
3029 sas = stype->ctype.as;
3030 }
3031
3032 if (!tas && valid_as(sas))
3033 warning(expr->pos, "cast removes address space '%s' of expression", show_as(sas));
3034 if (valid_as(tas) && valid_as(sas) && tas != sas)
3035 warning(expr->pos, "cast between address spaces (%s -> %s)", show_as(sas), show_as(tas));
3036 if (valid_as(tas) && !sas &&
3037 !is_null_pointer_constant(source) && Wcast_to_as)
3038 warning(expr->pos,
3039 "cast adds address space '%s' to expression", show_as(tas));
3040
3041 if (!(ttype->ctype.modifiers & MOD_PTRINHERIT) && tclass == TYPE_PTR &&
3042 !tas && (source->flags & CEF_ICE)) {
3043 if (ttype->ctype.base_type == &void_ctype) {
3044 if (is_zero_constant(source)) {
3045 /* NULL */
3046 expr->type = EXPR_VALUE;
3047 expr->ctype = &null_ctype;
3048 expr->value = 0;
3049 return expr->ctype;
3050 }
3051 }
3052 }
3053
3054 if (ttype == &bool_ctype)
3055 cast_to_bool(expr);
3056
3057 // checks pointers to restricted
3058 while (Wbitwise_pointer && tclass == TYPE_PTR && sclass == TYPE_PTR) {
3059 tclass = classify_type(ttype->ctype.base_type, &ttype);
3060 sclass = classify_type(stype->ctype.base_type, &stype);
3061 if (ttype == stype)
3062 break;
3063 if (!ttype || !stype)
3064 break;
3065 if (ttype == &void_ctype || stype == &void_ctype)
3066 break;
3067 if (tclass & TYPE_RESTRICT) {
3068 warning(expr->pos, "cast to %s", show_typename(ctype));
3069 break;
3070 }
3071 if (sclass & TYPE_RESTRICT) {
3072 warning(expr->pos, "cast from %s", show_typename(source->ctype));
3073 break;
3074 }
3075 }
3076 out:
3077 return ctype;
3078 }
3079
3080 /*
3081 * Evaluate a call expression with a symbol. This
3082 * should expand inline functions, and evaluate
3083 * builtins.
3084 */
evaluate_symbol_call(struct expression * expr)3085 static int evaluate_symbol_call(struct expression *expr)
3086 {
3087 struct expression *fn = expr->fn;
3088 struct symbol *ctype = fn->ctype;
3089
3090 if (fn->type != EXPR_PREOP)
3091 return 0;
3092
3093 if (ctype->op && ctype->op->evaluate)
3094 return ctype->op->evaluate(expr);
3095
3096 if (ctype->ctype.modifiers & MOD_INLINE) {
3097 int ret;
3098 struct symbol *curr = current_fn;
3099
3100 if (ctype->definition)
3101 ctype = ctype->definition;
3102
3103 current_fn = ctype->ctype.base_type;
3104
3105 ret = inline_function(expr, ctype);
3106
3107 /* restore the old function */
3108 current_fn = curr;
3109 return ret;
3110 }
3111
3112 return 0;
3113 }
3114
evaluate_call(struct expression * expr)3115 static struct symbol *evaluate_call(struct expression *expr)
3116 {
3117 int args, fnargs;
3118 struct symbol *ctype, *sym;
3119 struct expression *fn = expr->fn;
3120 struct expression_list *arglist = expr->args;
3121
3122 if (!evaluate_expression(fn))
3123 return NULL;
3124 sym = ctype = fn->ctype;
3125 if (ctype->type == SYM_NODE)
3126 ctype = ctype->ctype.base_type;
3127 if (ctype->type == SYM_PTR)
3128 ctype = get_base_type(ctype);
3129
3130 if (ctype->type != SYM_FN) {
3131 struct expression *arg;
3132 expression_error(expr, "not a function %s",
3133 show_ident(sym->ident));
3134 /* do typechecking in arguments */
3135 FOR_EACH_PTR (arglist, arg) {
3136 evaluate_expression(arg);
3137 } END_FOR_EACH_PTR(arg);
3138 return NULL;
3139 }
3140
3141 examine_fn_arguments(ctype);
3142 if (sym->type == SYM_NODE && fn->type == EXPR_PREOP &&
3143 sym->op && sym->op->args) {
3144 if (!sym->op->args(expr))
3145 return NULL;
3146 } else {
3147 if (!evaluate_arguments(ctype, arglist))
3148 return NULL;
3149 args = expression_list_size(expr->args);
3150 fnargs = symbol_list_size(ctype->arguments);
3151 if (args < fnargs) {
3152 expression_error(expr,
3153 "not enough arguments for function %s",
3154 show_ident(sym->ident));
3155 return NULL;
3156 }
3157 if (args > fnargs && !ctype->variadic)
3158 expression_error(expr,
3159 "too many arguments for function %s",
3160 show_ident(sym->ident));
3161 }
3162 expr->ctype = ctype->ctype.base_type;
3163 if (sym->type == SYM_NODE) {
3164 if (evaluate_symbol_call(expr))
3165 return expr->ctype;
3166 }
3167 return expr->ctype;
3168 }
3169
evaluate_offsetof(struct expression * expr)3170 static struct symbol *evaluate_offsetof(struct expression *expr)
3171 {
3172 struct expression *e = expr->down;
3173 struct symbol *ctype = expr->in;
3174 int class;
3175
3176 if (expr->op == '.') {
3177 struct symbol *field;
3178 int offset = 0;
3179 if (!ctype) {
3180 expression_error(expr, "expected structure or union");
3181 return NULL;
3182 }
3183 examine_symbol_type(ctype);
3184 class = classify_type(ctype, &ctype);
3185 if (class != TYPE_COMPOUND) {
3186 expression_error(expr, "expected structure or union");
3187 return NULL;
3188 }
3189
3190 field = find_identifier(expr->ident, ctype->symbol_list, &offset);
3191 if (!field) {
3192 expression_error(expr, "unknown member");
3193 return NULL;
3194 }
3195 ctype = field;
3196 expr->type = EXPR_VALUE;
3197 expr->flags = CEF_SET_ICE;
3198 expr->value = offset;
3199 expr->taint = 0;
3200 expr->ctype = size_t_ctype;
3201 } else {
3202 if (!ctype) {
3203 expression_error(expr, "expected structure or union");
3204 return NULL;
3205 }
3206 examine_symbol_type(ctype);
3207 class = classify_type(ctype, &ctype);
3208 if (class != (TYPE_COMPOUND | TYPE_PTR)) {
3209 expression_error(expr, "expected array");
3210 return NULL;
3211 }
3212 ctype = ctype->ctype.base_type;
3213 if (!expr->index) {
3214 expr->type = EXPR_VALUE;
3215 expr->flags = CEF_SET_ICE;
3216 expr->value = 0;
3217 expr->taint = 0;
3218 expr->ctype = size_t_ctype;
3219 } else {
3220 struct expression *idx = expr->index, *m;
3221 struct symbol *i_type = evaluate_expression(idx);
3222 unsigned old_idx_flags;
3223 int i_class = classify_type(i_type, &i_type);
3224
3225 if (!is_int(i_class)) {
3226 expression_error(expr, "non-integer index");
3227 return NULL;
3228 }
3229 unrestrict(idx, i_class, &i_type);
3230 old_idx_flags = idx->flags;
3231 idx = cast_to(idx, size_t_ctype);
3232 idx->flags = old_idx_flags;
3233 m = alloc_const_expression(expr->pos,
3234 bits_to_bytes(ctype->bit_size));
3235 m->ctype = size_t_ctype;
3236 m->flags = CEF_SET_INT;
3237 expr->type = EXPR_BINOP;
3238 expr->left = idx;
3239 expr->right = m;
3240 expr->op = '*';
3241 expr->ctype = size_t_ctype;
3242 expr->flags = m->flags & idx->flags & ~CEF_CONST_MASK;
3243 }
3244 }
3245 if (e) {
3246 struct expression *copy = __alloc_expression(0);
3247 *copy = *expr;
3248 if (e->type == EXPR_OFFSETOF)
3249 e->in = ctype;
3250 if (!evaluate_expression(e))
3251 return NULL;
3252 expr->type = EXPR_BINOP;
3253 expr->flags = e->flags & copy->flags & ~CEF_CONST_MASK;
3254 expr->op = '+';
3255 expr->ctype = size_t_ctype;
3256 expr->left = copy;
3257 expr->right = e;
3258 }
3259 return size_t_ctype;
3260 }
3261
evaluate_expression(struct expression * expr)3262 struct symbol *evaluate_expression(struct expression *expr)
3263 {
3264 if (!expr)
3265 return NULL;
3266 if (expr->ctype)
3267 return expr->ctype;
3268
3269 switch (expr->type) {
3270 case EXPR_VALUE:
3271 case EXPR_FVALUE:
3272 expression_error(expr, "value expression without a type");
3273 return NULL;
3274 case EXPR_STRING:
3275 return evaluate_string(expr);
3276 case EXPR_SYMBOL:
3277 return evaluate_symbol_expression(expr);
3278 case EXPR_BINOP:
3279 evaluate_expression(expr->left);
3280 evaluate_expression(expr->right);
3281 if (!valid_subexpr_type(expr))
3282 return NULL;
3283 return evaluate_binop(expr);
3284 case EXPR_LOGICAL:
3285 return evaluate_logical(expr);
3286 case EXPR_COMMA:
3287 evaluate_expression(expr->left);
3288 if (!evaluate_expression(expr->right))
3289 return NULL;
3290 return evaluate_comma(expr);
3291 case EXPR_COMPARE:
3292 evaluate_expression(expr->left);
3293 evaluate_expression(expr->right);
3294 if (!valid_subexpr_type(expr))
3295 return NULL;
3296 return evaluate_compare(expr);
3297 case EXPR_ASSIGNMENT:
3298 evaluate_expression(expr->left);
3299 evaluate_expression(expr->right);
3300 if (!valid_subexpr_type(expr))
3301 return NULL;
3302 return evaluate_assignment(expr);
3303 case EXPR_PREOP:
3304 if (!evaluate_expression(expr->unop))
3305 return NULL;
3306 return evaluate_preop(expr);
3307 case EXPR_POSTOP:
3308 if (!evaluate_expression(expr->unop))
3309 return NULL;
3310 return evaluate_postop(expr);
3311 case EXPR_CAST:
3312 case EXPR_FORCE_CAST:
3313 case EXPR_IMPLIED_CAST:
3314 return evaluate_cast(expr);
3315 case EXPR_SIZEOF:
3316 return evaluate_sizeof(expr);
3317 case EXPR_PTRSIZEOF:
3318 return evaluate_ptrsizeof(expr);
3319 case EXPR_ALIGNOF:
3320 return evaluate_alignof(expr);
3321 case EXPR_DEREF:
3322 return evaluate_member_dereference(expr);
3323 case EXPR_CALL:
3324 return evaluate_call(expr);
3325 case EXPR_SELECT:
3326 case EXPR_CONDITIONAL:
3327 return evaluate_conditional_expression(expr);
3328 case EXPR_STATEMENT:
3329 expr->ctype = evaluate_statement(expr->statement);
3330 return expr->ctype;
3331
3332 case EXPR_LABEL:
3333 expr->ctype = &ptr_ctype;
3334 return &ptr_ctype;
3335
3336 case EXPR_TYPE:
3337 /* Evaluate the type of the symbol .. */
3338 evaluate_symbol(expr->symbol);
3339 /* .. but the type of the _expression_ is a "type" */
3340 expr->ctype = &type_ctype;
3341 return &type_ctype;
3342
3343 case EXPR_OFFSETOF:
3344 return evaluate_offsetof(expr);
3345
3346 /* These can not exist as stand-alone expressions */
3347 case EXPR_INITIALIZER:
3348 case EXPR_IDENTIFIER:
3349 case EXPR_INDEX:
3350 case EXPR_POS:
3351 expression_error(expr, "internal front-end error: initializer in expression");
3352 return NULL;
3353 case EXPR_SLICE:
3354 expression_error(expr, "internal front-end error: SLICE re-evaluated");
3355 return NULL;
3356 case EXPR_ASM_OPERAND:
3357 expression_error(expr, "internal front-end error: ASM_OPERAND evaluated");
3358 return NULL;
3359 }
3360 return NULL;
3361 }
3362
check_duplicates(struct symbol * sym)3363 void check_duplicates(struct symbol *sym)
3364 {
3365 int declared = 0;
3366 struct symbol *next = sym;
3367 int initialized = sym->initializer != NULL;
3368
3369 while ((next = next->same_symbol) != NULL) {
3370 const char *typediff;
3371 evaluate_symbol(next);
3372 if (initialized && next->initializer) {
3373 sparse_error(sym->pos, "symbol '%s' has multiple initializers (originally initialized at %s:%d)",
3374 show_ident(sym->ident),
3375 stream_name(next->pos.stream), next->pos.line);
3376 /* Only warn once */
3377 initialized = 0;
3378 }
3379 declared++;
3380 typediff = type_difference(&sym->ctype, &next->ctype, 0, 0);
3381 if (typediff) {
3382 sparse_error(sym->pos, "symbol '%s' redeclared with different type (originally declared at %s:%d) - %s",
3383 show_ident(sym->ident),
3384 stream_name(next->pos.stream), next->pos.line, typediff);
3385 return;
3386 }
3387 }
3388 if (!declared) {
3389 unsigned long mod = sym->ctype.modifiers;
3390 if (mod & (MOD_STATIC | MOD_REGISTER | MOD_EXT_VISIBLE))
3391 return;
3392 if (!(mod & MOD_TOPLEVEL))
3393 return;
3394 if (!Wdecl)
3395 return;
3396 if (sym->ident == &main_ident)
3397 return;
3398 warning(sym->pos, "symbol '%s' was not declared. Should it be static?", show_ident(sym->ident));
3399 }
3400 }
3401
evaluate_symbol(struct symbol * sym)3402 static struct symbol *evaluate_symbol(struct symbol *sym)
3403 {
3404 struct symbol *base_type;
3405
3406 if (!sym)
3407 return sym;
3408 if (sym->evaluated)
3409 return sym;
3410 sym->evaluated = 1;
3411
3412 sym = examine_symbol_type(sym);
3413 base_type = get_base_type(sym);
3414 if (!base_type)
3415 return NULL;
3416
3417 /* Evaluate the initializers */
3418 if (sym->initializer)
3419 evaluate_initializer(sym, &sym->initializer);
3420
3421 /* And finally, evaluate the body of the symbol too */
3422 if (base_type->type == SYM_FN) {
3423 struct symbol *curr = current_fn;
3424
3425 if (sym->definition && sym->definition != sym)
3426 return evaluate_symbol(sym->definition);
3427
3428 current_fn = base_type;
3429
3430 examine_fn_arguments(base_type);
3431 if (!base_type->stmt && base_type->inline_stmt)
3432 uninline(sym);
3433 if (base_type->stmt)
3434 evaluate_statement(base_type->stmt);
3435
3436 current_fn = curr;
3437 }
3438
3439 return base_type;
3440 }
3441
evaluate_symbol_list(struct symbol_list * list)3442 void evaluate_symbol_list(struct symbol_list *list)
3443 {
3444 struct symbol *sym;
3445
3446 FOR_EACH_PTR(list, sym) {
3447 has_error &= ~ERROR_CURR_PHASE;
3448 evaluate_symbol(sym);
3449 check_duplicates(sym);
3450 } END_FOR_EACH_PTR(sym);
3451 }
3452
evaluate_return_expression(struct statement * stmt)3453 static struct symbol *evaluate_return_expression(struct statement *stmt)
3454 {
3455 struct expression *expr = stmt->expression;
3456 struct symbol *fntype;
3457
3458 evaluate_expression(expr);
3459 fntype = current_fn->ctype.base_type;
3460 if (!fntype || fntype == &void_ctype) {
3461 if (expr && expr->ctype != &void_ctype)
3462 expression_error(expr, "return expression in %s function", fntype?"void":"typeless");
3463 if (expr && Wreturn_void)
3464 warning(stmt->pos, "returning void-valued expression");
3465 return NULL;
3466 }
3467
3468 if (!expr) {
3469 sparse_error(stmt->pos, "return with no return value");
3470 return NULL;
3471 }
3472 if (!expr->ctype)
3473 return NULL;
3474 compatible_assignment_types(expr, fntype, &stmt->expression, "return expression");
3475 return NULL;
3476 }
3477
evaluate_if_statement(struct statement * stmt)3478 static void evaluate_if_statement(struct statement *stmt)
3479 {
3480 if (!stmt->if_conditional)
3481 return;
3482
3483 evaluate_conditional(stmt->if_conditional, 0);
3484 evaluate_statement(stmt->if_true);
3485 evaluate_statement(stmt->if_false);
3486 }
3487
evaluate_iterator(struct statement * stmt)3488 static void evaluate_iterator(struct statement *stmt)
3489 {
3490 evaluate_symbol_list(stmt->iterator_syms);
3491 evaluate_conditional(stmt->iterator_pre_condition, 1);
3492 evaluate_conditional(stmt->iterator_post_condition,1);
3493 evaluate_statement(stmt->iterator_pre_statement);
3494 evaluate_statement(stmt->iterator_statement);
3495 evaluate_statement(stmt->iterator_post_statement);
3496 }
3497
verify_output_constraint(struct expression * expr,const char * constraint)3498 static void verify_output_constraint(struct expression *expr, const char *constraint)
3499 {
3500 switch (*constraint) {
3501 case '=': /* Assignment */
3502 case '+': /* Update */
3503 break;
3504 default:
3505 expression_error(expr, "output constraint is not an assignment constraint (\"%s\")", constraint);
3506 }
3507 }
3508
verify_input_constraint(struct expression * expr,const char * constraint)3509 static void verify_input_constraint(struct expression *expr, const char *constraint)
3510 {
3511 switch (*constraint) {
3512 case '=': /* Assignment */
3513 case '+': /* Update */
3514 expression_error(expr, "input constraint with assignment (\"%s\")", constraint);
3515 }
3516 }
3517
evaluate_asm_statement(struct statement * stmt)3518 static void evaluate_asm_statement(struct statement *stmt)
3519 {
3520 struct expression *expr;
3521 struct expression *op;
3522 struct symbol *sym;
3523
3524 expr = stmt->asm_string;
3525 if (!expr || expr->type != EXPR_STRING) {
3526 sparse_error(stmt->pos, "need constant string for inline asm");
3527 return;
3528 }
3529
3530 FOR_EACH_PTR(stmt->asm_outputs, op) {
3531 /* Identifier */
3532
3533 /* Constraint */
3534 expr = op->constraint;
3535 if (!expr || expr->type != EXPR_STRING) {
3536 sparse_error(expr ? expr->pos : stmt->pos, "asm output constraint is not a string");
3537 op->constraint = NULL;
3538 } else
3539 verify_output_constraint(expr, expr->string->data);
3540
3541 /* Expression */
3542 expr = op->expr;
3543 if (!evaluate_expression(expr))
3544 return;
3545 if (!lvalue_expression(expr))
3546 warning(expr->pos, "asm output is not an lvalue");
3547 evaluate_assign_to(expr, expr->ctype);
3548 } END_FOR_EACH_PTR(op);
3549
3550 FOR_EACH_PTR(stmt->asm_inputs, op) {
3551 /* Identifier */
3552
3553 /* Constraint */
3554 expr = op->constraint;
3555 if (!expr || expr->type != EXPR_STRING) {
3556 sparse_error(expr ? expr->pos : stmt->pos, "asm input constraint is not a string");
3557 op->constraint = NULL;
3558 } else
3559 verify_input_constraint(expr, expr->string->data);
3560
3561 /* Expression */
3562 if (!evaluate_expression(op->expr))
3563 return;
3564 } END_FOR_EACH_PTR(op);
3565
3566 FOR_EACH_PTR(stmt->asm_clobbers, expr) {
3567 if (!expr) {
3568 sparse_error(stmt->pos, "bad asm clobbers");
3569 return;
3570 }
3571 if (expr->type == EXPR_STRING)
3572 continue;
3573 expression_error(expr, "asm clobber is not a string");
3574 } END_FOR_EACH_PTR(expr);
3575
3576 FOR_EACH_PTR(stmt->asm_labels, sym) {
3577 if (!sym || sym->type != SYM_LABEL) {
3578 sparse_error(stmt->pos, "bad asm label");
3579 return;
3580 }
3581 } END_FOR_EACH_PTR(sym);
3582 }
3583
evaluate_case_statement(struct statement * stmt)3584 static void evaluate_case_statement(struct statement *stmt)
3585 {
3586 evaluate_expression(stmt->case_expression);
3587 evaluate_expression(stmt->case_to);
3588 evaluate_statement(stmt->case_statement);
3589 }
3590
check_case_type(struct expression * switch_expr,struct expression * case_expr,struct expression ** enumcase)3591 static void check_case_type(struct expression *switch_expr,
3592 struct expression *case_expr,
3593 struct expression **enumcase)
3594 {
3595 struct symbol *switch_type, *case_type;
3596 int sclass, cclass;
3597
3598 if (!case_expr)
3599 return;
3600
3601 switch_type = switch_expr->ctype;
3602 case_type = evaluate_expression(case_expr);
3603
3604 if (!switch_type || !case_type)
3605 goto Bad;
3606 if (enumcase) {
3607 if (*enumcase)
3608 warn_for_different_enum_types(case_expr->pos, case_type, (*enumcase)->ctype);
3609 else if (is_enum_type(case_type))
3610 *enumcase = case_expr;
3611 }
3612
3613 sclass = classify_type(switch_type, &switch_type);
3614 cclass = classify_type(case_type, &case_type);
3615
3616 /* both should be arithmetic */
3617 if (!(sclass & cclass & TYPE_NUM))
3618 goto Bad;
3619
3620 /* neither should be floating */
3621 if ((sclass | cclass) & TYPE_FLOAT)
3622 goto Bad;
3623
3624 /* if neither is restricted, we are OK */
3625 if (!((sclass | cclass) & TYPE_RESTRICT))
3626 return;
3627
3628 if (!restricted_binop_type(SPECIAL_EQUAL, case_expr, switch_expr,
3629 cclass, sclass, case_type, switch_type)) {
3630 unrestrict(case_expr, cclass, &case_type);
3631 unrestrict(switch_expr, sclass, &switch_type);
3632 }
3633 return;
3634
3635 Bad:
3636 expression_error(case_expr, "incompatible types for 'case' statement");
3637 }
3638
evaluate_switch_statement(struct statement * stmt)3639 static void evaluate_switch_statement(struct statement *stmt)
3640 {
3641 struct symbol *sym;
3642 struct expression *enumcase = NULL;
3643 struct expression **enumcase_holder = &enumcase;
3644 struct expression *sel = stmt->switch_expression;
3645
3646 evaluate_expression(sel);
3647 evaluate_statement(stmt->switch_statement);
3648 if (!sel)
3649 return;
3650 if (sel->ctype && is_enum_type(sel->ctype))
3651 enumcase_holder = NULL; /* Only check cases against switch */
3652
3653 FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
3654 struct statement *case_stmt = sym->stmt;
3655 check_case_type(sel, case_stmt->case_expression, enumcase_holder);
3656 check_case_type(sel, case_stmt->case_to, enumcase_holder);
3657 } END_FOR_EACH_PTR(sym);
3658 }
3659
evaluate_goto_statement(struct statement * stmt)3660 static void evaluate_goto_statement(struct statement *stmt)
3661 {
3662 struct symbol *label = stmt->goto_label;
3663
3664 if (label && !label->stmt && label->ident && !lookup_keyword(label->ident, NS_KEYWORD))
3665 sparse_error(stmt->pos, "label '%s' was not declared", show_ident(label->ident));
3666
3667 evaluate_expression(stmt->goto_expression);
3668 }
3669
evaluate_statement(struct statement * stmt)3670 struct symbol *evaluate_statement(struct statement *stmt)
3671 {
3672 if (!stmt)
3673 return NULL;
3674
3675 switch (stmt->type) {
3676 case STMT_DECLARATION: {
3677 struct symbol *s;
3678 FOR_EACH_PTR(stmt->declaration, s) {
3679 evaluate_symbol(s);
3680 } END_FOR_EACH_PTR(s);
3681 return NULL;
3682 }
3683
3684 case STMT_RETURN:
3685 return evaluate_return_expression(stmt);
3686
3687 case STMT_EXPRESSION:
3688 if (!evaluate_expression(stmt->expression))
3689 return NULL;
3690 if (stmt->expression->ctype == &null_ctype)
3691 stmt->expression = cast_to(stmt->expression, &ptr_ctype);
3692 return degenerate(stmt->expression);
3693
3694 case STMT_COMPOUND: {
3695 struct statement *s;
3696 struct symbol *type = NULL;
3697
3698 /* Evaluate the return symbol in the compound statement */
3699 evaluate_symbol(stmt->ret);
3700
3701 /*
3702 * Then, evaluate each statement, making the type of the
3703 * compound statement be the type of the last statement
3704 */
3705 type = evaluate_statement(stmt->args);
3706 FOR_EACH_PTR(stmt->stmts, s) {
3707 type = evaluate_statement(s);
3708 } END_FOR_EACH_PTR(s);
3709 if (!type)
3710 type = &void_ctype;
3711 return type;
3712 }
3713 case STMT_IF:
3714 evaluate_if_statement(stmt);
3715 return NULL;
3716 case STMT_ITERATOR:
3717 evaluate_iterator(stmt);
3718 return NULL;
3719 case STMT_SWITCH:
3720 evaluate_switch_statement(stmt);
3721 return NULL;
3722 case STMT_CASE:
3723 evaluate_case_statement(stmt);
3724 return NULL;
3725 case STMT_LABEL:
3726 return evaluate_statement(stmt->label_statement);
3727 case STMT_GOTO:
3728 evaluate_goto_statement(stmt);
3729 return NULL;
3730 case STMT_NONE:
3731 break;
3732 case STMT_ASM:
3733 evaluate_asm_statement(stmt);
3734 return NULL;
3735 case STMT_CONTEXT:
3736 evaluate_expression(stmt->expression);
3737 return NULL;
3738 case STMT_RANGE:
3739 evaluate_expression(stmt->range_expression);
3740 evaluate_expression(stmt->range_low);
3741 evaluate_expression(stmt->range_high);
3742 return NULL;
3743 }
3744 return NULL;
3745 }
3746