1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "findstack.h"
78 #include "fm.h"
79 #include "gcore.h"
80 #include "group.h"
81 #include "irm.h"
82 #include "kgrep.h"
83 #include "kmem.h"
84 #include "ldi.h"
85 #include "leaky.h"
86 #include "lgrp.h"
87 #include "list.h"
88 #include "log.h"
89 #include "mdi.h"
90 #include "memory.h"
91 #include "mmd.h"
92 #include "modhash.h"
93 #include "ndievents.h"
94 #include "net.h"
95 #include "netstack.h"
96 #include "nvpair.h"
97 #include "pg.h"
98 #include "rctl.h"
99 #include "sobj.h"
100 #include "streams.h"
101 #include "sysevent.h"
102 #include "taskq.h"
103 #include "thread.h"
104 #include "tsd.h"
105 #include "tsol.h"
106 #include "typegraph.h"
107 #include "vfs.h"
108 #include "zone.h"
109 #include "hotplug.h"
110
111 /*
112 * Surely this is defined somewhere...
113 */
114 #define NINTR 16
115
116 #define KILOS 10
117 #define MEGS 20
118 #define GIGS 30
119
120 #ifndef STACK_BIAS
121 #define STACK_BIAS 0
122 #endif
123
124 static char
pstat2ch(uchar_t state)125 pstat2ch(uchar_t state)
126 {
127 switch (state) {
128 case SSLEEP: return ('S');
129 case SRUN: return ('R');
130 case SZOMB: return ('Z');
131 case SIDL: return ('I');
132 case SONPROC: return ('O');
133 case SSTOP: return ('T');
134 case SWAIT: return ('W');
135 default: return ('?');
136 }
137 }
138
139 #define PS_PRTTHREADS 0x1
140 #define PS_PRTLWPS 0x2
141 #define PS_PSARGS 0x4
142 #define PS_TASKS 0x8
143 #define PS_PROJECTS 0x10
144 #define PS_ZONES 0x20
145
146 static int
ps_threadprint(uintptr_t addr,const void * data,void * private)147 ps_threadprint(uintptr_t addr, const void *data, void *private)
148 {
149 const kthread_t *t = (const kthread_t *)data;
150 uint_t prt_flags = *((uint_t *)private);
151
152 static const mdb_bitmask_t t_state_bits[] = {
153 { "TS_FREE", UINT_MAX, TS_FREE },
154 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
155 { "TS_RUN", TS_RUN, TS_RUN },
156 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
157 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
158 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
159 { "TS_WAIT", TS_WAIT, TS_WAIT },
160 { NULL, 0, 0 }
161 };
162
163 if (prt_flags & PS_PRTTHREADS)
164 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
165
166 if (prt_flags & PS_PRTLWPS)
167 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
168
169 return (WALK_NEXT);
170 }
171
172 int
ps(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)173 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
174 {
175 uint_t prt_flags = 0;
176 proc_t pr;
177 struct pid pid, pgid, sid;
178 sess_t session;
179 cred_t cred;
180 task_t tk;
181 kproject_t pj;
182 zone_t zn;
183
184 if (!(flags & DCMD_ADDRSPEC)) {
185 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
186 mdb_warn("can't walk 'proc'");
187 return (DCMD_ERR);
188 }
189 return (DCMD_OK);
190 }
191
192 if (mdb_getopts(argc, argv,
193 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
194 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
195 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
196 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
197 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
198 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
199 return (DCMD_USAGE);
200
201 if (DCMD_HDRSPEC(flags)) {
202 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
203 "S", "PID", "PPID", "PGID", "SID");
204 if (prt_flags & PS_TASKS)
205 mdb_printf("%5s ", "TASK");
206 if (prt_flags & PS_PROJECTS)
207 mdb_printf("%5s ", "PROJ");
208 if (prt_flags & PS_ZONES)
209 mdb_printf("%5s ", "ZONE");
210 mdb_printf("%6s %10s %?s %s%</u>\n",
211 "UID", "FLAGS", "ADDR", "NAME");
212 }
213
214 mdb_vread(&pr, sizeof (pr), addr);
215 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
216 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
217 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
218 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
219 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
220 if (prt_flags & (PS_TASKS | PS_PROJECTS))
221 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
222 if (prt_flags & PS_PROJECTS)
223 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
224 if (prt_flags & PS_ZONES)
225 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
226
227 mdb_printf("%c %6d %6d %6d %6d ",
228 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
229 sid.pid_id);
230 if (prt_flags & PS_TASKS)
231 mdb_printf("%5d ", tk.tk_tkid);
232 if (prt_flags & PS_PROJECTS)
233 mdb_printf("%5d ", pj.kpj_id);
234 if (prt_flags & PS_ZONES)
235 mdb_printf("%5d ", zn.zone_id);
236 mdb_printf("%6d 0x%08x %0?p %s\n",
237 cred.cr_uid, pr.p_flag, addr,
238 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
239
240 if (prt_flags & ~PS_PSARGS)
241 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
242
243 return (DCMD_OK);
244 }
245
246 #define PG_NEWEST 0x0001
247 #define PG_OLDEST 0x0002
248 #define PG_PIPE_OUT 0x0004
249 #define PG_EXACT_MATCH 0x0008
250
251 typedef struct pgrep_data {
252 uint_t pg_flags;
253 uint_t pg_psflags;
254 uintptr_t pg_xaddr;
255 hrtime_t pg_xstart;
256 const char *pg_pat;
257 #ifndef _KMDB
258 regex_t pg_reg;
259 #endif
260 } pgrep_data_t;
261
262 /*ARGSUSED*/
263 static int
pgrep_cb(uintptr_t addr,const void * pdata,void * data)264 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
265 {
266 const proc_t *prp = pdata;
267 pgrep_data_t *pgp = data;
268 #ifndef _KMDB
269 regmatch_t pmatch;
270 #endif
271
272 /*
273 * kmdb doesn't have access to the reg* functions, so we fall back
274 * to strstr/strcmp.
275 */
276 #ifdef _KMDB
277 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
278 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
279 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
280 return (WALK_NEXT);
281 #else
282 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
283 return (WALK_NEXT);
284
285 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
286 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
287 return (WALK_NEXT);
288 #endif
289
290 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
291 hrtime_t start;
292
293 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
294 prp->p_user.u_start.tv_nsec;
295
296 if (pgp->pg_flags & PG_NEWEST) {
297 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
298 pgp->pg_xaddr = addr;
299 pgp->pg_xstart = start;
300 }
301 } else {
302 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
303 pgp->pg_xaddr = addr;
304 pgp->pg_xstart = start;
305 }
306 }
307
308 } else if (pgp->pg_flags & PG_PIPE_OUT) {
309 mdb_printf("%p\n", addr);
310
311 } else {
312 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
313 mdb_warn("can't invoke 'ps'");
314 return (WALK_DONE);
315 }
316 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
317 }
318
319 return (WALK_NEXT);
320 }
321
322 /*ARGSUSED*/
323 int
pgrep(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)324 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
325 {
326 pgrep_data_t pg;
327 int i;
328 #ifndef _KMDB
329 int err;
330 #endif
331
332 if (flags & DCMD_ADDRSPEC)
333 return (DCMD_USAGE);
334
335 pg.pg_flags = 0;
336 pg.pg_xaddr = 0;
337
338 i = mdb_getopts(argc, argv,
339 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
340 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
341 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
342 NULL);
343
344 argc -= i;
345 argv += i;
346
347 if (argc != 1)
348 return (DCMD_USAGE);
349
350 /*
351 * -n and -o are mutually exclusive.
352 */
353 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
354 return (DCMD_USAGE);
355
356 if (argv->a_type != MDB_TYPE_STRING)
357 return (DCMD_USAGE);
358
359 if (flags & DCMD_PIPE_OUT)
360 pg.pg_flags |= PG_PIPE_OUT;
361
362 pg.pg_pat = argv->a_un.a_str;
363 if (DCMD_HDRSPEC(flags))
364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
365 else
366 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
367
368 #ifndef _KMDB
369 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
370 size_t nbytes;
371 char *buf;
372
373 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
374 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
375 (void) regerror(err, &pg.pg_reg, buf, nbytes);
376 mdb_warn("%s\n", buf);
377
378 return (DCMD_ERR);
379 }
380 #endif
381
382 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
383 mdb_warn("can't walk 'proc'");
384 return (DCMD_ERR);
385 }
386
387 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
388 if (pg.pg_flags & PG_PIPE_OUT) {
389 mdb_printf("%p\n", pg.pg_xaddr);
390 } else {
391 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
392 0, NULL) != 0) {
393 mdb_warn("can't invoke 'ps'");
394 return (DCMD_ERR);
395 }
396 }
397 }
398
399 return (DCMD_OK);
400 }
401
402 int
task(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)403 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
404 {
405 task_t tk;
406 kproject_t pj;
407
408 if (!(flags & DCMD_ADDRSPEC)) {
409 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
410 mdb_warn("can't walk task_cache");
411 return (DCMD_ERR);
412 }
413 return (DCMD_OK);
414 }
415 if (DCMD_HDRSPEC(flags)) {
416 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
417 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
418 }
419 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
420 mdb_warn("can't read task_t structure at %p", addr);
421 return (DCMD_ERR);
422 }
423 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
424 mdb_warn("can't read project_t structure at %p", addr);
425 return (DCMD_ERR);
426 }
427 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
428 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
429 tk.tk_flags);
430 return (DCMD_OK);
431 }
432
433 int
project(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)434 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
435 {
436 kproject_t pj;
437
438 if (!(flags & DCMD_ADDRSPEC)) {
439 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
440 mdb_warn("can't walk projects");
441 return (DCMD_ERR);
442 }
443 return (DCMD_OK);
444 }
445 if (DCMD_HDRSPEC(flags)) {
446 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
447 "ADDR", "PROJID", "ZONEID", "REFCNT");
448 }
449 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
450 mdb_warn("can't read kproject_t structure at %p", addr);
451 return (DCMD_ERR);
452 }
453 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
454 pj.kpj_count);
455 return (DCMD_OK);
456 }
457
458 /* walk callouts themselves, either by list or id hash. */
459 int
callout_walk_init(mdb_walk_state_t * wsp)460 callout_walk_init(mdb_walk_state_t *wsp)
461 {
462 if (wsp->walk_addr == NULL) {
463 mdb_warn("callout doesn't support global walk");
464 return (WALK_ERR);
465 }
466 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
467 return (WALK_NEXT);
468 }
469
470 #define CALLOUT_WALK_BYLIST 0
471 #define CALLOUT_WALK_BYID 1
472
473 /* the walker arg switches between walking by list (0) and walking by id (1). */
474 int
callout_walk_step(mdb_walk_state_t * wsp)475 callout_walk_step(mdb_walk_state_t *wsp)
476 {
477 int retval;
478
479 if (wsp->walk_addr == NULL) {
480 return (WALK_DONE);
481 }
482 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
483 wsp->walk_addr) == -1) {
484 mdb_warn("failed to read callout at %p", wsp->walk_addr);
485 return (WALK_DONE);
486 }
487 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
488 wsp->walk_cbdata);
489
490 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
491 wsp->walk_addr =
492 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
493 } else {
494 wsp->walk_addr =
495 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
496 }
497
498 return (retval);
499 }
500
501 void
callout_walk_fini(mdb_walk_state_t * wsp)502 callout_walk_fini(mdb_walk_state_t *wsp)
503 {
504 mdb_free(wsp->walk_data, sizeof (callout_t));
505 }
506
507 /*
508 * walker for callout lists. This is different from hashes and callouts.
509 * Thankfully, it's also simpler.
510 */
511 int
callout_list_walk_init(mdb_walk_state_t * wsp)512 callout_list_walk_init(mdb_walk_state_t *wsp)
513 {
514 if (wsp->walk_addr == NULL) {
515 mdb_warn("callout list doesn't support global walk");
516 return (WALK_ERR);
517 }
518 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
519 return (WALK_NEXT);
520 }
521
522 int
callout_list_walk_step(mdb_walk_state_t * wsp)523 callout_list_walk_step(mdb_walk_state_t *wsp)
524 {
525 int retval;
526
527 if (wsp->walk_addr == NULL) {
528 return (WALK_DONE);
529 }
530 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
531 wsp->walk_addr) != sizeof (callout_list_t)) {
532 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
533 return (WALK_ERR);
534 }
535 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
536 wsp->walk_cbdata);
537
538 wsp->walk_addr = (uintptr_t)
539 (((callout_list_t *)wsp->walk_data)->cl_next);
540
541 return (retval);
542 }
543
544 void
callout_list_walk_fini(mdb_walk_state_t * wsp)545 callout_list_walk_fini(mdb_walk_state_t *wsp)
546 {
547 mdb_free(wsp->walk_data, sizeof (callout_list_t));
548 }
549
550 /* routines/structs to walk callout table(s) */
551 typedef struct cot_data {
552 callout_table_t *ct0;
553 callout_table_t ct;
554 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
555 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
556 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
557 int cotndx;
558 int cotsize;
559 } cot_data_t;
560
561 int
callout_table_walk_init(mdb_walk_state_t * wsp)562 callout_table_walk_init(mdb_walk_state_t *wsp)
563 {
564 int max_ncpus;
565 cot_data_t *cot_walk_data;
566
567 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
568
569 if (wsp->walk_addr == NULL) {
570 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
571 mdb_warn("failed to read 'callout_table'");
572 return (WALK_ERR);
573 }
574 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
575 mdb_warn("failed to get callout_table array size");
576 return (WALK_ERR);
577 }
578 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
579 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
580 } else {
581 /* not a global walk */
582 cot_walk_data->cotsize = 1;
583 }
584
585 cot_walk_data->cotndx = 0;
586 wsp->walk_data = cot_walk_data;
587
588 return (WALK_NEXT);
589 }
590
591 int
callout_table_walk_step(mdb_walk_state_t * wsp)592 callout_table_walk_step(mdb_walk_state_t *wsp)
593 {
594 int retval;
595 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
596 size_t size;
597
598 if (cotwd->cotndx >= cotwd->cotsize) {
599 return (WALK_DONE);
600 }
601 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
602 wsp->walk_addr) != sizeof (callout_table_t)) {
603 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
604 return (WALK_ERR);
605 }
606
607 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
608 if (cotwd->ct.ct_idhash != NULL) {
609 if (mdb_vread(cotwd->cot_idhash, size,
610 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
611 mdb_warn("failed to read id_hash at %p",
612 cotwd->ct.ct_idhash);
613 return (WALK_ERR);
614 }
615 }
616 if (cotwd->ct.ct_clhash != NULL) {
617 if (mdb_vread(&(cotwd->cot_clhash), size,
618 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
619 mdb_warn("failed to read cl_hash at %p",
620 cotwd->ct.ct_clhash);
621 return (WALK_ERR);
622 }
623 }
624 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
625 if (cotwd->ct.ct_kstat_data != NULL) {
626 if (mdb_vread(&(cotwd->ct_kstat_data), size,
627 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
628 mdb_warn("failed to read kstats at %p",
629 cotwd->ct.ct_kstat_data);
630 return (WALK_ERR);
631 }
632 }
633 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
634 wsp->walk_cbdata);
635
636 cotwd->cotndx++;
637 if (cotwd->cotndx >= cotwd->cotsize) {
638 return (WALK_DONE);
639 }
640 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
641 sizeof (callout_table_t));
642
643 return (retval);
644 }
645
646 void
callout_table_walk_fini(mdb_walk_state_t * wsp)647 callout_table_walk_fini(mdb_walk_state_t *wsp)
648 {
649 mdb_free(wsp->walk_data, sizeof (cot_data_t));
650 }
651
652 static const char *co_typenames[] = { "R", "N" };
653
654 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
655
656 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
657
658 /* callout flags, in no particular order */
659 #define COF_REAL 0x00000001
660 #define COF_NORM 0x00000002
661 #define COF_LONG 0x00000004
662 #define COF_SHORT 0x00000008
663 #define COF_EMPTY 0x00000010
664 #define COF_TIME 0x00000020
665 #define COF_BEFORE 0x00000040
666 #define COF_AFTER 0x00000080
667 #define COF_SEQID 0x00000100
668 #define COF_FUNC 0x00000200
669 #define COF_ADDR 0x00000400
670 #define COF_EXEC 0x00000800
671 #define COF_HIRES 0x00001000
672 #define COF_ABS 0x00002000
673 #define COF_TABLE 0x00004000
674 #define COF_BYIDH 0x00008000
675 #define COF_FREE 0x00010000
676 #define COF_LIST 0x00020000
677 #define COF_EXPREL 0x00040000
678 #define COF_HDR 0x00080000
679 #define COF_VERBOSE 0x00100000
680 #define COF_LONGLIST 0x00200000
681 #define COF_THDR 0x00400000
682 #define COF_LHDR 0x00800000
683 #define COF_CHDR 0x01000000
684 #define COF_PARAM 0x02000000
685 #define COF_DECODE 0x04000000
686 #define COF_HEAP 0x08000000
687 #define COF_QUEUE 0x10000000
688
689 /* show real and normal, short and long, expired and unexpired. */
690 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
691
692 #define COF_LIST_FLAGS \
693 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
694
695 /* private callout data for callback functions */
696 typedef struct callout_data {
697 uint_t flags; /* COF_* */
698 cpu_t *cpu; /* cpu pointer if given */
699 int seqid; /* cpu seqid, or -1 */
700 hrtime_t time; /* expiration time value */
701 hrtime_t atime; /* expiration before value */
702 hrtime_t btime; /* expiration after value */
703 uintptr_t funcaddr; /* function address or NULL */
704 uintptr_t param; /* parameter to function or NULL */
705 hrtime_t now; /* current system time */
706 int nsec_per_tick; /* for conversions */
707 ulong_t ctbits; /* for decoding xid */
708 callout_table_t *co_table; /* top of callout table array */
709 int ndx; /* table index. */
710 int bucket; /* which list/id bucket are we in */
711 hrtime_t exp; /* expire time */
712 int list_flags; /* copy of cl_flags */
713 } callout_data_t;
714
715 /* this callback does the actual callback itself (finally). */
716 /*ARGSUSED*/
717 static int
callouts_cb(uintptr_t addr,const void * data,void * priv)718 callouts_cb(uintptr_t addr, const void *data, void *priv)
719 {
720 callout_data_t *coargs = (callout_data_t *)priv;
721 callout_t *co = (callout_t *)data;
722 int tableid, list_flags;
723 callout_id_t coid;
724
725 if ((coargs == NULL) || (co == NULL)) {
726 return (WALK_ERR);
727 }
728
729 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
730 /*
731 * The callout must have been reallocated. No point in
732 * walking any more.
733 */
734 return (WALK_DONE);
735 }
736 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
737 /*
738 * The callout must have been freed. No point in
739 * walking any more.
740 */
741 return (WALK_DONE);
742 }
743 if ((coargs->flags & COF_FUNC) &&
744 (coargs->funcaddr != (uintptr_t)co->c_func)) {
745 return (WALK_NEXT);
746 }
747 if ((coargs->flags & COF_PARAM) &&
748 (coargs->param != (uintptr_t)co->c_arg)) {
749 return (WALK_NEXT);
750 }
751 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
752 return (WALK_NEXT);
753 }
754 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
755 return (WALK_NEXT);
756 }
757 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
758 return (WALK_NEXT);
759 }
760 /* it is possible we don't have the exp time or flags */
761 if (coargs->flags & COF_BYIDH) {
762 if (!(coargs->flags & COF_FREE)) {
763 /* we have to fetch the expire time ourselves. */
764 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
765 (uintptr_t)co->c_list + offsetof(callout_list_t,
766 cl_expiration)) == -1) {
767 mdb_warn("failed to read expiration "
768 "time from %p", co->c_list);
769 coargs->exp = 0;
770 }
771 /* and flags. */
772 if (mdb_vread(&coargs->list_flags, sizeof (int),
773 (uintptr_t)co->c_list + offsetof(callout_list_t,
774 cl_flags)) == -1) {
775 mdb_warn("failed to read list flags"
776 "from %p", co->c_list);
777 coargs->list_flags = 0;
778 }
779 } else {
780 /* free callouts can't use list pointer. */
781 coargs->exp = 0;
782 coargs->list_flags = 0;
783 }
784 if (coargs->exp != 0) {
785 if ((coargs->flags & COF_TIME) &&
786 (coargs->exp != coargs->time)) {
787 return (WALK_NEXT);
788 }
789 if ((coargs->flags & COF_BEFORE) &&
790 (coargs->exp > coargs->btime)) {
791 return (WALK_NEXT);
792 }
793 if ((coargs->flags & COF_AFTER) &&
794 (coargs->exp < coargs->atime)) {
795 return (WALK_NEXT);
796 }
797 }
798 /* tricky part, since both HIRES and ABS can be set */
799 list_flags = coargs->list_flags;
800 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
801 /* both flags are set, only skip "regular" ones */
802 if (! (list_flags & COF_LIST_FLAGS)) {
803 return (WALK_NEXT);
804 }
805 } else {
806 /* individual flags, or no flags */
807 if ((coargs->flags & COF_HIRES) &&
808 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
809 return (WALK_NEXT);
810 }
811 if ((coargs->flags & COF_ABS) &&
812 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
813 return (WALK_NEXT);
814 }
815 }
816 /*
817 * We do the checks for COF_HEAP and COF_QUEUE here only if we
818 * are traversing BYIDH. If the traversal is by callout list,
819 * we do this check in callout_list_cb() to be more
820 * efficient.
821 */
822 if ((coargs->flags & COF_HEAP) &&
823 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
824 return (WALK_NEXT);
825 }
826
827 if ((coargs->flags & COF_QUEUE) &&
828 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
829 return (WALK_NEXT);
830 }
831 }
832
833 #define callout_table_mask ((1 << coargs->ctbits) - 1)
834 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
835 #undef callout_table_mask
836 coid = CO_PLAIN_ID(co->c_xid);
837
838 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
839 /*
840 * We need to print the headers. If walking by id, then
841 * the list header isn't printed, so we must include
842 * that info here.
843 */
844 if (!(coargs->flags & COF_VERBOSE)) {
845 mdb_printf("%<u>%3s %-1s %-14s %</u>",
846 "SEQ", "T", "EXP");
847 } else if (coargs->flags & COF_BYIDH) {
848 mdb_printf("%<u>%-14s %</u>", "EXP");
849 }
850 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
851 "XHAL", "XID", "FUNC(ARG)");
852 if (coargs->flags & COF_LONGLIST) {
853 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
854 "PREVID", "NEXTID", "PREVL", "NEXTL");
855 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
856 "DONE", "UTOS", "THREAD");
857 }
858 mdb_printf("\n");
859 coargs->flags &= ~COF_CHDR;
860 coargs->flags |= (COF_THDR | COF_LHDR);
861 }
862
863 if (!(coargs->flags & COF_ADDR)) {
864 if (!(coargs->flags & COF_VERBOSE)) {
865 mdb_printf("%-3d %1s %-14llx ",
866 TABLE_TO_SEQID(tableid),
867 co_typenames[tableid & CALLOUT_TYPE_MASK],
868 (coargs->flags & COF_EXPREL) ?
869 coargs->exp - coargs->now : coargs->exp);
870 } else if (coargs->flags & COF_BYIDH) {
871 mdb_printf("%-14x ",
872 (coargs->flags & COF_EXPREL) ?
873 coargs->exp - coargs->now : coargs->exp);
874 }
875 list_flags = coargs->list_flags;
876 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
877 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
878 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
879 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
880 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
881 (long long)coid, co->c_func, co->c_arg);
882 if (coargs->flags & COF_LONGLIST) {
883 mdb_printf(" %-?p %-?p %-?p %-?p",
884 co->c_idprev, co->c_idnext, co->c_clprev,
885 co->c_clnext);
886 mdb_printf(" %-?p %-4d %-0?p",
887 co->c_done, co->c_waiting, co->c_executor);
888 }
889 } else {
890 /* address only */
891 mdb_printf("%-0p", addr);
892 }
893 mdb_printf("\n");
894 return (WALK_NEXT);
895 }
896
897 /* this callback is for callout list handling. idhash is done by callout_t_cb */
898 /*ARGSUSED*/
899 static int
callout_list_cb(uintptr_t addr,const void * data,void * priv)900 callout_list_cb(uintptr_t addr, const void *data, void *priv)
901 {
902 callout_data_t *coargs = (callout_data_t *)priv;
903 callout_list_t *cl = (callout_list_t *)data;
904 callout_t *coptr;
905 int list_flags;
906
907 if ((coargs == NULL) || (cl == NULL)) {
908 return (WALK_ERR);
909 }
910
911 coargs->exp = cl->cl_expiration;
912 coargs->list_flags = cl->cl_flags;
913 if ((coargs->flags & COF_FREE) &&
914 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
915 /*
916 * The callout list must have been reallocated. No point in
917 * walking any more.
918 */
919 return (WALK_DONE);
920 }
921 if (!(coargs->flags & COF_FREE) &&
922 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
923 /*
924 * The callout list must have been freed. No point in
925 * walking any more.
926 */
927 return (WALK_DONE);
928 }
929 if ((coargs->flags & COF_TIME) &&
930 (cl->cl_expiration != coargs->time)) {
931 return (WALK_NEXT);
932 }
933 if ((coargs->flags & COF_BEFORE) &&
934 (cl->cl_expiration > coargs->btime)) {
935 return (WALK_NEXT);
936 }
937 if ((coargs->flags & COF_AFTER) &&
938 (cl->cl_expiration < coargs->atime)) {
939 return (WALK_NEXT);
940 }
941 if (!(coargs->flags & COF_EMPTY) &&
942 (cl->cl_callouts.ch_head == NULL)) {
943 return (WALK_NEXT);
944 }
945 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
946 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
947 /* both flags are set, only skip "regular" ones */
948 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
949 return (WALK_NEXT);
950 }
951 } else {
952 if ((coargs->flags & COF_HIRES) &&
953 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
954 return (WALK_NEXT);
955 }
956 if ((coargs->flags & COF_ABS) &&
957 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
958 return (WALK_NEXT);
959 }
960 }
961
962 if ((coargs->flags & COF_HEAP) &&
963 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
964 return (WALK_NEXT);
965 }
966
967 if ((coargs->flags & COF_QUEUE) &&
968 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
969 return (WALK_NEXT);
970 }
971
972 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
973 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
974 if (!(coargs->flags & COF_VERBOSE)) {
975 /* don't be redundant again */
976 mdb_printf("%<u>SEQ T %</u>");
977 }
978 mdb_printf("%<u>EXP HA BUCKET "
979 "CALLOUTS %</u>");
980
981 if (coargs->flags & COF_LONGLIST) {
982 mdb_printf("%<u> %-?s %-?s%</u>",
983 "PREV", "NEXT");
984 }
985 mdb_printf("\n");
986 coargs->flags &= ~COF_LHDR;
987 coargs->flags |= (COF_THDR | COF_CHDR);
988 }
989 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
990 if (!(coargs->flags & COF_ADDR)) {
991 if (!(coargs->flags & COF_VERBOSE)) {
992 mdb_printf("%3d %1s ",
993 TABLE_TO_SEQID(coargs->ndx),
994 co_typenames[coargs->ndx &
995 CALLOUT_TYPE_MASK]);
996 }
997
998 list_flags = coargs->list_flags;
999 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1000 (coargs->flags & COF_EXPREL) ?
1001 coargs->exp - coargs->now : coargs->exp,
1002 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1003 "H" : " ",
1004 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1005 "A" : " ",
1006 coargs->bucket, cl->cl_callouts.ch_head);
1007
1008 if (coargs->flags & COF_LONGLIST) {
1009 mdb_printf(" %-?p %-?p",
1010 cl->cl_prev, cl->cl_next);
1011 }
1012 } else {
1013 /* address only */
1014 mdb_printf("%-0p", addr);
1015 }
1016 mdb_printf("\n");
1017 if (coargs->flags & COF_LIST) {
1018 return (WALK_NEXT);
1019 }
1020 }
1021 /* yet another layer as we walk the actual callouts via list. */
1022 if (cl->cl_callouts.ch_head == NULL) {
1023 return (WALK_NEXT);
1024 }
1025 /* free list structures do not have valid callouts off of them. */
1026 if (coargs->flags & COF_FREE) {
1027 return (WALK_NEXT);
1028 }
1029 coptr = (callout_t *)cl->cl_callouts.ch_head;
1030
1031 if (coargs->flags & COF_VERBOSE) {
1032 mdb_inc_indent(4);
1033 }
1034 /*
1035 * walk callouts using yet another callback routine.
1036 * we use callouts_bytime because id hash is handled via
1037 * the callout_t_cb callback.
1038 */
1039 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1040 (uintptr_t)coptr) == -1) {
1041 mdb_warn("cannot walk callouts at %p", coptr);
1042 return (WALK_ERR);
1043 }
1044 if (coargs->flags & COF_VERBOSE) {
1045 mdb_dec_indent(4);
1046 }
1047
1048 return (WALK_NEXT);
1049 }
1050
1051 /* this callback handles the details of callout table walking. */
1052 static int
callout_t_cb(uintptr_t addr,const void * data,void * priv)1053 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1054 {
1055 callout_data_t *coargs = (callout_data_t *)priv;
1056 cot_data_t *cotwd = (cot_data_t *)data;
1057 callout_table_t *ct = &(cotwd->ct);
1058 int index, seqid, cotype;
1059 int i;
1060 callout_list_t *clptr;
1061 callout_t *coptr;
1062
1063 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1064 return (WALK_ERR);
1065 }
1066
1067 index = ((char *)addr - (char *)coargs->co_table) /
1068 sizeof (callout_table_t);
1069 cotype = index & CALLOUT_TYPE_MASK;
1070 seqid = TABLE_TO_SEQID(index);
1071
1072 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1073 return (WALK_NEXT);
1074 }
1075
1076 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1077 return (WALK_NEXT);
1078 }
1079
1080 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1081 return (WALK_NEXT);
1082 }
1083
1084 if (!(coargs->flags & COF_EMPTY) && (
1085 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1086 return (WALK_NEXT);
1087 }
1088
1089 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1090 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1091 /* print table hdr */
1092 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1093 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1094 coargs->flags &= ~COF_THDR;
1095 coargs->flags |= (COF_LHDR | COF_CHDR);
1096 if (coargs->flags & COF_LONGLIST) {
1097 /* more info! */
1098 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1099 " %-?s %-?s %-?s%</u>",
1100 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1101 "PEND", "FREE", "LOCK");
1102 }
1103 mdb_printf("\n");
1104 }
1105 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1106 if (!(coargs->flags & COF_ADDR)) {
1107 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1108 seqid, co_typenames[cotype],
1109 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1110 ct->ct_heap);
1111 if (coargs->flags & COF_LONGLIST) {
1112 /* more info! */
1113 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1114 " %-?lld %-?lld %-?p",
1115 ct->ct_heap_num, ct->ct_heap_max,
1116 ct->ct_taskq, ct->ct_expired.ch_head,
1117 ct->ct_queue.ch_head,
1118 cotwd->ct_timeouts_pending,
1119 cotwd->ct_allocations -
1120 cotwd->ct_timeouts_pending,
1121 ct->ct_mutex);
1122 }
1123 } else {
1124 /* address only */
1125 mdb_printf("%-0?p", addr);
1126 }
1127 mdb_printf("\n");
1128 if (coargs->flags & COF_TABLE) {
1129 return (WALK_NEXT);
1130 }
1131 }
1132
1133 coargs->ndx = index;
1134 if (coargs->flags & COF_VERBOSE) {
1135 mdb_inc_indent(4);
1136 }
1137 /* keep digging. */
1138 if (!(coargs->flags & COF_BYIDH)) {
1139 /* walk the list hash table */
1140 if (coargs->flags & COF_FREE) {
1141 clptr = ct->ct_lfree;
1142 coargs->bucket = 0;
1143 if (clptr == NULL) {
1144 return (WALK_NEXT);
1145 }
1146 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1147 (uintptr_t)clptr) == -1) {
1148 mdb_warn("cannot walk callout free list at %p",
1149 clptr);
1150 return (WALK_ERR);
1151 }
1152 } else {
1153 /* first print the expired list. */
1154 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1155 if (clptr != NULL) {
1156 coargs->bucket = -1;
1157 if (mdb_pwalk("callout_list", callout_list_cb,
1158 coargs, (uintptr_t)clptr) == -1) {
1159 mdb_warn("cannot walk callout_list"
1160 " at %p", clptr);
1161 return (WALK_ERR);
1162 }
1163 }
1164 /* then, print the callout queue */
1165 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1166 if (clptr != NULL) {
1167 coargs->bucket = -1;
1168 if (mdb_pwalk("callout_list", callout_list_cb,
1169 coargs, (uintptr_t)clptr) == -1) {
1170 mdb_warn("cannot walk callout_list"
1171 " at %p", clptr);
1172 return (WALK_ERR);
1173 }
1174 }
1175 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1176 if (ct->ct_clhash == NULL) {
1177 /* nothing to do */
1178 break;
1179 }
1180 if (cotwd->cot_clhash[i].ch_head == NULL) {
1181 continue;
1182 }
1183 clptr = (callout_list_t *)
1184 cotwd->cot_clhash[i].ch_head;
1185 coargs->bucket = i;
1186 /* walk list with callback routine. */
1187 if (mdb_pwalk("callout_list", callout_list_cb,
1188 coargs, (uintptr_t)clptr) == -1) {
1189 mdb_warn("cannot walk callout_list"
1190 " at %p", clptr);
1191 return (WALK_ERR);
1192 }
1193 }
1194 }
1195 } else {
1196 /* walk the id hash table. */
1197 if (coargs->flags & COF_FREE) {
1198 coptr = ct->ct_free;
1199 coargs->bucket = 0;
1200 if (coptr == NULL) {
1201 return (WALK_NEXT);
1202 }
1203 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1204 (uintptr_t)coptr) == -1) {
1205 mdb_warn("cannot walk callout id free list"
1206 " at %p", coptr);
1207 return (WALK_ERR);
1208 }
1209 } else {
1210 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1211 if (ct->ct_idhash == NULL) {
1212 break;
1213 }
1214 coptr = (callout_t *)
1215 cotwd->cot_idhash[i].ch_head;
1216 if (coptr == NULL) {
1217 continue;
1218 }
1219 coargs->bucket = i;
1220
1221 /*
1222 * walk callouts directly by id. For id
1223 * chain, the callout list is just a header,
1224 * so there's no need to walk it.
1225 */
1226 if (mdb_pwalk("callouts_byid", callouts_cb,
1227 coargs, (uintptr_t)coptr) == -1) {
1228 mdb_warn("cannot walk callouts at %p",
1229 coptr);
1230 return (WALK_ERR);
1231 }
1232 }
1233 }
1234 }
1235 if (coargs->flags & COF_VERBOSE) {
1236 mdb_dec_indent(4);
1237 }
1238 return (WALK_NEXT);
1239 }
1240
1241 /*
1242 * initialize some common info for both callout dcmds.
1243 */
1244 int
callout_common_init(callout_data_t * coargs)1245 callout_common_init(callout_data_t *coargs)
1246 {
1247 /* we need a couple of things */
1248 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1249 mdb_warn("failed to read 'callout_table'");
1250 return (DCMD_ERR);
1251 }
1252 /* need to get now in nsecs. Approximate with hrtime vars */
1253 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1254 sizeof (hrtime_t)) {
1255 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1256 "hrtime_base") != sizeof (hrtime_t)) {
1257 mdb_warn("Could not determine current system time");
1258 return (DCMD_ERR);
1259 }
1260 }
1261
1262 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1263 mdb_warn("failed to read 'callout_table_bits'");
1264 return (DCMD_ERR);
1265 }
1266 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1267 mdb_warn("failed to read 'nsec_per_tick'");
1268 return (DCMD_ERR);
1269 }
1270 return (DCMD_OK);
1271 }
1272
1273 /*
1274 * dcmd to print callouts. Optional addr limits to specific table.
1275 * Parses lots of options that get passed to callbacks for walkers.
1276 * Has it's own help function.
1277 */
1278 /*ARGSUSED*/
1279 int
callout(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1280 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1281 {
1282 callout_data_t coargs;
1283 /* getopts doesn't help much with stuff like this */
1284 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1285 char *funcname = NULL;
1286 char *paramstr = NULL;
1287 uintptr_t Stmp, Ctmp; /* for getopt. */
1288 int retval;
1289
1290 coargs.flags = COF_DEFAULT;
1291 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1292 coargs.seqid = -1;
1293
1294 if (mdb_getopts(argc, argv,
1295 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1296 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1297 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1298 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1299 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1300 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1301 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1302 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1303 'd', MDB_OPT_SETBITS, 1, &dflag,
1304 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1305 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1306 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1307 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1308 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1309 'k', MDB_OPT_SETBITS, 1, &kflag,
1310 'f', MDB_OPT_STR, &funcname,
1311 'p', MDB_OPT_STR, ¶mstr,
1312 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1313 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1314 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1315 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1316 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1317 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1318 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1319 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1320 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1321 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1322 NULL) != argc) {
1323 return (DCMD_USAGE);
1324 }
1325
1326 /* initialize from kernel variables */
1327 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1328 return (retval);
1329 }
1330
1331 /* do some option post-processing */
1332 if (kflag) {
1333 coargs.time *= coargs.nsec_per_tick;
1334 coargs.atime *= coargs.nsec_per_tick;
1335 coargs.btime *= coargs.nsec_per_tick;
1336 }
1337
1338 if (dflag) {
1339 coargs.time += coargs.now;
1340 coargs.atime += coargs.now;
1341 coargs.btime += coargs.now;
1342 }
1343 if (Sflag) {
1344 if (flags & DCMD_ADDRSPEC) {
1345 mdb_printf("-S option conflicts with explicit"
1346 " address\n");
1347 return (DCMD_USAGE);
1348 }
1349 coargs.flags |= COF_SEQID;
1350 coargs.seqid = (int)Stmp;
1351 }
1352 if (Cflag) {
1353 if (flags & DCMD_ADDRSPEC) {
1354 mdb_printf("-C option conflicts with explicit"
1355 " address\n");
1356 return (DCMD_USAGE);
1357 }
1358 if (coargs.flags & COF_SEQID) {
1359 mdb_printf("-C and -S are mutually exclusive\n");
1360 return (DCMD_USAGE);
1361 }
1362 coargs.cpu = (cpu_t *)Ctmp;
1363 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1364 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1365 mdb_warn("failed to read cpu_t at %p", Ctmp);
1366 return (DCMD_ERR);
1367 }
1368 coargs.flags |= COF_SEQID;
1369 }
1370 /* avoid null outputs. */
1371 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1372 coargs.flags |= COF_REAL | COF_NORM;
1373 }
1374 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1375 coargs.flags |= COF_LONG | COF_SHORT;
1376 }
1377 if (tflag) {
1378 if (aflag || bflag) {
1379 mdb_printf("-t and -a|b are mutually exclusive\n");
1380 return (DCMD_USAGE);
1381 }
1382 coargs.flags |= COF_TIME;
1383 }
1384 if (aflag) {
1385 coargs.flags |= COF_AFTER;
1386 }
1387 if (bflag) {
1388 coargs.flags |= COF_BEFORE;
1389 }
1390 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1391 mdb_printf("value for -a must be earlier than the value"
1392 " for -b.\n");
1393 return (DCMD_USAGE);
1394 }
1395
1396 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1397 mdb_printf("-H and -Q are mutually exclusive\n");
1398 return (DCMD_USAGE);
1399 }
1400
1401 if (funcname != NULL) {
1402 GElf_Sym sym;
1403
1404 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1405 coargs.funcaddr = mdb_strtoull(funcname);
1406 } else {
1407 coargs.funcaddr = sym.st_value;
1408 }
1409 coargs.flags |= COF_FUNC;
1410 }
1411
1412 if (paramstr != NULL) {
1413 GElf_Sym sym;
1414
1415 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1416 coargs.param = mdb_strtoull(paramstr);
1417 } else {
1418 coargs.param = sym.st_value;
1419 }
1420 coargs.flags |= COF_PARAM;
1421 }
1422
1423 if (!(flags & DCMD_ADDRSPEC)) {
1424 /* don't pass "dot" if no addr. */
1425 addr = NULL;
1426 }
1427 if (addr != NULL) {
1428 /*
1429 * a callout table was specified. Ignore -r|n option
1430 * to avoid null output.
1431 */
1432 coargs.flags |= (COF_REAL | COF_NORM);
1433 }
1434
1435 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1436 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1437 }
1438 if (coargs.flags & COF_FREE) {
1439 coargs.flags |= COF_EMPTY;
1440 /* -F = free callouts, -FL = free lists */
1441 if (!(coargs.flags & COF_LIST)) {
1442 coargs.flags |= COF_BYIDH;
1443 }
1444 }
1445
1446 /* walk table, using specialized callback routine. */
1447 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1448 mdb_warn("cannot walk callout_table");
1449 return (DCMD_ERR);
1450 }
1451 return (DCMD_OK);
1452 }
1453
1454
1455 /*
1456 * Given an extended callout id, dump its information.
1457 */
1458 /*ARGSUSED*/
1459 int
calloutid(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1460 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1461 {
1462 callout_data_t coargs;
1463 callout_table_t *ctptr;
1464 callout_table_t ct;
1465 callout_id_t coid;
1466 callout_t *coptr;
1467 int tableid;
1468 callout_id_t xid;
1469 ulong_t idhash;
1470 int i, retval;
1471 const mdb_arg_t *arg;
1472 size_t size;
1473 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1474
1475 coargs.flags = COF_DEFAULT | COF_BYIDH;
1476 i = mdb_getopts(argc, argv,
1477 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1478 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1479 NULL);
1480 argc -= i;
1481 argv += i;
1482
1483 if (argc != 1) {
1484 return (DCMD_USAGE);
1485 }
1486 arg = &argv[0];
1487
1488 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1489 xid = arg->a_un.a_val;
1490 } else {
1491 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1492 }
1493
1494 if (DCMD_HDRSPEC(flags)) {
1495 coargs.flags |= COF_CHDR;
1496 }
1497
1498
1499 /* initialize from kernel variables */
1500 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1501 return (retval);
1502 }
1503
1504 /* we must massage the environment so that the macros will play nice */
1505 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1506 #define callout_table_bits coargs.ctbits
1507 #define nsec_per_tick coargs.nsec_per_tick
1508 tableid = CALLOUT_ID_TO_TABLE(xid);
1509 idhash = CALLOUT_IDHASH(xid);
1510 #undef callouts_table_bits
1511 #undef callout_table_mask
1512 #undef nsec_per_tick
1513 coid = CO_PLAIN_ID(xid);
1514
1515 if (flags & DCMD_ADDRSPEC) {
1516 mdb_printf("calloutid does not accept explicit address.\n");
1517 return (DCMD_USAGE);
1518 }
1519
1520 if (coargs.flags & COF_DECODE) {
1521 if (DCMD_HDRSPEC(flags)) {
1522 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1523 "SEQ", "T", "XL", "XID", "IDHASH");
1524 }
1525 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1526 TABLE_TO_SEQID(tableid),
1527 co_typenames[tableid & CALLOUT_TYPE_MASK],
1528 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1529 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1530 (long long)coid, idhash);
1531 return (DCMD_OK);
1532 }
1533
1534 /* get our table. Note this relies on the types being correct */
1535 ctptr = coargs.co_table + tableid;
1536 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1537 mdb_warn("failed to read callout_table at %p", ctptr);
1538 return (DCMD_ERR);
1539 }
1540 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1541 if (ct.ct_idhash != NULL) {
1542 if (mdb_vread(&(cot_idhash), size,
1543 (uintptr_t)ct.ct_idhash) == -1) {
1544 mdb_warn("failed to read id_hash at %p",
1545 ct.ct_idhash);
1546 return (WALK_ERR);
1547 }
1548 }
1549
1550 /* callout at beginning of hash chain */
1551 if (ct.ct_idhash == NULL) {
1552 mdb_printf("id hash chain for this xid is empty\n");
1553 return (DCMD_ERR);
1554 }
1555 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1556 if (coptr == NULL) {
1557 mdb_printf("id hash chain for this xid is empty\n");
1558 return (DCMD_ERR);
1559 }
1560
1561 coargs.ndx = tableid;
1562 coargs.bucket = idhash;
1563
1564 /* use the walker, luke */
1565 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1566 (uintptr_t)coptr) == -1) {
1567 mdb_warn("cannot walk callouts at %p", coptr);
1568 return (WALK_ERR);
1569 }
1570
1571 return (DCMD_OK);
1572 }
1573
1574 void
callout_help(void)1575 callout_help(void)
1576 {
1577 mdb_printf("callout: display callouts.\n"
1578 "Given a callout table address, display callouts from table.\n"
1579 "Without an address, display callouts from all tables.\n"
1580 "options:\n"
1581 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1582 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1583 " -x : limit display to callouts which are executing\n"
1584 " -h : limit display to callouts based on hrestime\n"
1585 " -B : limit display to callouts based on absolute time\n"
1586 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1587 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1588 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1589 " -d : interpret time option to -t|a|b as delta from current time\n"
1590 " -k : use ticks instead of nanoseconds as arguments to"
1591 " -t|a|b. Note that\n ticks are less accurate and may not"
1592 " match other tick times (ie: lbolt).\n"
1593 " -D : display exiration time as delta from current time\n"
1594 " -S seqid : limit display to callouts for this cpu sequence id\n"
1595 " -C addr : limit display to callouts for this cpu pointer\n"
1596 " -f name|addr : limit display to callouts with this function\n"
1597 " -p name|addr : limit display to callouts functions with this"
1598 " parameter\n"
1599 " -T : display the callout table itself, instead of callouts\n"
1600 " -L : display callout lists instead of callouts\n"
1601 " -E : with -T or L, display empty data structures.\n"
1602 " -i : traverse callouts by id hash instead of list hash\n"
1603 " -F : walk free callout list (free list with -i) instead\n"
1604 " -v : display more info for each item\n"
1605 " -V : show details of each level of info as it is traversed\n"
1606 " -H : limit display to callouts in the callout heap\n"
1607 " -Q : limit display to callouts in the callout queue\n"
1608 " -A : show only addresses. Useful for pipelines.\n");
1609 }
1610
1611 void
calloutid_help(void)1612 calloutid_help(void)
1613 {
1614 mdb_printf("calloutid: display callout by id.\n"
1615 "Given an extended callout id, display the callout infomation.\n"
1616 "options:\n"
1617 " -d : do not dereference callout, just decode the id.\n"
1618 " -v : verbose display more info about the callout\n");
1619 }
1620
1621 /*ARGSUSED*/
1622 int
class(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1623 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1624 {
1625 long num_classes, i;
1626 sclass_t *class_tbl;
1627 GElf_Sym g_sclass;
1628 char class_name[PC_CLNMSZ];
1629 size_t tbl_size;
1630
1631 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1632 mdb_warn("failed to find symbol sclass\n");
1633 return (DCMD_ERR);
1634 }
1635
1636 tbl_size = (size_t)g_sclass.st_size;
1637 num_classes = tbl_size / (sizeof (sclass_t));
1638 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1639
1640 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1641 mdb_warn("failed to read sclass");
1642 return (DCMD_ERR);
1643 }
1644
1645 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1646 "INIT FCN", "CLASS FCN");
1647
1648 for (i = 0; i < num_classes; i++) {
1649 if (mdb_vread(class_name, sizeof (class_name),
1650 (uintptr_t)class_tbl[i].cl_name) == -1)
1651 (void) strcpy(class_name, "???");
1652
1653 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1654 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1655 }
1656
1657 return (DCMD_OK);
1658 }
1659
1660 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1661
1662 int
vnode2path(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1663 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1664 {
1665 uintptr_t rootdir;
1666 vnode_t vn;
1667 char buf[MAXPATHLEN];
1668
1669 uint_t opt_F = FALSE;
1670
1671 if (mdb_getopts(argc, argv,
1672 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1673 return (DCMD_USAGE);
1674
1675 if (!(flags & DCMD_ADDRSPEC)) {
1676 mdb_warn("expected explicit vnode_t address before ::\n");
1677 return (DCMD_USAGE);
1678 }
1679
1680 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1681 mdb_warn("failed to read rootdir");
1682 return (DCMD_ERR);
1683 }
1684
1685 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1686 return (DCMD_ERR);
1687
1688 if (*buf == '\0') {
1689 mdb_printf("??\n");
1690 return (DCMD_OK);
1691 }
1692
1693 mdb_printf("%s", buf);
1694 if (opt_F && buf[strlen(buf)-1] != '/' &&
1695 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1696 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1697 mdb_printf("\n");
1698
1699 return (DCMD_OK);
1700 }
1701
1702 int
ld_walk_init(mdb_walk_state_t * wsp)1703 ld_walk_init(mdb_walk_state_t *wsp)
1704 {
1705 wsp->walk_data = (void *)wsp->walk_addr;
1706 return (WALK_NEXT);
1707 }
1708
1709 int
ld_walk_step(mdb_walk_state_t * wsp)1710 ld_walk_step(mdb_walk_state_t *wsp)
1711 {
1712 int status;
1713 lock_descriptor_t ld;
1714
1715 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1716 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1717 wsp->walk_addr);
1718 return (WALK_ERR);
1719 }
1720
1721 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1722 if (status == WALK_ERR)
1723 return (WALK_ERR);
1724
1725 wsp->walk_addr = (uintptr_t)ld.l_next;
1726 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1727 return (WALK_DONE);
1728
1729 return (status);
1730 }
1731
1732 int
lg_walk_init(mdb_walk_state_t * wsp)1733 lg_walk_init(mdb_walk_state_t *wsp)
1734 {
1735 GElf_Sym sym;
1736
1737 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1738 mdb_warn("failed to find symbol 'lock_graph'\n");
1739 return (WALK_ERR);
1740 }
1741
1742 wsp->walk_addr = (uintptr_t)sym.st_value;
1743 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1744
1745 return (WALK_NEXT);
1746 }
1747
1748 typedef struct lg_walk_data {
1749 uintptr_t startaddr;
1750 mdb_walk_cb_t callback;
1751 void *data;
1752 } lg_walk_data_t;
1753
1754 /*
1755 * We can't use ::walk lock_descriptor directly, because the head of each graph
1756 * is really a dummy lock. Rather than trying to dynamically determine if this
1757 * is a dummy node or not, we just filter out the initial element of the
1758 * list.
1759 */
1760 static int
lg_walk_cb(uintptr_t addr,const void * data,void * priv)1761 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1762 {
1763 lg_walk_data_t *lw = priv;
1764
1765 if (addr != lw->startaddr)
1766 return (lw->callback(addr, data, lw->data));
1767
1768 return (WALK_NEXT);
1769 }
1770
1771 int
lg_walk_step(mdb_walk_state_t * wsp)1772 lg_walk_step(mdb_walk_state_t *wsp)
1773 {
1774 graph_t *graph;
1775 lg_walk_data_t lw;
1776
1777 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1778 return (WALK_DONE);
1779
1780 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1781 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1782 return (WALK_ERR);
1783 }
1784
1785 wsp->walk_addr += sizeof (graph);
1786
1787 if (graph == NULL)
1788 return (WALK_NEXT);
1789
1790 lw.callback = wsp->walk_callback;
1791 lw.data = wsp->walk_cbdata;
1792
1793 lw.startaddr = (uintptr_t)&(graph->active_locks);
1794 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1795 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1796 return (WALK_ERR);
1797 }
1798
1799 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1800 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1801 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1802 return (WALK_ERR);
1803 }
1804
1805 return (WALK_NEXT);
1806 }
1807
1808 /*
1809 * The space available for the path corresponding to the locked vnode depends
1810 * on whether we are printing 32- or 64-bit addresses.
1811 */
1812 #ifdef _LP64
1813 #define LM_VNPATHLEN 20
1814 #else
1815 #define LM_VNPATHLEN 30
1816 #endif
1817
1818 /*ARGSUSED*/
1819 static int
lminfo_cb(uintptr_t addr,const void * data,void * priv)1820 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1821 {
1822 const lock_descriptor_t *ld = data;
1823 char buf[LM_VNPATHLEN];
1824 proc_t p;
1825
1826 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1827 addr, ld->l_type == F_RDLCK ? "RD" :
1828 ld->l_type == F_WRLCK ? "WR" : "??",
1829 ld->l_state, ld->l_flock.l_pid,
1830 ld->l_flock.l_pid == 0 ? "<kernel>" :
1831 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1832 "<defunct>" : p.p_user.u_comm,
1833 ld->l_vnode);
1834
1835 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1836 sizeof (buf));
1837 mdb_printf("%s\n", buf);
1838
1839 return (WALK_NEXT);
1840 }
1841
1842 /*ARGSUSED*/
1843 int
lminfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1844 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1845 {
1846 if (DCMD_HDRSPEC(flags))
1847 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1848 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1849
1850 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1851 }
1852
1853 /*ARGSUSED*/
1854 int
whereopen_fwalk(uintptr_t addr,struct file * f,uintptr_t * target)1855 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1856 {
1857 if ((uintptr_t)f->f_vnode == *target) {
1858 mdb_printf("file %p\n", addr);
1859 *target = NULL;
1860 }
1861
1862 return (WALK_NEXT);
1863 }
1864
1865 /*ARGSUSED*/
1866 int
whereopen_pwalk(uintptr_t addr,void * ignored,uintptr_t * target)1867 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1868 {
1869 uintptr_t t = *target;
1870
1871 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1872 mdb_warn("couldn't file walk proc %p", addr);
1873 return (WALK_ERR);
1874 }
1875
1876 if (t == NULL)
1877 mdb_printf("%p\n", addr);
1878
1879 return (WALK_NEXT);
1880 }
1881
1882 /*ARGSUSED*/
1883 int
whereopen(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1884 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1885 {
1886 uintptr_t target = addr;
1887
1888 if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1889 return (DCMD_USAGE);
1890
1891 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1892 mdb_warn("can't proc walk");
1893 return (DCMD_ERR);
1894 }
1895
1896 return (DCMD_OK);
1897 }
1898
1899 typedef struct datafmt {
1900 char *hdr1;
1901 char *hdr2;
1902 char *dashes;
1903 char *fmt;
1904 } datafmt_t;
1905
1906 static datafmt_t kmemfmt[] = {
1907 { "cache ", "name ",
1908 "-------------------------", "%-25s " },
1909 { " buf", " size", "------", "%6u " },
1910 { " buf", "in use", "------", "%6u " },
1911 { " buf", " total", "------", "%6u " },
1912 { " memory", " in use", "----------", "%10lu%c " },
1913 { " alloc", " succeed", "---------", "%9u " },
1914 { "alloc", " fail", "-----", "%5u " },
1915 { NULL, NULL, NULL, NULL }
1916 };
1917
1918 static datafmt_t vmemfmt[] = {
1919 { "vmem ", "name ",
1920 "-------------------------", "%-*s " },
1921 { " memory", " in use", "----------", "%9llu%c " },
1922 { " memory", " total", "-----------", "%10llu%c " },
1923 { " memory", " import", "----------", "%9llu%c " },
1924 { " alloc", " succeed", "---------", "%9llu " },
1925 { "alloc", " fail", "-----", "%5llu " },
1926 { NULL, NULL, NULL, NULL }
1927 };
1928
1929 /*ARGSUSED*/
1930 static int
kmastat_cpu_avail(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * avail)1931 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1932 {
1933 short rounds, prounds;
1934
1935 if (KMEM_DUMPCC(ccp)) {
1936 rounds = ccp->cc_dump_rounds;
1937 prounds = ccp->cc_dump_prounds;
1938 } else {
1939 rounds = ccp->cc_rounds;
1940 prounds = ccp->cc_prounds;
1941 }
1942 if (rounds > 0)
1943 *avail += rounds;
1944 if (prounds > 0)
1945 *avail += prounds;
1946
1947 return (WALK_NEXT);
1948 }
1949
1950 /*ARGSUSED*/
1951 static int
kmastat_cpu_alloc(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * alloc)1952 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1953 {
1954 *alloc += ccp->cc_alloc;
1955
1956 return (WALK_NEXT);
1957 }
1958
1959 /*ARGSUSED*/
1960 static int
kmastat_slab_avail(uintptr_t addr,const kmem_slab_t * sp,int * avail)1961 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1962 {
1963 *avail += sp->slab_chunks - sp->slab_refcnt;
1964
1965 return (WALK_NEXT);
1966 }
1967
1968 typedef struct kmastat_vmem {
1969 uintptr_t kv_addr;
1970 struct kmastat_vmem *kv_next;
1971 size_t kv_meminuse;
1972 int kv_alloc;
1973 int kv_fail;
1974 } kmastat_vmem_t;
1975
1976 typedef struct kmastat_args {
1977 kmastat_vmem_t **ka_kvpp;
1978 uint_t ka_shift;
1979 } kmastat_args_t;
1980
1981 static int
kmastat_cache(uintptr_t addr,const kmem_cache_t * cp,kmastat_args_t * kap)1982 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1983 {
1984 kmastat_vmem_t **kvpp = kap->ka_kvpp;
1985 kmastat_vmem_t *kv;
1986 datafmt_t *dfp = kmemfmt;
1987 int magsize;
1988
1989 int avail, alloc, total;
1990 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1991 cp->cache_slabsize;
1992
1993 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1994 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1995 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1996
1997 magsize = kmem_get_magsize(cp);
1998
1999 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2000 avail = cp->cache_full.ml_total * magsize;
2001 total = cp->cache_buftotal;
2002
2003 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2004 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2005 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2006
2007 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2008 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2009 goto out;
2010 }
2011
2012 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2013 kv->kv_next = *kvpp;
2014 kv->kv_addr = (uintptr_t)cp->cache_arena;
2015 *kvpp = kv;
2016 out:
2017 kv->kv_meminuse += meminuse;
2018 kv->kv_alloc += alloc;
2019 kv->kv_fail += cp->cache_alloc_fail;
2020
2021 mdb_printf((dfp++)->fmt, cp->cache_name);
2022 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2023 mdb_printf((dfp++)->fmt, total - avail);
2024 mdb_printf((dfp++)->fmt, total);
2025 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2026 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2027 kap->ka_shift == KILOS ? 'K' : 'B');
2028 mdb_printf((dfp++)->fmt, alloc);
2029 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2030 mdb_printf("\n");
2031
2032 return (WALK_NEXT);
2033 }
2034
2035 static int
kmastat_vmem_totals(uintptr_t addr,const vmem_t * v,kmastat_args_t * kap)2036 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2037 {
2038 kmastat_vmem_t *kv = *kap->ka_kvpp;
2039 size_t len;
2040
2041 while (kv != NULL && kv->kv_addr != addr)
2042 kv = kv->kv_next;
2043
2044 if (kv == NULL || kv->kv_alloc == 0)
2045 return (WALK_NEXT);
2046
2047 len = MIN(17, strlen(v->vm_name));
2048
2049 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2050 17 - len, "", "", "", "",
2051 kv->kv_meminuse >> kap->ka_shift,
2052 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2053 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2054
2055 return (WALK_NEXT);
2056 }
2057
2058 /*ARGSUSED*/
2059 static int
kmastat_vmem(uintptr_t addr,const vmem_t * v,const uint_t * shiftp)2060 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2061 {
2062 datafmt_t *dfp = vmemfmt;
2063 const vmem_kstat_t *vkp = &v->vm_kstat;
2064 uintptr_t paddr;
2065 vmem_t parent;
2066 int ident = 0;
2067
2068 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2069 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2070 mdb_warn("couldn't trace %p's ancestry", addr);
2071 ident = 0;
2072 break;
2073 }
2074 paddr = (uintptr_t)parent.vm_source;
2075 }
2076
2077 mdb_printf("%*s", ident, "");
2078 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2079 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2080 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2081 *shiftp == KILOS ? 'K' : 'B');
2082 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2083 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2084 *shiftp == KILOS ? 'K' : 'B');
2085 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2086 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2087 *shiftp == KILOS ? 'K' : 'B');
2088 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2089 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2090
2091 mdb_printf("\n");
2092
2093 return (WALK_NEXT);
2094 }
2095
2096 /*ARGSUSED*/
2097 int
kmastat(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2098 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2099 {
2100 kmastat_vmem_t *kv = NULL;
2101 datafmt_t *dfp;
2102 kmastat_args_t ka;
2103
2104 ka.ka_shift = 0;
2105 if (mdb_getopts(argc, argv,
2106 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2107 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2108 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2109 return (DCMD_USAGE);
2110
2111 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2112 mdb_printf("%s ", dfp->hdr1);
2113 mdb_printf("\n");
2114
2115 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2116 mdb_printf("%s ", dfp->hdr2);
2117 mdb_printf("\n");
2118
2119 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2120 mdb_printf("%s ", dfp->dashes);
2121 mdb_printf("\n");
2122
2123 ka.ka_kvpp = &kv;
2124 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2125 mdb_warn("can't walk 'kmem_cache'");
2126 return (DCMD_ERR);
2127 }
2128
2129 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2130 mdb_printf("%s ", dfp->dashes);
2131 mdb_printf("\n");
2132
2133 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2134 mdb_warn("can't walk 'vmem'");
2135 return (DCMD_ERR);
2136 }
2137
2138 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2139 mdb_printf("%s ", dfp->dashes);
2140 mdb_printf("\n");
2141
2142 mdb_printf("\n");
2143
2144 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2145 mdb_printf("%s ", dfp->hdr1);
2146 mdb_printf("\n");
2147
2148 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2149 mdb_printf("%s ", dfp->hdr2);
2150 mdb_printf("\n");
2151
2152 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2153 mdb_printf("%s ", dfp->dashes);
2154 mdb_printf("\n");
2155
2156 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2157 mdb_warn("can't walk 'vmem'");
2158 return (DCMD_ERR);
2159 }
2160
2161 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2162 mdb_printf("%s ", dfp->dashes);
2163 mdb_printf("\n");
2164 return (DCMD_OK);
2165 }
2166
2167 /*
2168 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2169 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2170 * unfortunately, a few of the segs are both large and sparse, so we could
2171 * spend quite a bit of time scanning VAs which have no backing pages.
2172 *
2173 * So for the few very sparse segs, we skip the segment itself, and scan
2174 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2175 * Currently, we do this for:
2176 *
2177 * SEG VMEM ARENA
2178 * kvseg heap_arena
2179 * kvseg32 heap32_arena
2180 * kvseg_core heap_core_arena
2181 *
2182 * In addition, we skip the segkpm segment in its entirety, since it is very
2183 * sparse, and contains no new kernel data.
2184 */
2185 typedef struct kgrep_walk_data {
2186 kgrep_cb_func *kg_cb;
2187 void *kg_cbdata;
2188 uintptr_t kg_kvseg;
2189 uintptr_t kg_kvseg32;
2190 uintptr_t kg_kvseg_core;
2191 uintptr_t kg_segkpm;
2192 uintptr_t kg_heap_lp_base;
2193 uintptr_t kg_heap_lp_end;
2194 } kgrep_walk_data_t;
2195
2196 static int
kgrep_walk_seg(uintptr_t addr,const struct seg * seg,kgrep_walk_data_t * kg)2197 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2198 {
2199 uintptr_t base = (uintptr_t)seg->s_base;
2200
2201 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2202 addr == kg->kg_kvseg_core)
2203 return (WALK_NEXT);
2204
2205 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2206 return (WALK_NEXT);
2207
2208 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2209 }
2210
2211 /*ARGSUSED*/
2212 static int
kgrep_walk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2213 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2214 {
2215 /*
2216 * skip large page heap address range - it is scanned by walking
2217 * allocated vmem_segs in the heap_lp_arena
2218 */
2219 if (seg->vs_start == kg->kg_heap_lp_base &&
2220 seg->vs_end == kg->kg_heap_lp_end)
2221 return (WALK_NEXT);
2222
2223 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2224 }
2225
2226 /*ARGSUSED*/
2227 static int
kgrep_xwalk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2228 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2229 {
2230 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2231 }
2232
2233 static int
kgrep_walk_vmem(uintptr_t addr,const vmem_t * vmem,kgrep_walk_data_t * kg)2234 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2235 {
2236 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2237
2238 if (strcmp(vmem->vm_name, "heap") != 0 &&
2239 strcmp(vmem->vm_name, "heap32") != 0 &&
2240 strcmp(vmem->vm_name, "heap_core") != 0 &&
2241 strcmp(vmem->vm_name, "heap_lp") != 0)
2242 return (WALK_NEXT);
2243
2244 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2245 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2246
2247 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2248 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2249 return (WALK_ERR);
2250 }
2251
2252 return (WALK_NEXT);
2253 }
2254
2255 int
kgrep_subr(kgrep_cb_func * cb,void * cbdata)2256 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2257 {
2258 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2259 kgrep_walk_data_t kg;
2260
2261 if (mdb_get_state() == MDB_STATE_RUNNING) {
2262 mdb_warn("kgrep can only be run on a system "
2263 "dump or under kmdb; see dumpadm(1M)\n");
2264 return (DCMD_ERR);
2265 }
2266
2267 if (mdb_lookup_by_name("kas", &kas) == -1) {
2268 mdb_warn("failed to locate 'kas' symbol\n");
2269 return (DCMD_ERR);
2270 }
2271
2272 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2273 mdb_warn("failed to locate 'kvseg' symbol\n");
2274 return (DCMD_ERR);
2275 }
2276
2277 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2278 mdb_warn("failed to locate 'kvseg32' symbol\n");
2279 return (DCMD_ERR);
2280 }
2281
2282 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2283 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2284 return (DCMD_ERR);
2285 }
2286
2287 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2288 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2289 return (DCMD_ERR);
2290 }
2291
2292 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2293 mdb_warn("failed to read 'heap_lp_base'\n");
2294 return (DCMD_ERR);
2295 }
2296
2297 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2298 mdb_warn("failed to read 'heap_lp_end'\n");
2299 return (DCMD_ERR);
2300 }
2301
2302 kg.kg_cb = cb;
2303 kg.kg_cbdata = cbdata;
2304 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2305 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2306 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2307 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2308
2309 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2310 &kg, kas.st_value) == -1) {
2311 mdb_warn("failed to walk kas segments");
2312 return (DCMD_ERR);
2313 }
2314
2315 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2316 mdb_warn("failed to walk heap/heap32 vmem arenas");
2317 return (DCMD_ERR);
2318 }
2319
2320 return (DCMD_OK);
2321 }
2322
2323 size_t
kgrep_subr_pagesize(void)2324 kgrep_subr_pagesize(void)
2325 {
2326 return (PAGESIZE);
2327 }
2328
2329 typedef struct file_walk_data {
2330 struct uf_entry *fw_flist;
2331 int fw_flistsz;
2332 int fw_ndx;
2333 int fw_nofiles;
2334 } file_walk_data_t;
2335
2336 int
file_walk_init(mdb_walk_state_t * wsp)2337 file_walk_init(mdb_walk_state_t *wsp)
2338 {
2339 file_walk_data_t *fw;
2340 proc_t p;
2341
2342 if (wsp->walk_addr == NULL) {
2343 mdb_warn("file walk doesn't support global walks\n");
2344 return (WALK_ERR);
2345 }
2346
2347 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2348
2349 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2350 mdb_free(fw, sizeof (file_walk_data_t));
2351 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2352 return (WALK_ERR);
2353 }
2354
2355 if (p.p_user.u_finfo.fi_nfiles == 0) {
2356 mdb_free(fw, sizeof (file_walk_data_t));
2357 return (WALK_DONE);
2358 }
2359
2360 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2361 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2362 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2363
2364 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2365 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2366 mdb_warn("failed to read file array at %p",
2367 p.p_user.u_finfo.fi_list);
2368 mdb_free(fw->fw_flist, fw->fw_flistsz);
2369 mdb_free(fw, sizeof (file_walk_data_t));
2370 return (WALK_ERR);
2371 }
2372
2373 fw->fw_ndx = 0;
2374 wsp->walk_data = fw;
2375
2376 return (WALK_NEXT);
2377 }
2378
2379 int
file_walk_step(mdb_walk_state_t * wsp)2380 file_walk_step(mdb_walk_state_t *wsp)
2381 {
2382 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2383 struct file file;
2384 uintptr_t fp;
2385
2386 again:
2387 if (fw->fw_ndx == fw->fw_nofiles)
2388 return (WALK_DONE);
2389
2390 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2391 goto again;
2392
2393 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2394 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2395 }
2396
2397 int
allfile_walk_step(mdb_walk_state_t * wsp)2398 allfile_walk_step(mdb_walk_state_t *wsp)
2399 {
2400 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2401 struct file file;
2402 uintptr_t fp;
2403
2404 if (fw->fw_ndx == fw->fw_nofiles)
2405 return (WALK_DONE);
2406
2407 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2408 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2409 else
2410 bzero(&file, sizeof (file));
2411
2412 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2413 }
2414
2415 void
file_walk_fini(mdb_walk_state_t * wsp)2416 file_walk_fini(mdb_walk_state_t *wsp)
2417 {
2418 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2419
2420 mdb_free(fw->fw_flist, fw->fw_flistsz);
2421 mdb_free(fw, sizeof (file_walk_data_t));
2422 }
2423
2424 int
port_walk_init(mdb_walk_state_t * wsp)2425 port_walk_init(mdb_walk_state_t *wsp)
2426 {
2427 if (wsp->walk_addr == NULL) {
2428 mdb_warn("port walk doesn't support global walks\n");
2429 return (WALK_ERR);
2430 }
2431
2432 if (mdb_layered_walk("file", wsp) == -1) {
2433 mdb_warn("couldn't walk 'file'");
2434 return (WALK_ERR);
2435 }
2436 return (WALK_NEXT);
2437 }
2438
2439 int
port_walk_step(mdb_walk_state_t * wsp)2440 port_walk_step(mdb_walk_state_t *wsp)
2441 {
2442 struct vnode vn;
2443 uintptr_t vp;
2444 uintptr_t pp;
2445 struct port port;
2446
2447 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2448 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2449 mdb_warn("failed to read vnode_t at %p", vp);
2450 return (WALK_ERR);
2451 }
2452 if (vn.v_type != VPORT)
2453 return (WALK_NEXT);
2454
2455 pp = (uintptr_t)vn.v_data;
2456 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2457 mdb_warn("failed to read port_t at %p", pp);
2458 return (WALK_ERR);
2459 }
2460 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2461 }
2462
2463 typedef struct portev_walk_data {
2464 list_node_t *pev_node;
2465 list_node_t *pev_last;
2466 size_t pev_offset;
2467 } portev_walk_data_t;
2468
2469 int
portev_walk_init(mdb_walk_state_t * wsp)2470 portev_walk_init(mdb_walk_state_t *wsp)
2471 {
2472 portev_walk_data_t *pevd;
2473 struct port port;
2474 struct vnode vn;
2475 struct list *list;
2476 uintptr_t vp;
2477
2478 if (wsp->walk_addr == NULL) {
2479 mdb_warn("portev walk doesn't support global walks\n");
2480 return (WALK_ERR);
2481 }
2482
2483 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2484
2485 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2486 mdb_free(pevd, sizeof (portev_walk_data_t));
2487 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2488 return (WALK_ERR);
2489 }
2490
2491 vp = (uintptr_t)port.port_vnode;
2492 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2493 mdb_free(pevd, sizeof (portev_walk_data_t));
2494 mdb_warn("failed to read vnode_t at %p", vp);
2495 return (WALK_ERR);
2496 }
2497
2498 if (vn.v_type != VPORT) {
2499 mdb_free(pevd, sizeof (portev_walk_data_t));
2500 mdb_warn("input address (%p) does not point to an event port",
2501 wsp->walk_addr);
2502 return (WALK_ERR);
2503 }
2504
2505 if (port.port_queue.portq_nent == 0) {
2506 mdb_free(pevd, sizeof (portev_walk_data_t));
2507 return (WALK_DONE);
2508 }
2509 list = &port.port_queue.portq_list;
2510 pevd->pev_offset = list->list_offset;
2511 pevd->pev_last = list->list_head.list_prev;
2512 pevd->pev_node = list->list_head.list_next;
2513 wsp->walk_data = pevd;
2514 return (WALK_NEXT);
2515 }
2516
2517 int
portev_walk_step(mdb_walk_state_t * wsp)2518 portev_walk_step(mdb_walk_state_t *wsp)
2519 {
2520 portev_walk_data_t *pevd;
2521 struct port_kevent ev;
2522 uintptr_t evp;
2523
2524 pevd = (portev_walk_data_t *)wsp->walk_data;
2525
2526 if (pevd->pev_last == NULL)
2527 return (WALK_DONE);
2528 if (pevd->pev_node == pevd->pev_last)
2529 pevd->pev_last = NULL; /* last round */
2530
2531 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2532 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2533 mdb_warn("failed to read port_kevent at %p", evp);
2534 return (WALK_DONE);
2535 }
2536 pevd->pev_node = ev.portkev_node.list_next;
2537 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2538 }
2539
2540 void
portev_walk_fini(mdb_walk_state_t * wsp)2541 portev_walk_fini(mdb_walk_state_t *wsp)
2542 {
2543 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2544
2545 if (pevd != NULL)
2546 mdb_free(pevd, sizeof (portev_walk_data_t));
2547 }
2548
2549 typedef struct proc_walk_data {
2550 uintptr_t *pw_stack;
2551 int pw_depth;
2552 int pw_max;
2553 } proc_walk_data_t;
2554
2555 int
proc_walk_init(mdb_walk_state_t * wsp)2556 proc_walk_init(mdb_walk_state_t *wsp)
2557 {
2558 GElf_Sym sym;
2559 proc_walk_data_t *pw;
2560
2561 if (wsp->walk_addr == NULL) {
2562 if (mdb_lookup_by_name("p0", &sym) == -1) {
2563 mdb_warn("failed to read 'practive'");
2564 return (WALK_ERR);
2565 }
2566 wsp->walk_addr = (uintptr_t)sym.st_value;
2567 }
2568
2569 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2570
2571 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2572 mdb_warn("failed to read 'nproc'");
2573 mdb_free(pw, sizeof (pw));
2574 return (WALK_ERR);
2575 }
2576
2577 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2578 wsp->walk_data = pw;
2579
2580 return (WALK_NEXT);
2581 }
2582
2583 int
proc_walk_step(mdb_walk_state_t * wsp)2584 proc_walk_step(mdb_walk_state_t *wsp)
2585 {
2586 proc_walk_data_t *pw = wsp->walk_data;
2587 uintptr_t addr = wsp->walk_addr;
2588 uintptr_t cld, sib;
2589
2590 int status;
2591 proc_t pr;
2592
2593 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2594 mdb_warn("failed to read proc at %p", addr);
2595 return (WALK_DONE);
2596 }
2597
2598 cld = (uintptr_t)pr.p_child;
2599 sib = (uintptr_t)pr.p_sibling;
2600
2601 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2602 pw->pw_depth--;
2603 goto sib;
2604 }
2605
2606 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2607
2608 if (status != WALK_NEXT)
2609 return (status);
2610
2611 if ((wsp->walk_addr = cld) != NULL) {
2612 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2613 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2614 addr, cld);
2615 goto sib;
2616 }
2617
2618 pw->pw_stack[pw->pw_depth++] = addr;
2619
2620 if (pw->pw_depth == pw->pw_max) {
2621 mdb_warn("depth %d exceeds max depth; try again\n",
2622 pw->pw_depth);
2623 return (WALK_DONE);
2624 }
2625 return (WALK_NEXT);
2626 }
2627
2628 sib:
2629 /*
2630 * We know that p0 has no siblings, and if another starting proc
2631 * was given, we don't want to walk its siblings anyway.
2632 */
2633 if (pw->pw_depth == 0)
2634 return (WALK_DONE);
2635
2636 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2637 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2638 addr, sib);
2639 sib = NULL;
2640 }
2641
2642 if ((wsp->walk_addr = sib) == NULL) {
2643 if (pw->pw_depth > 0) {
2644 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2645 return (WALK_NEXT);
2646 }
2647 return (WALK_DONE);
2648 }
2649
2650 return (WALK_NEXT);
2651 }
2652
2653 void
proc_walk_fini(mdb_walk_state_t * wsp)2654 proc_walk_fini(mdb_walk_state_t *wsp)
2655 {
2656 proc_walk_data_t *pw = wsp->walk_data;
2657
2658 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2659 mdb_free(pw, sizeof (proc_walk_data_t));
2660 }
2661
2662 int
task_walk_init(mdb_walk_state_t * wsp)2663 task_walk_init(mdb_walk_state_t *wsp)
2664 {
2665 task_t task;
2666
2667 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2668 mdb_warn("failed to read task at %p", wsp->walk_addr);
2669 return (WALK_ERR);
2670 }
2671 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2672 wsp->walk_data = task.tk_memb_list;
2673 return (WALK_NEXT);
2674 }
2675
2676 int
task_walk_step(mdb_walk_state_t * wsp)2677 task_walk_step(mdb_walk_state_t *wsp)
2678 {
2679 proc_t proc;
2680 int status;
2681
2682 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2683 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2684 return (WALK_DONE);
2685 }
2686
2687 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2688
2689 if (proc.p_tasknext == wsp->walk_data)
2690 return (WALK_DONE);
2691
2692 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2693 return (status);
2694 }
2695
2696 int
project_walk_init(mdb_walk_state_t * wsp)2697 project_walk_init(mdb_walk_state_t *wsp)
2698 {
2699 if (wsp->walk_addr == NULL) {
2700 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2701 mdb_warn("failed to read 'proj0p'");
2702 return (WALK_ERR);
2703 }
2704 }
2705 wsp->walk_data = (void *)wsp->walk_addr;
2706 return (WALK_NEXT);
2707 }
2708
2709 int
project_walk_step(mdb_walk_state_t * wsp)2710 project_walk_step(mdb_walk_state_t *wsp)
2711 {
2712 uintptr_t addr = wsp->walk_addr;
2713 kproject_t pj;
2714 int status;
2715
2716 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2717 mdb_warn("failed to read project at %p", addr);
2718 return (WALK_DONE);
2719 }
2720 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2721 if (status != WALK_NEXT)
2722 return (status);
2723 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2724 if ((void *)wsp->walk_addr == wsp->walk_data)
2725 return (WALK_DONE);
2726 return (WALK_NEXT);
2727 }
2728
2729 static int
generic_walk_step(mdb_walk_state_t * wsp)2730 generic_walk_step(mdb_walk_state_t *wsp)
2731 {
2732 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2733 wsp->walk_cbdata));
2734 }
2735
2736 static int
cpu_walk_cmp(const void * l,const void * r)2737 cpu_walk_cmp(const void *l, const void *r)
2738 {
2739 uintptr_t lhs = *((uintptr_t *)l);
2740 uintptr_t rhs = *((uintptr_t *)r);
2741 cpu_t lcpu, rcpu;
2742
2743 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2744 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2745
2746 if (lcpu.cpu_id < rcpu.cpu_id)
2747 return (-1);
2748
2749 if (lcpu.cpu_id > rcpu.cpu_id)
2750 return (1);
2751
2752 return (0);
2753 }
2754
2755 typedef struct cpu_walk {
2756 uintptr_t *cw_array;
2757 int cw_ndx;
2758 } cpu_walk_t;
2759
2760 int
cpu_walk_init(mdb_walk_state_t * wsp)2761 cpu_walk_init(mdb_walk_state_t *wsp)
2762 {
2763 cpu_walk_t *cw;
2764 int max_ncpus, i = 0;
2765 uintptr_t current, first;
2766 cpu_t cpu, panic_cpu;
2767 uintptr_t panicstr, addr;
2768 GElf_Sym sym;
2769
2770 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2771
2772 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2773 mdb_warn("failed to read 'max_ncpus'");
2774 return (WALK_ERR);
2775 }
2776
2777 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2778 mdb_warn("failed to read 'panicstr'");
2779 return (WALK_ERR);
2780 }
2781
2782 if (panicstr != NULL) {
2783 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2784 mdb_warn("failed to find 'panic_cpu'");
2785 return (WALK_ERR);
2786 }
2787
2788 addr = (uintptr_t)sym.st_value;
2789
2790 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2791 mdb_warn("failed to read 'panic_cpu'");
2792 return (WALK_ERR);
2793 }
2794 }
2795
2796 /*
2797 * Unfortunately, there is no platform-independent way to walk
2798 * CPUs in ID order. We therefore loop through in cpu_next order,
2799 * building an array of CPU pointers which will subsequently be
2800 * sorted.
2801 */
2802 cw->cw_array =
2803 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2804
2805 if (mdb_readvar(&first, "cpu_list") == -1) {
2806 mdb_warn("failed to read 'cpu_list'");
2807 return (WALK_ERR);
2808 }
2809
2810 current = first;
2811 do {
2812 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2813 mdb_warn("failed to read cpu at %p", current);
2814 return (WALK_ERR);
2815 }
2816
2817 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2818 cw->cw_array[i++] = addr;
2819 } else {
2820 cw->cw_array[i++] = current;
2821 }
2822 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2823
2824 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2825 wsp->walk_data = cw;
2826
2827 return (WALK_NEXT);
2828 }
2829
2830 int
cpu_walk_step(mdb_walk_state_t * wsp)2831 cpu_walk_step(mdb_walk_state_t *wsp)
2832 {
2833 cpu_walk_t *cw = wsp->walk_data;
2834 cpu_t cpu;
2835 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2836
2837 if (addr == NULL)
2838 return (WALK_DONE);
2839
2840 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2841 mdb_warn("failed to read cpu at %p", addr);
2842 return (WALK_DONE);
2843 }
2844
2845 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2846 }
2847
2848 typedef struct cpuinfo_data {
2849 intptr_t cid_cpu;
2850 uintptr_t **cid_ithr;
2851 char cid_print_head;
2852 char cid_print_thr;
2853 char cid_print_ithr;
2854 char cid_print_flags;
2855 } cpuinfo_data_t;
2856
2857 int
cpuinfo_walk_ithread(uintptr_t addr,const kthread_t * thr,cpuinfo_data_t * cid)2858 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2859 {
2860 cpu_t c;
2861 int id;
2862 uint8_t pil;
2863
2864 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2865 return (WALK_NEXT);
2866
2867 if (thr->t_bound_cpu == NULL) {
2868 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2869 return (WALK_NEXT);
2870 }
2871
2872 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2873
2874 if ((id = c.cpu_id) >= NCPU) {
2875 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2876 thr->t_bound_cpu, id, NCPU);
2877 return (WALK_NEXT);
2878 }
2879
2880 if ((pil = thr->t_pil) >= NINTR) {
2881 mdb_warn("thread %p has pil (%d) greater than %d\n",
2882 addr, pil, NINTR);
2883 return (WALK_NEXT);
2884 }
2885
2886 if (cid->cid_ithr[id][pil] != NULL) {
2887 mdb_warn("CPU %d has multiple threads at pil %d (at least "
2888 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2889 return (WALK_NEXT);
2890 }
2891
2892 cid->cid_ithr[id][pil] = addr;
2893
2894 return (WALK_NEXT);
2895 }
2896
2897 #define CPUINFO_IDWIDTH 3
2898 #define CPUINFO_FLAGWIDTH 9
2899
2900 #ifdef _LP64
2901 #if defined(__amd64)
2902 #define CPUINFO_TWIDTH 16
2903 #define CPUINFO_CPUWIDTH 16
2904 #else
2905 #define CPUINFO_CPUWIDTH 11
2906 #define CPUINFO_TWIDTH 11
2907 #endif
2908 #else
2909 #define CPUINFO_CPUWIDTH 8
2910 #define CPUINFO_TWIDTH 8
2911 #endif
2912
2913 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2914 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2915 #define CPUINFO_ITHRDELT 4
2916
2917 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
2918 flagline < nflaglines ? flagbuf[flagline++] : "")
2919
2920 int
cpuinfo_walk_cpu(uintptr_t addr,const cpu_t * cpu,cpuinfo_data_t * cid)2921 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2922 {
2923 kthread_t t;
2924 disp_t disp;
2925 proc_t p;
2926 uintptr_t pinned;
2927 char **flagbuf;
2928 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2929
2930 const char *flags[] = {
2931 "RUNNING", "READY", "QUIESCED", "EXISTS",
2932 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2933 "SPARE", "FAULTED", NULL
2934 };
2935
2936 if (cid->cid_cpu != -1) {
2937 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2938 return (WALK_NEXT);
2939
2940 /*
2941 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2942 */
2943 cid->cid_cpu = -1;
2944 rval = WALK_DONE;
2945 }
2946
2947 if (cid->cid_print_head) {
2948 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2949 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2950 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2951 "PROC");
2952 cid->cid_print_head = FALSE;
2953 }
2954
2955 bspl = cpu->cpu_base_spl;
2956
2957 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2958 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2959 return (WALK_ERR);
2960 }
2961
2962 mdb_printf("%3d %0*p %3x %4d %4d ",
2963 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2964 disp.disp_nrunnable, bspl);
2965
2966 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2967 mdb_printf("%3d ", t.t_pri);
2968 } else {
2969 mdb_printf("%3s ", "-");
2970 }
2971
2972 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2973 cpu->cpu_kprunrun ? "yes" : "no");
2974
2975 if (cpu->cpu_last_swtch) {
2976 mdb_printf("t-%-4d ",
2977 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
2978 } else {
2979 mdb_printf("%-6s ", "-");
2980 }
2981
2982 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2983
2984 if (cpu->cpu_thread == cpu->cpu_idle_thread)
2985 mdb_printf(" (idle)\n");
2986 else if (cpu->cpu_thread == NULL)
2987 mdb_printf(" -\n");
2988 else {
2989 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2990 mdb_printf(" %s\n", p.p_user.u_comm);
2991 } else {
2992 mdb_printf(" ?\n");
2993 }
2994 }
2995
2996 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2997
2998 if (cid->cid_print_flags) {
2999 int first = 1, i, j, k;
3000 char *s;
3001
3002 cid->cid_print_head = TRUE;
3003
3004 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3005 if (!(cpu->cpu_flags & i))
3006 continue;
3007
3008 if (first) {
3009 s = mdb_alloc(CPUINFO_THRDELT + 1,
3010 UM_GC | UM_SLEEP);
3011
3012 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3013 "%*s|%*s", CPUINFO_FLAGDELT, "",
3014 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3015 flagbuf[nflaglines++] = s;
3016 }
3017
3018 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3019 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3020 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3021 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3022 first ? "<--+" : "");
3023
3024 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3025 s[k] = ' ';
3026 s[k] = '\0';
3027
3028 flagbuf[nflaglines++] = s;
3029 first = 0;
3030 }
3031 }
3032
3033 if (cid->cid_print_ithr) {
3034 int i, found_one = FALSE;
3035 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3036
3037 for (i = NINTR - 1; i >= 0; i--) {
3038 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3039
3040 if (iaddr == NULL)
3041 continue;
3042
3043 if (!found_one) {
3044 found_one = TRUE;
3045
3046 CPUINFO_INDENT;
3047 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3048 CPUINFO_ITHRDELT, "");
3049
3050 CPUINFO_INDENT;
3051 mdb_printf("%c%*s+--> %3s %s\n",
3052 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3053 "", "PIL", "THREAD");
3054 }
3055
3056 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3057 mdb_warn("failed to read kthread_t at %p",
3058 iaddr);
3059 return (WALK_ERR);
3060 }
3061
3062 CPUINFO_INDENT;
3063 mdb_printf("%c%*s %3d %0*p\n",
3064 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3065 t.t_pil, CPUINFO_TWIDTH, iaddr);
3066
3067 pinned = (uintptr_t)t.t_intr;
3068 }
3069
3070 if (found_one && pinned != NULL) {
3071 cid->cid_print_head = TRUE;
3072 (void) strcpy(p.p_user.u_comm, "?");
3073
3074 if (mdb_vread(&t, sizeof (t),
3075 (uintptr_t)pinned) == -1) {
3076 mdb_warn("failed to read kthread_t at %p",
3077 pinned);
3078 return (WALK_ERR);
3079 }
3080 if (mdb_vread(&p, sizeof (p),
3081 (uintptr_t)t.t_procp) == -1) {
3082 mdb_warn("failed to read proc_t at %p",
3083 t.t_procp);
3084 return (WALK_ERR);
3085 }
3086
3087 CPUINFO_INDENT;
3088 mdb_printf("%c%*s %3s %0*p %s\n",
3089 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3090 CPUINFO_TWIDTH, pinned,
3091 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3092 "(idle)" : p.p_user.u_comm);
3093 }
3094 }
3095
3096 if (disp.disp_nrunnable && cid->cid_print_thr) {
3097 dispq_t *dq;
3098
3099 int i, npri = disp.disp_npri;
3100
3101 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3102
3103 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3104 (uintptr_t)disp.disp_q) == -1) {
3105 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3106 return (WALK_ERR);
3107 }
3108
3109 CPUINFO_INDENT;
3110 mdb_printf("|\n");
3111
3112 CPUINFO_INDENT;
3113 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3114 CPUINFO_TWIDTH, "THREAD", "PROC");
3115
3116 for (i = npri - 1; i >= 0; i--) {
3117 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3118
3119 while (taddr != NULL) {
3120 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3121 mdb_warn("failed to read kthread_t "
3122 "at %p", taddr);
3123 return (WALK_ERR);
3124 }
3125 if (mdb_vread(&p, sizeof (p),
3126 (uintptr_t)t.t_procp) == -1) {
3127 mdb_warn("failed to read proc_t at %p",
3128 t.t_procp);
3129 return (WALK_ERR);
3130 }
3131
3132 CPUINFO_INDENT;
3133 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3134 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3135
3136 taddr = (uintptr_t)t.t_link;
3137 }
3138 }
3139 cid->cid_print_head = TRUE;
3140 }
3141
3142 while (flagline < nflaglines)
3143 mdb_printf("%s\n", flagbuf[flagline++]);
3144
3145 if (cid->cid_print_head)
3146 mdb_printf("\n");
3147
3148 return (rval);
3149 }
3150
3151 int
cpuinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3152 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3153 {
3154 uint_t verbose = FALSE;
3155 cpuinfo_data_t cid;
3156
3157 cid.cid_print_ithr = FALSE;
3158 cid.cid_print_thr = FALSE;
3159 cid.cid_print_flags = FALSE;
3160 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3161 cid.cid_cpu = -1;
3162
3163 if (flags & DCMD_ADDRSPEC)
3164 cid.cid_cpu = addr;
3165
3166 if (mdb_getopts(argc, argv,
3167 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3168 return (DCMD_USAGE);
3169
3170 if (verbose) {
3171 cid.cid_print_ithr = TRUE;
3172 cid.cid_print_thr = TRUE;
3173 cid.cid_print_flags = TRUE;
3174 cid.cid_print_head = TRUE;
3175 }
3176
3177 if (cid.cid_print_ithr) {
3178 int i;
3179
3180 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3181 * NCPU, UM_SLEEP | UM_GC);
3182
3183 for (i = 0; i < NCPU; i++)
3184 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3185 NINTR, UM_SLEEP | UM_GC);
3186
3187 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3188 &cid) == -1) {
3189 mdb_warn("couldn't walk thread");
3190 return (DCMD_ERR);
3191 }
3192 }
3193
3194 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3195 mdb_warn("can't walk cpus");
3196 return (DCMD_ERR);
3197 }
3198
3199 if (cid.cid_cpu != -1) {
3200 /*
3201 * We didn't find this CPU when we walked through the CPUs
3202 * (i.e. the address specified doesn't show up in the "cpu"
3203 * walk). However, the specified address may still correspond
3204 * to a valid cpu_t (for example, if the specified address is
3205 * the actual panicking cpu_t and not the cached panic_cpu).
3206 * Point is: even if we didn't find it, we still want to try
3207 * to print the specified address as a cpu_t.
3208 */
3209 cpu_t cpu;
3210
3211 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3212 mdb_warn("%p is neither a valid CPU ID nor a "
3213 "valid cpu_t address\n", cid.cid_cpu);
3214 return (DCMD_ERR);
3215 }
3216
3217 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3218 }
3219
3220 return (DCMD_OK);
3221 }
3222
3223 /*ARGSUSED*/
3224 int
flipone(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3225 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3226 {
3227 int i;
3228
3229 if (!(flags & DCMD_ADDRSPEC))
3230 return (DCMD_USAGE);
3231
3232 for (i = 0; i < sizeof (addr) * NBBY; i++)
3233 mdb_printf("%p\n", addr ^ (1UL << i));
3234
3235 return (DCMD_OK);
3236 }
3237
3238 int
as2proc_walk(uintptr_t addr,const proc_t * p,struct as ** asp)3239 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3240 {
3241 if (p->p_as == *asp)
3242 mdb_printf("%p\n", addr);
3243 return (WALK_NEXT);
3244 }
3245
3246 /*ARGSUSED*/
3247 int
as2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3248 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3249 {
3250 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3251 return (DCMD_USAGE);
3252
3253 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3254 mdb_warn("failed to walk proc");
3255 return (DCMD_ERR);
3256 }
3257
3258 return (DCMD_OK);
3259 }
3260
3261 /*ARGSUSED*/
3262 int
ptree_walk(uintptr_t addr,const proc_t * p,void * ignored)3263 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3264 {
3265 proc_t parent;
3266 int ident = 0;
3267 uintptr_t paddr;
3268
3269 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3270 mdb_vread(&parent, sizeof (parent), paddr);
3271 paddr = (uintptr_t)parent.p_parent;
3272 }
3273
3274 mdb_inc_indent(ident);
3275 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
3276 mdb_dec_indent(ident);
3277
3278 return (WALK_NEXT);
3279 }
3280
3281 void
ptree_ancestors(uintptr_t addr,uintptr_t start)3282 ptree_ancestors(uintptr_t addr, uintptr_t start)
3283 {
3284 proc_t p;
3285
3286 if (mdb_vread(&p, sizeof (p), addr) == -1) {
3287 mdb_warn("couldn't read ancestor at %p", addr);
3288 return;
3289 }
3290
3291 if (p.p_parent != NULL)
3292 ptree_ancestors((uintptr_t)p.p_parent, start);
3293
3294 if (addr != start)
3295 (void) ptree_walk(addr, &p, NULL);
3296 }
3297
3298 /*ARGSUSED*/
3299 int
ptree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3300 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3301 {
3302 if (!(flags & DCMD_ADDRSPEC))
3303 addr = NULL;
3304 else
3305 ptree_ancestors(addr, addr);
3306
3307 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3308 mdb_warn("couldn't walk 'proc'");
3309 return (DCMD_ERR);
3310 }
3311
3312 return (DCMD_OK);
3313 }
3314
3315 /*ARGSUSED*/
3316 static int
fd(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3317 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3318 {
3319 int fdnum;
3320 const mdb_arg_t *argp = &argv[0];
3321 proc_t p;
3322 uf_entry_t uf;
3323
3324 if ((flags & DCMD_ADDRSPEC) == 0) {
3325 mdb_warn("fd doesn't give global information\n");
3326 return (DCMD_ERR);
3327 }
3328 if (argc != 1)
3329 return (DCMD_USAGE);
3330
3331 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3332 fdnum = argp->a_un.a_val;
3333 else
3334 fdnum = mdb_strtoull(argp->a_un.a_str);
3335
3336 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3337 mdb_warn("couldn't read proc_t at %p", addr);
3338 return (DCMD_ERR);
3339 }
3340 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3341 mdb_warn("process %p only has %d files open.\n",
3342 addr, p.p_user.u_finfo.fi_nfiles);
3343 return (DCMD_ERR);
3344 }
3345 if (mdb_vread(&uf, sizeof (uf_entry_t),
3346 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3347 mdb_warn("couldn't read uf_entry_t at %p",
3348 &p.p_user.u_finfo.fi_list[fdnum]);
3349 return (DCMD_ERR);
3350 }
3351
3352 mdb_printf("%p\n", uf.uf_file);
3353 return (DCMD_OK);
3354 }
3355
3356 /*ARGSUSED*/
3357 static int
pid2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3358 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3359 {
3360 pid_t pid = (pid_t)addr;
3361
3362 if (argc != 0)
3363 return (DCMD_USAGE);
3364
3365 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3366 mdb_warn("PID 0t%d not found\n", pid);
3367 return (DCMD_ERR);
3368 }
3369
3370 mdb_printf("%p\n", addr);
3371 return (DCMD_OK);
3372 }
3373
3374 static char *sysfile_cmd[] = {
3375 "exclude:",
3376 "include:",
3377 "forceload:",
3378 "rootdev:",
3379 "rootfs:",
3380 "swapdev:",
3381 "swapfs:",
3382 "moddir:",
3383 "set",
3384 "unknown",
3385 };
3386
3387 static char *sysfile_ops[] = { "", "=", "&", "|" };
3388
3389 /*ARGSUSED*/
3390 static int
sysfile_vmem_seg(uintptr_t addr,const vmem_seg_t * vsp,void ** target)3391 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3392 {
3393 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3394 *target = NULL;
3395 return (WALK_DONE);
3396 }
3397 return (WALK_NEXT);
3398 }
3399
3400 /*ARGSUSED*/
3401 static int
sysfile(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3402 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3403 {
3404 struct sysparam *sysp, sys;
3405 char var[256];
3406 char modname[256];
3407 char val[256];
3408 char strval[256];
3409 vmem_t *mod_sysfile_arena;
3410 void *straddr;
3411
3412 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3413 mdb_warn("failed to read sysparam_hd");
3414 return (DCMD_ERR);
3415 }
3416
3417 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3418 mdb_warn("failed to read mod_sysfile_arena");
3419 return (DCMD_ERR);
3420 }
3421
3422 while (sysp != NULL) {
3423 var[0] = '\0';
3424 val[0] = '\0';
3425 modname[0] = '\0';
3426 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3427 mdb_warn("couldn't read sysparam %p", sysp);
3428 return (DCMD_ERR);
3429 }
3430 if (sys.sys_modnam != NULL &&
3431 mdb_readstr(modname, 256,
3432 (uintptr_t)sys.sys_modnam) == -1) {
3433 mdb_warn("couldn't read modname in %p", sysp);
3434 return (DCMD_ERR);
3435 }
3436 if (sys.sys_ptr != NULL &&
3437 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3438 mdb_warn("couldn't read ptr in %p", sysp);
3439 return (DCMD_ERR);
3440 }
3441 if (sys.sys_op != SETOP_NONE) {
3442 /*
3443 * Is this an int or a string? We determine this
3444 * by checking whether straddr is contained in
3445 * mod_sysfile_arena. If so, the walker will set
3446 * straddr to NULL.
3447 */
3448 straddr = (void *)(uintptr_t)sys.sys_info;
3449 if (sys.sys_op == SETOP_ASSIGN &&
3450 sys.sys_info != 0 &&
3451 mdb_pwalk("vmem_seg",
3452 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3453 (uintptr_t)mod_sysfile_arena) == 0 &&
3454 straddr == NULL &&
3455 mdb_readstr(strval, 256,
3456 (uintptr_t)sys.sys_info) != -1) {
3457 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3458 strval);
3459 } else {
3460 (void) mdb_snprintf(val, sizeof (val),
3461 "0x%llx [0t%llu]", sys.sys_info,
3462 sys.sys_info);
3463 }
3464 }
3465 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3466 modname, modname[0] == '\0' ? "" : ":",
3467 var, sysfile_ops[sys.sys_op], val);
3468
3469 sysp = sys.sys_next;
3470 }
3471
3472 return (DCMD_OK);
3473 }
3474
3475 int
didmatch(uintptr_t addr,const kthread_t * thr,kt_did_t * didp)3476 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3477 {
3478
3479 if (*didp == thr->t_did) {
3480 mdb_printf("%p\n", addr);
3481 return (WALK_DONE);
3482 } else
3483 return (WALK_NEXT);
3484 }
3485
3486 /*ARGSUSED*/
3487 int
did2thread(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3488 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3489 {
3490 const mdb_arg_t *argp = &argv[0];
3491 kt_did_t did;
3492
3493 if (argc != 1)
3494 return (DCMD_USAGE);
3495
3496 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3497
3498 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3499 mdb_warn("failed to walk thread");
3500 return (DCMD_ERR);
3501
3502 }
3503 return (DCMD_OK);
3504
3505 }
3506
3507 static int
errorq_walk_init(mdb_walk_state_t * wsp)3508 errorq_walk_init(mdb_walk_state_t *wsp)
3509 {
3510 if (wsp->walk_addr == NULL &&
3511 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3512 mdb_warn("failed to read errorq_list");
3513 return (WALK_ERR);
3514 }
3515
3516 return (WALK_NEXT);
3517 }
3518
3519 static int
errorq_walk_step(mdb_walk_state_t * wsp)3520 errorq_walk_step(mdb_walk_state_t *wsp)
3521 {
3522 uintptr_t addr = wsp->walk_addr;
3523 errorq_t eq;
3524
3525 if (addr == NULL)
3526 return (WALK_DONE);
3527
3528 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3529 mdb_warn("failed to read errorq at %p", addr);
3530 return (WALK_ERR);
3531 }
3532
3533 wsp->walk_addr = (uintptr_t)eq.eq_next;
3534 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3535 }
3536
3537 typedef struct eqd_walk_data {
3538 uintptr_t *eqd_stack;
3539 void *eqd_buf;
3540 ulong_t eqd_qpos;
3541 ulong_t eqd_qlen;
3542 size_t eqd_size;
3543 } eqd_walk_data_t;
3544
3545 /*
3546 * In order to walk the list of pending error queue elements, we push the
3547 * addresses of the corresponding data buffers in to the eqd_stack array.
3548 * The error lists are in reverse chronological order when iterating using
3549 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3550 * walker client gets addresses in order from oldest error to newest error.
3551 */
3552 static void
eqd_push_list(eqd_walk_data_t * eqdp,uintptr_t addr)3553 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3554 {
3555 errorq_elem_t eqe;
3556
3557 while (addr != NULL) {
3558 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3559 mdb_warn("failed to read errorq element at %p", addr);
3560 break;
3561 }
3562
3563 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3564 mdb_warn("errorq is overfull -- more than %lu "
3565 "elems found\n", eqdp->eqd_qlen);
3566 break;
3567 }
3568
3569 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3570 addr = (uintptr_t)eqe.eqe_prev;
3571 }
3572 }
3573
3574 static int
eqd_walk_init(mdb_walk_state_t * wsp)3575 eqd_walk_init(mdb_walk_state_t *wsp)
3576 {
3577 eqd_walk_data_t *eqdp;
3578 errorq_elem_t eqe, *addr;
3579 errorq_t eq;
3580 ulong_t i;
3581
3582 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3583 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3584 return (WALK_ERR);
3585 }
3586
3587 if (eq.eq_ptail != NULL &&
3588 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3589 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3590 return (WALK_ERR);
3591 }
3592
3593 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3594 wsp->walk_data = eqdp;
3595
3596 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3597 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3598 eqdp->eqd_qlen = eq.eq_qlen;
3599 eqdp->eqd_qpos = 0;
3600 eqdp->eqd_size = eq.eq_size;
3601
3602 /*
3603 * The newest elements in the queue are on the pending list, so we
3604 * push those on to our stack first.
3605 */
3606 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3607
3608 /*
3609 * If eq_ptail is set, it may point to a subset of the errors on the
3610 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3611 * data is already in our stack, NULL out eq_ptail and ignore it.
3612 */
3613 if (eq.eq_ptail != NULL) {
3614 for (i = 0; i < eqdp->eqd_qpos; i++) {
3615 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3616 eq.eq_ptail = NULL;
3617 break;
3618 }
3619 }
3620 }
3621
3622 /*
3623 * If eq_phead is set, it has the processing list in order from oldest
3624 * to newest. Use this to recompute eq_ptail as best we can and then
3625 * we nicely fall into eqd_push_list() of eq_ptail below.
3626 */
3627 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3628 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3629 eq.eq_ptail = addr;
3630
3631 /*
3632 * The oldest elements in the queue are on the processing list, subject
3633 * to machinations in the if-clauses above. Push any such elements.
3634 */
3635 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3636 return (WALK_NEXT);
3637 }
3638
3639 static int
eqd_walk_step(mdb_walk_state_t * wsp)3640 eqd_walk_step(mdb_walk_state_t *wsp)
3641 {
3642 eqd_walk_data_t *eqdp = wsp->walk_data;
3643 uintptr_t addr;
3644
3645 if (eqdp->eqd_qpos == 0)
3646 return (WALK_DONE);
3647
3648 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3649
3650 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3651 mdb_warn("failed to read errorq data at %p", addr);
3652 return (WALK_ERR);
3653 }
3654
3655 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3656 }
3657
3658 static void
eqd_walk_fini(mdb_walk_state_t * wsp)3659 eqd_walk_fini(mdb_walk_state_t *wsp)
3660 {
3661 eqd_walk_data_t *eqdp = wsp->walk_data;
3662
3663 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3664 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3665 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3666 }
3667
3668 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3669
3670 static int
errorq(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3671 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3672 {
3673 int i;
3674 errorq_t eq;
3675 uint_t opt_v = FALSE;
3676
3677 if (!(flags & DCMD_ADDRSPEC)) {
3678 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3679 mdb_warn("can't walk 'errorq'");
3680 return (DCMD_ERR);
3681 }
3682 return (DCMD_OK);
3683 }
3684
3685 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3686 argc -= i;
3687 argv += i;
3688
3689 if (argc != 0)
3690 return (DCMD_USAGE);
3691
3692 if (opt_v || DCMD_HDRSPEC(flags)) {
3693 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3694 "ADDR", "NAME", "S", "V", "N");
3695 if (!opt_v) {
3696 mdb_printf("%7s %7s %7s%</u>\n",
3697 "ACCEPT", "DROP", "LOG");
3698 } else {
3699 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3700 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3701 }
3702 }
3703
3704 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3705 mdb_warn("failed to read errorq at %p", addr);
3706 return (DCMD_ERR);
3707 }
3708
3709 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3710 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3711 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3712 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3713
3714 if (!opt_v) {
3715 mdb_printf("%7llu %7llu %7llu\n",
3716 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3717 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3718 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3719 } else {
3720 mdb_printf("%5s %6lu %6lu %3u %a\n",
3721 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3722 mdb_printf("%38s\n%41s"
3723 "%12s %llu\n"
3724 "%53s %llu\n"
3725 "%53s %llu\n"
3726 "%53s %llu\n"
3727 "%53s %llu\n"
3728 "%53s %llu\n"
3729 "%53s %llu\n"
3730 "%53s %llu\n\n",
3731 "|", "+-> ",
3732 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3733 "DROPPED", EQKSVAL(eq, eqk_dropped),
3734 "LOGGED", EQKSVAL(eq, eqk_logged),
3735 "RESERVED", EQKSVAL(eq, eqk_reserved),
3736 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3737 "COMMITTED", EQKSVAL(eq, eqk_committed),
3738 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3739 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3740 }
3741
3742 return (DCMD_OK);
3743 }
3744
3745 /*ARGSUSED*/
3746 static int
panicinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3747 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3748 {
3749 cpu_t panic_cpu;
3750 kthread_t *panic_thread;
3751 void *buf;
3752 panic_data_t *pd;
3753 int i, n;
3754
3755 if (!mdb_prop_postmortem) {
3756 mdb_warn("panicinfo can only be run on a system "
3757 "dump; see dumpadm(1M)\n");
3758 return (DCMD_ERR);
3759 }
3760
3761 if (flags & DCMD_ADDRSPEC || argc != 0)
3762 return (DCMD_USAGE);
3763
3764 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3765 mdb_warn("failed to read 'panic_cpu'");
3766 else
3767 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3768
3769 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3770 mdb_warn("failed to read 'panic_thread'");
3771 else
3772 mdb_printf("%16s %?p\n", "thread", panic_thread);
3773
3774 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3775 pd = (panic_data_t *)buf;
3776
3777 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3778 pd->pd_version != PANICBUFVERS) {
3779 mdb_warn("failed to read 'panicbuf'");
3780 mdb_free(buf, PANICBUFSIZE);
3781 return (DCMD_ERR);
3782 }
3783
3784 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3785
3786 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3787 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3788
3789 for (i = 0; i < n; i++)
3790 mdb_printf("%16s %?llx\n",
3791 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3792
3793 mdb_free(buf, PANICBUFSIZE);
3794 return (DCMD_OK);
3795 }
3796
3797 /*
3798 * ::time dcmd, which will print a hires timestamp of when we entered the
3799 * debugger, or the lbolt value if used with the -l option.
3800 *
3801 */
3802 /*ARGSUSED*/
3803 static int
time(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3804 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3805 {
3806 uint_t opt_dec = FALSE;
3807 uint_t opt_lbolt = FALSE;
3808 uint_t opt_hex = FALSE;
3809 const char *fmt;
3810 hrtime_t result;
3811
3812 if (mdb_getopts(argc, argv,
3813 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
3814 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
3815 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
3816 NULL) != argc)
3817 return (DCMD_USAGE);
3818
3819 if (opt_dec && opt_hex)
3820 return (DCMD_USAGE);
3821
3822 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
3823 fmt =
3824 opt_hex ? "0x%llx\n" :
3825 opt_dec ? "0t%lld\n" : "%#llr\n";
3826
3827 mdb_printf(fmt, result);
3828 return (DCMD_OK);
3829 }
3830
3831 void
time_help(void)3832 time_help(void)
3833 {
3834 mdb_printf("Prints the system time in nanoseconds.\n\n"
3835 "::time will return the timestamp at which we dropped into, \n"
3836 "if called from, kmdb(1); the core dump's high resolution \n"
3837 "time if inspecting one; or the running hires time if we're \n"
3838 "looking at a live system.\n\n"
3839 "Switches:\n"
3840 " -d report times in decimal\n"
3841 " -l prints the number of clock ticks since system boot\n"
3842 " -x report times in hexadecimal\n");
3843 }
3844
3845 static const mdb_dcmd_t dcmds[] = {
3846
3847 /* from genunix.c */
3848 { "as2proc", ":", "convert as to proc_t address", as2proc },
3849 { "binding_hash_entry", ":", "print driver names hash table entry",
3850 binding_hash_entry },
3851 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
3852 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
3853 " [-FivVA]",
3854 "display callouts", callout, callout_help },
3855 { "calloutid", "[-d|v] xid", "print callout by extended id",
3856 calloutid, calloutid_help },
3857 { "class", NULL, "print process scheduler classes", class },
3858 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3859 { "did2thread", "? kt_did", "find kernel thread for this id",
3860 did2thread },
3861 { "errorq", "?[-v]", "display kernel error queues", errorq },
3862 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
3863 { "flipone", ":", "the vik_rev_level 2 special", flipone },
3864 { "lminfo", NULL, "print lock manager information", lminfo },
3865 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3866 { "panicinfo", NULL, "print panic information", panicinfo },
3867 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3868 { "project", NULL, "display kernel project(s)", project },
3869 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3870 { "pgrep", "[-x] [-n | -o] pattern",
3871 "pattern match against all processes", pgrep },
3872 { "ptree", NULL, "print process tree", ptree },
3873 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3874 sysevent},
3875 { "sysevent_channel", "?", "print sysevent channel database",
3876 sysevent_channel},
3877 { "sysevent_class_list", ":", "print sysevent class list",
3878 sysevent_class_list},
3879 { "sysevent_subclass_list", ":",
3880 "print sysevent subclass list", sysevent_subclass_list},
3881 { "system", NULL, "print contents of /etc/system file", sysfile },
3882 { "task", NULL, "display kernel task(s)", task },
3883 { "time", "[-dlx]", "display system time", time, time_help },
3884 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3885 { "whereopen", ":", "given a vnode, dumps procs which have it open",
3886 whereopen },
3887
3888 /* from bio.c */
3889 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3890
3891 /* from bitset.c */
3892 { "bitset", ":", "display a bitset", bitset, bitset_help },
3893
3894 /* from contract.c */
3895 { "contract", "?", "display a contract", cmd_contract },
3896 { "ctevent", ":", "display a contract event", cmd_ctevent },
3897 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3898
3899 /* from cpupart.c */
3900 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
3901
3902 /* from cred.c */
3903 { "cred", ":[-v]", "display a credential", cmd_cred },
3904 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
3905 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
3906 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
3907
3908 /* from cyclic.c */
3909 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3910 { "cycid", "?", "dump a cyclic id", cycid },
3911 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3912 { "cyclic", ":", "developer information", cyclic },
3913 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3914
3915 /* from damap.c */
3916 { "damap", ":", "display a damap_t", damap, damap_help },
3917
3918 /* from ddi_periodic.c */
3919 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
3920
3921 /* from devinfo.c */
3922 { "devbindings", "?[-qs] [device-name | major-num]",
3923 "print devinfo nodes bound to device-name or major-num",
3924 devbindings, devinfo_help },
3925 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3926 devinfo_help },
3927 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3928 devinfo_audit },
3929 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3930 devinfo_audit_log },
3931 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3932 devinfo_audit_node },
3933 { "devinfo2driver", ":", "find driver name for this devinfo node",
3934 devinfo2driver },
3935 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
3936 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
3937 dev2major },
3938 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3939 dev2minor },
3940 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3941 devt },
3942 { "major2name", "?<major-num>", "convert major number to dev name",
3943 major2name },
3944 { "minornodes", ":", "given a devinfo node, print its minor nodes",
3945 minornodes },
3946 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
3947 modctl2devinfo },
3948 { "name2major", "<dev-name>", "convert dev name to major number",
3949 name2major },
3950 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3951 { "softstate", ":<instance>", "retrieve soft-state pointer",
3952 softstate },
3953 { "devinfo_fm", ":", "devinfo fault managment configuration",
3954 devinfo_fm },
3955 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
3956 devinfo_fmce},
3957
3958 /* from findstack.c */
3959 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3960 { "findstack_debug", NULL, "toggle findstack debugging",
3961 findstack_debug },
3962 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
3963 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
3964 "print unique kernel thread stacks",
3965 stacks, stacks_help },
3966
3967 /* from fm.c */
3968 { "ereport", "[-v]", "print ereports logged in dump",
3969 ereport },
3970
3971 /* from group.c */
3972 { "group", "?[-q]", "display a group", group},
3973
3974 /* from hotplug.c */
3975 { "hotplug", "?[-p]", "display a registered hotplug attachment",
3976 hotplug, hotplug_help },
3977
3978 /* from irm.c */
3979 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
3980 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
3981 irmreqs_dcmd },
3982 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
3983
3984 /* from kgrep.c + genunix.c */
3985 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3986 kgrep_help },
3987
3988 /* from kmem.c */
3989 { "allocdby", ":", "given a thread, print its allocated buffers",
3990 allocdby },
3991 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3992 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3993 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3994 { "kmalog", "?[ fail | slab ]",
3995 "display kmem transaction log and stack traces", kmalog },
3996 { "kmastat", "[-kmg]", "kernel memory allocator stats",
3997 kmastat },
3998 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3999 "of the kmem allocator", kmausers, kmausers_help },
4000 { "kmem_cache", "?[-n name]",
4001 "print kernel memory caches", kmem_cache, kmem_cache_help},
4002 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4003 "[-B minbinsize]", "display slab usage per kmem cache",
4004 kmem_slabs, kmem_slabs_help },
4005 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4006 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4007 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4008 kmem_verify },
4009 { "vmem", "?", "print a vmem_t", vmem },
4010 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4011 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4012 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4013 { "whatthread", ":[-v]", "print threads whose stack contains the "
4014 "given address", whatthread },
4015
4016 /* from ldi.c */
4017 { "ldi_handle", "?[-i]", "display a layered driver handle",
4018 ldi_handle, ldi_handle_help },
4019 { "ldi_ident", NULL, "display a layered driver identifier",
4020 ldi_ident, ldi_ident_help },
4021
4022 /* from leaky.c + leaky_subr.c */
4023 { "findleaks", FINDLEAKS_USAGE,
4024 "search for potential kernel memory leaks", findleaks,
4025 findleaks_help },
4026
4027 /* from lgrp.c */
4028 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4029 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4030
4031 /* from log.c */
4032 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4033
4034 /* from mdi.c */
4035 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4036 "and detailed pi_prop list", mdipi },
4037 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4038 mdiprops },
4039 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4040 "list all paths", mdiphci },
4041 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4042 "all phcis", mdivhci },
4043 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4044 "client links", mdiclient_paths },
4045 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4046 "phci links", mdiphci_paths },
4047 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4048 mdiphcis },
4049
4050 /* from memory.c */
4051 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4052 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4053 { "memstat", NULL, "display memory usage summary", memstat },
4054 { "page", "?", "display a summarized page_t", page },
4055 { "pagelookup", "?[-v vp] [-o offset]",
4056 "find the page_t with the name {vp, offset}",
4057 pagelookup, pagelookup_help },
4058 { "page_num2pp", ":", "find the page_t for a given page frame number",
4059 page_num2pp },
4060 { "pmap", ":[-q]", "print process memory map", pmap },
4061 { "seg", ":", "print address space segment", seg },
4062 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4063 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4064
4065 /* from mmd.c */
4066 { "multidata", ":[-sv]", "display a summarized multidata_t",
4067 multidata },
4068 { "pattbl", ":", "display a summarized multidata attribute table",
4069 pattbl },
4070 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4071 pattr2multidata },
4072 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4073 pdesc2slab },
4074 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4075 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4076 slab2multidata },
4077
4078 /* from modhash.c */
4079 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4080 "display information about one or all mod_hash structures",
4081 modhash, modhash_help },
4082 { "modent", ":[-k | -v | -t type]",
4083 "display information about a mod_hash_entry", modent,
4084 modent_help },
4085
4086 /* from net.c */
4087 { "dladm", "?<sub-command> [flags]", "show data link information",
4088 dladm, dladm_help },
4089 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4090 mi },
4091 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4092 "show network statistics", netstat },
4093 { "sonode", "?[-f inet | inet6 | unix | #] "
4094 "[-t stream | dgram | raw | #] [-p #]",
4095 "filter and display sonode", sonode },
4096
4097 /* from netstack.c */
4098 { "netstack", "", "show stack instances", netstack },
4099 { "netstackid2netstack", ":",
4100 "translate a netstack id to its netstack_t",
4101 netstackid2netstack },
4102
4103 /* from nvpair.c */
4104 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4105 nvpair_print },
4106 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4107 print_nvlist },
4108
4109 /* from pg.c */
4110 { "pg", "?[-q]", "display a pg", pg},
4111
4112 /* from rctl.c */
4113 { "rctl_dict", "?", "print systemwide default rctl definitions",
4114 rctl_dict },
4115 { "rctl_list", ":[handle]", "print rctls for the given proc",
4116 rctl_list },
4117 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4118 rctl },
4119 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4120 "sequence", rctl_validate },
4121
4122 /* from sobj.c */
4123 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4124 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4125 mutex_help },
4126 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4127 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4128 { "turnstile", "?", "display a turnstile", turnstile },
4129
4130 /* from stream.c */
4131 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4132 "print an mblk", mblk_prt, mblk_help },
4133 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4134 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4135 mblk2dblk },
4136 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4137 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4138 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4139 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4140 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4141 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4142 "filter and display STREAM queue", queue, queue_help },
4143 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4144 "filter and display STREAM head", stdata, stdata_help },
4145 { "str2mate", ":", "print mate of this stream", str2mate },
4146 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4147 { "stream", ":", "display STREAM", stream },
4148 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4149 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4150 "filter and display STREAM sync queue", syncq, syncq_help },
4151 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4152
4153 /* from taskq.c */
4154 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4155 "display a taskq", taskq, taskq_help },
4156 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4157
4158 /* from thread.c */
4159 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4160 thread_help },
4161 { "threadlist", "?[-t] [-v [count]]",
4162 "display threads and associated C stack traces", threadlist,
4163 threadlist_help },
4164 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4165 stackinfo_help },
4166
4167 /* from tsd.c */
4168 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4169 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4170
4171 /*
4172 * typegraph does not work under kmdb, as it requires too much memory
4173 * for its internal data structures.
4174 */
4175 #ifndef _KMDB
4176 /* from typegraph.c */
4177 { "findlocks", ":", "find locks held by specified thread", findlocks },
4178 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4179 findfalse },
4180 { "typegraph", NULL, "build type graph", typegraph },
4181 { "istype", ":type", "manually set object type", istype },
4182 { "notype", ":", "manually clear object type", notype },
4183 { "whattype", ":", "determine object type", whattype },
4184 #endif
4185
4186 /* from vfs.c */
4187 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4188 { "pfiles", ":[-fp]", "print process file information", pfiles,
4189 pfiles_help },
4190
4191 /* from zone.c */
4192 { "zid2zone", ":", "find the zone_t with the given zone id",
4193 zid2zone },
4194 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4195 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4196 "selected zones", zsd },
4197
4198 #ifndef _KMDB
4199 { "gcore", NULL, "generate a user core for the given process",
4200 gcore_dcmd },
4201 #endif
4202
4203 { NULL }
4204 };
4205
4206 static const mdb_walker_t walkers[] = {
4207
4208 /* from genunix.c */
4209 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4210 callout_walk_init, callout_walk_step, callout_walk_fini,
4211 (void *)CALLOUT_WALK_BYLIST },
4212 { "callouts_byid", "walk callouts by id hash chain",
4213 callout_walk_init, callout_walk_step, callout_walk_fini,
4214 (void *)CALLOUT_WALK_BYID },
4215 { "callout_list", "walk a callout list", callout_list_walk_init,
4216 callout_list_walk_step, callout_list_walk_fini },
4217 { "callout_table", "walk callout table array", callout_table_walk_init,
4218 callout_table_walk_step, callout_table_walk_fini },
4219 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4220 { "ereportq_dump", "walk list of ereports in dump error queue",
4221 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4222 { "ereportq_pend", "walk list of ereports in pending error queue",
4223 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4224 { "errorq", "walk list of system error queues",
4225 errorq_walk_init, errorq_walk_step, NULL },
4226 { "errorq_data", "walk pending error queue data buffers",
4227 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4228 { "allfile", "given a proc pointer, list all file pointers",
4229 file_walk_init, allfile_walk_step, file_walk_fini },
4230 { "file", "given a proc pointer, list of open file pointers",
4231 file_walk_init, file_walk_step, file_walk_fini },
4232 { "lock_descriptor", "walk lock_descriptor_t structures",
4233 ld_walk_init, ld_walk_step, NULL },
4234 { "lock_graph", "walk lock graph",
4235 lg_walk_init, lg_walk_step, NULL },
4236 { "port", "given a proc pointer, list of created event ports",
4237 port_walk_init, port_walk_step, NULL },
4238 { "portev", "given a port pointer, list of events in the queue",
4239 portev_walk_init, portev_walk_step, portev_walk_fini },
4240 { "proc", "list of active proc_t structures",
4241 proc_walk_init, proc_walk_step, proc_walk_fini },
4242 { "projects", "walk a list of kernel projects",
4243 project_walk_init, project_walk_step, NULL },
4244 { "sysevent_pend", "walk sysevent pending queue",
4245 sysevent_pend_walk_init, sysevent_walk_step,
4246 sysevent_walk_fini},
4247 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4248 sysevent_walk_step, sysevent_walk_fini},
4249 { "sysevent_channel", "walk sysevent channel subscriptions",
4250 sysevent_channel_walk_init, sysevent_channel_walk_step,
4251 sysevent_channel_walk_fini},
4252 { "sysevent_class_list", "walk sysevent subscription's class list",
4253 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4254 sysevent_class_list_walk_fini},
4255 { "sysevent_subclass_list",
4256 "walk sysevent subscription's subclass list",
4257 sysevent_subclass_list_walk_init,
4258 sysevent_subclass_list_walk_step,
4259 sysevent_subclass_list_walk_fini},
4260 { "task", "given a task pointer, walk its processes",
4261 task_walk_init, task_walk_step, NULL },
4262
4263 /* from avl.c */
4264 { AVL_WALK_NAME, AVL_WALK_DESC,
4265 avl_walk_init, avl_walk_step, avl_walk_fini },
4266
4267 /* from bio.c */
4268 { "buf", "walk the bio buf hash",
4269 buf_walk_init, buf_walk_step, buf_walk_fini },
4270
4271 /* from contract.c */
4272 { "contract", "walk all contracts, or those of the specified type",
4273 ct_walk_init, generic_walk_step, NULL },
4274 { "ct_event", "walk events on a contract event queue",
4275 ct_event_walk_init, generic_walk_step, NULL },
4276 { "ct_listener", "walk contract event queue listeners",
4277 ct_listener_walk_init, generic_walk_step, NULL },
4278
4279 /* from cpupart.c */
4280 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4281 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4282 NULL },
4283 { "cpupart_walk", "walk the set of cpu partitions",
4284 cpupart_walk_init, cpupart_walk_step, NULL },
4285
4286 /* from ctxop.c */
4287 { "ctxop", "walk list of context ops on a thread",
4288 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4289
4290 /* from cyclic.c */
4291 { "cyccpu", "walk per-CPU cyc_cpu structures",
4292 cyccpu_walk_init, cyccpu_walk_step, NULL },
4293 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4294 cycomni_walk_init, cycomni_walk_step, NULL },
4295 { "cyctrace", "walk cyclic trace buffer",
4296 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4297
4298 /* from devinfo.c */
4299 { "binding_hash", "walk all entries in binding hash table",
4300 binding_hash_walk_init, binding_hash_walk_step, NULL },
4301 { "devinfo", "walk devinfo tree or subtree",
4302 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4303 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4304 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4305 devinfo_audit_log_walk_fini},
4306 { "devinfo_audit_node", "walk per-devinfo audit history",
4307 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4308 devinfo_audit_node_walk_fini},
4309 { "devinfo_children", "walk children of devinfo node",
4310 devinfo_children_walk_init, devinfo_children_walk_step,
4311 devinfo_children_walk_fini },
4312 { "devinfo_parents", "walk ancestors of devinfo node",
4313 devinfo_parents_walk_init, devinfo_parents_walk_step,
4314 devinfo_parents_walk_fini },
4315 { "devinfo_siblings", "walk siblings of devinfo node",
4316 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4317 { "devi_next", "walk devinfo list",
4318 NULL, devi_next_walk_step, NULL },
4319 { "devnames", "walk devnames array",
4320 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4321 { "minornode", "given a devinfo node, walk minor nodes",
4322 minornode_walk_init, minornode_walk_step, NULL },
4323 { "softstate",
4324 "given an i_ddi_soft_state*, list all in-use driver stateps",
4325 soft_state_walk_init, soft_state_walk_step,
4326 NULL, NULL },
4327 { "softstate_all",
4328 "given an i_ddi_soft_state*, list all driver stateps",
4329 soft_state_walk_init, soft_state_all_walk_step,
4330 NULL, NULL },
4331 { "devinfo_fmc",
4332 "walk a fault management handle cache active list",
4333 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4334
4335 /* from group.c */
4336 { "group", "walk all elements of a group",
4337 group_walk_init, group_walk_step, NULL },
4338
4339 /* from irm.c */
4340 { "irmpools", "walk global list of interrupt pools",
4341 irmpools_walk_init, list_walk_step, list_walk_fini },
4342 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4343 irmreqs_walk_init, list_walk_step, list_walk_fini },
4344
4345 /* from kmem.c */
4346 { "allocdby", "given a thread, walk its allocated bufctls",
4347 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4348 { "bufctl", "walk a kmem cache's bufctls",
4349 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4350 { "bufctl_history", "walk the available history of a bufctl",
4351 bufctl_history_walk_init, bufctl_history_walk_step,
4352 bufctl_history_walk_fini },
4353 { "freedby", "given a thread, walk its freed bufctls",
4354 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4355 { "freectl", "walk a kmem cache's free bufctls",
4356 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4357 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4358 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4359 { "freemem", "walk a kmem cache's free memory",
4360 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4361 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4362 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4363 { "kmem", "walk a kmem cache",
4364 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4365 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4366 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4367 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4368 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4369 { "kmem_log", "walk the kmem transaction log",
4370 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4371 { "kmem_slab", "given a kmem cache, walk its slabs",
4372 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4373 { "kmem_slab_partial",
4374 "given a kmem cache, walk its partially allocated slabs (min 1)",
4375 kmem_slab_walk_partial_init, combined_walk_step,
4376 combined_walk_fini },
4377 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4378 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4379 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4380 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4381 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4382 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4383 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4384 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4385 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4386 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4387 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4388 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4389
4390 /* from ldi.c */
4391 { "ldi_handle", "walk the layered driver handle hash",
4392 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4393 { "ldi_ident", "walk the layered driver identifier hash",
4394 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4395
4396 /* from leaky.c + leaky_subr.c */
4397 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4398 "stack trace",
4399 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4400 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4401 "leaks w/ same stack trace",
4402 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4403
4404 /* from lgrp.c */
4405 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4406 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4407 { "lgrptbl", "walk lgroup table",
4408 lgrp_walk_init, lgrp_walk_step, NULL },
4409 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4410 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4411 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4412 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4413 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4414 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4415
4416 /* from list.c */
4417 { LIST_WALK_NAME, LIST_WALK_DESC,
4418 list_walk_init, list_walk_step, list_walk_fini },
4419
4420 /* from mdi.c */
4421 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4422 mdi_pi_client_link_walk_init,
4423 mdi_pi_client_link_walk_step,
4424 mdi_pi_client_link_walk_fini },
4425 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4426 mdi_pi_phci_link_walk_init,
4427 mdi_pi_phci_link_walk_step,
4428 mdi_pi_phci_link_walk_fini },
4429 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4430 mdi_phci_ph_next_walk_init,
4431 mdi_phci_ph_next_walk_step,
4432 mdi_phci_ph_next_walk_fini },
4433
4434 /* from memory.c */
4435 { "allpages", "walk all pages, including free pages",
4436 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4437 { "anon", "given an amp, list allocated anon structures",
4438 anon_walk_init, anon_walk_step, anon_walk_fini,
4439 ANON_WALK_ALLOC },
4440 { "anon_all", "given an amp, list contents of all anon slots",
4441 anon_walk_init, anon_walk_step, anon_walk_fini,
4442 ANON_WALK_ALL },
4443 { "memlist", "walk specified memlist",
4444 NULL, memlist_walk_step, NULL },
4445 { "page", "walk all pages, or those from the specified vnode",
4446 page_walk_init, page_walk_step, page_walk_fini },
4447 { "seg", "given an as, list of segments",
4448 seg_walk_init, avl_walk_step, avl_walk_fini },
4449 { "segvn_anon",
4450 "given a struct segvn_data, list allocated anon structures",
4451 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4452 ANON_WALK_ALLOC },
4453 { "segvn_anon_all",
4454 "given a struct segvn_data, list contents of all anon slots",
4455 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4456 ANON_WALK_ALL },
4457 { "segvn_pages",
4458 "given a struct segvn_data, list resident pages in "
4459 "offset order",
4460 segvn_pages_walk_init, segvn_pages_walk_step,
4461 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4462 { "segvn_pages_all",
4463 "for each offset in a struct segvn_data, give page_t pointer "
4464 "(if resident), or NULL.",
4465 segvn_pages_walk_init, segvn_pages_walk_step,
4466 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4467 { "swapinfo", "walk swapinfo structures",
4468 swap_walk_init, swap_walk_step, NULL },
4469
4470 /* from mmd.c */
4471 { "pattr", "walk pattr_t structures", pattr_walk_init,
4472 mmdq_walk_step, mmdq_walk_fini },
4473 { "pdesc", "walk pdesc_t structures",
4474 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4475 { "pdesc_slab", "walk pdesc_slab_t structures",
4476 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4477
4478 /* from modhash.c */
4479 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4480 modhash_walk_step, NULL },
4481 { "modent", "walk list of entries in a given mod_hash",
4482 modent_walk_init, modent_walk_step, modent_walk_fini },
4483 { "modchain", "walk list of entries in a given mod_hash_entry",
4484 NULL, modchain_walk_step, NULL },
4485
4486 /* from net.c */
4487 { "icmp", "walk ICMP control structures using MI for all stacks",
4488 mi_payload_walk_init, mi_payload_walk_step, NULL,
4489 &mi_icmp_arg },
4490 { "mi", "given a MI_O, walk the MI",
4491 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4492 { "sonode", "given a sonode, walk its children",
4493 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4494 { "icmp_stacks", "walk all the icmp_stack_t",
4495 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4496 { "tcp_stacks", "walk all the tcp_stack_t",
4497 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4498 { "udp_stacks", "walk all the udp_stack_t",
4499 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4500
4501 /* from netstack.c */
4502 { "netstack", "walk a list of kernel netstacks",
4503 netstack_walk_init, netstack_walk_step, NULL },
4504
4505 /* from nvpair.c */
4506 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4507 nvpair_walk_init, nvpair_walk_step, NULL },
4508
4509 /* from rctl.c */
4510 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4511 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4512 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4513 rctl_set_walk_step, NULL },
4514 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4515 rctl_val_walk_init, rctl_val_walk_step },
4516
4517 /* from sobj.c */
4518 { "blocked", "walk threads blocked on a given sobj",
4519 blocked_walk_init, blocked_walk_step, NULL },
4520 { "wchan", "given a wchan, list of blocked threads",
4521 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4522
4523 /* from stream.c */
4524 { "b_cont", "walk mblk_t list using b_cont",
4525 mblk_walk_init, b_cont_step, mblk_walk_fini },
4526 { "b_next", "walk mblk_t list using b_next",
4527 mblk_walk_init, b_next_step, mblk_walk_fini },
4528 { "qlink", "walk queue_t list using q_link",
4529 queue_walk_init, queue_link_step, queue_walk_fini },
4530 { "qnext", "walk queue_t list using q_next",
4531 queue_walk_init, queue_next_step, queue_walk_fini },
4532 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4533 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4534 { "readq", "walk read queue side of stdata",
4535 str_walk_init, strr_walk_step, str_walk_fini },
4536 { "writeq", "walk write queue side of stdata",
4537 str_walk_init, strw_walk_step, str_walk_fini },
4538
4539 /* from taskq.c */
4540 { "taskq_thread", "given a taskq_t, list all of its threads",
4541 taskq_thread_walk_init,
4542 taskq_thread_walk_step,
4543 taskq_thread_walk_fini },
4544 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4545 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4546
4547 /* from thread.c */
4548 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4549 deathrow_walk_init, deathrow_walk_step, NULL },
4550 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4551 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4552 { "cpupart_dispq",
4553 "given a cpupart_t, walk threads in dispatcher queues",
4554 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4555 { "lwp_deathrow", "walk lwp_deathrow",
4556 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4557 { "thread", "global or per-process kthread_t structures",
4558 thread_walk_init, thread_walk_step, thread_walk_fini },
4559 { "thread_deathrow", "walk threads on thread_deathrow",
4560 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4561
4562 /* from tsd.c */
4563 { "tsd", "walk list of thread-specific data",
4564 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4565
4566 /* from tsol.c */
4567 { "tnrh", "walk remote host cache structures",
4568 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4569 { "tnrhtp", "walk remote host template structures",
4570 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4571
4572 /*
4573 * typegraph does not work under kmdb, as it requires too much memory
4574 * for its internal data structures.
4575 */
4576 #ifndef _KMDB
4577 /* from typegraph.c */
4578 { "typeconflict", "walk buffers with conflicting type inferences",
4579 typegraph_walk_init, typeconflict_walk_step },
4580 { "typeunknown", "walk buffers with unknown types",
4581 typegraph_walk_init, typeunknown_walk_step },
4582 #endif
4583
4584 /* from vfs.c */
4585 { "vfs", "walk file system list",
4586 vfs_walk_init, vfs_walk_step },
4587
4588 /* from zone.c */
4589 { "zone", "walk a list of kernel zones",
4590 zone_walk_init, zone_walk_step, NULL },
4591 { "zsd", "walk list of zsd entries for a zone",
4592 zsd_walk_init, zsd_walk_step, NULL },
4593
4594 { NULL }
4595 };
4596
4597 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4598
4599 /*ARGSUSED*/
4600 static void
genunix_statechange_cb(void * ignored)4601 genunix_statechange_cb(void *ignored)
4602 {
4603 /*
4604 * Force ::findleaks and ::stacks to let go any cached state.
4605 */
4606 leaky_cleanup(1);
4607 stacks_cleanup(1);
4608
4609 kmem_statechange(); /* notify kmem */
4610 }
4611
4612 const mdb_modinfo_t *
_mdb_init(void)4613 _mdb_init(void)
4614 {
4615 kmem_init();
4616
4617 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4618 genunix_statechange_cb, NULL);
4619
4620 #ifndef _KMDB
4621 gcore_init();
4622 #endif
4623
4624 return (&modinfo);
4625 }
4626
4627 void
_mdb_fini(void)4628 _mdb_fini(void)
4629 {
4630 leaky_cleanup(1);
4631 stacks_cleanup(1);
4632 }
4633