xref: /freebsd/sys/contrib/dev/iwlwifi/iwl-nvm-parse.c (revision 6b627f88584ce13118e0a24951b503c0b1f2d5a7)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023, 2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/fips.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/etherdevice.h>
12 #include <linux/pci.h>
13 #include <linux/firmware.h>
14 
15 #include "iwl-drv.h"
16 #include "iwl-modparams.h"
17 #include "iwl-nvm-parse.h"
18 #include "iwl-prph.h"
19 #include "iwl-io.h"
20 #include "iwl-csr.h"
21 #include "fw/acpi.h"
22 #include "fw/api/nvm-reg.h"
23 #include "fw/api/commands.h"
24 #include "fw/api/cmdhdr.h"
25 #include "fw/img.h"
26 #include "mei/iwl-mei.h"
27 
28 /* NVM offsets (in words) definitions */
29 enum nvm_offsets {
30 	/* NVM HW-Section offset (in words) definitions */
31 	SUBSYSTEM_ID = 0x0A,
32 	HW_ADDR = 0x15,
33 
34 	/* NVM SW-Section offset (in words) definitions */
35 	NVM_SW_SECTION = 0x1C0,
36 	NVM_VERSION = 0,
37 	RADIO_CFG = 1,
38 	SKU = 2,
39 	N_HW_ADDRS = 3,
40 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
41 
42 	/* NVM REGULATORY -Section offset (in words) definitions */
43 	NVM_CHANNELS_SDP = 0,
44 };
45 
46 enum ext_nvm_offsets {
47 	/* NVM HW-Section offset (in words) definitions */
48 
49 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
50 
51 	/* NVM SW-Section offset (in words) definitions */
52 	NVM_VERSION_EXT_NVM = 0,
53 	N_HW_ADDRS_FAMILY_8000 = 3,
54 
55 	/* NVM PHY_SKU-Section offset (in words) definitions */
56 	RADIO_CFG_FAMILY_EXT_NVM = 0,
57 	SKU_FAMILY_8000 = 2,
58 
59 	/* NVM REGULATORY -Section offset (in words) definitions */
60 	NVM_CHANNELS_EXTENDED = 0,
61 	NVM_LAR_OFFSET_OLD = 0x4C7,
62 	NVM_LAR_OFFSET = 0x507,
63 	NVM_LAR_ENABLED = 0x7,
64 };
65 
66 /* SKU Capabilities (actual values from NVM definition) */
67 enum nvm_sku_bits {
68 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
69 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
70 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
71 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
72 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
73 };
74 
75 /*
76  * These are the channel numbers in the order that they are stored in the NVM
77  */
78 static const u16 iwl_nvm_channels[] = {
79 	/* 2.4 GHz */
80 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
81 	/* 5 GHz */
82 	36, 40, 44, 48, 52, 56, 60, 64,
83 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
84 	149, 153, 157, 161, 165
85 };
86 
87 static const u16 iwl_ext_nvm_channels[] = {
88 	/* 2.4 GHz */
89 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
90 	/* 5 GHz */
91 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
92 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
93 	149, 153, 157, 161, 165, 169, 173, 177, 181
94 };
95 
96 static const u16 iwl_uhb_nvm_channels[] = {
97 	/* 2.4 GHz */
98 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
99 	/* 5 GHz */
100 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
101 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
102 	149, 153, 157, 161, 165, 169, 173, 177, 181,
103 	/* 6-7 GHz */
104 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
105 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
106 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
107 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
108 };
109 
110 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
113 #define NUM_2GHZ_CHANNELS		14
114 #define NUM_5GHZ_CHANNELS		37
115 #define FIRST_2GHZ_HT_MINUS		5
116 #define LAST_2GHZ_HT_PLUS		9
117 #define N_HW_ADDR_MASK			0xF
118 
119 /* rate data (static) */
120 static struct ieee80211_rate iwl_cfg80211_rates[] = {
121 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
122 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
123 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
124 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
129 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
130 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
131 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
132 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
133 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
134 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
135 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
136 };
137 #define RATES_24_OFFS	0
138 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
139 #define RATES_52_OFFS	4
140 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
141 
142 /**
143  * enum iwl_nvm_channel_flags - channel flags in NVM
144  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
145  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
146  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
147  * @NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY: active scanning allowed and
148  *	AP allowed only in 20 MHz. Valid only
149  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
150  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
151  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
152  * @NVM_CHANNEL_RADAR: radar detection required
153  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
154  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
155  *	on same channel on 2.4 or same UNII band on 5.2
156  * @NVM_CHANNEL_UNIFORM: uniform spreading required
157  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
158  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
159  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
160  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
161  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
162  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
163  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
164  * @NVM_CHANNEL_VLP_AP_NOT_ALLOWED: UHB VLP AP not allowed,
165  *	Valid only when %NVM_CHANNEL_VLP is enabled.
166  */
167 enum iwl_nvm_channel_flags {
168 	NVM_CHANNEL_VALID			= BIT(0),
169 	NVM_CHANNEL_IBSS			= BIT(1),
170 	NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY	= BIT(2),
171 	NVM_CHANNEL_ACTIVE			= BIT(3),
172 	NVM_CHANNEL_RADAR			= BIT(4),
173 	NVM_CHANNEL_INDOOR_ONLY			= BIT(5),
174 	NVM_CHANNEL_GO_CONCURRENT		= BIT(6),
175 	NVM_CHANNEL_UNIFORM			= BIT(7),
176 	NVM_CHANNEL_20MHZ			= BIT(8),
177 	NVM_CHANNEL_40MHZ			= BIT(9),
178 	NVM_CHANNEL_80MHZ			= BIT(10),
179 	NVM_CHANNEL_160MHZ			= BIT(11),
180 	NVM_CHANNEL_DC_HIGH			= BIT(12),
181 	NVM_CHANNEL_VLP				= BIT(13),
182 	NVM_CHANNEL_AFC				= BIT(14),
183 	NVM_CHANNEL_VLP_AP_NOT_ALLOWED		= BIT(15),
184 };
185 
186 /**
187  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
188  * domain.
189  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
190  *	2.4Ghz band is allowed.
191  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
192  *	5Ghz band is allowed.
193  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
194  *	for this regulatory domain (valid only in 5Ghz).
195  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
196  *	for this regulatory domain (valid only in 5Ghz).
197  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
198  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
199  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
200  *	for this regulatory domain (valid only in 5Ghz).
201  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
202  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
203  */
204 enum iwl_reg_capa_flags_v1 {
205 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
206 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
207 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
208 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
209 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
210 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
211 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
212 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
213 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
214 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
215 
216 /**
217  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
218  * domain (version 2).
219  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
220  *	disabled.
221  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
222  *	2.4Ghz band is allowed.
223  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
224  *	5Ghz band is allowed.
225  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
226  *	for this regulatory domain (valid only in 5Ghz).
227  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
228  *	for this regulatory domain (valid only in 5Ghz).
229  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
230  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
231  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
232  *	126, 122) are disabled.
233  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
234  *	for this regulatory domain (uvalid only in 5Ghz).
235  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
236  */
237 enum iwl_reg_capa_flags_v2 {
238 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
239 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
240 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
241 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
242 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
243 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
244 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
245 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
246 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
247 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
248 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
249 
250 /**
251  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
252  * domain.
253  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
254  *	for this regulatory domain (valid only in 5Ghz).
255  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
256  *	for this regulatory domain (valid only in 5Ghz).
257  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
258  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
259  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
260  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
261  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
262  *	for this regulatory domain (valid only in 5GHz).
263  */
264 enum iwl_reg_capa_flags_v4 {
265 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
266 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
267 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
268 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
269 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
270 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
271 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
272 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
273 
274 /*
275 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
276 * MCC update command response.
277 */
278 #define REG_CAPA_V2_RESP_VER	6
279 
280 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
281  * MCC update command response.
282  */
283 #define REG_CAPA_V4_RESP_VER	8
284 
285 /**
286  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
287  * handling the different APIs of reg_capa_flags.
288  *
289  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
290  *	for this regulatory domain.
291  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
292  *	for this regulatory domain (valid only in 5 and 6 Ghz).
293  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
294  *	for this regulatory domain (valid only in 5 and 6 Ghz).
295  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
296  *	for this regulatory domain (valid only in 6 Ghz).
297  * @disable_11ax: 11ax is forbidden for this regulatory domain.
298  * @disable_11be: 11be is forbidden for this regulatory domain.
299  */
300 struct iwl_reg_capa {
301 	bool allow_40mhz;
302 	bool allow_80mhz;
303 	bool allow_160mhz;
304 	bool allow_320mhz;
305 	bool disable_11ax;
306 	bool disable_11be;
307 };
308 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)309 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
310 					       int chan, u32 flags)
311 {
312 #define CHECK_AND_PRINT_I(x)	\
313 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
314 
315 	if (!(flags & NVM_CHANNEL_VALID)) {
316 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
317 			      chan, flags);
318 		return;
319 	}
320 
321 	/* Note: already can print up to 101 characters, 110 is the limit! */
322 	IWL_DEBUG_DEV(dev, level,
323 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
324 		      chan, flags,
325 		      CHECK_AND_PRINT_I(VALID),
326 		      CHECK_AND_PRINT_I(IBSS),
327 		      CHECK_AND_PRINT_I(ACTIVE),
328 		      CHECK_AND_PRINT_I(RADAR),
329 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
330 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
331 		      CHECK_AND_PRINT_I(UNIFORM),
332 		      CHECK_AND_PRINT_I(20MHZ),
333 		      CHECK_AND_PRINT_I(40MHZ),
334 		      CHECK_AND_PRINT_I(80MHZ),
335 		      CHECK_AND_PRINT_I(160MHZ),
336 		      CHECK_AND_PRINT_I(DC_HIGH),
337 		      CHECK_AND_PRINT_I(VLP),
338 		      CHECK_AND_PRINT_I(AFC));
339 #undef CHECK_AND_PRINT_I
340 }
341 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_rf_cfg * cfg)342 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
343 				 u32 nvm_flags, const struct iwl_rf_cfg *cfg)
344 {
345 	u32 flags = IEEE80211_CHAN_NO_HT40;
346 
347 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
348 		if (ch_num <= LAST_2GHZ_HT_PLUS)
349 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
350 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
351 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
352 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
353 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
354 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
355 		else
356 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
357 	}
358 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
359 		flags |= IEEE80211_CHAN_NO_80MHZ;
360 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
361 		flags |= IEEE80211_CHAN_NO_160MHZ;
362 
363 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
364 		flags |= IEEE80211_CHAN_NO_IR;
365 
366 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
367 		flags |= IEEE80211_CHAN_NO_IR;
368 
369 	if (nvm_flags & NVM_CHANNEL_RADAR)
370 		flags |= IEEE80211_CHAN_RADAR;
371 
372 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
373 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
374 
375 	/* Set the GO concurrent flag only in case that NO_IR is set.
376 	 * Otherwise it is meaningless
377 	 */
378 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
379 	    (flags & IEEE80211_CHAN_NO_IR))
380 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
381 
382 	/* Set the AP type for the UHB case. */
383 	if (nvm_flags & NVM_CHANNEL_VLP)
384 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
385 	else
386 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
387 	if (!(nvm_flags & NVM_CHANNEL_AFC))
388 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
389 
390 	return flags;
391 }
392 
iwl_nl80211_band_from_channel_idx(int ch_idx)393 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
394 {
395 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
396 		return NL80211_BAND_6GHZ;
397 	}
398 
399 	if (ch_idx >= NUM_2GHZ_CHANNELS)
400 		return NL80211_BAND_5GHZ;
401 	return NL80211_BAND_2GHZ;
402 }
403 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)404 static int iwl_init_channel_map(struct iwl_trans *trans,
405 				const struct iwl_fw *fw,
406 				struct iwl_nvm_data *data,
407 				const void * const nvm_ch_flags,
408 				u32 sbands_flags, bool v4)
409 {
410 	const struct iwl_rf_cfg *cfg = trans->cfg;
411 	struct device *dev = trans->dev;
412 	int ch_idx;
413 	int n_channels = 0;
414 	struct ieee80211_channel *channel;
415 	u32 ch_flags;
416 	int num_of_ch;
417 	const u16 *nvm_chan;
418 
419 	if (cfg->uhb_supported) {
420 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
421 		nvm_chan = iwl_uhb_nvm_channels;
422 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
423 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
424 		nvm_chan = iwl_ext_nvm_channels;
425 	} else {
426 		num_of_ch = IWL_NVM_NUM_CHANNELS;
427 		nvm_chan = iwl_nvm_channels;
428 	}
429 
430 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
431 		enum nl80211_band band =
432 			iwl_nl80211_band_from_channel_idx(ch_idx);
433 
434 		if (v4)
435 			ch_flags =
436 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
437 		else
438 			ch_flags =
439 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
440 
441 		if (band == NL80211_BAND_5GHZ &&
442 		    !data->sku_cap_band_52ghz_enable)
443 			continue;
444 
445 		/* workaround to disable wide channels in 5GHz */
446 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
447 		    band == NL80211_BAND_5GHZ) {
448 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
449 				     NVM_CHANNEL_80MHZ |
450 				     NVM_CHANNEL_160MHZ);
451 		}
452 
453 		if (ch_flags & NVM_CHANNEL_160MHZ)
454 			data->vht160_supported = true;
455 
456 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
457 		    !(ch_flags & NVM_CHANNEL_VALID)) {
458 			/*
459 			 * Channels might become valid later if lar is
460 			 * supported, hence we still want to add them to
461 			 * the list of supported channels to cfg80211.
462 			 */
463 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
464 						    nvm_chan[ch_idx], ch_flags);
465 			continue;
466 		}
467 
468 		channel = &data->channels[n_channels];
469 		n_channels++;
470 
471 		channel->hw_value = nvm_chan[ch_idx];
472 		channel->band = band;
473 		channel->center_freq =
474 			ieee80211_channel_to_frequency(
475 				channel->hw_value, channel->band);
476 
477 		/* Initialize regulatory-based run-time data */
478 
479 		/*
480 		 * Default value - highest tx power value.  max_power
481 		 * is not used in mvm, and is used for backwards compatibility
482 		 */
483 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
484 
485 		/* don't put limitations in case we're using LAR */
486 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
487 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
488 							       ch_idx, band,
489 							       ch_flags, cfg);
490 		else
491 			channel->flags = 0;
492 
493 		if (fw_has_capa(&fw->ucode_capa,
494 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
495 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
496 
497 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
498 					    channel->hw_value, ch_flags);
499 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
500 				 channel->hw_value, channel->max_power);
501 	}
502 
503 	return n_channels;
504 }
505 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)506 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
507 				  struct iwl_nvm_data *data,
508 				  struct ieee80211_sta_vht_cap *vht_cap,
509 				  u8 tx_chains, u8 rx_chains)
510 {
511 	const struct iwl_rf_cfg *cfg = trans->cfg;
512 	int num_rx_ants = num_of_ant(rx_chains);
513 	int num_tx_ants = num_of_ant(tx_chains);
514 
515 	vht_cap->vht_supported = true;
516 
517 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
518 		       IEEE80211_VHT_CAP_RXSTBC_1 |
519 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
520 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
521 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
522 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
523 
524 	if (!trans->cfg->ht_params.stbc)
525 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
526 
527 	if (data->vht160_supported)
528 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
529 				IEEE80211_VHT_CAP_SHORT_GI_160;
530 
531 	if (cfg->vht_mu_mimo_supported)
532 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
533 
534 	if (cfg->ht_params.ldpc)
535 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
536 
537 	if (data->sku_cap_mimo_disabled) {
538 		num_rx_ants = 1;
539 		num_tx_ants = 1;
540 	}
541 
542 	if (trans->cfg->ht_params.stbc && num_tx_ants > 1)
543 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
544 	else
545 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
546 
547 	/*
548 	 * With fips_enabled crypto is done by software, so the HW cannot
549 	 * split up A-MSDUs and the real limit that was set applies.
550 	 * Note that EHT doesn't honour this (HE copies the VHT value),
551 	 * but EHT is also entirely disabled for fips_enabled.
552 	 */
553 	switch (iwlwifi_mod_params.amsdu_size) {
554 	case IWL_AMSDU_DEF:
555 		if (trans->mac_cfg->mq_rx_supported && !fips_enabled)
556 			vht_cap->cap |=
557 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
558 		else
559 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
560 		break;
561 	case IWL_AMSDU_2K:
562 		if (trans->mac_cfg->mq_rx_supported && !fips_enabled)
563 			vht_cap->cap |=
564 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
565 		else
566 			WARN(1, "RB size of 2K is not supported by this device\n");
567 		break;
568 	case IWL_AMSDU_4K:
569 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
570 		break;
571 	case IWL_AMSDU_8K:
572 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
573 		break;
574 	case IWL_AMSDU_12K:
575 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
576 		break;
577 	default:
578 		break;
579 	}
580 
581 	vht_cap->vht_mcs.rx_mcs_map =
582 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
583 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
584 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
585 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
586 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
587 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
588 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
589 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
590 
591 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
592 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
593 		/* this works because NOT_SUPPORTED == 3 */
594 		vht_cap->vht_mcs.rx_mcs_map |=
595 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
596 	}
597 
598 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
599 
600 	vht_cap->vht_mcs.tx_highest |=
601 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
602 }
603 
604 static const u8 iwl_vendor_caps[] = {
605 	0xdd,			/* vendor element */
606 	0x06,			/* length */
607 	0x00, 0x17, 0x35,	/* Intel OUI */
608 	0x08,			/* type (Intel Capabilities) */
609 	/* followed by 16 bits of capabilities */
610 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
611 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
612 	0x00
613 };
614 
615 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
616 	{
617 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
618 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
619 		.he_cap = {
620 			.has_he = true,
621 			.he_cap_elem = {
622 				.mac_cap_info[0] =
623 					IEEE80211_HE_MAC_CAP0_HTC_HE,
624 				.mac_cap_info[1] =
625 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
626 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
627 				.mac_cap_info[2] =
628 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
629 				.mac_cap_info[3] =
630 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
631 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
632 				.mac_cap_info[4] =
633 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
634 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
635 				.mac_cap_info[5] =
636 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
637 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
638 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
639 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
640 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
641 				.phy_cap_info[1] =
642 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
643 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
644 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
645 				.phy_cap_info[2] =
646 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
647 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
648 				.phy_cap_info[3] =
649 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
650 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
651 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
652 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
653 				.phy_cap_info[4] =
654 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
655 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
656 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
657 				.phy_cap_info[6] =
658 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
659 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
660 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
661 				.phy_cap_info[7] =
662 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
663 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
664 				.phy_cap_info[8] =
665 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
666 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
667 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
668 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
669 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
670 				.phy_cap_info[9] =
671 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
672 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
673 					IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
674 					IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
675 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
676 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
677 				.phy_cap_info[10] =
678 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
679 			},
680 			/*
681 			 * Set default Tx/Rx HE MCS NSS Support field.
682 			 * Indicate support for up to 2 spatial streams and all
683 			 * MCS, without any special cases
684 			 */
685 			.he_mcs_nss_supp = {
686 				.rx_mcs_80 = cpu_to_le16(0xfffa),
687 				.tx_mcs_80 = cpu_to_le16(0xfffa),
688 				.rx_mcs_160 = cpu_to_le16(0xfffa),
689 				.tx_mcs_160 = cpu_to_le16(0xfffa),
690 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
691 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
692 			},
693 			/*
694 			 * Set default PPE thresholds, with PPET16 set to 0,
695 			 * PPET8 set to 7
696 			 */
697 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
698 		},
699 		.eht_cap = {
700 			.has_eht = true,
701 			.eht_cap_elem = {
702 				.mac_cap_info[0] =
703 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL,
704 				.phy_cap_info[0] =
705 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
706 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
707 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
708 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
709 				.phy_cap_info[1] =
710 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
711 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
712 				.phy_cap_info[3] =
713 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK,
714 
715 				.phy_cap_info[4] =
716 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
717 				.phy_cap_info[5] =
718 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
719 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
720 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
721 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
722 					IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF,
723 				.phy_cap_info[8] =
724 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
725 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
726 			},
727 
728 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
729 			 * Rx - note we don't set the only_20mhz, but due to this
730 			 * being a union, it gets set correctly anyway.
731 			 */
732 			.eht_mcs_nss_supp = {
733 				.bw._80 = {
734 					.rx_tx_mcs9_max_nss = 0x22,
735 					.rx_tx_mcs11_max_nss = 0x22,
736 					.rx_tx_mcs13_max_nss = 0x22,
737 				},
738 				.bw._160 = {
739 					.rx_tx_mcs9_max_nss = 0x22,
740 					.rx_tx_mcs11_max_nss = 0x22,
741 					.rx_tx_mcs13_max_nss = 0x22,
742 				},
743 				.bw._320 = {
744 					.rx_tx_mcs9_max_nss = 0x22,
745 					.rx_tx_mcs11_max_nss = 0x22,
746 					.rx_tx_mcs13_max_nss = 0x22,
747 				},
748 			},
749 
750 			/*
751 			 * PPE thresholds for NSS = 2, and RU index bitmap set
752 			 * to 0xc.
753 			 * Note: just for stating what we want, not present in
754 			 * the transmitted data due to not including
755 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
756 			 */
757 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
758 		},
759 	},
760 	{
761 		.types_mask = BIT(NL80211_IFTYPE_AP) |
762 			      BIT(NL80211_IFTYPE_P2P_GO),
763 		.he_cap = {
764 			.has_he = true,
765 			.he_cap_elem = {
766 				.mac_cap_info[0] =
767 					IEEE80211_HE_MAC_CAP0_HTC_HE,
768 				.mac_cap_info[1] =
769 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
770 				.mac_cap_info[3] =
771 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
772 				.phy_cap_info[1] =
773 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
774 				.phy_cap_info[2] =
775 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
776 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
777 				.phy_cap_info[3] =
778 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
779 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
780 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
781 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
782 				.phy_cap_info[6] =
783 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
784 				.phy_cap_info[7] =
785 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
786 				.phy_cap_info[8] =
787 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
788 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
789 				.phy_cap_info[9] =
790 					IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
791 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
792 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
793 			},
794 			/*
795 			 * Set default Tx/Rx HE MCS NSS Support field.
796 			 * Indicate support for up to 2 spatial streams and all
797 			 * MCS, without any special cases
798 			 */
799 			.he_mcs_nss_supp = {
800 				.rx_mcs_80 = cpu_to_le16(0xfffa),
801 				.tx_mcs_80 = cpu_to_le16(0xfffa),
802 				.rx_mcs_160 = cpu_to_le16(0xfffa),
803 				.tx_mcs_160 = cpu_to_le16(0xfffa),
804 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
805 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
806 			},
807 			/*
808 			 * Set default PPE thresholds, with PPET16 set to 0,
809 			 * PPET8 set to 7
810 			 */
811 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
812 		},
813 		.eht_cap = {
814 			.has_eht = true,
815 			.eht_cap_elem = {
816 				.mac_cap_info[0] =
817 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL,
818 				.phy_cap_info[0] =
819 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
820 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
821 				.phy_cap_info[5] =
822 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
823 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
824 			},
825 
826 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
827 			 * Rx - note we don't set the only_20mhz, but due to this
828 			 * being a union, it gets set correctly anyway.
829 			 */
830 			.eht_mcs_nss_supp = {
831 				.bw._80 = {
832 					.rx_tx_mcs9_max_nss = 0x22,
833 					.rx_tx_mcs11_max_nss = 0x22,
834 					.rx_tx_mcs13_max_nss = 0x22,
835 				},
836 				.bw._160 = {
837 					.rx_tx_mcs9_max_nss = 0x22,
838 					.rx_tx_mcs11_max_nss = 0x22,
839 					.rx_tx_mcs13_max_nss = 0x22,
840 				},
841 				.bw._320 = {
842 					.rx_tx_mcs9_max_nss = 0x22,
843 					.rx_tx_mcs11_max_nss = 0x22,
844 					.rx_tx_mcs13_max_nss = 0x22,
845 				},
846 			},
847 
848 			/*
849 			 * PPE thresholds for NSS = 2, and RU index bitmap set
850 			 * to 0xc.
851 			 * Note: just for stating what we want, not present in
852 			 * the transmitted data due to not including
853 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
854 			 */
855 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
856 		},
857 	},
858 };
859 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)860 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
861 				  struct iwl_nvm_data *data,
862 				  struct ieee80211_supported_band *sband,
863 				  u8 tx_chains, u8 rx_chains)
864 {
865 	struct ieee80211_sta_ht_cap ht_cap;
866 	struct ieee80211_sta_vht_cap vht_cap = {};
867 	struct ieee80211_sband_iftype_data *iftype_data;
868 	u16 he_6ghz_capa = 0;
869 	u32 exp;
870 	int i;
871 
872 	if (sband->band != NL80211_BAND_6GHZ)
873 		return;
874 
875 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
876 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
877 			     tx_chains, rx_chains);
878 	WARN_ON(!ht_cap.ht_supported);
879 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
880 	WARN_ON(!vht_cap.vht_supported);
881 
882 	he_6ghz_capa |=
883 		u16_encode_bits(ht_cap.ampdu_density,
884 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
885 	exp = u32_get_bits(vht_cap.cap,
886 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
887 	he_6ghz_capa |=
888 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
889 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
890 	he_6ghz_capa |=
891 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
892 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
893 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
894 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
895 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
896 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
897 
898 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
899 
900 	/* we know it's writable - we set it before ourselves */
901 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
902 	for (i = 0; i < sband->n_iftype_data; i++)
903 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
904 }
905 
906 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)907 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
908 			 struct iwl_nvm_data *data,
909 			 struct ieee80211_supported_band *sband,
910 			 struct ieee80211_sband_iftype_data *iftype_data,
911 			 u8 tx_chains, u8 rx_chains,
912 			 const struct iwl_fw *fw)
913 {
914 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
915 						BIT(NL80211_IFTYPE_P2P_GO));
916 	bool slow_pcie = (!trans->mac_cfg->integrated &&
917 			  trans->info.pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
918 
919 	/* EHT needs WPA3/MFP so cannot do it for fips_enabled */
920 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be ||
921 	    fips_enabled)
922 		iftype_data->eht_cap.has_eht = false;
923 
924 	/* Advertise an A-MPDU exponent extension based on
925 	 * operating band
926 	 */
927 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
928 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
929 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
930 	else if (sband->band != NL80211_BAND_2GHZ)
931 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
932 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
933 	else
934 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
935 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
936 
937 	switch (sband->band) {
938 	case NL80211_BAND_2GHZ:
939 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
940 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
941 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
942 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
943 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
944 		break;
945 	case NL80211_BAND_6GHZ:
946 		if (!trans->reduced_cap_sku &&
947 		    (!trans->cfg->bw_limit || trans->cfg->bw_limit >= 320)) {
948 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
949 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
950 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
951 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
952 		}
953 		fallthrough;
954 	case NL80211_BAND_5GHZ:
955 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
956 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
957 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
958 		break;
959 	default:
960 		WARN_ON(1);
961 		break;
962 	}
963 
964 	if ((tx_chains & rx_chains) == ANT_AB) {
965 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
966 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
967 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
968 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
969 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
970 		if (!is_ap) {
971 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
972 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
973 
974 			if (iftype_data->eht_cap.has_eht) {
975 				/*
976 				 * Set the number of sounding dimensions for each
977 				 * bandwidth to 1 to indicate the maximal supported
978 				 * value of TXVECTOR parameter NUM_STS of 2
979 				 */
980 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
981 
982 				/*
983 				 * Set the MAX NC to 1 to indicate sounding feedback of
984 				 * 2 supported by the beamfomee.
985 				 */
986 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
987 			}
988 		}
989 
990 		if (slow_pcie) {
991 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
992 				&iftype_data->eht_cap.eht_mcs_nss_supp;
993 
994 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
995 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
996 		}
997 	} else {
998 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
999 			&iftype_data->he_cap.he_mcs_nss_supp;
1000 
1001 		if (iftype_data->eht_cap.has_eht) {
1002 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1003 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1004 
1005 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1006 		}
1007 
1008 		if (!is_ap) {
1009 			/* If not 2x2, we need to indicate 1x1 in the
1010 			 * Midamble RX Max NSTS - but not for AP mode
1011 			 */
1012 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1013 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1014 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1015 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1016 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1017 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1018 		}
1019 
1020 		he_mcs_nss_supp->rx_mcs_80 |=
1021 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1022 		he_mcs_nss_supp->tx_mcs_80 |=
1023 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1024 		he_mcs_nss_supp->rx_mcs_160 |=
1025 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1026 		he_mcs_nss_supp->tx_mcs_160 |=
1027 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1028 		he_mcs_nss_supp->rx_mcs_80p80 |=
1029 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1030 		he_mcs_nss_supp->tx_mcs_80p80 |=
1031 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1032 	}
1033 
1034 	/* prior RFs don't have HE, HR RF doesn't have this, later have it */
1035 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) == IWL_CFG_RF_TYPE_HR1 ||
1036 	    CSR_HW_RFID_TYPE(trans->info.hw_rf_id) == IWL_CFG_RF_TYPE_HR2)
1037 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] &=
1038 			~(IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1039 			  IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU);
1040 
1041 	if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1042 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1043 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1044 
1045 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1046 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1047 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1048 
1049 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1050 	    !is_ap) {
1051 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1052 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1053 	}
1054 
1055 	if (!trans->cfg->ht_params.stbc) {
1056 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1057 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1058 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1059 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1060 	}
1061 
1062 	if (trans->step_urm) {
1063 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1064 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1065 	}
1066 
1067 	if (trans->cfg->bw_limit && trans->cfg->bw_limit < 160)
1068 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1069 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1070 
1071 	if ((trans->cfg->bw_limit && trans->cfg->bw_limit < 320) ||
1072 	    trans->reduced_cap_sku) {
1073 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1074 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1075 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1076 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1077 	}
1078 
1079 	if (trans->reduced_cap_sku) {
1080 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1081 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1082 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1083 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1084 	}
1085 }
1086 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1087 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1088 				 struct iwl_nvm_data *data,
1089 				 struct ieee80211_supported_band *sband,
1090 				 u8 tx_chains, u8 rx_chains,
1091 				 const struct iwl_fw *fw)
1092 {
1093 	struct ieee80211_sband_iftype_data *iftype_data;
1094 	int i;
1095 
1096 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1097 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1098 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1099 
1100 	switch (sband->band) {
1101 	case NL80211_BAND_2GHZ:
1102 		iftype_data = data->iftd.low;
1103 		break;
1104 	case NL80211_BAND_5GHZ:
1105 		iftype_data = data->iftd.high;
1106 		break;
1107 	case NL80211_BAND_6GHZ:
1108 		iftype_data = data->iftd.uhb;
1109 		break;
1110 	default:
1111 		WARN_ON(1);
1112 		return;
1113 	}
1114 
1115 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1116 
1117 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1118 					 ARRAY_SIZE(iwl_he_eht_capa));
1119 
1120 	for (i = 0; i < sband->n_iftype_data; i++)
1121 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1122 					 tx_chains, rx_chains, fw);
1123 
1124 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1125 }
1126 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1127 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1128 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1129 {
1130 	struct ieee80211_supported_band *sband;
1131 
1132 	sband = &data->bands[NL80211_BAND_2GHZ];
1133 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1134 			     tx_chains, rx_chains);
1135 
1136 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1137 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1138 				     fw);
1139 
1140 	sband = &data->bands[NL80211_BAND_5GHZ];
1141 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1142 			     tx_chains, rx_chains);
1143 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1144 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1145 				      tx_chains, rx_chains);
1146 
1147 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1148 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1149 				     fw);
1150 
1151 	sband = &data->bands[NL80211_BAND_6GHZ];
1152 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1153 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1154 				     fw);
1155 }
1156 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1157 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1158 static void iwl_init_sbands(struct iwl_trans *trans,
1159 			    struct iwl_nvm_data *data,
1160 			    const void *nvm_ch_flags, u8 tx_chains,
1161 			    u8 rx_chains, u32 sbands_flags, bool v4,
1162 			    const struct iwl_fw *fw)
1163 {
1164 	struct device *dev = trans->dev;
1165 	int n_channels;
1166 	int n_used = 0;
1167 	struct ieee80211_supported_band *sband;
1168 
1169 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1170 					  sbands_flags, v4);
1171 	sband = &data->bands[NL80211_BAND_2GHZ];
1172 	sband->band = NL80211_BAND_2GHZ;
1173 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1174 	sband->n_bitrates = N_RATES_24;
1175 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1176 					  NL80211_BAND_2GHZ);
1177 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1178 			     tx_chains, rx_chains);
1179 
1180 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1181 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1182 				     fw);
1183 
1184 	sband = &data->bands[NL80211_BAND_5GHZ];
1185 	sband->band = NL80211_BAND_5GHZ;
1186 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1187 	sband->n_bitrates = N_RATES_52;
1188 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1189 					  NL80211_BAND_5GHZ);
1190 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1191 			     tx_chains, rx_chains);
1192 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1193 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1194 				      tx_chains, rx_chains);
1195 
1196 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1197 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1198 				     fw);
1199 
1200 	/* 6GHz band. */
1201 	sband = &data->bands[NL80211_BAND_6GHZ];
1202 	sband->band = NL80211_BAND_6GHZ;
1203 	/* use the same rates as 5GHz band */
1204 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1205 	sband->n_bitrates = N_RATES_52;
1206 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1207 					  NL80211_BAND_6GHZ);
1208 
1209 	/*
1210 	 * 6 GHz requires WPA3 which requires MFP, which FW cannot do
1211 	 * when fips_enabled, so don't advertise any 6 GHz channels to
1212 	 * avoid spending time on scanning those channels and perhaps
1213 	 * even finding APs there that cannot be used.
1214 	 */
1215 	if (!fips_enabled && data->sku_cap_11ax_enable &&
1216 	    !iwlwifi_mod_params.disable_11ax)
1217 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1218 				     fw);
1219 	else
1220 		sband->n_channels = 0;
1221 
1222 	if (n_channels != n_used)
1223 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1224 			    n_used, n_channels);
1225 }
1226 
iwl_get_sku(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1227 static int iwl_get_sku(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1228 		       const __le16 *phy_sku)
1229 {
1230 	if (cfg->nvm_type != IWL_NVM_EXT)
1231 		return le16_to_cpup(nvm_sw + SKU);
1232 
1233 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1234 }
1235 
iwl_get_nvm_version(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1236 static int iwl_get_nvm_version(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1237 {
1238 	if (cfg->nvm_type != IWL_NVM_EXT)
1239 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1240 	else
1241 		return le32_to_cpup((const __le32 *)(nvm_sw +
1242 						     NVM_VERSION_EXT_NVM));
1243 }
1244 
iwl_get_radio_cfg(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1245 static int iwl_get_radio_cfg(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw,
1246 			     const __le16 *phy_sku)
1247 {
1248 	if (cfg->nvm_type != IWL_NVM_EXT)
1249 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1250 
1251 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1252 
1253 }
1254 
iwl_get_n_hw_addrs(const struct iwl_rf_cfg * cfg,const __le16 * nvm_sw)1255 static int iwl_get_n_hw_addrs(const struct iwl_rf_cfg *cfg, const __le16 *nvm_sw)
1256 {
1257 	int n_hw_addr;
1258 
1259 	if (cfg->nvm_type != IWL_NVM_EXT)
1260 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1261 
1262 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1263 
1264 	return n_hw_addr & N_HW_ADDR_MASK;
1265 }
1266 
iwl_set_radio_cfg(const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1267 static void iwl_set_radio_cfg(const struct iwl_rf_cfg *cfg,
1268 			      struct iwl_nvm_data *data,
1269 			      u32 radio_cfg)
1270 {
1271 	if (cfg->nvm_type != IWL_NVM_EXT) {
1272 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1273 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1274 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1275 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1276 		return;
1277 	}
1278 
1279 	/* set the radio configuration for family 8000 */
1280 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1281 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1282 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1283 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1284 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1285 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1286 }
1287 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1288 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1289 {
1290 	const u8 *hw_addr;
1291 
1292 	hw_addr = (const u8 *)&mac_addr0;
1293 	dest[0] = hw_addr[3];
1294 	dest[1] = hw_addr[2];
1295 	dest[2] = hw_addr[1];
1296 	dest[3] = hw_addr[0];
1297 
1298 	hw_addr = (const u8 *)&mac_addr1;
1299 	dest[4] = hw_addr[1];
1300 	dest[5] = hw_addr[0];
1301 }
1302 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1303 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1304 					struct iwl_nvm_data *data)
1305 {
1306 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1307 						  CSR_MAC_ADDR0_STRAP(trans)));
1308 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1309 						  CSR_MAC_ADDR1_STRAP(trans)));
1310 
1311 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1312 	/*
1313 	 * If the OEM fused a valid address, use it instead of the one in the
1314 	 * OTP
1315 	 */
1316 	if (is_valid_ether_addr(data->hw_addr))
1317 		return;
1318 
1319 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1320 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1321 
1322 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1323 }
1324 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1325 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1326 					   const struct iwl_rf_cfg *cfg,
1327 					   struct iwl_nvm_data *data,
1328 					   const __le16 *mac_override,
1329 					   const __be16 *nvm_hw)
1330 {
1331 	const u8 *hw_addr;
1332 
1333 	if (mac_override) {
1334 		static const u8 reserved_mac[] = {
1335 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1336 		};
1337 
1338 		hw_addr = (const u8 *)(mac_override +
1339 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1340 
1341 		/*
1342 		 * Store the MAC address from MAO section.
1343 		 * No byte swapping is required in MAO section
1344 		 */
1345 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1346 
1347 		/*
1348 		 * Force the use of the OTP MAC address in case of reserved MAC
1349 		 * address in the NVM, or if address is given but invalid.
1350 		 */
1351 		if (is_valid_ether_addr(data->hw_addr) &&
1352 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1353 			return;
1354 
1355 		IWL_ERR(trans,
1356 			"mac address from nvm override section is not valid\n");
1357 	}
1358 
1359 	if (nvm_hw) {
1360 		/* read the mac address from WFMP registers */
1361 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1362 						WFMP_MAC_ADDR_0));
1363 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1364 						WFMP_MAC_ADDR_1));
1365 
1366 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1367 
1368 		return;
1369 	}
1370 
1371 	IWL_ERR(trans, "mac address is not found\n");
1372 }
1373 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1374 static int iwl_set_hw_address(struct iwl_trans *trans,
1375 			      const struct iwl_rf_cfg *cfg,
1376 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1377 			      const __le16 *mac_override)
1378 {
1379 	const struct iwl_mac_cfg *mac_cfg = trans->mac_cfg;
1380 	if (mac_cfg->base->mac_addr_from_csr) {
1381 		iwl_set_hw_address_from_csr(trans, data);
1382 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1383 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1384 
1385 		/* The byte order is little endian 16 bit, meaning 214365 */
1386 		data->hw_addr[0] = hw_addr[1];
1387 		data->hw_addr[1] = hw_addr[0];
1388 		data->hw_addr[2] = hw_addr[3];
1389 		data->hw_addr[3] = hw_addr[2];
1390 		data->hw_addr[4] = hw_addr[5];
1391 		data->hw_addr[5] = hw_addr[4];
1392 	} else {
1393 		iwl_set_hw_address_family_8000(trans, cfg, data,
1394 					       mac_override, nvm_hw);
1395 	}
1396 
1397 	if (!is_valid_ether_addr(data->hw_addr)) {
1398 		IWL_ERR(trans, "no valid mac address was found\n");
1399 		return -EINVAL;
1400 	}
1401 
1402 	if (!trans->csme_own)
1403 #if defined(__linux__)
1404 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1405 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1406 #elif defined(__FreeBSD__)
1407 		IWL_INFO(trans, "base HW address: %6D, OTP minor version: 0x%x\n",
1408 			 data->hw_addr, ":", iwl_read_prph(trans, REG_OTP_MINOR));
1409 #endif
1410 
1411 	return 0;
1412 }
1413 
1414 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const __be16 * nvm_hw)1415 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1416 			const __be16 *nvm_hw)
1417 {
1418 	/*
1419 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1420 	 * some 7000-family OTPs erroneously allow wide channels in
1421 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1422 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1423 	 * 9.  In those cases, we need to force-disable wide channels
1424 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1425 	 * to use them.
1426 	 */
1427 	if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1428 		/*
1429 		 * Unlike the other sections in the NVM, the hw
1430 		 * section uses big-endian.
1431 		 */
1432 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1433 		u8 sku = (subsystem_id & 0x1e) >> 1;
1434 
1435 		if (sku == 5 || sku == 9) {
1436 			IWL_DEBUG_EEPROM(trans->dev,
1437 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1438 					 subsystem_id, sku);
1439 			return true;
1440 		}
1441 	}
1442 
1443 	return false;
1444 }
1445 
1446 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1447 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1448 		       const struct iwl_mei_nvm *mei_nvm,
1449 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1450 {
1451 	struct iwl_nvm_data *data;
1452 	u32 sbands_flags = 0;
1453 	u8 rx_chains = fw->valid_rx_ant;
1454 	u8 tx_chains = fw->valid_rx_ant;
1455 
1456 	if (cfg->uhb_supported)
1457 		data = kzalloc(struct_size(data, channels,
1458 					   IWL_NVM_NUM_CHANNELS_UHB),
1459 					   GFP_KERNEL);
1460 	else
1461 		data = kzalloc(struct_size(data, channels,
1462 					   IWL_NVM_NUM_CHANNELS_EXT),
1463 					   GFP_KERNEL);
1464 	if (!data)
1465 		return NULL;
1466 
1467 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1468 		     IWL_NVM_NUM_CHANNELS_UHB);
1469 	data->nvm_version = mei_nvm->nvm_version;
1470 
1471 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1472 	if (data->valid_tx_ant)
1473 		tx_chains &= data->valid_tx_ant;
1474 	if (data->valid_rx_ant)
1475 		rx_chains &= data->valid_rx_ant;
1476 	if (tx_ant)
1477 		tx_chains &= tx_ant;
1478 	if (rx_ant)
1479 		rx_chains &= rx_ant;
1480 
1481 	data->sku_cap_mimo_disabled = false;
1482 	data->sku_cap_band_24ghz_enable = true;
1483 	data->sku_cap_band_52ghz_enable = true;
1484 	data->sku_cap_11n_enable =
1485 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1486 	data->sku_cap_11ac_enable = true;
1487 	data->sku_cap_11ax_enable =
1488 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1489 
1490 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1491 
1492 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1493 	/* If no valid mac address was found - bail out */
1494 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1495 		kfree(data);
1496 		return NULL;
1497 	}
1498 
1499 	if (data->lar_enabled &&
1500 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1501 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1502 
1503 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1504 			sbands_flags, true, fw);
1505 
1506 	return data;
1507 }
1508 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1509 
1510 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_rf_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1511 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_rf_cfg *cfg,
1512 		   const struct iwl_fw *fw,
1513 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1514 		   const __le16 *nvm_calib, const __le16 *regulatory,
1515 		   const __le16 *mac_override, const __le16 *phy_sku,
1516 		   u8 tx_chains, u8 rx_chains)
1517 {
1518 	struct iwl_nvm_data *data;
1519 	bool lar_enabled;
1520 	u32 sku, radio_cfg;
1521 	u32 sbands_flags = 0;
1522 	u16 lar_config;
1523 	const __le16 *ch_section;
1524 
1525 	if (cfg->uhb_supported)
1526 		data = kzalloc(struct_size(data, channels,
1527 					   IWL_NVM_NUM_CHANNELS_UHB),
1528 					   GFP_KERNEL);
1529 	else if (cfg->nvm_type != IWL_NVM_EXT)
1530 		data = kzalloc(struct_size(data, channels,
1531 					   IWL_NVM_NUM_CHANNELS),
1532 					   GFP_KERNEL);
1533 	else
1534 		data = kzalloc(struct_size(data, channels,
1535 					   IWL_NVM_NUM_CHANNELS_EXT),
1536 					   GFP_KERNEL);
1537 	if (!data)
1538 		return NULL;
1539 
1540 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1541 
1542 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1543 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1544 	if (data->valid_tx_ant)
1545 		tx_chains &= data->valid_tx_ant;
1546 	if (data->valid_rx_ant)
1547 		rx_chains &= data->valid_rx_ant;
1548 
1549 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1550 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1551 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1552 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1553 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1554 		data->sku_cap_11n_enable = false;
1555 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1556 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1557 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1558 
1559 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1560 
1561 	if (cfg->nvm_type != IWL_NVM_EXT) {
1562 		/* Checking for required sections */
1563 		if (!nvm_calib) {
1564 			IWL_ERR(trans,
1565 				"Can't parse empty Calib NVM sections\n");
1566 			kfree(data);
1567 			return NULL;
1568 		}
1569 
1570 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1571 			     &regulatory[NVM_CHANNELS_SDP] :
1572 			     &nvm_sw[NVM_CHANNELS];
1573 
1574 		lar_enabled = true;
1575 	} else {
1576 		u16 lar_offset = data->nvm_version < 0xE39 ?
1577 				 NVM_LAR_OFFSET_OLD :
1578 				 NVM_LAR_OFFSET;
1579 
1580 		lar_config = le16_to_cpup(regulatory + lar_offset);
1581 		data->lar_enabled = !!(lar_config &
1582 				       NVM_LAR_ENABLED);
1583 		lar_enabled = data->lar_enabled;
1584 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1585 	}
1586 
1587 	/* If no valid mac address was found - bail out */
1588 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1589 		kfree(data);
1590 		return NULL;
1591 	}
1592 
1593 	if (lar_enabled &&
1594 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1595 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1596 
1597 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1598 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1599 
1600 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1601 			sbands_flags, false, fw);
1602 	data->calib_version = 255;
1603 
1604 	return data;
1605 }
1606 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1607 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa)1608 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1609 				       int ch_idx, u16 nvm_flags,
1610 				       struct iwl_reg_capa reg_capa)
1611 {
1612 	u32 flags = NL80211_RRF_NO_HT40;
1613 
1614 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1615 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1616 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1617 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1618 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1619 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1620 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1621 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1622 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1623 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1624 		else
1625 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1626 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1627 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1628 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1629 	}
1630 
1631 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1632 		flags |= NL80211_RRF_NO_80MHZ;
1633 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1634 		flags |= NL80211_RRF_NO_160MHZ;
1635 
1636 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1637 		flags |= NL80211_RRF_NO_IR;
1638 
1639 	if (nvm_flags & NVM_CHANNEL_RADAR)
1640 		flags |= NL80211_RRF_DFS;
1641 
1642 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1643 		flags |= NL80211_RRF_NO_OUTDOOR;
1644 
1645 	if (nvm_flags & NVM_CHANNEL_ALLOW_20MHZ_ACTIVITY &&
1646 	    flags & NL80211_RRF_NO_IR)
1647 		flags |= NL80211_RRF_ALLOW_20MHZ_ACTIVITY;
1648 
1649 	/* Set the GO concurrent flag only in case that NO_IR is set.
1650 	 * Otherwise it is meaningless
1651 	 */
1652 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1653 		if (flags & NL80211_RRF_NO_IR)
1654 			flags |= NL80211_RRF_GO_CONCURRENT;
1655 		if (flags & NL80211_RRF_DFS) {
1656 			flags |= NL80211_RRF_DFS_CONCURRENT;
1657 			/* Our device doesn't set active bit for DFS channels
1658 			 * however, once marked as DFS no-ir is not needed.
1659 			 */
1660 			flags &= ~NL80211_RRF_NO_IR;
1661 		}
1662 	}
1663 
1664 	/* Set the AP type for the UHB case. */
1665 	if (nvm_flags & NVM_CHANNEL_VLP) {
1666 		if (!(nvm_flags & NVM_CHANNEL_VLP_AP_NOT_ALLOWED))
1667 			flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1668 	} else {
1669 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1670 	}
1671 
1672 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1673 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1674 
1675 	/*
1676 	 * reg_capa is per regulatory domain so apply it for every channel
1677 	 */
1678 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1679 		if (!reg_capa.allow_40mhz)
1680 			flags |= NL80211_RRF_NO_HT40;
1681 
1682 		if (!reg_capa.allow_80mhz)
1683 			flags |= NL80211_RRF_NO_80MHZ;
1684 
1685 		if (!reg_capa.allow_160mhz)
1686 			flags |= NL80211_RRF_NO_160MHZ;
1687 
1688 		if (!reg_capa.allow_320mhz)
1689 			flags |= NL80211_RRF_NO_320MHZ;
1690 	}
1691 
1692 	if (reg_capa.disable_11ax)
1693 		flags |= NL80211_RRF_NO_HE;
1694 
1695 	if (reg_capa.disable_11be)
1696 		flags |= NL80211_RRF_NO_EHT;
1697 
1698 	return flags;
1699 }
1700 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1701 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1702 {
1703 	struct iwl_reg_capa reg_capa = {};
1704 
1705 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1706 		reg_capa.allow_40mhz = true;
1707 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1708 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1709 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1710 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1711 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1712 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1713 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1714 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1715 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1716 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1717 	} else {
1718 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1719 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1720 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1721 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1722 	}
1723 	return reg_capa;
1724 }
1725 
1726 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct iwl_trans * trans,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1727 iwl_parse_nvm_mcc_info(struct iwl_trans *trans,
1728 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1729 		       u16 geo_info, u32 cap, u8 resp_ver)
1730 {
1731 	const struct iwl_rf_cfg *cfg = trans->cfg;
1732 	struct device *dev = trans->dev;
1733 	int ch_idx;
1734 	u16 ch_flags;
1735 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1736 	const u16 *nvm_chan;
1737 	struct ieee80211_regdomain *regd, *copy_rd;
1738 	struct ieee80211_reg_rule *rule;
1739 	int center_freq, prev_center_freq = 0;
1740 	int valid_rules = 0;
1741 	bool new_rule;
1742 	int max_num_ch;
1743 	struct iwl_reg_capa reg_capa;
1744 
1745 	if (cfg->uhb_supported) {
1746 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1747 		nvm_chan = iwl_uhb_nvm_channels;
1748 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1749 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1750 		nvm_chan = iwl_ext_nvm_channels;
1751 	} else {
1752 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1753 		nvm_chan = iwl_nvm_channels;
1754 	}
1755 
1756 	if (num_of_ch > max_num_ch) {
1757 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1758 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1759 			      num_of_ch, max_num_ch);
1760 		num_of_ch = max_num_ch;
1761 	}
1762 
1763 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1764 		return ERR_PTR(-EINVAL);
1765 
1766 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1767 		      num_of_ch);
1768 
1769 	/* build a regdomain rule for every valid channel */
1770 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1771 	if (!regd)
1772 		return ERR_PTR(-ENOMEM);
1773 
1774 	/* set alpha2 from FW. */
1775 	regd->alpha2[0] = fw_mcc >> 8;
1776 	regd->alpha2[1] = fw_mcc & 0xff;
1777 
1778 	/* parse regulatory capability flags */
1779 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1780 
1781 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1782 		enum nl80211_band band =
1783 			iwl_nl80211_band_from_channel_idx(ch_idx);
1784 
1785 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1786 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1787 							     band);
1788 		new_rule = false;
1789 
1790 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1791 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1792 						    nvm_chan[ch_idx], ch_flags);
1793 			continue;
1794 		}
1795 
1796 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1797 							     ch_flags,
1798 							     reg_capa);
1799 
1800 		/* we can't continue the same rule */
1801 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1802 		    center_freq - prev_center_freq > 20) {
1803 			valid_rules++;
1804 			new_rule = true;
1805 		}
1806 
1807 		rule = &regd->reg_rules[valid_rules - 1];
1808 
1809 		if (new_rule)
1810 			rule->freq_range.start_freq_khz =
1811 						MHZ_TO_KHZ(center_freq - 10);
1812 
1813 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1814 
1815 		/* this doesn't matter - not used by FW */
1816 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1817 		rule->power_rule.max_eirp =
1818 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1819 
1820 		rule->flags = reg_rule_flags;
1821 
1822 		/* rely on auto-calculation to merge BW of contiguous chans */
1823 		rule->flags |= NL80211_RRF_AUTO_BW;
1824 		rule->freq_range.max_bandwidth_khz = 0;
1825 
1826 		prev_center_freq = center_freq;
1827 		prev_reg_rule_flags = reg_rule_flags;
1828 
1829 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1830 					    nvm_chan[ch_idx], ch_flags);
1831 
1832 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1833 		    band == NL80211_BAND_2GHZ)
1834 			continue;
1835 
1836 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1837 	}
1838 
1839 	/*
1840 	 * Certain firmware versions might report no valid channels
1841 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1842 	 * running. We'll get out of this situation later when the
1843 	 * rfkill is removed and we update the regdomain again, but
1844 	 * since cfg80211 doesn't accept an empty regdomain, add a
1845 	 * dummy (unusable) rule here in this case so we can init.
1846 	 */
1847 	if (!valid_rules) {
1848 		valid_rules = 1;
1849 		rule = &regd->reg_rules[valid_rules - 1];
1850 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1851 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1852 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1853 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1854 		rule->power_rule.max_eirp =
1855 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1856 	}
1857 
1858 	regd->n_reg_rules = valid_rules;
1859 
1860 	/*
1861 	 * Narrow down regdom for unused regulatory rules to prevent hole
1862 	 * between reg rules to wmm rules.
1863 	 */
1864 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1865 			  GFP_KERNEL);
1866 	if (!copy_rd)
1867 		copy_rd = ERR_PTR(-ENOMEM);
1868 
1869 	kfree(regd);
1870 	return copy_rd;
1871 }
1872 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1873 
1874 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1875 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1876 #define MAX_NVM_FILE_LEN	16384
1877 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1878 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1879 		    unsigned int len)
1880 {
1881 #define IWL_4165_DEVICE_ID	0x5501
1882 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1883 
1884 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1885 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1886 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1887 		/* OTP 0x52 bug work around: it's a 1x1 device */
1888 		data[3] = ANT_B | (ANT_B << 4);
1889 }
1890 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1891 
1892 /*
1893  * Reads external NVM from a file into mvm->nvm_sections
1894  *
1895  * HOW TO CREATE THE NVM FILE FORMAT:
1896  * ------------------------------
1897  * 1. create hex file, format:
1898  *      3800 -> header
1899  *      0000 -> header
1900  *      5a40 -> data
1901  *
1902  *   rev - 6 bit (word1)
1903  *   len - 10 bit (word1)
1904  *   id - 4 bit (word2)
1905  *   rsv - 12 bit (word2)
1906  *
1907  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1908  *
1909  * 3. create binary file from the hex file
1910  *
1911  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1912  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1913 int iwl_read_external_nvm(struct iwl_trans *trans,
1914 			  const char *nvm_file_name,
1915 			  struct iwl_nvm_section *nvm_sections)
1916 {
1917 	int ret, section_size;
1918 	u16 section_id;
1919 	const struct firmware *fw_entry;
1920 	const struct {
1921 		__le16 word1;
1922 		__le16 word2;
1923 		u8 data[];
1924 	} *file_sec;
1925 	const u8 *eof;
1926 	u8 *temp;
1927 	int max_section_size;
1928 	const __le32 *dword_buff;
1929 
1930 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1931 #define NVM_WORD2_ID(x) (x >> 12)
1932 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1933 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1934 #define NVM_HEADER_0	(0x2A504C54)
1935 #define NVM_HEADER_1	(0x4E564D2A)
1936 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1937 
1938 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1939 
1940 	/* Maximal size depends on NVM version */
1941 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1942 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1943 	else
1944 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1945 
1946 	/*
1947 	 * Obtain NVM image via request_firmware. Since we already used
1948 	 * request_firmware_nowait() for the firmware binary load and only
1949 	 * get here after that we assume the NVM request can be satisfied
1950 	 * synchronously.
1951 	 */
1952 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1953 	if (ret) {
1954 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1955 			nvm_file_name, ret);
1956 		return ret;
1957 	}
1958 
1959 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1960 		 nvm_file_name, fw_entry->size);
1961 
1962 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1963 		IWL_ERR(trans, "NVM file too large\n");
1964 		ret = -EINVAL;
1965 		goto out;
1966 	}
1967 
1968 	eof = fw_entry->data + fw_entry->size;
1969 	dword_buff = (const __le32 *)fw_entry->data;
1970 
1971 	/* some NVM file will contain a header.
1972 	 * The header is identified by 2 dwords header as follow:
1973 	 * dword[0] = 0x2A504C54
1974 	 * dword[1] = 0x4E564D2A
1975 	 *
1976 	 * This header must be skipped when providing the NVM data to the FW.
1977 	 */
1978 	if (fw_entry->size > NVM_HEADER_SIZE &&
1979 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1980 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1981 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1982 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1983 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1984 			 le32_to_cpu(dword_buff[3]));
1985 
1986 		/* nvm file validation, dword_buff[2] holds the file version */
1987 		if (trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1988 		    trans->info.hw_rev_step == SILICON_C_STEP &&
1989 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1990 			ret = -EFAULT;
1991 			goto out;
1992 		}
1993 	} else {
1994 		file_sec = (const void *)fw_entry->data;
1995 	}
1996 
1997 	while (true) {
1998 		if (file_sec->data > eof) {
1999 			IWL_ERR(trans,
2000 				"ERROR - NVM file too short for section header\n");
2001 			ret = -EINVAL;
2002 			break;
2003 		}
2004 
2005 		/* check for EOF marker */
2006 		if (!file_sec->word1 && !file_sec->word2) {
2007 			ret = 0;
2008 			break;
2009 		}
2010 
2011 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2012 			section_size =
2013 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2014 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2015 		} else {
2016 			section_size = 2 * EXT_NVM_WORD2_LEN(
2017 						le16_to_cpu(file_sec->word2));
2018 			section_id = EXT_NVM_WORD1_ID(
2019 						le16_to_cpu(file_sec->word1));
2020 		}
2021 
2022 		if (section_size > max_section_size) {
2023 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2024 				section_size);
2025 			ret = -EINVAL;
2026 			break;
2027 		}
2028 
2029 		if (!section_size) {
2030 			IWL_ERR(trans, "ERROR - section empty\n");
2031 			ret = -EINVAL;
2032 			break;
2033 		}
2034 
2035 		if (file_sec->data + section_size > eof) {
2036 			IWL_ERR(trans,
2037 				"ERROR - NVM file too short for section (%d bytes)\n",
2038 				section_size);
2039 			ret = -EINVAL;
2040 			break;
2041 		}
2042 
2043 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2044 			 "Invalid NVM section ID %d\n", section_id)) {
2045 			ret = -EINVAL;
2046 			break;
2047 		}
2048 
2049 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2050 		if (!temp) {
2051 			ret = -ENOMEM;
2052 			break;
2053 		}
2054 
2055 		iwl_nvm_fixups(trans->info.hw_id, section_id, temp, section_size);
2056 
2057 		kfree(nvm_sections[section_id].data);
2058 		nvm_sections[section_id].data = temp;
2059 		nvm_sections[section_id].length = section_size;
2060 
2061 		/* advance to the next section */
2062 		file_sec = (const void *)(file_sec->data + section_size);
2063 	}
2064 out:
2065 	release_firmware(fw_entry);
2066 	return ret;
2067 }
2068 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2069 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2070 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2071 				 const struct iwl_fw *fw,
2072 				 u8 set_tx_ant, u8 set_rx_ant)
2073 {
2074 	struct iwl_nvm_get_info cmd = {};
2075 	struct iwl_nvm_data *nvm;
2076 	struct iwl_host_cmd hcmd = {
2077 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2078 		.data = { &cmd, },
2079 		.len = { sizeof(cmd) },
2080 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2081 	};
2082 	int  ret;
2083 	bool empty_otp;
2084 	u32 mac_flags;
2085 	u32 sbands_flags = 0;
2086 	u8 tx_ant;
2087 	u8 rx_ant;
2088 
2089 	/*
2090 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2091 	 * in v3, except for the channel profile part of the
2092 	 * regulatory.  So we can just access the new struct, with the
2093 	 * exception of the latter.
2094 	 */
2095 	struct iwl_nvm_get_info_rsp *rsp;
2096 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2097 	bool v4 = fw_has_api(&fw->ucode_capa,
2098 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2099 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2100 	void *channel_profile;
2101 
2102 	ret = iwl_trans_send_cmd(trans, &hcmd);
2103 	if (ret)
2104 		return ERR_PTR(ret);
2105 
2106 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2107 		 "Invalid payload len in NVM response from FW %d",
2108 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2109 		ret = -EINVAL;
2110 		goto out;
2111 	}
2112 
2113 	rsp = (void *)hcmd.resp_pkt->data;
2114 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2115 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2116 	if (empty_otp)
2117 		IWL_INFO(trans, "OTP is empty\n");
2118 
2119 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2120 	if (!nvm) {
2121 		ret = -ENOMEM;
2122 		goto out;
2123 	}
2124 
2125 	iwl_set_hw_address_from_csr(trans, nvm);
2126 	/* TODO: if platform NVM has MAC address - override it here */
2127 
2128 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2129 		IWL_ERR(trans, "no valid mac address was found\n");
2130 		ret = -EINVAL;
2131 		goto err_free;
2132 	}
2133 
2134 #if defined(__linux__)
2135 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2136 #elif defined(__FreeBSD__)
2137 	IWL_INFO(trans, "base HW address: %6D\n", nvm->hw_addr, ":");
2138 #endif
2139 
2140 	/* Initialize general data */
2141 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2142 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2143 	if (nvm->n_hw_addrs == 0)
2144 		IWL_WARN(trans,
2145 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2146 			 empty_otp);
2147 
2148 	/* Initialize MAC sku data */
2149 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2150 	nvm->sku_cap_11ac_enable =
2151 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2152 	nvm->sku_cap_11n_enable =
2153 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2154 	nvm->sku_cap_11ax_enable =
2155 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2156 	nvm->sku_cap_band_24ghz_enable =
2157 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2158 	nvm->sku_cap_band_52ghz_enable =
2159 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2160 	nvm->sku_cap_mimo_disabled =
2161 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2162 	if (CSR_HW_RFID_TYPE(trans->info.hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2163 		nvm->sku_cap_11be_enable = true;
2164 
2165 	/* Initialize PHY sku data */
2166 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2167 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2168 
2169 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2170 	    fw_has_capa(&fw->ucode_capa,
2171 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2172 		nvm->lar_enabled = true;
2173 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2174 	}
2175 
2176 	rsp_v3 = (void *)rsp;
2177 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2178 			  (void *)rsp_v3->regulatory.channel_profile;
2179 
2180 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2181 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2182 
2183 	if (set_tx_ant)
2184 		tx_ant &= set_tx_ant;
2185 	if (set_rx_ant)
2186 		rx_ant &= set_rx_ant;
2187 
2188 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2189 			sbands_flags, v4, fw);
2190 
2191 	iwl_free_resp(&hcmd);
2192 	return nvm;
2193 
2194 err_free:
2195 	kfree(nvm);
2196 out:
2197 	iwl_free_resp(&hcmd);
2198 	return ERR_PTR(ret);
2199 }
2200 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2201