1 /***********************************************************************
2 * *
3 * This software is part of the ast package *
4 * Copyright (c) 1996-2010 AT&T Intellectual Property *
5 * and is licensed under the *
6 * Common Public License, Version 1.0 *
7 * by AT&T Intellectual Property *
8 * *
9 * A copy of the License is available at *
10 * http://www.opensource.org/licenses/cpl1.0.txt *
11 * (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9) *
12 * *
13 * Information and Software Systems Research *
14 * AT&T Research *
15 * Florham Park NJ *
16 * *
17 * Glenn Fowler <gsf@research.att.com> *
18 * *
19 ***********************************************************************/
20 #pragma prototyped
21
22 /*
23 * SHA-1 in C
24 * By Steve Reid <steve@edmweb.com>
25 * 100% Public Domain
26 *
27 * Test Vectors (from FIPS PUB 180-1)
28 * "abc"
29 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
30 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
31 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
32 * A million repetitions of "a"
33 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
34 */
35
36 #define sha1_description "FIPS 180-1 SHA-1 secure hash algorithm 1."
37 #define sha1_options "[+(version)?sha1 (FIPS 180-1) 1996-09-26]\
38 [+(author)?Steve Reid <steve@edmweb.com>]"
39 #define sha1_match "sha1|SHA1|sha-1|SHA-1"
40 #define sha1_scale 0
41
42 #define sha1_padding md5_pad
43
44 typedef struct Sha1_s
45 {
46 _SUM_PUBLIC_
47 _SUM_PRIVATE_
48 uint32_t count[2];
49 uint32_t state[5];
50 uint8_t buffer[64];
51 uint8_t digest[20];
52 uint8_t digest_sum[20];
53 } Sha1_t;
54
55 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
56
57 /*
58 * blk0() and blk() perform the initial expand.
59 * I got the idea of expanding during the round function from SSLeay
60 */
61 #if _ast_intswap
62 # define blk0(i) \
63 (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) \
64 | (rol(block->l[i], 8) & 0x00FF00FF))
65 #else
66 # define blk0(i) block->l[i]
67 #endif
68 #define blk(i) \
69 (block->l[i & 15] = rol(block->l[(i + 13) & 15] \
70 ^ block->l[(i + 8) & 15] \
71 ^ block->l[(i + 2) & 15] \
72 ^ block->l[i & 15], 1))
73
74 /*
75 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
76 */
77 #define R0(v,w,x,y,z,i) \
78 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
79 w = rol(w, 30);
80 #define R1(v,w,x,y,z,i) \
81 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
82 w = rol(w, 30);
83 #define R2(v,w,x,y,z,i) \
84 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
85 w = rol(w, 30);
86 #define R3(v,w,x,y,z,i) \
87 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
88 w = rol(w, 30);
89 #define R4(v,w,x,y,z,i) \
90 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
91 w = rol(w, 30);
92
93 typedef union {
94 unsigned char c[64];
95 unsigned int l[16];
96 } CHAR64LONG16;
97
98 #ifdef __sparc_v9__
99 static void do_R01(uint32_t *a, uint32_t *b, uint32_t *c,
100 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
101 static void do_R2(uint32_t *a, uint32_t *b, uint32_t *c,
102 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
103 static void do_R3(uint32_t *a, uint32_t *b, uint32_t *c,
104 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
105 static void do_R4(uint32_t *a, uint32_t *b, uint32_t *c,
106 uint32_t *d, uint32_t *e, CHAR64LONG16 *);
107
108 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
109 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
110 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
111 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
112 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
113
114 static void
do_R01(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)115 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
116 uint32_t *e, CHAR64LONG16 *block)
117 {
118 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2);
119 nR0(c,d,e,a,b, 3); nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5);
120 nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); nR0(c,d,e,a,b, 8);
121 nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
122 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14);
123 nR0(a,b,c,d,e,15); nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17);
124 nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
125 }
126
127 static void
do_R2(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)128 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
129 uint32_t *e, CHAR64LONG16 *block)
130 {
131 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22);
132 nR2(c,d,e,a,b,23); nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25);
133 nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); nR2(c,d,e,a,b,28);
134 nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
135 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34);
136 nR2(a,b,c,d,e,35); nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37);
137 nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
138 }
139
140 static void
do_R3(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)141 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
142 uint32_t *e, CHAR64LONG16 *block)
143 {
144 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42);
145 nR3(c,d,e,a,b,43); nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45);
146 nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); nR3(c,d,e,a,b,48);
147 nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
148 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54);
149 nR3(a,b,c,d,e,55); nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57);
150 nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
151 }
152
153 static void
do_R4(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)154 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
155 uint32_t *e, CHAR64LONG16 *block)
156 {
157 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62);
158 nR4(c,d,e,a,b,63); nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65);
159 nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); nR4(c,d,e,a,b,68);
160 nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
161 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74);
162 nR4(a,b,c,d,e,75); nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77);
163 nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
164 }
165 #endif
166
167 /*
168 * Hash a single 512-bit block. This is the core of the algorithm.
169 */
170 static void
sha1_transform(uint32_t state[5],const unsigned char buffer[64])171 sha1_transform(uint32_t state[5], const unsigned char buffer[64]) {
172 uint32_t a, b, c, d, e;
173 CHAR64LONG16 *block;
174 CHAR64LONG16 workspace;
175
176 block = &workspace;
177 (void)memcpy(block, buffer, 64);
178
179 /* Copy sha->state[] to working vars */
180 a = state[0];
181 b = state[1];
182 c = state[2];
183 d = state[3];
184 e = state[4];
185
186 #ifdef __sparc_v9__
187 do_R01(&a, &b, &c, &d, &e, block);
188 do_R2(&a, &b, &c, &d, &e, block);
189 do_R3(&a, &b, &c, &d, &e, block);
190 do_R4(&a, &b, &c, &d, &e, block);
191 #else
192 /* 4 rounds of 20 operations each. Loop unrolled. */
193 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
194 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
195 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
196 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
197 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
198 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
199 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
200 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
201 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
202 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
203 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
204 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
205 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
206 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
207 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
208 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
209 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
210 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
211 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
212 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
213 #endif
214
215 /* Add the working vars back into context.state[] */
216 state[0] += a;
217 state[1] += b;
218 state[2] += c;
219 state[3] += d;
220 state[4] += e;
221
222 /* Wipe variables */
223 a = b = c = d = e = 0;
224 }
225
226 static int
sha1_block(register Sum_t * p,const void * s,size_t len)227 sha1_block(register Sum_t* p, const void* s, size_t len)
228 {
229 Sha1_t* sha = (Sha1_t*)p;
230 uint8_t* data = (uint8_t*)s;
231 unsigned int i, j;
232
233 if (len) {
234 j = sha->count[0];
235 if ((sha->count[0] += len << 3) < j)
236 sha->count[1] += (len >> 29) + 1;
237 j = (j >> 3) & 63;
238 if ((j + len) > 63) {
239 (void)memcpy(&sha->buffer[j], data, (i = 64 - j));
240 sha1_transform(sha->state, sha->buffer);
241 for ( ; i + 63 < len; i += 64)
242 sha1_transform(sha->state, &data[i]);
243 j = 0;
244 } else {
245 i = 0;
246 }
247
248 (void)memcpy(&sha->buffer[j], &data[i], len - i);
249 }
250 return 0;
251 }
252
253 static int
sha1_init(Sum_t * p)254 sha1_init(Sum_t* p)
255 {
256 register Sha1_t* sha = (Sha1_t*)p;
257
258 sha->count[0] = sha->count[1] = 0;
259 sha->state[0] = 0x67452301;
260 sha->state[1] = 0xEFCDAB89;
261 sha->state[2] = 0x98BADCFE;
262 sha->state[3] = 0x10325476;
263 sha->state[4] = 0xC3D2E1F0;
264
265 return 0;
266 }
267
268 static Sum_t*
sha1_open(const Method_t * method,const char * name)269 sha1_open(const Method_t* method, const char* name)
270 {
271 Sha1_t* sha;
272
273 if (sha = newof(0, Sha1_t, 1, 0))
274 {
275 sha->method = (Method_t*)method;
276 sha->name = name;
277 sha1_init((Sum_t*)sha);
278 }
279 return (Sum_t*)sha;
280 }
281
282 /*
283 * Add padding and return the message digest.
284 */
285
286 static const unsigned char final_200 = 128;
287 static const unsigned char final_0 = 0;
288
289 static int
sha1_done(Sum_t * p)290 sha1_done(Sum_t* p)
291 {
292 Sha1_t* sha = (Sha1_t*)p;
293 unsigned int i;
294 unsigned char finalcount[8];
295
296 for (i = 0; i < 8; i++) {
297 /* Endian independent */
298 finalcount[i] = (unsigned char)
299 ((sha->count[(i >= 4 ? 0 : 1)]
300 >> ((3 - (i & 3)) * 8)) & 255);
301 }
302
303 sha1_block(p, &final_200, 1);
304 while ((sha->count[0] & 504) != 448)
305 sha1_block(p, &final_0, 1);
306 /* The next Update should cause a sha1_transform() */
307 sha1_block(p, finalcount, 8);
308
309 for (i = 0; i < elementsof(sha->digest); i++)
310 {
311 sha->digest[i] = (unsigned char)((sha->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
312 sha->digest_sum[i] ^= sha->digest[i];
313 }
314 memset(sha->count, 0, sizeof(sha->count));
315 memset(sha->state, 0, sizeof(sha->state));
316 memset(sha->buffer, 0, sizeof(sha->buffer));
317 return 0;
318 }
319
320 static int
sha1_print(Sum_t * p,Sfio_t * sp,register int flags,size_t scale)321 sha1_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale)
322 {
323 register Sha1_t* sha = (Sha1_t*)p;
324 register unsigned char* d;
325 register int n;
326
327 d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest;
328 for (n = 0; n < elementsof(sha->digest); n++)
329 sfprintf(sp, "%02x", d[n]);
330 return 0;
331 }
332
333 static int
sha1_data(Sum_t * p,Sumdata_t * data)334 sha1_data(Sum_t* p, Sumdata_t* data)
335 {
336 register Sha1_t* sha = (Sha1_t*)p;
337
338 data->size = elementsof(sha->digest);
339 data->num = 0;
340 data->buf = sha->digest;
341 return 0;
342 }
343