1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56
57 /*
58 * FIXME: remove all knowledge of the buffer layer from the core VM
59 */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61
62 #include <asm/mman.h>
63
64 #include "swap.h"
65
66 /*
67 * Shared mappings implemented 30.11.1994. It's not fully working yet,
68 * though.
69 *
70 * Shared mappings now work. 15.8.1995 Bruno.
71 *
72 * finished 'unifying' the page and buffer cache and SMP-threaded the
73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74 *
75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76 */
77
78 /*
79 * Lock ordering:
80 *
81 * ->i_mmap_rwsem (truncate_pagecache)
82 * ->private_lock (__free_pte->block_dirty_folio)
83 * ->swap_lock (exclusive_swap_page, others)
84 * ->i_pages lock
85 *
86 * ->i_rwsem
87 * ->invalidate_lock (acquired by fs in truncate path)
88 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
89 *
90 * ->mmap_lock
91 * ->i_mmap_rwsem
92 * ->page_table_lock or pte_lock (various, mainly in memory.c)
93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
94 *
95 * ->mmap_lock
96 * ->invalidate_lock (filemap_fault)
97 * ->lock_page (filemap_fault, access_process_vm)
98 *
99 * ->i_rwsem (generic_perform_write)
100 * ->mmap_lock (fault_in_readable->do_page_fault)
101 *
102 * bdi->wb.list_lock
103 * sb_lock (fs/fs-writeback.c)
104 * ->i_pages lock (__sync_single_inode)
105 *
106 * ->i_mmap_rwsem
107 * ->anon_vma.lock (vma_merge)
108 *
109 * ->anon_vma.lock
110 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
111 *
112 * ->page_table_lock or pte_lock
113 * ->swap_lock (try_to_unmap_one)
114 * ->private_lock (try_to_unmap_one)
115 * ->i_pages lock (try_to_unmap_one)
116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
mapping_set_update(struct xa_state * xas,struct address_space * mapping)127 static void mapping_set_update(struct xa_state *xas,
128 struct address_space *mapping)
129 {
130 if (dax_mapping(mapping) || shmem_mapping(mapping))
131 return;
132 xas_set_update(xas, workingset_update_node);
133 xas_set_lru(xas, &shadow_nodes);
134 }
135
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)136 static void page_cache_delete(struct address_space *mapping,
137 struct folio *folio, void *shadow)
138 {
139 XA_STATE(xas, &mapping->i_pages, folio->index);
140 long nr = 1;
141
142 mapping_set_update(&xas, mapping);
143
144 xas_set_order(&xas, folio->index, folio_order(folio));
145 nr = folio_nr_pages(folio);
146
147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148
149 xas_store(&xas, shadow);
150 xas_init_marks(&xas);
151
152 folio->mapping = NULL;
153 /* Leave page->index set: truncation lookup relies upon it */
154 mapping->nrpages -= nr;
155 }
156
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)157 static void filemap_unaccount_folio(struct address_space *mapping,
158 struct folio *folio)
159 {
160 long nr;
161
162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
165 current->comm, folio_pfn(folio));
166 dump_page(&folio->page, "still mapped when deleted");
167 dump_stack();
168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169
170 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 int mapcount = folio_mapcount(folio);
172
173 if (folio_ref_count(folio) >= mapcount + 2) {
174 /*
175 * All vmas have already been torn down, so it's
176 * a good bet that actually the page is unmapped
177 * and we'd rather not leak it: if we're wrong,
178 * another bad page check should catch it later.
179 */
180 atomic_set(&folio->_mapcount, -1);
181 folio_ref_sub(folio, mapcount);
182 }
183 }
184 }
185
186 /* hugetlb folios do not participate in page cache accounting. */
187 if (folio_test_hugetlb(folio))
188 return;
189
190 nr = folio_nr_pages(folio);
191
192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 if (folio_test_swapbacked(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 if (folio_test_pmd_mappable(folio))
196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 } else if (folio_test_pmd_mappable(folio)) {
198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 filemap_nr_thps_dec(mapping);
200 }
201
202 /*
203 * At this point folio must be either written or cleaned by
204 * truncate. Dirty folio here signals a bug and loss of
205 * unwritten data - on ordinary filesystems.
206 *
207 * But it's harmless on in-memory filesystems like tmpfs; and can
208 * occur when a driver which did get_user_pages() sets page dirty
209 * before putting it, while the inode is being finally evicted.
210 *
211 * Below fixes dirty accounting after removing the folio entirely
212 * but leaves the dirty flag set: it has no effect for truncated
213 * folio and anyway will be cleared before returning folio to
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 mapping_can_writeback(mapping)))
218 folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220
221 /*
222 * Delete a page from the page cache and free it. Caller has to make
223 * sure the page is locked and that nobody else uses it - or that usage
224 * is safe. The caller must hold the i_pages lock.
225 */
__filemap_remove_folio(struct folio * folio,void * shadow)226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228 struct address_space *mapping = folio->mapping;
229
230 trace_mm_filemap_delete_from_page_cache(folio);
231 filemap_unaccount_folio(mapping, folio);
232 page_cache_delete(mapping, folio, shadow);
233 }
234
filemap_free_folio(struct address_space * mapping,struct folio * folio)235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237 void (*free_folio)(struct folio *);
238 int refs = 1;
239
240 free_folio = mapping->a_ops->free_folio;
241 if (free_folio)
242 free_folio(folio);
243
244 if (folio_test_large(folio))
245 refs = folio_nr_pages(folio);
246 folio_put_refs(folio, refs);
247 }
248
249 /**
250 * filemap_remove_folio - Remove folio from page cache.
251 * @folio: The folio.
252 *
253 * This must be called only on folios that are locked and have been
254 * verified to be in the page cache. It will never put the folio into
255 * the free list because the caller has a reference on the page.
256 */
filemap_remove_folio(struct folio * folio)257 void filemap_remove_folio(struct folio *folio)
258 {
259 struct address_space *mapping = folio->mapping;
260
261 BUG_ON(!folio_test_locked(folio));
262 spin_lock(&mapping->host->i_lock);
263 xa_lock_irq(&mapping->i_pages);
264 __filemap_remove_folio(folio, NULL);
265 xa_unlock_irq(&mapping->i_pages);
266 if (mapping_shrinkable(mapping))
267 inode_add_lru(mapping->host);
268 spin_unlock(&mapping->host->i_lock);
269
270 filemap_free_folio(mapping, folio);
271 }
272
273 /*
274 * page_cache_delete_batch - delete several folios from page cache
275 * @mapping: the mapping to which folios belong
276 * @fbatch: batch of folios to delete
277 *
278 * The function walks over mapping->i_pages and removes folios passed in
279 * @fbatch from the mapping. The function expects @fbatch to be sorted
280 * by page index and is optimised for it to be dense.
281 * It tolerates holes in @fbatch (mapping entries at those indices are not
282 * modified).
283 *
284 * The function expects the i_pages lock to be held.
285 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)286 static void page_cache_delete_batch(struct address_space *mapping,
287 struct folio_batch *fbatch)
288 {
289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 long total_pages = 0;
291 int i = 0;
292 struct folio *folio;
293
294 mapping_set_update(&xas, mapping);
295 xas_for_each(&xas, folio, ULONG_MAX) {
296 if (i >= folio_batch_count(fbatch))
297 break;
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
300 if (xa_is_value(folio))
301 continue;
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
309 if (folio != fbatch->folios[i]) {
310 VM_BUG_ON_FOLIO(folio->index >
311 fbatch->folios[i]->index, folio);
312 continue;
313 }
314
315 WARN_ON_ONCE(!folio_test_locked(folio));
316
317 folio->mapping = NULL;
318 /* Leave folio->index set: truncation lookup relies on it */
319
320 i++;
321 xas_store(&xas, NULL);
322 total_pages += folio_nr_pages(folio);
323 }
324 mapping->nrpages -= total_pages;
325 }
326
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)327 void delete_from_page_cache_batch(struct address_space *mapping,
328 struct folio_batch *fbatch)
329 {
330 int i;
331
332 if (!folio_batch_count(fbatch))
333 return;
334
335 spin_lock(&mapping->host->i_lock);
336 xa_lock_irq(&mapping->i_pages);
337 for (i = 0; i < folio_batch_count(fbatch); i++) {
338 struct folio *folio = fbatch->folios[i];
339
340 trace_mm_filemap_delete_from_page_cache(folio);
341 filemap_unaccount_folio(mapping, folio);
342 }
343 page_cache_delete_batch(mapping, fbatch);
344 xa_unlock_irq(&mapping->i_pages);
345 if (mapping_shrinkable(mapping))
346 inode_add_lru(mapping->host);
347 spin_unlock(&mapping->host->i_lock);
348
349 for (i = 0; i < folio_batch_count(fbatch); i++)
350 filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352
filemap_check_errors(struct address_space * mapping)353 int filemap_check_errors(struct address_space *mapping)
354 {
355 int ret = 0;
356 /* Check for outstanding write errors */
357 if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 ret = -ENOSPC;
360 if (test_bit(AS_EIO, &mapping->flags) &&
361 test_and_clear_bit(AS_EIO, &mapping->flags))
362 ret = -EIO;
363 return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366
filemap_check_and_keep_errors(struct address_space * mapping)367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 /* Check for outstanding write errors */
370 if (test_bit(AS_EIO, &mapping->flags))
371 return -EIO;
372 if (test_bit(AS_ENOSPC, &mapping->flags))
373 return -ENOSPC;
374 return 0;
375 }
376
377 /**
378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379 * @mapping: address space structure to write
380 * @wbc: the writeback_control controlling the writeout
381 *
382 * Call writepages on the mapping using the provided wbc to control the
383 * writeout.
384 *
385 * Return: %0 on success, negative error code otherwise.
386 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 struct writeback_control *wbc)
389 {
390 int ret;
391
392 if (!mapping_can_writeback(mapping) ||
393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 return 0;
395
396 wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 ret = do_writepages(mapping, wbc);
398 wbc_detach_inode(wbc);
399 return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402
403 /**
404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405 * @mapping: address space structure to write
406 * @start: offset in bytes where the range starts
407 * @end: offset in bytes where the range ends (inclusive)
408 * @sync_mode: enable synchronous operation
409 *
410 * Start writeback against all of a mapping's dirty pages that lie
411 * within the byte offsets <start, end> inclusive.
412 *
413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414 * opposed to a regular memory cleansing writeback. The difference between
415 * these two operations is that if a dirty page/buffer is encountered, it must
416 * be waited upon, and not just skipped over.
417 *
418 * Return: %0 on success, negative error code otherwise.
419 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 loff_t end, int sync_mode)
422 {
423 struct writeback_control wbc = {
424 .sync_mode = sync_mode,
425 .nr_to_write = LONG_MAX,
426 .range_start = start,
427 .range_end = end,
428 };
429
430 return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 int sync_mode)
435 {
436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438
filemap_fdatawrite(struct address_space * mapping)439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 loff_t end)
447 {
448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451
452 /**
453 * filemap_flush - mostly a non-blocking flush
454 * @mapping: target address_space
455 *
456 * This is a mostly non-blocking flush. Not suitable for data-integrity
457 * purposes - I/O may not be started against all dirty pages.
458 *
459 * Return: %0 on success, negative error code otherwise.
460 */
filemap_flush(struct address_space * mapping)461 int filemap_flush(struct address_space *mapping)
462 {
463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466
467 /**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
478 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)479 bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481 {
482 struct folio *folio;
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
485
486 if (end_byte < start_byte)
487 return false;
488
489 rcu_read_lock();
490 for (;;) {
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
493 continue;
494 /* Shadow entries don't count */
495 if (xa_is_value(folio))
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
505
506 return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 loff_t start_byte, loff_t end_byte)
512 {
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
519
520 while (index <= end) {
521 unsigned i;
522
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
527 break;
528
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
531
532 folio_wait_writeback(folio);
533 }
534 folio_batch_release(&fbatch);
535 cond_resched();
536 }
537 }
538
539 /**
540 * filemap_fdatawait_range - wait for writeback to complete
541 * @mapping: address space structure to wait for
542 * @start_byte: offset in bytes where the range starts
543 * @end_byte: offset in bytes where the range ends (inclusive)
544 *
545 * Walk the list of under-writeback pages of the given address space
546 * in the given range and wait for all of them. Check error status of
547 * the address space and return it.
548 *
549 * Since the error status of the address space is cleared by this function,
550 * callers are responsible for checking the return value and handling and/or
551 * reporting the error.
552 *
553 * Return: error status of the address space.
554 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 loff_t end_byte)
557 {
558 __filemap_fdatawait_range(mapping, start_byte, end_byte);
559 return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562
563 /**
564 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565 * @mapping: address space structure to wait for
566 * @start_byte: offset in bytes where the range starts
567 * @end_byte: offset in bytes where the range ends (inclusive)
568 *
569 * Walk the list of under-writeback pages of the given address space in the
570 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
571 * this function does not clear error status of the address space.
572 *
573 * Use this function if callers don't handle errors themselves. Expected
574 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575 * fsfreeze(8)
576 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 loff_t start_byte, loff_t end_byte)
579 {
580 __filemap_fdatawait_range(mapping, start_byte, end_byte);
581 return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584
585 /**
586 * file_fdatawait_range - wait for writeback to complete
587 * @file: file pointing to address space structure to wait for
588 * @start_byte: offset in bytes where the range starts
589 * @end_byte: offset in bytes where the range ends (inclusive)
590 *
591 * Walk the list of under-writeback pages of the address space that file
592 * refers to, in the given range and wait for all of them. Check error
593 * status of the address space vs. the file->f_wb_err cursor and return it.
594 *
595 * Since the error status of the file is advanced by this function,
596 * callers are responsible for checking the return value and handling and/or
597 * reporting the error.
598 *
599 * Return: error status of the address space vs. the file->f_wb_err cursor.
600 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 struct address_space *mapping = file->f_mapping;
604
605 __filemap_fdatawait_range(mapping, start_byte, end_byte);
606 return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609
610 /**
611 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612 * @mapping: address space structure to wait for
613 *
614 * Walk the list of under-writeback pages of the given address space
615 * and wait for all of them. Unlike filemap_fdatawait(), this function
616 * does not clear error status of the address space.
617 *
618 * Use this function if callers don't handle errors themselves. Expected
619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * fsfreeze(8)
621 *
622 * Return: error status of the address space.
623 */
filemap_fdatawait_keep_errors(struct address_space * mapping)624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630
631 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 return mapping->nrpages;
635 }
636
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)637 bool filemap_range_has_writeback(struct address_space *mapping,
638 loff_t start_byte, loff_t end_byte)
639 {
640 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 pgoff_t max = end_byte >> PAGE_SHIFT;
642 struct folio *folio;
643
644 if (end_byte < start_byte)
645 return false;
646
647 rcu_read_lock();
648 xas_for_each(&xas, folio, max) {
649 if (xas_retry(&xas, folio))
650 continue;
651 if (xa_is_value(folio))
652 continue;
653 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
654 folio_test_writeback(folio))
655 break;
656 }
657 rcu_read_unlock();
658 return folio != NULL;
659 }
660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
661
662 /**
663 * filemap_write_and_wait_range - write out & wait on a file range
664 * @mapping: the address_space for the pages
665 * @lstart: offset in bytes where the range starts
666 * @lend: offset in bytes where the range ends (inclusive)
667 *
668 * Write out and wait upon file offsets lstart->lend, inclusive.
669 *
670 * Note that @lend is inclusive (describes the last byte to be written) so
671 * that this function can be used to write to the very end-of-file (end = -1).
672 *
673 * Return: error status of the address space.
674 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)675 int filemap_write_and_wait_range(struct address_space *mapping,
676 loff_t lstart, loff_t lend)
677 {
678 int err = 0, err2;
679
680 if (lend < lstart)
681 return 0;
682
683 if (mapping_needs_writeback(mapping)) {
684 err = __filemap_fdatawrite_range(mapping, lstart, lend,
685 WB_SYNC_ALL);
686 /*
687 * Even if the above returned error, the pages may be
688 * written partially (e.g. -ENOSPC), so we wait for it.
689 * But the -EIO is special case, it may indicate the worst
690 * thing (e.g. bug) happened, so we avoid waiting for it.
691 */
692 if (err != -EIO)
693 __filemap_fdatawait_range(mapping, lstart, lend);
694 }
695 err2 = filemap_check_errors(mapping);
696 if (!err)
697 err = err2;
698 return err;
699 }
700 EXPORT_SYMBOL(filemap_write_and_wait_range);
701
__filemap_set_wb_err(struct address_space * mapping,int err)702 void __filemap_set_wb_err(struct address_space *mapping, int err)
703 {
704 errseq_t eseq = errseq_set(&mapping->wb_err, err);
705
706 trace_filemap_set_wb_err(mapping, eseq);
707 }
708 EXPORT_SYMBOL(__filemap_set_wb_err);
709
710 /**
711 * file_check_and_advance_wb_err - report wb error (if any) that was previously
712 * and advance wb_err to current one
713 * @file: struct file on which the error is being reported
714 *
715 * When userland calls fsync (or something like nfsd does the equivalent), we
716 * want to report any writeback errors that occurred since the last fsync (or
717 * since the file was opened if there haven't been any).
718 *
719 * Grab the wb_err from the mapping. If it matches what we have in the file,
720 * then just quickly return 0. The file is all caught up.
721 *
722 * If it doesn't match, then take the mapping value, set the "seen" flag in
723 * it and try to swap it into place. If it works, or another task beat us
724 * to it with the new value, then update the f_wb_err and return the error
725 * portion. The error at this point must be reported via proper channels
726 * (a'la fsync, or NFS COMMIT operation, etc.).
727 *
728 * While we handle mapping->wb_err with atomic operations, the f_wb_err
729 * value is protected by the f_lock since we must ensure that it reflects
730 * the latest value swapped in for this file descriptor.
731 *
732 * Return: %0 on success, negative error code otherwise.
733 */
file_check_and_advance_wb_err(struct file * file)734 int file_check_and_advance_wb_err(struct file *file)
735 {
736 int err = 0;
737 errseq_t old = READ_ONCE(file->f_wb_err);
738 struct address_space *mapping = file->f_mapping;
739
740 /* Locklessly handle the common case where nothing has changed */
741 if (errseq_check(&mapping->wb_err, old)) {
742 /* Something changed, must use slow path */
743 spin_lock(&file->f_lock);
744 old = file->f_wb_err;
745 err = errseq_check_and_advance(&mapping->wb_err,
746 &file->f_wb_err);
747 trace_file_check_and_advance_wb_err(file, old);
748 spin_unlock(&file->f_lock);
749 }
750
751 /*
752 * We're mostly using this function as a drop in replacement for
753 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
754 * that the legacy code would have had on these flags.
755 */
756 clear_bit(AS_EIO, &mapping->flags);
757 clear_bit(AS_ENOSPC, &mapping->flags);
758 return err;
759 }
760 EXPORT_SYMBOL(file_check_and_advance_wb_err);
761
762 /**
763 * file_write_and_wait_range - write out & wait on a file range
764 * @file: file pointing to address_space with pages
765 * @lstart: offset in bytes where the range starts
766 * @lend: offset in bytes where the range ends (inclusive)
767 *
768 * Write out and wait upon file offsets lstart->lend, inclusive.
769 *
770 * Note that @lend is inclusive (describes the last byte to be written) so
771 * that this function can be used to write to the very end-of-file (end = -1).
772 *
773 * After writing out and waiting on the data, we check and advance the
774 * f_wb_err cursor to the latest value, and return any errors detected there.
775 *
776 * Return: %0 on success, negative error code otherwise.
777 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)778 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
779 {
780 int err = 0, err2;
781 struct address_space *mapping = file->f_mapping;
782
783 if (lend < lstart)
784 return 0;
785
786 if (mapping_needs_writeback(mapping)) {
787 err = __filemap_fdatawrite_range(mapping, lstart, lend,
788 WB_SYNC_ALL);
789 /* See comment of filemap_write_and_wait() */
790 if (err != -EIO)
791 __filemap_fdatawait_range(mapping, lstart, lend);
792 }
793 err2 = file_check_and_advance_wb_err(file);
794 if (!err)
795 err = err2;
796 return err;
797 }
798 EXPORT_SYMBOL(file_write_and_wait_range);
799
800 /**
801 * replace_page_cache_folio - replace a pagecache folio with a new one
802 * @old: folio to be replaced
803 * @new: folio to replace with
804 *
805 * This function replaces a folio in the pagecache with a new one. On
806 * success it acquires the pagecache reference for the new folio and
807 * drops it for the old folio. Both the old and new folios must be
808 * locked. This function does not add the new folio to the LRU, the
809 * caller must do that.
810 *
811 * The remove + add is atomic. This function cannot fail.
812 */
replace_page_cache_folio(struct folio * old,struct folio * new)813 void replace_page_cache_folio(struct folio *old, struct folio *new)
814 {
815 struct address_space *mapping = old->mapping;
816 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
817 pgoff_t offset = old->index;
818 XA_STATE(xas, &mapping->i_pages, offset);
819
820 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
821 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
822 VM_BUG_ON_FOLIO(new->mapping, new);
823
824 folio_get(new);
825 new->mapping = mapping;
826 new->index = offset;
827
828 mem_cgroup_replace_folio(old, new);
829
830 xas_lock_irq(&xas);
831 xas_store(&xas, new);
832
833 old->mapping = NULL;
834 /* hugetlb pages do not participate in page cache accounting. */
835 if (!folio_test_hugetlb(old))
836 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
837 if (!folio_test_hugetlb(new))
838 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
839 if (folio_test_swapbacked(old))
840 __lruvec_stat_sub_folio(old, NR_SHMEM);
841 if (folio_test_swapbacked(new))
842 __lruvec_stat_add_folio(new, NR_SHMEM);
843 xas_unlock_irq(&xas);
844 if (free_folio)
845 free_folio(old);
846 folio_put(old);
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
849
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)850 noinline int __filemap_add_folio(struct address_space *mapping,
851 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
852 {
853 XA_STATE(xas, &mapping->i_pages, index);
854 void *alloced_shadow = NULL;
855 int alloced_order = 0;
856 bool huge;
857 long nr;
858
859 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
862 folio);
863 mapping_set_update(&xas, mapping);
864
865 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
866 xas_set_order(&xas, index, folio_order(folio));
867 huge = folio_test_hugetlb(folio);
868 nr = folio_nr_pages(folio);
869
870 gfp &= GFP_RECLAIM_MASK;
871 folio_ref_add(folio, nr);
872 folio->mapping = mapping;
873 folio->index = xas.xa_index;
874
875 for (;;) {
876 int order = -1, split_order = 0;
877 void *entry, *old = NULL;
878
879 xas_lock_irq(&xas);
880 xas_for_each_conflict(&xas, entry) {
881 old = entry;
882 if (!xa_is_value(entry)) {
883 xas_set_err(&xas, -EEXIST);
884 goto unlock;
885 }
886 /*
887 * If a larger entry exists,
888 * it will be the first and only entry iterated.
889 */
890 if (order == -1)
891 order = xas_get_order(&xas);
892 }
893
894 /* entry may have changed before we re-acquire the lock */
895 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
896 xas_destroy(&xas);
897 alloced_order = 0;
898 }
899
900 if (old) {
901 if (order > 0 && order > folio_order(folio)) {
902 /* How to handle large swap entries? */
903 BUG_ON(shmem_mapping(mapping));
904 if (!alloced_order) {
905 split_order = order;
906 goto unlock;
907 }
908 xas_split(&xas, old, order);
909 xas_reset(&xas);
910 }
911 if (shadowp)
912 *shadowp = old;
913 }
914
915 xas_store(&xas, folio);
916 if (xas_error(&xas))
917 goto unlock;
918
919 mapping->nrpages += nr;
920
921 /* hugetlb pages do not participate in page cache accounting */
922 if (!huge) {
923 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
924 if (folio_test_pmd_mappable(folio))
925 __lruvec_stat_mod_folio(folio,
926 NR_FILE_THPS, nr);
927 }
928
929 unlock:
930 xas_unlock_irq(&xas);
931
932 /* split needed, alloc here and retry. */
933 if (split_order) {
934 xas_split_alloc(&xas, old, split_order, gfp);
935 if (xas_error(&xas))
936 goto error;
937 alloced_shadow = old;
938 alloced_order = split_order;
939 xas_reset(&xas);
940 continue;
941 }
942
943 if (!xas_nomem(&xas, gfp))
944 break;
945 }
946
947 if (xas_error(&xas))
948 goto error;
949
950 trace_mm_filemap_add_to_page_cache(folio);
951 return 0;
952 error:
953 folio->mapping = NULL;
954 /* Leave page->index set: truncation relies upon it */
955 folio_put_refs(folio, nr);
956 return xas_error(&xas);
957 }
958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
959
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)960 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
961 pgoff_t index, gfp_t gfp)
962 {
963 void *shadow = NULL;
964 int ret;
965
966 ret = mem_cgroup_charge(folio, NULL, gfp);
967 if (ret)
968 return ret;
969
970 __folio_set_locked(folio);
971 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
972 if (unlikely(ret)) {
973 mem_cgroup_uncharge(folio);
974 __folio_clear_locked(folio);
975 } else {
976 /*
977 * The folio might have been evicted from cache only
978 * recently, in which case it should be activated like
979 * any other repeatedly accessed folio.
980 * The exception is folios getting rewritten; evicting other
981 * data from the working set, only to cache data that will
982 * get overwritten with something else, is a waste of memory.
983 */
984 WARN_ON_ONCE(folio_test_active(folio));
985 if (!(gfp & __GFP_WRITE) && shadow)
986 workingset_refault(folio, shadow);
987 folio_add_lru(folio);
988 }
989 return ret;
990 }
991 EXPORT_SYMBOL_GPL(filemap_add_folio);
992
993 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)994 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
995 {
996 int n;
997 struct folio *folio;
998
999 if (cpuset_do_page_mem_spread()) {
1000 unsigned int cpuset_mems_cookie;
1001 do {
1002 cpuset_mems_cookie = read_mems_allowed_begin();
1003 n = cpuset_mem_spread_node();
1004 folio = __folio_alloc_node_noprof(gfp, order, n);
1005 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1006
1007 return folio;
1008 }
1009 return folio_alloc_noprof(gfp, order);
1010 }
1011 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1012 #endif
1013
1014 /*
1015 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1016 *
1017 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1018 *
1019 * @mapping1: the first mapping to lock
1020 * @mapping2: the second mapping to lock
1021 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1022 void filemap_invalidate_lock_two(struct address_space *mapping1,
1023 struct address_space *mapping2)
1024 {
1025 if (mapping1 > mapping2)
1026 swap(mapping1, mapping2);
1027 if (mapping1)
1028 down_write(&mapping1->invalidate_lock);
1029 if (mapping2 && mapping1 != mapping2)
1030 down_write_nested(&mapping2->invalidate_lock, 1);
1031 }
1032 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1033
1034 /*
1035 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1036 *
1037 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1038 *
1039 * @mapping1: the first mapping to unlock
1040 * @mapping2: the second mapping to unlock
1041 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1042 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1043 struct address_space *mapping2)
1044 {
1045 if (mapping1)
1046 up_write(&mapping1->invalidate_lock);
1047 if (mapping2 && mapping1 != mapping2)
1048 up_write(&mapping2->invalidate_lock);
1049 }
1050 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1051
1052 /*
1053 * In order to wait for pages to become available there must be
1054 * waitqueues associated with pages. By using a hash table of
1055 * waitqueues where the bucket discipline is to maintain all
1056 * waiters on the same queue and wake all when any of the pages
1057 * become available, and for the woken contexts to check to be
1058 * sure the appropriate page became available, this saves space
1059 * at a cost of "thundering herd" phenomena during rare hash
1060 * collisions.
1061 */
1062 #define PAGE_WAIT_TABLE_BITS 8
1063 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1064 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1065
folio_waitqueue(struct folio * folio)1066 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1067 {
1068 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1069 }
1070
pagecache_init(void)1071 void __init pagecache_init(void)
1072 {
1073 int i;
1074
1075 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1076 init_waitqueue_head(&folio_wait_table[i]);
1077
1078 page_writeback_init();
1079 }
1080
1081 /*
1082 * The page wait code treats the "wait->flags" somewhat unusually, because
1083 * we have multiple different kinds of waits, not just the usual "exclusive"
1084 * one.
1085 *
1086 * We have:
1087 *
1088 * (a) no special bits set:
1089 *
1090 * We're just waiting for the bit to be released, and when a waker
1091 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1092 * and remove it from the wait queue.
1093 *
1094 * Simple and straightforward.
1095 *
1096 * (b) WQ_FLAG_EXCLUSIVE:
1097 *
1098 * The waiter is waiting to get the lock, and only one waiter should
1099 * be woken up to avoid any thundering herd behavior. We'll set the
1100 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1101 *
1102 * This is the traditional exclusive wait.
1103 *
1104 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1105 *
1106 * The waiter is waiting to get the bit, and additionally wants the
1107 * lock to be transferred to it for fair lock behavior. If the lock
1108 * cannot be taken, we stop walking the wait queue without waking
1109 * the waiter.
1110 *
1111 * This is the "fair lock handoff" case, and in addition to setting
1112 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1113 * that it now has the lock.
1114 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1115 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1116 {
1117 unsigned int flags;
1118 struct wait_page_key *key = arg;
1119 struct wait_page_queue *wait_page
1120 = container_of(wait, struct wait_page_queue, wait);
1121
1122 if (!wake_page_match(wait_page, key))
1123 return 0;
1124
1125 /*
1126 * If it's a lock handoff wait, we get the bit for it, and
1127 * stop walking (and do not wake it up) if we can't.
1128 */
1129 flags = wait->flags;
1130 if (flags & WQ_FLAG_EXCLUSIVE) {
1131 if (test_bit(key->bit_nr, &key->folio->flags))
1132 return -1;
1133 if (flags & WQ_FLAG_CUSTOM) {
1134 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1135 return -1;
1136 flags |= WQ_FLAG_DONE;
1137 }
1138 }
1139
1140 /*
1141 * We are holding the wait-queue lock, but the waiter that
1142 * is waiting for this will be checking the flags without
1143 * any locking.
1144 *
1145 * So update the flags atomically, and wake up the waiter
1146 * afterwards to avoid any races. This store-release pairs
1147 * with the load-acquire in folio_wait_bit_common().
1148 */
1149 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1150 wake_up_state(wait->private, mode);
1151
1152 /*
1153 * Ok, we have successfully done what we're waiting for,
1154 * and we can unconditionally remove the wait entry.
1155 *
1156 * Note that this pairs with the "finish_wait()" in the
1157 * waiter, and has to be the absolute last thing we do.
1158 * After this list_del_init(&wait->entry) the wait entry
1159 * might be de-allocated and the process might even have
1160 * exited.
1161 */
1162 list_del_init_careful(&wait->entry);
1163 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1164 }
1165
folio_wake_bit(struct folio * folio,int bit_nr)1166 static void folio_wake_bit(struct folio *folio, int bit_nr)
1167 {
1168 wait_queue_head_t *q = folio_waitqueue(folio);
1169 struct wait_page_key key;
1170 unsigned long flags;
1171
1172 key.folio = folio;
1173 key.bit_nr = bit_nr;
1174 key.page_match = 0;
1175
1176 spin_lock_irqsave(&q->lock, flags);
1177 __wake_up_locked_key(q, TASK_NORMAL, &key);
1178
1179 /*
1180 * It's possible to miss clearing waiters here, when we woke our page
1181 * waiters, but the hashed waitqueue has waiters for other pages on it.
1182 * That's okay, it's a rare case. The next waker will clear it.
1183 *
1184 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1185 * other), the flag may be cleared in the course of freeing the page;
1186 * but that is not required for correctness.
1187 */
1188 if (!waitqueue_active(q) || !key.page_match)
1189 folio_clear_waiters(folio);
1190
1191 spin_unlock_irqrestore(&q->lock, flags);
1192 }
1193
1194 /*
1195 * A choice of three behaviors for folio_wait_bit_common():
1196 */
1197 enum behavior {
1198 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1199 * __folio_lock() waiting on then setting PG_locked.
1200 */
1201 SHARED, /* Hold ref to page and check the bit when woken, like
1202 * folio_wait_writeback() waiting on PG_writeback.
1203 */
1204 DROP, /* Drop ref to page before wait, no check when woken,
1205 * like folio_put_wait_locked() on PG_locked.
1206 */
1207 };
1208
1209 /*
1210 * Attempt to check (or get) the folio flag, and mark us done
1211 * if successful.
1212 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1213 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1214 struct wait_queue_entry *wait)
1215 {
1216 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1217 if (test_and_set_bit(bit_nr, &folio->flags))
1218 return false;
1219 } else if (test_bit(bit_nr, &folio->flags))
1220 return false;
1221
1222 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1223 return true;
1224 }
1225
1226 /* How many times do we accept lock stealing from under a waiter? */
1227 int sysctl_page_lock_unfairness = 5;
1228
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1229 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1230 int state, enum behavior behavior)
1231 {
1232 wait_queue_head_t *q = folio_waitqueue(folio);
1233 int unfairness = sysctl_page_lock_unfairness;
1234 struct wait_page_queue wait_page;
1235 wait_queue_entry_t *wait = &wait_page.wait;
1236 bool thrashing = false;
1237 unsigned long pflags;
1238 bool in_thrashing;
1239
1240 if (bit_nr == PG_locked &&
1241 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1242 delayacct_thrashing_start(&in_thrashing);
1243 psi_memstall_enter(&pflags);
1244 thrashing = true;
1245 }
1246
1247 init_wait(wait);
1248 wait->func = wake_page_function;
1249 wait_page.folio = folio;
1250 wait_page.bit_nr = bit_nr;
1251
1252 repeat:
1253 wait->flags = 0;
1254 if (behavior == EXCLUSIVE) {
1255 wait->flags = WQ_FLAG_EXCLUSIVE;
1256 if (--unfairness < 0)
1257 wait->flags |= WQ_FLAG_CUSTOM;
1258 }
1259
1260 /*
1261 * Do one last check whether we can get the
1262 * page bit synchronously.
1263 *
1264 * Do the folio_set_waiters() marking before that
1265 * to let any waker we _just_ missed know they
1266 * need to wake us up (otherwise they'll never
1267 * even go to the slow case that looks at the
1268 * page queue), and add ourselves to the wait
1269 * queue if we need to sleep.
1270 *
1271 * This part needs to be done under the queue
1272 * lock to avoid races.
1273 */
1274 spin_lock_irq(&q->lock);
1275 folio_set_waiters(folio);
1276 if (!folio_trylock_flag(folio, bit_nr, wait))
1277 __add_wait_queue_entry_tail(q, wait);
1278 spin_unlock_irq(&q->lock);
1279
1280 /*
1281 * From now on, all the logic will be based on
1282 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1283 * see whether the page bit testing has already
1284 * been done by the wake function.
1285 *
1286 * We can drop our reference to the folio.
1287 */
1288 if (behavior == DROP)
1289 folio_put(folio);
1290
1291 /*
1292 * Note that until the "finish_wait()", or until
1293 * we see the WQ_FLAG_WOKEN flag, we need to
1294 * be very careful with the 'wait->flags', because
1295 * we may race with a waker that sets them.
1296 */
1297 for (;;) {
1298 unsigned int flags;
1299
1300 set_current_state(state);
1301
1302 /* Loop until we've been woken or interrupted */
1303 flags = smp_load_acquire(&wait->flags);
1304 if (!(flags & WQ_FLAG_WOKEN)) {
1305 if (signal_pending_state(state, current))
1306 break;
1307
1308 io_schedule();
1309 continue;
1310 }
1311
1312 /* If we were non-exclusive, we're done */
1313 if (behavior != EXCLUSIVE)
1314 break;
1315
1316 /* If the waker got the lock for us, we're done */
1317 if (flags & WQ_FLAG_DONE)
1318 break;
1319
1320 /*
1321 * Otherwise, if we're getting the lock, we need to
1322 * try to get it ourselves.
1323 *
1324 * And if that fails, we'll have to retry this all.
1325 */
1326 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1327 goto repeat;
1328
1329 wait->flags |= WQ_FLAG_DONE;
1330 break;
1331 }
1332
1333 /*
1334 * If a signal happened, this 'finish_wait()' may remove the last
1335 * waiter from the wait-queues, but the folio waiters bit will remain
1336 * set. That's ok. The next wakeup will take care of it, and trying
1337 * to do it here would be difficult and prone to races.
1338 */
1339 finish_wait(q, wait);
1340
1341 if (thrashing) {
1342 delayacct_thrashing_end(&in_thrashing);
1343 psi_memstall_leave(&pflags);
1344 }
1345
1346 /*
1347 * NOTE! The wait->flags weren't stable until we've done the
1348 * 'finish_wait()', and we could have exited the loop above due
1349 * to a signal, and had a wakeup event happen after the signal
1350 * test but before the 'finish_wait()'.
1351 *
1352 * So only after the finish_wait() can we reliably determine
1353 * if we got woken up or not, so we can now figure out the final
1354 * return value based on that state without races.
1355 *
1356 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1357 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1358 */
1359 if (behavior == EXCLUSIVE)
1360 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1361
1362 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1363 }
1364
1365 #ifdef CONFIG_MIGRATION
1366 /**
1367 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1368 * @entry: migration swap entry.
1369 * @ptl: already locked ptl. This function will drop the lock.
1370 *
1371 * Wait for a migration entry referencing the given page to be removed. This is
1372 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1373 * this can be called without taking a reference on the page. Instead this
1374 * should be called while holding the ptl for the migration entry referencing
1375 * the page.
1376 *
1377 * Returns after unlocking the ptl.
1378 *
1379 * This follows the same logic as folio_wait_bit_common() so see the comments
1380 * there.
1381 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1382 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1383 __releases(ptl)
1384 {
1385 struct wait_page_queue wait_page;
1386 wait_queue_entry_t *wait = &wait_page.wait;
1387 bool thrashing = false;
1388 unsigned long pflags;
1389 bool in_thrashing;
1390 wait_queue_head_t *q;
1391 struct folio *folio = pfn_swap_entry_folio(entry);
1392
1393 q = folio_waitqueue(folio);
1394 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1395 delayacct_thrashing_start(&in_thrashing);
1396 psi_memstall_enter(&pflags);
1397 thrashing = true;
1398 }
1399
1400 init_wait(wait);
1401 wait->func = wake_page_function;
1402 wait_page.folio = folio;
1403 wait_page.bit_nr = PG_locked;
1404 wait->flags = 0;
1405
1406 spin_lock_irq(&q->lock);
1407 folio_set_waiters(folio);
1408 if (!folio_trylock_flag(folio, PG_locked, wait))
1409 __add_wait_queue_entry_tail(q, wait);
1410 spin_unlock_irq(&q->lock);
1411
1412 /*
1413 * If a migration entry exists for the page the migration path must hold
1414 * a valid reference to the page, and it must take the ptl to remove the
1415 * migration entry. So the page is valid until the ptl is dropped.
1416 */
1417 spin_unlock(ptl);
1418
1419 for (;;) {
1420 unsigned int flags;
1421
1422 set_current_state(TASK_UNINTERRUPTIBLE);
1423
1424 /* Loop until we've been woken or interrupted */
1425 flags = smp_load_acquire(&wait->flags);
1426 if (!(flags & WQ_FLAG_WOKEN)) {
1427 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1428 break;
1429
1430 io_schedule();
1431 continue;
1432 }
1433 break;
1434 }
1435
1436 finish_wait(q, wait);
1437
1438 if (thrashing) {
1439 delayacct_thrashing_end(&in_thrashing);
1440 psi_memstall_leave(&pflags);
1441 }
1442 }
1443 #endif
1444
folio_wait_bit(struct folio * folio,int bit_nr)1445 void folio_wait_bit(struct folio *folio, int bit_nr)
1446 {
1447 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1448 }
1449 EXPORT_SYMBOL(folio_wait_bit);
1450
folio_wait_bit_killable(struct folio * folio,int bit_nr)1451 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1452 {
1453 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1454 }
1455 EXPORT_SYMBOL(folio_wait_bit_killable);
1456
1457 /**
1458 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1459 * @folio: The folio to wait for.
1460 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1461 *
1462 * The caller should hold a reference on @folio. They expect the page to
1463 * become unlocked relatively soon, but do not wish to hold up migration
1464 * (for example) by holding the reference while waiting for the folio to
1465 * come unlocked. After this function returns, the caller should not
1466 * dereference @folio.
1467 *
1468 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1469 */
folio_put_wait_locked(struct folio * folio,int state)1470 static int folio_put_wait_locked(struct folio *folio, int state)
1471 {
1472 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1473 }
1474
1475 /**
1476 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1477 * @folio: Folio defining the wait queue of interest
1478 * @waiter: Waiter to add to the queue
1479 *
1480 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1481 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1482 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1483 {
1484 wait_queue_head_t *q = folio_waitqueue(folio);
1485 unsigned long flags;
1486
1487 spin_lock_irqsave(&q->lock, flags);
1488 __add_wait_queue_entry_tail(q, waiter);
1489 folio_set_waiters(folio);
1490 spin_unlock_irqrestore(&q->lock, flags);
1491 }
1492 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1493
1494 /**
1495 * folio_unlock - Unlock a locked folio.
1496 * @folio: The folio.
1497 *
1498 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1499 *
1500 * Context: May be called from interrupt or process context. May not be
1501 * called from NMI context.
1502 */
folio_unlock(struct folio * folio)1503 void folio_unlock(struct folio *folio)
1504 {
1505 /* Bit 7 allows x86 to check the byte's sign bit */
1506 BUILD_BUG_ON(PG_waiters != 7);
1507 BUILD_BUG_ON(PG_locked > 7);
1508 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1509 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1510 folio_wake_bit(folio, PG_locked);
1511 }
1512 EXPORT_SYMBOL(folio_unlock);
1513
1514 /**
1515 * folio_end_read - End read on a folio.
1516 * @folio: The folio.
1517 * @success: True if all reads completed successfully.
1518 *
1519 * When all reads against a folio have completed, filesystems should
1520 * call this function to let the pagecache know that no more reads
1521 * are outstanding. This will unlock the folio and wake up any thread
1522 * sleeping on the lock. The folio will also be marked uptodate if all
1523 * reads succeeded.
1524 *
1525 * Context: May be called from interrupt or process context. May not be
1526 * called from NMI context.
1527 */
folio_end_read(struct folio * folio,bool success)1528 void folio_end_read(struct folio *folio, bool success)
1529 {
1530 unsigned long mask = 1 << PG_locked;
1531
1532 /* Must be in bottom byte for x86 to work */
1533 BUILD_BUG_ON(PG_uptodate > 7);
1534 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1535 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1536
1537 if (likely(success))
1538 mask |= 1 << PG_uptodate;
1539 if (folio_xor_flags_has_waiters(folio, mask))
1540 folio_wake_bit(folio, PG_locked);
1541 }
1542 EXPORT_SYMBOL(folio_end_read);
1543
1544 /**
1545 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1546 * @folio: The folio.
1547 *
1548 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1549 * it. The folio reference held for PG_private_2 being set is released.
1550 *
1551 * This is, for example, used when a netfs folio is being written to a local
1552 * disk cache, thereby allowing writes to the cache for the same folio to be
1553 * serialised.
1554 */
folio_end_private_2(struct folio * folio)1555 void folio_end_private_2(struct folio *folio)
1556 {
1557 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1558 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1559 folio_wake_bit(folio, PG_private_2);
1560 folio_put(folio);
1561 }
1562 EXPORT_SYMBOL(folio_end_private_2);
1563
1564 /**
1565 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1566 * @folio: The folio to wait on.
1567 *
1568 * Wait for PG_private_2 to be cleared on a folio.
1569 */
folio_wait_private_2(struct folio * folio)1570 void folio_wait_private_2(struct folio *folio)
1571 {
1572 while (folio_test_private_2(folio))
1573 folio_wait_bit(folio, PG_private_2);
1574 }
1575 EXPORT_SYMBOL(folio_wait_private_2);
1576
1577 /**
1578 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1579 * @folio: The folio to wait on.
1580 *
1581 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1582 * received by the calling task.
1583 *
1584 * Return:
1585 * - 0 if successful.
1586 * - -EINTR if a fatal signal was encountered.
1587 */
folio_wait_private_2_killable(struct folio * folio)1588 int folio_wait_private_2_killable(struct folio *folio)
1589 {
1590 int ret = 0;
1591
1592 while (folio_test_private_2(folio)) {
1593 ret = folio_wait_bit_killable(folio, PG_private_2);
1594 if (ret < 0)
1595 break;
1596 }
1597
1598 return ret;
1599 }
1600 EXPORT_SYMBOL(folio_wait_private_2_killable);
1601
1602 /**
1603 * folio_end_writeback - End writeback against a folio.
1604 * @folio: The folio.
1605 *
1606 * The folio must actually be under writeback.
1607 *
1608 * Context: May be called from process or interrupt context.
1609 */
folio_end_writeback(struct folio * folio)1610 void folio_end_writeback(struct folio *folio)
1611 {
1612 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1613
1614 /*
1615 * folio_test_clear_reclaim() could be used here but it is an
1616 * atomic operation and overkill in this particular case. Failing
1617 * to shuffle a folio marked for immediate reclaim is too mild
1618 * a gain to justify taking an atomic operation penalty at the
1619 * end of every folio writeback.
1620 */
1621 if (folio_test_reclaim(folio)) {
1622 folio_clear_reclaim(folio);
1623 folio_rotate_reclaimable(folio);
1624 }
1625
1626 /*
1627 * Writeback does not hold a folio reference of its own, relying
1628 * on truncation to wait for the clearing of PG_writeback.
1629 * But here we must make sure that the folio is not freed and
1630 * reused before the folio_wake_bit().
1631 */
1632 folio_get(folio);
1633 if (__folio_end_writeback(folio))
1634 folio_wake_bit(folio, PG_writeback);
1635 acct_reclaim_writeback(folio);
1636 folio_put(folio);
1637 }
1638 EXPORT_SYMBOL(folio_end_writeback);
1639
1640 /**
1641 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1642 * @folio: The folio to lock
1643 */
__folio_lock(struct folio * folio)1644 void __folio_lock(struct folio *folio)
1645 {
1646 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1647 EXCLUSIVE);
1648 }
1649 EXPORT_SYMBOL(__folio_lock);
1650
__folio_lock_killable(struct folio * folio)1651 int __folio_lock_killable(struct folio *folio)
1652 {
1653 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1654 EXCLUSIVE);
1655 }
1656 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1657
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1658 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1659 {
1660 struct wait_queue_head *q = folio_waitqueue(folio);
1661 int ret;
1662
1663 wait->folio = folio;
1664 wait->bit_nr = PG_locked;
1665
1666 spin_lock_irq(&q->lock);
1667 __add_wait_queue_entry_tail(q, &wait->wait);
1668 folio_set_waiters(folio);
1669 ret = !folio_trylock(folio);
1670 /*
1671 * If we were successful now, we know we're still on the
1672 * waitqueue as we're still under the lock. This means it's
1673 * safe to remove and return success, we know the callback
1674 * isn't going to trigger.
1675 */
1676 if (!ret)
1677 __remove_wait_queue(q, &wait->wait);
1678 else
1679 ret = -EIOCBQUEUED;
1680 spin_unlock_irq(&q->lock);
1681 return ret;
1682 }
1683
1684 /*
1685 * Return values:
1686 * 0 - folio is locked.
1687 * non-zero - folio is not locked.
1688 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1689 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1690 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1691 *
1692 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1693 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1694 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1695 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1696 {
1697 unsigned int flags = vmf->flags;
1698
1699 if (fault_flag_allow_retry_first(flags)) {
1700 /*
1701 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1702 * released even though returning VM_FAULT_RETRY.
1703 */
1704 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1705 return VM_FAULT_RETRY;
1706
1707 release_fault_lock(vmf);
1708 if (flags & FAULT_FLAG_KILLABLE)
1709 folio_wait_locked_killable(folio);
1710 else
1711 folio_wait_locked(folio);
1712 return VM_FAULT_RETRY;
1713 }
1714 if (flags & FAULT_FLAG_KILLABLE) {
1715 bool ret;
1716
1717 ret = __folio_lock_killable(folio);
1718 if (ret) {
1719 release_fault_lock(vmf);
1720 return VM_FAULT_RETRY;
1721 }
1722 } else {
1723 __folio_lock(folio);
1724 }
1725
1726 return 0;
1727 }
1728
1729 /**
1730 * page_cache_next_miss() - Find the next gap in the page cache.
1731 * @mapping: Mapping.
1732 * @index: Index.
1733 * @max_scan: Maximum range to search.
1734 *
1735 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1736 * gap with the lowest index.
1737 *
1738 * This function may be called under the rcu_read_lock. However, this will
1739 * not atomically search a snapshot of the cache at a single point in time.
1740 * For example, if a gap is created at index 5, then subsequently a gap is
1741 * created at index 10, page_cache_next_miss covering both indices may
1742 * return 10 if called under the rcu_read_lock.
1743 *
1744 * Return: The index of the gap if found, otherwise an index outside the
1745 * range specified (in which case 'return - index >= max_scan' will be true).
1746 * In the rare case of index wrap-around, 0 will be returned.
1747 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1748 pgoff_t page_cache_next_miss(struct address_space *mapping,
1749 pgoff_t index, unsigned long max_scan)
1750 {
1751 XA_STATE(xas, &mapping->i_pages, index);
1752
1753 while (max_scan--) {
1754 void *entry = xas_next(&xas);
1755 if (!entry || xa_is_value(entry))
1756 return xas.xa_index;
1757 if (xas.xa_index == 0)
1758 return 0;
1759 }
1760
1761 return index + max_scan;
1762 }
1763 EXPORT_SYMBOL(page_cache_next_miss);
1764
1765 /**
1766 * page_cache_prev_miss() - Find the previous gap in the page cache.
1767 * @mapping: Mapping.
1768 * @index: Index.
1769 * @max_scan: Maximum range to search.
1770 *
1771 * Search the range [max(index - max_scan + 1, 0), index] for the
1772 * gap with the highest index.
1773 *
1774 * This function may be called under the rcu_read_lock. However, this will
1775 * not atomically search a snapshot of the cache at a single point in time.
1776 * For example, if a gap is created at index 10, then subsequently a gap is
1777 * created at index 5, page_cache_prev_miss() covering both indices may
1778 * return 5 if called under the rcu_read_lock.
1779 *
1780 * Return: The index of the gap if found, otherwise an index outside the
1781 * range specified (in which case 'index - return >= max_scan' will be true).
1782 * In the rare case of wrap-around, ULONG_MAX will be returned.
1783 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1784 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1785 pgoff_t index, unsigned long max_scan)
1786 {
1787 XA_STATE(xas, &mapping->i_pages, index);
1788
1789 while (max_scan--) {
1790 void *entry = xas_prev(&xas);
1791 if (!entry || xa_is_value(entry))
1792 break;
1793 if (xas.xa_index == ULONG_MAX)
1794 break;
1795 }
1796
1797 return xas.xa_index;
1798 }
1799 EXPORT_SYMBOL(page_cache_prev_miss);
1800
1801 /*
1802 * Lockless page cache protocol:
1803 * On the lookup side:
1804 * 1. Load the folio from i_pages
1805 * 2. Increment the refcount if it's not zero
1806 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1807 *
1808 * On the removal side:
1809 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1810 * B. Remove the page from i_pages
1811 * C. Return the page to the page allocator
1812 *
1813 * This means that any page may have its reference count temporarily
1814 * increased by a speculative page cache (or GUP-fast) lookup as it can
1815 * be allocated by another user before the RCU grace period expires.
1816 * Because the refcount temporarily acquired here may end up being the
1817 * last refcount on the page, any page allocation must be freeable by
1818 * folio_put().
1819 */
1820
1821 /*
1822 * filemap_get_entry - Get a page cache entry.
1823 * @mapping: the address_space to search
1824 * @index: The page cache index.
1825 *
1826 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1827 * it is returned with an increased refcount. If it is a shadow entry
1828 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1829 * it is returned without further action.
1830 *
1831 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1832 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1833 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1834 {
1835 XA_STATE(xas, &mapping->i_pages, index);
1836 struct folio *folio;
1837
1838 rcu_read_lock();
1839 repeat:
1840 xas_reset(&xas);
1841 folio = xas_load(&xas);
1842 if (xas_retry(&xas, folio))
1843 goto repeat;
1844 /*
1845 * A shadow entry of a recently evicted page, or a swap entry from
1846 * shmem/tmpfs. Return it without attempting to raise page count.
1847 */
1848 if (!folio || xa_is_value(folio))
1849 goto out;
1850
1851 if (!folio_try_get(folio))
1852 goto repeat;
1853
1854 if (unlikely(folio != xas_reload(&xas))) {
1855 folio_put(folio);
1856 goto repeat;
1857 }
1858 out:
1859 rcu_read_unlock();
1860
1861 return folio;
1862 }
1863
1864 /**
1865 * __filemap_get_folio - Find and get a reference to a folio.
1866 * @mapping: The address_space to search.
1867 * @index: The page index.
1868 * @fgp_flags: %FGP flags modify how the folio is returned.
1869 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1870 *
1871 * Looks up the page cache entry at @mapping & @index.
1872 *
1873 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1874 * if the %GFP flags specified for %FGP_CREAT are atomic.
1875 *
1876 * If this function returns a folio, it is returned with an increased refcount.
1877 *
1878 * Return: The found folio or an ERR_PTR() otherwise.
1879 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1880 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1881 fgf_t fgp_flags, gfp_t gfp)
1882 {
1883 struct folio *folio;
1884
1885 repeat:
1886 folio = filemap_get_entry(mapping, index);
1887 if (xa_is_value(folio))
1888 folio = NULL;
1889 if (!folio)
1890 goto no_page;
1891
1892 if (fgp_flags & FGP_LOCK) {
1893 if (fgp_flags & FGP_NOWAIT) {
1894 if (!folio_trylock(folio)) {
1895 folio_put(folio);
1896 return ERR_PTR(-EAGAIN);
1897 }
1898 } else {
1899 folio_lock(folio);
1900 }
1901
1902 /* Has the page been truncated? */
1903 if (unlikely(folio->mapping != mapping)) {
1904 folio_unlock(folio);
1905 folio_put(folio);
1906 goto repeat;
1907 }
1908 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1909 }
1910
1911 if (fgp_flags & FGP_ACCESSED)
1912 folio_mark_accessed(folio);
1913 else if (fgp_flags & FGP_WRITE) {
1914 /* Clear idle flag for buffer write */
1915 if (folio_test_idle(folio))
1916 folio_clear_idle(folio);
1917 }
1918
1919 if (fgp_flags & FGP_STABLE)
1920 folio_wait_stable(folio);
1921 no_page:
1922 if (!folio && (fgp_flags & FGP_CREAT)) {
1923 unsigned int min_order = mapping_min_folio_order(mapping);
1924 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1925 int err;
1926 index = mapping_align_index(mapping, index);
1927
1928 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1929 gfp |= __GFP_WRITE;
1930 if (fgp_flags & FGP_NOFS)
1931 gfp &= ~__GFP_FS;
1932 if (fgp_flags & FGP_NOWAIT) {
1933 gfp &= ~GFP_KERNEL;
1934 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1935 }
1936 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1937 fgp_flags |= FGP_LOCK;
1938
1939 if (order > mapping_max_folio_order(mapping))
1940 order = mapping_max_folio_order(mapping);
1941 /* If we're not aligned, allocate a smaller folio */
1942 if (index & ((1UL << order) - 1))
1943 order = __ffs(index);
1944
1945 do {
1946 gfp_t alloc_gfp = gfp;
1947
1948 err = -ENOMEM;
1949 if (order > min_order)
1950 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1951 folio = filemap_alloc_folio(alloc_gfp, order);
1952 if (!folio)
1953 continue;
1954
1955 /* Init accessed so avoid atomic mark_page_accessed later */
1956 if (fgp_flags & FGP_ACCESSED)
1957 __folio_set_referenced(folio);
1958
1959 err = filemap_add_folio(mapping, folio, index, gfp);
1960 if (!err)
1961 break;
1962 folio_put(folio);
1963 folio = NULL;
1964 } while (order-- > min_order);
1965
1966 if (err == -EEXIST)
1967 goto repeat;
1968 if (err)
1969 return ERR_PTR(err);
1970 /*
1971 * filemap_add_folio locks the page, and for mmap
1972 * we expect an unlocked page.
1973 */
1974 if (folio && (fgp_flags & FGP_FOR_MMAP))
1975 folio_unlock(folio);
1976 }
1977
1978 if (!folio)
1979 return ERR_PTR(-ENOENT);
1980 return folio;
1981 }
1982 EXPORT_SYMBOL(__filemap_get_folio);
1983
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1984 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1985 xa_mark_t mark)
1986 {
1987 struct folio *folio;
1988
1989 retry:
1990 if (mark == XA_PRESENT)
1991 folio = xas_find(xas, max);
1992 else
1993 folio = xas_find_marked(xas, max, mark);
1994
1995 if (xas_retry(xas, folio))
1996 goto retry;
1997 /*
1998 * A shadow entry of a recently evicted page, a swap
1999 * entry from shmem/tmpfs or a DAX entry. Return it
2000 * without attempting to raise page count.
2001 */
2002 if (!folio || xa_is_value(folio))
2003 return folio;
2004
2005 if (!folio_try_get(folio))
2006 goto reset;
2007
2008 if (unlikely(folio != xas_reload(xas))) {
2009 folio_put(folio);
2010 goto reset;
2011 }
2012
2013 return folio;
2014 reset:
2015 xas_reset(xas);
2016 goto retry;
2017 }
2018
2019 /**
2020 * find_get_entries - gang pagecache lookup
2021 * @mapping: The address_space to search
2022 * @start: The starting page cache index
2023 * @end: The final page index (inclusive).
2024 * @fbatch: Where the resulting entries are placed.
2025 * @indices: The cache indices corresponding to the entries in @entries
2026 *
2027 * find_get_entries() will search for and return a batch of entries in
2028 * the mapping. The entries are placed in @fbatch. find_get_entries()
2029 * takes a reference on any actual folios it returns.
2030 *
2031 * The entries have ascending indexes. The indices may not be consecutive
2032 * due to not-present entries or large folios.
2033 *
2034 * Any shadow entries of evicted folios, or swap entries from
2035 * shmem/tmpfs, are included in the returned array.
2036 *
2037 * Return: The number of entries which were found.
2038 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2039 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2040 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2041 {
2042 XA_STATE(xas, &mapping->i_pages, *start);
2043 struct folio *folio;
2044
2045 rcu_read_lock();
2046 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2047 indices[fbatch->nr] = xas.xa_index;
2048 if (!folio_batch_add(fbatch, folio))
2049 break;
2050 }
2051
2052 if (folio_batch_count(fbatch)) {
2053 unsigned long nr;
2054 int idx = folio_batch_count(fbatch) - 1;
2055
2056 folio = fbatch->folios[idx];
2057 if (!xa_is_value(folio))
2058 nr = folio_nr_pages(folio);
2059 else
2060 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2061 *start = round_down(indices[idx] + nr, nr);
2062 }
2063 rcu_read_unlock();
2064
2065 return folio_batch_count(fbatch);
2066 }
2067
2068 /**
2069 * find_lock_entries - Find a batch of pagecache entries.
2070 * @mapping: The address_space to search.
2071 * @start: The starting page cache index.
2072 * @end: The final page index (inclusive).
2073 * @fbatch: Where the resulting entries are placed.
2074 * @indices: The cache indices of the entries in @fbatch.
2075 *
2076 * find_lock_entries() will return a batch of entries from @mapping.
2077 * Swap, shadow and DAX entries are included. Folios are returned
2078 * locked and with an incremented refcount. Folios which are locked
2079 * by somebody else or under writeback are skipped. Folios which are
2080 * partially outside the range are not returned.
2081 *
2082 * The entries have ascending indexes. The indices may not be consecutive
2083 * due to not-present entries, large folios, folios which could not be
2084 * locked or folios under writeback.
2085 *
2086 * Return: The number of entries which were found.
2087 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2089 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2090 {
2091 XA_STATE(xas, &mapping->i_pages, *start);
2092 struct folio *folio;
2093
2094 rcu_read_lock();
2095 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2096 unsigned long base;
2097 unsigned long nr;
2098
2099 if (!xa_is_value(folio)) {
2100 nr = folio_nr_pages(folio);
2101 base = folio->index;
2102 /* Omit large folio which begins before the start */
2103 if (base < *start)
2104 goto put;
2105 /* Omit large folio which extends beyond the end */
2106 if (base + nr - 1 > end)
2107 goto put;
2108 if (!folio_trylock(folio))
2109 goto put;
2110 if (folio->mapping != mapping ||
2111 folio_test_writeback(folio))
2112 goto unlock;
2113 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2114 folio);
2115 } else {
2116 nr = 1 << xas_get_order(&xas);
2117 base = xas.xa_index & ~(nr - 1);
2118 /* Omit order>0 value which begins before the start */
2119 if (base < *start)
2120 continue;
2121 /* Omit order>0 value which extends beyond the end */
2122 if (base + nr - 1 > end)
2123 break;
2124 }
2125
2126 /* Update start now so that last update is correct on return */
2127 *start = base + nr;
2128 indices[fbatch->nr] = xas.xa_index;
2129 if (!folio_batch_add(fbatch, folio))
2130 break;
2131 continue;
2132 unlock:
2133 folio_unlock(folio);
2134 put:
2135 folio_put(folio);
2136 }
2137 rcu_read_unlock();
2138
2139 return folio_batch_count(fbatch);
2140 }
2141
2142 /**
2143 * filemap_get_folios - Get a batch of folios
2144 * @mapping: The address_space to search
2145 * @start: The starting page index
2146 * @end: The final page index (inclusive)
2147 * @fbatch: The batch to fill.
2148 *
2149 * Search for and return a batch of folios in the mapping starting at
2150 * index @start and up to index @end (inclusive). The folios are returned
2151 * in @fbatch with an elevated reference count.
2152 *
2153 * Return: The number of folios which were found.
2154 * We also update @start to index the next folio for the traversal.
2155 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2156 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2157 pgoff_t end, struct folio_batch *fbatch)
2158 {
2159 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2160 }
2161 EXPORT_SYMBOL(filemap_get_folios);
2162
2163 /**
2164 * filemap_get_folios_contig - Get a batch of contiguous folios
2165 * @mapping: The address_space to search
2166 * @start: The starting page index
2167 * @end: The final page index (inclusive)
2168 * @fbatch: The batch to fill
2169 *
2170 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2171 * except the returned folios are guaranteed to be contiguous. This may
2172 * not return all contiguous folios if the batch gets filled up.
2173 *
2174 * Return: The number of folios found.
2175 * Also update @start to be positioned for traversal of the next folio.
2176 */
2177
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2178 unsigned filemap_get_folios_contig(struct address_space *mapping,
2179 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2180 {
2181 XA_STATE(xas, &mapping->i_pages, *start);
2182 unsigned long nr;
2183 struct folio *folio;
2184
2185 rcu_read_lock();
2186
2187 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2188 folio = xas_next(&xas)) {
2189 if (xas_retry(&xas, folio))
2190 continue;
2191 /*
2192 * If the entry has been swapped out, we can stop looking.
2193 * No current caller is looking for DAX entries.
2194 */
2195 if (xa_is_value(folio))
2196 goto update_start;
2197
2198 /* If we landed in the middle of a THP, continue at its end. */
2199 if (xa_is_sibling(folio))
2200 goto update_start;
2201
2202 if (!folio_try_get(folio))
2203 goto retry;
2204
2205 if (unlikely(folio != xas_reload(&xas)))
2206 goto put_folio;
2207
2208 if (!folio_batch_add(fbatch, folio)) {
2209 nr = folio_nr_pages(folio);
2210 *start = folio->index + nr;
2211 goto out;
2212 }
2213 continue;
2214 put_folio:
2215 folio_put(folio);
2216
2217 retry:
2218 xas_reset(&xas);
2219 }
2220
2221 update_start:
2222 nr = folio_batch_count(fbatch);
2223
2224 if (nr) {
2225 folio = fbatch->folios[nr - 1];
2226 *start = folio_next_index(folio);
2227 }
2228 out:
2229 rcu_read_unlock();
2230 return folio_batch_count(fbatch);
2231 }
2232 EXPORT_SYMBOL(filemap_get_folios_contig);
2233
2234 /**
2235 * filemap_get_folios_tag - Get a batch of folios matching @tag
2236 * @mapping: The address_space to search
2237 * @start: The starting page index
2238 * @end: The final page index (inclusive)
2239 * @tag: The tag index
2240 * @fbatch: The batch to fill
2241 *
2242 * The first folio may start before @start; if it does, it will contain
2243 * @start. The final folio may extend beyond @end; if it does, it will
2244 * contain @end. The folios have ascending indices. There may be gaps
2245 * between the folios if there are indices which have no folio in the
2246 * page cache. If folios are added to or removed from the page cache
2247 * while this is running, they may or may not be found by this call.
2248 * Only returns folios that are tagged with @tag.
2249 *
2250 * Return: The number of folios found.
2251 * Also update @start to index the next folio for traversal.
2252 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2253 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2254 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2255 {
2256 XA_STATE(xas, &mapping->i_pages, *start);
2257 struct folio *folio;
2258
2259 rcu_read_lock();
2260 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2261 /*
2262 * Shadow entries should never be tagged, but this iteration
2263 * is lockless so there is a window for page reclaim to evict
2264 * a page we saw tagged. Skip over it.
2265 */
2266 if (xa_is_value(folio))
2267 continue;
2268 if (!folio_batch_add(fbatch, folio)) {
2269 unsigned long nr = folio_nr_pages(folio);
2270 *start = folio->index + nr;
2271 goto out;
2272 }
2273 }
2274 /*
2275 * We come here when there is no page beyond @end. We take care to not
2276 * overflow the index @start as it confuses some of the callers. This
2277 * breaks the iteration when there is a page at index -1 but that is
2278 * already broke anyway.
2279 */
2280 if (end == (pgoff_t)-1)
2281 *start = (pgoff_t)-1;
2282 else
2283 *start = end + 1;
2284 out:
2285 rcu_read_unlock();
2286
2287 return folio_batch_count(fbatch);
2288 }
2289 EXPORT_SYMBOL(filemap_get_folios_tag);
2290
2291 /*
2292 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2293 * a _large_ part of the i/o request. Imagine the worst scenario:
2294 *
2295 * ---R__________________________________________B__________
2296 * ^ reading here ^ bad block(assume 4k)
2297 *
2298 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2299 * => failing the whole request => read(R) => read(R+1) =>
2300 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2301 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2302 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2303 *
2304 * It is going insane. Fix it by quickly scaling down the readahead size.
2305 */
shrink_readahead_size_eio(struct file_ra_state * ra)2306 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2307 {
2308 ra->ra_pages /= 4;
2309 }
2310
2311 /*
2312 * filemap_get_read_batch - Get a batch of folios for read
2313 *
2314 * Get a batch of folios which represent a contiguous range of bytes in
2315 * the file. No exceptional entries will be returned. If @index is in
2316 * the middle of a folio, the entire folio will be returned. The last
2317 * folio in the batch may have the readahead flag set or the uptodate flag
2318 * clear so that the caller can take the appropriate action.
2319 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2320 static void filemap_get_read_batch(struct address_space *mapping,
2321 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2322 {
2323 XA_STATE(xas, &mapping->i_pages, index);
2324 struct folio *folio;
2325
2326 rcu_read_lock();
2327 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2328 if (xas_retry(&xas, folio))
2329 continue;
2330 if (xas.xa_index > max || xa_is_value(folio))
2331 break;
2332 if (xa_is_sibling(folio))
2333 break;
2334 if (!folio_try_get(folio))
2335 goto retry;
2336
2337 if (unlikely(folio != xas_reload(&xas)))
2338 goto put_folio;
2339
2340 if (!folio_batch_add(fbatch, folio))
2341 break;
2342 if (!folio_test_uptodate(folio))
2343 break;
2344 if (folio_test_readahead(folio))
2345 break;
2346 xas_advance(&xas, folio_next_index(folio) - 1);
2347 continue;
2348 put_folio:
2349 folio_put(folio);
2350 retry:
2351 xas_reset(&xas);
2352 }
2353 rcu_read_unlock();
2354 }
2355
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2356 static int filemap_read_folio(struct file *file, filler_t filler,
2357 struct folio *folio)
2358 {
2359 bool workingset = folio_test_workingset(folio);
2360 unsigned long pflags;
2361 int error;
2362
2363 /* Start the actual read. The read will unlock the page. */
2364 if (unlikely(workingset))
2365 psi_memstall_enter(&pflags);
2366 error = filler(file, folio);
2367 if (unlikely(workingset))
2368 psi_memstall_leave(&pflags);
2369 if (error)
2370 return error;
2371
2372 error = folio_wait_locked_killable(folio);
2373 if (error)
2374 return error;
2375 if (folio_test_uptodate(folio))
2376 return 0;
2377 if (file)
2378 shrink_readahead_size_eio(&file->f_ra);
2379 return -EIO;
2380 }
2381
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2382 static bool filemap_range_uptodate(struct address_space *mapping,
2383 loff_t pos, size_t count, struct folio *folio,
2384 bool need_uptodate)
2385 {
2386 if (folio_test_uptodate(folio))
2387 return true;
2388 /* pipes can't handle partially uptodate pages */
2389 if (need_uptodate)
2390 return false;
2391 if (!mapping->a_ops->is_partially_uptodate)
2392 return false;
2393 if (mapping->host->i_blkbits >= folio_shift(folio))
2394 return false;
2395
2396 if (folio_pos(folio) > pos) {
2397 count -= folio_pos(folio) - pos;
2398 pos = 0;
2399 } else {
2400 pos -= folio_pos(folio);
2401 }
2402
2403 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2404 }
2405
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2406 static int filemap_update_page(struct kiocb *iocb,
2407 struct address_space *mapping, size_t count,
2408 struct folio *folio, bool need_uptodate)
2409 {
2410 int error;
2411
2412 if (iocb->ki_flags & IOCB_NOWAIT) {
2413 if (!filemap_invalidate_trylock_shared(mapping))
2414 return -EAGAIN;
2415 } else {
2416 filemap_invalidate_lock_shared(mapping);
2417 }
2418
2419 if (!folio_trylock(folio)) {
2420 error = -EAGAIN;
2421 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2422 goto unlock_mapping;
2423 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2424 filemap_invalidate_unlock_shared(mapping);
2425 /*
2426 * This is where we usually end up waiting for a
2427 * previously submitted readahead to finish.
2428 */
2429 folio_put_wait_locked(folio, TASK_KILLABLE);
2430 return AOP_TRUNCATED_PAGE;
2431 }
2432 error = __folio_lock_async(folio, iocb->ki_waitq);
2433 if (error)
2434 goto unlock_mapping;
2435 }
2436
2437 error = AOP_TRUNCATED_PAGE;
2438 if (!folio->mapping)
2439 goto unlock;
2440
2441 error = 0;
2442 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2443 need_uptodate))
2444 goto unlock;
2445
2446 error = -EAGAIN;
2447 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2448 goto unlock;
2449
2450 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2451 folio);
2452 goto unlock_mapping;
2453 unlock:
2454 folio_unlock(folio);
2455 unlock_mapping:
2456 filemap_invalidate_unlock_shared(mapping);
2457 if (error == AOP_TRUNCATED_PAGE)
2458 folio_put(folio);
2459 return error;
2460 }
2461
filemap_create_folio(struct file * file,struct address_space * mapping,loff_t pos,struct folio_batch * fbatch)2462 static int filemap_create_folio(struct file *file,
2463 struct address_space *mapping, loff_t pos,
2464 struct folio_batch *fbatch)
2465 {
2466 struct folio *folio;
2467 int error;
2468 unsigned int min_order = mapping_min_folio_order(mapping);
2469 pgoff_t index;
2470
2471 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2472 if (!folio)
2473 return -ENOMEM;
2474
2475 /*
2476 * Protect against truncate / hole punch. Grabbing invalidate_lock
2477 * here assures we cannot instantiate and bring uptodate new
2478 * pagecache folios after evicting page cache during truncate
2479 * and before actually freeing blocks. Note that we could
2480 * release invalidate_lock after inserting the folio into
2481 * the page cache as the locked folio would then be enough to
2482 * synchronize with hole punching. But there are code paths
2483 * such as filemap_update_page() filling in partially uptodate
2484 * pages or ->readahead() that need to hold invalidate_lock
2485 * while mapping blocks for IO so let's hold the lock here as
2486 * well to keep locking rules simple.
2487 */
2488 filemap_invalidate_lock_shared(mapping);
2489 index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2490 error = filemap_add_folio(mapping, folio, index,
2491 mapping_gfp_constraint(mapping, GFP_KERNEL));
2492 if (error == -EEXIST)
2493 error = AOP_TRUNCATED_PAGE;
2494 if (error)
2495 goto error;
2496
2497 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2498 if (error)
2499 goto error;
2500
2501 filemap_invalidate_unlock_shared(mapping);
2502 folio_batch_add(fbatch, folio);
2503 return 0;
2504 error:
2505 filemap_invalidate_unlock_shared(mapping);
2506 folio_put(folio);
2507 return error;
2508 }
2509
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2510 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2511 struct address_space *mapping, struct folio *folio,
2512 pgoff_t last_index)
2513 {
2514 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2515
2516 if (iocb->ki_flags & IOCB_NOIO)
2517 return -EAGAIN;
2518 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2519 return 0;
2520 }
2521
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2522 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2523 struct folio_batch *fbatch, bool need_uptodate)
2524 {
2525 struct file *filp = iocb->ki_filp;
2526 struct address_space *mapping = filp->f_mapping;
2527 struct file_ra_state *ra = &filp->f_ra;
2528 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2529 pgoff_t last_index;
2530 struct folio *folio;
2531 unsigned int flags;
2532 int err = 0;
2533
2534 /* "last_index" is the index of the page beyond the end of the read */
2535 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2536 retry:
2537 if (fatal_signal_pending(current))
2538 return -EINTR;
2539
2540 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2541 if (!folio_batch_count(fbatch)) {
2542 if (iocb->ki_flags & IOCB_NOIO)
2543 return -EAGAIN;
2544 if (iocb->ki_flags & IOCB_NOWAIT)
2545 flags = memalloc_noio_save();
2546 page_cache_sync_readahead(mapping, ra, filp, index,
2547 last_index - index);
2548 if (iocb->ki_flags & IOCB_NOWAIT)
2549 memalloc_noio_restore(flags);
2550 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2551 }
2552 if (!folio_batch_count(fbatch)) {
2553 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2554 return -EAGAIN;
2555 err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2556 if (err == AOP_TRUNCATED_PAGE)
2557 goto retry;
2558 return err;
2559 }
2560
2561 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2562 if (folio_test_readahead(folio)) {
2563 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2564 if (err)
2565 goto err;
2566 }
2567 if (!folio_test_uptodate(folio)) {
2568 if ((iocb->ki_flags & IOCB_WAITQ) &&
2569 folio_batch_count(fbatch) > 1)
2570 iocb->ki_flags |= IOCB_NOWAIT;
2571 err = filemap_update_page(iocb, mapping, count, folio,
2572 need_uptodate);
2573 if (err)
2574 goto err;
2575 }
2576
2577 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2578 return 0;
2579 err:
2580 if (err < 0)
2581 folio_put(folio);
2582 if (likely(--fbatch->nr))
2583 return 0;
2584 if (err == AOP_TRUNCATED_PAGE)
2585 goto retry;
2586 return err;
2587 }
2588
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2589 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2590 {
2591 unsigned int shift = folio_shift(folio);
2592
2593 return (pos1 >> shift == pos2 >> shift);
2594 }
2595
2596 /**
2597 * filemap_read - Read data from the page cache.
2598 * @iocb: The iocb to read.
2599 * @iter: Destination for the data.
2600 * @already_read: Number of bytes already read by the caller.
2601 *
2602 * Copies data from the page cache. If the data is not currently present,
2603 * uses the readahead and read_folio address_space operations to fetch it.
2604 *
2605 * Return: Total number of bytes copied, including those already read by
2606 * the caller. If an error happens before any bytes are copied, returns
2607 * a negative error number.
2608 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2609 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2610 ssize_t already_read)
2611 {
2612 struct file *filp = iocb->ki_filp;
2613 struct file_ra_state *ra = &filp->f_ra;
2614 struct address_space *mapping = filp->f_mapping;
2615 struct inode *inode = mapping->host;
2616 struct folio_batch fbatch;
2617 int i, error = 0;
2618 bool writably_mapped;
2619 loff_t isize, end_offset;
2620 loff_t last_pos = ra->prev_pos;
2621
2622 if (unlikely(iocb->ki_pos < 0))
2623 return -EINVAL;
2624 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2625 return 0;
2626 if (unlikely(!iov_iter_count(iter)))
2627 return 0;
2628
2629 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2630 folio_batch_init(&fbatch);
2631
2632 do {
2633 cond_resched();
2634
2635 /*
2636 * If we've already successfully copied some data, then we
2637 * can no longer safely return -EIOCBQUEUED. Hence mark
2638 * an async read NOWAIT at that point.
2639 */
2640 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2641 iocb->ki_flags |= IOCB_NOWAIT;
2642
2643 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2644 break;
2645
2646 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2647 if (error < 0)
2648 break;
2649
2650 /*
2651 * i_size must be checked after we know the pages are Uptodate.
2652 *
2653 * Checking i_size after the check allows us to calculate
2654 * the correct value for "nr", which means the zero-filled
2655 * part of the page is not copied back to userspace (unless
2656 * another truncate extends the file - this is desired though).
2657 */
2658 isize = i_size_read(inode);
2659 if (unlikely(iocb->ki_pos >= isize))
2660 goto put_folios;
2661 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2662
2663 /*
2664 * Once we start copying data, we don't want to be touching any
2665 * cachelines that might be contended:
2666 */
2667 writably_mapped = mapping_writably_mapped(mapping);
2668
2669 /*
2670 * When a read accesses the same folio several times, only
2671 * mark it as accessed the first time.
2672 */
2673 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2674 fbatch.folios[0]))
2675 folio_mark_accessed(fbatch.folios[0]);
2676
2677 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2678 struct folio *folio = fbatch.folios[i];
2679 size_t fsize = folio_size(folio);
2680 size_t offset = iocb->ki_pos & (fsize - 1);
2681 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2682 fsize - offset);
2683 size_t copied;
2684
2685 if (end_offset < folio_pos(folio))
2686 break;
2687 if (i > 0)
2688 folio_mark_accessed(folio);
2689 /*
2690 * If users can be writing to this folio using arbitrary
2691 * virtual addresses, take care of potential aliasing
2692 * before reading the folio on the kernel side.
2693 */
2694 if (writably_mapped)
2695 flush_dcache_folio(folio);
2696
2697 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2698
2699 already_read += copied;
2700 iocb->ki_pos += copied;
2701 last_pos = iocb->ki_pos;
2702
2703 if (copied < bytes) {
2704 error = -EFAULT;
2705 break;
2706 }
2707 }
2708 put_folios:
2709 for (i = 0; i < folio_batch_count(&fbatch); i++)
2710 folio_put(fbatch.folios[i]);
2711 folio_batch_init(&fbatch);
2712 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2713
2714 file_accessed(filp);
2715 ra->prev_pos = last_pos;
2716 return already_read ? already_read : error;
2717 }
2718 EXPORT_SYMBOL_GPL(filemap_read);
2719
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2720 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2721 {
2722 struct address_space *mapping = iocb->ki_filp->f_mapping;
2723 loff_t pos = iocb->ki_pos;
2724 loff_t end = pos + count - 1;
2725
2726 if (iocb->ki_flags & IOCB_NOWAIT) {
2727 if (filemap_range_needs_writeback(mapping, pos, end))
2728 return -EAGAIN;
2729 return 0;
2730 }
2731
2732 return filemap_write_and_wait_range(mapping, pos, end);
2733 }
2734 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2735
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2736 int filemap_invalidate_pages(struct address_space *mapping,
2737 loff_t pos, loff_t end, bool nowait)
2738 {
2739 int ret;
2740
2741 if (nowait) {
2742 /* we could block if there are any pages in the range */
2743 if (filemap_range_has_page(mapping, pos, end))
2744 return -EAGAIN;
2745 } else {
2746 ret = filemap_write_and_wait_range(mapping, pos, end);
2747 if (ret)
2748 return ret;
2749 }
2750
2751 /*
2752 * After a write we want buffered reads to be sure to go to disk to get
2753 * the new data. We invalidate clean cached page from the region we're
2754 * about to write. We do this *before* the write so that we can return
2755 * without clobbering -EIOCBQUEUED from ->direct_IO().
2756 */
2757 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2758 end >> PAGE_SHIFT);
2759 }
2760
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2761 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2762 {
2763 struct address_space *mapping = iocb->ki_filp->f_mapping;
2764
2765 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2766 iocb->ki_pos + count - 1,
2767 iocb->ki_flags & IOCB_NOWAIT);
2768 }
2769 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2770
2771 /**
2772 * generic_file_read_iter - generic filesystem read routine
2773 * @iocb: kernel I/O control block
2774 * @iter: destination for the data read
2775 *
2776 * This is the "read_iter()" routine for all filesystems
2777 * that can use the page cache directly.
2778 *
2779 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2780 * be returned when no data can be read without waiting for I/O requests
2781 * to complete; it doesn't prevent readahead.
2782 *
2783 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2784 * requests shall be made for the read or for readahead. When no data
2785 * can be read, -EAGAIN shall be returned. When readahead would be
2786 * triggered, a partial, possibly empty read shall be returned.
2787 *
2788 * Return:
2789 * * number of bytes copied, even for partial reads
2790 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2791 */
2792 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2793 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2794 {
2795 size_t count = iov_iter_count(iter);
2796 ssize_t retval = 0;
2797
2798 if (!count)
2799 return 0; /* skip atime */
2800
2801 if (iocb->ki_flags & IOCB_DIRECT) {
2802 struct file *file = iocb->ki_filp;
2803 struct address_space *mapping = file->f_mapping;
2804 struct inode *inode = mapping->host;
2805
2806 retval = kiocb_write_and_wait(iocb, count);
2807 if (retval < 0)
2808 return retval;
2809 file_accessed(file);
2810
2811 retval = mapping->a_ops->direct_IO(iocb, iter);
2812 if (retval >= 0) {
2813 iocb->ki_pos += retval;
2814 count -= retval;
2815 }
2816 if (retval != -EIOCBQUEUED)
2817 iov_iter_revert(iter, count - iov_iter_count(iter));
2818
2819 /*
2820 * Btrfs can have a short DIO read if we encounter
2821 * compressed extents, so if there was an error, or if
2822 * we've already read everything we wanted to, or if
2823 * there was a short read because we hit EOF, go ahead
2824 * and return. Otherwise fallthrough to buffered io for
2825 * the rest of the read. Buffered reads will not work for
2826 * DAX files, so don't bother trying.
2827 */
2828 if (retval < 0 || !count || IS_DAX(inode))
2829 return retval;
2830 if (iocb->ki_pos >= i_size_read(inode))
2831 return retval;
2832 }
2833
2834 return filemap_read(iocb, iter, retval);
2835 }
2836 EXPORT_SYMBOL(generic_file_read_iter);
2837
2838 /*
2839 * Splice subpages from a folio into a pipe.
2840 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2841 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2842 struct folio *folio, loff_t fpos, size_t size)
2843 {
2844 struct page *page;
2845 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2846
2847 page = folio_page(folio, offset / PAGE_SIZE);
2848 size = min(size, folio_size(folio) - offset);
2849 offset %= PAGE_SIZE;
2850
2851 while (spliced < size &&
2852 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2853 struct pipe_buffer *buf = pipe_head_buf(pipe);
2854 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2855
2856 *buf = (struct pipe_buffer) {
2857 .ops = &page_cache_pipe_buf_ops,
2858 .page = page,
2859 .offset = offset,
2860 .len = part,
2861 };
2862 folio_get(folio);
2863 pipe->head++;
2864 page++;
2865 spliced += part;
2866 offset = 0;
2867 }
2868
2869 return spliced;
2870 }
2871
2872 /**
2873 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2874 * @in: The file to read from
2875 * @ppos: Pointer to the file position to read from
2876 * @pipe: The pipe to splice into
2877 * @len: The amount to splice
2878 * @flags: The SPLICE_F_* flags
2879 *
2880 * This function gets folios from a file's pagecache and splices them into the
2881 * pipe. Readahead will be called as necessary to fill more folios. This may
2882 * be used for blockdevs also.
2883 *
2884 * Return: On success, the number of bytes read will be returned and *@ppos
2885 * will be updated if appropriate; 0 will be returned if there is no more data
2886 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2887 * other negative error code will be returned on error. A short read may occur
2888 * if the pipe has insufficient space, we reach the end of the data or we hit a
2889 * hole.
2890 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2891 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2892 struct pipe_inode_info *pipe,
2893 size_t len, unsigned int flags)
2894 {
2895 struct folio_batch fbatch;
2896 struct kiocb iocb;
2897 size_t total_spliced = 0, used, npages;
2898 loff_t isize, end_offset;
2899 bool writably_mapped;
2900 int i, error = 0;
2901
2902 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2903 return 0;
2904
2905 init_sync_kiocb(&iocb, in);
2906 iocb.ki_pos = *ppos;
2907
2908 /* Work out how much data we can actually add into the pipe */
2909 used = pipe_occupancy(pipe->head, pipe->tail);
2910 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2911 len = min_t(size_t, len, npages * PAGE_SIZE);
2912
2913 folio_batch_init(&fbatch);
2914
2915 do {
2916 cond_resched();
2917
2918 if (*ppos >= i_size_read(in->f_mapping->host))
2919 break;
2920
2921 iocb.ki_pos = *ppos;
2922 error = filemap_get_pages(&iocb, len, &fbatch, true);
2923 if (error < 0)
2924 break;
2925
2926 /*
2927 * i_size must be checked after we know the pages are Uptodate.
2928 *
2929 * Checking i_size after the check allows us to calculate
2930 * the correct value for "nr", which means the zero-filled
2931 * part of the page is not copied back to userspace (unless
2932 * another truncate extends the file - this is desired though).
2933 */
2934 isize = i_size_read(in->f_mapping->host);
2935 if (unlikely(*ppos >= isize))
2936 break;
2937 end_offset = min_t(loff_t, isize, *ppos + len);
2938
2939 /*
2940 * Once we start copying data, we don't want to be touching any
2941 * cachelines that might be contended:
2942 */
2943 writably_mapped = mapping_writably_mapped(in->f_mapping);
2944
2945 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2946 struct folio *folio = fbatch.folios[i];
2947 size_t n;
2948
2949 if (folio_pos(folio) >= end_offset)
2950 goto out;
2951 folio_mark_accessed(folio);
2952
2953 /*
2954 * If users can be writing to this folio using arbitrary
2955 * virtual addresses, take care of potential aliasing
2956 * before reading the folio on the kernel side.
2957 */
2958 if (writably_mapped)
2959 flush_dcache_folio(folio);
2960
2961 n = min_t(loff_t, len, isize - *ppos);
2962 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2963 if (!n)
2964 goto out;
2965 len -= n;
2966 total_spliced += n;
2967 *ppos += n;
2968 in->f_ra.prev_pos = *ppos;
2969 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2970 goto out;
2971 }
2972
2973 folio_batch_release(&fbatch);
2974 } while (len);
2975
2976 out:
2977 folio_batch_release(&fbatch);
2978 file_accessed(in);
2979
2980 return total_spliced ? total_spliced : error;
2981 }
2982 EXPORT_SYMBOL(filemap_splice_read);
2983
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)2984 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2985 struct address_space *mapping, struct folio *folio,
2986 loff_t start, loff_t end, bool seek_data)
2987 {
2988 const struct address_space_operations *ops = mapping->a_ops;
2989 size_t offset, bsz = i_blocksize(mapping->host);
2990
2991 if (xa_is_value(folio) || folio_test_uptodate(folio))
2992 return seek_data ? start : end;
2993 if (!ops->is_partially_uptodate)
2994 return seek_data ? end : start;
2995
2996 xas_pause(xas);
2997 rcu_read_unlock();
2998 folio_lock(folio);
2999 if (unlikely(folio->mapping != mapping))
3000 goto unlock;
3001
3002 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3003
3004 do {
3005 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3006 seek_data)
3007 break;
3008 start = (start + bsz) & ~(bsz - 1);
3009 offset += bsz;
3010 } while (offset < folio_size(folio));
3011 unlock:
3012 folio_unlock(folio);
3013 rcu_read_lock();
3014 return start;
3015 }
3016
seek_folio_size(struct xa_state * xas,struct folio * folio)3017 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3018 {
3019 if (xa_is_value(folio))
3020 return PAGE_SIZE << xas_get_order(xas);
3021 return folio_size(folio);
3022 }
3023
3024 /**
3025 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3026 * @mapping: Address space to search.
3027 * @start: First byte to consider.
3028 * @end: Limit of search (exclusive).
3029 * @whence: Either SEEK_HOLE or SEEK_DATA.
3030 *
3031 * If the page cache knows which blocks contain holes and which blocks
3032 * contain data, your filesystem can use this function to implement
3033 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3034 * entirely memory-based such as tmpfs, and filesystems which support
3035 * unwritten extents.
3036 *
3037 * Return: The requested offset on success, or -ENXIO if @whence specifies
3038 * SEEK_DATA and there is no data after @start. There is an implicit hole
3039 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3040 * and @end contain data.
3041 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3042 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3043 loff_t end, int whence)
3044 {
3045 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3046 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3047 bool seek_data = (whence == SEEK_DATA);
3048 struct folio *folio;
3049
3050 if (end <= start)
3051 return -ENXIO;
3052
3053 rcu_read_lock();
3054 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3055 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3056 size_t seek_size;
3057
3058 if (start < pos) {
3059 if (!seek_data)
3060 goto unlock;
3061 start = pos;
3062 }
3063
3064 seek_size = seek_folio_size(&xas, folio);
3065 pos = round_up((u64)pos + 1, seek_size);
3066 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3067 seek_data);
3068 if (start < pos)
3069 goto unlock;
3070 if (start >= end)
3071 break;
3072 if (seek_size > PAGE_SIZE)
3073 xas_set(&xas, pos >> PAGE_SHIFT);
3074 if (!xa_is_value(folio))
3075 folio_put(folio);
3076 }
3077 if (seek_data)
3078 start = -ENXIO;
3079 unlock:
3080 rcu_read_unlock();
3081 if (folio && !xa_is_value(folio))
3082 folio_put(folio);
3083 if (start > end)
3084 return end;
3085 return start;
3086 }
3087
3088 #ifdef CONFIG_MMU
3089 #define MMAP_LOTSAMISS (100)
3090 /*
3091 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3092 * @vmf - the vm_fault for this fault.
3093 * @folio - the folio to lock.
3094 * @fpin - the pointer to the file we may pin (or is already pinned).
3095 *
3096 * This works similar to lock_folio_or_retry in that it can drop the
3097 * mmap_lock. It differs in that it actually returns the folio locked
3098 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3099 * to drop the mmap_lock then fpin will point to the pinned file and
3100 * needs to be fput()'ed at a later point.
3101 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3102 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3103 struct file **fpin)
3104 {
3105 if (folio_trylock(folio))
3106 return 1;
3107
3108 /*
3109 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3110 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3111 * is supposed to work. We have way too many special cases..
3112 */
3113 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3114 return 0;
3115
3116 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3117 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3118 if (__folio_lock_killable(folio)) {
3119 /*
3120 * We didn't have the right flags to drop the
3121 * fault lock, but all fault_handlers only check
3122 * for fatal signals if we return VM_FAULT_RETRY,
3123 * so we need to drop the fault lock here and
3124 * return 0 if we don't have a fpin.
3125 */
3126 if (*fpin == NULL)
3127 release_fault_lock(vmf);
3128 return 0;
3129 }
3130 } else
3131 __folio_lock(folio);
3132
3133 return 1;
3134 }
3135
3136 /*
3137 * Synchronous readahead happens when we don't even find a page in the page
3138 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3139 * to drop the mmap sem we return the file that was pinned in order for us to do
3140 * that. If we didn't pin a file then we return NULL. The file that is
3141 * returned needs to be fput()'ed when we're done with it.
3142 */
do_sync_mmap_readahead(struct vm_fault * vmf)3143 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3144 {
3145 struct file *file = vmf->vma->vm_file;
3146 struct file_ra_state *ra = &file->f_ra;
3147 struct address_space *mapping = file->f_mapping;
3148 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3149 struct file *fpin = NULL;
3150 unsigned long vm_flags = vmf->vma->vm_flags;
3151 unsigned int mmap_miss;
3152
3153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3154 /* Use the readahead code, even if readahead is disabled */
3155 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3156 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3157 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3158 ra->size = HPAGE_PMD_NR;
3159 /*
3160 * Fetch two PMD folios, so we get the chance to actually
3161 * readahead, unless we've been told not to.
3162 */
3163 if (!(vm_flags & VM_RAND_READ))
3164 ra->size *= 2;
3165 ra->async_size = HPAGE_PMD_NR;
3166 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3167 return fpin;
3168 }
3169 #endif
3170
3171 /* If we don't want any read-ahead, don't bother */
3172 if (vm_flags & VM_RAND_READ)
3173 return fpin;
3174 if (!ra->ra_pages)
3175 return fpin;
3176
3177 if (vm_flags & VM_SEQ_READ) {
3178 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179 page_cache_sync_ra(&ractl, ra->ra_pages);
3180 return fpin;
3181 }
3182
3183 /* Avoid banging the cache line if not needed */
3184 mmap_miss = READ_ONCE(ra->mmap_miss);
3185 if (mmap_miss < MMAP_LOTSAMISS * 10)
3186 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3187
3188 /*
3189 * Do we miss much more than hit in this file? If so,
3190 * stop bothering with read-ahead. It will only hurt.
3191 */
3192 if (mmap_miss > MMAP_LOTSAMISS)
3193 return fpin;
3194
3195 /*
3196 * mmap read-around
3197 */
3198 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3199 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3200 ra->size = ra->ra_pages;
3201 ra->async_size = ra->ra_pages / 4;
3202 ractl._index = ra->start;
3203 page_cache_ra_order(&ractl, ra, 0);
3204 return fpin;
3205 }
3206
3207 /*
3208 * Asynchronous readahead happens when we find the page and PG_readahead,
3209 * so we want to possibly extend the readahead further. We return the file that
3210 * was pinned if we have to drop the mmap_lock in order to do IO.
3211 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3212 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3213 struct folio *folio)
3214 {
3215 struct file *file = vmf->vma->vm_file;
3216 struct file_ra_state *ra = &file->f_ra;
3217 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3218 struct file *fpin = NULL;
3219 unsigned int mmap_miss;
3220
3221 /* If we don't want any read-ahead, don't bother */
3222 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3223 return fpin;
3224
3225 mmap_miss = READ_ONCE(ra->mmap_miss);
3226 if (mmap_miss)
3227 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3228
3229 if (folio_test_readahead(folio)) {
3230 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3231 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3232 }
3233 return fpin;
3234 }
3235
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3236 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3237 {
3238 struct vm_area_struct *vma = vmf->vma;
3239 vm_fault_t ret = 0;
3240 pte_t *ptep;
3241
3242 /*
3243 * We might have COW'ed a pagecache folio and might now have an mlocked
3244 * anon folio mapped. The original pagecache folio is not mlocked and
3245 * might have been evicted. During a read+clear/modify/write update of
3246 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3247 * temporarily clear the PTE under PT lock and might detect it here as
3248 * "none" when not holding the PT lock.
3249 *
3250 * Not rechecking the PTE under PT lock could result in an unexpected
3251 * major fault in an mlock'ed region. Recheck only for this special
3252 * scenario while holding the PT lock, to not degrade non-mlocked
3253 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3254 * the number of times we hold PT lock.
3255 */
3256 if (!(vma->vm_flags & VM_LOCKED))
3257 return 0;
3258
3259 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3260 return 0;
3261
3262 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3263 &vmf->ptl);
3264 if (unlikely(!ptep))
3265 return VM_FAULT_NOPAGE;
3266
3267 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3268 ret = VM_FAULT_NOPAGE;
3269 } else {
3270 spin_lock(vmf->ptl);
3271 if (unlikely(!pte_none(ptep_get(ptep))))
3272 ret = VM_FAULT_NOPAGE;
3273 spin_unlock(vmf->ptl);
3274 }
3275 pte_unmap(ptep);
3276 return ret;
3277 }
3278
3279 /**
3280 * filemap_fault - read in file data for page fault handling
3281 * @vmf: struct vm_fault containing details of the fault
3282 *
3283 * filemap_fault() is invoked via the vma operations vector for a
3284 * mapped memory region to read in file data during a page fault.
3285 *
3286 * The goto's are kind of ugly, but this streamlines the normal case of having
3287 * it in the page cache, and handles the special cases reasonably without
3288 * having a lot of duplicated code.
3289 *
3290 * vma->vm_mm->mmap_lock must be held on entry.
3291 *
3292 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3293 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3294 *
3295 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3296 * has not been released.
3297 *
3298 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3299 *
3300 * Return: bitwise-OR of %VM_FAULT_ codes.
3301 */
filemap_fault(struct vm_fault * vmf)3302 vm_fault_t filemap_fault(struct vm_fault *vmf)
3303 {
3304 int error;
3305 struct file *file = vmf->vma->vm_file;
3306 struct file *fpin = NULL;
3307 struct address_space *mapping = file->f_mapping;
3308 struct inode *inode = mapping->host;
3309 pgoff_t max_idx, index = vmf->pgoff;
3310 struct folio *folio;
3311 vm_fault_t ret = 0;
3312 bool mapping_locked = false;
3313
3314 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3315 if (unlikely(index >= max_idx))
3316 return VM_FAULT_SIGBUS;
3317
3318 trace_mm_filemap_fault(mapping, index);
3319
3320 /*
3321 * Do we have something in the page cache already?
3322 */
3323 folio = filemap_get_folio(mapping, index);
3324 if (likely(!IS_ERR(folio))) {
3325 /*
3326 * We found the page, so try async readahead before waiting for
3327 * the lock.
3328 */
3329 if (!(vmf->flags & FAULT_FLAG_TRIED))
3330 fpin = do_async_mmap_readahead(vmf, folio);
3331 if (unlikely(!folio_test_uptodate(folio))) {
3332 filemap_invalidate_lock_shared(mapping);
3333 mapping_locked = true;
3334 }
3335 } else {
3336 ret = filemap_fault_recheck_pte_none(vmf);
3337 if (unlikely(ret))
3338 return ret;
3339
3340 /* No page in the page cache at all */
3341 count_vm_event(PGMAJFAULT);
3342 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3343 ret = VM_FAULT_MAJOR;
3344 fpin = do_sync_mmap_readahead(vmf);
3345 retry_find:
3346 /*
3347 * See comment in filemap_create_folio() why we need
3348 * invalidate_lock
3349 */
3350 if (!mapping_locked) {
3351 filemap_invalidate_lock_shared(mapping);
3352 mapping_locked = true;
3353 }
3354 folio = __filemap_get_folio(mapping, index,
3355 FGP_CREAT|FGP_FOR_MMAP,
3356 vmf->gfp_mask);
3357 if (IS_ERR(folio)) {
3358 if (fpin)
3359 goto out_retry;
3360 filemap_invalidate_unlock_shared(mapping);
3361 return VM_FAULT_OOM;
3362 }
3363 }
3364
3365 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3366 goto out_retry;
3367
3368 /* Did it get truncated? */
3369 if (unlikely(folio->mapping != mapping)) {
3370 folio_unlock(folio);
3371 folio_put(folio);
3372 goto retry_find;
3373 }
3374 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3375
3376 /*
3377 * We have a locked folio in the page cache, now we need to check
3378 * that it's up-to-date. If not, it is going to be due to an error,
3379 * or because readahead was otherwise unable to retrieve it.
3380 */
3381 if (unlikely(!folio_test_uptodate(folio))) {
3382 /*
3383 * If the invalidate lock is not held, the folio was in cache
3384 * and uptodate and now it is not. Strange but possible since we
3385 * didn't hold the page lock all the time. Let's drop
3386 * everything, get the invalidate lock and try again.
3387 */
3388 if (!mapping_locked) {
3389 folio_unlock(folio);
3390 folio_put(folio);
3391 goto retry_find;
3392 }
3393
3394 /*
3395 * OK, the folio is really not uptodate. This can be because the
3396 * VMA has the VM_RAND_READ flag set, or because an error
3397 * arose. Let's read it in directly.
3398 */
3399 goto page_not_uptodate;
3400 }
3401
3402 /*
3403 * We've made it this far and we had to drop our mmap_lock, now is the
3404 * time to return to the upper layer and have it re-find the vma and
3405 * redo the fault.
3406 */
3407 if (fpin) {
3408 folio_unlock(folio);
3409 goto out_retry;
3410 }
3411 if (mapping_locked)
3412 filemap_invalidate_unlock_shared(mapping);
3413
3414 /*
3415 * Found the page and have a reference on it.
3416 * We must recheck i_size under page lock.
3417 */
3418 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3419 if (unlikely(index >= max_idx)) {
3420 folio_unlock(folio);
3421 folio_put(folio);
3422 return VM_FAULT_SIGBUS;
3423 }
3424
3425 vmf->page = folio_file_page(folio, index);
3426 return ret | VM_FAULT_LOCKED;
3427
3428 page_not_uptodate:
3429 /*
3430 * Umm, take care of errors if the page isn't up-to-date.
3431 * Try to re-read it _once_. We do this synchronously,
3432 * because there really aren't any performance issues here
3433 * and we need to check for errors.
3434 */
3435 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3436 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3437 if (fpin)
3438 goto out_retry;
3439 folio_put(folio);
3440
3441 if (!error || error == AOP_TRUNCATED_PAGE)
3442 goto retry_find;
3443 filemap_invalidate_unlock_shared(mapping);
3444
3445 return VM_FAULT_SIGBUS;
3446
3447 out_retry:
3448 /*
3449 * We dropped the mmap_lock, we need to return to the fault handler to
3450 * re-find the vma and come back and find our hopefully still populated
3451 * page.
3452 */
3453 if (!IS_ERR(folio))
3454 folio_put(folio);
3455 if (mapping_locked)
3456 filemap_invalidate_unlock_shared(mapping);
3457 if (fpin)
3458 fput(fpin);
3459 return ret | VM_FAULT_RETRY;
3460 }
3461 EXPORT_SYMBOL(filemap_fault);
3462
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3463 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3464 pgoff_t start)
3465 {
3466 struct mm_struct *mm = vmf->vma->vm_mm;
3467
3468 /* Huge page is mapped? No need to proceed. */
3469 if (pmd_trans_huge(*vmf->pmd)) {
3470 folio_unlock(folio);
3471 folio_put(folio);
3472 return true;
3473 }
3474
3475 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3476 struct page *page = folio_file_page(folio, start);
3477 vm_fault_t ret = do_set_pmd(vmf, page);
3478 if (!ret) {
3479 /* The page is mapped successfully, reference consumed. */
3480 folio_unlock(folio);
3481 return true;
3482 }
3483 }
3484
3485 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3486 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3487
3488 return false;
3489 }
3490
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3491 static struct folio *next_uptodate_folio(struct xa_state *xas,
3492 struct address_space *mapping, pgoff_t end_pgoff)
3493 {
3494 struct folio *folio = xas_next_entry(xas, end_pgoff);
3495 unsigned long max_idx;
3496
3497 do {
3498 if (!folio)
3499 return NULL;
3500 if (xas_retry(xas, folio))
3501 continue;
3502 if (xa_is_value(folio))
3503 continue;
3504 if (!folio_try_get(folio))
3505 continue;
3506 if (folio_test_locked(folio))
3507 goto skip;
3508 /* Has the page moved or been split? */
3509 if (unlikely(folio != xas_reload(xas)))
3510 goto skip;
3511 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3512 goto skip;
3513 if (!folio_trylock(folio))
3514 goto skip;
3515 if (folio->mapping != mapping)
3516 goto unlock;
3517 if (!folio_test_uptodate(folio))
3518 goto unlock;
3519 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3520 if (xas->xa_index >= max_idx)
3521 goto unlock;
3522 return folio;
3523 unlock:
3524 folio_unlock(folio);
3525 skip:
3526 folio_put(folio);
3527 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3528
3529 return NULL;
3530 }
3531
3532 /*
3533 * Map page range [start_page, start_page + nr_pages) of folio.
3534 * start_page is gotten from start by folio_page(folio, start)
3535 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3536 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3537 struct folio *folio, unsigned long start,
3538 unsigned long addr, unsigned int nr_pages,
3539 unsigned long *rss, unsigned int *mmap_miss)
3540 {
3541 vm_fault_t ret = 0;
3542 struct page *page = folio_page(folio, start);
3543 unsigned int count = 0;
3544 pte_t *old_ptep = vmf->pte;
3545
3546 do {
3547 if (PageHWPoison(page + count))
3548 goto skip;
3549
3550 /*
3551 * If there are too many folios that are recently evicted
3552 * in a file, they will probably continue to be evicted.
3553 * In such situation, read-ahead is only a waste of IO.
3554 * Don't decrease mmap_miss in this scenario to make sure
3555 * we can stop read-ahead.
3556 */
3557 if (!folio_test_workingset(folio))
3558 (*mmap_miss)++;
3559
3560 /*
3561 * NOTE: If there're PTE markers, we'll leave them to be
3562 * handled in the specific fault path, and it'll prohibit the
3563 * fault-around logic.
3564 */
3565 if (!pte_none(ptep_get(&vmf->pte[count])))
3566 goto skip;
3567
3568 count++;
3569 continue;
3570 skip:
3571 if (count) {
3572 set_pte_range(vmf, folio, page, count, addr);
3573 *rss += count;
3574 folio_ref_add(folio, count);
3575 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3576 ret = VM_FAULT_NOPAGE;
3577 }
3578
3579 count++;
3580 page += count;
3581 vmf->pte += count;
3582 addr += count * PAGE_SIZE;
3583 count = 0;
3584 } while (--nr_pages > 0);
3585
3586 if (count) {
3587 set_pte_range(vmf, folio, page, count, addr);
3588 *rss += count;
3589 folio_ref_add(folio, count);
3590 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3591 ret = VM_FAULT_NOPAGE;
3592 }
3593
3594 vmf->pte = old_ptep;
3595
3596 return ret;
3597 }
3598
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3599 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3600 struct folio *folio, unsigned long addr,
3601 unsigned long *rss, unsigned int *mmap_miss)
3602 {
3603 vm_fault_t ret = 0;
3604 struct page *page = &folio->page;
3605
3606 if (PageHWPoison(page))
3607 return ret;
3608
3609 /* See comment of filemap_map_folio_range() */
3610 if (!folio_test_workingset(folio))
3611 (*mmap_miss)++;
3612
3613 /*
3614 * NOTE: If there're PTE markers, we'll leave them to be
3615 * handled in the specific fault path, and it'll prohibit
3616 * the fault-around logic.
3617 */
3618 if (!pte_none(ptep_get(vmf->pte)))
3619 return ret;
3620
3621 if (vmf->address == addr)
3622 ret = VM_FAULT_NOPAGE;
3623
3624 set_pte_range(vmf, folio, page, 1, addr);
3625 (*rss)++;
3626 folio_ref_inc(folio);
3627
3628 return ret;
3629 }
3630
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3631 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3632 pgoff_t start_pgoff, pgoff_t end_pgoff)
3633 {
3634 struct vm_area_struct *vma = vmf->vma;
3635 struct file *file = vma->vm_file;
3636 struct address_space *mapping = file->f_mapping;
3637 pgoff_t file_end, last_pgoff = start_pgoff;
3638 unsigned long addr;
3639 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3640 struct folio *folio;
3641 vm_fault_t ret = 0;
3642 unsigned long rss = 0;
3643 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3644
3645 rcu_read_lock();
3646 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3647 if (!folio)
3648 goto out;
3649
3650 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3651 ret = VM_FAULT_NOPAGE;
3652 goto out;
3653 }
3654
3655 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3656 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3657 if (!vmf->pte) {
3658 folio_unlock(folio);
3659 folio_put(folio);
3660 goto out;
3661 }
3662
3663 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3664 if (end_pgoff > file_end)
3665 end_pgoff = file_end;
3666
3667 folio_type = mm_counter_file(folio);
3668 do {
3669 unsigned long end;
3670
3671 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3672 vmf->pte += xas.xa_index - last_pgoff;
3673 last_pgoff = xas.xa_index;
3674 end = folio_next_index(folio) - 1;
3675 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3676
3677 if (!folio_test_large(folio))
3678 ret |= filemap_map_order0_folio(vmf,
3679 folio, addr, &rss, &mmap_miss);
3680 else
3681 ret |= filemap_map_folio_range(vmf, folio,
3682 xas.xa_index - folio->index, addr,
3683 nr_pages, &rss, &mmap_miss);
3684
3685 folio_unlock(folio);
3686 folio_put(folio);
3687 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3688 add_mm_counter(vma->vm_mm, folio_type, rss);
3689 pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3691 out:
3692 rcu_read_unlock();
3693
3694 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3695 if (mmap_miss >= mmap_miss_saved)
3696 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3697 else
3698 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3699
3700 return ret;
3701 }
3702 EXPORT_SYMBOL(filemap_map_pages);
3703
filemap_page_mkwrite(struct vm_fault * vmf)3704 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3705 {
3706 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3707 struct folio *folio = page_folio(vmf->page);
3708 vm_fault_t ret = VM_FAULT_LOCKED;
3709
3710 sb_start_pagefault(mapping->host->i_sb);
3711 file_update_time(vmf->vma->vm_file);
3712 folio_lock(folio);
3713 if (folio->mapping != mapping) {
3714 folio_unlock(folio);
3715 ret = VM_FAULT_NOPAGE;
3716 goto out;
3717 }
3718 /*
3719 * We mark the folio dirty already here so that when freeze is in
3720 * progress, we are guaranteed that writeback during freezing will
3721 * see the dirty folio and writeprotect it again.
3722 */
3723 folio_mark_dirty(folio);
3724 folio_wait_stable(folio);
3725 out:
3726 sb_end_pagefault(mapping->host->i_sb);
3727 return ret;
3728 }
3729
3730 const struct vm_operations_struct generic_file_vm_ops = {
3731 .fault = filemap_fault,
3732 .map_pages = filemap_map_pages,
3733 .page_mkwrite = filemap_page_mkwrite,
3734 };
3735
3736 /* This is used for a general mmap of a disk file */
3737
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3738 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3739 {
3740 struct address_space *mapping = file->f_mapping;
3741
3742 if (!mapping->a_ops->read_folio)
3743 return -ENOEXEC;
3744 file_accessed(file);
3745 vma->vm_ops = &generic_file_vm_ops;
3746 return 0;
3747 }
3748
3749 /*
3750 * This is for filesystems which do not implement ->writepage.
3751 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3752 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3753 {
3754 if (vma_is_shared_maywrite(vma))
3755 return -EINVAL;
3756 return generic_file_mmap(file, vma);
3757 }
3758 #else
filemap_page_mkwrite(struct vm_fault * vmf)3759 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3760 {
3761 return VM_FAULT_SIGBUS;
3762 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3763 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3764 {
3765 return -ENOSYS;
3766 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3767 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3768 {
3769 return -ENOSYS;
3770 }
3771 #endif /* CONFIG_MMU */
3772
3773 EXPORT_SYMBOL(filemap_page_mkwrite);
3774 EXPORT_SYMBOL(generic_file_mmap);
3775 EXPORT_SYMBOL(generic_file_readonly_mmap);
3776
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3777 static struct folio *do_read_cache_folio(struct address_space *mapping,
3778 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3779 {
3780 struct folio *folio;
3781 int err;
3782
3783 if (!filler)
3784 filler = mapping->a_ops->read_folio;
3785 repeat:
3786 folio = filemap_get_folio(mapping, index);
3787 if (IS_ERR(folio)) {
3788 folio = filemap_alloc_folio(gfp,
3789 mapping_min_folio_order(mapping));
3790 if (!folio)
3791 return ERR_PTR(-ENOMEM);
3792 index = mapping_align_index(mapping, index);
3793 err = filemap_add_folio(mapping, folio, index, gfp);
3794 if (unlikely(err)) {
3795 folio_put(folio);
3796 if (err == -EEXIST)
3797 goto repeat;
3798 /* Presumably ENOMEM for xarray node */
3799 return ERR_PTR(err);
3800 }
3801
3802 goto filler;
3803 }
3804 if (folio_test_uptodate(folio))
3805 goto out;
3806
3807 if (!folio_trylock(folio)) {
3808 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3809 goto repeat;
3810 }
3811
3812 /* Folio was truncated from mapping */
3813 if (!folio->mapping) {
3814 folio_unlock(folio);
3815 folio_put(folio);
3816 goto repeat;
3817 }
3818
3819 /* Someone else locked and filled the page in a very small window */
3820 if (folio_test_uptodate(folio)) {
3821 folio_unlock(folio);
3822 goto out;
3823 }
3824
3825 filler:
3826 err = filemap_read_folio(file, filler, folio);
3827 if (err) {
3828 folio_put(folio);
3829 if (err == AOP_TRUNCATED_PAGE)
3830 goto repeat;
3831 return ERR_PTR(err);
3832 }
3833
3834 out:
3835 folio_mark_accessed(folio);
3836 return folio;
3837 }
3838
3839 /**
3840 * read_cache_folio - Read into page cache, fill it if needed.
3841 * @mapping: The address_space to read from.
3842 * @index: The index to read.
3843 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3844 * @file: Passed to filler function, may be NULL if not required.
3845 *
3846 * Read one page into the page cache. If it succeeds, the folio returned
3847 * will contain @index, but it may not be the first page of the folio.
3848 *
3849 * If the filler function returns an error, it will be returned to the
3850 * caller.
3851 *
3852 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3853 * Return: An uptodate folio on success, ERR_PTR() on failure.
3854 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3855 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3856 filler_t filler, struct file *file)
3857 {
3858 return do_read_cache_folio(mapping, index, filler, file,
3859 mapping_gfp_mask(mapping));
3860 }
3861 EXPORT_SYMBOL(read_cache_folio);
3862
3863 /**
3864 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3865 * @mapping: The address_space for the folio.
3866 * @index: The index that the allocated folio will contain.
3867 * @gfp: The page allocator flags to use if allocating.
3868 *
3869 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3870 * any new memory allocations done using the specified allocation flags.
3871 *
3872 * The most likely error from this function is EIO, but ENOMEM is
3873 * possible and so is EINTR. If ->read_folio returns another error,
3874 * that will be returned to the caller.
3875 *
3876 * The function expects mapping->invalidate_lock to be already held.
3877 *
3878 * Return: Uptodate folio on success, ERR_PTR() on failure.
3879 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3880 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3881 pgoff_t index, gfp_t gfp)
3882 {
3883 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3884 }
3885 EXPORT_SYMBOL(mapping_read_folio_gfp);
3886
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3887 static struct page *do_read_cache_page(struct address_space *mapping,
3888 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3889 {
3890 struct folio *folio;
3891
3892 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3893 if (IS_ERR(folio))
3894 return &folio->page;
3895 return folio_file_page(folio, index);
3896 }
3897
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3898 struct page *read_cache_page(struct address_space *mapping,
3899 pgoff_t index, filler_t *filler, struct file *file)
3900 {
3901 return do_read_cache_page(mapping, index, filler, file,
3902 mapping_gfp_mask(mapping));
3903 }
3904 EXPORT_SYMBOL(read_cache_page);
3905
3906 /**
3907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3908 * @mapping: the page's address_space
3909 * @index: the page index
3910 * @gfp: the page allocator flags to use if allocating
3911 *
3912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3913 * any new page allocations done using the specified allocation flags.
3914 *
3915 * If the page does not get brought uptodate, return -EIO.
3916 *
3917 * The function expects mapping->invalidate_lock to be already held.
3918 *
3919 * Return: up to date page on success, ERR_PTR() on failure.
3920 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3921 struct page *read_cache_page_gfp(struct address_space *mapping,
3922 pgoff_t index,
3923 gfp_t gfp)
3924 {
3925 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3926 }
3927 EXPORT_SYMBOL(read_cache_page_gfp);
3928
3929 /*
3930 * Warn about a page cache invalidation failure during a direct I/O write.
3931 */
dio_warn_stale_pagecache(struct file * filp)3932 static void dio_warn_stale_pagecache(struct file *filp)
3933 {
3934 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3935 char pathname[128];
3936 char *path;
3937
3938 errseq_set(&filp->f_mapping->wb_err, -EIO);
3939 if (__ratelimit(&_rs)) {
3940 path = file_path(filp, pathname, sizeof(pathname));
3941 if (IS_ERR(path))
3942 path = "(unknown)";
3943 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3944 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3945 current->comm);
3946 }
3947 }
3948
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3949 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3950 {
3951 struct address_space *mapping = iocb->ki_filp->f_mapping;
3952
3953 if (mapping->nrpages &&
3954 invalidate_inode_pages2_range(mapping,
3955 iocb->ki_pos >> PAGE_SHIFT,
3956 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3957 dio_warn_stale_pagecache(iocb->ki_filp);
3958 }
3959
3960 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3961 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3962 {
3963 struct address_space *mapping = iocb->ki_filp->f_mapping;
3964 size_t write_len = iov_iter_count(from);
3965 ssize_t written;
3966
3967 /*
3968 * If a page can not be invalidated, return 0 to fall back
3969 * to buffered write.
3970 */
3971 written = kiocb_invalidate_pages(iocb, write_len);
3972 if (written) {
3973 if (written == -EBUSY)
3974 return 0;
3975 return written;
3976 }
3977
3978 written = mapping->a_ops->direct_IO(iocb, from);
3979
3980 /*
3981 * Finally, try again to invalidate clean pages which might have been
3982 * cached by non-direct readahead, or faulted in by get_user_pages()
3983 * if the source of the write was an mmap'ed region of the file
3984 * we're writing. Either one is a pretty crazy thing to do,
3985 * so we don't support it 100%. If this invalidation
3986 * fails, tough, the write still worked...
3987 *
3988 * Most of the time we do not need this since dio_complete() will do
3989 * the invalidation for us. However there are some file systems that
3990 * do not end up with dio_complete() being called, so let's not break
3991 * them by removing it completely.
3992 *
3993 * Noticeable example is a blkdev_direct_IO().
3994 *
3995 * Skip invalidation for async writes or if mapping has no pages.
3996 */
3997 if (written > 0) {
3998 struct inode *inode = mapping->host;
3999 loff_t pos = iocb->ki_pos;
4000
4001 kiocb_invalidate_post_direct_write(iocb, written);
4002 pos += written;
4003 write_len -= written;
4004 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4005 i_size_write(inode, pos);
4006 mark_inode_dirty(inode);
4007 }
4008 iocb->ki_pos = pos;
4009 }
4010 if (written != -EIOCBQUEUED)
4011 iov_iter_revert(from, write_len - iov_iter_count(from));
4012 return written;
4013 }
4014 EXPORT_SYMBOL(generic_file_direct_write);
4015
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4016 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4017 {
4018 struct file *file = iocb->ki_filp;
4019 loff_t pos = iocb->ki_pos;
4020 struct address_space *mapping = file->f_mapping;
4021 const struct address_space_operations *a_ops = mapping->a_ops;
4022 size_t chunk = mapping_max_folio_size(mapping);
4023 long status = 0;
4024 ssize_t written = 0;
4025
4026 do {
4027 struct folio *folio;
4028 size_t offset; /* Offset into folio */
4029 size_t bytes; /* Bytes to write to folio */
4030 size_t copied; /* Bytes copied from user */
4031 void *fsdata = NULL;
4032
4033 bytes = iov_iter_count(i);
4034 retry:
4035 offset = pos & (chunk - 1);
4036 bytes = min(chunk - offset, bytes);
4037 balance_dirty_pages_ratelimited(mapping);
4038
4039 /*
4040 * Bring in the user page that we will copy from _first_.
4041 * Otherwise there's a nasty deadlock on copying from the
4042 * same page as we're writing to, without it being marked
4043 * up-to-date.
4044 */
4045 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4046 status = -EFAULT;
4047 break;
4048 }
4049
4050 if (fatal_signal_pending(current)) {
4051 status = -EINTR;
4052 break;
4053 }
4054
4055 status = a_ops->write_begin(file, mapping, pos, bytes,
4056 &folio, &fsdata);
4057 if (unlikely(status < 0))
4058 break;
4059
4060 offset = offset_in_folio(folio, pos);
4061 if (bytes > folio_size(folio) - offset)
4062 bytes = folio_size(folio) - offset;
4063
4064 if (mapping_writably_mapped(mapping))
4065 flush_dcache_folio(folio);
4066
4067 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4068 flush_dcache_folio(folio);
4069
4070 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4071 folio, fsdata);
4072 if (unlikely(status != copied)) {
4073 iov_iter_revert(i, copied - max(status, 0L));
4074 if (unlikely(status < 0))
4075 break;
4076 }
4077 cond_resched();
4078
4079 if (unlikely(status == 0)) {
4080 /*
4081 * A short copy made ->write_end() reject the
4082 * thing entirely. Might be memory poisoning
4083 * halfway through, might be a race with munmap,
4084 * might be severe memory pressure.
4085 */
4086 if (chunk > PAGE_SIZE)
4087 chunk /= 2;
4088 if (copied) {
4089 bytes = copied;
4090 goto retry;
4091 }
4092 } else {
4093 pos += status;
4094 written += status;
4095 }
4096 } while (iov_iter_count(i));
4097
4098 if (!written)
4099 return status;
4100 iocb->ki_pos += written;
4101 return written;
4102 }
4103 EXPORT_SYMBOL(generic_perform_write);
4104
4105 /**
4106 * __generic_file_write_iter - write data to a file
4107 * @iocb: IO state structure (file, offset, etc.)
4108 * @from: iov_iter with data to write
4109 *
4110 * This function does all the work needed for actually writing data to a
4111 * file. It does all basic checks, removes SUID from the file, updates
4112 * modification times and calls proper subroutines depending on whether we
4113 * do direct IO or a standard buffered write.
4114 *
4115 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4116 * object which does not need locking at all.
4117 *
4118 * This function does *not* take care of syncing data in case of O_SYNC write.
4119 * A caller has to handle it. This is mainly due to the fact that we want to
4120 * avoid syncing under i_rwsem.
4121 *
4122 * Return:
4123 * * number of bytes written, even for truncated writes
4124 * * negative error code if no data has been written at all
4125 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4126 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4127 {
4128 struct file *file = iocb->ki_filp;
4129 struct address_space *mapping = file->f_mapping;
4130 struct inode *inode = mapping->host;
4131 ssize_t ret;
4132
4133 ret = file_remove_privs(file);
4134 if (ret)
4135 return ret;
4136
4137 ret = file_update_time(file);
4138 if (ret)
4139 return ret;
4140
4141 if (iocb->ki_flags & IOCB_DIRECT) {
4142 ret = generic_file_direct_write(iocb, from);
4143 /*
4144 * If the write stopped short of completing, fall back to
4145 * buffered writes. Some filesystems do this for writes to
4146 * holes, for example. For DAX files, a buffered write will
4147 * not succeed (even if it did, DAX does not handle dirty
4148 * page-cache pages correctly).
4149 */
4150 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4151 return ret;
4152 return direct_write_fallback(iocb, from, ret,
4153 generic_perform_write(iocb, from));
4154 }
4155
4156 return generic_perform_write(iocb, from);
4157 }
4158 EXPORT_SYMBOL(__generic_file_write_iter);
4159
4160 /**
4161 * generic_file_write_iter - write data to a file
4162 * @iocb: IO state structure
4163 * @from: iov_iter with data to write
4164 *
4165 * This is a wrapper around __generic_file_write_iter() to be used by most
4166 * filesystems. It takes care of syncing the file in case of O_SYNC file
4167 * and acquires i_rwsem as needed.
4168 * Return:
4169 * * negative error code if no data has been written at all of
4170 * vfs_fsync_range() failed for a synchronous write
4171 * * number of bytes written, even for truncated writes
4172 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4173 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4174 {
4175 struct file *file = iocb->ki_filp;
4176 struct inode *inode = file->f_mapping->host;
4177 ssize_t ret;
4178
4179 inode_lock(inode);
4180 ret = generic_write_checks(iocb, from);
4181 if (ret > 0)
4182 ret = __generic_file_write_iter(iocb, from);
4183 inode_unlock(inode);
4184
4185 if (ret > 0)
4186 ret = generic_write_sync(iocb, ret);
4187 return ret;
4188 }
4189 EXPORT_SYMBOL(generic_file_write_iter);
4190
4191 /**
4192 * filemap_release_folio() - Release fs-specific metadata on a folio.
4193 * @folio: The folio which the kernel is trying to free.
4194 * @gfp: Memory allocation flags (and I/O mode).
4195 *
4196 * The address_space is trying to release any data attached to a folio
4197 * (presumably at folio->private).
4198 *
4199 * This will also be called if the private_2 flag is set on a page,
4200 * indicating that the folio has other metadata associated with it.
4201 *
4202 * The @gfp argument specifies whether I/O may be performed to release
4203 * this page (__GFP_IO), and whether the call may block
4204 * (__GFP_RECLAIM & __GFP_FS).
4205 *
4206 * Return: %true if the release was successful, otherwise %false.
4207 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4208 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4209 {
4210 struct address_space * const mapping = folio->mapping;
4211
4212 BUG_ON(!folio_test_locked(folio));
4213 if (!folio_needs_release(folio))
4214 return true;
4215 if (folio_test_writeback(folio))
4216 return false;
4217
4218 if (mapping && mapping->a_ops->release_folio)
4219 return mapping->a_ops->release_folio(folio, gfp);
4220 return try_to_free_buffers(folio);
4221 }
4222 EXPORT_SYMBOL(filemap_release_folio);
4223
4224 /**
4225 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4226 * @inode: The inode to flush
4227 * @flush: Set to write back rather than simply invalidate.
4228 * @start: First byte to in range.
4229 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4230 * onwards.
4231 *
4232 * Invalidate all the folios on an inode that contribute to the specified
4233 * range, possibly writing them back first. Whilst the operation is
4234 * undertaken, the invalidate lock is held to prevent new folios from being
4235 * installed.
4236 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4237 int filemap_invalidate_inode(struct inode *inode, bool flush,
4238 loff_t start, loff_t end)
4239 {
4240 struct address_space *mapping = inode->i_mapping;
4241 pgoff_t first = start >> PAGE_SHIFT;
4242 pgoff_t last = end >> PAGE_SHIFT;
4243 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4244
4245 if (!mapping || !mapping->nrpages || end < start)
4246 goto out;
4247
4248 /* Prevent new folios from being added to the inode. */
4249 filemap_invalidate_lock(mapping);
4250
4251 if (!mapping->nrpages)
4252 goto unlock;
4253
4254 unmap_mapping_pages(mapping, first, nr, false);
4255
4256 /* Write back the data if we're asked to. */
4257 if (flush) {
4258 struct writeback_control wbc = {
4259 .sync_mode = WB_SYNC_ALL,
4260 .nr_to_write = LONG_MAX,
4261 .range_start = start,
4262 .range_end = end,
4263 };
4264
4265 filemap_fdatawrite_wbc(mapping, &wbc);
4266 }
4267
4268 /* Wait for writeback to complete on all folios and discard. */
4269 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4270
4271 unlock:
4272 filemap_invalidate_unlock(mapping);
4273 out:
4274 return filemap_check_errors(mapping);
4275 }
4276 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4277
4278 #ifdef CONFIG_CACHESTAT_SYSCALL
4279 /**
4280 * filemap_cachestat() - compute the page cache statistics of a mapping
4281 * @mapping: The mapping to compute the statistics for.
4282 * @first_index: The starting page cache index.
4283 * @last_index: The final page index (inclusive).
4284 * @cs: the cachestat struct to write the result to.
4285 *
4286 * This will query the page cache statistics of a mapping in the
4287 * page range of [first_index, last_index] (inclusive). The statistics
4288 * queried include: number of dirty pages, number of pages marked for
4289 * writeback, and the number of (recently) evicted pages.
4290 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4291 static void filemap_cachestat(struct address_space *mapping,
4292 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4293 {
4294 XA_STATE(xas, &mapping->i_pages, first_index);
4295 struct folio *folio;
4296
4297 /* Flush stats (and potentially sleep) outside the RCU read section. */
4298 mem_cgroup_flush_stats_ratelimited(NULL);
4299
4300 rcu_read_lock();
4301 xas_for_each(&xas, folio, last_index) {
4302 int order;
4303 unsigned long nr_pages;
4304 pgoff_t folio_first_index, folio_last_index;
4305
4306 /*
4307 * Don't deref the folio. It is not pinned, and might
4308 * get freed (and reused) underneath us.
4309 *
4310 * We *could* pin it, but that would be expensive for
4311 * what should be a fast and lightweight syscall.
4312 *
4313 * Instead, derive all information of interest from
4314 * the rcu-protected xarray.
4315 */
4316
4317 if (xas_retry(&xas, folio))
4318 continue;
4319
4320 order = xas_get_order(&xas);
4321 nr_pages = 1 << order;
4322 folio_first_index = round_down(xas.xa_index, 1 << order);
4323 folio_last_index = folio_first_index + nr_pages - 1;
4324
4325 /* Folios might straddle the range boundaries, only count covered pages */
4326 if (folio_first_index < first_index)
4327 nr_pages -= first_index - folio_first_index;
4328
4329 if (folio_last_index > last_index)
4330 nr_pages -= folio_last_index - last_index;
4331
4332 if (xa_is_value(folio)) {
4333 /* page is evicted */
4334 void *shadow = (void *)folio;
4335 bool workingset; /* not used */
4336
4337 cs->nr_evicted += nr_pages;
4338
4339 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4340 if (shmem_mapping(mapping)) {
4341 /* shmem file - in swap cache */
4342 swp_entry_t swp = radix_to_swp_entry(folio);
4343
4344 /* swapin error results in poisoned entry */
4345 if (non_swap_entry(swp))
4346 goto resched;
4347
4348 /*
4349 * Getting a swap entry from the shmem
4350 * inode means we beat
4351 * shmem_unuse(). rcu_read_lock()
4352 * ensures swapoff waits for us before
4353 * freeing the swapper space. However,
4354 * we can race with swapping and
4355 * invalidation, so there might not be
4356 * a shadow in the swapcache (yet).
4357 */
4358 shadow = get_shadow_from_swap_cache(swp);
4359 if (!shadow)
4360 goto resched;
4361 }
4362 #endif
4363 if (workingset_test_recent(shadow, true, &workingset, false))
4364 cs->nr_recently_evicted += nr_pages;
4365
4366 goto resched;
4367 }
4368
4369 /* page is in cache */
4370 cs->nr_cache += nr_pages;
4371
4372 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4373 cs->nr_dirty += nr_pages;
4374
4375 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4376 cs->nr_writeback += nr_pages;
4377
4378 resched:
4379 if (need_resched()) {
4380 xas_pause(&xas);
4381 cond_resched_rcu();
4382 }
4383 }
4384 rcu_read_unlock();
4385 }
4386
4387 /*
4388 * The cachestat(2) system call.
4389 *
4390 * cachestat() returns the page cache statistics of a file in the
4391 * bytes range specified by `off` and `len`: number of cached pages,
4392 * number of dirty pages, number of pages marked for writeback,
4393 * number of evicted pages, and number of recently evicted pages.
4394 *
4395 * An evicted page is a page that is previously in the page cache
4396 * but has been evicted since. A page is recently evicted if its last
4397 * eviction was recent enough that its reentry to the cache would
4398 * indicate that it is actively being used by the system, and that
4399 * there is memory pressure on the system.
4400 *
4401 * `off` and `len` must be non-negative integers. If `len` > 0,
4402 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4403 * we will query in the range from `off` to the end of the file.
4404 *
4405 * The `flags` argument is unused for now, but is included for future
4406 * extensibility. User should pass 0 (i.e no flag specified).
4407 *
4408 * Currently, hugetlbfs is not supported.
4409 *
4410 * Because the status of a page can change after cachestat() checks it
4411 * but before it returns to the application, the returned values may
4412 * contain stale information.
4413 *
4414 * return values:
4415 * zero - success
4416 * -EFAULT - cstat or cstat_range points to an illegal address
4417 * -EINVAL - invalid flags
4418 * -EBADF - invalid file descriptor
4419 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4420 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4421 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4422 struct cachestat_range __user *, cstat_range,
4423 struct cachestat __user *, cstat, unsigned int, flags)
4424 {
4425 CLASS(fd, f)(fd);
4426 struct address_space *mapping;
4427 struct cachestat_range csr;
4428 struct cachestat cs;
4429 pgoff_t first_index, last_index;
4430
4431 if (fd_empty(f))
4432 return -EBADF;
4433
4434 if (copy_from_user(&csr, cstat_range,
4435 sizeof(struct cachestat_range)))
4436 return -EFAULT;
4437
4438 /* hugetlbfs is not supported */
4439 if (is_file_hugepages(fd_file(f)))
4440 return -EOPNOTSUPP;
4441
4442 if (flags != 0)
4443 return -EINVAL;
4444
4445 first_index = csr.off >> PAGE_SHIFT;
4446 last_index =
4447 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4448 memset(&cs, 0, sizeof(struct cachestat));
4449 mapping = fd_file(f)->f_mapping;
4450 filemap_cachestat(mapping, first_index, last_index, &cs);
4451
4452 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4453 return -EFAULT;
4454
4455 return 0;
4456 }
4457 #endif /* CONFIG_CACHESTAT_SYSCALL */
4458