xref: /freebsd/sys/contrib/libsodium/src/libsodium/crypto_pwhash/argon2/argon2-fill-block-avx2.c (revision 3611ec604864a7d4dcc9a3ea898c80eb35eef8a0)
1 /*
2  * Argon2 source code package
3  *
4  * Written by Daniel Dinu and Dmitry Khovratovich, 2015
5  *
6  * This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
7  *
8  * You should have received a copy of the CC0 Public Domain Dedication along
9  * with
10  * this software. If not, see
11  * <http://creativecommons.org/publicdomain/zero/1.0/>.
12  */
13 
14 #include <stdint.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include "argon2-core.h"
19 #include "argon2.h"
20 #include "private/common.h"
21 #include "private/sse2_64_32.h"
22 
23 #if defined(HAVE_AVX2INTRIN_H) && defined(HAVE_EMMINTRIN_H) && \
24     defined(HAVE_TMMINTRIN_H) && defined(HAVE_SMMINTRIN_H)
25 
26 # ifdef __GNUC__
27 #  pragma GCC target("sse2")
28 #  pragma GCC target("ssse3")
29 #  pragma GCC target("sse4.1")
30 #  pragma GCC target("avx2")
31 # endif
32 
33 # ifdef _MSC_VER
34 #  include <intrin.h> /* for _mm_set_epi64x */
35 # endif
36 #include <emmintrin.h>
37 #include <immintrin.h>
38 #include <smmintrin.h>
39 #include <tmmintrin.h>
40 
41 # include "blamka-round-avx2.h"
42 
43 static void
fill_block(__m256i * state,const uint8_t * ref_block,uint8_t * next_block)44 fill_block(__m256i *state, const uint8_t *ref_block, uint8_t *next_block)
45 {
46     __m256i  block_XY[ARGON2_HWORDS_IN_BLOCK];
47     uint32_t i;
48 
49     for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
50         block_XY[i] = state[i] = _mm256_xor_si256(
51             state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i])));
52     }
53 
54     for (i = 0; i < 4; ++i) {
55         BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
56                        state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
57     }
58 
59     for (i = 0; i < 4; ++i) {
60         BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
61                        state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
62     }
63 
64     for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
65         state[i] = _mm256_xor_si256(state[i], block_XY[i]);
66         _mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]);
67     }
68 }
69 
70 static void
fill_block_with_xor(__m256i * state,const uint8_t * ref_block,uint8_t * next_block)71 fill_block_with_xor(__m256i *state, const uint8_t *ref_block,
72                     uint8_t *next_block)
73 {
74     __m256i  block_XY[ARGON2_HWORDS_IN_BLOCK];
75     uint32_t i;
76 
77     for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
78         state[i] = _mm256_xor_si256(
79             state[i], _mm256_loadu_si256((__m256i const *) (&ref_block[32 * i])));
80         block_XY[i] = _mm256_xor_si256(
81             state[i], _mm256_loadu_si256((__m256i const *) (&next_block[32 * i])));
82     }
83 
84     for (i = 0; i < 4; ++i) {
85         BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
86                        state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
87     }
88 
89     for (i = 0; i < 4; ++i) {
90         BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
91                        state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
92     }
93 
94     for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
95         state[i] = _mm256_xor_si256(state[i], block_XY[i]);
96         _mm256_storeu_si256((__m256i *) (&next_block[32 * i]), state[i]);
97     }
98 }
99 
100 static void
generate_addresses(const argon2_instance_t * instance,const argon2_position_t * position,uint64_t * pseudo_rands)101 generate_addresses(const argon2_instance_t *instance,
102                    const argon2_position_t *position, uint64_t *pseudo_rands)
103 {
104     block    address_block, input_block, tmp_block;
105     uint32_t i;
106 
107     init_block_value(&address_block, 0);
108     init_block_value(&input_block, 0);
109 
110     if (instance != NULL && position != NULL) {
111         input_block.v[0] = position->pass;
112         input_block.v[1] = position->lane;
113         input_block.v[2] = position->slice;
114         input_block.v[3] = instance->memory_blocks;
115         input_block.v[4] = instance->passes;
116         input_block.v[5] = instance->type;
117 
118         for (i = 0; i < instance->segment_length; ++i) {
119             if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
120                 /* Temporary zero-initialized blocks */
121                 __m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
122                 __m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
123 
124                 memset(zero_block, 0, sizeof(zero_block));
125                 memset(zero2_block, 0, sizeof(zero2_block));
126                 init_block_value(&address_block, 0);
127                 init_block_value(&tmp_block, 0);
128                 /* Increasing index counter */
129                 input_block.v[6]++;
130                 /* First iteration of G */
131                 fill_block_with_xor(zero_block, (uint8_t *) &input_block.v,
132                                     (uint8_t *) &tmp_block.v);
133                 /* Second iteration of G */
134                 fill_block_with_xor(zero2_block, (uint8_t *) &tmp_block.v,
135                                     (uint8_t *) &address_block.v);
136             }
137 
138             pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
139         }
140     }
141 }
142 
143 void
fill_segment_avx2(const argon2_instance_t * instance,argon2_position_t position)144 fill_segment_avx2(const argon2_instance_t *instance,
145                   argon2_position_t        position)
146 {
147     block    *ref_block = NULL, *curr_block = NULL;
148     uint64_t  pseudo_rand, ref_index, ref_lane;
149     uint32_t  prev_offset, curr_offset;
150     uint32_t  starting_index, i;
151     __m256i   state[ARGON2_HWORDS_IN_BLOCK];
152     int       data_independent_addressing = 1;
153 
154     /* Pseudo-random values that determine the reference block position */
155     uint64_t *pseudo_rands = NULL;
156 
157     if (instance == NULL) {
158         return;
159     }
160 
161     if (instance->type == Argon2_id &&
162         (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
163         data_independent_addressing = 0;
164     }
165 
166     pseudo_rands = instance->pseudo_rands;
167 
168     if (data_independent_addressing) {
169         generate_addresses(instance, &position, pseudo_rands);
170     }
171 
172     starting_index = 0;
173 
174     if ((0 == position.pass) && (0 == position.slice)) {
175         starting_index = 2; /* we have already generated the first two blocks */
176     }
177 
178     /* Offset of the current block */
179     curr_offset = position.lane * instance->lane_length +
180                   position.slice * instance->segment_length + starting_index;
181 
182     if (0 == curr_offset % instance->lane_length) {
183         /* Last block in this lane */
184         prev_offset = curr_offset + instance->lane_length - 1;
185     } else {
186         /* Previous block */
187         prev_offset = curr_offset - 1;
188     }
189 
190     memcpy(state, ((instance->region->memory + prev_offset)->v),
191            ARGON2_BLOCK_SIZE);
192 
193     for (i = starting_index; i < instance->segment_length;
194          ++i, ++curr_offset, ++prev_offset) {
195         /*1.1 Rotating prev_offset if needed */
196         if (curr_offset % instance->lane_length == 1) {
197             prev_offset = curr_offset - 1;
198         }
199 
200         /* 1.2 Computing the index of the reference block */
201         /* 1.2.1 Taking pseudo-random value from the previous block */
202         if (data_independent_addressing) {
203 #pragma warning(push)
204 #pragma warning(disable : 6385)
205             pseudo_rand = pseudo_rands[i];
206 #pragma warning(pop)
207         } else {
208             pseudo_rand = instance->region->memory[prev_offset].v[0];
209         }
210 
211         /* 1.2.2 Computing the lane of the reference block */
212         ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
213 
214         if ((position.pass == 0) && (position.slice == 0)) {
215             /* Can not reference other lanes yet */
216             ref_lane = position.lane;
217         }
218 
219         /* 1.2.3 Computing the number of possible reference block within the
220          * lane.
221          */
222         position.index = i;
223         ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
224                                 ref_lane == position.lane);
225 
226         /* 2 Creating a new block */
227         ref_block = instance->region->memory +
228                     instance->lane_length * ref_lane + ref_index;
229         curr_block = instance->region->memory + curr_offset;
230         if (position.pass != 0) {
231             fill_block_with_xor(state, (uint8_t *) ref_block->v,
232                                 (uint8_t *) curr_block->v);
233         } else {
234             fill_block(state, (uint8_t *) ref_block->v,
235                        (uint8_t *) curr_block->v);
236         }
237     }
238 }
239 #endif
240