1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #define EXTERR_CATEGORY EXTERR_CAT_FILEDESC
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/conf.h>
45 #include <sys/exterrvar.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/selinfo.h>
59 #include <sys/poll.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/protosw.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sbuf.h>
66 #include <sys/signalvar.h>
67 #include <sys/kdb.h>
68 #include <sys/smr.h>
69 #include <sys/stat.h>
70 #include <sys/sx.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/unistd.h>
75 #include <sys/user.h>
76 #include <sys/vnode.h>
77 #include <sys/ktrace.h>
78
79 #include <net/vnet.h>
80
81 #include <security/audit/audit.h>
82
83 #include <vm/uma.h>
84 #include <vm/vm.h>
85
86 #include <ddb/ddb.h>
87
88 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
89 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
90 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
91 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
92 "file desc to leader structures");
93 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
94 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
95
96 MALLOC_DECLARE(M_FADVISE);
97
98 static __read_mostly uma_zone_t file_zone;
99 static __read_mostly uma_zone_t filedesc0_zone;
100 __read_mostly uma_zone_t pwd_zone;
101 VFS_SMR_DECLARE;
102
103 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
104 struct thread *td, bool holdleaders, bool audit);
105 static void export_file_to_kinfo(struct file *fp, int fd,
106 cap_rights_t *rightsp, struct kinfo_file *kif,
107 struct filedesc *fdp, int flags);
108 static int fd_first_free(struct filedesc *fdp, int low, int size);
109 static void fdgrowtable(struct filedesc *fdp, int nfd);
110 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
111 static void fdunused(struct filedesc *fdp, int fd);
112 static void fdused(struct filedesc *fdp, int fd);
113 static int fget_unlocked_seq(struct thread *td, int fd,
114 const cap_rights_t *needrightsp, uint8_t *flagsp,
115 struct file **fpp, seqc_t *seqp);
116 static int getmaxfd(struct thread *td);
117 static u_long *filecaps_copy_prep(const struct filecaps *src);
118 static void filecaps_copy_finish(const struct filecaps *src,
119 struct filecaps *dst, u_long *ioctls);
120 static u_long *filecaps_free_prep(struct filecaps *fcaps);
121 static void filecaps_free_finish(u_long *ioctls);
122
123 static struct pwd *pwd_alloc(void);
124
125 /*
126 * Each process has:
127 *
128 * - An array of open file descriptors (fd_ofiles)
129 * - An array of file flags (fd_ofileflags)
130 * - A bitmap recording which descriptors are in use (fd_map)
131 *
132 * A process starts out with NDFILE descriptors. The value of NDFILE has
133 * been selected based the historical limit of 20 open files, and an
134 * assumption that the majority of processes, especially short-lived
135 * processes like shells, will never need more.
136 *
137 * If this initial allocation is exhausted, a larger descriptor table and
138 * map are allocated dynamically, and the pointers in the process's struct
139 * filedesc are updated to point to those. This is repeated every time
140 * the process runs out of file descriptors (provided it hasn't hit its
141 * resource limit).
142 *
143 * Since threads may hold references to individual descriptor table
144 * entries, the tables are never freed. Instead, they are placed on a
145 * linked list and freed only when the struct filedesc is released.
146 */
147 #define NDFILE 20
148 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
149 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
150 #define NDSLOT(x) ((x) / NDENTRIES)
151 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
152 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
153
154 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
155 struct filedesc *_fdp = (fdp); \
156 int _lastfile = fdlastfile_single(_fdp); \
157 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
158 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
159
160 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
161 struct filedesc *_fdp = (fdp); \
162 int _lastfile = fdlastfile_single(_fdp); \
163 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
164 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
165
166 /*
167 * SLIST entry used to keep track of ofiles which must be reclaimed when
168 * the process exits.
169 */
170 struct freetable {
171 struct fdescenttbl *ft_table;
172 SLIST_ENTRY(freetable) ft_next;
173 };
174
175 /*
176 * Initial allocation: a filedesc structure + the head of SLIST used to
177 * keep track of old ofiles + enough space for NDFILE descriptors.
178 */
179
180 struct fdescenttbl0 {
181 int fdt_nfiles;
182 struct filedescent fdt_ofiles[NDFILE];
183 };
184
185 struct filedesc0 {
186 struct filedesc fd_fd;
187 SLIST_HEAD(, freetable) fd_free;
188 struct fdescenttbl0 fd_dfiles;
189 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
190 };
191
192 /*
193 * Descriptor management.
194 */
195 static int __exclusive_cache_line openfiles; /* actual number of open files */
196 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
197
198 /*
199 * If low >= size, just return low. Otherwise find the first zero bit in the
200 * given bitmap, starting at low and not exceeding size - 1. Return size if
201 * not found.
202 */
203 static int
fd_first_free(struct filedesc * fdp,int low,int size)204 fd_first_free(struct filedesc *fdp, int low, int size)
205 {
206 NDSLOTTYPE *map = fdp->fd_map;
207 NDSLOTTYPE mask;
208 int off, maxoff;
209
210 if (low >= size)
211 return (low);
212
213 off = NDSLOT(low);
214 if (low % NDENTRIES) {
215 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
216 if ((mask &= ~map[off]) != 0UL)
217 return (off * NDENTRIES + ffsl(mask) - 1);
218 ++off;
219 }
220 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
221 if (map[off] != ~0UL)
222 return (off * NDENTRIES + ffsl(~map[off]) - 1);
223 return (size);
224 }
225
226 /*
227 * Find the last used fd.
228 *
229 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
230 * Otherwise use fdlastfile.
231 */
232 int
fdlastfile_single(struct filedesc * fdp)233 fdlastfile_single(struct filedesc *fdp)
234 {
235 NDSLOTTYPE *map = fdp->fd_map;
236 int off, minoff;
237
238 off = NDSLOT(fdp->fd_nfiles - 1);
239 for (minoff = NDSLOT(0); off >= minoff; --off)
240 if (map[off] != 0)
241 return (off * NDENTRIES + flsl(map[off]) - 1);
242 return (-1);
243 }
244
245 int
fdlastfile(struct filedesc * fdp)246 fdlastfile(struct filedesc *fdp)
247 {
248
249 FILEDESC_LOCK_ASSERT(fdp);
250 return (fdlastfile_single(fdp));
251 }
252
253 static int
fdisused(struct filedesc * fdp,int fd)254 fdisused(struct filedesc *fdp, int fd)
255 {
256
257 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
258 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
259
260 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
261 }
262
263 /*
264 * Mark a file descriptor as used.
265 */
266 static void
fdused_init(struct filedesc * fdp,int fd)267 fdused_init(struct filedesc *fdp, int fd)
268 {
269
270 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
271
272 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
273 }
274
275 static void
fdused(struct filedesc * fdp,int fd)276 fdused(struct filedesc *fdp, int fd)
277 {
278
279 FILEDESC_XLOCK_ASSERT(fdp);
280
281 fdused_init(fdp, fd);
282 if (fd == fdp->fd_freefile)
283 fdp->fd_freefile++;
284 }
285
286 /*
287 * Mark a file descriptor as unused.
288 */
289 static void
fdunused(struct filedesc * fdp,int fd)290 fdunused(struct filedesc *fdp, int fd)
291 {
292
293 FILEDESC_XLOCK_ASSERT(fdp);
294
295 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
296 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
297 ("fd=%d is still in use", fd));
298
299 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
300 if (fd < fdp->fd_freefile)
301 fdp->fd_freefile = fd;
302 }
303
304 /*
305 * Free a file descriptor.
306 *
307 * Avoid some work if fdp is about to be destroyed.
308 */
309 static inline void
fdefree_last(struct filedescent * fde)310 fdefree_last(struct filedescent *fde)
311 {
312
313 filecaps_free(&fde->fde_caps);
314 }
315
316 static inline void
fdfree(struct filedesc * fdp,int fd)317 fdfree(struct filedesc *fdp, int fd)
318 {
319 struct filedescent *fde;
320
321 FILEDESC_XLOCK_ASSERT(fdp);
322 fde = &fdp->fd_ofiles[fd];
323 #ifdef CAPABILITIES
324 seqc_write_begin(&fde->fde_seqc);
325 #endif
326 fde->fde_file = NULL;
327 #ifdef CAPABILITIES
328 seqc_write_end(&fde->fde_seqc);
329 #endif
330 fdefree_last(fde);
331 fdunused(fdp, fd);
332 }
333
334 /*
335 * System calls on descriptors.
336 */
337 #ifndef _SYS_SYSPROTO_H_
338 struct getdtablesize_args {
339 int dummy;
340 };
341 #endif
342 /* ARGSUSED */
343 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)344 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
345 {
346 #ifdef RACCT
347 uint64_t lim;
348 #endif
349
350 td->td_retval[0] = getmaxfd(td);
351 #ifdef RACCT
352 PROC_LOCK(td->td_proc);
353 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
354 PROC_UNLOCK(td->td_proc);
355 if (lim < td->td_retval[0])
356 td->td_retval[0] = lim;
357 #endif
358 return (0);
359 }
360
361 /*
362 * Duplicate a file descriptor to a particular value.
363 *
364 * Note: keep in mind that a potential race condition exists when closing
365 * descriptors from a shared descriptor table (via rfork).
366 */
367 #ifndef _SYS_SYSPROTO_H_
368 struct dup2_args {
369 u_int from;
370 u_int to;
371 };
372 #endif
373 /* ARGSUSED */
374 int
sys_dup2(struct thread * td,struct dup2_args * uap)375 sys_dup2(struct thread *td, struct dup2_args *uap)
376 {
377
378 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
379 }
380
381 /*
382 * Duplicate a file descriptor.
383 */
384 #ifndef _SYS_SYSPROTO_H_
385 struct dup_args {
386 u_int fd;
387 };
388 #endif
389 /* ARGSUSED */
390 int
sys_dup(struct thread * td,struct dup_args * uap)391 sys_dup(struct thread *td, struct dup_args *uap)
392 {
393
394 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
395 }
396
397 /*
398 * The file control system call.
399 */
400 #ifndef _SYS_SYSPROTO_H_
401 struct fcntl_args {
402 int fd;
403 int cmd;
404 long arg;
405 };
406 #endif
407 /* ARGSUSED */
408 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)409 sys_fcntl(struct thread *td, struct fcntl_args *uap)
410 {
411
412 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
413 }
414
415 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)416 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
417 {
418 struct flock fl;
419 struct __oflock ofl;
420 intptr_t arg1;
421 int error, newcmd;
422
423 error = 0;
424 newcmd = cmd;
425 switch (cmd) {
426 case F_OGETLK:
427 case F_OSETLK:
428 case F_OSETLKW:
429 /*
430 * Convert old flock structure to new.
431 */
432 error = copyin((void *)arg, &ofl, sizeof(ofl));
433 fl.l_start = ofl.l_start;
434 fl.l_len = ofl.l_len;
435 fl.l_pid = ofl.l_pid;
436 fl.l_type = ofl.l_type;
437 fl.l_whence = ofl.l_whence;
438 fl.l_sysid = 0;
439
440 switch (cmd) {
441 case F_OGETLK:
442 newcmd = F_GETLK;
443 break;
444 case F_OSETLK:
445 newcmd = F_SETLK;
446 break;
447 case F_OSETLKW:
448 newcmd = F_SETLKW;
449 break;
450 }
451 arg1 = (intptr_t)&fl;
452 break;
453 case F_GETLK:
454 case F_SETLK:
455 case F_SETLKW:
456 case F_SETLK_REMOTE:
457 error = copyin((void *)arg, &fl, sizeof(fl));
458 arg1 = (intptr_t)&fl;
459 break;
460 default:
461 arg1 = arg;
462 break;
463 }
464 if (error)
465 return (error);
466 error = kern_fcntl(td, fd, newcmd, arg1);
467 if (error)
468 return (error);
469 if (cmd == F_OGETLK) {
470 ofl.l_start = fl.l_start;
471 ofl.l_len = fl.l_len;
472 ofl.l_pid = fl.l_pid;
473 ofl.l_type = fl.l_type;
474 ofl.l_whence = fl.l_whence;
475 error = copyout(&ofl, (void *)arg, sizeof(ofl));
476 } else if (cmd == F_GETLK) {
477 error = copyout(&fl, (void *)arg, sizeof(fl));
478 }
479 return (error);
480 }
481
482 struct flags_trans_elem {
483 u_int f;
484 u_int t;
485 };
486
487 static u_int
flags_trans(const struct flags_trans_elem * ftes,int nitems,u_int from_flags)488 flags_trans(const struct flags_trans_elem *ftes, int nitems, u_int from_flags)
489 {
490 u_int res;
491 int i;
492
493 res = 0;
494 for (i = 0; i < nitems; i++) {
495 if ((from_flags & ftes[i].f) != 0)
496 res |= ftes[i].t;
497 }
498 return (res);
499 }
500
501 static uint8_t
fd_to_fde_flags(int fd_flags)502 fd_to_fde_flags(int fd_flags)
503 {
504 static const struct flags_trans_elem fd_to_fde_flags_s[] = {
505 { .f = FD_CLOEXEC, .t = UF_EXCLOSE },
506 { .f = FD_CLOFORK, .t = UF_FOCLOSE },
507 { .f = FD_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
508 };
509
510 return (flags_trans(fd_to_fde_flags_s, nitems(fd_to_fde_flags_s),
511 fd_flags));
512 }
513
514 static int
fde_to_fd_flags(uint8_t fde_flags)515 fde_to_fd_flags(uint8_t fde_flags)
516 {
517 static const struct flags_trans_elem fde_to_fd_flags_s[] = {
518 { .f = UF_EXCLOSE, .t = FD_CLOEXEC },
519 { .f = UF_FOCLOSE, .t = FD_CLOFORK },
520 { .f = UF_RESOLVE_BENEATH, .t = FD_RESOLVE_BENEATH },
521 };
522
523 return (flags_trans(fde_to_fd_flags_s, nitems(fde_to_fd_flags_s),
524 fde_flags));
525 }
526
527 static uint8_t
fddup_to_fde_flags(int fddup_flags)528 fddup_to_fde_flags(int fddup_flags)
529 {
530 static const struct flags_trans_elem fddup_to_fde_flags_s[] = {
531 { .f = FDDUP_FLAG_CLOEXEC, .t = UF_EXCLOSE },
532 { .f = FDDUP_FLAG_CLOFORK, .t = UF_FOCLOSE },
533 };
534
535 return (flags_trans(fddup_to_fde_flags_s, nitems(fddup_to_fde_flags_s),
536 fddup_flags));
537 }
538
539 static uint8_t
close_range_to_fde_flags(int close_range_flags)540 close_range_to_fde_flags(int close_range_flags)
541 {
542 static const struct flags_trans_elem close_range_to_fde_flags_s[] = {
543 { .f = CLOSE_RANGE_CLOEXEC, .t = UF_EXCLOSE },
544 { .f = CLOSE_RANGE_CLOFORK, .t = UF_FOCLOSE },
545 };
546
547 return (flags_trans(close_range_to_fde_flags_s,
548 nitems(close_range_to_fde_flags_s), close_range_flags));
549 }
550
551 static uint8_t
open_to_fde_flags(int open_flags,bool sticky_orb)552 open_to_fde_flags(int open_flags, bool sticky_orb)
553 {
554 static const struct flags_trans_elem open_to_fde_flags_s[] = {
555 { .f = O_CLOEXEC, .t = UF_EXCLOSE },
556 { .f = O_CLOFORK, .t = UF_FOCLOSE },
557 { .f = O_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
558 };
559 #if defined(__clang__) && __clang_major__ >= 19
560 _Static_assert(open_to_fde_flags_s[nitems(open_to_fde_flags_s) - 1].f ==
561 O_RESOLVE_BENEATH, "O_RESOLVE_BENEATH must be last, for sticky_orb");
562 #endif
563
564 return (flags_trans(open_to_fde_flags_s, nitems(open_to_fde_flags_s) -
565 (sticky_orb ? 0 : 1), open_flags));
566 }
567
568 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)569 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
570 {
571 struct filedesc *fdp;
572 struct flock *flp;
573 struct file *fp, *fp2;
574 struct filedescent *fde;
575 struct proc *p;
576 struct vnode *vp;
577 struct mount *mp;
578 struct kinfo_file *kif;
579 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
580 uint64_t bsize;
581 off_t foffset;
582 int flags;
583
584 error = 0;
585 flg = F_POSIX;
586 p = td->td_proc;
587 fdp = p->p_fd;
588
589 AUDIT_ARG_FD(cmd);
590 AUDIT_ARG_CMD(cmd);
591 switch (cmd) {
592 case F_DUPFD:
593 tmp = arg;
594 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
595 break;
596
597 case F_DUPFD_CLOEXEC:
598 tmp = arg;
599 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
600 break;
601
602 case F_DUPFD_CLOFORK:
603 tmp = arg;
604 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOFORK, fd, tmp);
605 break;
606
607 case F_DUP2FD:
608 tmp = arg;
609 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
610 break;
611
612 case F_DUP2FD_CLOEXEC:
613 tmp = arg;
614 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
615 break;
616
617 case F_GETFD:
618 error = EBADF;
619 FILEDESC_SLOCK(fdp);
620 fde = fdeget_noref(fdp, fd);
621 if (fde != NULL) {
622 td->td_retval[0] = fde_to_fd_flags(fde->fde_flags);
623 error = 0;
624 }
625 FILEDESC_SUNLOCK(fdp);
626 break;
627
628 case F_SETFD:
629 error = EBADF;
630 FILEDESC_XLOCK(fdp);
631 fde = fdeget_noref(fdp, fd);
632 if (fde != NULL) {
633 /*
634 * UF_RESOLVE_BENEATH is sticky and cannot be cleared.
635 */
636 fde->fde_flags = (fde->fde_flags &
637 ~(UF_EXCLOSE | UF_FOCLOSE)) | fd_to_fde_flags(arg);
638 error = 0;
639 }
640 FILEDESC_XUNLOCK(fdp);
641 break;
642
643 case F_GETFL:
644 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
645 if (error != 0)
646 break;
647 td->td_retval[0] = OFLAGS(fp->f_flag);
648 fdrop(fp, td);
649 break;
650
651 case F_SETFL:
652 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
653 if (error != 0)
654 break;
655 if (fp->f_ops == &path_fileops) {
656 fdrop(fp, td);
657 error = EBADF;
658 break;
659 }
660 fsetfl_lock(fp);
661 do {
662 tmp = flg = fp->f_flag;
663 tmp &= ~FCNTLFLAGS;
664 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
665 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
666 got_set = tmp & ~flg;
667 got_cleared = flg & ~tmp;
668 if (((got_set | got_cleared) & FNONBLOCK) != 0) {
669 tmp = fp->f_flag & FNONBLOCK;
670 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
671 if (error != 0)
672 goto revert_flags;
673 }
674 if (((got_set | got_cleared) & FASYNC) != 0) {
675 tmp = fp->f_flag & FASYNC;
676 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
677 if (error != 0)
678 goto revert_nonblock;
679 }
680 fsetfl_unlock(fp);
681 fdrop(fp, td);
682 break;
683 revert_nonblock:
684 if (((got_set | got_cleared) & FNONBLOCK) != 0) {
685 tmp = ~fp->f_flag & FNONBLOCK;
686 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
687 }
688 revert_flags:
689 do {
690 tmp = flg = fp->f_flag;
691 tmp &= ~FCNTLFLAGS;
692 tmp |= got_cleared;
693 tmp &= ~got_set;
694 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
695 fsetfl_unlock(fp);
696 fdrop(fp, td);
697 break;
698
699 case F_GETOWN:
700 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
701 if (error != 0)
702 break;
703 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
704 if (error == 0)
705 td->td_retval[0] = tmp;
706 fdrop(fp, td);
707 break;
708
709 case F_SETOWN:
710 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
711 if (error != 0)
712 break;
713 tmp = arg;
714 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
715 fdrop(fp, td);
716 break;
717
718 case F_SETLK_REMOTE:
719 error = priv_check(td, PRIV_NFS_LOCKD);
720 if (error != 0)
721 return (error);
722 flg = F_REMOTE;
723 goto do_setlk;
724
725 case F_SETLKW:
726 flg |= F_WAIT;
727 /* FALLTHROUGH F_SETLK */
728
729 case F_SETLK:
730 do_setlk:
731 flp = (struct flock *)arg;
732 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
733 error = EINVAL;
734 break;
735 }
736
737 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
738 if (error != 0)
739 break;
740 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
741 error = EBADF;
742 fdrop(fp, td);
743 break;
744 }
745
746 if (flp->l_whence == SEEK_CUR) {
747 foffset = foffset_get(fp);
748 if (foffset < 0 ||
749 (flp->l_start > 0 &&
750 foffset > OFF_MAX - flp->l_start)) {
751 error = EOVERFLOW;
752 fdrop(fp, td);
753 break;
754 }
755 flp->l_start += foffset;
756 }
757
758 vp = fp->f_vnode;
759 switch (flp->l_type) {
760 case F_RDLCK:
761 if ((fp->f_flag & FREAD) == 0) {
762 error = EBADF;
763 break;
764 }
765 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
766 PROC_LOCK(p->p_leader);
767 p->p_leader->p_flag |= P_ADVLOCK;
768 PROC_UNLOCK(p->p_leader);
769 }
770 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
771 flp, flg);
772 break;
773 case F_WRLCK:
774 if ((fp->f_flag & FWRITE) == 0) {
775 error = EBADF;
776 break;
777 }
778 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
779 PROC_LOCK(p->p_leader);
780 p->p_leader->p_flag |= P_ADVLOCK;
781 PROC_UNLOCK(p->p_leader);
782 }
783 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
784 flp, flg);
785 break;
786 case F_UNLCK:
787 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
788 flp, flg);
789 break;
790 case F_UNLCKSYS:
791 if (flg != F_REMOTE) {
792 error = EINVAL;
793 break;
794 }
795 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
796 F_UNLCKSYS, flp, flg);
797 break;
798 default:
799 error = EINVAL;
800 break;
801 }
802 if (error != 0 || flp->l_type == F_UNLCK ||
803 flp->l_type == F_UNLCKSYS) {
804 fdrop(fp, td);
805 break;
806 }
807
808 /*
809 * Check for a race with close.
810 *
811 * The vnode is now advisory locked (or unlocked, but this case
812 * is not really important) as the caller requested.
813 * We had to drop the filedesc lock, so we need to recheck if
814 * the descriptor is still valid, because if it was closed
815 * in the meantime we need to remove advisory lock from the
816 * vnode - close on any descriptor leading to an advisory
817 * locked vnode, removes that lock.
818 * We will return 0 on purpose in that case, as the result of
819 * successful advisory lock might have been externally visible
820 * already. This is fine - effectively we pretend to the caller
821 * that the closing thread was a bit slower and that the
822 * advisory lock succeeded before the close.
823 */
824 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
825 if (error != 0) {
826 fdrop(fp, td);
827 break;
828 }
829 if (fp != fp2) {
830 flp->l_whence = SEEK_SET;
831 flp->l_start = 0;
832 flp->l_len = 0;
833 flp->l_type = F_UNLCK;
834 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
835 F_UNLCK, flp, F_POSIX);
836 }
837 fdrop(fp, td);
838 fdrop(fp2, td);
839 break;
840
841 case F_GETLK:
842 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
843 if (error != 0)
844 break;
845 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
846 error = EBADF;
847 fdrop(fp, td);
848 break;
849 }
850 flp = (struct flock *)arg;
851 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
852 flp->l_type != F_UNLCK) {
853 error = EINVAL;
854 fdrop(fp, td);
855 break;
856 }
857 if (flp->l_whence == SEEK_CUR) {
858 foffset = foffset_get(fp);
859 if ((flp->l_start > 0 &&
860 foffset > OFF_MAX - flp->l_start) ||
861 (flp->l_start < 0 &&
862 foffset < OFF_MIN - flp->l_start)) {
863 error = EOVERFLOW;
864 fdrop(fp, td);
865 break;
866 }
867 flp->l_start += foffset;
868 }
869 vp = fp->f_vnode;
870 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
871 F_POSIX);
872 fdrop(fp, td);
873 break;
874
875 case F_ADD_SEALS:
876 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
877 if (error != 0)
878 break;
879 error = fo_add_seals(fp, arg);
880 fdrop(fp, td);
881 break;
882
883 case F_GET_SEALS:
884 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
885 if (error != 0)
886 break;
887 if (fo_get_seals(fp, &seals) == 0)
888 td->td_retval[0] = seals;
889 else
890 error = EINVAL;
891 fdrop(fp, td);
892 break;
893
894 case F_RDAHEAD:
895 arg = arg ? 128 * 1024: 0;
896 /* FALLTHROUGH */
897 case F_READAHEAD:
898 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
899 if (error != 0)
900 break;
901 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
902 fdrop(fp, td);
903 error = EBADF;
904 break;
905 }
906 vp = fp->f_vnode;
907 if (vp->v_type != VREG) {
908 fdrop(fp, td);
909 error = ENOTTY;
910 break;
911 }
912
913 /*
914 * Exclusive lock synchronizes against f_seqcount reads and
915 * writes in sequential_heuristic().
916 */
917 error = vn_lock(vp, LK_EXCLUSIVE);
918 if (error != 0) {
919 fdrop(fp, td);
920 break;
921 }
922 if (arg >= 0) {
923 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
924 arg = MIN(arg, INT_MAX - bsize + 1);
925 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
926 (arg + bsize - 1) / bsize);
927 atomic_set_int(&fp->f_flag, FRDAHEAD);
928 } else {
929 atomic_clear_int(&fp->f_flag, FRDAHEAD);
930 }
931 VOP_UNLOCK(vp);
932 fdrop(fp, td);
933 break;
934
935 case F_ISUNIONSTACK:
936 /*
937 * Check if the vnode is part of a union stack (either the
938 * "union" flag from mount(2) or unionfs).
939 *
940 * Prior to introduction of this op libc's readdir would call
941 * fstatfs(2), in effect unnecessarily copying kilobytes of
942 * data just to check fs name and a mount flag.
943 *
944 * Fixing the code to handle everything in the kernel instead
945 * is a non-trivial endeavor and has low priority, thus this
946 * horrible kludge facilitates the current behavior in a much
947 * cheaper manner until someone(tm) sorts this out.
948 */
949 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
950 if (error != 0)
951 break;
952 if (fp->f_type != DTYPE_VNODE) {
953 fdrop(fp, td);
954 error = EBADF;
955 break;
956 }
957 vp = fp->f_vnode;
958 /*
959 * Since we don't prevent dooming the vnode even non-null mp
960 * found can become immediately stale. This is tolerable since
961 * mount points are type-stable (providing safe memory access)
962 * and any vfs op on this vnode going forward will return an
963 * error (meaning return value in this case is meaningless).
964 */
965 mp = atomic_load_ptr(&vp->v_mount);
966 if (__predict_false(mp == NULL)) {
967 fdrop(fp, td);
968 error = EBADF;
969 break;
970 }
971 td->td_retval[0] = 0;
972 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
973 mp->mnt_flag & MNT_UNION)
974 td->td_retval[0] = 1;
975 fdrop(fp, td);
976 break;
977
978 case F_KINFO:
979 #ifdef CAPABILITY_MODE
980 if (CAP_TRACING(td))
981 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
982 if (IN_CAPABILITY_MODE(td)) {
983 error = ECAPMODE;
984 break;
985 }
986 #endif
987 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
988 if (error != 0)
989 break;
990 if (kif_sz != sizeof(*kif)) {
991 error = EINVAL;
992 break;
993 }
994 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
995 FILEDESC_SLOCK(fdp);
996 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
997 if (error == 0 && fhold(fp)) {
998 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
999 FILEDESC_SUNLOCK(fdp);
1000 fdrop(fp, td);
1001 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
1002 kif->kf_structsize = sizeof(*kif);
1003 error = copyout(kif, (void *)arg, sizeof(*kif));
1004 } else {
1005 error = EBADF;
1006 }
1007 } else {
1008 FILEDESC_SUNLOCK(fdp);
1009 if (error == 0)
1010 error = EBADF;
1011 }
1012 free(kif, M_TEMP);
1013 break;
1014
1015 default:
1016 if ((cmd & ((1u << F_DUP3FD_SHIFT) - 1)) != F_DUP3FD)
1017 return (EXTERROR(EINVAL, "invalid fcntl cmd"));
1018 /* Handle F_DUP3FD */
1019 flags = (cmd >> F_DUP3FD_SHIFT);
1020 if ((flags & ~(FD_CLOEXEC | FD_CLOFORK)) != 0)
1021 return (EXTERROR(EINVAL, "invalid flags for F_DUP3FD"));
1022 tmp = arg;
1023 error = kern_dup(td, FDDUP_FIXED,
1024 ((flags & FD_CLOEXEC) != 0 ? FDDUP_FLAG_CLOEXEC : 0) |
1025 ((flags & FD_CLOFORK) != 0 ? FDDUP_FLAG_CLOFORK : 0),
1026 fd, tmp);
1027 break;
1028 }
1029 return (error);
1030 }
1031
1032 static int
getmaxfd(struct thread * td)1033 getmaxfd(struct thread *td)
1034 {
1035
1036 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
1037 }
1038
1039 /*
1040 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
1041 */
1042 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)1043 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
1044 {
1045 struct filedesc *fdp;
1046 struct filedescent *oldfde, *newfde;
1047 struct proc *p;
1048 struct file *delfp, *oldfp;
1049 u_long *oioctls, *nioctls;
1050 int error, maxfd;
1051
1052 p = td->td_proc;
1053 fdp = p->p_fd;
1054 oioctls = NULL;
1055
1056 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC | FDDUP_FLAG_CLOFORK)) == 0);
1057 MPASS(mode < FDDUP_LASTMODE);
1058
1059 AUDIT_ARG_FD(old);
1060 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
1061
1062 /*
1063 * Verify we have a valid descriptor to dup from and possibly to
1064 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
1065 * return EINVAL when the new descriptor is out of bounds.
1066 */
1067 if (old < 0)
1068 return (EBADF);
1069 if (new < 0)
1070 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1071 maxfd = getmaxfd(td);
1072 if (new >= maxfd)
1073 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1074
1075 error = EBADF;
1076 FILEDESC_XLOCK(fdp);
1077 if (fget_noref(fdp, old) == NULL)
1078 goto unlock;
1079 if (mode == FDDUP_FIXED && old == new) {
1080 td->td_retval[0] = new;
1081 fdp->fd_ofiles[new].fde_flags |= fddup_to_fde_flags(flags);
1082 error = 0;
1083 goto unlock;
1084 }
1085
1086 oldfde = &fdp->fd_ofiles[old];
1087 oldfp = oldfde->fde_file;
1088 if (!fhold(oldfp))
1089 goto unlock;
1090
1091 /*
1092 * If the caller specified a file descriptor, make sure the file
1093 * table is large enough to hold it, and grab it. Otherwise, just
1094 * allocate a new descriptor the usual way.
1095 */
1096 switch (mode) {
1097 case FDDUP_NORMAL:
1098 case FDDUP_FCNTL:
1099 if ((error = fdalloc(td, new, &new)) != 0) {
1100 fdrop(oldfp, td);
1101 goto unlock;
1102 }
1103 break;
1104 case FDDUP_FIXED:
1105 if (new >= fdp->fd_nfiles) {
1106 /*
1107 * The resource limits are here instead of e.g.
1108 * fdalloc(), because the file descriptor table may be
1109 * shared between processes, so we can't really use
1110 * racct_add()/racct_sub(). Instead of counting the
1111 * number of actually allocated descriptors, just put
1112 * the limit on the size of the file descriptor table.
1113 */
1114 #ifdef RACCT
1115 if (RACCT_ENABLED()) {
1116 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1117 if (error != 0) {
1118 error = EMFILE;
1119 fdrop(oldfp, td);
1120 goto unlock;
1121 }
1122 }
1123 #endif
1124 fdgrowtable_exp(fdp, new + 1);
1125 }
1126 if (!fdisused(fdp, new))
1127 fdused(fdp, new);
1128 break;
1129 default:
1130 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1131 }
1132
1133 KASSERT(old != new, ("new fd is same as old"));
1134
1135 /* Refetch oldfde because the table may have grown and old one freed. */
1136 oldfde = &fdp->fd_ofiles[old];
1137 KASSERT(oldfp == oldfde->fde_file,
1138 ("fdt_ofiles shift from growth observed at fd %d",
1139 old));
1140
1141 newfde = &fdp->fd_ofiles[new];
1142 delfp = newfde->fde_file;
1143
1144 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1145
1146 /*
1147 * Duplicate the source descriptor.
1148 */
1149 #ifdef CAPABILITIES
1150 seqc_write_begin(&newfde->fde_seqc);
1151 #endif
1152 oioctls = filecaps_free_prep(&newfde->fde_caps);
1153 fde_copy(oldfde, newfde);
1154 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1155 nioctls);
1156 newfde->fde_flags = (oldfde->fde_flags & ~(UF_EXCLOSE | UF_FOCLOSE)) |
1157 fddup_to_fde_flags(flags);
1158 #ifdef CAPABILITIES
1159 seqc_write_end(&newfde->fde_seqc);
1160 #endif
1161 td->td_retval[0] = new;
1162
1163 error = 0;
1164
1165 if (delfp != NULL) {
1166 (void) closefp(fdp, new, delfp, td, true, false);
1167 FILEDESC_UNLOCK_ASSERT(fdp);
1168 } else {
1169 unlock:
1170 FILEDESC_XUNLOCK(fdp);
1171 }
1172
1173 filecaps_free_finish(oioctls);
1174 return (error);
1175 }
1176
1177 static void
sigiofree(struct sigio * sigio)1178 sigiofree(struct sigio *sigio)
1179 {
1180 crfree(sigio->sio_ucred);
1181 free(sigio, M_SIGIO);
1182 }
1183
1184 static struct sigio *
funsetown_locked(struct sigio * sigio)1185 funsetown_locked(struct sigio *sigio)
1186 {
1187 struct proc *p;
1188 struct pgrp *pg;
1189
1190 SIGIO_ASSERT_LOCKED();
1191
1192 if (sigio == NULL)
1193 return (NULL);
1194 *sigio->sio_myref = NULL;
1195 if (sigio->sio_pgid < 0) {
1196 pg = sigio->sio_pgrp;
1197 PGRP_LOCK(pg);
1198 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1199 PGRP_UNLOCK(pg);
1200 } else {
1201 p = sigio->sio_proc;
1202 PROC_LOCK(p);
1203 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1204 PROC_UNLOCK(p);
1205 }
1206 return (sigio);
1207 }
1208
1209 /*
1210 * If sigio is on the list associated with a process or process group,
1211 * disable signalling from the device, remove sigio from the list and
1212 * free sigio.
1213 */
1214 void
funsetown(struct sigio ** sigiop)1215 funsetown(struct sigio **sigiop)
1216 {
1217 struct sigio *sigio;
1218
1219 /* Racy check, consumers must provide synchronization. */
1220 if (*sigiop == NULL)
1221 return;
1222
1223 SIGIO_LOCK();
1224 sigio = funsetown_locked(*sigiop);
1225 SIGIO_UNLOCK();
1226 if (sigio != NULL)
1227 sigiofree(sigio);
1228 }
1229
1230 /*
1231 * Free a list of sigio structures. The caller must ensure that new sigio
1232 * structures cannot be added after this point. For process groups this is
1233 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1234 * as an interlock.
1235 */
1236 void
funsetownlst(struct sigiolst * sigiolst)1237 funsetownlst(struct sigiolst *sigiolst)
1238 {
1239 struct proc *p;
1240 struct pgrp *pg;
1241 struct sigio *sigio, *tmp;
1242
1243 /* Racy check. */
1244 sigio = SLIST_FIRST(sigiolst);
1245 if (sigio == NULL)
1246 return;
1247
1248 p = NULL;
1249 pg = NULL;
1250
1251 SIGIO_LOCK();
1252 sigio = SLIST_FIRST(sigiolst);
1253 if (sigio == NULL) {
1254 SIGIO_UNLOCK();
1255 return;
1256 }
1257
1258 /*
1259 * Every entry of the list should belong to a single proc or pgrp.
1260 */
1261 if (sigio->sio_pgid < 0) {
1262 pg = sigio->sio_pgrp;
1263 sx_assert(&proctree_lock, SX_XLOCKED);
1264 PGRP_LOCK(pg);
1265 } else /* if (sigio->sio_pgid > 0) */ {
1266 p = sigio->sio_proc;
1267 PROC_LOCK(p);
1268 KASSERT((p->p_flag & P_WEXIT) != 0,
1269 ("%s: process %p is not exiting", __func__, p));
1270 }
1271
1272 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1273 *sigio->sio_myref = NULL;
1274 if (pg != NULL) {
1275 KASSERT(sigio->sio_pgid < 0,
1276 ("Proc sigio in pgrp sigio list"));
1277 KASSERT(sigio->sio_pgrp == pg,
1278 ("Bogus pgrp in sigio list"));
1279 } else /* if (p != NULL) */ {
1280 KASSERT(sigio->sio_pgid > 0,
1281 ("Pgrp sigio in proc sigio list"));
1282 KASSERT(sigio->sio_proc == p,
1283 ("Bogus proc in sigio list"));
1284 }
1285 }
1286
1287 if (pg != NULL)
1288 PGRP_UNLOCK(pg);
1289 else
1290 PROC_UNLOCK(p);
1291 SIGIO_UNLOCK();
1292
1293 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1294 sigiofree(sigio);
1295 }
1296
1297 /*
1298 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1299 *
1300 * After permission checking, add a sigio structure to the sigio list for
1301 * the process or process group.
1302 */
1303 int
fsetown(pid_t pgid,struct sigio ** sigiop)1304 fsetown(pid_t pgid, struct sigio **sigiop)
1305 {
1306 struct proc *proc;
1307 struct pgrp *pgrp;
1308 struct sigio *osigio, *sigio;
1309 int ret;
1310
1311 if (pgid == 0) {
1312 funsetown(sigiop);
1313 return (0);
1314 }
1315
1316 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1317 sigio->sio_pgid = pgid;
1318 sigio->sio_ucred = crhold(curthread->td_ucred);
1319 sigio->sio_myref = sigiop;
1320
1321 ret = 0;
1322 if (pgid > 0) {
1323 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1324 SIGIO_LOCK();
1325 osigio = funsetown_locked(*sigiop);
1326 if (ret == 0) {
1327 PROC_LOCK(proc);
1328 _PRELE(proc);
1329 if ((proc->p_flag & P_WEXIT) != 0) {
1330 ret = ESRCH;
1331 } else if (proc->p_session !=
1332 curthread->td_proc->p_session) {
1333 /*
1334 * Policy - Don't allow a process to FSETOWN a
1335 * process in another session.
1336 *
1337 * Remove this test to allow maximum flexibility
1338 * or restrict FSETOWN to the current process or
1339 * process group for maximum safety.
1340 */
1341 ret = EPERM;
1342 } else {
1343 sigio->sio_proc = proc;
1344 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1345 sio_pgsigio);
1346 }
1347 PROC_UNLOCK(proc);
1348 }
1349 } else /* if (pgid < 0) */ {
1350 sx_slock(&proctree_lock);
1351 SIGIO_LOCK();
1352 osigio = funsetown_locked(*sigiop);
1353 pgrp = pgfind(-pgid);
1354 if (pgrp == NULL) {
1355 ret = ESRCH;
1356 } else {
1357 if (pgrp->pg_session != curthread->td_proc->p_session) {
1358 /*
1359 * Policy - Don't allow a process to FSETOWN a
1360 * process in another session.
1361 *
1362 * Remove this test to allow maximum flexibility
1363 * or restrict FSETOWN to the current process or
1364 * process group for maximum safety.
1365 */
1366 ret = EPERM;
1367 } else {
1368 sigio->sio_pgrp = pgrp;
1369 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1370 sio_pgsigio);
1371 }
1372 PGRP_UNLOCK(pgrp);
1373 }
1374 sx_sunlock(&proctree_lock);
1375 }
1376 if (ret == 0)
1377 *sigiop = sigio;
1378 SIGIO_UNLOCK();
1379 if (osigio != NULL)
1380 sigiofree(osigio);
1381 return (ret);
1382 }
1383
1384 /*
1385 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1386 */
1387 pid_t
fgetown(struct sigio ** sigiop)1388 fgetown(struct sigio **sigiop)
1389 {
1390 pid_t pgid;
1391
1392 SIGIO_LOCK();
1393 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1394 SIGIO_UNLOCK();
1395 return (pgid);
1396 }
1397
1398 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1399 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1400 bool audit)
1401 {
1402 int error;
1403
1404 FILEDESC_XLOCK_ASSERT(fdp);
1405
1406 /*
1407 * We now hold the fp reference that used to be owned by the
1408 * descriptor array. We have to unlock the FILEDESC *AFTER*
1409 * knote_fdclose to prevent a race of the fd getting opened, a knote
1410 * added, and deleteing a knote for the new fd.
1411 */
1412 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1413 knote_fdclose(td, fd);
1414
1415 if (fp->f_ops->fo_fdclose != NULL)
1416 fp->f_ops->fo_fdclose(fp, fd, td);
1417 FILEDESC_XUNLOCK(fdp);
1418
1419 #ifdef AUDIT
1420 if (AUDITING_TD(td) && audit)
1421 audit_sysclose(td, fd, fp);
1422 #endif
1423 error = closef(fp, td);
1424
1425 /*
1426 * All paths leading up to closefp() will have already removed or
1427 * replaced the fd in the filedesc table, so a restart would not
1428 * operate on the same file.
1429 */
1430 if (error == ERESTART)
1431 error = EINTR;
1432
1433 return (error);
1434 }
1435
1436 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1437 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1438 bool holdleaders, bool audit)
1439 {
1440 int error;
1441
1442 FILEDESC_XLOCK_ASSERT(fdp);
1443
1444 if (holdleaders) {
1445 if (td->td_proc->p_fdtol != NULL) {
1446 /*
1447 * Ask fdfree() to sleep to ensure that all relevant
1448 * process leaders can be traversed in closef().
1449 */
1450 fdp->fd_holdleaderscount++;
1451 } else {
1452 holdleaders = false;
1453 }
1454 }
1455
1456 error = closefp_impl(fdp, fd, fp, td, audit);
1457 if (holdleaders) {
1458 FILEDESC_XLOCK(fdp);
1459 fdp->fd_holdleaderscount--;
1460 if (fdp->fd_holdleaderscount == 0 &&
1461 fdp->fd_holdleaderswakeup != 0) {
1462 fdp->fd_holdleaderswakeup = 0;
1463 wakeup(&fdp->fd_holdleaderscount);
1464 }
1465 FILEDESC_XUNLOCK(fdp);
1466 }
1467 return (error);
1468 }
1469
1470 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1471 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1472 bool holdleaders, bool audit)
1473 {
1474
1475 FILEDESC_XLOCK_ASSERT(fdp);
1476
1477 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1478 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1479 } else {
1480 return (closefp_impl(fdp, fd, fp, td, audit));
1481 }
1482 }
1483
1484 /*
1485 * Close a file descriptor.
1486 */
1487 #ifndef _SYS_SYSPROTO_H_
1488 struct close_args {
1489 int fd;
1490 };
1491 #endif
1492 /* ARGSUSED */
1493 int
sys_close(struct thread * td,struct close_args * uap)1494 sys_close(struct thread *td, struct close_args *uap)
1495 {
1496
1497 return (kern_close(td, uap->fd));
1498 }
1499
1500 int
kern_close(struct thread * td,int fd)1501 kern_close(struct thread *td, int fd)
1502 {
1503 struct filedesc *fdp;
1504 struct file *fp;
1505
1506 fdp = td->td_proc->p_fd;
1507
1508 FILEDESC_XLOCK(fdp);
1509 if ((fp = fget_noref(fdp, fd)) == NULL) {
1510 FILEDESC_XUNLOCK(fdp);
1511 return (EBADF);
1512 }
1513 fdfree(fdp, fd);
1514
1515 /* closefp() drops the FILEDESC lock for us. */
1516 return (closefp(fdp, fd, fp, td, true, true));
1517 }
1518
1519 static int
close_range_flags(struct thread * td,u_int lowfd,u_int highfd,int flags)1520 close_range_flags(struct thread *td, u_int lowfd, u_int highfd, int flags)
1521 {
1522 struct filedesc *fdp;
1523 struct fdescenttbl *fdt;
1524 struct filedescent *fde;
1525 int fd, fde_flags;
1526
1527 fde_flags = close_range_to_fde_flags(flags);
1528 fdp = td->td_proc->p_fd;
1529 FILEDESC_XLOCK(fdp);
1530 fdt = atomic_load_ptr(&fdp->fd_files);
1531 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1532 fd = lowfd;
1533 if (__predict_false(fd > highfd)) {
1534 goto out_locked;
1535 }
1536 for (; fd <= highfd; fd++) {
1537 fde = &fdt->fdt_ofiles[fd];
1538 if (fde->fde_file != NULL)
1539 fde->fde_flags |= fde_flags;
1540 }
1541 out_locked:
1542 FILEDESC_XUNLOCK(fdp);
1543 return (0);
1544 }
1545
1546 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1547 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1548 {
1549 struct filedesc *fdp;
1550 const struct fdescenttbl *fdt;
1551 struct file *fp;
1552 int fd;
1553
1554 fdp = td->td_proc->p_fd;
1555 FILEDESC_XLOCK(fdp);
1556 fdt = atomic_load_ptr(&fdp->fd_files);
1557 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1558 fd = lowfd;
1559 if (__predict_false(fd > highfd)) {
1560 goto out_locked;
1561 }
1562 for (;;) {
1563 fp = fdt->fdt_ofiles[fd].fde_file;
1564 if (fp == NULL) {
1565 if (fd == highfd)
1566 goto out_locked;
1567 } else {
1568 fdfree(fdp, fd);
1569 (void) closefp(fdp, fd, fp, td, true, true);
1570 if (fd == highfd)
1571 goto out_unlocked;
1572 FILEDESC_XLOCK(fdp);
1573 fdt = atomic_load_ptr(&fdp->fd_files);
1574 }
1575 fd++;
1576 }
1577 out_locked:
1578 FILEDESC_XUNLOCK(fdp);
1579 out_unlocked:
1580 return (0);
1581 }
1582
1583 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1584 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1585 {
1586
1587 /*
1588 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1589 * open should not be a usage error. From a close_range() perspective,
1590 * close_range(3, ~0U, 0) in the same scenario should also likely not
1591 * be a usage error as all fd above 3 are in-fact already closed.
1592 */
1593 if (highfd < lowfd) {
1594 return (EINVAL);
1595 }
1596
1597 if ((flags & (CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1598 return (close_range_flags(td, lowfd, highfd, flags));
1599
1600 return (close_range_impl(td, lowfd, highfd));
1601 }
1602
1603 #ifndef _SYS_SYSPROTO_H_
1604 struct close_range_args {
1605 u_int lowfd;
1606 u_int highfd;
1607 int flags;
1608 };
1609 #endif
1610 int
sys_close_range(struct thread * td,struct close_range_args * uap)1611 sys_close_range(struct thread *td, struct close_range_args *uap)
1612 {
1613
1614 AUDIT_ARG_FD(uap->lowfd);
1615 AUDIT_ARG_CMD(uap->highfd);
1616 AUDIT_ARG_FFLAGS(uap->flags);
1617
1618 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1619 return (EINVAL);
1620 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1621 }
1622
1623 #ifdef COMPAT_FREEBSD12
1624 /*
1625 * Close open file descriptors.
1626 */
1627 #ifndef _SYS_SYSPROTO_H_
1628 struct freebsd12_closefrom_args {
1629 int lowfd;
1630 };
1631 #endif
1632 /* ARGSUSED */
1633 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1634 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1635 {
1636 u_int lowfd;
1637
1638 AUDIT_ARG_FD(uap->lowfd);
1639
1640 /*
1641 * Treat negative starting file descriptor values identical to
1642 * closefrom(0) which closes all files.
1643 */
1644 lowfd = MAX(0, uap->lowfd);
1645 return (kern_close_range(td, 0, lowfd, ~0U));
1646 }
1647 #endif /* COMPAT_FREEBSD12 */
1648
1649 #if defined(COMPAT_43)
1650 /*
1651 * Return status information about a file descriptor.
1652 */
1653 #ifndef _SYS_SYSPROTO_H_
1654 struct ofstat_args {
1655 int fd;
1656 struct ostat *sb;
1657 };
1658 #endif
1659 /* ARGSUSED */
1660 int
ofstat(struct thread * td,struct ofstat_args * uap)1661 ofstat(struct thread *td, struct ofstat_args *uap)
1662 {
1663 struct ostat oub;
1664 struct stat ub;
1665 int error;
1666
1667 error = kern_fstat(td, uap->fd, &ub);
1668 if (error == 0) {
1669 cvtstat(&ub, &oub);
1670 error = copyout(&oub, uap->sb, sizeof(oub));
1671 }
1672 return (error);
1673 }
1674 #endif /* COMPAT_43 */
1675
1676 #if defined(COMPAT_FREEBSD11)
1677 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1678 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1679 {
1680 struct stat sb;
1681 struct freebsd11_stat osb;
1682 int error;
1683
1684 error = kern_fstat(td, uap->fd, &sb);
1685 if (error != 0)
1686 return (error);
1687 error = freebsd11_cvtstat(&sb, &osb);
1688 if (error == 0)
1689 error = copyout(&osb, uap->sb, sizeof(osb));
1690 return (error);
1691 }
1692 #endif /* COMPAT_FREEBSD11 */
1693
1694 /*
1695 * Return status information about a file descriptor.
1696 */
1697 #ifndef _SYS_SYSPROTO_H_
1698 struct fstat_args {
1699 int fd;
1700 struct stat *sb;
1701 };
1702 #endif
1703 /* ARGSUSED */
1704 int
sys_fstat(struct thread * td,struct fstat_args * uap)1705 sys_fstat(struct thread *td, struct fstat_args *uap)
1706 {
1707 struct stat ub;
1708 int error;
1709
1710 error = kern_fstat(td, uap->fd, &ub);
1711 if (error == 0)
1712 error = copyout(&ub, uap->sb, sizeof(ub));
1713 return (error);
1714 }
1715
1716 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1717 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1718 {
1719 struct file *fp;
1720 int error;
1721
1722 AUDIT_ARG_FD(fd);
1723
1724 error = fget(td, fd, &cap_fstat_rights, &fp);
1725 if (__predict_false(error != 0))
1726 return (error);
1727
1728 AUDIT_ARG_FILE(td->td_proc, fp);
1729
1730 sbp->st_filerev = 0;
1731 sbp->st_bsdflags = 0;
1732 error = fo_stat(fp, sbp, td->td_ucred);
1733 fdrop(fp, td);
1734 #ifdef __STAT_TIME_T_EXT
1735 sbp->st_atim_ext = 0;
1736 sbp->st_mtim_ext = 0;
1737 sbp->st_ctim_ext = 0;
1738 sbp->st_btim_ext = 0;
1739 #endif
1740 #ifdef KTRACE
1741 if (KTRPOINT(td, KTR_STRUCT))
1742 ktrstat_error(sbp, error);
1743 #endif
1744 return (error);
1745 }
1746
1747 #if defined(COMPAT_FREEBSD11)
1748 /*
1749 * Return status information about a file descriptor.
1750 */
1751 #ifndef _SYS_SYSPROTO_H_
1752 struct freebsd11_nfstat_args {
1753 int fd;
1754 struct nstat *sb;
1755 };
1756 #endif
1757 /* ARGSUSED */
1758 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1759 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1760 {
1761 struct nstat nub;
1762 struct stat ub;
1763 int error;
1764
1765 error = kern_fstat(td, uap->fd, &ub);
1766 if (error != 0)
1767 return (error);
1768 error = freebsd11_cvtnstat(&ub, &nub);
1769 if (error != 0)
1770 error = copyout(&nub, uap->sb, sizeof(nub));
1771 return (error);
1772 }
1773 #endif /* COMPAT_FREEBSD11 */
1774
1775 /*
1776 * Return pathconf information about a file descriptor.
1777 */
1778 #ifndef _SYS_SYSPROTO_H_
1779 struct fpathconf_args {
1780 int fd;
1781 int name;
1782 };
1783 #endif
1784 /* ARGSUSED */
1785 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1786 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1787 {
1788 long value;
1789 int error;
1790
1791 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1792 if (error == 0)
1793 td->td_retval[0] = value;
1794 return (error);
1795 }
1796
1797 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1798 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1799 {
1800 struct file *fp;
1801 struct vnode *vp;
1802 int error;
1803
1804 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1805 if (error != 0)
1806 return (error);
1807
1808 if (name == _PC_ASYNC_IO) {
1809 *valuep = _POSIX_ASYNCHRONOUS_IO;
1810 goto out;
1811 }
1812 vp = fp->f_vnode;
1813 if (vp != NULL) {
1814 vn_lock(vp, LK_SHARED | LK_RETRY);
1815 error = VOP_PATHCONF(vp, name, valuep);
1816 VOP_UNLOCK(vp);
1817 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1818 if (name != _PC_PIPE_BUF) {
1819 error = EINVAL;
1820 } else {
1821 *valuep = PIPE_BUF;
1822 error = 0;
1823 }
1824 } else {
1825 error = EOPNOTSUPP;
1826 }
1827 out:
1828 fdrop(fp, td);
1829 return (error);
1830 }
1831
1832 /*
1833 * Copy filecaps structure allocating memory for ioctls array if needed.
1834 *
1835 * The last parameter indicates whether the fdtable is locked. If it is not and
1836 * ioctls are encountered, copying fails and the caller must lock the table.
1837 *
1838 * Note that if the table was not locked, the caller has to check the relevant
1839 * sequence counter to determine whether the operation was successful.
1840 */
1841 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1842 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1843 {
1844 size_t size;
1845
1846 if (src->fc_ioctls != NULL && !locked)
1847 return (false);
1848 memcpy(dst, src, sizeof(*src));
1849 if (src->fc_ioctls == NULL)
1850 return (true);
1851
1852 KASSERT(src->fc_nioctls > 0,
1853 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1854
1855 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1856 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1857 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1858 return (true);
1859 }
1860
1861 static u_long *
filecaps_copy_prep(const struct filecaps * src)1862 filecaps_copy_prep(const struct filecaps *src)
1863 {
1864 u_long *ioctls;
1865 size_t size;
1866
1867 if (__predict_true(src->fc_ioctls == NULL))
1868 return (NULL);
1869
1870 KASSERT(src->fc_nioctls > 0,
1871 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1872
1873 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1874 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1875 return (ioctls);
1876 }
1877
1878 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1879 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1880 u_long *ioctls)
1881 {
1882 size_t size;
1883
1884 *dst = *src;
1885 if (__predict_true(src->fc_ioctls == NULL)) {
1886 MPASS(ioctls == NULL);
1887 return;
1888 }
1889
1890 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1891 dst->fc_ioctls = ioctls;
1892 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1893 }
1894
1895 /*
1896 * Move filecaps structure to the new place and clear the old place.
1897 */
1898 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1899 filecaps_move(struct filecaps *src, struct filecaps *dst)
1900 {
1901
1902 *dst = *src;
1903 bzero(src, sizeof(*src));
1904 }
1905
1906 /*
1907 * Fill the given filecaps structure with full rights.
1908 */
1909 static void
filecaps_fill(struct filecaps * fcaps)1910 filecaps_fill(struct filecaps *fcaps)
1911 {
1912
1913 CAP_ALL(&fcaps->fc_rights);
1914 fcaps->fc_ioctls = NULL;
1915 fcaps->fc_nioctls = -1;
1916 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1917 }
1918
1919 /*
1920 * Free memory allocated within filecaps structure.
1921 */
1922 static void
filecaps_free_ioctl(struct filecaps * fcaps)1923 filecaps_free_ioctl(struct filecaps *fcaps)
1924 {
1925
1926 free(fcaps->fc_ioctls, M_FILECAPS);
1927 fcaps->fc_ioctls = NULL;
1928 }
1929
1930 void
filecaps_free(struct filecaps * fcaps)1931 filecaps_free(struct filecaps *fcaps)
1932 {
1933
1934 filecaps_free_ioctl(fcaps);
1935 bzero(fcaps, sizeof(*fcaps));
1936 }
1937
1938 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1939 filecaps_free_prep(struct filecaps *fcaps)
1940 {
1941 u_long *ioctls;
1942
1943 ioctls = fcaps->fc_ioctls;
1944 bzero(fcaps, sizeof(*fcaps));
1945 return (ioctls);
1946 }
1947
1948 static void
filecaps_free_finish(u_long * ioctls)1949 filecaps_free_finish(u_long *ioctls)
1950 {
1951
1952 free(ioctls, M_FILECAPS);
1953 }
1954
1955 /*
1956 * Validate the given filecaps structure.
1957 */
1958 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1959 filecaps_validate(const struct filecaps *fcaps, const char *func)
1960 {
1961
1962 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1963 ("%s: invalid rights", func));
1964 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1965 ("%s: invalid fcntls", func));
1966 KASSERT(fcaps->fc_fcntls == 0 ||
1967 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1968 ("%s: fcntls without CAP_FCNTL", func));
1969 /*
1970 * open calls without WANTIOCTLCAPS free caps but leave the counter
1971 */
1972 #if 0
1973 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1974 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1975 ("%s: invalid ioctls", func));
1976 #endif
1977 KASSERT(fcaps->fc_nioctls == 0 ||
1978 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1979 ("%s: ioctls without CAP_IOCTL", func));
1980 }
1981
1982 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1983 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1984 {
1985 int nfd1;
1986
1987 FILEDESC_XLOCK_ASSERT(fdp);
1988
1989 nfd1 = fdp->fd_nfiles * 2;
1990 if (nfd1 < nfd)
1991 nfd1 = nfd;
1992 fdgrowtable(fdp, nfd1);
1993 }
1994
1995 /*
1996 * Grow the file table to accommodate (at least) nfd descriptors.
1997 */
1998 static void
fdgrowtable(struct filedesc * fdp,int nfd)1999 fdgrowtable(struct filedesc *fdp, int nfd)
2000 {
2001 struct filedesc0 *fdp0;
2002 struct freetable *ft;
2003 struct fdescenttbl *ntable;
2004 struct fdescenttbl *otable;
2005 int nnfiles, onfiles;
2006 NDSLOTTYPE *nmap, *omap;
2007
2008 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
2009
2010 /* save old values */
2011 onfiles = fdp->fd_nfiles;
2012 otable = fdp->fd_files;
2013 omap = fdp->fd_map;
2014
2015 /* compute the size of the new table */
2016 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
2017 if (nnfiles <= onfiles)
2018 /* the table is already large enough */
2019 return;
2020
2021 /*
2022 * Allocate a new table. We need enough space for the number of
2023 * entries, file entries themselves and the struct freetable we will use
2024 * when we decommission the table and place it on the freelist.
2025 * We place the struct freetable in the middle so we don't have
2026 * to worry about padding.
2027 */
2028 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
2029 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
2030 sizeof(struct freetable),
2031 M_FILEDESC, M_ZERO | M_WAITOK);
2032 /* copy the old data */
2033 ntable->fdt_nfiles = nnfiles;
2034 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
2035 onfiles * sizeof(ntable->fdt_ofiles[0]));
2036
2037 /*
2038 * Allocate a new map only if the old is not large enough. It will
2039 * grow at a slower rate than the table as it can map more
2040 * entries than the table can hold.
2041 */
2042 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
2043 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
2044 M_ZERO | M_WAITOK);
2045 /* copy over the old data and update the pointer */
2046 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
2047 fdp->fd_map = nmap;
2048 }
2049
2050 /*
2051 * Make sure that ntable is correctly initialized before we replace
2052 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
2053 * data.
2054 */
2055 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
2056
2057 /*
2058 * Free the old file table when not shared by other threads or processes.
2059 * The old file table is considered to be shared when either are true:
2060 * - The process has more than one thread.
2061 * - The file descriptor table has been shared via fdshare().
2062 *
2063 * When shared, the old file table will be placed on a freelist
2064 * which will be processed when the struct filedesc is released.
2065 *
2066 * Note that if onfiles == NDFILE, we're dealing with the original
2067 * static allocation contained within (struct filedesc0 *)fdp,
2068 * which must not be freed.
2069 */
2070 if (onfiles > NDFILE) {
2071 /*
2072 * Note we may be called here from fdinit while allocating a
2073 * table for a new process in which case ->p_fd points
2074 * elsewhere.
2075 */
2076 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
2077 free(otable, M_FILEDESC);
2078 } else {
2079 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
2080 fdp0 = (struct filedesc0 *)fdp;
2081 ft->ft_table = otable;
2082 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
2083 }
2084 }
2085 /*
2086 * The map does not have the same possibility of threads still
2087 * holding references to it. So always free it as long as it
2088 * does not reference the original static allocation.
2089 */
2090 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
2091 free(omap, M_FILEDESC);
2092 }
2093
2094 /*
2095 * Allocate a file descriptor for the process.
2096 */
2097 int
fdalloc(struct thread * td,int minfd,int * result)2098 fdalloc(struct thread *td, int minfd, int *result)
2099 {
2100 struct proc *p = td->td_proc;
2101 struct filedesc *fdp = p->p_fd;
2102 int fd, maxfd, allocfd;
2103 #ifdef RACCT
2104 int error;
2105 #endif
2106
2107 FILEDESC_XLOCK_ASSERT(fdp);
2108
2109 if (fdp->fd_freefile > minfd)
2110 minfd = fdp->fd_freefile;
2111
2112 maxfd = getmaxfd(td);
2113
2114 /*
2115 * Search the bitmap for a free descriptor starting at minfd.
2116 * If none is found, grow the file table.
2117 */
2118 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2119 if (__predict_false(fd >= maxfd))
2120 return (EMFILE);
2121 if (__predict_false(fd >= fdp->fd_nfiles)) {
2122 allocfd = min(fd * 2, maxfd);
2123 #ifdef RACCT
2124 if (RACCT_ENABLED()) {
2125 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2126 if (error != 0)
2127 return (EMFILE);
2128 }
2129 #endif
2130 /*
2131 * fd is already equal to first free descriptor >= minfd, so
2132 * we only need to grow the table and we are done.
2133 */
2134 fdgrowtable_exp(fdp, allocfd);
2135 }
2136
2137 /*
2138 * Perform some sanity checks, then mark the file descriptor as
2139 * used and return it to the caller.
2140 */
2141 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2142 ("invalid descriptor %d", fd));
2143 KASSERT(!fdisused(fdp, fd),
2144 ("fd_first_free() returned non-free descriptor"));
2145 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2146 ("file descriptor isn't free"));
2147 fdused(fdp, fd);
2148 *result = fd;
2149 return (0);
2150 }
2151
2152 /*
2153 * Allocate n file descriptors for the process.
2154 */
2155 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2156 fdallocn(struct thread *td, int minfd, int *fds, int n)
2157 {
2158 struct proc *p = td->td_proc;
2159 struct filedesc *fdp = p->p_fd;
2160 int i;
2161
2162 FILEDESC_XLOCK_ASSERT(fdp);
2163
2164 for (i = 0; i < n; i++)
2165 if (fdalloc(td, 0, &fds[i]) != 0)
2166 break;
2167
2168 if (i < n) {
2169 for (i--; i >= 0; i--)
2170 fdunused(fdp, fds[i]);
2171 return (EMFILE);
2172 }
2173
2174 return (0);
2175 }
2176
2177 /*
2178 * Create a new open file structure and allocate a file descriptor for the
2179 * process that refers to it. We add one reference to the file for the
2180 * descriptor table and one reference for resultfp. This is to prevent us
2181 * being preempted and the entry in the descriptor table closed after we
2182 * release the FILEDESC lock.
2183 */
2184 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2185 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2186 struct filecaps *fcaps)
2187 {
2188 struct file *fp;
2189 int error, fd;
2190
2191 MPASS(resultfp != NULL);
2192 MPASS(resultfd != NULL);
2193
2194 error = _falloc_noinstall(td, &fp, 2);
2195 if (__predict_false(error != 0)) {
2196 return (error);
2197 }
2198
2199 error = finstall_refed(td, fp, &fd, flags, fcaps);
2200 if (__predict_false(error != 0)) {
2201 falloc_abort(td, fp);
2202 return (error);
2203 }
2204
2205 *resultfp = fp;
2206 *resultfd = fd;
2207
2208 return (0);
2209 }
2210
2211 /*
2212 * Create a new open file structure without allocating a file descriptor.
2213 */
2214 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2215 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2216 {
2217 struct file *fp;
2218 int maxuserfiles = maxfiles - (maxfiles / 20);
2219 int openfiles_new;
2220 static struct timeval lastfail;
2221 static int curfail;
2222
2223 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2224 MPASS(n > 0);
2225
2226 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2227 if ((openfiles_new >= maxuserfiles &&
2228 priv_check(td, PRIV_MAXFILES) != 0) ||
2229 openfiles_new >= maxfiles) {
2230 atomic_subtract_int(&openfiles, 1);
2231 if (ppsratecheck(&lastfail, &curfail, 1)) {
2232 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2233 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2234 }
2235 return (ENFILE);
2236 }
2237 fp = uma_zalloc(file_zone, M_WAITOK);
2238 bzero(fp, sizeof(*fp));
2239 refcount_init(&fp->f_count, n);
2240 fp->f_cred = crhold(td->td_ucred);
2241 fp->f_ops = &badfileops;
2242 *resultfp = fp;
2243 return (0);
2244 }
2245
2246 void
falloc_abort(struct thread * td,struct file * fp)2247 falloc_abort(struct thread *td, struct file *fp)
2248 {
2249
2250 /*
2251 * For assertion purposes.
2252 */
2253 refcount_init(&fp->f_count, 0);
2254 _fdrop(fp, td);
2255 }
2256
2257 /*
2258 * Install a file in a file descriptor table.
2259 */
2260 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2261 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2262 struct filecaps *fcaps)
2263 {
2264 struct filedescent *fde;
2265
2266 MPASS(fp != NULL);
2267 if (fcaps != NULL)
2268 filecaps_validate(fcaps, __func__);
2269 FILEDESC_XLOCK_ASSERT(fdp);
2270
2271 fde = &fdp->fd_ofiles[fd];
2272 #ifdef CAPABILITIES
2273 seqc_write_begin(&fde->fde_seqc);
2274 #endif
2275 fde->fde_file = fp;
2276 fde->fde_flags = open_to_fde_flags(flags, true);
2277 if (fcaps != NULL)
2278 filecaps_move(fcaps, &fde->fde_caps);
2279 else
2280 filecaps_fill(&fde->fde_caps);
2281 #ifdef CAPABILITIES
2282 seqc_write_end(&fde->fde_seqc);
2283 #endif
2284 }
2285
2286 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2287 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2288 struct filecaps *fcaps)
2289 {
2290 struct filedesc *fdp = td->td_proc->p_fd;
2291 int error;
2292
2293 MPASS(fd != NULL);
2294
2295 FILEDESC_XLOCK(fdp);
2296 error = fdalloc(td, 0, fd);
2297 if (__predict_true(error == 0)) {
2298 _finstall(fdp, fp, *fd, flags, fcaps);
2299 }
2300 FILEDESC_XUNLOCK(fdp);
2301 return (error);
2302 }
2303
2304 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2305 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2306 struct filecaps *fcaps)
2307 {
2308 int error;
2309
2310 MPASS(fd != NULL);
2311
2312 if (!fhold(fp))
2313 return (EBADF);
2314 error = finstall_refed(td, fp, fd, flags, fcaps);
2315 if (__predict_false(error != 0)) {
2316 fdrop(fp, td);
2317 }
2318 return (error);
2319 }
2320
2321 /*
2322 * Build a new filedesc structure from another.
2323 *
2324 * If fdp is not NULL, return with it shared locked.
2325 */
2326 struct filedesc *
fdinit(void)2327 fdinit(void)
2328 {
2329 struct filedesc0 *newfdp0;
2330 struct filedesc *newfdp;
2331
2332 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2333 newfdp = &newfdp0->fd_fd;
2334
2335 /* Create the file descriptor table. */
2336 FILEDESC_LOCK_INIT(newfdp);
2337 refcount_init(&newfdp->fd_refcnt, 1);
2338 refcount_init(&newfdp->fd_holdcnt, 1);
2339 newfdp->fd_map = newfdp0->fd_dmap;
2340 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2341 newfdp->fd_files->fdt_nfiles = NDFILE;
2342
2343 return (newfdp);
2344 }
2345
2346 /*
2347 * Build a pwddesc structure from another.
2348 * Copy the current, root, and jail root vnode references.
2349 *
2350 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2351 */
2352 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2353 pdinit(struct pwddesc *pdp, bool keeplock)
2354 {
2355 struct pwddesc *newpdp;
2356 struct pwd *newpwd;
2357
2358 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2359
2360 PWDDESC_LOCK_INIT(newpdp);
2361 refcount_init(&newpdp->pd_refcount, 1);
2362 newpdp->pd_cmask = CMASK;
2363
2364 if (pdp == NULL) {
2365 newpwd = pwd_alloc();
2366 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2367 return (newpdp);
2368 }
2369
2370 PWDDESC_XLOCK(pdp);
2371 newpwd = pwd_hold_pwddesc(pdp);
2372 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2373 if (!keeplock)
2374 PWDDESC_XUNLOCK(pdp);
2375 return (newpdp);
2376 }
2377
2378 /*
2379 * Hold either filedesc or pwddesc of the passed process.
2380 *
2381 * The process lock is used to synchronize against the target exiting and
2382 * freeing the data.
2383 *
2384 * Clearing can be ilustrated in 3 steps:
2385 * 1. set the pointer to NULL. Either routine can race against it, hence
2386 * atomic_load_ptr.
2387 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2388 * race to either still see the pointer or find NULL. It is still safe to
2389 * grab a reference as clearing is stalled.
2390 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2391 * guaranteed to see NULL, making it safe to finish clearing
2392 */
2393 static struct filedesc *
fdhold(struct proc * p)2394 fdhold(struct proc *p)
2395 {
2396 struct filedesc *fdp;
2397
2398 PROC_LOCK_ASSERT(p, MA_OWNED);
2399 fdp = atomic_load_ptr(&p->p_fd);
2400 if (fdp != NULL)
2401 refcount_acquire(&fdp->fd_holdcnt);
2402 return (fdp);
2403 }
2404
2405 static struct pwddesc *
pdhold(struct proc * p)2406 pdhold(struct proc *p)
2407 {
2408 struct pwddesc *pdp;
2409
2410 PROC_LOCK_ASSERT(p, MA_OWNED);
2411 pdp = atomic_load_ptr(&p->p_pd);
2412 if (pdp != NULL)
2413 refcount_acquire(&pdp->pd_refcount);
2414 return (pdp);
2415 }
2416
2417 static void
fddrop(struct filedesc * fdp)2418 fddrop(struct filedesc *fdp)
2419 {
2420
2421 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2422 if (refcount_release(&fdp->fd_holdcnt) == 0)
2423 return;
2424 }
2425
2426 FILEDESC_LOCK_DESTROY(fdp);
2427 uma_zfree(filedesc0_zone, fdp);
2428 }
2429
2430 static void
pddrop(struct pwddesc * pdp)2431 pddrop(struct pwddesc *pdp)
2432 {
2433 struct pwd *pwd;
2434
2435 if (refcount_release_if_not_last(&pdp->pd_refcount))
2436 return;
2437
2438 PWDDESC_XLOCK(pdp);
2439 if (refcount_release(&pdp->pd_refcount) == 0) {
2440 PWDDESC_XUNLOCK(pdp);
2441 return;
2442 }
2443 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2444 pwd_set(pdp, NULL);
2445 PWDDESC_XUNLOCK(pdp);
2446 pwd_drop(pwd);
2447
2448 PWDDESC_LOCK_DESTROY(pdp);
2449 free(pdp, M_PWDDESC);
2450 }
2451
2452 /*
2453 * Share a filedesc structure.
2454 */
2455 struct filedesc *
fdshare(struct filedesc * fdp)2456 fdshare(struct filedesc *fdp)
2457 {
2458
2459 refcount_acquire(&fdp->fd_refcnt);
2460 return (fdp);
2461 }
2462
2463 /*
2464 * Share a pwddesc structure.
2465 */
2466 struct pwddesc *
pdshare(struct pwddesc * pdp)2467 pdshare(struct pwddesc *pdp)
2468 {
2469 refcount_acquire(&pdp->pd_refcount);
2470 return (pdp);
2471 }
2472
2473 /*
2474 * Unshare a filedesc structure, if necessary by making a copy
2475 */
2476 void
fdunshare(struct thread * td)2477 fdunshare(struct thread *td)
2478 {
2479 struct filedesc *tmp;
2480 struct proc *p = td->td_proc;
2481
2482 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2483 return;
2484
2485 tmp = fdcopy(p->p_fd, p);
2486 fdescfree(td);
2487 p->p_fd = tmp;
2488 }
2489
2490 /*
2491 * Unshare a pwddesc structure.
2492 */
2493 void
pdunshare(struct thread * td)2494 pdunshare(struct thread *td)
2495 {
2496 struct pwddesc *pdp;
2497 struct proc *p;
2498
2499 p = td->td_proc;
2500 /* Not shared. */
2501 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2502 return;
2503
2504 pdp = pdcopy(p->p_pd);
2505 pdescfree(td);
2506 p->p_pd = pdp;
2507 }
2508
2509 /*
2510 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2511 * this is to ease callers, not catch errors.
2512 */
2513 struct filedesc *
fdcopy(struct filedesc * fdp,struct proc * p1)2514 fdcopy(struct filedesc *fdp, struct proc *p1)
2515 {
2516 struct filedesc *newfdp;
2517 struct filedescent *nfde, *ofde;
2518 struct file *fp;
2519 int i, lastfile;
2520 bool fork_pass;
2521
2522 MPASS(fdp != NULL);
2523
2524 fork_pass = false;
2525 newfdp = fdinit();
2526 FILEDESC_SLOCK(fdp);
2527 for (;;) {
2528 lastfile = fdlastfile(fdp);
2529 if (lastfile < newfdp->fd_nfiles)
2530 break;
2531 FILEDESC_SUNLOCK(fdp);
2532 fdgrowtable(newfdp, lastfile + 1);
2533 FILEDESC_SLOCK(fdp);
2534 }
2535
2536 /*
2537 * Copy all passable descriptors (i.e. not kqueue), and
2538 * prepare to handle copyable but not passable descriptors
2539 * (kqueues).
2540 *
2541 * The pass to handle copying is performed after all passable
2542 * files are installed into the new file descriptor's table,
2543 * since kqueues need all referenced file descriptors already
2544 * valid, including other kqueues. For the same reason the
2545 * copying is done in two passes by itself, first installing
2546 * not fully initialized ('empty') copyable files into the new
2547 * fd table, and then giving the subsystems a second chance to
2548 * really fill the copied file backing structure with the
2549 * content.
2550 */
2551 newfdp->fd_freefile = fdp->fd_freefile;
2552 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2553 const struct fileops *ops;
2554
2555 ops = ofde->fde_file->f_ops;
2556 fp = NULL;
2557 if ((ops->fo_flags & DFLAG_FORK) != 0 &&
2558 (ofde->fde_flags & UF_FOCLOSE) == 0) {
2559 if (ops->fo_fork(newfdp, ofde->fde_file, &fp, p1,
2560 curthread) != 0)
2561 continue;
2562 fork_pass = true;
2563 } else if ((ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2564 (ofde->fde_flags & UF_FOCLOSE) != 0 ||
2565 !fhold(ofde->fde_file)) {
2566 if (newfdp->fd_freefile == fdp->fd_freefile)
2567 newfdp->fd_freefile = i;
2568 continue;
2569 }
2570 nfde = &newfdp->fd_ofiles[i];
2571 *nfde = *ofde;
2572 if (fp != NULL)
2573 nfde->fde_file = fp;
2574 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2575 fdused_init(newfdp, i);
2576 }
2577 MPASS(newfdp->fd_freefile != -1);
2578 FILEDESC_SUNLOCK(fdp);
2579
2580 /*
2581 * Now handle copying kqueues, since all fds, including
2582 * kqueues, are in place.
2583 */
2584 if (__predict_false(fork_pass)) {
2585 FILEDESC_FOREACH_FDE(newfdp, i, nfde) {
2586 const struct fileops *ops;
2587
2588 ops = nfde->fde_file->f_ops;
2589 if ((ops->fo_flags & DFLAG_FORK) == 0 ||
2590 nfde->fde_file == NULL)
2591 continue;
2592 ops->fo_fork(newfdp, NULL, &nfde->fde_file, p1,
2593 curthread);
2594 }
2595 }
2596 return (newfdp);
2597 }
2598
2599 /*
2600 * Copy a pwddesc structure.
2601 */
2602 struct pwddesc *
pdcopy(struct pwddesc * pdp)2603 pdcopy(struct pwddesc *pdp)
2604 {
2605 struct pwddesc *newpdp;
2606
2607 MPASS(pdp != NULL);
2608
2609 newpdp = pdinit(pdp, true);
2610 newpdp->pd_cmask = pdp->pd_cmask;
2611 PWDDESC_XUNLOCK(pdp);
2612 return (newpdp);
2613 }
2614
2615 /*
2616 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2617 * one of processes using it exits) and the table used to be shared.
2618 */
2619 static void
fdclearlocks(struct thread * td)2620 fdclearlocks(struct thread *td)
2621 {
2622 struct filedesc *fdp;
2623 struct filedesc_to_leader *fdtol;
2624 struct flock lf;
2625 struct file *fp;
2626 struct proc *p;
2627 struct vnode *vp;
2628 int i;
2629
2630 p = td->td_proc;
2631 fdp = p->p_fd;
2632 fdtol = p->p_fdtol;
2633 MPASS(fdtol != NULL);
2634
2635 FILEDESC_XLOCK(fdp);
2636 KASSERT(fdtol->fdl_refcount > 0,
2637 ("filedesc_to_refcount botch: fdl_refcount=%d",
2638 fdtol->fdl_refcount));
2639 if (fdtol->fdl_refcount == 1 &&
2640 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2641 FILEDESC_FOREACH_FP(fdp, i, fp) {
2642 if (fp->f_type != DTYPE_VNODE ||
2643 !fhold(fp))
2644 continue;
2645 FILEDESC_XUNLOCK(fdp);
2646 lf.l_whence = SEEK_SET;
2647 lf.l_start = 0;
2648 lf.l_len = 0;
2649 lf.l_type = F_UNLCK;
2650 vp = fp->f_vnode;
2651 (void) VOP_ADVLOCK(vp,
2652 (caddr_t)p->p_leader, F_UNLCK,
2653 &lf, F_POSIX);
2654 FILEDESC_XLOCK(fdp);
2655 fdrop(fp, td);
2656 }
2657 }
2658 retry:
2659 if (fdtol->fdl_refcount == 1) {
2660 if (fdp->fd_holdleaderscount > 0 &&
2661 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2662 /*
2663 * close() or kern_dup() has cleared a reference
2664 * in a shared file descriptor table.
2665 */
2666 fdp->fd_holdleaderswakeup = 1;
2667 sx_sleep(&fdp->fd_holdleaderscount,
2668 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2669 goto retry;
2670 }
2671 if (fdtol->fdl_holdcount > 0) {
2672 /*
2673 * Ensure that fdtol->fdl_leader remains
2674 * valid in closef().
2675 */
2676 fdtol->fdl_wakeup = 1;
2677 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2678 "fdlhold", 0);
2679 goto retry;
2680 }
2681 }
2682 fdtol->fdl_refcount--;
2683 if (fdtol->fdl_refcount == 0 &&
2684 fdtol->fdl_holdcount == 0) {
2685 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2686 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2687 } else
2688 fdtol = NULL;
2689 p->p_fdtol = NULL;
2690 FILEDESC_XUNLOCK(fdp);
2691 if (fdtol != NULL)
2692 free(fdtol, M_FILEDESC_TO_LEADER);
2693 }
2694
2695 /*
2696 * Release a filedesc structure.
2697 */
2698 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2699 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2700 {
2701 struct filedesc0 *fdp0;
2702 struct freetable *ft, *tft;
2703 struct filedescent *fde;
2704 struct file *fp;
2705 int i;
2706
2707 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2708 ("%s: fd table %p carries references", __func__, fdp));
2709
2710 /*
2711 * Serialize with threads iterating over the table, if any.
2712 */
2713 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2714 FILEDESC_XLOCK(fdp);
2715 FILEDESC_XUNLOCK(fdp);
2716 }
2717
2718 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2719 fp = fde->fde_file;
2720 fdefree_last(fde);
2721 (void) closef(fp, td);
2722 }
2723
2724 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2725 free(fdp->fd_map, M_FILEDESC);
2726 if (fdp->fd_nfiles > NDFILE)
2727 free(fdp->fd_files, M_FILEDESC);
2728
2729 fdp0 = (struct filedesc0 *)fdp;
2730 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2731 free(ft->ft_table, M_FILEDESC);
2732
2733 fddrop(fdp);
2734 }
2735
2736 void
fdescfree(struct thread * td)2737 fdescfree(struct thread *td)
2738 {
2739 struct proc *p;
2740 struct filedesc *fdp;
2741
2742 p = td->td_proc;
2743 fdp = p->p_fd;
2744 MPASS(fdp != NULL);
2745
2746 #ifdef RACCT
2747 if (RACCT_ENABLED())
2748 racct_set_unlocked(p, RACCT_NOFILE, 0);
2749 #endif
2750
2751 if (p->p_fdtol != NULL)
2752 fdclearlocks(td);
2753
2754 /*
2755 * Check fdhold for an explanation.
2756 */
2757 atomic_store_ptr(&p->p_fd, NULL);
2758 atomic_thread_fence_seq_cst();
2759 PROC_WAIT_UNLOCKED(p);
2760
2761 if (refcount_release(&fdp->fd_refcnt) == 0)
2762 return;
2763
2764 fdescfree_fds(td, fdp);
2765 }
2766
2767 void
pdescfree(struct thread * td)2768 pdescfree(struct thread *td)
2769 {
2770 struct proc *p;
2771 struct pwddesc *pdp;
2772
2773 p = td->td_proc;
2774 pdp = p->p_pd;
2775 MPASS(pdp != NULL);
2776
2777 /*
2778 * Check pdhold for an explanation.
2779 */
2780 atomic_store_ptr(&p->p_pd, NULL);
2781 atomic_thread_fence_seq_cst();
2782 PROC_WAIT_UNLOCKED(p);
2783
2784 pddrop(pdp);
2785 }
2786
2787 /*
2788 * For setugid programs, we don't want to people to use that setugidness
2789 * to generate error messages which write to a file which otherwise would
2790 * otherwise be off-limits to the process. We check for filesystems where
2791 * the vnode can change out from under us after execve (like [lin]procfs).
2792 *
2793 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2794 * sufficient. We also don't check for setugidness since we know we are.
2795 */
2796 static bool
is_unsafe(struct file * fp)2797 is_unsafe(struct file *fp)
2798 {
2799 struct vnode *vp;
2800
2801 if (fp->f_type != DTYPE_VNODE)
2802 return (false);
2803
2804 vp = fp->f_vnode;
2805 return ((vp->v_vflag & VV_PROCDEP) != 0);
2806 }
2807
2808 /*
2809 * Make this setguid thing safe, if at all possible.
2810 */
2811 void
fdsetugidsafety(struct thread * td)2812 fdsetugidsafety(struct thread *td)
2813 {
2814 struct filedesc *fdp;
2815 struct file *fp;
2816 int i;
2817
2818 fdp = td->td_proc->p_fd;
2819 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2820 ("the fdtable should not be shared"));
2821 MPASS(fdp->fd_nfiles >= 3);
2822 for (i = 0; i <= 2; i++) {
2823 fp = fdp->fd_ofiles[i].fde_file;
2824 if (fp != NULL && is_unsafe(fp)) {
2825 FILEDESC_XLOCK(fdp);
2826 knote_fdclose(td, i);
2827 /*
2828 * NULL-out descriptor prior to close to avoid
2829 * a race while close blocks.
2830 */
2831 fdfree(fdp, i);
2832 FILEDESC_XUNLOCK(fdp);
2833 (void) closef(fp, td);
2834 }
2835 }
2836 }
2837
2838 /*
2839 * If a specific file object occupies a specific file descriptor, close the
2840 * file descriptor entry and drop a reference on the file object. This is a
2841 * convenience function to handle a subsequent error in a function that calls
2842 * falloc() that handles the race that another thread might have closed the
2843 * file descriptor out from under the thread creating the file object.
2844 */
2845 void
fdclose(struct thread * td,struct file * fp,int idx)2846 fdclose(struct thread *td, struct file *fp, int idx)
2847 {
2848 struct filedesc *fdp = td->td_proc->p_fd;
2849
2850 FILEDESC_XLOCK(fdp);
2851 if (fdp->fd_ofiles[idx].fde_file == fp) {
2852 fdfree(fdp, idx);
2853 FILEDESC_XUNLOCK(fdp);
2854 fdrop(fp, td);
2855 } else
2856 FILEDESC_XUNLOCK(fdp);
2857 }
2858
2859 /*
2860 * Close any files on exec?
2861 */
2862 void
fdcloseexec(struct thread * td)2863 fdcloseexec(struct thread *td)
2864 {
2865 struct filedesc *fdp;
2866 struct filedescent *fde;
2867 struct file *fp;
2868 int i;
2869
2870 fdp = td->td_proc->p_fd;
2871 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2872 ("the fdtable should not be shared"));
2873 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2874 fp = fde->fde_file;
2875 if (fp->f_type == DTYPE_MQUEUE ||
2876 (fde->fde_flags & UF_EXCLOSE)) {
2877 FILEDESC_XLOCK(fdp);
2878 fdfree(fdp, i);
2879 (void) closefp(fdp, i, fp, td, false, false);
2880 FILEDESC_UNLOCK_ASSERT(fdp);
2881 } else if (fde->fde_flags & UF_FOCLOSE) {
2882 /*
2883 * https://austingroupbugs.net/view.php?id=1851
2884 * FD_CLOFORK should not be preserved across exec
2885 */
2886 fde->fde_flags &= ~UF_FOCLOSE;
2887 }
2888 }
2889 }
2890
2891 /*
2892 * It is unsafe for set[ug]id processes to be started with file
2893 * descriptors 0..2 closed, as these descriptors are given implicit
2894 * significance in the Standard C library. fdcheckstd() will create a
2895 * descriptor referencing /dev/null for each of stdin, stdout, and
2896 * stderr that is not already open.
2897 */
2898 int
fdcheckstd(struct thread * td)2899 fdcheckstd(struct thread *td)
2900 {
2901 struct filedesc *fdp;
2902 register_t save;
2903 int i, error, devnull;
2904
2905 fdp = td->td_proc->p_fd;
2906 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2907 ("the fdtable should not be shared"));
2908 MPASS(fdp->fd_nfiles >= 3);
2909 devnull = -1;
2910 for (i = 0; i <= 2; i++) {
2911 if (fdp->fd_ofiles[i].fde_file != NULL)
2912 continue;
2913
2914 save = td->td_retval[0];
2915 if (devnull != -1) {
2916 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2917 } else {
2918 error = kern_openat(td, AT_FDCWD, "/dev/null",
2919 UIO_SYSSPACE, O_RDWR, 0);
2920 if (error == 0) {
2921 devnull = td->td_retval[0];
2922 KASSERT(devnull == i, ("we didn't get our fd"));
2923 }
2924 }
2925 td->td_retval[0] = save;
2926 if (error != 0)
2927 return (error);
2928 }
2929 return (0);
2930 }
2931
2932 /*
2933 * Internal form of close. Decrement reference count on file structure.
2934 * Note: td may be NULL when closing a file that was being passed in a
2935 * message.
2936 */
2937 int
closef(struct file * fp,struct thread * td)2938 closef(struct file *fp, struct thread *td)
2939 {
2940 struct vnode *vp;
2941 struct flock lf;
2942 struct filedesc_to_leader *fdtol;
2943 struct filedesc *fdp;
2944
2945 MPASS(td != NULL);
2946
2947 /*
2948 * POSIX record locking dictates that any close releases ALL
2949 * locks owned by this process. This is handled by setting
2950 * a flag in the unlock to free ONLY locks obeying POSIX
2951 * semantics, and not to free BSD-style file locks.
2952 * If the descriptor was in a message, POSIX-style locks
2953 * aren't passed with the descriptor, and the thread pointer
2954 * will be NULL. Callers should be careful only to pass a
2955 * NULL thread pointer when there really is no owning
2956 * context that might have locks, or the locks will be
2957 * leaked.
2958 */
2959 if (fp->f_type == DTYPE_VNODE) {
2960 vp = fp->f_vnode;
2961 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2962 lf.l_whence = SEEK_SET;
2963 lf.l_start = 0;
2964 lf.l_len = 0;
2965 lf.l_type = F_UNLCK;
2966 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2967 F_UNLCK, &lf, F_POSIX);
2968 }
2969 fdtol = td->td_proc->p_fdtol;
2970 if (fdtol != NULL) {
2971 /*
2972 * Handle special case where file descriptor table is
2973 * shared between multiple process leaders.
2974 */
2975 fdp = td->td_proc->p_fd;
2976 FILEDESC_XLOCK(fdp);
2977 for (fdtol = fdtol->fdl_next;
2978 fdtol != td->td_proc->p_fdtol;
2979 fdtol = fdtol->fdl_next) {
2980 if ((fdtol->fdl_leader->p_flag &
2981 P_ADVLOCK) == 0)
2982 continue;
2983 fdtol->fdl_holdcount++;
2984 FILEDESC_XUNLOCK(fdp);
2985 lf.l_whence = SEEK_SET;
2986 lf.l_start = 0;
2987 lf.l_len = 0;
2988 lf.l_type = F_UNLCK;
2989 vp = fp->f_vnode;
2990 (void) VOP_ADVLOCK(vp,
2991 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2992 F_POSIX);
2993 FILEDESC_XLOCK(fdp);
2994 fdtol->fdl_holdcount--;
2995 if (fdtol->fdl_holdcount == 0 &&
2996 fdtol->fdl_wakeup != 0) {
2997 fdtol->fdl_wakeup = 0;
2998 wakeup(fdtol);
2999 }
3000 }
3001 FILEDESC_XUNLOCK(fdp);
3002 }
3003 }
3004 return (fdrop_close(fp, td));
3005 }
3006
3007 /*
3008 * Hack for file descriptor passing code.
3009 */
3010 void
closef_nothread(struct file * fp)3011 closef_nothread(struct file *fp)
3012 {
3013
3014 fdrop(fp, NULL);
3015 }
3016
3017 /*
3018 * Initialize the file pointer with the specified properties.
3019 *
3020 * The ops are set with release semantics to be certain that the flags, type,
3021 * and data are visible when ops is. This is to prevent ops methods from being
3022 * called with bad data.
3023 */
3024 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)3025 finit(struct file *fp, u_int flag, short type, void *data,
3026 const struct fileops *ops)
3027 {
3028 fp->f_data = data;
3029 fp->f_flag = flag;
3030 fp->f_type = type;
3031 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
3032 }
3033
3034 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)3035 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
3036 {
3037 fp->f_seqcount[UIO_READ] = 1;
3038 fp->f_seqcount[UIO_WRITE] = 1;
3039 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
3040 data, ops);
3041 }
3042
3043 int
fget_cap_noref(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)3044 fget_cap_noref(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3045 struct file **fpp, struct filecaps *havecapsp)
3046 {
3047 struct filedescent *fde;
3048 int error;
3049
3050 FILEDESC_LOCK_ASSERT(fdp);
3051
3052 *fpp = NULL;
3053 fde = fdeget_noref(fdp, fd);
3054 if (fde == NULL) {
3055 error = EBADF;
3056 goto out;
3057 }
3058
3059 #ifdef CAPABILITIES
3060 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
3061 if (error != 0)
3062 goto out;
3063 #endif
3064
3065 if (havecapsp != NULL)
3066 filecaps_copy(&fde->fde_caps, havecapsp, true);
3067
3068 *fpp = fde->fde_file;
3069
3070 error = 0;
3071 out:
3072 return (error);
3073 }
3074
3075 #ifdef CAPABILITIES
3076 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3077 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3078 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3079 {
3080 struct filedesc *fdp = td->td_proc->p_fd;
3081 int error;
3082 struct file *fp;
3083 seqc_t seq;
3084
3085 *fpp = NULL;
3086 for (;;) {
3087 error = fget_unlocked_seq(td, fd, needrightsp, flagsp, &fp,
3088 &seq);
3089 if (error != 0)
3090 return (error);
3091
3092 if (havecapsp != NULL) {
3093 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
3094 havecapsp, false)) {
3095 fdrop(fp, td);
3096 goto get_locked;
3097 }
3098 }
3099
3100 if (!fd_modified(fdp, fd, seq))
3101 break;
3102 fdrop(fp, td);
3103 }
3104
3105 *fpp = fp;
3106 return (0);
3107
3108 get_locked:
3109 FILEDESC_SLOCK(fdp);
3110 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
3111 if (error == 0 && !fhold(*fpp))
3112 error = EBADF;
3113 FILEDESC_SUNLOCK(fdp);
3114 return (error);
3115 }
3116 #else
3117 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3118 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3119 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3120 {
3121 int error;
3122 error = fget_unlocked_flags(td, fd, needrightsp, flagsp, fpp);
3123 if (havecapsp != NULL && error == 0)
3124 filecaps_fill(havecapsp);
3125
3126 return (error);
3127 }
3128 #endif
3129
3130 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)3131 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
3132 {
3133 struct filedesc *fdp;
3134 struct file *fp;
3135 int error;
3136
3137 if (p == td->td_proc) /* curproc */
3138 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
3139
3140 PROC_LOCK(p);
3141 fdp = fdhold(p);
3142 PROC_UNLOCK(p);
3143 if (fdp == NULL)
3144 return (ENOENT);
3145 FILEDESC_SLOCK(fdp);
3146 if (refcount_load(&fdp->fd_refcnt) != 0) {
3147 fp = fget_noref(fdp, fd);
3148 if (fp != NULL && fhold(fp)) {
3149 *fpp = fp;
3150 error = 0;
3151 } else {
3152 error = EBADF;
3153 }
3154 } else {
3155 error = ENOENT;
3156 }
3157 FILEDESC_SUNLOCK(fdp);
3158 fddrop(fdp);
3159 return (error);
3160 }
3161
3162 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)3163 fget_remote_foreach(struct thread *td, struct proc *p,
3164 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
3165 {
3166 struct filedesc *fdp;
3167 struct fdescenttbl *fdt;
3168 struct file *fp;
3169 int error, error1, fd, highfd;
3170
3171 error = 0;
3172 PROC_LOCK(p);
3173 fdp = fdhold(p);
3174 PROC_UNLOCK(p);
3175 if (fdp == NULL)
3176 return (ENOENT);
3177
3178 FILEDESC_SLOCK(fdp);
3179 if (refcount_load(&fdp->fd_refcnt) != 0) {
3180 fdt = atomic_load_ptr(&fdp->fd_files);
3181 highfd = fdt->fdt_nfiles - 1;
3182 FILEDESC_SUNLOCK(fdp);
3183 } else {
3184 error = ENOENT;
3185 FILEDESC_SUNLOCK(fdp);
3186 goto out;
3187 }
3188
3189 for (fd = 0; fd <= highfd; fd++) {
3190 error1 = fget_remote(td, p, fd, &fp);
3191 if (error1 != 0)
3192 continue;
3193 error = fn(p, fd, fp, arg);
3194 fdrop(fp, td);
3195 if (error != 0)
3196 break;
3197 }
3198 out:
3199 fddrop(fdp);
3200 return (error);
3201 }
3202
3203 #ifdef CAPABILITIES
3204 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3205 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3206 {
3207 const struct filedescent *fde;
3208 const struct fdescenttbl *fdt;
3209 struct filedesc *fdp;
3210 struct file *fp;
3211 struct vnode *vp;
3212 const cap_rights_t *haverights;
3213 cap_rights_t rights;
3214 seqc_t seq;
3215 int fd, flags;
3216
3217 VFS_SMR_ASSERT_ENTERED();
3218
3219 fd = ndp->ni_dirfd;
3220 rights = *ndp->ni_rightsneeded;
3221 cap_rights_set_one(&rights, CAP_LOOKUP);
3222
3223 fdp = curproc->p_fd;
3224 fdt = fdp->fd_files;
3225 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3226 return (EBADF);
3227 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3228 fde = &fdt->fdt_ofiles[fd];
3229 haverights = cap_rights_fde_inline(fde);
3230 fp = fde->fde_file;
3231 if (__predict_false(fp == NULL))
3232 return (EAGAIN);
3233 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3234 return (EAGAIN);
3235 flags = fp->f_flag & FSEARCH;
3236 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3237 O_RESOLVE_BENEATH : 0;
3238 vp = fp->f_vnode;
3239 if (__predict_false(vp == NULL)) {
3240 return (EAGAIN);
3241 }
3242 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3243 return (EAGAIN);
3244 }
3245 /*
3246 * Use an acquire barrier to force re-reading of fdt so it is
3247 * refreshed for verification.
3248 */
3249 atomic_thread_fence_acq();
3250 fdt = fdp->fd_files;
3251 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3252 return (EAGAIN);
3253 /*
3254 * If file descriptor doesn't have all rights,
3255 * all lookups relative to it must also be
3256 * strictly relative.
3257 *
3258 * Not yet supported by fast path.
3259 */
3260 CAP_ALL(&rights);
3261 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3262 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3263 ndp->ni_filecaps.fc_nioctls != -1) {
3264 #ifdef notyet
3265 ndp->ni_lcf |= NI_LCF_STRICTREL;
3266 #else
3267 return (EAGAIN);
3268 #endif
3269 }
3270 *vpp = vp;
3271 *flagsp = flags;
3272 return (0);
3273 }
3274 #else
3275 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3276 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3277 {
3278 const struct filedescent *fde;
3279 const struct fdescenttbl *fdt;
3280 struct filedesc *fdp;
3281 struct file *fp;
3282 struct vnode *vp;
3283 int fd, flags;
3284
3285 VFS_SMR_ASSERT_ENTERED();
3286
3287 fd = ndp->ni_dirfd;
3288 fdp = curproc->p_fd;
3289 fdt = fdp->fd_files;
3290 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3291 return (EBADF);
3292 fde = &fdt->fdt_ofiles[fd];
3293 fp = fde->fde_file;
3294 if (__predict_false(fp == NULL))
3295 return (EAGAIN);
3296 flags = fp->f_flag & FSEARCH;
3297 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3298 O_RESOLVE_BENEATH : 0;
3299 vp = fp->f_vnode;
3300 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3301 return (EAGAIN);
3302 }
3303 /*
3304 * Use an acquire barrier to force re-reading of fdt so it is
3305 * refreshed for verification.
3306 */
3307 atomic_thread_fence_acq();
3308 fdt = fdp->fd_files;
3309 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3310 return (EAGAIN);
3311 filecaps_fill(&ndp->ni_filecaps);
3312 *vpp = vp;
3313 *flagsp = flags;
3314 return (0);
3315 }
3316 #endif
3317
3318 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3319 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3320 {
3321 struct thread *td;
3322 struct file *fp;
3323 struct vnode *vp;
3324 struct componentname *cnp;
3325 cap_rights_t rights;
3326 int error;
3327 uint8_t flags;
3328
3329 td = curthread;
3330 rights = *ndp->ni_rightsneeded;
3331 cap_rights_set_one(&rights, CAP_LOOKUP);
3332 cnp = &ndp->ni_cnd;
3333
3334 error = fget_cap(td, ndp->ni_dirfd, &rights, &flags, &fp,
3335 &ndp->ni_filecaps);
3336 if (__predict_false(error != 0))
3337 return (error);
3338 if (__predict_false(fp->f_ops == &badfileops)) {
3339 error = EBADF;
3340 goto out_free;
3341 }
3342 vp = fp->f_vnode;
3343 if (__predict_false(vp == NULL)) {
3344 error = ENOTDIR;
3345 goto out_free;
3346 }
3347 vrefact(vp);
3348 /*
3349 * XXX does not check for VDIR, handled by namei_setup
3350 */
3351 if ((fp->f_flag & FSEARCH) != 0)
3352 cnp->cn_flags |= NOEXECCHECK;
3353 if ((flags & UF_RESOLVE_BENEATH) != 0) {
3354 cnp->cn_flags |= RBENEATH;
3355 ndp->ni_resflags |= NIRES_BENEATH;
3356 }
3357 fdrop(fp, td);
3358
3359 #ifdef CAPABILITIES
3360 /*
3361 * If file descriptor doesn't have all rights,
3362 * all lookups relative to it must also be
3363 * strictly relative.
3364 */
3365 CAP_ALL(&rights);
3366 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3367 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3368 ndp->ni_filecaps.fc_nioctls != -1) {
3369 ndp->ni_lcf |= NI_LCF_STRICTREL;
3370 ndp->ni_resflags |= NIRES_STRICTREL;
3371 }
3372 #endif
3373
3374 /*
3375 * TODO: avoid copying ioctl caps if it can be helped to begin with
3376 */
3377 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3378 filecaps_free_ioctl(&ndp->ni_filecaps);
3379
3380 *vpp = vp;
3381 return (0);
3382
3383 out_free:
3384 filecaps_free(&ndp->ni_filecaps);
3385 fdrop(fp, td);
3386 return (error);
3387 }
3388
3389 /*
3390 * Fetch the descriptor locklessly.
3391 *
3392 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3393 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3394 * must be re-verified once we acquire a reference to be certain that the
3395 * identity is still correct and we did not lose a race due to preemption.
3396 *
3397 * Force a reload of fdt when looping. Another thread could reallocate
3398 * the table before this fd was closed, so it is possible that there is
3399 * a stale fp pointer in cached version.
3400 */
3401 #ifdef CAPABILITIES
3402 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp)3403 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3404 uint8_t *flagsp, struct file **fpp, seqc_t *seqp)
3405 {
3406 struct filedesc *fdp;
3407 const struct filedescent *fde;
3408 const struct fdescenttbl *fdt;
3409 struct file *fp;
3410 seqc_t seq;
3411 cap_rights_t haverights;
3412 int error;
3413 uint8_t flags;
3414
3415 fdp = td->td_proc->p_fd;
3416 fdt = fdp->fd_files;
3417 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3418 return (EBADF);
3419
3420 for (;;) {
3421 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3422 fde = &fdt->fdt_ofiles[fd];
3423 haverights = *cap_rights_fde_inline(fde);
3424 fp = fde->fde_file;
3425 flags = fde->fde_flags;
3426 if (__predict_false(fp == NULL)) {
3427 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3428 return (EBADF);
3429 fdt = atomic_load_ptr(&fdp->fd_files);
3430 continue;
3431 }
3432 error = cap_check_inline(&haverights, needrightsp);
3433 if (__predict_false(error != 0)) {
3434 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3435 return (error);
3436 fdt = atomic_load_ptr(&fdp->fd_files);
3437 continue;
3438 }
3439 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3440 fdt = atomic_load_ptr(&fdp->fd_files);
3441 continue;
3442 }
3443 /*
3444 * Use an acquire barrier to force re-reading of fdt so it is
3445 * refreshed for verification.
3446 */
3447 atomic_thread_fence_acq();
3448 fdt = fdp->fd_files;
3449 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3450 break;
3451 fdrop(fp, td);
3452 }
3453 *fpp = fp;
3454 if (flagsp != NULL)
3455 *flagsp = flags;
3456 if (seqp != NULL)
3457 *seqp = seq;
3458 return (0);
3459 }
3460 #else
3461 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp __unused)3462 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3463 uint8_t *flagsp, struct file **fpp, seqc_t *seqp __unused)
3464 {
3465 struct filedesc *fdp;
3466 const struct fdescenttbl *fdt;
3467 struct file *fp;
3468 uint8_t flags;
3469
3470 fdp = td->td_proc->p_fd;
3471 fdt = fdp->fd_files;
3472 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3473 return (EBADF);
3474
3475 for (;;) {
3476 fp = fdt->fdt_ofiles[fd].fde_file;
3477 flags = fdt->fdt_ofiles[fd].fde_flags;
3478 if (__predict_false(fp == NULL))
3479 return (EBADF);
3480 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3481 fdt = atomic_load_ptr(&fdp->fd_files);
3482 continue;
3483 }
3484 /*
3485 * Use an acquire barrier to force re-reading of fdt so it is
3486 * refreshed for verification.
3487 */
3488 atomic_thread_fence_acq();
3489 fdt = fdp->fd_files;
3490 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3491 break;
3492 fdrop(fp, td);
3493 }
3494 if (flagsp != NULL)
3495 *flagsp = flags;
3496 *fpp = fp;
3497 return (0);
3498 }
3499 #endif
3500
3501 /*
3502 * See the comments in fget_unlocked_seq for an explanation of how this works.
3503 *
3504 * This is a simplified variant which bails out to the aforementioned routine
3505 * if anything goes wrong. In practice this only happens when userspace is
3506 * racing with itself.
3507 */
3508 int
fget_unlocked_flags(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp)3509 fget_unlocked_flags(struct thread *td, int fd, const cap_rights_t *needrightsp,
3510 uint8_t *flagsp, struct file **fpp)
3511 {
3512 struct filedesc *fdp;
3513 #ifdef CAPABILITIES
3514 const struct filedescent *fde;
3515 #endif
3516 const struct fdescenttbl *fdt;
3517 struct file *fp;
3518 #ifdef CAPABILITIES
3519 seqc_t seq;
3520 const cap_rights_t *haverights;
3521 #endif
3522 uint8_t flags;
3523
3524 fdp = td->td_proc->p_fd;
3525 fdt = fdp->fd_files;
3526 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3527 *fpp = NULL;
3528 return (EBADF);
3529 }
3530 #ifdef CAPABILITIES
3531 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3532 fde = &fdt->fdt_ofiles[fd];
3533 haverights = cap_rights_fde_inline(fde);
3534 fp = fde->fde_file;
3535 flags = fde->fde_flags;
3536 #else
3537 fp = fdt->fdt_ofiles[fd].fde_file;
3538 flags = fdt->fdt_ofiles[fd].fde_flags;
3539 #endif
3540 if (__predict_false(fp == NULL))
3541 goto out_fallback;
3542 #ifdef CAPABILITIES
3543 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3544 goto out_fallback;
3545 #endif
3546 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3547 goto out_fallback;
3548
3549 /*
3550 * Use an acquire barrier to force re-reading of fdt so it is
3551 * refreshed for verification.
3552 */
3553 atomic_thread_fence_acq();
3554 fdt = fdp->fd_files;
3555 #ifdef CAPABILITIES
3556 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3557 #else
3558 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3559 #endif
3560 goto out_fdrop;
3561 *fpp = fp;
3562 if (flagsp != NULL)
3563 *flagsp = flags;
3564 return (0);
3565 out_fdrop:
3566 fdrop(fp, td);
3567 out_fallback:
3568 *fpp = NULL;
3569 return (fget_unlocked_seq(td, fd, needrightsp, flagsp, fpp, NULL));
3570 }
3571
3572 int
fget_unlocked(struct thread * td,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3573 fget_unlocked(struct thread *td, int fd, const cap_rights_t *needrightsp,
3574 struct file **fpp)
3575 {
3576 return (fget_unlocked_flags(td, fd, needrightsp, NULL, fpp));
3577 }
3578
3579 /*
3580 * Translate fd -> file when the caller guarantees the file descriptor table
3581 * can't be changed by others.
3582 *
3583 * Note this does not mean the file object itself is only visible to the caller,
3584 * merely that it wont disappear without having to be referenced.
3585 *
3586 * Must be paired with fput_only_user.
3587 */
3588 #ifdef CAPABILITIES
3589 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3590 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3591 struct file **fpp)
3592 {
3593 const struct filedescent *fde;
3594 const struct fdescenttbl *fdt;
3595 const cap_rights_t *haverights;
3596 struct file *fp;
3597 int error;
3598
3599 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3600
3601 *fpp = NULL;
3602 if (__predict_false(fd >= fdp->fd_nfiles))
3603 return (EBADF);
3604
3605 fdt = fdp->fd_files;
3606 fde = &fdt->fdt_ofiles[fd];
3607 fp = fde->fde_file;
3608 if (__predict_false(fp == NULL))
3609 return (EBADF);
3610 MPASS(refcount_load(&fp->f_count) > 0);
3611 haverights = cap_rights_fde_inline(fde);
3612 error = cap_check_inline(haverights, needrightsp);
3613 if (__predict_false(error != 0))
3614 return (error);
3615 *fpp = fp;
3616 return (0);
3617 }
3618 #else
3619 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3620 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3621 struct file **fpp)
3622 {
3623 struct file *fp;
3624
3625 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3626
3627 *fpp = NULL;
3628 if (__predict_false(fd >= fdp->fd_nfiles))
3629 return (EBADF);
3630
3631 fp = fdp->fd_ofiles[fd].fde_file;
3632 if (__predict_false(fp == NULL))
3633 return (EBADF);
3634
3635 MPASS(refcount_load(&fp->f_count) > 0);
3636 *fpp = fp;
3637 return (0);
3638 }
3639 #endif
3640
3641 /*
3642 * Extract the file pointer associated with the specified descriptor for the
3643 * current user process.
3644 *
3645 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3646 * returned.
3647 *
3648 * File's rights will be checked against the capability rights mask.
3649 *
3650 * If an error occurred the non-zero error is returned and *fpp is set to
3651 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3652 * responsible for fdrop().
3653 */
3654 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,const cap_rights_t * needrightsp)3655 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3656 const cap_rights_t *needrightsp)
3657 {
3658 struct file *fp;
3659 int error;
3660
3661 *fpp = NULL;
3662 error = fget_unlocked(td, fd, needrightsp, &fp);
3663 if (__predict_false(error != 0))
3664 return (error);
3665 if (__predict_false(fp->f_ops == &badfileops)) {
3666 fdrop(fp, td);
3667 return (EBADF);
3668 }
3669
3670 /*
3671 * FREAD and FWRITE failure return EBADF as per POSIX.
3672 */
3673 error = 0;
3674 switch (flags) {
3675 case FREAD:
3676 case FWRITE:
3677 if ((fp->f_flag & flags) == 0)
3678 error = EBADF;
3679 break;
3680 case FEXEC:
3681 if (fp->f_ops != &path_fileops &&
3682 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3683 (fp->f_flag & FWRITE) != 0))
3684 error = EBADF;
3685 break;
3686 case 0:
3687 break;
3688 default:
3689 KASSERT(0, ("wrong flags"));
3690 }
3691
3692 if (error != 0) {
3693 fdrop(fp, td);
3694 return (error);
3695 }
3696
3697 *fpp = fp;
3698 return (0);
3699 }
3700
3701 int
fget(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3702 fget(struct thread *td, int fd, const cap_rights_t *rightsp, struct file **fpp)
3703 {
3704
3705 return (_fget(td, fd, fpp, 0, rightsp));
3706 }
3707
3708 int
fget_mmap(struct thread * td,int fd,const cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3709 fget_mmap(struct thread *td, int fd, const cap_rights_t *rightsp,
3710 vm_prot_t *maxprotp, struct file **fpp)
3711 {
3712 int error;
3713 #ifndef CAPABILITIES
3714 error = _fget(td, fd, fpp, 0, rightsp);
3715 if (maxprotp != NULL)
3716 *maxprotp = VM_PROT_ALL;
3717 return (error);
3718 #else
3719 cap_rights_t fdrights;
3720 struct filedesc *fdp;
3721 struct file *fp;
3722 seqc_t seq;
3723
3724 *fpp = NULL;
3725 fdp = td->td_proc->p_fd;
3726 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3727 for (;;) {
3728 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3729 if (__predict_false(error != 0))
3730 return (error);
3731 if (__predict_false(fp->f_ops == &badfileops)) {
3732 fdrop(fp, td);
3733 return (EBADF);
3734 }
3735 if (maxprotp != NULL)
3736 fdrights = *cap_rights(fdp, fd);
3737 if (!fd_modified(fdp, fd, seq))
3738 break;
3739 fdrop(fp, td);
3740 }
3741
3742 /*
3743 * If requested, convert capability rights to access flags.
3744 */
3745 if (maxprotp != NULL)
3746 *maxprotp = cap_rights_to_vmprot(&fdrights);
3747 *fpp = fp;
3748 return (0);
3749 #endif
3750 }
3751
3752 int
fget_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3753 fget_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3754 struct file **fpp)
3755 {
3756
3757 return (_fget(td, fd, fpp, FREAD, rightsp));
3758 }
3759
3760 int
fget_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3761 fget_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3762 struct file **fpp)
3763 {
3764
3765 return (_fget(td, fd, fpp, FWRITE, rightsp));
3766 }
3767
3768 int
fget_fcntl(struct thread * td,int fd,const cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3769 fget_fcntl(struct thread *td, int fd, const cap_rights_t *rightsp,
3770 int needfcntl, struct file **fpp)
3771 {
3772 #ifndef CAPABILITIES
3773 return (fget_unlocked(td, fd, rightsp, fpp));
3774 #else
3775 struct filedesc *fdp = td->td_proc->p_fd;
3776 struct file *fp;
3777 int error;
3778 seqc_t seq;
3779
3780 *fpp = NULL;
3781 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3782 for (;;) {
3783 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3784 if (error != 0)
3785 return (error);
3786 error = cap_fcntl_check(fdp, fd, needfcntl);
3787 if (!fd_modified(fdp, fd, seq))
3788 break;
3789 fdrop(fp, td);
3790 }
3791 if (error != 0) {
3792 fdrop(fp, td);
3793 return (error);
3794 }
3795 *fpp = fp;
3796 return (0);
3797 #endif
3798 }
3799
3800 /*
3801 * Like fget() but loads the underlying vnode, or returns an error if the
3802 * descriptor does not represent a vnode. Note that pipes use vnodes but
3803 * never have VM objects. The returned vnode will be vref()'d.
3804 *
3805 * XXX: what about the unused flags ?
3806 */
3807 static __inline int
_fgetvp(struct thread * td,int fd,int flags,const cap_rights_t * needrightsp,struct vnode ** vpp)3808 _fgetvp(struct thread *td, int fd, int flags, const cap_rights_t *needrightsp,
3809 struct vnode **vpp)
3810 {
3811 struct file *fp;
3812 int error;
3813
3814 *vpp = NULL;
3815 error = _fget(td, fd, &fp, flags, needrightsp);
3816 if (error != 0)
3817 return (error);
3818 if (fp->f_vnode == NULL) {
3819 error = EINVAL;
3820 } else {
3821 *vpp = fp->f_vnode;
3822 vrefact(*vpp);
3823 }
3824 fdrop(fp, td);
3825
3826 return (error);
3827 }
3828
3829 int
fgetvp(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3830 fgetvp(struct thread *td, int fd, const cap_rights_t *rightsp,
3831 struct vnode **vpp)
3832 {
3833
3834 return (_fgetvp(td, fd, 0, rightsp, vpp));
3835 }
3836
3837 int
fgetvp_rights(struct thread * td,int fd,const cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3838 fgetvp_rights(struct thread *td, int fd, const cap_rights_t *needrightsp,
3839 struct filecaps *havecaps, struct vnode **vpp)
3840 {
3841 struct filecaps caps;
3842 struct file *fp;
3843 int error;
3844
3845 error = fget_cap(td, fd, needrightsp, NULL, &fp, &caps);
3846 if (error != 0)
3847 return (error);
3848 if (fp->f_ops == &badfileops) {
3849 error = EBADF;
3850 goto out;
3851 }
3852 if (fp->f_vnode == NULL) {
3853 error = EINVAL;
3854 goto out;
3855 }
3856
3857 *havecaps = caps;
3858 *vpp = fp->f_vnode;
3859 vrefact(*vpp);
3860 fdrop(fp, td);
3861
3862 return (0);
3863 out:
3864 filecaps_free(&caps);
3865 fdrop(fp, td);
3866 return (error);
3867 }
3868
3869 int
fgetvp_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3870 fgetvp_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3871 struct vnode **vpp)
3872 {
3873
3874 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3875 }
3876
3877 int
fgetvp_exec(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3878 fgetvp_exec(struct thread *td, int fd, const cap_rights_t *rightsp,
3879 struct vnode **vpp)
3880 {
3881
3882 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3883 }
3884
3885 #ifdef notyet
3886 int
fgetvp_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3887 fgetvp_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3888 struct vnode **vpp)
3889 {
3890
3891 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3892 }
3893 #endif
3894
3895 /*
3896 * Handle the last reference to a file being closed.
3897 *
3898 * Without the noinline attribute clang keeps inlining the func thorough this
3899 * file when fdrop is used.
3900 */
3901 int __noinline
_fdrop(struct file * fp,struct thread * td)3902 _fdrop(struct file *fp, struct thread *td)
3903 {
3904 int error;
3905
3906 KASSERT(refcount_load(&fp->f_count) == 0,
3907 ("fdrop: fp %p count %d", fp, refcount_load(&fp->f_count)));
3908
3909 error = fo_close(fp, td);
3910 atomic_subtract_int(&openfiles, 1);
3911 crfree(fp->f_cred);
3912 free(fp->f_advice, M_FADVISE);
3913 uma_zfree(file_zone, fp);
3914
3915 return (error);
3916 }
3917
3918 /*
3919 * Apply an advisory lock on a file descriptor.
3920 *
3921 * Just attempt to get a record lock of the requested type on the entire file
3922 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3923 */
3924 #ifndef _SYS_SYSPROTO_H_
3925 struct flock_args {
3926 int fd;
3927 int how;
3928 };
3929 #endif
3930 /* ARGSUSED */
3931 int
sys_flock(struct thread * td,struct flock_args * uap)3932 sys_flock(struct thread *td, struct flock_args *uap)
3933 {
3934 struct file *fp;
3935 struct vnode *vp;
3936 struct flock lf;
3937 int error;
3938
3939 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3940 if (error != 0)
3941 return (error);
3942 error = EOPNOTSUPP;
3943 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3944 goto done;
3945 }
3946 if (fp->f_ops == &path_fileops) {
3947 goto done;
3948 }
3949
3950 error = 0;
3951 vp = fp->f_vnode;
3952 lf.l_whence = SEEK_SET;
3953 lf.l_start = 0;
3954 lf.l_len = 0;
3955 if (uap->how & LOCK_UN) {
3956 lf.l_type = F_UNLCK;
3957 atomic_clear_int(&fp->f_flag, FHASLOCK);
3958 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3959 goto done;
3960 }
3961 if (uap->how & LOCK_EX)
3962 lf.l_type = F_WRLCK;
3963 else if (uap->how & LOCK_SH)
3964 lf.l_type = F_RDLCK;
3965 else {
3966 error = EBADF;
3967 goto done;
3968 }
3969 atomic_set_int(&fp->f_flag, FHASLOCK);
3970 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3971 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3972 done:
3973 fdrop(fp, td);
3974 return (error);
3975 }
3976 /*
3977 * Duplicate the specified descriptor to a free descriptor.
3978 */
3979 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3980 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3981 int openerror, int *indxp)
3982 {
3983 struct filedescent *newfde, *oldfde;
3984 struct file *fp;
3985 u_long *ioctls;
3986 int error, indx;
3987
3988 KASSERT(openerror == ENODEV || openerror == ENXIO,
3989 ("unexpected error %d in %s", openerror, __func__));
3990
3991 /*
3992 * If the to-be-dup'd fd number is greater than the allowed number
3993 * of file descriptors, or the fd to be dup'd has already been
3994 * closed, then reject.
3995 */
3996 FILEDESC_XLOCK(fdp);
3997 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3998 FILEDESC_XUNLOCK(fdp);
3999 return (EBADF);
4000 }
4001
4002 error = fdalloc(td, 0, &indx);
4003 if (error != 0) {
4004 FILEDESC_XUNLOCK(fdp);
4005 return (error);
4006 }
4007
4008 /*
4009 * There are two cases of interest here.
4010 *
4011 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
4012 *
4013 * For ENXIO steal away the file structure from (dfd) and store it in
4014 * (indx). (dfd) is effectively closed by this operation.
4015 */
4016 switch (openerror) {
4017 case ENODEV:
4018 /*
4019 * Check that the mode the file is being opened for is a
4020 * subset of the mode of the existing descriptor.
4021 */
4022 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
4023 fdunused(fdp, indx);
4024 FILEDESC_XUNLOCK(fdp);
4025 return (EACCES);
4026 }
4027 if (!fhold(fp)) {
4028 fdunused(fdp, indx);
4029 FILEDESC_XUNLOCK(fdp);
4030 return (EBADF);
4031 }
4032 newfde = &fdp->fd_ofiles[indx];
4033 oldfde = &fdp->fd_ofiles[dfd];
4034 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
4035 #ifdef CAPABILITIES
4036 seqc_write_begin(&newfde->fde_seqc);
4037 #endif
4038 fde_copy(oldfde, newfde);
4039 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
4040 ioctls);
4041 #ifdef CAPABILITIES
4042 seqc_write_end(&newfde->fde_seqc);
4043 #endif
4044 break;
4045 case ENXIO:
4046 /*
4047 * Steal away the file pointer from dfd and stuff it into indx.
4048 */
4049 newfde = &fdp->fd_ofiles[indx];
4050 oldfde = &fdp->fd_ofiles[dfd];
4051 #ifdef CAPABILITIES
4052 seqc_write_begin(&oldfde->fde_seqc);
4053 seqc_write_begin(&newfde->fde_seqc);
4054 #endif
4055 fde_copy(oldfde, newfde);
4056 oldfde->fde_file = NULL;
4057 fdunused(fdp, dfd);
4058 #ifdef CAPABILITIES
4059 seqc_write_end(&newfde->fde_seqc);
4060 seqc_write_end(&oldfde->fde_seqc);
4061 #endif
4062 break;
4063 }
4064 FILEDESC_XUNLOCK(fdp);
4065 *indxp = indx;
4066 return (0);
4067 }
4068
4069 /*
4070 * This sysctl determines if we will allow a process to chroot(2) if it
4071 * has a directory open:
4072 * 0: disallowed for all processes.
4073 * 1: allowed for processes that were not already chroot(2)'ed.
4074 * 2: allowed for all processes.
4075 */
4076
4077 static int chroot_allow_open_directories = 1;
4078
4079 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
4080 &chroot_allow_open_directories, 0,
4081 "Allow a process to chroot(2) if it has a directory open");
4082
4083 /*
4084 * Helper function for raised chroot(2) security function: Refuse if
4085 * any filedescriptors are open directories.
4086 */
4087 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)4088 chroot_refuse_vdir_fds(struct filedesc *fdp)
4089 {
4090 struct vnode *vp;
4091 struct file *fp;
4092 int i;
4093
4094 FILEDESC_LOCK_ASSERT(fdp);
4095
4096 FILEDESC_FOREACH_FP(fdp, i, fp) {
4097 if (fp->f_type == DTYPE_VNODE) {
4098 vp = fp->f_vnode;
4099 if (vp->v_type == VDIR)
4100 return (EPERM);
4101 }
4102 }
4103 return (0);
4104 }
4105
4106 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)4107 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
4108 {
4109
4110 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
4111 vrefact(oldpwd->pwd_cdir);
4112 newpwd->pwd_cdir = oldpwd->pwd_cdir;
4113 }
4114
4115 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
4116 vrefact(oldpwd->pwd_rdir);
4117 newpwd->pwd_rdir = oldpwd->pwd_rdir;
4118 }
4119
4120 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
4121 vrefact(oldpwd->pwd_jdir);
4122 newpwd->pwd_jdir = oldpwd->pwd_jdir;
4123 }
4124
4125 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
4126 vrefact(oldpwd->pwd_adir);
4127 newpwd->pwd_adir = oldpwd->pwd_adir;
4128 }
4129 }
4130
4131 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)4132 pwd_hold_pwddesc(struct pwddesc *pdp)
4133 {
4134 struct pwd *pwd;
4135
4136 PWDDESC_ASSERT_XLOCKED(pdp);
4137 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4138 if (pwd != NULL)
4139 refcount_acquire(&pwd->pwd_refcount);
4140 return (pwd);
4141 }
4142
4143 bool
pwd_hold_smr(struct pwd * pwd)4144 pwd_hold_smr(struct pwd *pwd)
4145 {
4146
4147 MPASS(pwd != NULL);
4148 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
4149 return (true);
4150 }
4151 return (false);
4152 }
4153
4154 struct pwd *
pwd_hold(struct thread * td)4155 pwd_hold(struct thread *td)
4156 {
4157 struct pwddesc *pdp;
4158 struct pwd *pwd;
4159
4160 pdp = td->td_proc->p_pd;
4161
4162 vfs_smr_enter();
4163 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
4164 if (pwd_hold_smr(pwd)) {
4165 vfs_smr_exit();
4166 return (pwd);
4167 }
4168 vfs_smr_exit();
4169 PWDDESC_XLOCK(pdp);
4170 pwd = pwd_hold_pwddesc(pdp);
4171 MPASS(pwd != NULL);
4172 PWDDESC_XUNLOCK(pdp);
4173 return (pwd);
4174 }
4175
4176 struct pwd *
pwd_hold_proc(struct proc * p)4177 pwd_hold_proc(struct proc *p)
4178 {
4179 struct pwddesc *pdp;
4180 struct pwd *pwd;
4181
4182 PROC_ASSERT_HELD(p);
4183 PROC_LOCK(p);
4184 pdp = pdhold(p);
4185 MPASS(pdp != NULL);
4186 PROC_UNLOCK(p);
4187
4188 PWDDESC_XLOCK(pdp);
4189 pwd = pwd_hold_pwddesc(pdp);
4190 MPASS(pwd != NULL);
4191 PWDDESC_XUNLOCK(pdp);
4192 pddrop(pdp);
4193 return (pwd);
4194 }
4195
4196 static struct pwd *
pwd_alloc(void)4197 pwd_alloc(void)
4198 {
4199 struct pwd *pwd;
4200
4201 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4202 bzero(pwd, sizeof(*pwd));
4203 refcount_init(&pwd->pwd_refcount, 1);
4204 return (pwd);
4205 }
4206
4207 void
pwd_drop(struct pwd * pwd)4208 pwd_drop(struct pwd *pwd)
4209 {
4210
4211 if (!refcount_release(&pwd->pwd_refcount))
4212 return;
4213
4214 if (pwd->pwd_cdir != NULL)
4215 vrele(pwd->pwd_cdir);
4216 if (pwd->pwd_rdir != NULL)
4217 vrele(pwd->pwd_rdir);
4218 if (pwd->pwd_jdir != NULL)
4219 vrele(pwd->pwd_jdir);
4220 if (pwd->pwd_adir != NULL)
4221 vrele(pwd->pwd_adir);
4222 uma_zfree_smr(pwd_zone, pwd);
4223 }
4224
4225 /*
4226 * The caller is responsible for invoking priv_check() and
4227 * mac_vnode_check_chroot() to authorize this operation.
4228 */
4229 int
pwd_chroot(struct thread * td,struct vnode * vp)4230 pwd_chroot(struct thread *td, struct vnode *vp)
4231 {
4232 struct pwddesc *pdp;
4233 struct filedesc *fdp;
4234 struct pwd *newpwd, *oldpwd;
4235 int error;
4236
4237 fdp = td->td_proc->p_fd;
4238 pdp = td->td_proc->p_pd;
4239 newpwd = pwd_alloc();
4240 FILEDESC_SLOCK(fdp);
4241 PWDDESC_XLOCK(pdp);
4242 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4243 if (chroot_allow_open_directories == 0 ||
4244 (chroot_allow_open_directories == 1 &&
4245 oldpwd->pwd_rdir != rootvnode)) {
4246 error = chroot_refuse_vdir_fds(fdp);
4247 FILEDESC_SUNLOCK(fdp);
4248 if (error != 0) {
4249 PWDDESC_XUNLOCK(pdp);
4250 pwd_drop(newpwd);
4251 return (error);
4252 }
4253 } else {
4254 FILEDESC_SUNLOCK(fdp);
4255 }
4256
4257 vrefact(vp);
4258 newpwd->pwd_rdir = vp;
4259 vrefact(vp);
4260 newpwd->pwd_adir = vp;
4261 if (oldpwd->pwd_jdir == NULL) {
4262 vrefact(vp);
4263 newpwd->pwd_jdir = vp;
4264 }
4265 pwd_fill(oldpwd, newpwd);
4266 pwd_set(pdp, newpwd);
4267 PWDDESC_XUNLOCK(pdp);
4268 pwd_drop(oldpwd);
4269 return (0);
4270 }
4271
4272 void
pwd_chdir(struct thread * td,struct vnode * vp)4273 pwd_chdir(struct thread *td, struct vnode *vp)
4274 {
4275 struct pwddesc *pdp;
4276 struct pwd *newpwd, *oldpwd;
4277
4278 VNPASS(vp->v_usecount > 0, vp);
4279
4280 newpwd = pwd_alloc();
4281 pdp = td->td_proc->p_pd;
4282 PWDDESC_XLOCK(pdp);
4283 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4284 newpwd->pwd_cdir = vp;
4285 pwd_fill(oldpwd, newpwd);
4286 pwd_set(pdp, newpwd);
4287 PWDDESC_XUNLOCK(pdp);
4288 pwd_drop(oldpwd);
4289 }
4290
4291 /*
4292 * Process is transitioning to/from a non-native ABI.
4293 */
4294 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4295 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4296 {
4297 struct pwddesc *pdp;
4298 struct pwd *newpwd, *oldpwd;
4299
4300 newpwd = pwd_alloc();
4301 pdp = td->td_proc->p_pd;
4302 PWDDESC_XLOCK(pdp);
4303 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4304 if (altroot_vp != NULL) {
4305 /*
4306 * Native process to a non-native ABI.
4307 */
4308
4309 vrefact(altroot_vp);
4310 newpwd->pwd_adir = altroot_vp;
4311 } else {
4312 /*
4313 * Non-native process to the native ABI.
4314 */
4315
4316 vrefact(oldpwd->pwd_rdir);
4317 newpwd->pwd_adir = oldpwd->pwd_rdir;
4318 }
4319 pwd_fill(oldpwd, newpwd);
4320 pwd_set(pdp, newpwd);
4321 PWDDESC_XUNLOCK(pdp);
4322 pwd_drop(oldpwd);
4323 }
4324
4325 /*
4326 * jail_attach(2) changes both root and working directories.
4327 */
4328 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4329 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4330 {
4331 struct pwddesc *pdp;
4332 struct filedesc *fdp;
4333 struct pwd *newpwd, *oldpwd;
4334 int error;
4335
4336 fdp = td->td_proc->p_fd;
4337 pdp = td->td_proc->p_pd;
4338 newpwd = pwd_alloc();
4339 FILEDESC_SLOCK(fdp);
4340 PWDDESC_XLOCK(pdp);
4341 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4342 error = chroot_refuse_vdir_fds(fdp);
4343 FILEDESC_SUNLOCK(fdp);
4344 if (error != 0) {
4345 PWDDESC_XUNLOCK(pdp);
4346 pwd_drop(newpwd);
4347 return (error);
4348 }
4349
4350 vrefact(vp);
4351 newpwd->pwd_rdir = vp;
4352 vrefact(vp);
4353 newpwd->pwd_cdir = vp;
4354 if (oldpwd->pwd_jdir == NULL) {
4355 vrefact(vp);
4356 newpwd->pwd_jdir = vp;
4357 }
4358 vrefact(vp);
4359 newpwd->pwd_adir = vp;
4360 pwd_fill(oldpwd, newpwd);
4361 pwd_set(pdp, newpwd);
4362 PWDDESC_XUNLOCK(pdp);
4363 pwd_drop(oldpwd);
4364 return (0);
4365 }
4366
4367 void
pwd_ensure_dirs(void)4368 pwd_ensure_dirs(void)
4369 {
4370 struct pwddesc *pdp;
4371 struct pwd *oldpwd, *newpwd;
4372
4373 pdp = curproc->p_pd;
4374 PWDDESC_XLOCK(pdp);
4375 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4376 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4377 oldpwd->pwd_adir != NULL) {
4378 PWDDESC_XUNLOCK(pdp);
4379 return;
4380 }
4381 PWDDESC_XUNLOCK(pdp);
4382
4383 newpwd = pwd_alloc();
4384 PWDDESC_XLOCK(pdp);
4385 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4386 pwd_fill(oldpwd, newpwd);
4387 if (newpwd->pwd_cdir == NULL) {
4388 vrefact(rootvnode);
4389 newpwd->pwd_cdir = rootvnode;
4390 }
4391 if (newpwd->pwd_rdir == NULL) {
4392 vrefact(rootvnode);
4393 newpwd->pwd_rdir = rootvnode;
4394 }
4395 if (newpwd->pwd_adir == NULL) {
4396 vrefact(rootvnode);
4397 newpwd->pwd_adir = rootvnode;
4398 }
4399 pwd_set(pdp, newpwd);
4400 PWDDESC_XUNLOCK(pdp);
4401 pwd_drop(oldpwd);
4402 }
4403
4404 void
pwd_set_rootvnode(void)4405 pwd_set_rootvnode(void)
4406 {
4407 struct pwddesc *pdp;
4408 struct pwd *oldpwd, *newpwd;
4409
4410 pdp = curproc->p_pd;
4411
4412 newpwd = pwd_alloc();
4413 PWDDESC_XLOCK(pdp);
4414 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4415 vrefact(rootvnode);
4416 newpwd->pwd_cdir = rootvnode;
4417 vrefact(rootvnode);
4418 newpwd->pwd_rdir = rootvnode;
4419 vrefact(rootvnode);
4420 newpwd->pwd_adir = rootvnode;
4421 pwd_fill(oldpwd, newpwd);
4422 pwd_set(pdp, newpwd);
4423 PWDDESC_XUNLOCK(pdp);
4424 pwd_drop(oldpwd);
4425 }
4426
4427 /*
4428 * Scan all active processes and prisons to see if any of them have a current
4429 * or root directory of `olddp'. If so, replace them with the new mount point.
4430 */
4431 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4432 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4433 {
4434 struct pwddesc *pdp;
4435 struct pwd *newpwd, *oldpwd;
4436 struct prison *pr;
4437 struct proc *p;
4438 int nrele;
4439
4440 if (vrefcnt(olddp) == 1)
4441 return;
4442 nrele = 0;
4443 newpwd = pwd_alloc();
4444 sx_slock(&allproc_lock);
4445 FOREACH_PROC_IN_SYSTEM(p) {
4446 PROC_LOCK(p);
4447 pdp = pdhold(p);
4448 PROC_UNLOCK(p);
4449 if (pdp == NULL)
4450 continue;
4451 PWDDESC_XLOCK(pdp);
4452 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4453 if (oldpwd == NULL ||
4454 (oldpwd->pwd_cdir != olddp &&
4455 oldpwd->pwd_rdir != olddp &&
4456 oldpwd->pwd_jdir != olddp &&
4457 oldpwd->pwd_adir != olddp)) {
4458 PWDDESC_XUNLOCK(pdp);
4459 pddrop(pdp);
4460 continue;
4461 }
4462 if (oldpwd->pwd_cdir == olddp) {
4463 vrefact(newdp);
4464 newpwd->pwd_cdir = newdp;
4465 }
4466 if (oldpwd->pwd_rdir == olddp) {
4467 vrefact(newdp);
4468 newpwd->pwd_rdir = newdp;
4469 }
4470 if (oldpwd->pwd_jdir == olddp) {
4471 vrefact(newdp);
4472 newpwd->pwd_jdir = newdp;
4473 }
4474 if (oldpwd->pwd_adir == olddp) {
4475 vrefact(newdp);
4476 newpwd->pwd_adir = newdp;
4477 }
4478 pwd_fill(oldpwd, newpwd);
4479 pwd_set(pdp, newpwd);
4480 PWDDESC_XUNLOCK(pdp);
4481 pwd_drop(oldpwd);
4482 pddrop(pdp);
4483 newpwd = pwd_alloc();
4484 }
4485 sx_sunlock(&allproc_lock);
4486 pwd_drop(newpwd);
4487 if (rootvnode == olddp) {
4488 vrefact(newdp);
4489 rootvnode = newdp;
4490 nrele++;
4491 }
4492 mtx_lock(&prison0.pr_mtx);
4493 if (prison0.pr_root == olddp) {
4494 vrefact(newdp);
4495 prison0.pr_root = newdp;
4496 nrele++;
4497 }
4498 mtx_unlock(&prison0.pr_mtx);
4499 sx_slock(&allprison_lock);
4500 TAILQ_FOREACH(pr, &allprison, pr_list) {
4501 mtx_lock(&pr->pr_mtx);
4502 if (pr->pr_root == olddp) {
4503 vrefact(newdp);
4504 pr->pr_root = newdp;
4505 nrele++;
4506 }
4507 mtx_unlock(&pr->pr_mtx);
4508 }
4509 sx_sunlock(&allprison_lock);
4510 while (nrele--)
4511 vrele(olddp);
4512 }
4513
4514 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4515 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4516 {
4517 struct file *fp;
4518 struct vnode *vp;
4519 int error, i;
4520
4521 error = 0;
4522 FILEDESC_SLOCK(fdp);
4523 FILEDESC_FOREACH_FP(fdp, i, fp) {
4524 if (fp->f_type != DTYPE_VNODE ||
4525 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4526 continue;
4527 vp = fp->f_vnode;
4528 if (vp->v_mount == mp) {
4529 error = EDEADLK;
4530 break;
4531 }
4532 }
4533 FILEDESC_SUNLOCK(fdp);
4534 return (error);
4535 }
4536
4537 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4538 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4539 struct proc *leader)
4540 {
4541 struct filedesc_to_leader *fdtol;
4542
4543 fdtol = malloc(sizeof(struct filedesc_to_leader),
4544 M_FILEDESC_TO_LEADER, M_WAITOK);
4545 fdtol->fdl_refcount = 1;
4546 fdtol->fdl_holdcount = 0;
4547 fdtol->fdl_wakeup = 0;
4548 fdtol->fdl_leader = leader;
4549 if (old != NULL) {
4550 FILEDESC_XLOCK(fdp);
4551 fdtol->fdl_next = old->fdl_next;
4552 fdtol->fdl_prev = old;
4553 old->fdl_next = fdtol;
4554 fdtol->fdl_next->fdl_prev = fdtol;
4555 FILEDESC_XUNLOCK(fdp);
4556 } else {
4557 fdtol->fdl_next = fdtol;
4558 fdtol->fdl_prev = fdtol;
4559 }
4560 return (fdtol);
4561 }
4562
4563 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4564 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4565 {
4566 FILEDESC_XLOCK(fdp);
4567 fdtol->fdl_refcount++;
4568 FILEDESC_XUNLOCK(fdp);
4569 return (fdtol);
4570 }
4571
4572 static int
filedesc_nfiles(struct filedesc * fdp)4573 filedesc_nfiles(struct filedesc *fdp)
4574 {
4575 NDSLOTTYPE *map;
4576 int count, off, minoff;
4577
4578 if (fdp == NULL)
4579 return (0);
4580 count = 0;
4581 FILEDESC_SLOCK(fdp);
4582 map = fdp->fd_map;
4583 off = NDSLOT(fdp->fd_nfiles - 1);
4584 for (minoff = NDSLOT(0); off >= minoff; --off)
4585 count += bitcountl(map[off]);
4586 FILEDESC_SUNLOCK(fdp);
4587 return (count);
4588 }
4589
4590 int
proc_nfiles(struct proc * p)4591 proc_nfiles(struct proc *p)
4592 {
4593 struct filedesc *fdp;
4594 int res;
4595
4596 PROC_LOCK(p);
4597 fdp = fdhold(p);
4598 PROC_UNLOCK(p);
4599 res = filedesc_nfiles(fdp);
4600 fddrop(fdp);
4601 return (res);
4602 }
4603
4604 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4605 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4606 {
4607 u_int namelen;
4608 int count;
4609
4610 namelen = arg2;
4611 if (namelen != 1)
4612 return (EINVAL);
4613
4614 if (*(int *)arg1 != 0)
4615 return (EINVAL);
4616
4617 count = filedesc_nfiles(curproc->p_fd);
4618 return (SYSCTL_OUT(req, &count, sizeof(count)));
4619 }
4620
4621 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4622 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4623 "Number of open file descriptors");
4624
4625 /*
4626 * Get file structures globally.
4627 */
4628 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4629 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4630 {
4631 struct xfile xf;
4632 struct filedesc *fdp;
4633 struct file *fp;
4634 struct proc *p;
4635 int error, n;
4636
4637 error = sysctl_wire_old_buffer(req, 0);
4638 if (error != 0)
4639 return (error);
4640 if (req->oldptr == NULL) {
4641 n = 0;
4642 sx_slock(&allproc_lock);
4643 FOREACH_PROC_IN_SYSTEM(p) {
4644 PROC_LOCK(p);
4645 if (p->p_state == PRS_NEW) {
4646 PROC_UNLOCK(p);
4647 continue;
4648 }
4649 fdp = fdhold(p);
4650 PROC_UNLOCK(p);
4651 if (fdp == NULL)
4652 continue;
4653 /* overestimates sparse tables. */
4654 n += fdp->fd_nfiles;
4655 fddrop(fdp);
4656 }
4657 sx_sunlock(&allproc_lock);
4658 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4659 }
4660 error = 0;
4661 bzero(&xf, sizeof(xf));
4662 xf.xf_size = sizeof(xf);
4663 sx_slock(&allproc_lock);
4664 FOREACH_PROC_IN_SYSTEM(p) {
4665 PROC_LOCK(p);
4666 if (p->p_state == PRS_NEW) {
4667 PROC_UNLOCK(p);
4668 continue;
4669 }
4670 if (p_cansee(req->td, p) != 0) {
4671 PROC_UNLOCK(p);
4672 continue;
4673 }
4674 xf.xf_pid = p->p_pid;
4675 xf.xf_uid = p->p_ucred->cr_uid;
4676 fdp = fdhold(p);
4677 PROC_UNLOCK(p);
4678 if (fdp == NULL)
4679 continue;
4680 FILEDESC_SLOCK(fdp);
4681 if (refcount_load(&fdp->fd_refcnt) == 0)
4682 goto nextproc;
4683 FILEDESC_FOREACH_FP(fdp, n, fp) {
4684 xf.xf_fd = n;
4685 xf.xf_file = (uintptr_t)fp;
4686 xf.xf_data = (uintptr_t)fp->f_data;
4687 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4688 xf.xf_type = (uintptr_t)fp->f_type;
4689 xf.xf_count = refcount_load(&fp->f_count);
4690 xf.xf_msgcount = 0;
4691 xf.xf_offset = foffset_get(fp);
4692 xf.xf_flag = fp->f_flag;
4693 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4694
4695 /*
4696 * There is no need to re-check the fdtable refcount
4697 * here since the filedesc lock is not dropped in the
4698 * loop body.
4699 */
4700 if (error != 0)
4701 break;
4702 }
4703 nextproc:
4704 FILEDESC_SUNLOCK(fdp);
4705 fddrop(fdp);
4706 if (error)
4707 break;
4708 }
4709 sx_sunlock(&allproc_lock);
4710 return (error);
4711 }
4712
4713 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4714 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4715
4716 #ifdef KINFO_FILE_SIZE
4717 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4718 #endif
4719
4720 static int
xlate_fflags(int fflags)4721 xlate_fflags(int fflags)
4722 {
4723 static const struct {
4724 int fflag;
4725 int kf_fflag;
4726 } fflags_table[] = {
4727 { FAPPEND, KF_FLAG_APPEND },
4728 { FASYNC, KF_FLAG_ASYNC },
4729 { FFSYNC, KF_FLAG_FSYNC },
4730 { FHASLOCK, KF_FLAG_HASLOCK },
4731 { FNONBLOCK, KF_FLAG_NONBLOCK },
4732 { FREAD, KF_FLAG_READ },
4733 { FWRITE, KF_FLAG_WRITE },
4734 { O_CREAT, KF_FLAG_CREAT },
4735 { O_DIRECT, KF_FLAG_DIRECT },
4736 { O_EXCL, KF_FLAG_EXCL },
4737 { O_EXEC, KF_FLAG_EXEC },
4738 { O_EXLOCK, KF_FLAG_EXLOCK },
4739 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4740 { O_SHLOCK, KF_FLAG_SHLOCK },
4741 { O_TRUNC, KF_FLAG_TRUNC }
4742 };
4743 unsigned int i;
4744 int kflags;
4745
4746 kflags = 0;
4747 for (i = 0; i < nitems(fflags_table); i++)
4748 if (fflags & fflags_table[i].fflag)
4749 kflags |= fflags_table[i].kf_fflag;
4750 return (kflags);
4751 }
4752
4753 /* Trim unused data from kf_path by truncating the structure size. */
4754 void
pack_kinfo(struct kinfo_file * kif)4755 pack_kinfo(struct kinfo_file *kif)
4756 {
4757
4758 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4759 strlen(kif->kf_path) + 1;
4760 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4761 }
4762
4763 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4764 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4765 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4766 {
4767 int error;
4768
4769 bzero(kif, sizeof(*kif));
4770
4771 /* Set a default type to allow for empty fill_kinfo() methods. */
4772 kif->kf_type = KF_TYPE_UNKNOWN;
4773 kif->kf_flags = xlate_fflags(fp->f_flag);
4774 if (rightsp != NULL)
4775 kif->kf_cap_rights = *rightsp;
4776 else
4777 cap_rights_init_zero(&kif->kf_cap_rights);
4778 kif->kf_fd = fd;
4779 kif->kf_ref_count = refcount_load(&fp->f_count);
4780 kif->kf_offset = foffset_get(fp);
4781
4782 /*
4783 * This may drop the filedesc lock, so the 'fp' cannot be
4784 * accessed after this call.
4785 */
4786 error = fo_fill_kinfo(fp, kif, fdp);
4787 if (error == 0)
4788 kif->kf_status |= KF_ATTR_VALID;
4789 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4790 pack_kinfo(kif);
4791 else
4792 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4793 }
4794
4795 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4796 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4797 struct kinfo_file *kif, int flags)
4798 {
4799 int error;
4800
4801 bzero(kif, sizeof(*kif));
4802
4803 kif->kf_type = KF_TYPE_VNODE;
4804 error = vn_fill_kinfo_vnode(vp, kif);
4805 if (error == 0)
4806 kif->kf_status |= KF_ATTR_VALID;
4807 kif->kf_flags = xlate_fflags(fflags);
4808 cap_rights_init_zero(&kif->kf_cap_rights);
4809 kif->kf_fd = fd;
4810 kif->kf_ref_count = -1;
4811 kif->kf_offset = -1;
4812 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4813 pack_kinfo(kif);
4814 else
4815 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4816 vrele(vp);
4817 }
4818
4819 struct export_fd_buf {
4820 struct filedesc *fdp;
4821 struct pwddesc *pdp;
4822 struct sbuf *sb;
4823 ssize_t remainder;
4824 struct kinfo_file kif;
4825 int flags;
4826 };
4827
4828 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4829 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4830 {
4831 struct kinfo_file *kif;
4832
4833 kif = &efbuf->kif;
4834 if (efbuf->remainder != -1) {
4835 if (efbuf->remainder < kif->kf_structsize)
4836 return (ENOMEM);
4837 efbuf->remainder -= kif->kf_structsize;
4838 }
4839 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4840 return (sbuf_error(efbuf->sb));
4841 return (0);
4842 }
4843
4844 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4845 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4846 struct export_fd_buf *efbuf)
4847 {
4848 int error;
4849
4850 if (efbuf->remainder == 0)
4851 return (ENOMEM);
4852 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4853 efbuf->flags);
4854 FILEDESC_SUNLOCK(efbuf->fdp);
4855 error = export_kinfo_to_sb(efbuf);
4856 FILEDESC_SLOCK(efbuf->fdp);
4857 return (error);
4858 }
4859
4860 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4861 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4862 struct export_fd_buf *efbuf)
4863 {
4864 int error;
4865
4866 if (efbuf->remainder == 0)
4867 return (ENOMEM);
4868 if (efbuf->pdp != NULL)
4869 PWDDESC_XUNLOCK(efbuf->pdp);
4870 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4871 error = export_kinfo_to_sb(efbuf);
4872 if (efbuf->pdp != NULL)
4873 PWDDESC_XLOCK(efbuf->pdp);
4874 return (error);
4875 }
4876
4877 /*
4878 * Store a process file descriptor information to sbuf.
4879 *
4880 * Takes a locked proc as argument, and returns with the proc unlocked.
4881 */
4882 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4883 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4884 int flags)
4885 {
4886 struct file *fp;
4887 struct filedesc *fdp;
4888 struct pwddesc *pdp;
4889 struct export_fd_buf *efbuf;
4890 struct vnode *cttyvp, *textvp, *tracevp;
4891 struct pwd *pwd;
4892 int error, i;
4893 cap_rights_t rights;
4894
4895 PROC_LOCK_ASSERT(p, MA_OWNED);
4896
4897 /* ktrace vnode */
4898 tracevp = ktr_get_tracevp(p, true);
4899 /* text vnode */
4900 textvp = p->p_textvp;
4901 if (textvp != NULL)
4902 vrefact(textvp);
4903 /* Controlling tty. */
4904 cttyvp = NULL;
4905 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4906 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4907 if (cttyvp != NULL)
4908 vrefact(cttyvp);
4909 }
4910 fdp = fdhold(p);
4911 pdp = pdhold(p);
4912 PROC_UNLOCK(p);
4913
4914 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4915 efbuf->fdp = NULL;
4916 efbuf->pdp = NULL;
4917 efbuf->sb = sb;
4918 efbuf->remainder = maxlen;
4919 efbuf->flags = flags;
4920
4921 error = 0;
4922 if (tracevp != NULL)
4923 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4924 FREAD | FWRITE, efbuf);
4925 if (error == 0 && textvp != NULL)
4926 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4927 efbuf);
4928 if (error == 0 && cttyvp != NULL)
4929 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4930 FREAD | FWRITE, efbuf);
4931 if (error != 0 || pdp == NULL || fdp == NULL)
4932 goto fail;
4933 efbuf->fdp = fdp;
4934 efbuf->pdp = pdp;
4935 PWDDESC_XLOCK(pdp);
4936 pwd = pwd_hold_pwddesc(pdp);
4937 if (pwd != NULL) {
4938 /* working directory */
4939 if (pwd->pwd_cdir != NULL) {
4940 vrefact(pwd->pwd_cdir);
4941 error = export_vnode_to_sb(pwd->pwd_cdir,
4942 KF_FD_TYPE_CWD, FREAD, efbuf);
4943 }
4944 /* root directory */
4945 if (error == 0 && pwd->pwd_rdir != NULL) {
4946 vrefact(pwd->pwd_rdir);
4947 error = export_vnode_to_sb(pwd->pwd_rdir,
4948 KF_FD_TYPE_ROOT, FREAD, efbuf);
4949 }
4950 /* jail directory */
4951 if (error == 0 && pwd->pwd_jdir != NULL) {
4952 vrefact(pwd->pwd_jdir);
4953 error = export_vnode_to_sb(pwd->pwd_jdir,
4954 KF_FD_TYPE_JAIL, FREAD, efbuf);
4955 }
4956 }
4957 PWDDESC_XUNLOCK(pdp);
4958 if (error != 0)
4959 goto fail;
4960 if (pwd != NULL)
4961 pwd_drop(pwd);
4962 FILEDESC_SLOCK(fdp);
4963 if (refcount_load(&fdp->fd_refcnt) == 0)
4964 goto skip;
4965 FILEDESC_FOREACH_FP(fdp, i, fp) {
4966 #ifdef CAPABILITIES
4967 rights = *cap_rights(fdp, i);
4968 #else /* !CAPABILITIES */
4969 rights = cap_no_rights;
4970 #endif
4971 /*
4972 * Create sysctl entry. It is OK to drop the filedesc
4973 * lock inside of export_file_to_sb() as we will
4974 * re-validate and re-evaluate its properties when the
4975 * loop continues.
4976 */
4977 error = export_file_to_sb(fp, i, &rights, efbuf);
4978 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4979 break;
4980 }
4981 skip:
4982 FILEDESC_SUNLOCK(fdp);
4983 fail:
4984 if (fdp != NULL)
4985 fddrop(fdp);
4986 if (pdp != NULL)
4987 pddrop(pdp);
4988 free(efbuf, M_TEMP);
4989 return (error);
4990 }
4991
4992 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4993
4994 /*
4995 * Get per-process file descriptors for use by procstat(1), et al.
4996 */
4997 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4998 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4999 {
5000 struct sbuf sb;
5001 struct proc *p;
5002 ssize_t maxlen;
5003 u_int namelen;
5004 int error, error2, *name;
5005
5006 namelen = arg2;
5007 if (namelen != 1)
5008 return (EINVAL);
5009
5010 name = (int *)arg1;
5011
5012 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
5013 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5014 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5015 if (error != 0) {
5016 sbuf_delete(&sb);
5017 return (error);
5018 }
5019 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5020 error = kern_proc_filedesc_out(p, &sb, maxlen,
5021 KERN_FILEDESC_PACK_KINFO);
5022 error2 = sbuf_finish(&sb);
5023 sbuf_delete(&sb);
5024 return (error != 0 ? error : error2);
5025 }
5026
5027 #ifdef COMPAT_FREEBSD7
5028 #ifdef KINFO_OFILE_SIZE
5029 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
5030 #endif
5031
5032 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)5033 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
5034 {
5035
5036 okif->kf_structsize = sizeof(*okif);
5037 okif->kf_type = kif->kf_type;
5038 okif->kf_fd = kif->kf_fd;
5039 okif->kf_ref_count = kif->kf_ref_count;
5040 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
5041 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
5042 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
5043 okif->kf_offset = kif->kf_offset;
5044 if (kif->kf_type == KF_TYPE_VNODE)
5045 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
5046 else
5047 okif->kf_vnode_type = KF_VTYPE_VNON;
5048 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
5049 if (kif->kf_type == KF_TYPE_SOCKET) {
5050 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
5051 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
5052 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
5053 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
5054 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
5055 } else {
5056 okif->kf_sa_local.ss_family = AF_UNSPEC;
5057 okif->kf_sa_peer.ss_family = AF_UNSPEC;
5058 }
5059 }
5060
5061 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)5062 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
5063 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
5064 {
5065 int error;
5066
5067 vrefact(vp);
5068 PWDDESC_XUNLOCK(pdp);
5069 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
5070 kinfo_to_okinfo(kif, okif);
5071 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5072 PWDDESC_XLOCK(pdp);
5073 return (error);
5074 }
5075
5076 /*
5077 * Get per-process file descriptors for use by procstat(1), et al.
5078 */
5079 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)5080 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
5081 {
5082 struct kinfo_ofile *okif;
5083 struct kinfo_file *kif;
5084 struct filedesc *fdp;
5085 struct pwddesc *pdp;
5086 struct pwd *pwd;
5087 u_int namelen;
5088 int error, i, *name;
5089 struct file *fp;
5090 struct proc *p;
5091
5092 namelen = arg2;
5093 if (namelen != 1)
5094 return (EINVAL);
5095
5096 name = (int *)arg1;
5097 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5098 if (error != 0)
5099 return (error);
5100 fdp = fdhold(p);
5101 if (fdp != NULL)
5102 pdp = pdhold(p);
5103 PROC_UNLOCK(p);
5104 if (fdp == NULL || pdp == NULL) {
5105 if (fdp != NULL)
5106 fddrop(fdp);
5107 return (ENOENT);
5108 }
5109 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
5110 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
5111 PWDDESC_XLOCK(pdp);
5112 pwd = pwd_hold_pwddesc(pdp);
5113 if (pwd != NULL) {
5114 if (pwd->pwd_cdir != NULL)
5115 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
5116 okif, pdp, req);
5117 if (pwd->pwd_rdir != NULL)
5118 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
5119 okif, pdp, req);
5120 if (pwd->pwd_jdir != NULL)
5121 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
5122 okif, pdp, req);
5123 }
5124 PWDDESC_XUNLOCK(pdp);
5125 if (pwd != NULL)
5126 pwd_drop(pwd);
5127 FILEDESC_SLOCK(fdp);
5128 if (refcount_load(&fdp->fd_refcnt) == 0)
5129 goto skip;
5130 FILEDESC_FOREACH_FP(fdp, i, fp) {
5131 export_file_to_kinfo(fp, i, NULL, kif, fdp,
5132 KERN_FILEDESC_PACK_KINFO);
5133 FILEDESC_SUNLOCK(fdp);
5134 kinfo_to_okinfo(kif, okif);
5135 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5136 FILEDESC_SLOCK(fdp);
5137 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
5138 break;
5139 }
5140 skip:
5141 FILEDESC_SUNLOCK(fdp);
5142 fddrop(fdp);
5143 pddrop(pdp);
5144 free(kif, M_TEMP);
5145 free(okif, M_TEMP);
5146 return (0);
5147 }
5148
5149 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
5150 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
5151 "Process ofiledesc entries");
5152 #endif /* COMPAT_FREEBSD7 */
5153
5154 int
vntype_to_kinfo(int vtype)5155 vntype_to_kinfo(int vtype)
5156 {
5157 struct {
5158 int vtype;
5159 int kf_vtype;
5160 } vtypes_table[] = {
5161 { VBAD, KF_VTYPE_VBAD },
5162 { VBLK, KF_VTYPE_VBLK },
5163 { VCHR, KF_VTYPE_VCHR },
5164 { VDIR, KF_VTYPE_VDIR },
5165 { VFIFO, KF_VTYPE_VFIFO },
5166 { VLNK, KF_VTYPE_VLNK },
5167 { VNON, KF_VTYPE_VNON },
5168 { VREG, KF_VTYPE_VREG },
5169 { VSOCK, KF_VTYPE_VSOCK }
5170 };
5171 unsigned int i;
5172
5173 /*
5174 * Perform vtype translation.
5175 */
5176 for (i = 0; i < nitems(vtypes_table); i++)
5177 if (vtypes_table[i].vtype == vtype)
5178 return (vtypes_table[i].kf_vtype);
5179
5180 return (KF_VTYPE_UNKNOWN);
5181 }
5182
5183 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
5184 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
5185 "Process filedesc entries");
5186
5187 /*
5188 * Store a process current working directory information to sbuf.
5189 *
5190 * Takes a locked proc as argument, and returns with the proc unlocked.
5191 */
5192 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)5193 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
5194 {
5195 struct pwddesc *pdp;
5196 struct pwd *pwd;
5197 struct export_fd_buf *efbuf;
5198 struct vnode *cdir;
5199 int error;
5200
5201 PROC_LOCK_ASSERT(p, MA_OWNED);
5202
5203 pdp = pdhold(p);
5204 PROC_UNLOCK(p);
5205 if (pdp == NULL)
5206 return (EINVAL);
5207
5208 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5209 efbuf->fdp = NULL;
5210 efbuf->pdp = pdp;
5211 efbuf->sb = sb;
5212 efbuf->remainder = maxlen;
5213 efbuf->flags = 0;
5214
5215 PWDDESC_XLOCK(pdp);
5216 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5217 cdir = pwd->pwd_cdir;
5218 if (cdir == NULL) {
5219 error = EINVAL;
5220 } else {
5221 vrefact(cdir);
5222 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5223 }
5224 PWDDESC_XUNLOCK(pdp);
5225 pddrop(pdp);
5226 free(efbuf, M_TEMP);
5227 return (error);
5228 }
5229
5230 /*
5231 * Get per-process current working directory.
5232 */
5233 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5234 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5235 {
5236 struct sbuf sb;
5237 struct proc *p;
5238 ssize_t maxlen;
5239 u_int namelen;
5240 int error, error2, *name;
5241
5242 namelen = arg2;
5243 if (namelen != 1)
5244 return (EINVAL);
5245
5246 name = (int *)arg1;
5247
5248 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5249 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5250 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5251 if (error != 0) {
5252 sbuf_delete(&sb);
5253 return (error);
5254 }
5255 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5256 error = kern_proc_cwd_out(p, &sb, maxlen);
5257 error2 = sbuf_finish(&sb);
5258 sbuf_delete(&sb);
5259 return (error != 0 ? error : error2);
5260 }
5261
5262 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5263 sysctl_kern_proc_cwd, "Process current working directory");
5264
5265 #ifdef DDB
5266 /*
5267 * For the purposes of debugging, generate a human-readable string for the
5268 * file type.
5269 */
5270 static const char *
file_type_to_name(short type)5271 file_type_to_name(short type)
5272 {
5273
5274 switch (type) {
5275 case 0:
5276 return ("zero");
5277 case DTYPE_VNODE:
5278 return ("vnode");
5279 case DTYPE_SOCKET:
5280 return ("socket");
5281 case DTYPE_PIPE:
5282 return ("pipe");
5283 case DTYPE_FIFO:
5284 return ("fifo");
5285 case DTYPE_KQUEUE:
5286 return ("kqueue");
5287 case DTYPE_CRYPTO:
5288 return ("crypto");
5289 case DTYPE_MQUEUE:
5290 return ("mqueue");
5291 case DTYPE_SHM:
5292 return ("shm");
5293 case DTYPE_SEM:
5294 return ("ksem");
5295 case DTYPE_PTS:
5296 return ("pts");
5297 case DTYPE_DEV:
5298 return ("dev");
5299 case DTYPE_PROCDESC:
5300 return ("proc");
5301 case DTYPE_EVENTFD:
5302 return ("eventfd");
5303 case DTYPE_TIMERFD:
5304 return ("timerfd");
5305 case DTYPE_JAILDESC:
5306 return ("jail");
5307 default:
5308 return ("unkn");
5309 }
5310 }
5311
5312 /*
5313 * For the purposes of debugging, identify a process (if any, perhaps one of
5314 * many) that references the passed file in its file descriptor array. Return
5315 * NULL if none.
5316 */
5317 static struct proc *
file_to_first_proc(struct file * fp)5318 file_to_first_proc(struct file *fp)
5319 {
5320 struct filedesc *fdp;
5321 struct proc *p;
5322 int n;
5323
5324 FOREACH_PROC_IN_SYSTEM(p) {
5325 if (p->p_state == PRS_NEW)
5326 continue;
5327 fdp = p->p_fd;
5328 if (fdp == NULL)
5329 continue;
5330 for (n = 0; n < fdp->fd_nfiles; n++) {
5331 if (fp == fdp->fd_ofiles[n].fde_file)
5332 return (p);
5333 }
5334 }
5335 return (NULL);
5336 }
5337
5338 static void
db_print_file(struct file * fp,int header)5339 db_print_file(struct file *fp, int header)
5340 {
5341 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5342 struct proc *p;
5343
5344 if (header)
5345 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5346 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5347 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5348 "FCmd");
5349 p = file_to_first_proc(fp);
5350 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5351 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5352 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5353 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5354
5355 #undef XPTRWIDTH
5356 }
5357
DB_SHOW_COMMAND(file,db_show_file)5358 DB_SHOW_COMMAND(file, db_show_file)
5359 {
5360 struct file *fp;
5361
5362 if (!have_addr) {
5363 db_printf("usage: show file <addr>\n");
5364 return;
5365 }
5366 fp = (struct file *)addr;
5367 db_print_file(fp, 1);
5368 }
5369
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5370 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5371 {
5372 struct filedesc *fdp;
5373 struct file *fp;
5374 struct proc *p;
5375 int header;
5376 int n;
5377
5378 header = 1;
5379 FOREACH_PROC_IN_SYSTEM(p) {
5380 if (p->p_state == PRS_NEW)
5381 continue;
5382 if ((fdp = p->p_fd) == NULL)
5383 continue;
5384 for (n = 0; n < fdp->fd_nfiles; ++n) {
5385 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5386 continue;
5387 db_print_file(fp, header);
5388 header = 0;
5389 }
5390 }
5391 }
5392 #endif
5393
5394 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5395 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5396 &maxfilesperproc, 0, "Maximum files allowed open per process");
5397
5398 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5399 &maxfiles, 0, "Maximum number of files");
5400
5401 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5402 &openfiles, 0, "System-wide number of open files");
5403
5404 /* ARGSUSED*/
5405 static void
filelistinit(void * dummy)5406 filelistinit(void *dummy)
5407 {
5408
5409 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5410 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5411 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5412 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5413 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5414 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5415 /*
5416 * XXXMJG this is a temporary hack due to boot ordering issues against
5417 * the vnode zone.
5418 */
5419 vfs_smr = uma_zone_get_smr(pwd_zone);
5420 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5421 }
5422 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5423
5424 /*-------------------------------------------------------------------*/
5425
5426 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5427 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5428 int flags, struct thread *td)
5429 {
5430
5431 return (EBADF);
5432 }
5433
5434 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5435 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5436 struct thread *td)
5437 {
5438
5439 return (EINVAL);
5440 }
5441
5442 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5443 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5444 struct thread *td)
5445 {
5446
5447 return (EBADF);
5448 }
5449
5450 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5451 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5452 struct thread *td)
5453 {
5454
5455 return (0);
5456 }
5457
5458 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5459 badfo_kqfilter(struct file *fp, struct knote *kn)
5460 {
5461
5462 return (EBADF);
5463 }
5464
5465 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5466 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5467 {
5468
5469 return (EBADF);
5470 }
5471
5472 static int
badfo_close(struct file * fp,struct thread * td)5473 badfo_close(struct file *fp, struct thread *td)
5474 {
5475
5476 return (0);
5477 }
5478
5479 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5480 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5481 struct thread *td)
5482 {
5483
5484 return (EBADF);
5485 }
5486
5487 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5488 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5489 struct thread *td)
5490 {
5491
5492 return (EBADF);
5493 }
5494
5495 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5496 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5497 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5498 struct thread *td)
5499 {
5500
5501 return (EBADF);
5502 }
5503
5504 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5505 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5506 {
5507
5508 return (0);
5509 }
5510
5511 const struct fileops badfileops = {
5512 .fo_read = badfo_readwrite,
5513 .fo_write = badfo_readwrite,
5514 .fo_truncate = badfo_truncate,
5515 .fo_ioctl = badfo_ioctl,
5516 .fo_poll = badfo_poll,
5517 .fo_kqfilter = badfo_kqfilter,
5518 .fo_stat = badfo_stat,
5519 .fo_close = badfo_close,
5520 .fo_chmod = badfo_chmod,
5521 .fo_chown = badfo_chown,
5522 .fo_sendfile = badfo_sendfile,
5523 .fo_fill_kinfo = badfo_fill_kinfo,
5524 };
5525
5526 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5527 path_poll(struct file *fp, int events, struct ucred *active_cred,
5528 struct thread *td)
5529 {
5530 return (POLLNVAL);
5531 }
5532
5533 static int
path_close(struct file * fp,struct thread * td)5534 path_close(struct file *fp, struct thread *td)
5535 {
5536 MPASS(fp->f_type == DTYPE_VNODE);
5537 fp->f_ops = &badfileops;
5538 vrele(fp->f_vnode);
5539 return (0);
5540 }
5541
5542 const struct fileops path_fileops = {
5543 .fo_read = badfo_readwrite,
5544 .fo_write = badfo_readwrite,
5545 .fo_truncate = badfo_truncate,
5546 .fo_ioctl = badfo_ioctl,
5547 .fo_poll = path_poll,
5548 .fo_kqfilter = vn_kqfilter_opath,
5549 .fo_stat = vn_statfile,
5550 .fo_close = path_close,
5551 .fo_chmod = badfo_chmod,
5552 .fo_chown = badfo_chown,
5553 .fo_sendfile = badfo_sendfile,
5554 .fo_fill_kinfo = vn_fill_kinfo,
5555 .fo_cmp = vn_cmp,
5556 .fo_flags = DFLAG_PASSABLE,
5557 };
5558
5559 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5560 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5561 int flags, struct thread *td)
5562 {
5563
5564 return (EOPNOTSUPP);
5565 }
5566
5567 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5568 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5569 struct thread *td)
5570 {
5571
5572 return (EINVAL);
5573 }
5574
5575 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5576 invfo_ioctl(struct file *fp, u_long com, void *data,
5577 struct ucred *active_cred, struct thread *td)
5578 {
5579
5580 return (ENOTTY);
5581 }
5582
5583 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5584 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5585 struct thread *td)
5586 {
5587
5588 return (poll_no_poll(events));
5589 }
5590
5591 int
invfo_kqfilter(struct file * fp,struct knote * kn)5592 invfo_kqfilter(struct file *fp, struct knote *kn)
5593 {
5594
5595 return (EINVAL);
5596 }
5597
5598 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5599 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5600 struct thread *td)
5601 {
5602
5603 return (EINVAL);
5604 }
5605
5606 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5607 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5608 struct thread *td)
5609 {
5610
5611 return (EINVAL);
5612 }
5613
5614 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5615 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5616 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5617 struct thread *td)
5618 {
5619
5620 return (EINVAL);
5621 }
5622
5623 /*-------------------------------------------------------------------*/
5624
5625 /*
5626 * File Descriptor pseudo-device driver (/dev/fd/).
5627 *
5628 * Opening minor device N dup()s the file (if any) connected to file
5629 * descriptor N belonging to the calling process. Note that this driver
5630 * consists of only the ``open()'' routine, because all subsequent
5631 * references to this file will be direct to the other driver.
5632 *
5633 * XXX: we could give this one a cloning event handler if necessary.
5634 */
5635
5636 /* ARGSUSED */
5637 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5638 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5639 {
5640
5641 /*
5642 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5643 * the file descriptor being sought for duplication. The error
5644 * return ensures that the vnode for this device will be released
5645 * by vn_open. Open will detect this special error and take the
5646 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5647 * will simply report the error.
5648 */
5649 td->td_dupfd = dev2unit(dev);
5650 return (ENODEV);
5651 }
5652
5653 static struct cdevsw fildesc_cdevsw = {
5654 .d_version = D_VERSION,
5655 .d_open = fdopen,
5656 .d_name = "FD",
5657 };
5658
5659 static void
fildesc_drvinit(void * unused)5660 fildesc_drvinit(void *unused)
5661 {
5662 struct cdev *dev;
5663
5664 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5665 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5666 make_dev_alias(dev, "stdin");
5667 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5668 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5669 make_dev_alias(dev, "stdout");
5670 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5671 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5672 make_dev_alias(dev, "stderr");
5673 }
5674
5675 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5676