1 /*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_global.h"
32 #include "opt_stack.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/refcount.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/bus.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/sysent.h>
54 #include <sys/time.h>
55 #include <sys/user.h>
56
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_object.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_pager.h>
62
63 #include <machine/stdarg.h>
64
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/cputypes.h>
67 #include <machine/md_var.h>
68 #endif
69
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/fs.h>
79 #include <linux/sysfs.h>
80 #include <linux/mm.h>
81 #include <linux/io.h>
82 #include <linux/vmalloc.h>
83 #include <linux/netdevice.h>
84 #include <linux/timer.h>
85 #include <linux/interrupt.h>
86 #include <linux/uaccess.h>
87 #include <linux/utsname.h>
88 #include <linux/list.h>
89 #include <linux/kthread.h>
90 #include <linux/kernel.h>
91 #include <linux/compat.h>
92 #include <linux/io-mapping.h>
93 #include <linux/poll.h>
94 #include <linux/smp.h>
95 #include <linux/wait_bit.h>
96 #include <linux/rcupdate.h>
97 #include <linux/interval_tree.h>
98 #include <linux/interval_tree_generic.h>
99
100 #if defined(__i386__) || defined(__amd64__)
101 #include <asm/smp.h>
102 #include <asm/processor.h>
103 #endif
104
105 #include <xen/xen.h>
106 #ifdef XENHVM
107 #undef xen_pv_domain
108 #undef xen_initial_domain
109 /* xen/xen-os.h redefines __must_check */
110 #undef __must_check
111 #include <xen/xen-os.h>
112 #endif
113
114 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
115 "LinuxKPI parameters");
116
117 int linuxkpi_debug;
118 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
119 &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
120
121 int linuxkpi_rcu_debug;
122 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
123 &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
124
125 int linuxkpi_warn_dump_stack = 0;
126 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
127 &linuxkpi_warn_dump_stack, 0,
128 "Set to enable stack traces from WARN_ON(). Clear to disable.");
129
130 static struct timeval lkpi_net_lastlog;
131 static int lkpi_net_curpps;
132 static int lkpi_net_maxpps = 99;
133 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
134 &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
135
136 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
137
138 #include <linux/rbtree.h>
139 /* Undo Linux compat changes. */
140 #undef RB_ROOT
141 #undef file
142 #undef cdev
143 #define RB_ROOT(head) (head)->rbh_root
144
145 static void linux_destroy_dev(struct linux_cdev *);
146 static void linux_cdev_deref(struct linux_cdev *ldev);
147 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
148
149 cpumask_t cpu_online_mask;
150 static cpumask_t **static_single_cpu_mask;
151 static cpumask_t *static_single_cpu_mask_lcs;
152 struct kobject linux_class_root;
153 struct device linux_root_device;
154 struct class linux_class_misc;
155 struct list_head pci_drivers;
156 struct list_head pci_devices;
157 spinlock_t pci_lock;
158 struct uts_namespace init_uts_ns;
159
160 unsigned long linux_timer_hz_mask;
161
162 wait_queue_head_t linux_bit_waitq;
163 wait_queue_head_t linux_var_waitq;
164
165 int
panic_cmp(struct rb_node * one,struct rb_node * two)166 panic_cmp(struct rb_node *one, struct rb_node *two)
167 {
168 panic("no cmp");
169 }
170
171 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
172
173 #define START(node) ((node)->start)
174 #define LAST(node) ((node)->last)
175
176 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
177 LAST,, lkpi_interval_tree)
178
179 static void
linux_device_release(struct device * dev)180 linux_device_release(struct device *dev)
181 {
182 pr_debug("linux_device_release: %s\n", dev_name(dev));
183 kfree(dev);
184 }
185
186 static ssize_t
linux_class_show(struct kobject * kobj,struct attribute * attr,char * buf)187 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
188 {
189 struct class_attribute *dattr;
190 ssize_t error;
191
192 dattr = container_of(attr, struct class_attribute, attr);
193 error = -EIO;
194 if (dattr->show)
195 error = dattr->show(container_of(kobj, struct class, kobj),
196 dattr, buf);
197 return (error);
198 }
199
200 static ssize_t
linux_class_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)201 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
202 size_t count)
203 {
204 struct class_attribute *dattr;
205 ssize_t error;
206
207 dattr = container_of(attr, struct class_attribute, attr);
208 error = -EIO;
209 if (dattr->store)
210 error = dattr->store(container_of(kobj, struct class, kobj),
211 dattr, buf, count);
212 return (error);
213 }
214
215 static void
linux_class_release(struct kobject * kobj)216 linux_class_release(struct kobject *kobj)
217 {
218 struct class *class;
219
220 class = container_of(kobj, struct class, kobj);
221 if (class->class_release)
222 class->class_release(class);
223 }
224
225 static const struct sysfs_ops linux_class_sysfs = {
226 .show = linux_class_show,
227 .store = linux_class_store,
228 };
229
230 const struct kobj_type linux_class_ktype = {
231 .release = linux_class_release,
232 .sysfs_ops = &linux_class_sysfs
233 };
234
235 static void
linux_dev_release(struct kobject * kobj)236 linux_dev_release(struct kobject *kobj)
237 {
238 struct device *dev;
239
240 dev = container_of(kobj, struct device, kobj);
241 /* This is the precedence defined by linux. */
242 if (dev->release)
243 dev->release(dev);
244 else if (dev->class && dev->class->dev_release)
245 dev->class->dev_release(dev);
246 }
247
248 static ssize_t
linux_dev_show(struct kobject * kobj,struct attribute * attr,char * buf)249 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
250 {
251 struct device_attribute *dattr;
252 ssize_t error;
253
254 dattr = container_of(attr, struct device_attribute, attr);
255 error = -EIO;
256 if (dattr->show)
257 error = dattr->show(container_of(kobj, struct device, kobj),
258 dattr, buf);
259 return (error);
260 }
261
262 static ssize_t
linux_dev_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)263 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
264 size_t count)
265 {
266 struct device_attribute *dattr;
267 ssize_t error;
268
269 dattr = container_of(attr, struct device_attribute, attr);
270 error = -EIO;
271 if (dattr->store)
272 error = dattr->store(container_of(kobj, struct device, kobj),
273 dattr, buf, count);
274 return (error);
275 }
276
277 static const struct sysfs_ops linux_dev_sysfs = {
278 .show = linux_dev_show,
279 .store = linux_dev_store,
280 };
281
282 const struct kobj_type linux_dev_ktype = {
283 .release = linux_dev_release,
284 .sysfs_ops = &linux_dev_sysfs
285 };
286
287 struct device *
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)288 device_create(struct class *class, struct device *parent, dev_t devt,
289 void *drvdata, const char *fmt, ...)
290 {
291 struct device *dev;
292 va_list args;
293
294 dev = kzalloc(sizeof(*dev), M_WAITOK);
295 dev->parent = parent;
296 dev->class = class;
297 dev->devt = devt;
298 dev->driver_data = drvdata;
299 dev->release = linux_device_release;
300 va_start(args, fmt);
301 kobject_set_name_vargs(&dev->kobj, fmt, args);
302 va_end(args);
303 device_register(dev);
304
305 return (dev);
306 }
307
308 struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)309 device_create_groups_vargs(struct class *class, struct device *parent,
310 dev_t devt, void *drvdata, const struct attribute_group **groups,
311 const char *fmt, va_list args)
312 {
313 struct device *dev = NULL;
314 int retval = -ENODEV;
315
316 if (class == NULL || IS_ERR(class))
317 goto error;
318
319 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
320 if (!dev) {
321 retval = -ENOMEM;
322 goto error;
323 }
324
325 dev->devt = devt;
326 dev->class = class;
327 dev->parent = parent;
328 dev->groups = groups;
329 dev->release = device_create_release;
330 /* device_initialize() needs the class and parent to be set */
331 device_initialize(dev);
332 dev_set_drvdata(dev, drvdata);
333
334 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
335 if (retval)
336 goto error;
337
338 retval = device_add(dev);
339 if (retval)
340 goto error;
341
342 return dev;
343
344 error:
345 put_device(dev);
346 return ERR_PTR(retval);
347 }
348
349 struct class *
lkpi_class_create(const char * name)350 lkpi_class_create(const char *name)
351 {
352 struct class *class;
353 int error;
354
355 class = kzalloc(sizeof(*class), M_WAITOK);
356 class->name = name;
357 class->class_release = linux_class_kfree;
358 error = class_register(class);
359 if (error) {
360 kfree(class);
361 return (NULL);
362 }
363
364 return (class);
365 }
366
367 static void
linux_kq_lock(void * arg)368 linux_kq_lock(void *arg)
369 {
370 spinlock_t *s = arg;
371
372 spin_lock(s);
373 }
374 static void
linux_kq_unlock(void * arg)375 linux_kq_unlock(void *arg)
376 {
377 spinlock_t *s = arg;
378
379 spin_unlock(s);
380 }
381
382 static void
linux_kq_assert_lock(void * arg,int what)383 linux_kq_assert_lock(void *arg, int what)
384 {
385 #ifdef INVARIANTS
386 spinlock_t *s = arg;
387
388 if (what == LA_LOCKED)
389 mtx_assert(s, MA_OWNED);
390 else
391 mtx_assert(s, MA_NOTOWNED);
392 #endif
393 }
394
395 static void
396 linux_file_kqfilter_poll(struct linux_file *, int);
397
398 struct linux_file *
linux_file_alloc(void)399 linux_file_alloc(void)
400 {
401 struct linux_file *filp;
402
403 filp = kzalloc(sizeof(*filp), GFP_KERNEL);
404
405 /* set initial refcount */
406 filp->f_count = 1;
407
408 /* setup fields needed by kqueue support */
409 spin_lock_init(&filp->f_kqlock);
410 knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
411 linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
412
413 return (filp);
414 }
415
416 void
linux_file_free(struct linux_file * filp)417 linux_file_free(struct linux_file *filp)
418 {
419 if (filp->_file == NULL) {
420 if (filp->f_op != NULL && filp->f_op->release != NULL)
421 filp->f_op->release(filp->f_vnode, filp);
422 if (filp->f_shmem != NULL)
423 vm_object_deallocate(filp->f_shmem);
424 kfree_rcu(filp, rcu);
425 } else {
426 /*
427 * The close method of the character device or file
428 * will free the linux_file structure:
429 */
430 _fdrop(filp->_file, curthread);
431 }
432 }
433
434 struct linux_cdev *
cdev_alloc(void)435 cdev_alloc(void)
436 {
437 struct linux_cdev *cdev;
438
439 cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
440 kobject_init(&cdev->kobj, &linux_cdev_ktype);
441 cdev->refs = 1;
442 return (cdev);
443 }
444
445 static int
linux_cdev_pager_fault(vm_object_t vm_obj,vm_ooffset_t offset,int prot,vm_page_t * mres)446 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
447 vm_page_t *mres)
448 {
449 struct vm_area_struct *vmap;
450
451 vmap = linux_cdev_handle_find(vm_obj->handle);
452
453 MPASS(vmap != NULL);
454 MPASS(vmap->vm_private_data == vm_obj->handle);
455
456 if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
457 vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
458 vm_page_t page;
459
460 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
461 /*
462 * If the passed in result page is a fake
463 * page, update it with the new physical
464 * address.
465 */
466 page = *mres;
467 vm_page_updatefake(page, paddr, vm_obj->memattr);
468 } else {
469 /*
470 * Replace the passed in "mres" page with our
471 * own fake page and free up the all of the
472 * original pages.
473 */
474 VM_OBJECT_WUNLOCK(vm_obj);
475 page = vm_page_getfake(paddr, vm_obj->memattr);
476 VM_OBJECT_WLOCK(vm_obj);
477
478 vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
479 *mres = page;
480 }
481 vm_page_valid(page);
482 return (VM_PAGER_OK);
483 }
484 return (VM_PAGER_FAIL);
485 }
486
487 static int
linux_cdev_pager_populate(vm_object_t vm_obj,vm_pindex_t pidx,int fault_type,vm_prot_t max_prot,vm_pindex_t * first,vm_pindex_t * last)488 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
489 vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
490 {
491 struct vm_area_struct *vmap;
492 int err;
493
494 /* get VM area structure */
495 vmap = linux_cdev_handle_find(vm_obj->handle);
496 MPASS(vmap != NULL);
497 MPASS(vmap->vm_private_data == vm_obj->handle);
498
499 VM_OBJECT_WUNLOCK(vm_obj);
500
501 linux_set_current(curthread);
502
503 down_write(&vmap->vm_mm->mmap_sem);
504 if (unlikely(vmap->vm_ops == NULL)) {
505 err = VM_FAULT_SIGBUS;
506 } else {
507 struct vm_fault vmf;
508
509 /* fill out VM fault structure */
510 vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
511 vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
512 vmf.pgoff = 0;
513 vmf.page = NULL;
514 vmf.vma = vmap;
515
516 vmap->vm_pfn_count = 0;
517 vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
518 vmap->vm_obj = vm_obj;
519
520 err = vmap->vm_ops->fault(&vmf);
521
522 while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
523 kern_yield(PRI_USER);
524 err = vmap->vm_ops->fault(&vmf);
525 }
526 }
527
528 /* translate return code */
529 switch (err) {
530 case VM_FAULT_OOM:
531 err = VM_PAGER_AGAIN;
532 break;
533 case VM_FAULT_SIGBUS:
534 err = VM_PAGER_BAD;
535 break;
536 case VM_FAULT_NOPAGE:
537 /*
538 * By contract the fault handler will return having
539 * busied all the pages itself. If pidx is already
540 * found in the object, it will simply xbusy the first
541 * page and return with vm_pfn_count set to 1.
542 */
543 *first = vmap->vm_pfn_first;
544 *last = *first + vmap->vm_pfn_count - 1;
545 err = VM_PAGER_OK;
546 break;
547 default:
548 err = VM_PAGER_ERROR;
549 break;
550 }
551 up_write(&vmap->vm_mm->mmap_sem);
552 VM_OBJECT_WLOCK(vm_obj);
553 return (err);
554 }
555
556 static struct rwlock linux_vma_lock;
557 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
558 TAILQ_HEAD_INITIALIZER(linux_vma_head);
559
560 static void
linux_cdev_handle_free(struct vm_area_struct * vmap)561 linux_cdev_handle_free(struct vm_area_struct *vmap)
562 {
563 /* Drop reference on vm_file */
564 if (vmap->vm_file != NULL)
565 fput(vmap->vm_file);
566
567 /* Drop reference on mm_struct */
568 mmput(vmap->vm_mm);
569
570 kfree(vmap);
571 }
572
573 static void
linux_cdev_handle_remove(struct vm_area_struct * vmap)574 linux_cdev_handle_remove(struct vm_area_struct *vmap)
575 {
576 rw_wlock(&linux_vma_lock);
577 TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
578 rw_wunlock(&linux_vma_lock);
579 }
580
581 static struct vm_area_struct *
linux_cdev_handle_find(void * handle)582 linux_cdev_handle_find(void *handle)
583 {
584 struct vm_area_struct *vmap;
585
586 rw_rlock(&linux_vma_lock);
587 TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
588 if (vmap->vm_private_data == handle)
589 break;
590 }
591 rw_runlock(&linux_vma_lock);
592 return (vmap);
593 }
594
595 static int
linux_cdev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)596 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
597 vm_ooffset_t foff, struct ucred *cred, u_short *color)
598 {
599
600 MPASS(linux_cdev_handle_find(handle) != NULL);
601 *color = 0;
602 return (0);
603 }
604
605 static void
linux_cdev_pager_dtor(void * handle)606 linux_cdev_pager_dtor(void *handle)
607 {
608 const struct vm_operations_struct *vm_ops;
609 struct vm_area_struct *vmap;
610
611 vmap = linux_cdev_handle_find(handle);
612 MPASS(vmap != NULL);
613
614 /*
615 * Remove handle before calling close operation to prevent
616 * other threads from reusing the handle pointer.
617 */
618 linux_cdev_handle_remove(vmap);
619
620 down_write(&vmap->vm_mm->mmap_sem);
621 vm_ops = vmap->vm_ops;
622 if (likely(vm_ops != NULL))
623 vm_ops->close(vmap);
624 up_write(&vmap->vm_mm->mmap_sem);
625
626 linux_cdev_handle_free(vmap);
627 }
628
629 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
630 {
631 /* OBJT_MGTDEVICE */
632 .cdev_pg_populate = linux_cdev_pager_populate,
633 .cdev_pg_ctor = linux_cdev_pager_ctor,
634 .cdev_pg_dtor = linux_cdev_pager_dtor
635 },
636 {
637 /* OBJT_DEVICE */
638 .cdev_pg_fault = linux_cdev_pager_fault,
639 .cdev_pg_ctor = linux_cdev_pager_ctor,
640 .cdev_pg_dtor = linux_cdev_pager_dtor
641 },
642 };
643
644 int
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)645 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
646 unsigned long size)
647 {
648 vm_object_t obj;
649 vm_page_t m;
650
651 obj = vma->vm_obj;
652 if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
653 return (-ENOTSUP);
654 VM_OBJECT_RLOCK(obj);
655 for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
656 m != NULL && m->pindex < OFF_TO_IDX(address + size);
657 m = TAILQ_NEXT(m, listq))
658 pmap_remove_all(m);
659 VM_OBJECT_RUNLOCK(obj);
660 return (0);
661 }
662
663 void
vma_set_file(struct vm_area_struct * vma,struct linux_file * file)664 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
665 {
666 struct linux_file *tmp;
667
668 /* Changing an anonymous vma with this is illegal */
669 get_file(file);
670 tmp = vma->vm_file;
671 vma->vm_file = file;
672 fput(tmp);
673 }
674
675 static struct file_operations dummy_ldev_ops = {
676 /* XXXKIB */
677 };
678
679 static struct linux_cdev dummy_ldev = {
680 .ops = &dummy_ldev_ops,
681 };
682
683 #define LDEV_SI_DTR 0x0001
684 #define LDEV_SI_REF 0x0002
685
686 static void
linux_get_fop(struct linux_file * filp,const struct file_operations ** fop,struct linux_cdev ** dev)687 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
688 struct linux_cdev **dev)
689 {
690 struct linux_cdev *ldev;
691 u_int siref;
692
693 ldev = filp->f_cdev;
694 *fop = filp->f_op;
695 if (ldev != NULL) {
696 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
697 refcount_acquire(&ldev->refs);
698 } else {
699 for (siref = ldev->siref;;) {
700 if ((siref & LDEV_SI_DTR) != 0) {
701 ldev = &dummy_ldev;
702 *fop = ldev->ops;
703 siref = ldev->siref;
704 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
705 } else if (atomic_fcmpset_int(&ldev->siref,
706 &siref, siref + LDEV_SI_REF)) {
707 break;
708 }
709 }
710 }
711 }
712 *dev = ldev;
713 }
714
715 static void
linux_drop_fop(struct linux_cdev * ldev)716 linux_drop_fop(struct linux_cdev *ldev)
717 {
718
719 if (ldev == NULL)
720 return;
721 if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
722 linux_cdev_deref(ldev);
723 } else {
724 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
725 MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
726 atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
727 }
728 }
729
730 #define OPW(fp,td,code) ({ \
731 struct file *__fpop; \
732 __typeof(code) __retval; \
733 \
734 __fpop = (td)->td_fpop; \
735 (td)->td_fpop = (fp); \
736 __retval = (code); \
737 (td)->td_fpop = __fpop; \
738 __retval; \
739 })
740
741 static int
linux_dev_fdopen(struct cdev * dev,int fflags,struct thread * td,struct file * file)742 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
743 struct file *file)
744 {
745 struct linux_cdev *ldev;
746 struct linux_file *filp;
747 const struct file_operations *fop;
748 int error;
749
750 ldev = dev->si_drv1;
751
752 filp = linux_file_alloc();
753 filp->f_dentry = &filp->f_dentry_store;
754 filp->f_op = ldev->ops;
755 filp->f_mode = file->f_flag;
756 filp->f_flags = file->f_flag;
757 filp->f_vnode = file->f_vnode;
758 filp->_file = file;
759 refcount_acquire(&ldev->refs);
760 filp->f_cdev = ldev;
761
762 linux_set_current(td);
763 linux_get_fop(filp, &fop, &ldev);
764
765 if (fop->open != NULL) {
766 error = -fop->open(file->f_vnode, filp);
767 if (error != 0) {
768 linux_drop_fop(ldev);
769 linux_cdev_deref(filp->f_cdev);
770 kfree(filp);
771 return (error);
772 }
773 }
774
775 /* hold on to the vnode - used for fstat() */
776 vref(filp->f_vnode);
777
778 /* release the file from devfs */
779 finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
780 linux_drop_fop(ldev);
781 return (ENXIO);
782 }
783
784 #define LINUX_IOCTL_MIN_PTR 0x10000UL
785 #define LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
786
787 static inline int
linux_remap_address(void ** uaddr,size_t len)788 linux_remap_address(void **uaddr, size_t len)
789 {
790 uintptr_t uaddr_val = (uintptr_t)(*uaddr);
791
792 if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
793 uaddr_val < LINUX_IOCTL_MAX_PTR)) {
794 struct task_struct *pts = current;
795 if (pts == NULL) {
796 *uaddr = NULL;
797 return (1);
798 }
799
800 /* compute data offset */
801 uaddr_val -= LINUX_IOCTL_MIN_PTR;
802
803 /* check that length is within bounds */
804 if ((len > IOCPARM_MAX) ||
805 (uaddr_val + len) > pts->bsd_ioctl_len) {
806 *uaddr = NULL;
807 return (1);
808 }
809
810 /* re-add kernel buffer address */
811 uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
812
813 /* update address location */
814 *uaddr = (void *)uaddr_val;
815 return (1);
816 }
817 return (0);
818 }
819
820 int
linux_copyin(const void * uaddr,void * kaddr,size_t len)821 linux_copyin(const void *uaddr, void *kaddr, size_t len)
822 {
823 if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
824 if (uaddr == NULL)
825 return (-EFAULT);
826 memcpy(kaddr, uaddr, len);
827 return (0);
828 }
829 return (-copyin(uaddr, kaddr, len));
830 }
831
832 int
linux_copyout(const void * kaddr,void * uaddr,size_t len)833 linux_copyout(const void *kaddr, void *uaddr, size_t len)
834 {
835 if (linux_remap_address(&uaddr, len)) {
836 if (uaddr == NULL)
837 return (-EFAULT);
838 memcpy(uaddr, kaddr, len);
839 return (0);
840 }
841 return (-copyout(kaddr, uaddr, len));
842 }
843
844 size_t
linux_clear_user(void * _uaddr,size_t _len)845 linux_clear_user(void *_uaddr, size_t _len)
846 {
847 uint8_t *uaddr = _uaddr;
848 size_t len = _len;
849
850 /* make sure uaddr is aligned before going into the fast loop */
851 while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
852 if (subyte(uaddr, 0))
853 return (_len);
854 uaddr++;
855 len--;
856 }
857
858 /* zero 8 bytes at a time */
859 while (len > 7) {
860 #ifdef __LP64__
861 if (suword64(uaddr, 0))
862 return (_len);
863 #else
864 if (suword32(uaddr, 0))
865 return (_len);
866 if (suword32(uaddr + 4, 0))
867 return (_len);
868 #endif
869 uaddr += 8;
870 len -= 8;
871 }
872
873 /* zero fill end, if any */
874 while (len > 0) {
875 if (subyte(uaddr, 0))
876 return (_len);
877 uaddr++;
878 len--;
879 }
880 return (0);
881 }
882
883 int
linux_access_ok(const void * uaddr,size_t len)884 linux_access_ok(const void *uaddr, size_t len)
885 {
886 uintptr_t saddr;
887 uintptr_t eaddr;
888
889 /* get start and end address */
890 saddr = (uintptr_t)uaddr;
891 eaddr = (uintptr_t)uaddr + len;
892
893 /* verify addresses are valid for userspace */
894 return ((saddr == eaddr) ||
895 (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
896 }
897
898 /*
899 * This function should return either EINTR or ERESTART depending on
900 * the signal type sent to this thread:
901 */
902 static int
linux_get_error(struct task_struct * task,int error)903 linux_get_error(struct task_struct *task, int error)
904 {
905 /* check for signal type interrupt code */
906 if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
907 error = -linux_schedule_get_interrupt_value(task);
908 if (error == 0)
909 error = EINTR;
910 }
911 return (error);
912 }
913
914 static int
linux_file_ioctl_sub(struct file * fp,struct linux_file * filp,const struct file_operations * fop,u_long cmd,caddr_t data,struct thread * td)915 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
916 const struct file_operations *fop, u_long cmd, caddr_t data,
917 struct thread *td)
918 {
919 struct task_struct *task = current;
920 unsigned size;
921 int error;
922
923 size = IOCPARM_LEN(cmd);
924 /* refer to logic in sys_ioctl() */
925 if (size > 0) {
926 /*
927 * Setup hint for linux_copyin() and linux_copyout().
928 *
929 * Background: Linux code expects a user-space address
930 * while FreeBSD supplies a kernel-space address.
931 */
932 task->bsd_ioctl_data = data;
933 task->bsd_ioctl_len = size;
934 data = (void *)LINUX_IOCTL_MIN_PTR;
935 } else {
936 /* fetch user-space pointer */
937 data = *(void **)data;
938 }
939 #ifdef COMPAT_FREEBSD32
940 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
941 /* try the compat IOCTL handler first */
942 if (fop->compat_ioctl != NULL) {
943 error = -OPW(fp, td, fop->compat_ioctl(filp,
944 cmd, (u_long)data));
945 } else {
946 error = ENOTTY;
947 }
948
949 /* fallback to the regular IOCTL handler, if any */
950 if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
951 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
952 cmd, (u_long)data));
953 }
954 } else
955 #endif
956 {
957 if (fop->unlocked_ioctl != NULL) {
958 error = -OPW(fp, td, fop->unlocked_ioctl(filp,
959 cmd, (u_long)data));
960 } else {
961 error = ENOTTY;
962 }
963 }
964 if (size > 0) {
965 task->bsd_ioctl_data = NULL;
966 task->bsd_ioctl_len = 0;
967 }
968
969 if (error == EWOULDBLOCK) {
970 /* update kqfilter status, if any */
971 linux_file_kqfilter_poll(filp,
972 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
973 } else {
974 error = linux_get_error(task, error);
975 }
976 return (error);
977 }
978
979 #define LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
980
981 /*
982 * This function atomically updates the poll wakeup state and returns
983 * the previous state at the time of update.
984 */
985 static uint8_t
linux_poll_wakeup_state(atomic_t * v,const uint8_t * pstate)986 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
987 {
988 int c, old;
989
990 c = v->counter;
991
992 while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
993 c = old;
994
995 return (c);
996 }
997
998 static int
linux_poll_wakeup_callback(wait_queue_t * wq,unsigned int wq_state,int flags,void * key)999 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1000 {
1001 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1002 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1003 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1004 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1005 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1006 };
1007 struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1008
1009 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1010 case LINUX_FWQ_STATE_QUEUED:
1011 linux_poll_wakeup(filp);
1012 return (1);
1013 default:
1014 return (0);
1015 }
1016 }
1017
1018 void
linux_poll_wait(struct linux_file * filp,wait_queue_head_t * wqh,poll_table * p)1019 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1020 {
1021 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1022 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1023 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1024 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1025 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1026 };
1027
1028 /* check if we are called inside the select system call */
1029 if (p == LINUX_POLL_TABLE_NORMAL)
1030 selrecord(curthread, &filp->f_selinfo);
1031
1032 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1033 case LINUX_FWQ_STATE_INIT:
1034 /* NOTE: file handles can only belong to one wait-queue */
1035 filp->f_wait_queue.wqh = wqh;
1036 filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1037 add_wait_queue(wqh, &filp->f_wait_queue.wq);
1038 atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1039 break;
1040 default:
1041 break;
1042 }
1043 }
1044
1045 static void
linux_poll_wait_dequeue(struct linux_file * filp)1046 linux_poll_wait_dequeue(struct linux_file *filp)
1047 {
1048 static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1049 [LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1050 [LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1051 [LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1052 [LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1053 };
1054
1055 seldrain(&filp->f_selinfo);
1056
1057 switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1058 case LINUX_FWQ_STATE_NOT_READY:
1059 case LINUX_FWQ_STATE_QUEUED:
1060 case LINUX_FWQ_STATE_READY:
1061 remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1062 break;
1063 default:
1064 break;
1065 }
1066 }
1067
1068 void
linux_poll_wakeup(struct linux_file * filp)1069 linux_poll_wakeup(struct linux_file *filp)
1070 {
1071 /* this function should be NULL-safe */
1072 if (filp == NULL)
1073 return;
1074
1075 selwakeup(&filp->f_selinfo);
1076
1077 spin_lock(&filp->f_kqlock);
1078 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1079 LINUX_KQ_FLAG_NEED_WRITE;
1080
1081 /* make sure the "knote" gets woken up */
1082 KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1083 spin_unlock(&filp->f_kqlock);
1084 }
1085
1086 static struct linux_file *
__get_file_rcu(struct linux_file ** f)1087 __get_file_rcu(struct linux_file **f)
1088 {
1089 struct linux_file *file1, *file2;
1090
1091 file1 = READ_ONCE(*f);
1092 if (file1 == NULL)
1093 return (NULL);
1094
1095 if (!refcount_acquire_if_not_zero(
1096 file1->_file == NULL ? &file1->f_count : &file1->_file->f_count))
1097 return (ERR_PTR(-EAGAIN));
1098
1099 file2 = READ_ONCE(*f);
1100 if (file2 == file1)
1101 return (file2);
1102
1103 fput(file1);
1104 return (ERR_PTR(-EAGAIN));
1105 }
1106
1107 struct linux_file *
linux67_get_file_rcu(struct linux_file ** f)1108 linux67_get_file_rcu(struct linux_file **f)
1109 {
1110 struct linux_file *file1;
1111
1112 for (;;) {
1113 file1 = __get_file_rcu(f);
1114 if (file1 == NULL)
1115 return (NULL);
1116
1117 if (IS_ERR(file1))
1118 continue;
1119
1120 return (file1);
1121 }
1122 }
1123
1124 struct linux_file *
get_file_active(struct linux_file ** f)1125 get_file_active(struct linux_file **f)
1126 {
1127 struct linux_file *file1;
1128
1129 rcu_read_lock();
1130 file1 = __get_file_rcu(f);
1131 rcu_read_unlock();
1132 if (IS_ERR(file1))
1133 file1 = NULL;
1134
1135 return (file1);
1136 }
1137
1138 static void
linux_file_kqfilter_detach(struct knote * kn)1139 linux_file_kqfilter_detach(struct knote *kn)
1140 {
1141 struct linux_file *filp = kn->kn_hook;
1142
1143 spin_lock(&filp->f_kqlock);
1144 knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1145 spin_unlock(&filp->f_kqlock);
1146 }
1147
1148 static int
linux_file_kqfilter_read_event(struct knote * kn,long hint)1149 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1150 {
1151 struct linux_file *filp = kn->kn_hook;
1152
1153 mtx_assert(&filp->f_kqlock, MA_OWNED);
1154
1155 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1156 }
1157
1158 static int
linux_file_kqfilter_write_event(struct knote * kn,long hint)1159 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1160 {
1161 struct linux_file *filp = kn->kn_hook;
1162
1163 mtx_assert(&filp->f_kqlock, MA_OWNED);
1164
1165 return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1166 }
1167
1168 static const struct filterops linux_dev_kqfiltops_read = {
1169 .f_isfd = 1,
1170 .f_detach = linux_file_kqfilter_detach,
1171 .f_event = linux_file_kqfilter_read_event,
1172 };
1173
1174 static const struct filterops linux_dev_kqfiltops_write = {
1175 .f_isfd = 1,
1176 .f_detach = linux_file_kqfilter_detach,
1177 .f_event = linux_file_kqfilter_write_event,
1178 };
1179
1180 static void
linux_file_kqfilter_poll(struct linux_file * filp,int kqflags)1181 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1182 {
1183 struct thread *td;
1184 const struct file_operations *fop;
1185 struct linux_cdev *ldev;
1186 int temp;
1187
1188 if ((filp->f_kqflags & kqflags) == 0)
1189 return;
1190
1191 td = curthread;
1192
1193 linux_get_fop(filp, &fop, &ldev);
1194 /* get the latest polling state */
1195 temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1196 linux_drop_fop(ldev);
1197
1198 spin_lock(&filp->f_kqlock);
1199 /* clear kqflags */
1200 filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1201 LINUX_KQ_FLAG_NEED_WRITE);
1202 /* update kqflags */
1203 if ((temp & (POLLIN | POLLOUT)) != 0) {
1204 if ((temp & POLLIN) != 0)
1205 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1206 if ((temp & POLLOUT) != 0)
1207 filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1208
1209 /* make sure the "knote" gets woken up */
1210 KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1211 }
1212 spin_unlock(&filp->f_kqlock);
1213 }
1214
1215 static int
linux_file_kqfilter(struct file * file,struct knote * kn)1216 linux_file_kqfilter(struct file *file, struct knote *kn)
1217 {
1218 struct linux_file *filp;
1219 struct thread *td;
1220 int error;
1221
1222 td = curthread;
1223 filp = (struct linux_file *)file->f_data;
1224 filp->f_flags = file->f_flag;
1225 if (filp->f_op->poll == NULL)
1226 return (EINVAL);
1227
1228 spin_lock(&filp->f_kqlock);
1229 switch (kn->kn_filter) {
1230 case EVFILT_READ:
1231 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1232 kn->kn_fop = &linux_dev_kqfiltops_read;
1233 kn->kn_hook = filp;
1234 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1235 error = 0;
1236 break;
1237 case EVFILT_WRITE:
1238 filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1239 kn->kn_fop = &linux_dev_kqfiltops_write;
1240 kn->kn_hook = filp;
1241 knlist_add(&filp->f_selinfo.si_note, kn, 1);
1242 error = 0;
1243 break;
1244 default:
1245 error = EINVAL;
1246 break;
1247 }
1248 spin_unlock(&filp->f_kqlock);
1249
1250 if (error == 0) {
1251 linux_set_current(td);
1252
1253 /* update kqfilter status, if any */
1254 linux_file_kqfilter_poll(filp,
1255 LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1256 }
1257 return (error);
1258 }
1259
1260 static int
linux_file_mmap_single(struct file * fp,const struct file_operations * fop,vm_ooffset_t * offset,vm_size_t size,struct vm_object ** object,int nprot,bool is_shared,struct thread * td)1261 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1262 vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1263 int nprot, bool is_shared, struct thread *td)
1264 {
1265 struct task_struct *task;
1266 struct vm_area_struct *vmap;
1267 struct mm_struct *mm;
1268 struct linux_file *filp;
1269 vm_memattr_t attr;
1270 int error;
1271
1272 filp = (struct linux_file *)fp->f_data;
1273 filp->f_flags = fp->f_flag;
1274
1275 if (fop->mmap == NULL)
1276 return (EOPNOTSUPP);
1277
1278 linux_set_current(td);
1279
1280 /*
1281 * The same VM object might be shared by multiple processes
1282 * and the mm_struct is usually freed when a process exits.
1283 *
1284 * The atomic reference below makes sure the mm_struct is
1285 * available as long as the vmap is in the linux_vma_head.
1286 */
1287 task = current;
1288 mm = task->mm;
1289 if (atomic_inc_not_zero(&mm->mm_users) == 0)
1290 return (EINVAL);
1291
1292 vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1293 vmap->vm_start = 0;
1294 vmap->vm_end = size;
1295 vmap->vm_pgoff = *offset / PAGE_SIZE;
1296 vmap->vm_pfn = 0;
1297 vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1298 if (is_shared)
1299 vmap->vm_flags |= VM_SHARED;
1300 vmap->vm_ops = NULL;
1301 vmap->vm_file = get_file(filp);
1302 vmap->vm_mm = mm;
1303
1304 if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1305 error = linux_get_error(task, EINTR);
1306 } else {
1307 error = -OPW(fp, td, fop->mmap(filp, vmap));
1308 error = linux_get_error(task, error);
1309 up_write(&vmap->vm_mm->mmap_sem);
1310 }
1311
1312 if (error != 0) {
1313 linux_cdev_handle_free(vmap);
1314 return (error);
1315 }
1316
1317 attr = pgprot2cachemode(vmap->vm_page_prot);
1318
1319 if (vmap->vm_ops != NULL) {
1320 struct vm_area_struct *ptr;
1321 void *vm_private_data;
1322 bool vm_no_fault;
1323
1324 if (vmap->vm_ops->open == NULL ||
1325 vmap->vm_ops->close == NULL ||
1326 vmap->vm_private_data == NULL) {
1327 /* free allocated VM area struct */
1328 linux_cdev_handle_free(vmap);
1329 return (EINVAL);
1330 }
1331
1332 vm_private_data = vmap->vm_private_data;
1333
1334 rw_wlock(&linux_vma_lock);
1335 TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1336 if (ptr->vm_private_data == vm_private_data)
1337 break;
1338 }
1339 /* check if there is an existing VM area struct */
1340 if (ptr != NULL) {
1341 /* check if the VM area structure is invalid */
1342 if (ptr->vm_ops == NULL ||
1343 ptr->vm_ops->open == NULL ||
1344 ptr->vm_ops->close == NULL) {
1345 error = ESTALE;
1346 vm_no_fault = 1;
1347 } else {
1348 error = EEXIST;
1349 vm_no_fault = (ptr->vm_ops->fault == NULL);
1350 }
1351 } else {
1352 /* insert VM area structure into list */
1353 TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1354 error = 0;
1355 vm_no_fault = (vmap->vm_ops->fault == NULL);
1356 }
1357 rw_wunlock(&linux_vma_lock);
1358
1359 if (error != 0) {
1360 /* free allocated VM area struct */
1361 linux_cdev_handle_free(vmap);
1362 /* check for stale VM area struct */
1363 if (error != EEXIST)
1364 return (error);
1365 }
1366
1367 /* check if there is no fault handler */
1368 if (vm_no_fault) {
1369 *object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1370 &linux_cdev_pager_ops[1], size, nprot, *offset,
1371 td->td_ucred);
1372 } else {
1373 *object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1374 &linux_cdev_pager_ops[0], size, nprot, *offset,
1375 td->td_ucred);
1376 }
1377
1378 /* check if allocating the VM object failed */
1379 if (*object == NULL) {
1380 if (error == 0) {
1381 /* remove VM area struct from list */
1382 linux_cdev_handle_remove(vmap);
1383 /* free allocated VM area struct */
1384 linux_cdev_handle_free(vmap);
1385 }
1386 return (EINVAL);
1387 }
1388 } else {
1389 struct sglist *sg;
1390
1391 sg = sglist_alloc(1, M_WAITOK);
1392 sglist_append_phys(sg,
1393 (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1394
1395 *object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1396 nprot, 0, td->td_ucred);
1397
1398 linux_cdev_handle_free(vmap);
1399
1400 if (*object == NULL) {
1401 sglist_free(sg);
1402 return (EINVAL);
1403 }
1404 }
1405
1406 if (attr != VM_MEMATTR_DEFAULT) {
1407 VM_OBJECT_WLOCK(*object);
1408 vm_object_set_memattr(*object, attr);
1409 VM_OBJECT_WUNLOCK(*object);
1410 }
1411 *offset = 0;
1412 return (0);
1413 }
1414
1415 struct cdevsw linuxcdevsw = {
1416 .d_version = D_VERSION,
1417 .d_fdopen = linux_dev_fdopen,
1418 .d_name = "lkpidev",
1419 };
1420
1421 static int
linux_file_read(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1422 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1423 int flags, struct thread *td)
1424 {
1425 struct linux_file *filp;
1426 const struct file_operations *fop;
1427 struct linux_cdev *ldev;
1428 ssize_t bytes;
1429 int error;
1430
1431 error = 0;
1432 filp = (struct linux_file *)file->f_data;
1433 filp->f_flags = file->f_flag;
1434 /* XXX no support for I/O vectors currently */
1435 if (uio->uio_iovcnt != 1)
1436 return (EOPNOTSUPP);
1437 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1438 return (EINVAL);
1439 linux_set_current(td);
1440 linux_get_fop(filp, &fop, &ldev);
1441 if (fop->read != NULL) {
1442 bytes = OPW(file, td, fop->read(filp,
1443 uio->uio_iov->iov_base,
1444 uio->uio_iov->iov_len, &uio->uio_offset));
1445 if (bytes >= 0) {
1446 uio->uio_iov->iov_base =
1447 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1448 uio->uio_iov->iov_len -= bytes;
1449 uio->uio_resid -= bytes;
1450 } else {
1451 error = linux_get_error(current, -bytes);
1452 }
1453 } else
1454 error = ENXIO;
1455
1456 /* update kqfilter status, if any */
1457 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1458 linux_drop_fop(ldev);
1459
1460 return (error);
1461 }
1462
1463 static int
linux_file_write(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1464 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1465 int flags, struct thread *td)
1466 {
1467 struct linux_file *filp;
1468 const struct file_operations *fop;
1469 struct linux_cdev *ldev;
1470 ssize_t bytes;
1471 int error;
1472
1473 filp = (struct linux_file *)file->f_data;
1474 filp->f_flags = file->f_flag;
1475 /* XXX no support for I/O vectors currently */
1476 if (uio->uio_iovcnt != 1)
1477 return (EOPNOTSUPP);
1478 if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1479 return (EINVAL);
1480 linux_set_current(td);
1481 linux_get_fop(filp, &fop, &ldev);
1482 if (fop->write != NULL) {
1483 bytes = OPW(file, td, fop->write(filp,
1484 uio->uio_iov->iov_base,
1485 uio->uio_iov->iov_len, &uio->uio_offset));
1486 if (bytes >= 0) {
1487 uio->uio_iov->iov_base =
1488 ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1489 uio->uio_iov->iov_len -= bytes;
1490 uio->uio_resid -= bytes;
1491 error = 0;
1492 } else {
1493 error = linux_get_error(current, -bytes);
1494 }
1495 } else
1496 error = ENXIO;
1497
1498 /* update kqfilter status, if any */
1499 linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1500
1501 linux_drop_fop(ldev);
1502
1503 return (error);
1504 }
1505
1506 static int
linux_file_poll(struct file * file,int events,struct ucred * active_cred,struct thread * td)1507 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1508 struct thread *td)
1509 {
1510 struct linux_file *filp;
1511 const struct file_operations *fop;
1512 struct linux_cdev *ldev;
1513 int revents;
1514
1515 filp = (struct linux_file *)file->f_data;
1516 filp->f_flags = file->f_flag;
1517 linux_set_current(td);
1518 linux_get_fop(filp, &fop, &ldev);
1519 if (fop->poll != NULL) {
1520 revents = OPW(file, td, fop->poll(filp,
1521 LINUX_POLL_TABLE_NORMAL)) & events;
1522 } else {
1523 revents = 0;
1524 }
1525 linux_drop_fop(ldev);
1526 return (revents);
1527 }
1528
1529 static int
linux_file_close(struct file * file,struct thread * td)1530 linux_file_close(struct file *file, struct thread *td)
1531 {
1532 struct linux_file *filp;
1533 int (*release)(struct inode *, struct linux_file *);
1534 const struct file_operations *fop;
1535 struct linux_cdev *ldev;
1536 int error;
1537
1538 filp = (struct linux_file *)file->f_data;
1539
1540 KASSERT(file_count(filp) == 0,
1541 ("File refcount(%d) is not zero", file_count(filp)));
1542
1543 if (td == NULL)
1544 td = curthread;
1545
1546 error = 0;
1547 filp->f_flags = file->f_flag;
1548 linux_set_current(td);
1549 linux_poll_wait_dequeue(filp);
1550 linux_get_fop(filp, &fop, &ldev);
1551 /*
1552 * Always use the real release function, if any, to avoid
1553 * leaking device resources:
1554 */
1555 release = filp->f_op->release;
1556 if (release != NULL)
1557 error = -OPW(file, td, release(filp->f_vnode, filp));
1558 funsetown(&filp->f_sigio);
1559 if (filp->f_vnode != NULL)
1560 vrele(filp->f_vnode);
1561 linux_drop_fop(ldev);
1562 ldev = filp->f_cdev;
1563 if (ldev != NULL)
1564 linux_cdev_deref(ldev);
1565 linux_synchronize_rcu(RCU_TYPE_REGULAR);
1566 kfree(filp);
1567
1568 return (error);
1569 }
1570
1571 static int
linux_file_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * cred,struct thread * td)1572 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1573 struct thread *td)
1574 {
1575 struct linux_file *filp;
1576 const struct file_operations *fop;
1577 struct linux_cdev *ldev;
1578 struct fiodgname_arg *fgn;
1579 const char *p;
1580 int error, i;
1581
1582 error = 0;
1583 filp = (struct linux_file *)fp->f_data;
1584 filp->f_flags = fp->f_flag;
1585 linux_get_fop(filp, &fop, &ldev);
1586
1587 linux_set_current(td);
1588 switch (cmd) {
1589 case FIONBIO:
1590 break;
1591 case FIOASYNC:
1592 if (fop->fasync == NULL)
1593 break;
1594 error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1595 break;
1596 case FIOSETOWN:
1597 error = fsetown(*(int *)data, &filp->f_sigio);
1598 if (error == 0) {
1599 if (fop->fasync == NULL)
1600 break;
1601 error = -OPW(fp, td, fop->fasync(0, filp,
1602 fp->f_flag & FASYNC));
1603 }
1604 break;
1605 case FIOGETOWN:
1606 *(int *)data = fgetown(&filp->f_sigio);
1607 break;
1608 case FIODGNAME:
1609 #ifdef COMPAT_FREEBSD32
1610 case FIODGNAME_32:
1611 #endif
1612 if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1613 error = ENXIO;
1614 break;
1615 }
1616 fgn = data;
1617 p = devtoname(filp->f_cdev->cdev);
1618 i = strlen(p) + 1;
1619 if (i > fgn->len) {
1620 error = EINVAL;
1621 break;
1622 }
1623 error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1624 break;
1625 default:
1626 error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1627 break;
1628 }
1629 linux_drop_fop(ldev);
1630 return (error);
1631 }
1632
1633 static int
linux_file_mmap_sub(struct thread * td,vm_size_t objsize,vm_prot_t prot,vm_prot_t maxprot,int flags,struct file * fp,vm_ooffset_t * foff,const struct file_operations * fop,vm_object_t * objp)1634 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1635 vm_prot_t maxprot, int flags, struct file *fp,
1636 vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1637 {
1638 /*
1639 * Character devices do not provide private mappings
1640 * of any kind:
1641 */
1642 if ((maxprot & VM_PROT_WRITE) == 0 &&
1643 (prot & VM_PROT_WRITE) != 0)
1644 return (EACCES);
1645 if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1646 return (EINVAL);
1647
1648 return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1649 (int)prot, (flags & MAP_SHARED) ? true : false, td));
1650 }
1651
1652 static int
linux_file_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)1653 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1654 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1655 struct thread *td)
1656 {
1657 struct linux_file *filp;
1658 const struct file_operations *fop;
1659 struct linux_cdev *ldev;
1660 struct mount *mp;
1661 struct vnode *vp;
1662 vm_object_t object;
1663 vm_prot_t maxprot;
1664 int error;
1665
1666 filp = (struct linux_file *)fp->f_data;
1667
1668 vp = filp->f_vnode;
1669 if (vp == NULL)
1670 return (EOPNOTSUPP);
1671
1672 /*
1673 * Ensure that file and memory protections are
1674 * compatible.
1675 */
1676 mp = vp->v_mount;
1677 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1678 maxprot = VM_PROT_NONE;
1679 if ((prot & VM_PROT_EXECUTE) != 0)
1680 return (EACCES);
1681 } else
1682 maxprot = VM_PROT_EXECUTE;
1683 if ((fp->f_flag & FREAD) != 0)
1684 maxprot |= VM_PROT_READ;
1685 else if ((prot & VM_PROT_READ) != 0)
1686 return (EACCES);
1687
1688 /*
1689 * If we are sharing potential changes via MAP_SHARED and we
1690 * are trying to get write permission although we opened it
1691 * without asking for it, bail out.
1692 *
1693 * Note that most character devices always share mappings.
1694 *
1695 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1696 * requests rather than doing it here.
1697 */
1698 if ((flags & MAP_SHARED) != 0) {
1699 if ((fp->f_flag & FWRITE) != 0)
1700 maxprot |= VM_PROT_WRITE;
1701 else if ((prot & VM_PROT_WRITE) != 0)
1702 return (EACCES);
1703 }
1704 maxprot &= cap_maxprot;
1705
1706 linux_get_fop(filp, &fop, &ldev);
1707 error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1708 &foff, fop, &object);
1709 if (error != 0)
1710 goto out;
1711
1712 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1713 foff, FALSE, td);
1714 if (error != 0)
1715 vm_object_deallocate(object);
1716 out:
1717 linux_drop_fop(ldev);
1718 return (error);
1719 }
1720
1721 static int
linux_file_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)1722 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1723 {
1724 struct linux_file *filp;
1725 struct vnode *vp;
1726 int error;
1727
1728 filp = (struct linux_file *)fp->f_data;
1729 if (filp->f_vnode == NULL)
1730 return (EOPNOTSUPP);
1731
1732 vp = filp->f_vnode;
1733
1734 vn_lock(vp, LK_SHARED | LK_RETRY);
1735 error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1736 VOP_UNLOCK(vp);
1737
1738 return (error);
1739 }
1740
1741 static int
linux_file_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1742 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1743 struct filedesc *fdp)
1744 {
1745 struct linux_file *filp;
1746 struct vnode *vp;
1747 int error;
1748
1749 filp = fp->f_data;
1750 vp = filp->f_vnode;
1751 if (vp == NULL) {
1752 error = 0;
1753 kif->kf_type = KF_TYPE_DEV;
1754 } else {
1755 vref(vp);
1756 FILEDESC_SUNLOCK(fdp);
1757 error = vn_fill_kinfo_vnode(vp, kif);
1758 vrele(vp);
1759 kif->kf_type = KF_TYPE_VNODE;
1760 FILEDESC_SLOCK(fdp);
1761 }
1762 return (error);
1763 }
1764
1765 unsigned int
linux_iminor(struct inode * inode)1766 linux_iminor(struct inode *inode)
1767 {
1768 struct linux_cdev *ldev;
1769
1770 if (inode == NULL || inode->v_rdev == NULL ||
1771 inode->v_rdev->si_devsw != &linuxcdevsw)
1772 return (-1U);
1773 ldev = inode->v_rdev->si_drv1;
1774 if (ldev == NULL)
1775 return (-1U);
1776
1777 return (minor(ldev->dev));
1778 }
1779
1780 static int
linux_file_kcmp(struct file * fp1,struct file * fp2,struct thread * td)1781 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1782 {
1783 struct linux_file *filp1, *filp2;
1784
1785 if (fp2->f_type != DTYPE_DEV)
1786 return (3);
1787
1788 filp1 = fp1->f_data;
1789 filp2 = fp2->f_data;
1790 return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1791 }
1792
1793 const struct fileops linuxfileops = {
1794 .fo_read = linux_file_read,
1795 .fo_write = linux_file_write,
1796 .fo_truncate = invfo_truncate,
1797 .fo_kqfilter = linux_file_kqfilter,
1798 .fo_stat = linux_file_stat,
1799 .fo_fill_kinfo = linux_file_fill_kinfo,
1800 .fo_poll = linux_file_poll,
1801 .fo_close = linux_file_close,
1802 .fo_ioctl = linux_file_ioctl,
1803 .fo_mmap = linux_file_mmap,
1804 .fo_chmod = invfo_chmod,
1805 .fo_chown = invfo_chown,
1806 .fo_sendfile = invfo_sendfile,
1807 .fo_cmp = linux_file_kcmp,
1808 .fo_flags = DFLAG_PASSABLE,
1809 };
1810
1811 /*
1812 * Hash of vmmap addresses. This is infrequently accessed and does not
1813 * need to be particularly large. This is done because we must store the
1814 * caller's idea of the map size to properly unmap.
1815 */
1816 struct vmmap {
1817 LIST_ENTRY(vmmap) vm_next;
1818 void *vm_addr;
1819 unsigned long vm_size;
1820 };
1821
1822 struct vmmaphd {
1823 struct vmmap *lh_first;
1824 };
1825 #define VMMAP_HASH_SIZE 64
1826 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
1827 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1828 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1829 static struct mtx vmmaplock;
1830
1831 static void
vmmap_add(void * addr,unsigned long size)1832 vmmap_add(void *addr, unsigned long size)
1833 {
1834 struct vmmap *vmmap;
1835
1836 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1837 mtx_lock(&vmmaplock);
1838 vmmap->vm_size = size;
1839 vmmap->vm_addr = addr;
1840 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1841 mtx_unlock(&vmmaplock);
1842 }
1843
1844 static struct vmmap *
vmmap_remove(void * addr)1845 vmmap_remove(void *addr)
1846 {
1847 struct vmmap *vmmap;
1848
1849 mtx_lock(&vmmaplock);
1850 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1851 if (vmmap->vm_addr == addr)
1852 break;
1853 if (vmmap)
1854 LIST_REMOVE(vmmap, vm_next);
1855 mtx_unlock(&vmmaplock);
1856
1857 return (vmmap);
1858 }
1859
1860 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1861 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)1862 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1863 {
1864 void *addr;
1865
1866 addr = pmap_mapdev_attr(phys_addr, size, attr);
1867 if (addr == NULL)
1868 return (NULL);
1869 vmmap_add(addr, size);
1870
1871 return (addr);
1872 }
1873 #endif
1874
1875 void
iounmap(void * addr)1876 iounmap(void *addr)
1877 {
1878 struct vmmap *vmmap;
1879
1880 vmmap = vmmap_remove(addr);
1881 if (vmmap == NULL)
1882 return;
1883 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1884 pmap_unmapdev(addr, vmmap->vm_size);
1885 #endif
1886 kfree(vmmap);
1887 }
1888
1889 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)1890 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1891 {
1892 vm_offset_t off;
1893 size_t size;
1894
1895 size = count * PAGE_SIZE;
1896 off = kva_alloc(size);
1897 if (off == 0)
1898 return (NULL);
1899 vmmap_add((void *)off, size);
1900 pmap_qenter(off, pages, count);
1901
1902 return ((void *)off);
1903 }
1904
1905 void
vunmap(void * addr)1906 vunmap(void *addr)
1907 {
1908 struct vmmap *vmmap;
1909
1910 vmmap = vmmap_remove(addr);
1911 if (vmmap == NULL)
1912 return;
1913 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1914 kva_free((vm_offset_t)addr, vmmap->vm_size);
1915 kfree(vmmap);
1916 }
1917
1918 static char *
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1919 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1920 {
1921 unsigned int len;
1922 char *p;
1923 va_list aq;
1924
1925 va_copy(aq, ap);
1926 len = vsnprintf(NULL, 0, fmt, aq);
1927 va_end(aq);
1928
1929 if (dev != NULL)
1930 p = devm_kmalloc(dev, len + 1, gfp);
1931 else
1932 p = kmalloc(len + 1, gfp);
1933 if (p != NULL)
1934 vsnprintf(p, len + 1, fmt, ap);
1935
1936 return (p);
1937 }
1938
1939 char *
kvasprintf(gfp_t gfp,const char * fmt,va_list ap)1940 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1941 {
1942
1943 return (devm_kvasprintf(NULL, gfp, fmt, ap));
1944 }
1945
1946 char *
lkpi_devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1947 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1948 {
1949 va_list ap;
1950 char *p;
1951
1952 va_start(ap, fmt);
1953 p = devm_kvasprintf(dev, gfp, fmt, ap);
1954 va_end(ap);
1955
1956 return (p);
1957 }
1958
1959 char *
kasprintf(gfp_t gfp,const char * fmt,...)1960 kasprintf(gfp_t gfp, const char *fmt, ...)
1961 {
1962 va_list ap;
1963 char *p;
1964
1965 va_start(ap, fmt);
1966 p = kvasprintf(gfp, fmt, ap);
1967 va_end(ap);
1968
1969 return (p);
1970 }
1971
1972 static void
linux_timer_callback_wrapper(void * context)1973 linux_timer_callback_wrapper(void *context)
1974 {
1975 struct timer_list *timer;
1976
1977 timer = context;
1978
1979 /* the timer is about to be shutdown permanently */
1980 if (timer->function == NULL)
1981 return;
1982
1983 if (linux_set_current_flags(curthread, M_NOWAIT)) {
1984 /* try again later */
1985 callout_reset(&timer->callout, 1,
1986 &linux_timer_callback_wrapper, timer);
1987 return;
1988 }
1989
1990 timer->function(timer->data);
1991 }
1992
1993 int
mod_timer(struct timer_list * timer,int expires)1994 mod_timer(struct timer_list *timer, int expires)
1995 {
1996 int ret;
1997
1998 timer->expires = expires;
1999 ret = callout_reset(&timer->callout,
2000 linux_timer_jiffies_until(expires),
2001 &linux_timer_callback_wrapper, timer);
2002
2003 MPASS(ret == 0 || ret == 1);
2004
2005 return (ret == 1);
2006 }
2007
2008 void
add_timer(struct timer_list * timer)2009 add_timer(struct timer_list *timer)
2010 {
2011
2012 callout_reset(&timer->callout,
2013 linux_timer_jiffies_until(timer->expires),
2014 &linux_timer_callback_wrapper, timer);
2015 }
2016
2017 void
add_timer_on(struct timer_list * timer,int cpu)2018 add_timer_on(struct timer_list *timer, int cpu)
2019 {
2020
2021 callout_reset_on(&timer->callout,
2022 linux_timer_jiffies_until(timer->expires),
2023 &linux_timer_callback_wrapper, timer, cpu);
2024 }
2025
2026 int
del_timer(struct timer_list * timer)2027 del_timer(struct timer_list *timer)
2028 {
2029
2030 if (callout_stop(&(timer)->callout) == -1)
2031 return (0);
2032 return (1);
2033 }
2034
2035 int
del_timer_sync(struct timer_list * timer)2036 del_timer_sync(struct timer_list *timer)
2037 {
2038
2039 if (callout_drain(&(timer)->callout) == -1)
2040 return (0);
2041 return (1);
2042 }
2043
2044 int
timer_delete_sync(struct timer_list * timer)2045 timer_delete_sync(struct timer_list *timer)
2046 {
2047
2048 return (del_timer_sync(timer));
2049 }
2050
2051 int
timer_shutdown_sync(struct timer_list * timer)2052 timer_shutdown_sync(struct timer_list *timer)
2053 {
2054
2055 timer->function = NULL;
2056 return (del_timer_sync(timer));
2057 }
2058
2059 /* greatest common divisor, Euclid equation */
2060 static uint64_t
lkpi_gcd_64(uint64_t a,uint64_t b)2061 lkpi_gcd_64(uint64_t a, uint64_t b)
2062 {
2063 uint64_t an;
2064 uint64_t bn;
2065
2066 while (b != 0) {
2067 an = b;
2068 bn = a % b;
2069 a = an;
2070 b = bn;
2071 }
2072 return (a);
2073 }
2074
2075 uint64_t lkpi_nsec2hz_rem;
2076 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2077 uint64_t lkpi_nsec2hz_max;
2078
2079 uint64_t lkpi_usec2hz_rem;
2080 uint64_t lkpi_usec2hz_div = 1000000ULL;
2081 uint64_t lkpi_usec2hz_max;
2082
2083 uint64_t lkpi_msec2hz_rem;
2084 uint64_t lkpi_msec2hz_div = 1000ULL;
2085 uint64_t lkpi_msec2hz_max;
2086
2087 static void
linux_timer_init(void * arg)2088 linux_timer_init(void *arg)
2089 {
2090 uint64_t gcd;
2091
2092 /*
2093 * Compute an internal HZ value which can divide 2**32 to
2094 * avoid timer rounding problems when the tick value wraps
2095 * around 2**32:
2096 */
2097 linux_timer_hz_mask = 1;
2098 while (linux_timer_hz_mask < (unsigned long)hz)
2099 linux_timer_hz_mask *= 2;
2100 linux_timer_hz_mask--;
2101
2102 /* compute some internal constants */
2103
2104 lkpi_nsec2hz_rem = hz;
2105 lkpi_usec2hz_rem = hz;
2106 lkpi_msec2hz_rem = hz;
2107
2108 gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2109 lkpi_nsec2hz_rem /= gcd;
2110 lkpi_nsec2hz_div /= gcd;
2111 lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2112
2113 gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2114 lkpi_usec2hz_rem /= gcd;
2115 lkpi_usec2hz_div /= gcd;
2116 lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2117
2118 gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2119 lkpi_msec2hz_rem /= gcd;
2120 lkpi_msec2hz_div /= gcd;
2121 lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2122 }
2123 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2124
2125 void
linux_complete_common(struct completion * c,int all)2126 linux_complete_common(struct completion *c, int all)
2127 {
2128 sleepq_lock(c);
2129 if (all) {
2130 c->done = UINT_MAX;
2131 sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2132 } else {
2133 if (c->done != UINT_MAX)
2134 c->done++;
2135 sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2136 }
2137 sleepq_release(c);
2138 }
2139
2140 /*
2141 * Indefinite wait for done != 0 with or without signals.
2142 */
2143 int
linux_wait_for_common(struct completion * c,int flags)2144 linux_wait_for_common(struct completion *c, int flags)
2145 {
2146 struct task_struct *task;
2147 int error;
2148
2149 if (SCHEDULER_STOPPED())
2150 return (0);
2151
2152 task = current;
2153
2154 if (flags != 0)
2155 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2156 else
2157 flags = SLEEPQ_SLEEP;
2158 error = 0;
2159 for (;;) {
2160 sleepq_lock(c);
2161 if (c->done)
2162 break;
2163 sleepq_add(c, NULL, "completion", flags, 0);
2164 if (flags & SLEEPQ_INTERRUPTIBLE) {
2165 DROP_GIANT();
2166 error = -sleepq_wait_sig(c, 0);
2167 PICKUP_GIANT();
2168 if (error != 0) {
2169 linux_schedule_save_interrupt_value(task, error);
2170 error = -ERESTARTSYS;
2171 goto intr;
2172 }
2173 } else {
2174 DROP_GIANT();
2175 sleepq_wait(c, 0);
2176 PICKUP_GIANT();
2177 }
2178 }
2179 if (c->done != UINT_MAX)
2180 c->done--;
2181 sleepq_release(c);
2182
2183 intr:
2184 return (error);
2185 }
2186
2187 /*
2188 * Time limited wait for done != 0 with or without signals.
2189 */
2190 int
linux_wait_for_timeout_common(struct completion * c,int timeout,int flags)2191 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2192 {
2193 struct task_struct *task;
2194 int end = jiffies + timeout;
2195 int error;
2196
2197 if (SCHEDULER_STOPPED())
2198 return (0);
2199
2200 task = current;
2201
2202 if (flags != 0)
2203 flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2204 else
2205 flags = SLEEPQ_SLEEP;
2206
2207 for (;;) {
2208 sleepq_lock(c);
2209 if (c->done)
2210 break;
2211 sleepq_add(c, NULL, "completion", flags, 0);
2212 sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2213
2214 DROP_GIANT();
2215 if (flags & SLEEPQ_INTERRUPTIBLE)
2216 error = -sleepq_timedwait_sig(c, 0);
2217 else
2218 error = -sleepq_timedwait(c, 0);
2219 PICKUP_GIANT();
2220
2221 if (error != 0) {
2222 /* check for timeout */
2223 if (error == -EWOULDBLOCK) {
2224 error = 0; /* timeout */
2225 } else {
2226 /* signal happened */
2227 linux_schedule_save_interrupt_value(task, error);
2228 error = -ERESTARTSYS;
2229 }
2230 goto done;
2231 }
2232 }
2233 if (c->done != UINT_MAX)
2234 c->done--;
2235 sleepq_release(c);
2236
2237 /* return how many jiffies are left */
2238 error = linux_timer_jiffies_until(end);
2239 done:
2240 return (error);
2241 }
2242
2243 int
linux_try_wait_for_completion(struct completion * c)2244 linux_try_wait_for_completion(struct completion *c)
2245 {
2246 int isdone;
2247
2248 sleepq_lock(c);
2249 isdone = (c->done != 0);
2250 if (c->done != 0 && c->done != UINT_MAX)
2251 c->done--;
2252 sleepq_release(c);
2253 return (isdone);
2254 }
2255
2256 int
linux_completion_done(struct completion * c)2257 linux_completion_done(struct completion *c)
2258 {
2259 int isdone;
2260
2261 sleepq_lock(c);
2262 isdone = (c->done != 0);
2263 sleepq_release(c);
2264 return (isdone);
2265 }
2266
2267 static void
linux_cdev_deref(struct linux_cdev * ldev)2268 linux_cdev_deref(struct linux_cdev *ldev)
2269 {
2270 if (refcount_release(&ldev->refs) &&
2271 ldev->kobj.ktype == &linux_cdev_ktype)
2272 kfree(ldev);
2273 }
2274
2275 static void
linux_cdev_release(struct kobject * kobj)2276 linux_cdev_release(struct kobject *kobj)
2277 {
2278 struct linux_cdev *cdev;
2279 struct kobject *parent;
2280
2281 cdev = container_of(kobj, struct linux_cdev, kobj);
2282 parent = kobj->parent;
2283 linux_destroy_dev(cdev);
2284 linux_cdev_deref(cdev);
2285 kobject_put(parent);
2286 }
2287
2288 static void
linux_cdev_static_release(struct kobject * kobj)2289 linux_cdev_static_release(struct kobject *kobj)
2290 {
2291 struct cdev *cdev;
2292 struct linux_cdev *ldev;
2293
2294 ldev = container_of(kobj, struct linux_cdev, kobj);
2295 cdev = ldev->cdev;
2296 if (cdev != NULL) {
2297 destroy_dev(cdev);
2298 ldev->cdev = NULL;
2299 }
2300 kobject_put(kobj->parent);
2301 }
2302
2303 int
linux_cdev_device_add(struct linux_cdev * ldev,struct device * dev)2304 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2305 {
2306 int ret;
2307
2308 if (dev->devt != 0) {
2309 /* Set parent kernel object. */
2310 ldev->kobj.parent = &dev->kobj;
2311
2312 /*
2313 * Unlike Linux we require the kobject of the
2314 * character device structure to have a valid name
2315 * before calling this function:
2316 */
2317 if (ldev->kobj.name == NULL)
2318 return (-EINVAL);
2319
2320 ret = cdev_add(ldev, dev->devt, 1);
2321 if (ret)
2322 return (ret);
2323 }
2324 ret = device_add(dev);
2325 if (ret != 0 && dev->devt != 0)
2326 cdev_del(ldev);
2327 return (ret);
2328 }
2329
2330 void
linux_cdev_device_del(struct linux_cdev * ldev,struct device * dev)2331 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2332 {
2333 device_del(dev);
2334
2335 if (dev->devt != 0)
2336 cdev_del(ldev);
2337 }
2338
2339 static void
linux_destroy_dev(struct linux_cdev * ldev)2340 linux_destroy_dev(struct linux_cdev *ldev)
2341 {
2342
2343 if (ldev->cdev == NULL)
2344 return;
2345
2346 MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2347 MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2348
2349 atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2350 while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2351 pause("ldevdtr", hz / 4);
2352
2353 destroy_dev(ldev->cdev);
2354 ldev->cdev = NULL;
2355 }
2356
2357 const struct kobj_type linux_cdev_ktype = {
2358 .release = linux_cdev_release,
2359 };
2360
2361 const struct kobj_type linux_cdev_static_ktype = {
2362 .release = linux_cdev_static_release,
2363 };
2364
2365 static void
linux_handle_ifnet_link_event(void * arg,struct ifnet * ifp,int linkstate)2366 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2367 {
2368 struct notifier_block *nb;
2369 struct netdev_notifier_info ni;
2370
2371 nb = arg;
2372 ni.ifp = ifp;
2373 ni.dev = (struct net_device *)ifp;
2374 if (linkstate == LINK_STATE_UP)
2375 nb->notifier_call(nb, NETDEV_UP, &ni);
2376 else
2377 nb->notifier_call(nb, NETDEV_DOWN, &ni);
2378 }
2379
2380 static void
linux_handle_ifnet_arrival_event(void * arg,struct ifnet * ifp)2381 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2382 {
2383 struct notifier_block *nb;
2384 struct netdev_notifier_info ni;
2385
2386 nb = arg;
2387 ni.ifp = ifp;
2388 ni.dev = (struct net_device *)ifp;
2389 nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2390 }
2391
2392 static void
linux_handle_ifnet_departure_event(void * arg,struct ifnet * ifp)2393 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2394 {
2395 struct notifier_block *nb;
2396 struct netdev_notifier_info ni;
2397
2398 nb = arg;
2399 ni.ifp = ifp;
2400 ni.dev = (struct net_device *)ifp;
2401 nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2402 }
2403
2404 static void
linux_handle_iflladdr_event(void * arg,struct ifnet * ifp)2405 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2406 {
2407 struct notifier_block *nb;
2408 struct netdev_notifier_info ni;
2409
2410 nb = arg;
2411 ni.ifp = ifp;
2412 ni.dev = (struct net_device *)ifp;
2413 nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2414 }
2415
2416 static void
linux_handle_ifaddr_event(void * arg,struct ifnet * ifp)2417 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2418 {
2419 struct notifier_block *nb;
2420 struct netdev_notifier_info ni;
2421
2422 nb = arg;
2423 ni.ifp = ifp;
2424 ni.dev = (struct net_device *)ifp;
2425 nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2426 }
2427
2428 int
register_netdevice_notifier(struct notifier_block * nb)2429 register_netdevice_notifier(struct notifier_block *nb)
2430 {
2431
2432 nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2433 ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2434 nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2435 ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2436 nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2437 ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2438 nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2439 iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2440
2441 return (0);
2442 }
2443
2444 int
register_inetaddr_notifier(struct notifier_block * nb)2445 register_inetaddr_notifier(struct notifier_block *nb)
2446 {
2447
2448 nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2449 ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2450 return (0);
2451 }
2452
2453 int
unregister_netdevice_notifier(struct notifier_block * nb)2454 unregister_netdevice_notifier(struct notifier_block *nb)
2455 {
2456
2457 EVENTHANDLER_DEREGISTER(ifnet_link_event,
2458 nb->tags[NETDEV_UP]);
2459 EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2460 nb->tags[NETDEV_REGISTER]);
2461 EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2462 nb->tags[NETDEV_UNREGISTER]);
2463 EVENTHANDLER_DEREGISTER(iflladdr_event,
2464 nb->tags[NETDEV_CHANGEADDR]);
2465
2466 return (0);
2467 }
2468
2469 int
unregister_inetaddr_notifier(struct notifier_block * nb)2470 unregister_inetaddr_notifier(struct notifier_block *nb)
2471 {
2472
2473 EVENTHANDLER_DEREGISTER(ifaddr_event,
2474 nb->tags[NETDEV_CHANGEIFADDR]);
2475
2476 return (0);
2477 }
2478
2479 struct list_sort_thunk {
2480 int (*cmp)(void *, struct list_head *, struct list_head *);
2481 void *priv;
2482 };
2483
2484 static inline int
linux_le_cmp(const void * d1,const void * d2,void * priv)2485 linux_le_cmp(const void *d1, const void *d2, void *priv)
2486 {
2487 struct list_head *le1, *le2;
2488 struct list_sort_thunk *thunk;
2489
2490 thunk = priv;
2491 le1 = *(__DECONST(struct list_head **, d1));
2492 le2 = *(__DECONST(struct list_head **, d2));
2493 return ((thunk->cmp)(thunk->priv, le1, le2));
2494 }
2495
2496 void
list_sort(void * priv,struct list_head * head,int (* cmp)(void * priv,struct list_head * a,struct list_head * b))2497 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2498 struct list_head *a, struct list_head *b))
2499 {
2500 struct list_sort_thunk thunk;
2501 struct list_head **ar, *le;
2502 size_t count, i;
2503
2504 count = 0;
2505 list_for_each(le, head)
2506 count++;
2507 ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2508 i = 0;
2509 list_for_each(le, head)
2510 ar[i++] = le;
2511 thunk.cmp = cmp;
2512 thunk.priv = priv;
2513 qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2514 INIT_LIST_HEAD(head);
2515 for (i = 0; i < count; i++)
2516 list_add_tail(ar[i], head);
2517 free(ar, M_KMALLOC);
2518 }
2519
2520 #if defined(__i386__) || defined(__amd64__)
2521 int
linux_wbinvd_on_all_cpus(void)2522 linux_wbinvd_on_all_cpus(void)
2523 {
2524
2525 pmap_invalidate_cache();
2526 return (0);
2527 }
2528 #endif
2529
2530 int
linux_on_each_cpu(void callback (void *),void * data)2531 linux_on_each_cpu(void callback(void *), void *data)
2532 {
2533
2534 smp_rendezvous(smp_no_rendezvous_barrier, callback,
2535 smp_no_rendezvous_barrier, data);
2536 return (0);
2537 }
2538
2539 int
linux_in_atomic(void)2540 linux_in_atomic(void)
2541 {
2542
2543 return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2544 }
2545
2546 struct linux_cdev *
linux_find_cdev(const char * name,unsigned major,unsigned minor)2547 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2548 {
2549 dev_t dev = MKDEV(major, minor);
2550 struct cdev *cdev;
2551
2552 dev_lock();
2553 LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2554 struct linux_cdev *ldev = cdev->si_drv1;
2555 if (ldev->dev == dev &&
2556 strcmp(kobject_name(&ldev->kobj), name) == 0) {
2557 break;
2558 }
2559 }
2560 dev_unlock();
2561
2562 return (cdev != NULL ? cdev->si_drv1 : NULL);
2563 }
2564
2565 int
__register_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops)2566 __register_chrdev(unsigned int major, unsigned int baseminor,
2567 unsigned int count, const char *name,
2568 const struct file_operations *fops)
2569 {
2570 struct linux_cdev *cdev;
2571 int ret = 0;
2572 int i;
2573
2574 for (i = baseminor; i < baseminor + count; i++) {
2575 cdev = cdev_alloc();
2576 cdev->ops = fops;
2577 kobject_set_name(&cdev->kobj, name);
2578
2579 ret = cdev_add(cdev, makedev(major, i), 1);
2580 if (ret != 0)
2581 break;
2582 }
2583 return (ret);
2584 }
2585
2586 int
__register_chrdev_p(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops,uid_t uid,gid_t gid,int mode)2587 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2588 unsigned int count, const char *name,
2589 const struct file_operations *fops, uid_t uid,
2590 gid_t gid, int mode)
2591 {
2592 struct linux_cdev *cdev;
2593 int ret = 0;
2594 int i;
2595
2596 for (i = baseminor; i < baseminor + count; i++) {
2597 cdev = cdev_alloc();
2598 cdev->ops = fops;
2599 kobject_set_name(&cdev->kobj, name);
2600
2601 ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2602 if (ret != 0)
2603 break;
2604 }
2605 return (ret);
2606 }
2607
2608 void
__unregister_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name)2609 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2610 unsigned int count, const char *name)
2611 {
2612 struct linux_cdev *cdevp;
2613 int i;
2614
2615 for (i = baseminor; i < baseminor + count; i++) {
2616 cdevp = linux_find_cdev(name, major, i);
2617 if (cdevp != NULL)
2618 cdev_del(cdevp);
2619 }
2620 }
2621
2622 void
linux_dump_stack(void)2623 linux_dump_stack(void)
2624 {
2625 #ifdef STACK
2626 struct stack st;
2627
2628 stack_save(&st);
2629 stack_print(&st);
2630 #endif
2631 }
2632
2633 int
linuxkpi_net_ratelimit(void)2634 linuxkpi_net_ratelimit(void)
2635 {
2636
2637 return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2638 lkpi_net_maxpps));
2639 }
2640
2641 struct io_mapping *
io_mapping_create_wc(resource_size_t base,unsigned long size)2642 io_mapping_create_wc(resource_size_t base, unsigned long size)
2643 {
2644 struct io_mapping *mapping;
2645
2646 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2647 if (mapping == NULL)
2648 return (NULL);
2649 return (io_mapping_init_wc(mapping, base, size));
2650 }
2651
2652 /* We likely want a linuxkpi_device.c at some point. */
2653 bool
device_can_wakeup(struct device * dev)2654 device_can_wakeup(struct device *dev)
2655 {
2656
2657 if (dev == NULL)
2658 return (false);
2659 /*
2660 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2661 * Normally this would be based on a bool in dev->power.XXX.
2662 * Check such as PCI PCIM_PCAP_*PME. We have no way to enable this yet.
2663 * We may get away by directly calling into bsddev for as long as
2664 * we can assume PCI only avoiding changing struct device breaking KBI.
2665 */
2666 pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2667 return (false);
2668 }
2669
2670 static void
devm_device_group_remove(struct device * dev,void * p)2671 devm_device_group_remove(struct device *dev, void *p)
2672 {
2673 const struct attribute_group **dr = p;
2674 const struct attribute_group *group = *dr;
2675
2676 sysfs_remove_group(&dev->kobj, group);
2677 }
2678
2679 int
lkpi_devm_device_add_group(struct device * dev,const struct attribute_group * group)2680 lkpi_devm_device_add_group(struct device *dev,
2681 const struct attribute_group *group)
2682 {
2683 const struct attribute_group **dr;
2684 int ret;
2685
2686 dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2687 if (dr == NULL)
2688 return (-ENOMEM);
2689
2690 ret = sysfs_create_group(&dev->kobj, group);
2691 if (ret == 0) {
2692 *dr = group;
2693 devres_add(dev, dr);
2694 } else
2695 devres_free(dr);
2696
2697 return (ret);
2698 }
2699
2700 #if defined(__i386__) || defined(__amd64__)
2701 bool linux_cpu_has_clflush;
2702 struct cpuinfo_x86 boot_cpu_data;
2703 struct cpuinfo_x86 *__cpu_data;
2704 #endif
2705
2706 cpumask_t *
lkpi_get_static_single_cpu_mask(int cpuid)2707 lkpi_get_static_single_cpu_mask(int cpuid)
2708 {
2709
2710 KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2711 __func__, cpuid));
2712 KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2713 __func__, cpuid));
2714
2715 return (static_single_cpu_mask[cpuid]);
2716 }
2717
2718 bool
lkpi_xen_initial_domain(void)2719 lkpi_xen_initial_domain(void)
2720 {
2721 #ifdef XENHVM
2722 return (xen_initial_domain());
2723 #else
2724 return (false);
2725 #endif
2726 }
2727
2728 bool
lkpi_xen_pv_domain(void)2729 lkpi_xen_pv_domain(void)
2730 {
2731 #ifdef XENHVM
2732 return (xen_pv_domain());
2733 #else
2734 return (false);
2735 #endif
2736 }
2737
2738 static void
linux_compat_init(void * arg)2739 linux_compat_init(void *arg)
2740 {
2741 struct sysctl_oid *rootoid;
2742 int i;
2743
2744 #if defined(__i386__) || defined(__amd64__)
2745 static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2746 [X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2747 [X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2748 [X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2749 [X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2750 [X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2751 [X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2752 [X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2753 [X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2754 };
2755 uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2756
2757 for (i = 0; i < X86_VENDOR_NUM; i++) {
2758 if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2759 x86_vendor = i;
2760 break;
2761 }
2762 }
2763 linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2764 boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2765 boot_cpu_data.x86_max_cores = mp_ncpus;
2766 boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2767 boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2768 boot_cpu_data.x86_vendor = x86_vendor;
2769
2770 __cpu_data = mallocarray(mp_maxid + 1,
2771 sizeof(*__cpu_data), M_KMALLOC, M_WAITOK | M_ZERO);
2772 CPU_FOREACH(i) {
2773 __cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2774 __cpu_data[i].x86_max_cores = mp_ncpus;
2775 __cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2776 __cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2777 __cpu_data[i].x86_vendor = x86_vendor;
2778 }
2779 #endif
2780 rw_init(&linux_vma_lock, "lkpi-vma-lock");
2781
2782 rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2783 OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2784 kobject_init(&linux_class_root, &linux_class_ktype);
2785 kobject_set_name(&linux_class_root, "class");
2786 linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2787 OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2788 kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2789 kobject_set_name(&linux_root_device.kobj, "device");
2790 linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2791 SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2792 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2793 linux_root_device.bsddev = root_bus;
2794 linux_class_misc.name = "misc";
2795 class_register(&linux_class_misc);
2796 INIT_LIST_HEAD(&pci_drivers);
2797 INIT_LIST_HEAD(&pci_devices);
2798 spin_lock_init(&pci_lock);
2799 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2800 for (i = 0; i < VMMAP_HASH_SIZE; i++)
2801 LIST_INIT(&vmmaphead[i]);
2802 init_waitqueue_head(&linux_bit_waitq);
2803 init_waitqueue_head(&linux_var_waitq);
2804
2805 CPU_COPY(&all_cpus, &cpu_online_mask);
2806 /*
2807 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2808 * CPUs are indexed from 0..(mp_maxid). The entry for cpuid 0 will only
2809 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2810 * This is used by cpumask_of() (and possibly others in the future) for,
2811 * e.g., drivers to pass hints to irq_set_affinity_hint().
2812 */
2813 static_single_cpu_mask = mallocarray(mp_maxid + 1,
2814 sizeof(static_single_cpu_mask), M_KMALLOC, M_WAITOK | M_ZERO);
2815
2816 /*
2817 * When the number of CPUs reach a threshold, we start to save memory
2818 * given the sets are static by overlapping those having their single
2819 * bit set at same position in a bitset word. Asymptotically, this
2820 * regular scheme is in O(n²) whereas the overlapping one is in O(n)
2821 * only with n being the maximum number of CPUs, so the gain will become
2822 * huge quite quickly. The threshold for 64-bit architectures is 128
2823 * CPUs.
2824 */
2825 if (mp_ncpus < (2 * _BITSET_BITS)) {
2826 cpumask_t *sscm_ptr;
2827
2828 /*
2829 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2830 * (_BITSET_BITS / 8)' bytes (for comparison with the
2831 * overlapping scheme).
2832 */
2833 static_single_cpu_mask_lcs = mallocarray(mp_ncpus,
2834 sizeof(*static_single_cpu_mask_lcs),
2835 M_KMALLOC, M_WAITOK | M_ZERO);
2836
2837 sscm_ptr = static_single_cpu_mask_lcs;
2838 CPU_FOREACH(i) {
2839 static_single_cpu_mask[i] = sscm_ptr++;
2840 CPU_SET(i, static_single_cpu_mask[i]);
2841 }
2842 } else {
2843 /* Pointer to a bitset word. */
2844 __typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2845
2846 /*
2847 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2848 * really) with a single bit set that can be reused for all
2849 * single CPU masks by making them start at different offsets.
2850 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2851 * the word having its single bit set, and the same amount
2852 * after.
2853 */
2854 static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2855 (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2856 M_KMALLOC, M_WAITOK | M_ZERO);
2857
2858 /*
2859 * We rely below on cpuset_t and the bitset generic
2860 * implementation assigning words in the '__bits' array in the
2861 * same order of bits (i.e., little-endian ordering, not to be
2862 * confused with machine endianness, which concerns bits in
2863 * words and other integers). This is an imperfect test, but it
2864 * will detect a change to big-endian ordering.
2865 */
2866 _Static_assert(
2867 __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2868 "Assumes a bitset implementation that is little-endian "
2869 "on its words");
2870
2871 /* Initialize the single bit of each static span. */
2872 bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2873 (__bitset_words(CPU_SETSIZE) - 1);
2874 for (i = 0; i < _BITSET_BITS; i++) {
2875 CPU_SET(i, (cpuset_t *)bwp);
2876 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2877 }
2878
2879 /*
2880 * Finally set all CPU masks to the proper word in their
2881 * relevant span.
2882 */
2883 CPU_FOREACH(i) {
2884 bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2885 /* Find the non-zero word of the relevant span. */
2886 bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2887 (i % _BITSET_BITS) +
2888 __bitset_words(CPU_SETSIZE) - 1;
2889 /* Shift to find the CPU mask start. */
2890 bwp -= (i / _BITSET_BITS);
2891 static_single_cpu_mask[i] = (cpuset_t *)bwp;
2892 }
2893 }
2894
2895 strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2896 }
2897 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2898
2899 static void
linux_compat_uninit(void * arg)2900 linux_compat_uninit(void *arg)
2901 {
2902 linux_kobject_kfree_name(&linux_class_root);
2903 linux_kobject_kfree_name(&linux_root_device.kobj);
2904 linux_kobject_kfree_name(&linux_class_misc.kobj);
2905
2906 free(static_single_cpu_mask_lcs, M_KMALLOC);
2907 free(static_single_cpu_mask, M_KMALLOC);
2908 #if defined(__i386__) || defined(__amd64__)
2909 free(__cpu_data, M_KMALLOC);
2910 #endif
2911
2912 mtx_destroy(&vmmaplock);
2913 spin_lock_destroy(&pci_lock);
2914 rw_destroy(&linux_vma_lock);
2915 }
2916 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2917
2918 /*
2919 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2920 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2921 * used. Assert these types have the same size, else some parts of the
2922 * LinuxKPI may not work like expected:
2923 */
2924 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2925