1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
4 *
5 * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/iio/iio.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/interrupt.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/mfd/syscon.h>
24
25 #define MESON_SAR_ADC_REG0 0x00
26 #define MESON_SAR_ADC_REG0_PANEL_DETECT BIT(31)
27 #define MESON_SAR_ADC_REG0_BUSY_MASK GENMASK(30, 28)
28 #define MESON_SAR_ADC_REG0_DELTA_BUSY BIT(30)
29 #define MESON_SAR_ADC_REG0_AVG_BUSY BIT(29)
30 #define MESON_SAR_ADC_REG0_SAMPLE_BUSY BIT(28)
31 #define MESON_SAR_ADC_REG0_FIFO_FULL BIT(27)
32 #define MESON_SAR_ADC_REG0_FIFO_EMPTY BIT(26)
33 #define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK GENMASK(25, 21)
34 #define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK GENMASK(20, 19)
35 #define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK GENMASK(18, 16)
36 #define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL BIT(15)
37 #define MESON_SAR_ADC_REG0_SAMPLING_STOP BIT(14)
38 #define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK GENMASK(13, 12)
39 #define MESON_SAR_ADC_REG0_DETECT_IRQ_POL BIT(10)
40 #define MESON_SAR_ADC_REG0_DETECT_IRQ_EN BIT(9)
41 #define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK GENMASK(8, 4)
42 #define MESON_SAR_ADC_REG0_FIFO_IRQ_EN BIT(3)
43 #define MESON_SAR_ADC_REG0_SAMPLING_START BIT(2)
44 #define MESON_SAR_ADC_REG0_CONTINUOUS_EN BIT(1)
45 #define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE BIT(0)
46
47 #define MESON_SAR_ADC_CHAN_LIST 0x04
48 #define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK GENMASK(26, 24)
49 #define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan) \
50 (GENMASK(2, 0) << ((_chan) * 3))
51
52 #define MESON_SAR_ADC_AVG_CNTL 0x08
53 #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan) \
54 (16 + ((_chan) * 2))
55 #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan) \
56 (GENMASK(17, 16) << ((_chan) * 2))
57 #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan) \
58 (0 + ((_chan) * 2))
59 #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan) \
60 (GENMASK(1, 0) << ((_chan) * 2))
61
62 #define MESON_SAR_ADC_REG3 0x0c
63 #define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY BIT(31)
64 #define MESON_SAR_ADC_REG3_CLK_EN BIT(30)
65 #define MESON_SAR_ADC_REG3_BL30_INITIALIZED BIT(28)
66 #define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN BIT(27)
67 #define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE BIT(26)
68 #define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK GENMASK(25, 23)
69 #define MESON_SAR_ADC_REG3_DETECT_EN BIT(22)
70 #define MESON_SAR_ADC_REG3_ADC_EN BIT(21)
71 #define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK GENMASK(20, 18)
72 #define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK GENMASK(17, 16)
73 #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT 10
74 #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH 6
75 #define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK GENMASK(9, 8)
76 #define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK GENMASK(7, 0)
77
78 #define MESON_SAR_ADC_DELAY 0x10
79 #define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK GENMASK(25, 24)
80 #define MESON_SAR_ADC_DELAY_BL30_BUSY BIT(15)
81 #define MESON_SAR_ADC_DELAY_KERNEL_BUSY BIT(14)
82 #define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK GENMASK(23, 16)
83 #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK GENMASK(9, 8)
84 #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK GENMASK(7, 0)
85
86 #define MESON_SAR_ADC_LAST_RD 0x14
87 #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK GENMASK(23, 16)
88 #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK GENMASK(9, 0)
89
90 #define MESON_SAR_ADC_FIFO_RD 0x18
91 #define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK GENMASK(14, 12)
92 #define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK GENMASK(11, 0)
93
94 #define MESON_SAR_ADC_AUX_SW 0x1c
95 #define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan) \
96 (8 + (((_chan) - 2) * 3))
97 #define MESON_SAR_ADC_AUX_SW_VREF_P_MUX BIT(6)
98 #define MESON_SAR_ADC_AUX_SW_VREF_N_MUX BIT(5)
99 #define MESON_SAR_ADC_AUX_SW_MODE_SEL BIT(4)
100 #define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW BIT(3)
101 #define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW BIT(2)
102 #define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW BIT(1)
103 #define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW BIT(0)
104
105 #define MESON_SAR_ADC_CHAN_10_SW 0x20
106 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK GENMASK(25, 23)
107 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX BIT(22)
108 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX BIT(21)
109 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL BIT(20)
110 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW BIT(19)
111 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW BIT(18)
112 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW BIT(17)
113 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW BIT(16)
114 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK GENMASK(9, 7)
115 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX BIT(6)
116 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX BIT(5)
117 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL BIT(4)
118 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW BIT(3)
119 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW BIT(2)
120 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW BIT(1)
121 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW BIT(0)
122
123 #define MESON_SAR_ADC_DETECT_IDLE_SW 0x24
124 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN BIT(26)
125 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK GENMASK(25, 23)
126 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX BIT(22)
127 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX BIT(21)
128 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL BIT(20)
129 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW BIT(19)
130 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW BIT(18)
131 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW BIT(17)
132 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW BIT(16)
133 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK GENMASK(9, 7)
134 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX BIT(6)
135 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX BIT(5)
136 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL BIT(4)
137 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW BIT(3)
138 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW BIT(2)
139 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW BIT(1)
140 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW BIT(0)
141
142 #define MESON_SAR_ADC_DELTA_10 0x28
143 #define MESON_SAR_ADC_DELTA_10_TEMP_SEL BIT(27)
144 #define MESON_SAR_ADC_DELTA_10_TS_REVE1 BIT(26)
145 #define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK GENMASK(25, 16)
146 #define MESON_SAR_ADC_DELTA_10_TS_REVE0 BIT(15)
147 #define MESON_SAR_ADC_DELTA_10_TS_C_MASK GENMASK(14, 11)
148 #define MESON_SAR_ADC_DELTA_10_TS_VBG_EN BIT(10)
149 #define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK GENMASK(9, 0)
150
151 /*
152 * NOTE: registers from here are undocumented (the vendor Linux kernel driver
153 * and u-boot source served as reference). These only seem to be relevant on
154 * GXBB and newer.
155 */
156 #define MESON_SAR_ADC_REG11 0x2c
157 #define MESON_SAR_ADC_REG11_BANDGAP_EN BIT(13)
158 #define MESON_SAR_ADC_REG11_CMV_SEL BIT(6)
159 #define MESON_SAR_ADC_REG11_VREF_VOLTAGE BIT(5)
160 #define MESON_SAR_ADC_REG11_EOC BIT(1)
161 #define MESON_SAR_ADC_REG11_VREF_SEL BIT(0)
162
163 #define MESON_SAR_ADC_REG12 0x30
164 #define MESON_SAR_ADC_REG12_MPLL0_UNKNOWN BIT(0)
165 #define MESON_SAR_ADC_REG12_MPLL1_UNKNOWN BIT(1)
166 #define MESON_SAR_ADC_REG12_MPLL2_UNKNOWN BIT(2)
167
168 #define MESON_SAR_ADC_REG13 0x34
169 #define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK GENMASK(13, 8)
170
171 #define MESON_SAR_ADC_MAX_FIFO_SIZE 32
172 #define MESON_SAR_ADC_TIMEOUT 100 /* ms */
173 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL 6
174 #define MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL 7
175 #define MESON_SAR_ADC_TEMP_OFFSET 27
176
177 /* temperature sensor calibration information in eFuse */
178 #define MESON_SAR_ADC_EFUSE_BYTES 4
179 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL GENMASK(6, 0)
180 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED BIT(7)
181
182 #define MESON_HHI_DPLL_TOP_0 0x318
183 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4 BIT(9)
184
185 /* for use with IIO_VAL_INT_PLUS_MICRO */
186 #define MILLION 1000000
187
188 #define MESON_SAR_ADC_CHAN(_chan) { \
189 .type = IIO_VOLTAGE, \
190 .indexed = 1, \
191 .channel = _chan, \
192 .address = _chan, \
193 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
194 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
195 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
196 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
197 BIT(IIO_CHAN_INFO_CALIBSCALE), \
198 .datasheet_name = "SAR_ADC_CH"#_chan, \
199 }
200
201 #define MESON_SAR_ADC_TEMP_CHAN(_chan) { \
202 .type = IIO_TEMP, \
203 .channel = _chan, \
204 .address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL, \
205 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
206 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
207 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | \
208 BIT(IIO_CHAN_INFO_SCALE), \
209 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
210 BIT(IIO_CHAN_INFO_CALIBSCALE), \
211 .datasheet_name = "TEMP_SENSOR", \
212 }
213
214 #define MESON_SAR_ADC_MUX(_chan, _sel) { \
215 .type = IIO_VOLTAGE, \
216 .channel = _chan, \
217 .indexed = 1, \
218 .address = MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL, \
219 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
220 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
221 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
222 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
223 BIT(IIO_CHAN_INFO_CALIBSCALE), \
224 .datasheet_name = "SAR_ADC_MUX_"#_sel, \
225 }
226
227 enum meson_sar_adc_vref_sel {
228 VREF_CALIBATION_VOLTAGE = 0,
229 VREF_VDDA = 1,
230 };
231
232 enum meson_sar_adc_avg_mode {
233 NO_AVERAGING = 0x0,
234 MEAN_AVERAGING = 0x1,
235 MEDIAN_AVERAGING = 0x2,
236 };
237
238 enum meson_sar_adc_num_samples {
239 ONE_SAMPLE = 0x0,
240 TWO_SAMPLES = 0x1,
241 FOUR_SAMPLES = 0x2,
242 EIGHT_SAMPLES = 0x3,
243 };
244
245 enum meson_sar_adc_chan7_mux_sel {
246 CHAN7_MUX_VSS = 0x0,
247 CHAN7_MUX_VDD_DIV4 = 0x1,
248 CHAN7_MUX_VDD_DIV2 = 0x2,
249 CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
250 CHAN7_MUX_VDD = 0x4,
251 CHAN7_MUX_CH7_INPUT = 0x7,
252 };
253
254 enum meson_sar_adc_channel_index {
255 NUM_CHAN_0,
256 NUM_CHAN_1,
257 NUM_CHAN_2,
258 NUM_CHAN_3,
259 NUM_CHAN_4,
260 NUM_CHAN_5,
261 NUM_CHAN_6,
262 NUM_CHAN_7,
263 NUM_CHAN_TEMP,
264 NUM_MUX_0_VSS,
265 NUM_MUX_1_VDD_DIV4,
266 NUM_MUX_2_VDD_DIV2,
267 NUM_MUX_3_VDD_MUL3_DIV4,
268 NUM_MUX_4_VDD,
269 };
270
271 static enum meson_sar_adc_chan7_mux_sel chan7_mux_values[] = {
272 CHAN7_MUX_VSS,
273 CHAN7_MUX_VDD_DIV4,
274 CHAN7_MUX_VDD_DIV2,
275 CHAN7_MUX_VDD_MUL3_DIV4,
276 CHAN7_MUX_VDD,
277 };
278
279 static const char * const chan7_mux_names[] = {
280 [CHAN7_MUX_VSS] = "gnd",
281 [CHAN7_MUX_VDD_DIV4] = "0.25vdd",
282 [CHAN7_MUX_VDD_DIV2] = "0.5vdd",
283 [CHAN7_MUX_VDD_MUL3_DIV4] = "0.75vdd",
284 [CHAN7_MUX_VDD] = "vdd",
285 };
286
287 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
288 MESON_SAR_ADC_CHAN(NUM_CHAN_0),
289 MESON_SAR_ADC_CHAN(NUM_CHAN_1),
290 MESON_SAR_ADC_CHAN(NUM_CHAN_2),
291 MESON_SAR_ADC_CHAN(NUM_CHAN_3),
292 MESON_SAR_ADC_CHAN(NUM_CHAN_4),
293 MESON_SAR_ADC_CHAN(NUM_CHAN_5),
294 MESON_SAR_ADC_CHAN(NUM_CHAN_6),
295 MESON_SAR_ADC_CHAN(NUM_CHAN_7),
296 MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
297 MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
298 MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
299 MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
300 MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
301 };
302
303 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
304 MESON_SAR_ADC_CHAN(NUM_CHAN_0),
305 MESON_SAR_ADC_CHAN(NUM_CHAN_1),
306 MESON_SAR_ADC_CHAN(NUM_CHAN_2),
307 MESON_SAR_ADC_CHAN(NUM_CHAN_3),
308 MESON_SAR_ADC_CHAN(NUM_CHAN_4),
309 MESON_SAR_ADC_CHAN(NUM_CHAN_5),
310 MESON_SAR_ADC_CHAN(NUM_CHAN_6),
311 MESON_SAR_ADC_CHAN(NUM_CHAN_7),
312 MESON_SAR_ADC_TEMP_CHAN(NUM_CHAN_TEMP),
313 MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
314 MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
315 MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
316 MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
317 MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
318 };
319
320 struct meson_sar_adc_param {
321 bool has_bl30_integration;
322 unsigned long clock_rate;
323 unsigned int resolution;
324 const struct regmap_config *regmap_config;
325 u8 temperature_trimming_bits;
326 unsigned int temperature_multiplier;
327 unsigned int temperature_divider;
328 u8 disable_ring_counter;
329 bool has_vref_select;
330 u8 vref_select;
331 u8 cmv_select;
332 u8 adc_eoc;
333 enum meson_sar_adc_vref_sel vref_voltage;
334 bool enable_mpll_clock_workaround;
335 };
336
337 struct meson_sar_adc_data {
338 const struct meson_sar_adc_param *param;
339 const char *name;
340 };
341
342 struct meson_sar_adc_priv {
343 struct regmap *regmap;
344 struct regulator *vref;
345 const struct meson_sar_adc_param *param;
346 struct clk *clkin;
347 struct clk *core_clk;
348 struct clk *adc_sel_clk;
349 struct clk *adc_clk;
350 struct clk_gate clk_gate;
351 struct clk *adc_div_clk;
352 struct clk_divider clk_div;
353 struct completion done;
354 /* lock to protect against multiple access to the device */
355 struct mutex lock;
356 int calibbias;
357 int calibscale;
358 struct regmap *tsc_regmap;
359 bool temperature_sensor_calibrated;
360 u8 temperature_sensor_coefficient;
361 u16 temperature_sensor_adc_val;
362 enum meson_sar_adc_chan7_mux_sel chan7_mux_sel;
363 };
364
365 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
366 .reg_bits = 8,
367 .val_bits = 32,
368 .reg_stride = 4,
369 .max_register = MESON_SAR_ADC_REG13,
370 };
371
372 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
373 .reg_bits = 8,
374 .val_bits = 32,
375 .reg_stride = 4,
376 .max_register = MESON_SAR_ADC_DELTA_10,
377 };
378
379 static const struct iio_chan_spec *
find_channel_by_num(struct iio_dev * indio_dev,int num)380 find_channel_by_num(struct iio_dev *indio_dev, int num)
381 {
382 int i;
383
384 for (i = 0; i < indio_dev->num_channels; i++)
385 if (indio_dev->channels[i].channel == num)
386 return &indio_dev->channels[i];
387 return NULL;
388 }
389
meson_sar_adc_get_fifo_count(struct iio_dev * indio_dev)390 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
391 {
392 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
393 u32 regval;
394
395 regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val);
396
397 return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
398 }
399
meson_sar_adc_calib_val(struct iio_dev * indio_dev,int val)400 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
401 {
402 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
403 int tmp;
404
405 /* use val_calib = scale * val_raw + offset calibration function */
406 tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
407
408 return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
409 }
410
meson_sar_adc_wait_busy_clear(struct iio_dev * indio_dev)411 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
412 {
413 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
414 int val;
415
416 /*
417 * NOTE: we need a small delay before reading the status, otherwise
418 * the sample engine may not have started internally (which would
419 * seem to us that sampling is already finished).
420 */
421 udelay(1);
422 return regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_REG0, val,
423 !FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, val),
424 1, 10000);
425 }
426
meson_sar_adc_set_chan7_mux(struct iio_dev * indio_dev,enum meson_sar_adc_chan7_mux_sel sel)427 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
428 enum meson_sar_adc_chan7_mux_sel sel)
429 {
430 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
431 u32 regval;
432
433 regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
434 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
435 MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
436
437 usleep_range(10, 20);
438
439 priv->chan7_mux_sel = sel;
440 }
441
meson_sar_adc_read_raw_sample(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val)442 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
443 const struct iio_chan_spec *chan,
444 int *val)
445 {
446 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
447 struct device *dev = indio_dev->dev.parent;
448 int regval, fifo_chan, fifo_val, count;
449
450 if (!wait_for_completion_timeout(&priv->done,
451 msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
452 return -ETIMEDOUT;
453
454 count = meson_sar_adc_get_fifo_count(indio_dev);
455 if (count != 1) {
456 dev_err(dev, "ADC FIFO has %d element(s) instead of one\n", count);
457 return -EINVAL;
458 }
459
460 regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, ®val);
461 fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
462 if (fifo_chan != chan->address) {
463 dev_err(dev, "ADC FIFO entry belongs to channel %d instead of %lu\n",
464 fifo_chan, chan->address);
465 return -EINVAL;
466 }
467
468 fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
469 fifo_val &= GENMASK(priv->param->resolution - 1, 0);
470 *val = meson_sar_adc_calib_val(indio_dev, fifo_val);
471
472 return 0;
473 }
474
meson_sar_adc_set_averaging(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum meson_sar_adc_avg_mode mode,enum meson_sar_adc_num_samples samples)475 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
476 const struct iio_chan_spec *chan,
477 enum meson_sar_adc_avg_mode mode,
478 enum meson_sar_adc_num_samples samples)
479 {
480 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
481 int val, address = chan->address;
482
483 val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
484 regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
485 MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
486 val);
487
488 val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
489 regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
490 MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
491 }
492
meson_sar_adc_enable_channel(struct iio_dev * indio_dev,const struct iio_chan_spec * chan)493 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
494 const struct iio_chan_spec *chan)
495 {
496 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
497 u32 regval;
498
499 /*
500 * the SAR ADC engine allows sampling multiple channels at the same
501 * time. to keep it simple we're only working with one *internal*
502 * channel, which starts counting at index 0 (which means: count = 1).
503 */
504 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
505 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
506 MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
507
508 /* map channel index 0 to the channel which we want to read */
509 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
510 chan->address);
511 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
512 MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
513
514 regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
515 chan->address);
516 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
517 MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
518 regval);
519
520 regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
521 chan->address);
522 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
523 MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
524 regval);
525
526 if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
527 if (chan->type == IIO_TEMP)
528 regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
529 else
530 regval = 0;
531
532 regmap_update_bits(priv->regmap,
533 MESON_SAR_ADC_DELTA_10,
534 MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
535 } else if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL) {
536 enum meson_sar_adc_chan7_mux_sel sel;
537
538 if (chan->channel == NUM_CHAN_7)
539 sel = CHAN7_MUX_CH7_INPUT;
540 else
541 sel = chan7_mux_values[chan->channel - NUM_MUX_0_VSS];
542 if (sel != priv->chan7_mux_sel)
543 meson_sar_adc_set_chan7_mux(indio_dev, sel);
544 }
545 }
546
meson_sar_adc_start_sample_engine(struct iio_dev * indio_dev)547 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
548 {
549 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
550
551 reinit_completion(&priv->done);
552
553 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
554 MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
555
556 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
557 MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
558
559 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
560 MESON_SAR_ADC_REG0_SAMPLING_START);
561 }
562
meson_sar_adc_stop_sample_engine(struct iio_dev * indio_dev)563 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
564 {
565 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
566
567 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
568 MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
569
570 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
571 MESON_SAR_ADC_REG0_SAMPLING_STOP);
572
573 /* wait until all modules are stopped */
574 meson_sar_adc_wait_busy_clear(indio_dev);
575
576 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
577 MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
578 }
579
meson_sar_adc_lock(struct iio_dev * indio_dev)580 static int meson_sar_adc_lock(struct iio_dev *indio_dev)
581 {
582 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
583 int val, ret;
584
585 mutex_lock(&priv->lock);
586
587 if (priv->param->has_bl30_integration) {
588 /* prevent BL30 from using the SAR ADC while we are using it */
589 regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELAY,
590 MESON_SAR_ADC_DELAY_KERNEL_BUSY);
591
592 udelay(1);
593
594 /*
595 * wait until BL30 releases it's lock (so we can use the SAR
596 * ADC)
597 */
598 ret = regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_DELAY, val,
599 !(val & MESON_SAR_ADC_DELAY_BL30_BUSY),
600 1, 10000);
601 if (ret) {
602 mutex_unlock(&priv->lock);
603 return ret;
604 }
605 }
606
607 return 0;
608 }
609
meson_sar_adc_unlock(struct iio_dev * indio_dev)610 static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
611 {
612 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
613
614 if (priv->param->has_bl30_integration)
615 /* allow BL30 to use the SAR ADC again */
616 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELAY,
617 MESON_SAR_ADC_DELAY_KERNEL_BUSY);
618
619 mutex_unlock(&priv->lock);
620 }
621
meson_sar_adc_clear_fifo(struct iio_dev * indio_dev)622 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
623 {
624 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
625 unsigned int count, tmp;
626
627 for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
628 if (!meson_sar_adc_get_fifo_count(indio_dev))
629 break;
630
631 regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
632 }
633 }
634
meson_sar_adc_get_sample(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum meson_sar_adc_avg_mode avg_mode,enum meson_sar_adc_num_samples avg_samples,int * val)635 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
636 const struct iio_chan_spec *chan,
637 enum meson_sar_adc_avg_mode avg_mode,
638 enum meson_sar_adc_num_samples avg_samples,
639 int *val)
640 {
641 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
642 struct device *dev = indio_dev->dev.parent;
643 int ret;
644
645 if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
646 return -ENOTSUPP;
647
648 ret = meson_sar_adc_lock(indio_dev);
649 if (ret)
650 return ret;
651
652 /* clear the FIFO to make sure we're not reading old values */
653 meson_sar_adc_clear_fifo(indio_dev);
654
655 meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
656
657 meson_sar_adc_enable_channel(indio_dev, chan);
658
659 meson_sar_adc_start_sample_engine(indio_dev);
660 ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
661 meson_sar_adc_stop_sample_engine(indio_dev);
662
663 meson_sar_adc_unlock(indio_dev);
664
665 if (ret) {
666 dev_warn(dev, "failed to read sample for channel %lu: %d\n",
667 chan->address, ret);
668 return ret;
669 }
670
671 return IIO_VAL_INT;
672 }
673
meson_sar_adc_iio_info_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long mask)674 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
675 const struct iio_chan_spec *chan,
676 int *val, int *val2, long mask)
677 {
678 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
679 struct device *dev = indio_dev->dev.parent;
680 int ret;
681
682 switch (mask) {
683 case IIO_CHAN_INFO_RAW:
684 return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
685 ONE_SAMPLE, val);
686
687 case IIO_CHAN_INFO_AVERAGE_RAW:
688 return meson_sar_adc_get_sample(indio_dev, chan,
689 MEAN_AVERAGING, EIGHT_SAMPLES,
690 val);
691
692 case IIO_CHAN_INFO_SCALE:
693 if (chan->type == IIO_VOLTAGE) {
694 ret = regulator_get_voltage(priv->vref);
695 if (ret < 0) {
696 dev_err(dev, "failed to get vref voltage: %d\n", ret);
697 return ret;
698 }
699
700 *val = ret / 1000;
701 *val2 = priv->param->resolution;
702 return IIO_VAL_FRACTIONAL_LOG2;
703 } else if (chan->type == IIO_TEMP) {
704 /* SoC specific multiplier and divider */
705 *val = priv->param->temperature_multiplier;
706 *val2 = priv->param->temperature_divider;
707
708 /* celsius to millicelsius */
709 *val *= 1000;
710
711 return IIO_VAL_FRACTIONAL;
712 } else {
713 return -EINVAL;
714 }
715
716 case IIO_CHAN_INFO_CALIBBIAS:
717 *val = priv->calibbias;
718 return IIO_VAL_INT;
719
720 case IIO_CHAN_INFO_CALIBSCALE:
721 *val = priv->calibscale / MILLION;
722 *val2 = priv->calibscale % MILLION;
723 return IIO_VAL_INT_PLUS_MICRO;
724
725 case IIO_CHAN_INFO_OFFSET:
726 *val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
727 priv->param->temperature_divider,
728 priv->param->temperature_multiplier);
729 *val -= priv->temperature_sensor_adc_val;
730 return IIO_VAL_INT;
731
732 default:
733 return -EINVAL;
734 }
735 }
736
meson_sar_adc_clk_init(struct iio_dev * indio_dev,void __iomem * base)737 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
738 void __iomem *base)
739 {
740 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
741 struct device *dev = indio_dev->dev.parent;
742 struct clk_init_data init;
743 const char *clk_parents[1];
744
745 init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_div", dev_name(dev));
746 if (!init.name)
747 return -ENOMEM;
748
749 init.flags = 0;
750 init.ops = &clk_divider_ops;
751 clk_parents[0] = __clk_get_name(priv->clkin);
752 init.parent_names = clk_parents;
753 init.num_parents = 1;
754
755 priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
756 priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
757 priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
758 priv->clk_div.hw.init = &init;
759 priv->clk_div.flags = 0;
760
761 priv->adc_div_clk = devm_clk_register(dev, &priv->clk_div.hw);
762 if (WARN_ON(IS_ERR(priv->adc_div_clk)))
763 return PTR_ERR(priv->adc_div_clk);
764
765 init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_en", dev_name(dev));
766 if (!init.name)
767 return -ENOMEM;
768
769 init.flags = CLK_SET_RATE_PARENT;
770 init.ops = &clk_gate_ops;
771 clk_parents[0] = __clk_get_name(priv->adc_div_clk);
772 init.parent_names = clk_parents;
773 init.num_parents = 1;
774
775 priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
776 priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
777 priv->clk_gate.hw.init = &init;
778
779 priv->adc_clk = devm_clk_register(dev, &priv->clk_gate.hw);
780 if (WARN_ON(IS_ERR(priv->adc_clk)))
781 return PTR_ERR(priv->adc_clk);
782
783 return 0;
784 }
785
meson_sar_adc_temp_sensor_init(struct iio_dev * indio_dev)786 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
787 {
788 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
789 u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
790 struct device *dev = indio_dev->dev.parent;
791 struct nvmem_cell *temperature_calib;
792 size_t read_len;
793 int ret;
794
795 temperature_calib = devm_nvmem_cell_get(dev, "temperature_calib");
796 if (IS_ERR(temperature_calib)) {
797 ret = PTR_ERR(temperature_calib);
798
799 /*
800 * leave the temperature sensor disabled if no calibration data
801 * was passed via nvmem-cells.
802 */
803 if (ret == -ENODEV)
804 return 0;
805
806 return dev_err_probe(dev, ret, "failed to get temperature_calib cell\n");
807 }
808
809 priv->tsc_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,hhi-sysctrl");
810 if (IS_ERR(priv->tsc_regmap))
811 return dev_err_probe(dev, PTR_ERR(priv->tsc_regmap),
812 "failed to get amlogic,hhi-sysctrl regmap\n");
813
814 read_len = MESON_SAR_ADC_EFUSE_BYTES;
815 buf = nvmem_cell_read(temperature_calib, &read_len);
816 if (IS_ERR(buf))
817 return dev_err_probe(dev, PTR_ERR(buf), "failed to read temperature_calib cell\n");
818 if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
819 kfree(buf);
820 return dev_err_probe(dev, -EINVAL, "invalid read size of temperature_calib cell\n");
821 }
822
823 trimming_bits = priv->param->temperature_trimming_bits;
824 trimming_mask = BIT(trimming_bits) - 1;
825
826 priv->temperature_sensor_calibrated =
827 buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
828 priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
829
830 upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
831 buf[3]);
832
833 priv->temperature_sensor_adc_val = buf[2];
834 priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
835 priv->temperature_sensor_adc_val >>= trimming_bits;
836
837 kfree(buf);
838
839 return 0;
840 }
841
meson_sar_adc_init(struct iio_dev * indio_dev)842 static int meson_sar_adc_init(struct iio_dev *indio_dev)
843 {
844 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
845 struct device *dev = indio_dev->dev.parent;
846 int regval, i, ret;
847
848 /*
849 * make sure we start at CH7 input since the other muxes are only used
850 * for internal calibration.
851 */
852 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
853
854 if (priv->param->has_bl30_integration) {
855 /*
856 * leave sampling delay and the input clocks as configured by
857 * BL30 to make sure BL30 gets the values it expects when
858 * reading the temperature sensor.
859 */
860 regmap_read(priv->regmap, MESON_SAR_ADC_REG3, ®val);
861 if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
862 return 0;
863 }
864
865 meson_sar_adc_stop_sample_engine(indio_dev);
866
867 /*
868 * disable this bit as seems to be only relevant for Meson6 (based
869 * on the vendor driver), which we don't support at the moment.
870 */
871 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
872 MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL);
873
874 /* disable all channels by default */
875 regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
876
877 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
878 MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE);
879 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG3,
880 MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
881
882 /* delay between two samples = (10+1) * 1uS */
883 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
884 MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
885 FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
886 10));
887 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
888 MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
889 FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
890 0));
891
892 /* delay between two samples = (10+1) * 1uS */
893 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
894 MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
895 FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
896 10));
897 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
898 MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
899 FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
900 1));
901
902 /*
903 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
904 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
905 */
906 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
907 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
908 MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
909 regval);
910 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
911 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
912 MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
913 regval);
914
915 regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
916 MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW);
917
918 regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
919 MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW);
920
921 regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
922 MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW);
923
924 regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
925 MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW);
926
927 /*
928 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
929 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
930 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
931 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
932 */
933 regval = 0;
934 for (i = 2; i <= 7; i++)
935 regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
936 regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
937 regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
938 regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
939
940 if (priv->temperature_sensor_calibrated) {
941 regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
942 MESON_SAR_ADC_DELTA_10_TS_REVE1);
943 regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
944 MESON_SAR_ADC_DELTA_10_TS_REVE0);
945
946 /*
947 * set bits [3:0] of the TSC (temperature sensor coefficient)
948 * to get the correct values when reading the temperature.
949 */
950 regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
951 priv->temperature_sensor_coefficient);
952 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
953 MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
954
955 if (priv->param->temperature_trimming_bits == 5) {
956 if (priv->temperature_sensor_coefficient & BIT(4))
957 regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
958 else
959 regval = 0;
960
961 /*
962 * bit [4] (the 5th bit when starting to count at 1)
963 * of the TSC is located in the HHI register area.
964 */
965 regmap_update_bits(priv->tsc_regmap,
966 MESON_HHI_DPLL_TOP_0,
967 MESON_HHI_DPLL_TOP_0_TSC_BIT4,
968 regval);
969 }
970 } else {
971 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
972 MESON_SAR_ADC_DELTA_10_TS_REVE1);
973 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
974 MESON_SAR_ADC_DELTA_10_TS_REVE0);
975 }
976
977 regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
978 priv->param->disable_ring_counter);
979 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
980 MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
981 regval);
982
983 if (priv->param->regmap_config->max_register >= MESON_SAR_ADC_REG11) {
984 regval = FIELD_PREP(MESON_SAR_ADC_REG11_EOC, priv->param->adc_eoc);
985 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
986 MESON_SAR_ADC_REG11_EOC, regval);
987
988 if (priv->param->has_vref_select) {
989 regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_SEL,
990 priv->param->vref_select);
991 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
992 MESON_SAR_ADC_REG11_VREF_SEL, regval);
993 }
994
995 regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_VOLTAGE,
996 priv->param->vref_voltage);
997 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
998 MESON_SAR_ADC_REG11_VREF_VOLTAGE, regval);
999
1000 regval = FIELD_PREP(MESON_SAR_ADC_REG11_CMV_SEL,
1001 priv->param->cmv_select);
1002 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
1003 MESON_SAR_ADC_REG11_CMV_SEL, regval);
1004
1005 if (priv->param->enable_mpll_clock_workaround) {
1006 dev_warn(dev,
1007 "Enabling unknown bits to make the MPLL clocks work. This may change so always update dtbs and kernel together\n");
1008 regmap_write(priv->regmap, MESON_SAR_ADC_REG12,
1009 MESON_SAR_ADC_REG12_MPLL0_UNKNOWN |
1010 MESON_SAR_ADC_REG12_MPLL1_UNKNOWN |
1011 MESON_SAR_ADC_REG12_MPLL2_UNKNOWN);
1012 }
1013 }
1014
1015 ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
1016 if (ret)
1017 return dev_err_probe(dev, ret, "failed to set adc parent to clkin\n");
1018
1019 ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
1020 if (ret)
1021 return dev_err_probe(dev, ret, "failed to set adc clock rate\n");
1022
1023 return 0;
1024 }
1025
meson_sar_adc_set_bandgap(struct iio_dev * indio_dev,bool on_off)1026 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
1027 {
1028 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1029
1030 if (priv->param->regmap_config->max_register >= MESON_SAR_ADC_REG11)
1031 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
1032 MESON_SAR_ADC_REG11_BANDGAP_EN,
1033 on_off ? MESON_SAR_ADC_REG11_BANDGAP_EN : 0);
1034 else
1035 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
1036 MESON_SAR_ADC_DELTA_10_TS_VBG_EN,
1037 on_off ? MESON_SAR_ADC_DELTA_10_TS_VBG_EN : 0);
1038 }
1039
meson_sar_adc_hw_enable(struct iio_dev * indio_dev)1040 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
1041 {
1042 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1043 struct device *dev = indio_dev->dev.parent;
1044 int ret;
1045 u32 regval;
1046
1047 ret = meson_sar_adc_lock(indio_dev);
1048 if (ret) {
1049 dev_err(dev, "failed to lock adc\n");
1050 goto err_lock;
1051 }
1052
1053 ret = regulator_enable(priv->vref);
1054 if (ret < 0) {
1055 dev_err(dev, "failed to enable vref regulator\n");
1056 goto err_vref;
1057 }
1058
1059 regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
1060 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
1061 MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1062
1063 meson_sar_adc_set_bandgap(indio_dev, true);
1064
1065 regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG3,
1066 MESON_SAR_ADC_REG3_ADC_EN);
1067
1068 udelay(5);
1069
1070 ret = clk_prepare_enable(priv->adc_clk);
1071 if (ret) {
1072 dev_err(dev, "failed to enable adc clk\n");
1073 goto err_adc_clk;
1074 }
1075
1076 meson_sar_adc_unlock(indio_dev);
1077
1078 return 0;
1079
1080 err_adc_clk:
1081 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
1082 MESON_SAR_ADC_REG3_ADC_EN);
1083 meson_sar_adc_set_bandgap(indio_dev, false);
1084 regulator_disable(priv->vref);
1085 err_vref:
1086 meson_sar_adc_unlock(indio_dev);
1087 err_lock:
1088 return ret;
1089 }
1090
meson_sar_adc_hw_disable(struct iio_dev * indio_dev)1091 static void meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
1092 {
1093 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1094 int ret;
1095
1096 /*
1097 * If taking the lock fails we have to assume that BL30 is broken. The
1098 * best we can do then is to release the resources anyhow.
1099 */
1100 ret = meson_sar_adc_lock(indio_dev);
1101 if (ret)
1102 dev_err(indio_dev->dev.parent, "Failed to lock ADC (%pE)\n", ERR_PTR(ret));
1103
1104 clk_disable_unprepare(priv->adc_clk);
1105
1106 regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
1107 MESON_SAR_ADC_REG3_ADC_EN);
1108
1109 meson_sar_adc_set_bandgap(indio_dev, false);
1110
1111 regulator_disable(priv->vref);
1112
1113 if (!ret)
1114 meson_sar_adc_unlock(indio_dev);
1115 }
1116
meson_sar_adc_irq(int irq,void * data)1117 static irqreturn_t meson_sar_adc_irq(int irq, void *data)
1118 {
1119 struct iio_dev *indio_dev = data;
1120 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1121 unsigned int cnt, threshold;
1122 u32 regval;
1123
1124 regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val);
1125 cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
1126 threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1127
1128 if (cnt < threshold)
1129 return IRQ_NONE;
1130
1131 complete(&priv->done);
1132
1133 return IRQ_HANDLED;
1134 }
1135
meson_sar_adc_calib(struct iio_dev * indio_dev)1136 static int meson_sar_adc_calib(struct iio_dev *indio_dev)
1137 {
1138 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1139 int ret, nominal0, nominal1, value0, value1;
1140
1141 /* use points 25% and 75% for calibration */
1142 nominal0 = (1 << priv->param->resolution) / 4;
1143 nominal1 = (1 << priv->param->resolution) * 3 / 4;
1144
1145 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
1146 usleep_range(10, 20);
1147 ret = meson_sar_adc_get_sample(indio_dev,
1148 find_channel_by_num(indio_dev,
1149 NUM_MUX_1_VDD_DIV4),
1150 MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
1151 if (ret < 0)
1152 goto out;
1153
1154 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
1155 usleep_range(10, 20);
1156 ret = meson_sar_adc_get_sample(indio_dev,
1157 find_channel_by_num(indio_dev,
1158 NUM_MUX_3_VDD_MUL3_DIV4),
1159 MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
1160 if (ret < 0)
1161 goto out;
1162
1163 if (value1 <= value0) {
1164 ret = -EINVAL;
1165 goto out;
1166 }
1167
1168 priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
1169 value1 - value0);
1170 priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
1171 MILLION);
1172 ret = 0;
1173 out:
1174 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
1175
1176 return ret;
1177 }
1178
read_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,char * label)1179 static int read_label(struct iio_dev *indio_dev,
1180 struct iio_chan_spec const *chan,
1181 char *label)
1182 {
1183 if (chan->type == IIO_TEMP)
1184 return sprintf(label, "temp-sensor\n");
1185 if (chan->type == IIO_VOLTAGE && chan->channel >= NUM_MUX_0_VSS)
1186 return sprintf(label, "%s\n",
1187 chan7_mux_names[chan->channel - NUM_MUX_0_VSS]);
1188 if (chan->type == IIO_VOLTAGE)
1189 return sprintf(label, "channel-%d\n", chan->channel);
1190 return 0;
1191 }
1192
1193 static const struct iio_info meson_sar_adc_iio_info = {
1194 .read_raw = meson_sar_adc_iio_info_read_raw,
1195 .read_label = read_label,
1196 };
1197
1198 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
1199 .has_bl30_integration = false,
1200 .clock_rate = 1150000,
1201 .regmap_config = &meson_sar_adc_regmap_config_meson8,
1202 .resolution = 10,
1203 .temperature_trimming_bits = 4,
1204 .temperature_multiplier = 18 * 10000,
1205 .temperature_divider = 1024 * 10 * 85,
1206 };
1207
1208 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
1209 .has_bl30_integration = false,
1210 .clock_rate = 1150000,
1211 .regmap_config = &meson_sar_adc_regmap_config_meson8,
1212 .resolution = 10,
1213 .temperature_trimming_bits = 5,
1214 .temperature_multiplier = 10,
1215 .temperature_divider = 32,
1216 };
1217
1218 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
1219 .has_bl30_integration = true,
1220 .clock_rate = 1200000,
1221 .regmap_config = &meson_sar_adc_regmap_config_gxbb,
1222 .resolution = 10,
1223 .vref_voltage = 1,
1224 .cmv_select = 1,
1225 };
1226
1227 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
1228 .has_bl30_integration = true,
1229 .clock_rate = 1200000,
1230 .regmap_config = &meson_sar_adc_regmap_config_gxbb,
1231 .resolution = 12,
1232 .disable_ring_counter = 1,
1233 .vref_voltage = 1,
1234 .cmv_select = 1,
1235 };
1236
1237 static const struct meson_sar_adc_param meson_sar_adc_gxlx_param = {
1238 .has_bl30_integration = true,
1239 .clock_rate = 1200000,
1240 .regmap_config = &meson_sar_adc_regmap_config_gxbb,
1241 .resolution = 12,
1242 .disable_ring_counter = 1,
1243 .vref_voltage = 1,
1244 .cmv_select = true,
1245 .enable_mpll_clock_workaround = true,
1246 };
1247
1248 static const struct meson_sar_adc_param meson_sar_adc_axg_param = {
1249 .has_bl30_integration = true,
1250 .clock_rate = 1200000,
1251 .regmap_config = &meson_sar_adc_regmap_config_gxbb,
1252 .resolution = 12,
1253 .disable_ring_counter = 1,
1254 .vref_voltage = 1,
1255 .has_vref_select = true,
1256 .vref_select = VREF_VDDA,
1257 .cmv_select = 1,
1258 };
1259
1260 static const struct meson_sar_adc_param meson_sar_adc_g12a_param = {
1261 .has_bl30_integration = false,
1262 .clock_rate = 1200000,
1263 .regmap_config = &meson_sar_adc_regmap_config_gxbb,
1264 .resolution = 12,
1265 .disable_ring_counter = 1,
1266 .adc_eoc = 1,
1267 .has_vref_select = true,
1268 .vref_select = VREF_VDDA,
1269 };
1270
1271 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
1272 .param = &meson_sar_adc_meson8_param,
1273 .name = "meson-meson8-saradc",
1274 };
1275
1276 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
1277 .param = &meson_sar_adc_meson8b_param,
1278 .name = "meson-meson8b-saradc",
1279 };
1280
1281 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
1282 .param = &meson_sar_adc_meson8b_param,
1283 .name = "meson-meson8m2-saradc",
1284 };
1285
1286 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
1287 .param = &meson_sar_adc_gxbb_param,
1288 .name = "meson-gxbb-saradc",
1289 };
1290
1291 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
1292 .param = &meson_sar_adc_gxl_param,
1293 .name = "meson-gxl-saradc",
1294 };
1295
1296 static const struct meson_sar_adc_data meson_sar_adc_gxlx_data = {
1297 .param = &meson_sar_adc_gxlx_param,
1298 .name = "meson-gxlx-saradc",
1299 };
1300
1301 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
1302 .param = &meson_sar_adc_gxl_param,
1303 .name = "meson-gxm-saradc",
1304 };
1305
1306 static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
1307 .param = &meson_sar_adc_axg_param,
1308 .name = "meson-axg-saradc",
1309 };
1310
1311 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
1312 .param = &meson_sar_adc_g12a_param,
1313 .name = "meson-g12a-saradc",
1314 };
1315
1316 static const struct of_device_id meson_sar_adc_of_match[] = {
1317 {
1318 .compatible = "amlogic,meson8-saradc",
1319 .data = &meson_sar_adc_meson8_data,
1320 }, {
1321 .compatible = "amlogic,meson8b-saradc",
1322 .data = &meson_sar_adc_meson8b_data,
1323 }, {
1324 .compatible = "amlogic,meson8m2-saradc",
1325 .data = &meson_sar_adc_meson8m2_data,
1326 }, {
1327 .compatible = "amlogic,meson-gxbb-saradc",
1328 .data = &meson_sar_adc_gxbb_data,
1329 }, {
1330 .compatible = "amlogic,meson-gxl-saradc",
1331 .data = &meson_sar_adc_gxl_data,
1332 }, {
1333 .compatible = "amlogic,meson-gxlx-saradc",
1334 .data = &meson_sar_adc_gxlx_data,
1335 }, {
1336 .compatible = "amlogic,meson-gxm-saradc",
1337 .data = &meson_sar_adc_gxm_data,
1338 }, {
1339 .compatible = "amlogic,meson-axg-saradc",
1340 .data = &meson_sar_adc_axg_data,
1341 }, {
1342 .compatible = "amlogic,meson-g12a-saradc",
1343 .data = &meson_sar_adc_g12a_data,
1344 },
1345 { }
1346 };
1347 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
1348
meson_sar_adc_probe(struct platform_device * pdev)1349 static int meson_sar_adc_probe(struct platform_device *pdev)
1350 {
1351 const struct meson_sar_adc_data *match_data;
1352 struct meson_sar_adc_priv *priv;
1353 struct device *dev = &pdev->dev;
1354 struct iio_dev *indio_dev;
1355 void __iomem *base;
1356 int irq, ret;
1357
1358 indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1359 if (!indio_dev)
1360 return dev_err_probe(dev, -ENOMEM, "failed allocating iio device\n");
1361
1362 priv = iio_priv(indio_dev);
1363 init_completion(&priv->done);
1364
1365 match_data = of_device_get_match_data(dev);
1366 if (!match_data)
1367 return dev_err_probe(dev, -ENODEV, "failed to get match data\n");
1368
1369 priv->param = match_data->param;
1370
1371 indio_dev->name = match_data->name;
1372 indio_dev->modes = INDIO_DIRECT_MODE;
1373 indio_dev->info = &meson_sar_adc_iio_info;
1374
1375 base = devm_platform_ioremap_resource(pdev, 0);
1376 if (IS_ERR(base))
1377 return PTR_ERR(base);
1378
1379 priv->regmap = devm_regmap_init_mmio(dev, base, priv->param->regmap_config);
1380 if (IS_ERR(priv->regmap))
1381 return dev_err_probe(dev, PTR_ERR(priv->regmap), "failed to init regmap\n");
1382
1383 irq = irq_of_parse_and_map(dev->of_node, 0);
1384 if (!irq)
1385 return dev_err_probe(dev, -EINVAL, "failed to get irq\n");
1386
1387 ret = devm_request_irq(dev, irq, meson_sar_adc_irq, IRQF_SHARED, dev_name(dev), indio_dev);
1388 if (ret)
1389 return dev_err_probe(dev, ret, "failed to request irq\n");
1390
1391 priv->clkin = devm_clk_get(dev, "clkin");
1392 if (IS_ERR(priv->clkin))
1393 return dev_err_probe(dev, PTR_ERR(priv->clkin), "failed to get clkin\n");
1394
1395 priv->core_clk = devm_clk_get_enabled(dev, "core");
1396 if (IS_ERR(priv->core_clk))
1397 return dev_err_probe(dev, PTR_ERR(priv->core_clk), "failed to get core clk\n");
1398
1399 priv->adc_clk = devm_clk_get_optional(dev, "adc_clk");
1400 if (IS_ERR(priv->adc_clk))
1401 return dev_err_probe(dev, PTR_ERR(priv->adc_clk), "failed to get adc clk\n");
1402
1403 priv->adc_sel_clk = devm_clk_get_optional(dev, "adc_sel");
1404 if (IS_ERR(priv->adc_sel_clk))
1405 return dev_err_probe(dev, PTR_ERR(priv->adc_sel_clk), "failed to get adc_sel clk\n");
1406
1407 /* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
1408 if (!priv->adc_clk) {
1409 ret = meson_sar_adc_clk_init(indio_dev, base);
1410 if (ret)
1411 return dev_err_probe(dev, ret, "failed to init internal clk\n");
1412 }
1413
1414 priv->vref = devm_regulator_get(dev, "vref");
1415 if (IS_ERR(priv->vref))
1416 return dev_err_probe(dev, PTR_ERR(priv->vref), "failed to get vref regulator\n");
1417
1418 priv->calibscale = MILLION;
1419
1420 if (priv->param->temperature_trimming_bits) {
1421 ret = meson_sar_adc_temp_sensor_init(indio_dev);
1422 if (ret)
1423 return ret;
1424 }
1425
1426 if (priv->temperature_sensor_calibrated) {
1427 indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
1428 indio_dev->num_channels =
1429 ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
1430 } else {
1431 indio_dev->channels = meson_sar_adc_iio_channels;
1432 indio_dev->num_channels =
1433 ARRAY_SIZE(meson_sar_adc_iio_channels);
1434 }
1435
1436 ret = meson_sar_adc_init(indio_dev);
1437 if (ret)
1438 goto err;
1439
1440 mutex_init(&priv->lock);
1441
1442 ret = meson_sar_adc_hw_enable(indio_dev);
1443 if (ret)
1444 goto err;
1445
1446 ret = meson_sar_adc_calib(indio_dev);
1447 if (ret)
1448 dev_warn(dev, "calibration failed\n");
1449
1450 platform_set_drvdata(pdev, indio_dev);
1451
1452 ret = iio_device_register(indio_dev);
1453 if (ret) {
1454 dev_err_probe(dev, ret, "failed to register iio device\n");
1455 goto err_hw;
1456 }
1457
1458 return 0;
1459
1460 err_hw:
1461 meson_sar_adc_hw_disable(indio_dev);
1462 err:
1463 return ret;
1464 }
1465
meson_sar_adc_remove(struct platform_device * pdev)1466 static void meson_sar_adc_remove(struct platform_device *pdev)
1467 {
1468 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1469
1470 iio_device_unregister(indio_dev);
1471
1472 meson_sar_adc_hw_disable(indio_dev);
1473 }
1474
meson_sar_adc_suspend(struct device * dev)1475 static int meson_sar_adc_suspend(struct device *dev)
1476 {
1477 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1478 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1479
1480 meson_sar_adc_hw_disable(indio_dev);
1481
1482 clk_disable_unprepare(priv->core_clk);
1483
1484 return 0;
1485 }
1486
meson_sar_adc_resume(struct device * dev)1487 static int meson_sar_adc_resume(struct device *dev)
1488 {
1489 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1490 struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1491 int ret;
1492
1493 ret = clk_prepare_enable(priv->core_clk);
1494 if (ret) {
1495 dev_err(dev, "failed to enable core clk\n");
1496 return ret;
1497 }
1498
1499 return meson_sar_adc_hw_enable(indio_dev);
1500 }
1501
1502 static DEFINE_SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
1503 meson_sar_adc_suspend, meson_sar_adc_resume);
1504
1505 static struct platform_driver meson_sar_adc_driver = {
1506 .probe = meson_sar_adc_probe,
1507 .remove = meson_sar_adc_remove,
1508 .driver = {
1509 .name = "meson-saradc",
1510 .of_match_table = meson_sar_adc_of_match,
1511 .pm = pm_sleep_ptr(&meson_sar_adc_pm_ops),
1512 },
1513 };
1514
1515 module_platform_driver(meson_sar_adc_driver);
1516
1517 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
1518 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
1519 MODULE_LICENSE("GPL v2");
1520