1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
28
29 #include "ah_eeprom_v3.h"
30
31 /* Additional Time delay to wait after activiting the Base band */
32 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
33 #define PLL_SETTLE_DELAY 300 /* 300 usec */
34
35 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36 /* NB: public for 5312 use */
37 HAL_BOOL ar5212IsSpurChannel(struct ath_hal *,
38 const struct ieee80211_channel *);
39 HAL_BOOL ar5212ChannelChange(struct ath_hal *,
40 const struct ieee80211_channel *);
41 int16_t ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
42 HAL_BOOL ar5212SetBoardValues(struct ath_hal *,
43 const struct ieee80211_channel *);
44 void ar5212SetDeltaSlope(struct ath_hal *,
45 const struct ieee80211_channel *);
46 HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
47 const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
48 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
49 const struct ieee80211_channel *, int16_t tpcScaleReduction,
50 int16_t powerLimit,
51 HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
52 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
53 static void ar5212GetTargetPowers(struct ath_hal *,
54 const struct ieee80211_channel *,
55 const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
56 TRGT_POWER_INFO *pNewPower);
57 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
58 const RD_EDGES_POWER *pRdEdgesPower);
59 void ar5212SetRateDurationTable(struct ath_hal *,
60 const struct ieee80211_channel *);
61 void ar5212SetIFSTiming(struct ath_hal *,
62 const struct ieee80211_channel *);
63
64 /* NB: public for RF backend use */
65 void ar5212GetLowerUpperValues(uint16_t value,
66 uint16_t *pList, uint16_t listSize,
67 uint16_t *pLowerValue, uint16_t *pUpperValue);
68 void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
69 uint32_t numBits, uint32_t firstBit, uint32_t column);
70
71 static int
write_common(struct ath_hal * ah,const HAL_INI_ARRAY * ia,HAL_BOOL bChannelChange,int writes)72 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
73 HAL_BOOL bChannelChange, int writes)
74 {
75 #define IS_NO_RESET_TIMER_ADDR(x) \
76 ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
77 (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
78 #define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
79 int r;
80
81 /* Write Common Array Parameters */
82 for (r = 0; r < ia->rows; r++) {
83 uint32_t reg = V(r, 0);
84 /* XXX timer/beacon setup registers? */
85 /* On channel change, don't reset the PCU registers */
86 if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
87 OS_REG_WRITE(ah, reg, V(r, 1));
88 DMA_YIELD(writes);
89 }
90 }
91 return writes;
92 #undef IS_NO_RESET_TIMER_ADDR
93 #undef V
94 }
95
96 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
97
98 /*
99 * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
100 * and 10 for Client code
101 */
102 #define MAX_RESET_WAIT 10
103
104 #define TX_QUEUEPEND_CHECK 1
105 #define TX_ENABLE_CHECK 2
106 #define RX_ENABLE_CHECK 4
107
108 /*
109 * Places the device in and out of reset and then places sane
110 * values in the registers based on EEPROM config, initialization
111 * vectors (as determined by the mode), and station configuration
112 *
113 * bChannelChange is used to preserve DMA/PCU registers across
114 * a HW Reset during channel change.
115 */
116 HAL_BOOL
ar5212Reset(struct ath_hal * ah,HAL_OPMODE opmode,struct ieee80211_channel * chan,HAL_BOOL bChannelChange,HAL_RESET_TYPE resetType,HAL_STATUS * status)117 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
118 struct ieee80211_channel *chan,
119 HAL_BOOL bChannelChange,
120 HAL_RESET_TYPE resetType,
121 HAL_STATUS *status)
122 {
123 #define N(a) (sizeof (a) / sizeof (a[0]))
124 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
125 struct ath_hal_5212 *ahp = AH5212(ah);
126 HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
127 const HAL_EEPROM *ee;
128 uint32_t softLedCfg, softLedState;
129 uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
130 uint32_t macStaId1, synthDelay, txFrm2TxDStart;
131 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
132 int16_t cckOfdmPwrDelta = 0;
133 u_int modesIndex, freqIndex;
134 HAL_STATUS ecode;
135 int i, regWrites;
136 uint32_t testReg, powerVal;
137 int8_t twiceAntennaGain, twiceAntennaReduction;
138 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
139 HAL_BOOL isBmode = AH_FALSE;
140
141 HALASSERT(ah->ah_magic == AR5212_MAGIC);
142 ee = AH_PRIVATE(ah)->ah_eeprom;
143
144 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
145
146 /* Bring out of sleep mode */
147 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
148 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
149 __func__);
150 FAIL(HAL_EIO);
151 }
152
153 /*
154 * Map public channel to private.
155 */
156 ichan = ath_hal_checkchannel(ah, chan);
157 if (ichan == AH_NULL)
158 FAIL(HAL_EINVAL);
159 switch (opmode) {
160 case HAL_M_STA:
161 case HAL_M_IBSS:
162 case HAL_M_HOSTAP:
163 case HAL_M_MONITOR:
164 break;
165 default:
166 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
167 __func__, opmode);
168 FAIL(HAL_EINVAL);
169 break;
170 }
171 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
172
173 SAVE_CCK(ah, chan, isBmode);
174
175 /* Preserve certain DMA hardware registers on a channel change */
176 if (bChannelChange) {
177 /*
178 * On Venice, the TSF is almost preserved across a reset;
179 * it requires doubling writes to the RESET_TSF
180 * bit in the AR_BEACON register; it also has the quirk
181 * of the TSF going back in time on the station (station
182 * latches onto the last beacon's tsf during a reset 50%
183 * of the times); the latter is not a problem for adhoc
184 * stations since as long as the TSF is behind, it will
185 * get resynchronized on receiving the next beacon; the
186 * TSF going backwards in time could be a problem for the
187 * sleep operation (supported on infrastructure stations
188 * only) - the best and most general fix for this situation
189 * is to resynchronize the various sleep/beacon timers on
190 * the receipt of the next beacon i.e. when the TSF itself
191 * gets resynchronized to the AP's TSF - power save is
192 * needed to be temporarily disabled until that time
193 *
194 * Need to save the sequence number to restore it after
195 * the reset!
196 */
197 saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
198 } else
199 saveFrameSeqCount = 0; /* NB: silence compiler */
200
201 /* Blank the channel survey statistics */
202 ath_hal_survey_clear(ah);
203
204 #if 0
205 /*
206 * XXX disable for now; this appears to sometimes cause OFDM
207 * XXX timing error floods when ani is enabled and bg scanning
208 * XXX kicks in
209 */
210 /* If the channel change is across the same mode - perform a fast channel change */
211 if (IS_2413(ah) || IS_5413(ah)) {
212 /*
213 * Fast channel change can only be used when:
214 * -channel change requested - so it's not the initial reset.
215 * -it's not a change to the current channel -
216 * often called when switching modes on a channel
217 * -the modes of the previous and requested channel are the
218 * same
219 * XXX opmode shouldn't change either?
220 */
221 if (bChannelChange &&
222 (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
223 (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
224 ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
225 (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
226 if (ar5212ChannelChange(ah, chan)) {
227 /* If ChannelChange completed - skip the rest of reset */
228 /* XXX ani? */
229 goto done;
230 }
231 }
232 }
233 #endif
234 /*
235 * Preserve the antenna on a channel change
236 */
237 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
238 if (saveDefAntenna == 0) /* XXX magic constants */
239 saveDefAntenna = 1;
240
241 /* Save hardware flag before chip reset clears the register */
242 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
243 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
244
245 /* Save led state from pci config register */
246 saveLedState = OS_REG_READ(ah, AR_PCICFG) &
247 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
248 AR_PCICFG_LEDSLOW);
249 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
250 softLedState = OS_REG_READ(ah, AR_GPIODO);
251
252 ar5212RestoreClock(ah, opmode); /* move to refclk operation */
253
254 /*
255 * Adjust gain parameters before reset if
256 * there's an outstanding gain updated.
257 */
258 (void) ar5212GetRfgain(ah);
259
260 if (!ar5212ChipReset(ah, chan)) {
261 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
262 FAIL(HAL_EIO);
263 }
264
265 /* Setup the indices for the next set of register array writes */
266 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
267 freqIndex = 2;
268 if (IEEE80211_IS_CHAN_108G(chan))
269 modesIndex = 5;
270 else if (IEEE80211_IS_CHAN_G(chan))
271 modesIndex = 4;
272 else if (IEEE80211_IS_CHAN_B(chan))
273 modesIndex = 3;
274 else {
275 HALDEBUG(ah, HAL_DEBUG_ANY,
276 "%s: invalid channel %u/0x%x\n",
277 __func__, chan->ic_freq, chan->ic_flags);
278 FAIL(HAL_EINVAL);
279 }
280 } else {
281 freqIndex = 1;
282 if (IEEE80211_IS_CHAN_TURBO(chan))
283 modesIndex = 2;
284 else if (IEEE80211_IS_CHAN_A(chan))
285 modesIndex = 1;
286 else {
287 HALDEBUG(ah, HAL_DEBUG_ANY,
288 "%s: invalid channel %u/0x%x\n",
289 __func__, chan->ic_freq, chan->ic_flags);
290 FAIL(HAL_EINVAL);
291 }
292 }
293
294 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
295
296 /* Set correct Baseband to analog shift setting to access analog chips. */
297 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
298
299 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
300 regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
301 regWrites);
302 #ifdef AH_RXCFG_SDMAMW_4BYTES
303 /*
304 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
305 * use 4 instead. Enabling it on all platforms would hurt performance,
306 * so we only enable it on the ones that are affected by it.
307 */
308 OS_REG_WRITE(ah, AR_RXCFG, 0);
309 #endif
310 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
311
312 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
313
314 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
315 ar5212SetIFSTiming(ah, chan);
316 if (IS_5413(ah)) {
317 /*
318 * Force window_length for 1/2 and 1/4 rate channels,
319 * the ini file sets this to zero otherwise.
320 */
321 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
322 AR_PHY_FRAME_CTL_WINLEN, 3);
323 }
324 }
325
326 /* Overwrite INI values for revised chipsets */
327 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
328 /* ADC_CTL */
329 OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
330 SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
331 SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
332 AR_PHY_ADC_CTL_OFF_PWDDAC |
333 AR_PHY_ADC_CTL_OFF_PWDADC);
334
335 /* TX_PWR_ADJ */
336 if (ichan->channel == 2484) {
337 cckOfdmPwrDelta = SCALE_OC_DELTA(
338 ee->ee_cckOfdmPwrDelta -
339 ee->ee_scaledCh14FilterCckDelta);
340 } else {
341 cckOfdmPwrDelta = SCALE_OC_DELTA(
342 ee->ee_cckOfdmPwrDelta);
343 }
344
345 if (IEEE80211_IS_CHAN_G(chan)) {
346 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
347 SM((ee->ee_cckOfdmPwrDelta*-1),
348 AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
349 SM((cckOfdmPwrDelta*-1),
350 AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
351 } else {
352 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
353 }
354
355 /* Add barker RSSI thresh enable as disabled */
356 OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
357 AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
358 OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
359 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
360
361 /* Set the mute mask to the correct default */
362 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
363 }
364
365 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
366 /* Clear reg to alllow RX_CLEAR line debug */
367 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
368 }
369 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
370 #ifdef notyet
371 /* Enable burst prefetch for the data queues */
372 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
373 /* Enable double-buffering */
374 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
375 #endif
376 }
377
378 /* Set ADC/DAC select values */
379 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
380
381 if (IS_5413(ah) || IS_2417(ah)) {
382 uint32_t newReg = 1;
383 if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
384 newReg = 0;
385 /* As it's a clock changing register, only write when the value needs to be changed */
386 if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
387 OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
388 }
389
390 /* Setup the transmit power values. */
391 if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
392 HALDEBUG(ah, HAL_DEBUG_ANY,
393 "%s: error init'ing transmit power\n", __func__);
394 FAIL(HAL_EIO);
395 }
396
397 /* Write the analog registers */
398 if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
399 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
400 __func__);
401 FAIL(HAL_EIO);
402 }
403
404 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
405 if (IEEE80211_IS_CHAN_OFDM(chan)) {
406 if (IS_5413(ah) ||
407 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
408 ar5212SetSpurMitigation(ah, chan);
409 ar5212SetDeltaSlope(ah, chan);
410 }
411
412 /* Setup board specific options for EEPROM version 3 */
413 if (!ar5212SetBoardValues(ah, chan)) {
414 HALDEBUG(ah, HAL_DEBUG_ANY,
415 "%s: error setting board options\n", __func__);
416 FAIL(HAL_EIO);
417 }
418
419 /* Restore certain DMA hardware registers on a channel change */
420 if (bChannelChange)
421 OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
422
423 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
424
425 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
426 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
427 | macStaId1
428 | AR_STA_ID1_RTS_USE_DEF
429 | ahp->ah_staId1Defaults
430 );
431 ar5212SetOperatingMode(ah, opmode);
432
433 /* Set Venice BSSID mask according to current state */
434 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
435 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
436
437 /* Restore previous led state */
438 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
439
440 /* Restore soft Led state to GPIO */
441 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
442 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
443
444 /* Restore previous antenna */
445 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
446
447 /* then our BSSID and associate id */
448 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
449 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
450 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
451
452 /* Restore bmiss rssi & count thresholds */
453 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
454
455 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
456
457 if (!ar5212SetChannel(ah, chan))
458 FAIL(HAL_EIO);
459
460 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
461
462 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
463
464 ar5212SetRateDurationTable(ah, chan);
465
466 /* Set Tx frame start to tx data start delay */
467 if (IS_RAD5112_ANY(ah) &&
468 (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
469 txFrm2TxDStart =
470 IEEE80211_IS_CHAN_HALF(chan) ?
471 TX_FRAME_D_START_HALF_RATE:
472 TX_FRAME_D_START_QUARTER_RATE;
473 OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
474 AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
475 }
476
477 /*
478 * Setup fast diversity.
479 * Fast diversity can be enabled or disabled via regadd.txt.
480 * Default is enabled.
481 * For reference,
482 * Disable: reg val
483 * 0x00009860 0x00009d18 (if 11a / 11g, else no change)
484 * 0x00009970 0x192bb514
485 * 0x0000a208 0xd03e4648
486 *
487 * Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
488 * 0x00009970 0x192fb514
489 * 0x0000a208 0xd03e6788
490 */
491
492 /* XXX Setup pre PHY ENABLE EAR additions */
493 /*
494 * Wait for the frequency synth to settle (synth goes on
495 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
496 * Value is in 100ns increments.
497 */
498 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
499 if (IEEE80211_IS_CHAN_B(chan)) {
500 synthDelay = (4 * synthDelay) / 22;
501 } else {
502 synthDelay /= 10;
503 }
504
505 /* Activate the PHY (includes baseband activate and synthesizer on) */
506 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
507
508 /*
509 * There is an issue if the AP starts the calibration before
510 * the base band timeout completes. This could result in the
511 * rx_clear false triggering. As a workaround we add delay an
512 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
513 * does not happen.
514 */
515 if (IEEE80211_IS_CHAN_HALF(chan)) {
516 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
517 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
518 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
519 } else {
520 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
521 }
522
523 /*
524 * The udelay method is not reliable with notebooks.
525 * Need to check to see if the baseband is ready
526 */
527 testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
528 /* Selects the Tx hold */
529 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
530 i = 0;
531 while ((i++ < 20) &&
532 (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
533 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
534
535 /* Calibrate the AGC and start a NF calculation */
536 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
537 OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
538 | AR_PHY_AGC_CONTROL_CAL
539 | AR_PHY_AGC_CONTROL_NF);
540
541 if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
542 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
543 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
544 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
545 INIT_IQCAL_LOG_COUNT_MAX);
546 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
547 AR_PHY_TIMING_CTRL4_DO_IQCAL);
548 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
549 } else
550 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
551
552 /* Setup compression registers */
553 ar5212SetCompRegs(ah);
554
555 /* Set 1:1 QCU to DCU mapping for all queues */
556 for (i = 0; i < AR_NUM_DCU; i++)
557 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
558
559 ahp->ah_intrTxqs = 0;
560 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
561 ar5212ResetTxQueue(ah, i);
562
563 /*
564 * Setup interrupt handling. Note that ar5212ResetTxQueue
565 * manipulates the secondary IMR's as queues are enabled
566 * and disabled. This is done with RMW ops to insure the
567 * settings we make here are preserved.
568 */
569 ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
570 | AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
571 | AR_IMR_HIUERR
572 ;
573 if (opmode == HAL_M_HOSTAP)
574 ahp->ah_maskReg |= AR_IMR_MIB;
575 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
576 /* Enable bus errors that are OR'd to set the HIUERR bit */
577 OS_REG_WRITE(ah, AR_IMR_S2,
578 OS_REG_READ(ah, AR_IMR_S2)
579 | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
580
581 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
582 ar5212EnableRfKill(ah);
583
584 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
585 HALDEBUG(ah, HAL_DEBUG_ANY,
586 "%s: offset calibration failed to complete in 1ms;"
587 " noisy environment?\n", __func__);
588 }
589
590 /*
591 * Set clocks back to 32kHz if they had been using refClk, then
592 * use an external 32kHz crystal when sleeping, if one exists.
593 */
594 ar5212SetupClock(ah, opmode);
595
596 /*
597 * Writing to AR_BEACON will start timers. Hence it should
598 * be the last register to be written. Do not reset tsf, do
599 * not enable beacons at this point, but preserve other values
600 * like beaconInterval.
601 */
602 OS_REG_WRITE(ah, AR_BEACON,
603 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
604
605 /* XXX Setup post reset EAR additions */
606
607 /* QoS support */
608 if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
609 (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
610 AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
611 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
612 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
613 }
614
615 /* Turn on NOACK Support for QoS packets */
616 OS_REG_WRITE(ah, AR_NOACK,
617 SM(2, AR_NOACK_2BIT_VALUE) |
618 SM(5, AR_NOACK_BIT_OFFSET) |
619 SM(0, AR_NOACK_BYTE_OFFSET));
620
621 /* Get Antenna Gain reduction */
622 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
623 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
624 } else {
625 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
626 }
627 twiceAntennaReduction =
628 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
629
630 /* TPC for self-generated frames */
631
632 ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
633 if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
634 ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
635
636 if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
637 ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
638 + ahp->ah_txPowerIndexOffset;
639
640 ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
641 if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
642 ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
643
644 if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
645 ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
646 + ahp->ah_txPowerIndexOffset;
647
648 chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
649 if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
650 chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
651
652 if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
653 chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
654 + ahp->ah_txPowerIndexOffset;
655
656 if (ackTpcPow > 63)
657 ackTpcPow = 63;
658 if (ctsTpcPow > 63)
659 ctsTpcPow = 63;
660 if (chirpTpcPow > 63)
661 chirpTpcPow = 63;
662
663 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
664 SM(ctsTpcPow, AR_TPC_CTS) |
665 SM(chirpTpcPow, AR_TPC_CHIRP);
666
667 OS_REG_WRITE(ah, AR_TPC, powerVal);
668
669 /* Restore user-specified settings */
670 if (ahp->ah_miscMode != 0)
671 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
672 if (ahp->ah_sifstime != (u_int) -1)
673 ar5212SetSifsTime(ah, ahp->ah_sifstime);
674 if (ahp->ah_slottime != (u_int) -1)
675 ar5212SetSlotTime(ah, ahp->ah_slottime);
676 if (ahp->ah_acktimeout != (u_int) -1)
677 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
678 if (ahp->ah_ctstimeout != (u_int) -1)
679 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
680 if (AH_PRIVATE(ah)->ah_diagreg != 0)
681 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
682
683 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
684 #if 0
685 done:
686 #endif
687 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
688 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
689
690 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
691
692 RESTORE_CCK(ah, chan, isBmode);
693
694 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
695
696 return AH_TRUE;
697 bad:
698 RESTORE_CCK(ah, chan, isBmode);
699
700 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
701 if (status != AH_NULL)
702 *status = ecode;
703 return AH_FALSE;
704 #undef FAIL
705 #undef N
706 }
707
708 /*
709 * Call the rf backend to change the channel.
710 */
711 HAL_BOOL
ar5212SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)712 ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
713 {
714 struct ath_hal_5212 *ahp = AH5212(ah);
715
716 /* Change the synth */
717 if (!ahp->ah_rfHal->setChannel(ah, chan))
718 return AH_FALSE;
719 return AH_TRUE;
720 }
721
722 /*
723 * This channel change evaluates whether the selected hardware can
724 * perform a synthesizer-only channel change (no reset). If the
725 * TX is not stopped, or the RFBus cannot be granted in the given
726 * time, the function returns false as a reset is necessary
727 */
728 HAL_BOOL
ar5212ChannelChange(struct ath_hal * ah,const struct ieee80211_channel * chan)729 ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
730 {
731 uint32_t ulCount;
732 uint32_t data, synthDelay, qnum;
733 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
734 HAL_BOOL txStopped = AH_TRUE;
735 HAL_CHANNEL_INTERNAL *ichan;
736
737 /*
738 * Map public channel to private.
739 */
740 ichan = ath_hal_checkchannel(ah, chan);
741
742 /* TX must be stopped or RF Bus grant will not work */
743 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
744 if (ar5212NumTxPending(ah, qnum)) {
745 txStopped = AH_FALSE;
746 break;
747 }
748 }
749 if (!txStopped)
750 return AH_FALSE;
751
752 /* Kill last Baseband Rx Frame */
753 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
754 for (ulCount = 0; ulCount < 100; ulCount++) {
755 if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
756 break;
757 OS_DELAY(5);
758 }
759 if (ulCount >= 100)
760 return AH_FALSE;
761
762 /* Change the synth */
763 if (!ar5212SetChannel(ah, chan))
764 return AH_FALSE;
765
766 /*
767 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
768 * Read the phy active delay register. Value is in 100ns increments.
769 */
770 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
771 if (IEEE80211_IS_CHAN_B(chan)) {
772 synthDelay = (4 * data) / 22;
773 } else {
774 synthDelay = data / 10;
775 }
776 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
777
778 /* Setup the transmit power values. */
779 if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
780 HALDEBUG(ah, HAL_DEBUG_ANY,
781 "%s: error init'ing transmit power\n", __func__);
782 return AH_FALSE;
783 }
784
785 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
786 if (IEEE80211_IS_CHAN_OFDM(chan)) {
787 if (IS_5413(ah) ||
788 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
789 ar5212SetSpurMitigation(ah, chan);
790 ar5212SetDeltaSlope(ah, chan);
791 }
792
793 /* Release the RFBus Grant */
794 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
795
796 /* Start Noise Floor Cal */
797 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
798 return AH_TRUE;
799 }
800
801 void
ar5212SetOperatingMode(struct ath_hal * ah,int opmode)802 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
803 {
804 uint32_t val;
805
806 val = OS_REG_READ(ah, AR_STA_ID1);
807 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
808 switch (opmode) {
809 case HAL_M_HOSTAP:
810 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
811 | AR_STA_ID1_KSRCH_MODE);
812 OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
813 break;
814 case HAL_M_IBSS:
815 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
816 | AR_STA_ID1_KSRCH_MODE);
817 OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
818 break;
819 case HAL_M_STA:
820 case HAL_M_MONITOR:
821 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
822 break;
823 }
824 }
825
826 /*
827 * Places the PHY and Radio chips into reset. A full reset
828 * must be called to leave this state. The PCI/MAC/PCU are
829 * not placed into reset as we must receive interrupt to
830 * re-enable the hardware.
831 */
832 HAL_BOOL
ar5212PhyDisable(struct ath_hal * ah)833 ar5212PhyDisable(struct ath_hal *ah)
834 {
835 return ar5212SetResetReg(ah, AR_RC_BB);
836 }
837
838 /*
839 * Places all of hardware into reset
840 */
841 HAL_BOOL
ar5212Disable(struct ath_hal * ah)842 ar5212Disable(struct ath_hal *ah)
843 {
844 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
845 return AH_FALSE;
846 /*
847 * Reset the HW - PCI must be reset after the rest of the
848 * device has been reset.
849 */
850 return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
851 }
852
853 /*
854 * Places the hardware into reset and then pulls it out of reset
855 *
856 * TODO: Only write the PLL if we're changing to or from CCK mode
857 *
858 * WARNING: The order of the PLL and mode registers must be correct.
859 */
860 HAL_BOOL
ar5212ChipReset(struct ath_hal * ah,const struct ieee80211_channel * chan)861 ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
862 {
863
864 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
865
866 /*
867 * Reset the HW - PCI must be reset after the rest of the
868 * device has been reset
869 */
870 if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
871 return AH_FALSE;
872
873 /* Bring out of sleep mode (AGAIN) */
874 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
875 return AH_FALSE;
876
877 /* Clear warm reset register */
878 if (!ar5212SetResetReg(ah, 0))
879 return AH_FALSE;
880
881 /*
882 * Perform warm reset before the mode/PLL/turbo registers
883 * are changed in order to deactivate the radio. Mode changes
884 * with an active radio can result in corrupted shifts to the
885 * radio device.
886 */
887
888 /*
889 * Set CCK and Turbo modes correctly.
890 */
891 if (chan != AH_NULL) { /* NB: can be null during attach */
892 uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
893
894 if (IS_5413(ah)) { /* NB: =>'s 5424 also */
895 rfMode = AR_PHY_MODE_AR5112;
896 if (IEEE80211_IS_CHAN_HALF(chan))
897 rfMode |= AR_PHY_MODE_HALF;
898 else if (IEEE80211_IS_CHAN_QUARTER(chan))
899 rfMode |= AR_PHY_MODE_QUARTER;
900
901 if (IEEE80211_IS_CHAN_CCK(chan))
902 phyPLL = AR_PHY_PLL_CTL_44_5112;
903 else
904 phyPLL = AR_PHY_PLL_CTL_40_5413;
905 } else if (IS_RAD5111(ah)) {
906 rfMode = AR_PHY_MODE_AR5111;
907 if (IEEE80211_IS_CHAN_CCK(chan))
908 phyPLL = AR_PHY_PLL_CTL_44;
909 else
910 phyPLL = AR_PHY_PLL_CTL_40;
911 if (IEEE80211_IS_CHAN_HALF(chan))
912 phyPLL = AR_PHY_PLL_CTL_HALF;
913 else if (IEEE80211_IS_CHAN_QUARTER(chan))
914 phyPLL = AR_PHY_PLL_CTL_QUARTER;
915 } else { /* 5112, 2413, 2316, 2317 */
916 rfMode = AR_PHY_MODE_AR5112;
917 if (IEEE80211_IS_CHAN_CCK(chan))
918 phyPLL = AR_PHY_PLL_CTL_44_5112;
919 else
920 phyPLL = AR_PHY_PLL_CTL_40_5112;
921 if (IEEE80211_IS_CHAN_HALF(chan))
922 phyPLL |= AR_PHY_PLL_CTL_HALF;
923 else if (IEEE80211_IS_CHAN_QUARTER(chan))
924 phyPLL |= AR_PHY_PLL_CTL_QUARTER;
925 }
926 if (IEEE80211_IS_CHAN_G(chan))
927 rfMode |= AR_PHY_MODE_DYNAMIC;
928 else if (IEEE80211_IS_CHAN_OFDM(chan))
929 rfMode |= AR_PHY_MODE_OFDM;
930 else
931 rfMode |= AR_PHY_MODE_CCK;
932 if (IEEE80211_IS_CHAN_5GHZ(chan))
933 rfMode |= AR_PHY_MODE_RF5GHZ;
934 else
935 rfMode |= AR_PHY_MODE_RF2GHZ;
936 turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
937 (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
938 curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
939 /*
940 * PLL, Mode, and Turbo values must be written in the correct
941 * order to ensure:
942 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
943 * mode bit is set
944 * - Turbo cannot be set at the same time as CCK or DYNAMIC
945 */
946 if (IEEE80211_IS_CHAN_CCK(chan)) {
947 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
948 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
949 if (curPhyPLL != phyPLL) {
950 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
951 /* Wait for the PLL to settle */
952 OS_DELAY(PLL_SETTLE_DELAY);
953 }
954 } else {
955 if (curPhyPLL != phyPLL) {
956 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
957 /* Wait for the PLL to settle */
958 OS_DELAY(PLL_SETTLE_DELAY);
959 }
960 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
961 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
962 }
963 }
964 return AH_TRUE;
965 }
966
967 /*
968 * Recalibrate the lower PHY chips to account for temperature/environment
969 * changes.
970 */
971 HAL_BOOL
ar5212PerCalibrationN(struct ath_hal * ah,struct ieee80211_channel * chan,u_int chainMask,HAL_BOOL longCal,HAL_BOOL * isCalDone)972 ar5212PerCalibrationN(struct ath_hal *ah,
973 struct ieee80211_channel *chan,
974 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
975 {
976 #define IQ_CAL_TRIES 10
977 struct ath_hal_5212 *ahp = AH5212(ah);
978 HAL_CHANNEL_INTERNAL *ichan;
979 int32_t qCoff, qCoffDenom;
980 int32_t iqCorrMeas, iCoff, iCoffDenom;
981 uint32_t powerMeasQ, powerMeasI;
982 HAL_BOOL isBmode = AH_FALSE;
983
984 OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
985 *isCalDone = AH_FALSE;
986 ichan = ath_hal_checkchannel(ah, chan);
987 if (ichan == AH_NULL) {
988 HALDEBUG(ah, HAL_DEBUG_ANY,
989 "%s: invalid channel %u/0x%x; no mapping\n",
990 __func__, chan->ic_freq, chan->ic_flags);
991 return AH_FALSE;
992 }
993 SAVE_CCK(ah, chan, isBmode);
994
995 if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
996 ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
997 *isCalDone = AH_TRUE;
998
999 /* IQ calibration in progress. Check to see if it has finished. */
1000 if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
1001 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
1002 int i;
1003
1004 /* IQ Calibration has finished. */
1005 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1006 *isCalDone = AH_TRUE;
1007
1008 /* workaround for misgated IQ Cal results */
1009 i = 0;
1010 do {
1011 /* Read calibration results. */
1012 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1013 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1014 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1015 if (powerMeasI && powerMeasQ)
1016 break;
1017 /* Do we really need this??? */
1018 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1019 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1020 } while (++i < IQ_CAL_TRIES);
1021
1022 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1023 "%s: IQ cal finished: %d tries\n", __func__, i);
1024 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1025 "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1026 __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1027
1028 /*
1029 * Prescale these values to remove 64-bit operation
1030 * requirement at the loss of a little precision.
1031 */
1032 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1033 qCoffDenom = powerMeasQ / 128;
1034
1035 /* Protect against divide-by-0 and loss of sign bits. */
1036 if (iCoffDenom != 0 && qCoffDenom >= 2) {
1037 iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1038 /* IQCORR_Q_I_COFF is a signed 6 bit number */
1039 if (iCoff < -32) {
1040 iCoff = -32;
1041 } else if (iCoff > 31) {
1042 iCoff = 31;
1043 }
1044
1045 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
1046 qCoff = (powerMeasI / qCoffDenom) - 128;
1047 if (qCoff < -16) {
1048 qCoff = -16;
1049 } else if (qCoff > 15) {
1050 qCoff = 15;
1051 }
1052
1053 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1054 "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1055
1056 /* Write values and enable correction */
1057 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1058 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1059 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1060 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1061 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1062 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1063
1064 ahp->ah_bIQCalibration = IQ_CAL_DONE;
1065 ichan->privFlags |= CHANNEL_IQVALID;
1066 ichan->iCoff = iCoff;
1067 ichan->qCoff = qCoff;
1068 }
1069 } else if (!IEEE80211_IS_CHAN_B(chan) &&
1070 ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1071 (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1072 /*
1073 * Start IQ calibration if configured channel has changed.
1074 * Use a magic number of 15 based on default value.
1075 */
1076 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1077 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1078 INIT_IQCAL_LOG_COUNT_MAX);
1079 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1080 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1081 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1082 }
1083 /* XXX EAR */
1084
1085 if (longCal) {
1086 /* Check noise floor results */
1087 ar5212GetNf(ah, chan);
1088 if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1089 /* Perform cal for 5Ghz channels and any OFDM on 5112 */
1090 if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1091 (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1092 ar5212RequestRfgain(ah);
1093 }
1094 }
1095 RESTORE_CCK(ah, chan, isBmode);
1096
1097 return AH_TRUE;
1098 #undef IQ_CAL_TRIES
1099 }
1100
1101 HAL_BOOL
ar5212PerCalibration(struct ath_hal * ah,struct ieee80211_channel * chan,HAL_BOOL * isIQdone)1102 ar5212PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
1103 HAL_BOOL *isIQdone)
1104 {
1105 return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1106 }
1107
1108 HAL_BOOL
ar5212ResetCalValid(struct ath_hal * ah,const struct ieee80211_channel * chan)1109 ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1110 {
1111 HAL_CHANNEL_INTERNAL *ichan;
1112
1113 ichan = ath_hal_checkchannel(ah, chan);
1114 if (ichan == AH_NULL) {
1115 HALDEBUG(ah, HAL_DEBUG_ANY,
1116 "%s: invalid channel %u/0x%x; no mapping\n",
1117 __func__, chan->ic_freq, chan->ic_flags);
1118 return AH_FALSE;
1119 }
1120 ichan->privFlags &= ~CHANNEL_IQVALID;
1121 return AH_TRUE;
1122 }
1123
1124 /**************************************************************
1125 * ar5212MacStop
1126 *
1127 * Disables all active QCUs and ensure that the mac is in a
1128 * quiessence state.
1129 */
1130 static HAL_BOOL
ar5212MacStop(struct ath_hal * ah)1131 ar5212MacStop(struct ath_hal *ah)
1132 {
1133 HAL_BOOL status;
1134 uint32_t count;
1135 uint32_t pendFrameCount;
1136 uint32_t macStateFlag;
1137 uint32_t queue;
1138
1139 status = AH_FALSE;
1140
1141 /* Disable Rx Operation ***********************************/
1142 OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
1143
1144 /* Disable TX Operation ***********************************/
1145 #ifdef NOT_YET
1146 ar5212SetTxdpInvalid(ah);
1147 #endif
1148 OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
1149
1150 /* Polling operation for completion of disable ************/
1151 macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
1152
1153 for (count = 0; count < MAX_RESET_WAIT; count++) {
1154 if (macStateFlag & RX_ENABLE_CHECK) {
1155 if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
1156 macStateFlag &= ~RX_ENABLE_CHECK;
1157 }
1158 }
1159
1160 if (macStateFlag & TX_ENABLE_CHECK) {
1161 if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
1162 macStateFlag &= ~TX_ENABLE_CHECK;
1163 macStateFlag |= TX_QUEUEPEND_CHECK;
1164 }
1165 }
1166 if (macStateFlag & TX_QUEUEPEND_CHECK) {
1167 pendFrameCount = 0;
1168 for (queue = 0; queue < AR_NUM_DCU; queue++) {
1169 pendFrameCount += OS_REG_READ(ah,
1170 AR_Q0_STS + (queue * 4)) &
1171 AR_Q_STS_PEND_FR_CNT;
1172 }
1173 if (pendFrameCount == 0) {
1174 macStateFlag &= ~TX_QUEUEPEND_CHECK;
1175 }
1176 }
1177 if (macStateFlag == 0) {
1178 status = AH_TRUE;
1179 break;
1180 }
1181 OS_DELAY(50);
1182 }
1183
1184 if (status != AH_TRUE) {
1185 HALDEBUG(ah, HAL_DEBUG_RESET,
1186 "%s:Failed to stop the MAC state 0x%x\n",
1187 __func__, macStateFlag);
1188 }
1189
1190 return status;
1191 }
1192
1193 /*
1194 * Write the given reset bit mask into the reset register
1195 */
1196 static HAL_BOOL
ar5212SetResetReg(struct ath_hal * ah,uint32_t resetMask)1197 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1198 {
1199 uint32_t mask = resetMask ? resetMask : ~0;
1200 HAL_BOOL rt;
1201
1202 /* Never reset the PCIE core */
1203 if (AH_PRIVATE(ah)->ah_ispcie) {
1204 resetMask &= ~AR_RC_PCI;
1205 }
1206
1207 if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
1208 /*
1209 * To ensure that the driver can reset the
1210 * MAC, wake up the chip
1211 */
1212 rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
1213
1214 if (rt != AH_TRUE) {
1215 return rt;
1216 }
1217
1218 /*
1219 * Disable interrupts
1220 */
1221 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
1222 OS_REG_READ(ah, AR_IER);
1223
1224 if (ar5212MacStop(ah) != AH_TRUE) {
1225 /*
1226 * Failed to stop the MAC gracefully; let's be more forceful then
1227 */
1228
1229 /* need some delay before flush any pending MMR writes */
1230 OS_DELAY(15);
1231 OS_REG_READ(ah, AR_RXDP);
1232
1233 resetMask |= AR_RC_MAC | AR_RC_BB;
1234 /* _Never_ reset PCI Express core */
1235 if (! AH_PRIVATE(ah)->ah_ispcie) {
1236 resetMask |= AR_RC_PCI;
1237 }
1238 #if 0
1239 /*
1240 * Flush the park address of the PCI controller
1241 */
1242 /* Read PCI slot information less than Hainan revision */
1243 if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
1244 if (!IS_5112_REV5_UP(ah)) {
1245 #define PCI_COMMON_CONFIG_STATUS 0x06
1246 u_int32_t i;
1247 u_int16_t reg16;
1248
1249 for (i = 0; i < 32; i++) {
1250 ath_hal_read_pci_config_space(ah,
1251 PCI_COMMON_CONFIG_STATUS,
1252 ®16, sizeof(reg16));
1253 }
1254 }
1255 #undef PCI_COMMON_CONFIG_STATUS
1256 }
1257 #endif
1258 } else {
1259 /*
1260 * MAC stopped gracefully; no need to warm-reset the PCI bus
1261 */
1262
1263 resetMask &= ~AR_RC_PCI;
1264
1265 /* need some delay before flush any pending MMR writes */
1266 OS_DELAY(15);
1267 OS_REG_READ(ah, AR_RXDP);
1268 }
1269 }
1270
1271 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1272 OS_REG_WRITE(ah, AR_RC, resetMask);
1273 OS_DELAY(15); /* need to wait at least 128 clocks
1274 when reseting PCI before read */
1275 mask &= (AR_RC_MAC | AR_RC_BB);
1276 resetMask &= (AR_RC_MAC | AR_RC_BB);
1277 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1278 if ((resetMask & AR_RC_MAC) == 0) {
1279 if (isBigEndian()) {
1280 /*
1281 * Set CFG, little-endian for descriptor accesses.
1282 */
1283 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1284 #ifndef AH_NEED_DESC_SWAP
1285 mask |= AR_CFG_SWTD;
1286 #endif
1287 OS_REG_WRITE(ah, AR_CFG, mask);
1288 } else
1289 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1290 if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1291 (void) OS_REG_READ(ah, AR_ISR_RAC);
1292 }
1293
1294 /* track PHY power state so we don't try to r/w BB registers */
1295 AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1296 return rt;
1297 }
1298
1299 int16_t
ar5212GetNoiseFloor(struct ath_hal * ah)1300 ar5212GetNoiseFloor(struct ath_hal *ah)
1301 {
1302 int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1303 if (nf & 0x100)
1304 nf = 0 - ((nf ^ 0x1ff) + 1);
1305 return nf;
1306 }
1307
1308 static HAL_BOOL
getNoiseFloorThresh(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * nft)1309 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1310 int16_t *nft)
1311 {
1312 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1313
1314 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1315
1316 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1317 case IEEE80211_CHAN_A:
1318 *nft = ee->ee_noiseFloorThresh[headerInfo11A];
1319 break;
1320 case IEEE80211_CHAN_B:
1321 *nft = ee->ee_noiseFloorThresh[headerInfo11B];
1322 break;
1323 case IEEE80211_CHAN_G:
1324 case IEEE80211_CHAN_PUREG: /* NB: really 108G */
1325 *nft = ee->ee_noiseFloorThresh[headerInfo11G];
1326 break;
1327 default:
1328 HALDEBUG(ah, HAL_DEBUG_ANY,
1329 "%s: invalid channel flags %u/0x%x\n",
1330 __func__, chan->ic_freq, chan->ic_flags);
1331 return AH_FALSE;
1332 }
1333 return AH_TRUE;
1334 }
1335
1336 /*
1337 * Setup the noise floor cal history buffer.
1338 */
1339 void
ar5212InitNfCalHistBuffer(struct ath_hal * ah)1340 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1341 {
1342 struct ath_hal_5212 *ahp = AH5212(ah);
1343 int i;
1344
1345 ahp->ah_nfCalHist.first_run = 1;
1346 ahp->ah_nfCalHist.currIndex = 0;
1347 ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1348 ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1349 for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1350 ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1351 }
1352
1353 /*
1354 * Add a noise floor value to the ring buffer.
1355 */
1356 static __inline void
updateNFHistBuff(struct ar5212NfCalHist * h,int16_t nf)1357 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1358 {
1359 h->nfCalBuffer[h->currIndex] = nf;
1360 if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1361 h->currIndex = 0;
1362 }
1363
1364 /*
1365 * Return the median noise floor value in the ring buffer.
1366 */
1367 int16_t
ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])1368 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1369 {
1370 int16_t sort[AR512_NF_CAL_HIST_MAX];
1371 int i, j;
1372
1373 OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1374 for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1375 for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1376 if (sort[j] > sort[j-1]) {
1377 int16_t nf = sort[j];
1378 sort[j] = sort[j-1];
1379 sort[j-1] = nf;
1380 }
1381 }
1382 }
1383 return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1384 }
1385
1386 /*
1387 * Read the NF and check it against the noise floor threshold
1388 */
1389 int16_t
ar5212GetNf(struct ath_hal * ah,struct ieee80211_channel * chan)1390 ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1391 {
1392 struct ath_hal_5212 *ahp = AH5212(ah);
1393 struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1394 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1395 int16_t nf, nfThresh;
1396 int32_t val;
1397
1398 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1399 HALDEBUG(ah, HAL_DEBUG_ANY,
1400 "%s: NF did not complete in calibration window\n", __func__);
1401 ichan->rawNoiseFloor = h->privNF; /* most recent value */
1402 return ichan->rawNoiseFloor;
1403 }
1404
1405 /*
1406 * Finished NF cal, check against threshold.
1407 */
1408 nf = ar5212GetNoiseFloor(ah);
1409 if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1410 if (nf > nfThresh) {
1411 HALDEBUG(ah, HAL_DEBUG_ANY,
1412 "%s: noise floor failed detected; detected %u, "
1413 "threshold %u\n", __func__, nf, nfThresh);
1414 /*
1415 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1416 * happens it indicates a problem regardless
1417 * of the band.
1418 */
1419 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1420 nf = 0;
1421 }
1422 } else
1423 nf = 0;
1424
1425 /*
1426 * Pass through histogram and write median value as
1427 * calculated from the accrued window. We require a
1428 * full window of in-range values to be seen before we
1429 * start using the history.
1430 */
1431 updateNFHistBuff(h, nf);
1432 if (h->first_run) {
1433 if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1434 nf > AR5212_CCA_MAX_HIGH_VALUE) {
1435 nf = AR5212_CCA_MAX_GOOD_VALUE;
1436 h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1437 } else if (--(h->invalidNFcount) == 0) {
1438 h->first_run = 0;
1439 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1440 } else {
1441 nf = AR5212_CCA_MAX_GOOD_VALUE;
1442 }
1443 } else {
1444 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1445 }
1446
1447 val = OS_REG_READ(ah, AR_PHY(25));
1448 val &= 0xFFFFFE00;
1449 val |= (((uint32_t)nf << 1) & 0x1FF);
1450 OS_REG_WRITE(ah, AR_PHY(25), val);
1451 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1452 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1453 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1454
1455 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1456 #ifdef AH_DEBUG
1457 ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1458 __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1459 #endif
1460 }
1461
1462 /*
1463 * Now load a high maxCCAPower value again so that we're
1464 * not capped by the median we just loaded
1465 */
1466 val &= 0xFFFFFE00;
1467 val |= (((uint32_t)(-50) << 1) & 0x1FF);
1468 OS_REG_WRITE(ah, AR_PHY(25), val);
1469 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1470 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1471 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1472
1473 return (ichan->rawNoiseFloor = nf);
1474 }
1475
1476 /*
1477 * Set up compression configuration registers
1478 */
1479 void
ar5212SetCompRegs(struct ath_hal * ah)1480 ar5212SetCompRegs(struct ath_hal *ah)
1481 {
1482 struct ath_hal_5212 *ahp = AH5212(ah);
1483 int i;
1484
1485 /* Check if h/w supports compression */
1486 if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1487 return;
1488
1489 OS_REG_WRITE(ah, AR_DCCFG, 1);
1490
1491 OS_REG_WRITE(ah, AR_CCFG,
1492 (AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1493
1494 OS_REG_WRITE(ah, AR_CCFG,
1495 OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1496 OS_REG_WRITE(ah, AR_CCUCFG,
1497 AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1498
1499 OS_REG_WRITE(ah, AR_CPCOVF, 0);
1500
1501 /* reset decompression mask */
1502 for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1503 OS_REG_WRITE(ah, AR_DCM_A, i);
1504 OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1505 }
1506 }
1507
1508 HAL_BOOL
ar5212SetAntennaSwitchInternal(struct ath_hal * ah,HAL_ANT_SETTING settings,const struct ieee80211_channel * chan)1509 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1510 const struct ieee80211_channel *chan)
1511 {
1512 #define ANT_SWITCH_TABLE1 AR_PHY(88)
1513 #define ANT_SWITCH_TABLE2 AR_PHY(89)
1514 struct ath_hal_5212 *ahp = AH5212(ah);
1515 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1516 uint32_t antSwitchA, antSwitchB;
1517 int ix;
1518
1519 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1520 HALASSERT(ahp->ah_phyPowerOn);
1521
1522 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1523 case IEEE80211_CHAN_A:
1524 ix = 0;
1525 break;
1526 case IEEE80211_CHAN_G:
1527 case IEEE80211_CHAN_PUREG: /* NB: 108G */
1528 ix = 2;
1529 break;
1530 case IEEE80211_CHAN_B:
1531 if (IS_2425(ah) || IS_2417(ah)) {
1532 /* NB: Nala/Swan: 11b is handled using 11g */
1533 ix = 2;
1534 } else
1535 ix = 1;
1536 break;
1537 default:
1538 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1539 __func__, chan->ic_flags);
1540 return AH_FALSE;
1541 }
1542
1543 antSwitchA = ee->ee_antennaControl[1][ix]
1544 | (ee->ee_antennaControl[2][ix] << 6)
1545 | (ee->ee_antennaControl[3][ix] << 12)
1546 | (ee->ee_antennaControl[4][ix] << 18)
1547 | (ee->ee_antennaControl[5][ix] << 24)
1548 ;
1549 antSwitchB = ee->ee_antennaControl[6][ix]
1550 | (ee->ee_antennaControl[7][ix] << 6)
1551 | (ee->ee_antennaControl[8][ix] << 12)
1552 | (ee->ee_antennaControl[9][ix] << 18)
1553 | (ee->ee_antennaControl[10][ix] << 24)
1554 ;
1555 /*
1556 * For fixed antenna, give the same setting for both switch banks
1557 */
1558 switch (settings) {
1559 case HAL_ANT_FIXED_A:
1560 antSwitchB = antSwitchA;
1561 break;
1562 case HAL_ANT_FIXED_B:
1563 antSwitchA = antSwitchB;
1564 break;
1565 case HAL_ANT_VARIABLE:
1566 break;
1567 default:
1568 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1569 __func__, settings);
1570 return AH_FALSE;
1571 }
1572 if (antSwitchB == antSwitchA) {
1573 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1574 "%s: Setting fast diversity off.\n", __func__);
1575 OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1576 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1577 ahp->ah_diversity = AH_FALSE;
1578 } else {
1579 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1580 "%s: Setting fast diversity on.\n", __func__);
1581 OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1582 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1583 ahp->ah_diversity = AH_TRUE;
1584 }
1585 ahp->ah_antControl = settings;
1586
1587 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1588 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1589
1590 return AH_TRUE;
1591 #undef ANT_SWITCH_TABLE2
1592 #undef ANT_SWITCH_TABLE1
1593 }
1594
1595 HAL_BOOL
ar5212IsSpurChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)1596 ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1597 {
1598 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1599 uint32_t clockFreq =
1600 ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1601 return ( ((freq % clockFreq) != 0)
1602 && (((freq % clockFreq) < 10)
1603 || (((freq) % clockFreq) > 22)) );
1604 }
1605
1606 /*
1607 * Read EEPROM header info and program the device for correct operation
1608 * given the channel value.
1609 */
1610 HAL_BOOL
ar5212SetBoardValues(struct ath_hal * ah,const struct ieee80211_channel * chan)1611 ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1612 {
1613 #define NO_FALSE_DETECT_BACKOFF 2
1614 #define CB22_FALSE_DETECT_BACKOFF 6
1615 #define AR_PHY_BIS(_ah, _reg, _mask, _val) \
1616 OS_REG_WRITE(_ah, AR_PHY(_reg), \
1617 (OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1618 struct ath_hal_5212 *ahp = AH5212(ah);
1619 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1620 int arrayMode, falseDectectBackoff;
1621 int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1622 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1623 int8_t adcDesiredSize, pgaDesiredSize;
1624 uint16_t switchSettling, txrxAtten, rxtxMargin;
1625 int iCoff, qCoff;
1626
1627 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1628
1629 switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1630 case IEEE80211_CHAN_A:
1631 case IEEE80211_CHAN_ST:
1632 arrayMode = headerInfo11A;
1633 if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1634 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1635 AR_PHY_FRAME_CTL_TX_CLIP,
1636 ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1637 break;
1638 case IEEE80211_CHAN_B:
1639 arrayMode = headerInfo11B;
1640 break;
1641 case IEEE80211_CHAN_G:
1642 case IEEE80211_CHAN_108G:
1643 arrayMode = headerInfo11G;
1644 break;
1645 default:
1646 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1647 __func__, chan->ic_flags);
1648 return AH_FALSE;
1649 }
1650
1651 /* Set the antenna register(s) correctly for the chip revision */
1652 AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1653 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1654
1655 ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1656
1657 /* Set the Noise Floor Thresh on ar5211 devices */
1658 OS_REG_WRITE(ah, AR_PHY(90),
1659 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1660 | (1 << 9));
1661
1662 if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1663 switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1664 adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1665 pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1666 txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1667 rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1668 } else {
1669 switchSettling = ee->ee_switchSettling[arrayMode];
1670 adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1671 pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1672 txrxAtten = ee->ee_txrxAtten[is2GHz];
1673 rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1674 }
1675
1676 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1677 AR_PHY_SETTLING_SWITCH, switchSettling);
1678 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1679 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1680 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1681 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1682 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1683 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1684 OS_REG_WRITE(ah, AR_PHY(13),
1685 (ee->ee_txEndToXPAOff[arrayMode] << 24)
1686 | (ee->ee_txEndToXPAOff[arrayMode] << 16)
1687 | (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1688 | ee->ee_txFrameToXPAOn[arrayMode]);
1689 AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1690 ee->ee_txEndToXLNAOn[arrayMode] << 8);
1691 AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1692 (ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1693
1694 /*
1695 * False detect backoff - suspected 32 MHz spur causes false
1696 * detects in OFDM, causing Tx Hangs. Decrease weak signal
1697 * sensitivity for this card.
1698 */
1699 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1700 if (ee->ee_version < AR_EEPROM_VER3_3) {
1701 /* XXX magic number */
1702 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1703 IEEE80211_IS_CHAN_OFDM(chan))
1704 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1705 } else {
1706 if (ar5212IsSpurChannel(ah, chan))
1707 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1708 }
1709 AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1710
1711 if (ichan->privFlags & CHANNEL_IQVALID) {
1712 iCoff = ichan->iCoff;
1713 qCoff = ichan->qCoff;
1714 } else {
1715 iCoff = ee->ee_iqCalI[is2GHz];
1716 qCoff = ee->ee_iqCalQ[is2GHz];
1717 }
1718
1719 /* write previous IQ results */
1720 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1721 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1722 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1723 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1724 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1725 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1726
1727 if (ee->ee_version >= AR_EEPROM_VER4_1) {
1728 if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1729 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1730 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1731 }
1732 if (ee->ee_version >= AR_EEPROM_VER5_1) {
1733 /* for now always disabled */
1734 OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
1735 }
1736
1737 return AH_TRUE;
1738 #undef AR_PHY_BIS
1739 #undef NO_FALSE_DETECT_BACKOFF
1740 #undef CB22_FALSE_DETECT_BACKOFF
1741 }
1742
1743 /*
1744 * Apply Spur Immunity to Boards that require it.
1745 * Applies only to OFDM RX operation.
1746 */
1747
1748 void
ar5212SetSpurMitigation(struct ath_hal * ah,const struct ieee80211_channel * chan)1749 ar5212SetSpurMitigation(struct ath_hal *ah,
1750 const struct ieee80211_channel *chan)
1751 {
1752 uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1753 uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1754 int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1755 int16_t numBinOffsets;
1756 static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1757 static const uint16_t magMapFor3[3] = {1, 2, 1};
1758 const uint16_t *pMagMap;
1759 HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1760 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1761 uint32_t val;
1762
1763 #define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1764 if (IS_2417(ah)) {
1765 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1766 __func__);
1767 return;
1768 }
1769
1770 curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1771
1772 if (ichan->mainSpur) {
1773 /* Pull out the saved spur value */
1774 finalSpur = ichan->mainSpur;
1775 } else {
1776 /*
1777 * Check if spur immunity should be performed for this channel
1778 * Should only be performed once per channel and then saved
1779 */
1780 finalSpur = AR_NO_SPUR;
1781 spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1782 if (IEEE80211_IS_CHAN_TURBO(chan))
1783 spurDetectWidth *= 2;
1784
1785 /* Decide if any spur affects the current channel */
1786 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1787 spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1788 if (spurChan == AR_NO_SPUR) {
1789 break;
1790 }
1791 if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1792 (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1793 finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1794 break;
1795 }
1796 }
1797 /* Save detected spur (or no spur) for this channel */
1798 ichan->mainSpur = finalSpur;
1799 }
1800
1801 /* Write spur immunity data */
1802 if (finalSpur == AR_NO_SPUR) {
1803 /* Disable Spur Immunity Regs if they appear set */
1804 if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1805 /* Clear Spur Delta Phase, Spur Freq, and enable bits */
1806 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1807 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1808 val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1809 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1810 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1811 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1812 OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1813
1814 /* Clear pilot masks */
1815 OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1816 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1817 OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1818 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1819
1820 /* Clear magnitude masks */
1821 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1822 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1823 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1824 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1825 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1826 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1827 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1828 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1829 }
1830 } else {
1831 spurOffset = finalSpur - curChanAsSpur;
1832 /*
1833 * Spur calculations:
1834 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1835 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1836 */
1837 if (IEEE80211_IS_CHAN_TURBO(chan)) {
1838 /* Chip Frequency & sampleFrequency are 80 MHz */
1839 spurDeltaPhase = (spurOffset << 16) / 25;
1840 spurFreqSd = spurDeltaPhase >> 10;
1841 binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1842 } else if (IEEE80211_IS_CHAN_G(chan)) {
1843 /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1844 spurFreqSd = (spurOffset << 8) / 55;
1845 spurDeltaPhase = (spurOffset << 17) / 25;
1846 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1847 } else {
1848 HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1849 /* Chip Frequency & sampleFrequency are 40 MHz */
1850 spurDeltaPhase = (spurOffset << 17) / 25;
1851 spurFreqSd = spurDeltaPhase >> 10;
1852 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1853 }
1854
1855 /* Compute Pilot Mask */
1856 binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1857 /* The spur is on a bin if it's remainder at times 16 is 0 */
1858 if (binOffsetNumT16 & 0xF) {
1859 numBinOffsets = 4;
1860 pMagMap = magMapFor4;
1861 } else {
1862 numBinOffsets = 3;
1863 pMagMap = magMapFor3;
1864 }
1865 for (i = 0; i < numBinOffsets; i++) {
1866 if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1867 HALDEBUG(ah, HAL_DEBUG_ANY,
1868 "Too man bins in spur mitigation\n");
1869 return;
1870 }
1871
1872 /* Get Pilot Mask values */
1873 curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1874 if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1875 if (curBinOffset <= 25)
1876 pilotMask[0] |= 1 << curBinOffset;
1877 else if (curBinOffset >= 27)
1878 pilotMask[0] |= 1 << (curBinOffset - 1);
1879 } else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1880 pilotMask[1] |= 1 << (curBinOffset - 33);
1881
1882 /* Get viterbi values */
1883 if ((curBinOffset >= -1) && (curBinOffset <= 14))
1884 binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1885 else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1886 binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1887 else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1888 binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1889 else if((curBinOffset >= 47) && (curBinOffset <= 53))
1890 binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1891 }
1892
1893 /* Write Spur Delta Phase, Spur Freq, and enable bits */
1894 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1895 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1896 val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1897 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1898 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1899 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1900 OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1901 SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1902 SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1903
1904 /* Write pilot masks */
1905 OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1906 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1907 OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1908 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1909
1910 /* Write magnitude masks */
1911 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1912 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1913 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1914 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1915 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1916 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1917 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1918 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1919 }
1920 #undef CHAN_TO_SPUR
1921 }
1922
1923 /*
1924 * Delta slope coefficient computation.
1925 * Required for OFDM operation.
1926 */
1927 void
ar5212SetDeltaSlope(struct ath_hal * ah,const struct ieee80211_channel * chan)1928 ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1929 {
1930 #define COEF_SCALE_S 24
1931 #define INIT_CLOCKMHZSCALED 0x64000000
1932 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1933 unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1934 unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1935
1936 if (IEEE80211_IS_CHAN_TURBO(chan))
1937 clockMhzScaled *= 2;
1938 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1939 /* scale for selected channel bandwidth */
1940 if (IEEE80211_IS_CHAN_HALF(chan)) {
1941 clockMhzScaled = clockMhzScaled >> 1;
1942 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1943 clockMhzScaled = clockMhzScaled >> 2;
1944 }
1945
1946 /*
1947 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1948 * scaled coef to provide precision for this floating calculation
1949 */
1950 coef_scaled = clockMhzScaled / freq;
1951
1952 /*
1953 * ALGO -> coef_exp = 14-floor(log2(coef));
1954 * floor(log2(x)) is the highest set bit position
1955 */
1956 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1957 if ((coef_scaled >> coef_exp) & 0x1)
1958 break;
1959 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1960 HALASSERT(coef_exp);
1961 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1962
1963 /*
1964 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1965 * The coefficient is already shifted up for scaling
1966 */
1967 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1968 ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1969 ds_coef_exp = coef_exp - 16;
1970
1971 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1972 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1973 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1974 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1975 #undef INIT_CLOCKMHZSCALED
1976 #undef COEF_SCALE_S
1977 }
1978
1979 /*
1980 * Set a limit on the overall output power. Used for dynamic
1981 * transmit power control and the like.
1982 *
1983 * NB: limit is in units of 0.5 dbM.
1984 */
1985 HAL_BOOL
ar5212SetTxPowerLimit(struct ath_hal * ah,uint32_t limit)1986 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1987 {
1988 /* XXX blech, construct local writable copy */
1989 struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1990 uint16_t dummyXpdGains[2];
1991 HAL_BOOL isBmode;
1992
1993 SAVE_CCK(ah, &dummy, isBmode);
1994 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1995 return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1996 }
1997
1998 /*
1999 * Set the transmit power in the baseband for the given
2000 * operating channel and mode.
2001 */
2002 HAL_BOOL
ar5212SetTransmitPower(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)2003 ar5212SetTransmitPower(struct ath_hal *ah,
2004 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
2005 {
2006 #define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
2007 #define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
2008 #define N(a) (sizeof (a) / sizeof (a[0]))
2009 static const uint16_t tpcScaleReductionTable[5] =
2010 { 0, 3, 6, 9, MAX_RATE_POWER };
2011 struct ath_hal_5212 *ahp = AH5212(ah);
2012 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2013 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2014 int16_t minPower, maxPower, tpcInDb, powerLimit;
2015 int i;
2016
2017 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2018
2019 OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
2020 OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
2021
2022 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2023 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2024 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2025 else
2026 tpcInDb = 0;
2027 if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2028 AH_TRUE, &minPower, &maxPower)) {
2029 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
2030 __func__);
2031 return AH_FALSE;
2032 }
2033 if (!ahp->ah_rfHal->setPowerTable(ah,
2034 &minPower, &maxPower, chan, rfXpdGain)) {
2035 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
2036 __func__);
2037 return AH_FALSE;
2038 }
2039
2040 /*
2041 * Adjust XR power/rate up by 2 dB to account for greater peak
2042 * to avg ratio - except in newer avg power designs
2043 */
2044 if (!IS_2413(ah) && !IS_5413(ah))
2045 ahp->ah_ratesArray[15] += 4;
2046 /*
2047 * txPowerIndexOffset is set by the SetPowerTable() call -
2048 * adjust the rate table
2049 */
2050 for (i = 0; i < N(ahp->ah_ratesArray); i++) {
2051 ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
2052 if (ahp->ah_ratesArray[i] > 63)
2053 ahp->ah_ratesArray[i] = 63;
2054 }
2055
2056 if (ee->ee_eepMap < 2) {
2057 /*
2058 * Correct gain deltas for 5212 G operation -
2059 * Removed with revised chipset
2060 */
2061 if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
2062 IEEE80211_IS_CHAN_G(chan)) {
2063 uint16_t cckOfdmPwrDelta;
2064
2065 if (freq == 2484)
2066 cckOfdmPwrDelta = SCALE_OC_DELTA(
2067 ee->ee_cckOfdmPwrDelta -
2068 ee->ee_scaledCh14FilterCckDelta);
2069 else
2070 cckOfdmPwrDelta = SCALE_OC_DELTA(
2071 ee->ee_cckOfdmPwrDelta);
2072 ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
2073 }
2074 /*
2075 * Finally, write the power values into the
2076 * baseband power table
2077 */
2078 for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
2079 OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
2080 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
2081 | (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
2082 );
2083 }
2084 }
2085
2086 /* Write the OFDM power per rate set */
2087 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2088 POW_OFDM(ahp->ah_ratesArray[3], 24)
2089 | POW_OFDM(ahp->ah_ratesArray[2], 16)
2090 | POW_OFDM(ahp->ah_ratesArray[1], 8)
2091 | POW_OFDM(ahp->ah_ratesArray[0], 0)
2092 );
2093 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2094 POW_OFDM(ahp->ah_ratesArray[7], 24)
2095 | POW_OFDM(ahp->ah_ratesArray[6], 16)
2096 | POW_OFDM(ahp->ah_ratesArray[5], 8)
2097 | POW_OFDM(ahp->ah_ratesArray[4], 0)
2098 );
2099
2100 /* Write the CCK power per rate set */
2101 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2102 POW_CCK(ahp->ah_ratesArray[10], 24)
2103 | POW_CCK(ahp->ah_ratesArray[9], 16)
2104 | POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
2105 | POW_CCK(ahp->ah_ratesArray[8], 0)
2106 );
2107 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2108 POW_CCK(ahp->ah_ratesArray[14], 24)
2109 | POW_CCK(ahp->ah_ratesArray[13], 16)
2110 | POW_CCK(ahp->ah_ratesArray[12], 8)
2111 | POW_CCK(ahp->ah_ratesArray[11], 0)
2112 );
2113
2114 /*
2115 * Set max power to 30 dBm and, optionally,
2116 * enable TPC in tx descriptors.
2117 */
2118 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
2119 (ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
2120
2121 return AH_TRUE;
2122 #undef N
2123 #undef POW_CCK
2124 #undef POW_OFDM
2125 }
2126
2127 /*
2128 * Sets the transmit power in the baseband for the given
2129 * operating channel and mode.
2130 */
2131 static HAL_BOOL
ar5212SetRateTable(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t tpcScaleReduction,int16_t powerLimit,HAL_BOOL commit,int16_t * pMinPower,int16_t * pMaxPower)2132 ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
2133 int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
2134 int16_t *pMinPower, int16_t *pMaxPower)
2135 {
2136 struct ath_hal_5212 *ahp = AH5212(ah);
2137 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2138 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2139 uint16_t *rpow = ahp->ah_ratesArray;
2140 uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2141 uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2142 uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2143 int i;
2144 uint8_t cfgCtl;
2145 int8_t twiceAntennaGain, twiceAntennaReduction;
2146 const RD_EDGES_POWER *rep;
2147 TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2148 int16_t scaledPower, maxAvailPower = 0;
2149 int16_t r13, r9, r7, r0;
2150
2151 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2152
2153 twiceMaxRDPower = chan->ic_maxregpower * 2;
2154 *pMaxPower = -MAX_RATE_POWER;
2155 *pMinPower = MAX_RATE_POWER;
2156
2157 /* Get conformance test limit maximum for this channel */
2158 cfgCtl = ath_hal_getctl(ah, chan);
2159 for (i = 0; i < ee->ee_numCtls; i++) {
2160 uint16_t twiceMinEdgePower;
2161
2162 if (ee->ee_ctl[i] == 0)
2163 continue;
2164 if (ee->ee_ctl[i] == cfgCtl ||
2165 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2166 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2167 twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2168 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2169 /* Find the minimum of all CTL edge powers that apply to this channel */
2170 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2171 } else {
2172 twiceMaxEdgePower = twiceMinEdgePower;
2173 break;
2174 }
2175 }
2176 }
2177
2178 if (IEEE80211_IS_CHAN_G(chan)) {
2179 /* Check for a CCK CTL for 11G CCK powers */
2180 cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2181 for (i = 0; i < ee->ee_numCtls; i++) {
2182 uint16_t twiceMinEdgePowerCck;
2183
2184 if (ee->ee_ctl[i] == 0)
2185 continue;
2186 if (ee->ee_ctl[i] == cfgCtl ||
2187 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2188 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2189 twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2190 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2191 /* Find the minimum of all CTL edge powers that apply to this channel */
2192 twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2193 } else {
2194 twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2195 break;
2196 }
2197 }
2198 }
2199 } else {
2200 /* Set the 11B cck edge power to the one found before */
2201 twiceMaxEdgePowerCck = twiceMaxEdgePower;
2202 }
2203
2204 /* Get Antenna Gain reduction */
2205 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2206 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2207 } else {
2208 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2209 }
2210 twiceAntennaReduction =
2211 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2212
2213 if (IEEE80211_IS_CHAN_OFDM(chan)) {
2214 /* Get final OFDM target powers */
2215 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2216 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2217 ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2218 } else {
2219 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2220 ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2221 }
2222
2223 /* Get Maximum OFDM power */
2224 /* Minimum of target and edge powers */
2225 scaledPower = AH_MIN(twiceMaxEdgePower,
2226 twiceMaxRDPower - twiceAntennaReduction);
2227
2228 /*
2229 * If turbo is set, reduce power to keep power
2230 * consumption under 2 Watts. Note that we always do
2231 * this unless specially configured. Then we limit
2232 * power only for non-AP operation.
2233 */
2234 if (IEEE80211_IS_CHAN_TURBO(chan)
2235 #ifdef AH_ENABLE_AP_SUPPORT
2236 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2237 #endif
2238 ) {
2239 /*
2240 * If turbo is set, reduce power to keep power
2241 * consumption under 2 Watts
2242 */
2243 if (ee->ee_version >= AR_EEPROM_VER3_1)
2244 scaledPower = AH_MIN(scaledPower,
2245 ee->ee_turbo2WMaxPower5);
2246 /*
2247 * EEPROM version 4.0 added an additional
2248 * constraint on 2.4GHz channels.
2249 */
2250 if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2251 IEEE80211_IS_CHAN_2GHZ(chan))
2252 scaledPower = AH_MIN(scaledPower,
2253 ee->ee_turbo2WMaxPower2);
2254 }
2255
2256 maxAvailPower = AH_MIN(scaledPower,
2257 targetPowerOfdm.twicePwr6_24);
2258
2259 /* Reduce power by max regulatory domain allowed restrictions */
2260 scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2261 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2262 scaledPower = AH_MIN(scaledPower, powerLimit);
2263
2264 if (commit) {
2265 /* Set OFDM rates 9, 12, 18, 24 */
2266 r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2267
2268 /* Set OFDM rates 36, 48, 54, XR */
2269 rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2270 rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2271 r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2272
2273 if (ee->ee_version >= AR_EEPROM_VER4_0) {
2274 /* Setup XR target power from EEPROM */
2275 rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2276 ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2277 } else {
2278 /* XR uses 6mb power */
2279 rpow[15] = rpow[0];
2280 }
2281 ahp->ah_ofdmTxPower = *pMaxPower;
2282
2283 } else {
2284 r0 = scaledPower;
2285 r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2286 }
2287 *pMinPower = r7;
2288 *pMaxPower = r0;
2289
2290 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2291 "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2292 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2293 __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2294 twiceMaxEdgePower, tpcScaleReduction * 2,
2295 chan->ic_freq, chan->ic_flags,
2296 maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2297 }
2298
2299 if (IEEE80211_IS_CHAN_CCK(chan)) {
2300 /* Get final CCK target powers */
2301 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2302 ee->ee_numTargetPwr_11b, &targetPowerCck);
2303
2304 /* Reduce power by max regulatory domain allowed restrictions */
2305 scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2306 twiceMaxRDPower - twiceAntennaReduction);
2307 if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2308 maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2309
2310 /* Reduce power by user selection */
2311 scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2312 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2313 scaledPower = AH_MIN(scaledPower, powerLimit);
2314
2315 if (commit) {
2316 /* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2317 rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2318 r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2319 rpow[10] = rpow[9];
2320 rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2321 rpow[12] = rpow[11];
2322 r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2323 rpow[14] = rpow[13];
2324 } else {
2325 r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2326 r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2327 }
2328
2329 /* Set min/max power based off OFDM values or initialization */
2330 if (r13 < *pMinPower)
2331 *pMinPower = r13;
2332 if (r9 > *pMaxPower)
2333 *pMaxPower = r9;
2334
2335 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2336 "%s: cck: MaxRD: %d MaxCTL: %d "
2337 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2338 __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2339 tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2340 maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2341 }
2342 if (commit) {
2343 ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2344 AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2345 }
2346 return AH_TRUE;
2347 }
2348
2349 HAL_BOOL
ar5212GetChipPowerLimits(struct ath_hal * ah,struct ieee80211_channel * chan)2350 ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2351 {
2352 struct ath_hal_5212 *ahp = AH5212(ah);
2353 #if 0
2354 static const uint16_t tpcScaleReductionTable[5] =
2355 { 0, 3, 6, 9, MAX_RATE_POWER };
2356 int16_t tpcInDb, powerLimit;
2357 #endif
2358 int16_t minPower, maxPower;
2359
2360 /*
2361 * Get Pier table max and min powers.
2362 */
2363 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2364 /* NB: rf code returns 1/4 dBm units, convert */
2365 chan->ic_maxpower = maxPower / 2;
2366 chan->ic_minpower = minPower / 2;
2367 } else {
2368 HALDEBUG(ah, HAL_DEBUG_ANY,
2369 "%s: no min/max power for %u/0x%x\n",
2370 __func__, chan->ic_freq, chan->ic_flags);
2371 chan->ic_maxpower = MAX_RATE_POWER;
2372 chan->ic_minpower = 0;
2373 }
2374 #if 0
2375 /*
2376 * Now adjust to reflect any global scale and/or CTL's.
2377 * (XXX is that correct?)
2378 */
2379 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2380 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2381 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2382 else
2383 tpcInDb = 0;
2384 if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2385 AH_FALSE, &minPower, &maxPower)) {
2386 HALDEBUG(ah, HAL_DEBUG_ANY,
2387 "%s: unable to find max/min power\n",__func__);
2388 return AH_FALSE;
2389 }
2390 if (maxPower < chan->ic_maxpower)
2391 chan->ic_maxpower = maxPower;
2392 if (minPower < chan->ic_minpower)
2393 chan->ic_minpower = minPower;
2394 HALDEBUG(ah, HAL_DEBUG_RESET,
2395 "Chan %d: MaxPow = %d MinPow = %d\n",
2396 chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2397 #endif
2398 return AH_TRUE;
2399 }
2400
2401 /*
2402 * Correct for the gain-delta between ofdm and cck mode target
2403 * powers. Write the results to the rate table and the power table.
2404 *
2405 * Conventions :
2406 * 1. rpow[ii] is the integer value of 2*(desired power
2407 * for the rate ii in dBm) to provide 0.5dB resolution. rate
2408 * mapping is as following :
2409 * [0..7] --> ofdm 6, 9, .. 48, 54
2410 * [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2411 * [15] --> XR (all rates get the same power)
2412 * 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
2413 */
2414 static void
ar5212CorrectGainDelta(struct ath_hal * ah,int twiceOfdmCckDelta)2415 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2416 {
2417 #define N(_a) (sizeof(_a) / sizeof(_a[0]))
2418 struct ath_hal_5212 *ahp = AH5212(ah);
2419 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2420 int16_t ratesIndex[N(ahp->ah_ratesArray)];
2421 uint16_t ii, jj, iter;
2422 int32_t cckIndex;
2423 int16_t gainDeltaAdjust;
2424
2425 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2426
2427 gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2428
2429 /* make a local copy of desired powers as initial indices */
2430 OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2431
2432 /* fix only the CCK indices */
2433 for (ii = 8; ii < 15; ii++) {
2434 /* apply a gain_delta correction of -15 for CCK */
2435 ratesIndex[ii] -= gainDeltaAdjust;
2436
2437 /* Now check for contention with all ofdm target powers */
2438 jj = 0;
2439 iter = 0;
2440 /* indicates not all ofdm rates checked forcontention yet */
2441 while (jj < 16) {
2442 if (ratesIndex[ii] < 0)
2443 ratesIndex[ii] = 0;
2444 if (jj == 8) { /* skip CCK rates */
2445 jj = 15;
2446 continue;
2447 }
2448 if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2449 if (ahp->ah_ratesArray[jj] == 0)
2450 ratesIndex[ii]++;
2451 else if (iter > 50) {
2452 /*
2453 * To avoid pathological case of of
2454 * dm target powers 0 and 0.5dBm
2455 */
2456 ratesIndex[ii]++;
2457 } else
2458 ratesIndex[ii]--;
2459 /* check with all rates again */
2460 jj = 0;
2461 iter++;
2462 } else
2463 jj++;
2464 }
2465 if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2466 ratesIndex[ii] = PWR_TABLE_SIZE -1;
2467 cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2468 if (cckIndex < 0)
2469 cckIndex = 0;
2470
2471 /*
2472 * Validate that the indexes for the powv are not
2473 * out of bounds.
2474 */
2475 HALASSERT(cckIndex < PWR_TABLE_SIZE);
2476 HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2477 ahp->ah_pcdacTable[ratesIndex[ii]] =
2478 ahp->ah_pcdacTable[cckIndex];
2479 }
2480 /* Override rate per power table with new values */
2481 for (ii = 8; ii < 15; ii++)
2482 ahp->ah_ratesArray[ii] = ratesIndex[ii];
2483 #undef N
2484 }
2485
2486 /*
2487 * Find the maximum conformance test limit for the given channel and CTL info
2488 */
2489 static uint16_t
ar5212GetMaxEdgePower(uint16_t channel,const RD_EDGES_POWER * pRdEdgesPower)2490 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2491 {
2492 /* temp array for holding edge channels */
2493 uint16_t tempChannelList[NUM_EDGES];
2494 uint16_t clo, chi, twiceMaxEdgePower;
2495 int i, numEdges;
2496
2497 /* Get the edge power */
2498 for (i = 0; i < NUM_EDGES; i++) {
2499 if (pRdEdgesPower[i].rdEdge == 0)
2500 break;
2501 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2502 }
2503 numEdges = i;
2504
2505 ar5212GetLowerUpperValues(channel, tempChannelList,
2506 numEdges, &clo, &chi);
2507 /* Get the index for the lower channel */
2508 for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2509 ;
2510 /* Is lower channel ever outside the rdEdge? */
2511 HALASSERT(i != numEdges);
2512
2513 if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2514 /*
2515 * If there's an exact channel match or an inband flag set
2516 * on the lower channel use the given rdEdgePower
2517 */
2518 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2519 HALASSERT(twiceMaxEdgePower > 0);
2520 } else
2521 twiceMaxEdgePower = MAX_RATE_POWER;
2522 return twiceMaxEdgePower;
2523 }
2524
2525 /*
2526 * Returns interpolated or the scaled up interpolated value
2527 */
2528 static uint16_t
interpolate(uint16_t target,uint16_t srcLeft,uint16_t srcRight,uint16_t targetLeft,uint16_t targetRight)2529 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2530 uint16_t targetLeft, uint16_t targetRight)
2531 {
2532 uint16_t rv;
2533 int16_t lRatio;
2534
2535 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2536 if ((targetLeft * targetRight) == 0)
2537 return 0;
2538
2539 if (srcRight != srcLeft) {
2540 /*
2541 * Note the ratio always need to be scaled,
2542 * since it will be a fraction.
2543 */
2544 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2545 if (lRatio < 0) {
2546 /* Return as Left target if value would be negative */
2547 rv = targetLeft;
2548 } else if (lRatio > EEP_SCALE) {
2549 /* Return as Right target if Ratio is greater than 100% (SCALE) */
2550 rv = targetRight;
2551 } else {
2552 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2553 targetLeft) / EEP_SCALE;
2554 }
2555 } else {
2556 rv = targetLeft;
2557 }
2558 return rv;
2559 }
2560
2561 /*
2562 * Return the four rates of target power for the given target power table
2563 * channel, and number of channels
2564 */
2565 static void
ar5212GetTargetPowers(struct ath_hal * ah,const struct ieee80211_channel * chan,const TRGT_POWER_INFO * powInfo,uint16_t numChannels,TRGT_POWER_INFO * pNewPower)2566 ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2567 const TRGT_POWER_INFO *powInfo,
2568 uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2569 {
2570 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2571 /* temp array for holding target power channels */
2572 uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2573 uint16_t clo, chi, ixlo, ixhi;
2574 int i;
2575
2576 /* Copy the target powers into the temp channel list */
2577 for (i = 0; i < numChannels; i++)
2578 tempChannelList[i] = powInfo[i].testChannel;
2579
2580 ar5212GetLowerUpperValues(freq, tempChannelList,
2581 numChannels, &clo, &chi);
2582
2583 /* Get the indices for the channel */
2584 ixlo = ixhi = 0;
2585 for (i = 0; i < numChannels; i++) {
2586 if (clo == tempChannelList[i]) {
2587 ixlo = i;
2588 }
2589 if (chi == tempChannelList[i]) {
2590 ixhi = i;
2591 break;
2592 }
2593 }
2594
2595 /*
2596 * Get the lower and upper channels, target powers,
2597 * and interpolate between them.
2598 */
2599 pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2600 powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2601 pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2602 powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2603 pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2604 powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2605 pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2606 powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2607 }
2608
2609 static uint32_t
udiff(uint32_t u,uint32_t v)2610 udiff(uint32_t u, uint32_t v)
2611 {
2612 return (u >= v ? u - v : v - u);
2613 }
2614
2615 /*
2616 * Search a list for a specified value v that is within
2617 * EEP_DELTA of the search values. Return the closest
2618 * values in the list above and below the desired value.
2619 * EEP_DELTA is a factional value; everything is scaled
2620 * so only integer arithmetic is used.
2621 *
2622 * NB: the input list is assumed to be sorted in ascending order
2623 */
2624 void
ar5212GetLowerUpperValues(uint16_t v,uint16_t * lp,uint16_t listSize,uint16_t * vlo,uint16_t * vhi)2625 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2626 uint16_t *vlo, uint16_t *vhi)
2627 {
2628 uint32_t target = v * EEP_SCALE;
2629 uint16_t *ep = lp+listSize;
2630
2631 /*
2632 * Check first and last elements for out-of-bounds conditions.
2633 */
2634 if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2635 *vlo = *vhi = lp[0];
2636 return;
2637 }
2638 if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2639 *vlo = *vhi = ep[-1];
2640 return;
2641 }
2642
2643 /* look for value being near or between 2 values in list */
2644 for (; lp < ep; lp++) {
2645 /*
2646 * If value is close to the current value of the list
2647 * then target is not between values, it is one of the values
2648 */
2649 if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
2650 *vlo = *vhi = lp[0];
2651 return;
2652 }
2653 /*
2654 * Look for value being between current value and next value
2655 * if so return these 2 values
2656 */
2657 if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2658 *vlo = lp[0];
2659 *vhi = lp[1];
2660 return;
2661 }
2662 }
2663 HALASSERT(AH_FALSE); /* should not reach here */
2664 }
2665
2666 /*
2667 * Perform analog "swizzling" of parameters into their location
2668 *
2669 * NB: used by RF backends
2670 */
2671 void
ar5212ModifyRfBuffer(uint32_t * rfBuf,uint32_t reg32,uint32_t numBits,uint32_t firstBit,uint32_t column)2672 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2673 uint32_t firstBit, uint32_t column)
2674 {
2675 #define MAX_ANALOG_START 319 /* XXX */
2676 uint32_t tmp32, mask, arrayEntry, lastBit;
2677 int32_t bitPosition, bitsLeft;
2678
2679 HALASSERT(column <= 3);
2680 HALASSERT(numBits <= 32);
2681 HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2682
2683 tmp32 = ath_hal_reverseBits(reg32, numBits);
2684 arrayEntry = (firstBit - 1) / 8;
2685 bitPosition = (firstBit - 1) % 8;
2686 bitsLeft = numBits;
2687 while (bitsLeft > 0) {
2688 lastBit = (bitPosition + bitsLeft > 8) ?
2689 8 : bitPosition + bitsLeft;
2690 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2691 (column * 8);
2692 rfBuf[arrayEntry] &= ~mask;
2693 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2694 (column * 8)) & mask;
2695 bitsLeft -= 8 - bitPosition;
2696 tmp32 = tmp32 >> (8 - bitPosition);
2697 bitPosition = 0;
2698 arrayEntry++;
2699 }
2700 #undef MAX_ANALOG_START
2701 }
2702
2703 /*
2704 * Sets the rate to duration values in MAC - used for multi-
2705 * rate retry.
2706 * The rate duration table needs to cover all valid rate codes;
2707 * the 11g table covers all ofdm rates, while the 11b table
2708 * covers all cck rates => all valid rates get covered between
2709 * these two mode's ratetables!
2710 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2711 * and cck is not valid with turbo => all rates get covered
2712 * by the turbo ratetable only
2713 */
2714 void
ar5212SetRateDurationTable(struct ath_hal * ah,const struct ieee80211_channel * chan)2715 ar5212SetRateDurationTable(struct ath_hal *ah,
2716 const struct ieee80211_channel *chan)
2717 {
2718 const HAL_RATE_TABLE *rt;
2719 int i;
2720
2721 /* NB: band doesn't matter for 1/2 and 1/4 rate */
2722 if (IEEE80211_IS_CHAN_HALF(chan)) {
2723 rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2724 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2725 rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2726 } else {
2727 rt = ar5212GetRateTable(ah,
2728 IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2729 }
2730
2731 for (i = 0; i < rt->rateCount; ++i)
2732 OS_REG_WRITE(ah,
2733 AR_RATE_DURATION(rt->info[i].rateCode),
2734 ath_hal_computetxtime(ah, rt,
2735 WLAN_CTRL_FRAME_SIZE,
2736 rt->info[i].controlRate, AH_FALSE, AH_TRUE));
2737 if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2738 /* 11g Table is used to cover the CCK rates. */
2739 rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2740 for (i = 0; i < rt->rateCount; ++i) {
2741 uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2742
2743 if (rt->info[i].phy != IEEE80211_T_CCK)
2744 continue;
2745
2746 OS_REG_WRITE(ah, reg,
2747 ath_hal_computetxtime(ah, rt,
2748 WLAN_CTRL_FRAME_SIZE,
2749 rt->info[i].controlRate, AH_FALSE,
2750 AH_TRUE));
2751 /* cck rates have short preamble option also */
2752 if (rt->info[i].shortPreamble) {
2753 reg += rt->info[i].shortPreamble << 2;
2754 OS_REG_WRITE(ah, reg,
2755 ath_hal_computetxtime(ah, rt,
2756 WLAN_CTRL_FRAME_SIZE,
2757 rt->info[i].controlRate,
2758 AH_TRUE, AH_TRUE));
2759 }
2760 }
2761 }
2762 }
2763
2764 /* Adjust various register settings based on half/quarter rate clock setting.
2765 * This includes: +USEC, TX/RX latency,
2766 * + IFS params: slot, eifs, misc etc.
2767 */
2768 void
ar5212SetIFSTiming(struct ath_hal * ah,const struct ieee80211_channel * chan)2769 ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2770 {
2771 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2772
2773 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2774 IEEE80211_IS_CHAN_QUARTER(chan));
2775
2776 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2777 if (IEEE80211_IS_CHAN_HALF(chan)) {
2778 slot = IFS_SLOT_HALF_RATE;
2779 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2780 txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2781 usec = HALF_RATE_USEC;
2782 eifs = IFS_EIFS_HALF_RATE;
2783 init_usec = INIT_USEC >> 1;
2784 } else { /* quarter rate */
2785 slot = IFS_SLOT_QUARTER_RATE;
2786 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2787 txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2788 usec = QUARTER_RATE_USEC;
2789 eifs = IFS_EIFS_QUARTER_RATE;
2790 init_usec = INIT_USEC >> 2;
2791 }
2792
2793 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2794 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2795 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2796 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2797 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2798 }
2799