1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1991, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_quota.h"
34 #include "opt_ufs.h"
35 #include "opt_ffs.h"
36 #include "opt_ddb.h"
37
38 #include <sys/param.h>
39 #include <sys/gsb_crc32.h>
40 #include <sys/systm.h>
41 #include <sys/namei.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/taskqueue.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/fcntl.h>
53 #include <sys/ioccom.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/rwlock.h>
57 #include <sys/sysctl.h>
58 #include <sys/vmmeter.h>
59
60 #include <security/mac/mac_framework.h>
61
62 #include <ufs/ufs/dir.h>
63 #include <ufs/ufs/extattr.h>
64 #include <ufs/ufs/gjournal.h>
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/ufsmount.h>
67 #include <ufs/ufs/inode.h>
68 #include <ufs/ufs/ufs_extern.h>
69
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72
73 #include <vm/vm.h>
74 #include <vm/uma.h>
75 #include <vm/vm_page.h>
76
77 #include <geom/geom.h>
78 #include <geom/geom_vfs.h>
79
80 #include <ddb/ddb.h>
81
82 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2;
83 VFS_SMR_DECLARE;
84
85 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *);
86 static void ffs_ifree(struct ufsmount *ump, struct inode *ip);
87 static int ffs_sync_lazy(struct mount *mp);
88 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size);
89 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size);
90
91 static vfs_init_t ffs_init;
92 static vfs_uninit_t ffs_uninit;
93 static vfs_extattrctl_t ffs_extattrctl;
94 static vfs_cmount_t ffs_cmount;
95 static vfs_unmount_t ffs_unmount;
96 static vfs_mount_t ffs_mount;
97 static vfs_statfs_t ffs_statfs;
98 static vfs_fhtovp_t ffs_fhtovp;
99 static vfs_sync_t ffs_sync;
100
101 static struct vfsops ufs_vfsops = {
102 .vfs_extattrctl = ffs_extattrctl,
103 .vfs_fhtovp = ffs_fhtovp,
104 .vfs_init = ffs_init,
105 .vfs_mount = ffs_mount,
106 .vfs_cmount = ffs_cmount,
107 .vfs_quotactl = ufs_quotactl,
108 .vfs_root = vfs_cache_root,
109 .vfs_cachedroot = ufs_root,
110 .vfs_statfs = ffs_statfs,
111 .vfs_sync = ffs_sync,
112 .vfs_uninit = ffs_uninit,
113 .vfs_unmount = ffs_unmount,
114 .vfs_vget = ffs_vget,
115 .vfs_susp_clean = process_deferred_inactive,
116 };
117
118 VFS_SET(ufs_vfsops, ufs, VFCF_FILEREVINC);
119 MODULE_VERSION(ufs, 1);
120
121 static b_strategy_t ffs_geom_strategy;
122 static b_write_t ffs_bufwrite;
123
124 static struct buf_ops ffs_ops = {
125 .bop_name = "FFS",
126 .bop_write = ffs_bufwrite,
127 .bop_strategy = ffs_geom_strategy,
128 .bop_sync = bufsync,
129 #ifdef NO_FFS_SNAPSHOT
130 .bop_bdflush = bufbdflush,
131 #else
132 .bop_bdflush = ffs_bdflush,
133 #endif
134 };
135
136 /*
137 * Note that userquota and groupquota options are not currently used
138 * by UFS/FFS code and generally mount(8) does not pass those options
139 * from userland, but they can be passed by loader(8) via
140 * vfs.root.mountfrom.options.
141 */
142 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr",
143 "noclusterw", "noexec", "export", "force", "from", "groupquota",
144 "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir",
145 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL };
146
147 static int ffs_enxio_enable = 1;
148 SYSCTL_DECL(_vfs_ffs);
149 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN,
150 &ffs_enxio_enable, 0,
151 "enable mapping of other disk I/O errors to ENXIO");
152
153 /*
154 * Return buffer with the contents of block "offset" from the beginning of
155 * directory "ip". If "res" is non-zero, fill it in with a pointer to the
156 * remaining space in the directory.
157 */
158 static int
ffs_blkatoff(struct vnode * vp,off_t offset,char ** res,struct buf ** bpp)159 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp)
160 {
161 struct inode *ip;
162 struct fs *fs;
163 struct buf *bp;
164 ufs_lbn_t lbn;
165 int bsize, error;
166
167 ip = VTOI(vp);
168 fs = ITOFS(ip);
169 lbn = lblkno(fs, offset);
170 bsize = blksize(fs, ip, lbn);
171
172 *bpp = NULL;
173 error = bread(vp, lbn, bsize, NOCRED, &bp);
174 if (error) {
175 return (error);
176 }
177 if (res)
178 *res = (char *)bp->b_data + blkoff(fs, offset);
179 *bpp = bp;
180 return (0);
181 }
182
183 /*
184 * Load up the contents of an inode and copy the appropriate pieces
185 * to the incore copy.
186 */
187 static int
ffs_load_inode(struct buf * bp,struct inode * ip,struct fs * fs,ino_t ino)188 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino)
189 {
190 struct ufs1_dinode *dip1;
191 struct ufs2_dinode *dip2;
192 int error;
193
194 if (I_IS_UFS1(ip)) {
195 dip1 = ip->i_din1;
196 *dip1 =
197 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
198 ip->i_mode = dip1->di_mode;
199 ip->i_nlink = dip1->di_nlink;
200 ip->i_effnlink = dip1->di_nlink;
201 ip->i_size = dip1->di_size;
202 ip->i_flags = dip1->di_flags;
203 ip->i_gen = dip1->di_gen;
204 ip->i_uid = dip1->di_uid;
205 ip->i_gid = dip1->di_gid;
206 if (ffs_oldfscompat_inode_read(fs, ip->i_dp, time_second) &&
207 fs->fs_ronly == 0)
208 UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
209 return (0);
210 }
211 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
212 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 &&
213 !ffs_fsfail_cleanup(ITOUMP(ip), error)) {
214 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt,
215 (intmax_t)ino);
216 return (error);
217 }
218 *ip->i_din2 = *dip2;
219 dip2 = ip->i_din2;
220 ip->i_mode = dip2->di_mode;
221 ip->i_nlink = dip2->di_nlink;
222 ip->i_effnlink = dip2->di_nlink;
223 ip->i_size = dip2->di_size;
224 ip->i_flags = dip2->di_flags;
225 ip->i_gen = dip2->di_gen;
226 ip->i_uid = dip2->di_uid;
227 ip->i_gid = dip2->di_gid;
228 if (ffs_oldfscompat_inode_read(fs, ip->i_dp, time_second) &&
229 fs->fs_ronly == 0)
230 UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
231 return (0);
232 }
233
234 /*
235 * Verify that a filesystem block number is a valid data block.
236 * This routine is only called on untrusted filesystems.
237 */
238 static int
ffs_check_blkno(struct mount * mp,ino_t inum,ufs2_daddr_t daddr,int blksize)239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize)
240 {
241 struct fs *fs;
242 struct ufsmount *ump;
243 ufs2_daddr_t end_daddr;
244 int cg, havemtx;
245
246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0,
247 ("ffs_check_blkno called on a trusted file system"));
248 ump = VFSTOUFS(mp);
249 fs = ump->um_fs;
250 cg = dtog(fs, daddr);
251 end_daddr = daddr + numfrags(fs, blksize);
252 /*
253 * Verify that the block number is a valid data block. Also check
254 * that it does not point to an inode block or a superblock. Accept
255 * blocks that are unalloacted (0) or part of snapshot metadata
256 * (BLK_NOCOPY or BLK_SNAP).
257 *
258 * Thus, the block must be in a valid range for the filesystem and
259 * either in the space before a backup superblock (except the first
260 * cylinder group where that space is used by the bootstrap code) or
261 * after the inode blocks and before the end of the cylinder group.
262 */
263 if ((uint64_t)daddr <= BLK_SNAP ||
264 ((uint64_t)end_daddr <= fs->fs_size &&
265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) ||
266 (daddr >= cgdmin(fs, cg) &&
267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg))))
268 return (0);
269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0)
270 UFS_LOCK(ump);
271 if (ppsratecheck(&ump->um_last_integritymsg,
272 &ump->um_secs_integritymsg, 1)) {
273 UFS_UNLOCK(ump);
274 uprintf("\n%s: inode %jd, out-of-range indirect block "
275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr);
276 if (havemtx)
277 UFS_LOCK(ump);
278 } else if (!havemtx)
279 UFS_UNLOCK(ump);
280 return (EINTEGRITY);
281 }
282
283 /*
284 * On first ENXIO error, initiate an asynchronous forcible unmount.
285 * Used to unmount filesystems whose underlying media has gone away.
286 *
287 * Return true if a cleanup is in progress.
288 */
289 int
ffs_fsfail_cleanup(struct ufsmount * ump,int error)290 ffs_fsfail_cleanup(struct ufsmount *ump, int error)
291 {
292 int retval;
293
294 UFS_LOCK(ump);
295 retval = ffs_fsfail_cleanup_locked(ump, error);
296 UFS_UNLOCK(ump);
297 return (retval);
298 }
299
300 int
ffs_fsfail_cleanup_locked(struct ufsmount * ump,int error)301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error)
302 {
303 mtx_assert(UFS_MTX(ump), MA_OWNED);
304 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) {
305 ump->um_flags |= UM_FSFAIL_CLEANUP;
306 if (ump->um_mountp == rootvnode->v_mount)
307 panic("UFS: root fs would be forcibly unmounted");
308
309 /*
310 * Queue an async forced unmount.
311 */
312 vfs_ref(ump->um_mountp);
313 dounmount(ump->um_mountp,
314 MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread);
315 printf("UFS: forcibly unmounting %s from %s\n",
316 ump->um_mountp->mnt_stat.f_mntfromname,
317 ump->um_mountp->mnt_stat.f_mntonname);
318 }
319 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0);
320 }
321
322 /*
323 * Wrapper used during ENXIO cleanup to allocate empty buffers when
324 * the kernel is unable to read the real one. They are needed so that
325 * the soft updates code can use them to unwind its dependencies.
326 */
327 int
ffs_breadz(struct ufsmount * ump,struct vnode * vp,daddr_t lblkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)328 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno,
329 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt,
330 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *),
331 struct buf **bpp)
332 {
333 int error;
334
335 flags |= GB_CVTENXIO;
336 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt,
337 cred, flags, ckhashfunc, bpp);
338 if (error != 0 && ffs_fsfail_cleanup(ump, error)) {
339 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp);
340 KASSERT(error == 0, ("getblkx failed"));
341 vfs_bio_bzero_buf(*bpp, 0, size);
342 }
343 return (error);
344 }
345
346 static int
ffs_mount(struct mount * mp)347 ffs_mount(struct mount *mp)
348 {
349 struct vnode *devvp, *odevvp;
350 struct thread *td;
351 struct ufsmount *ump = NULL;
352 struct fs *fs;
353 int error, flags;
354 int error1 __diagused;
355 uint64_t mntorflags, saved_mnt_flag;
356 accmode_t accmode;
357 struct nameidata ndp;
358 char *fspec;
359 bool mounted_softdep;
360
361 td = curthread;
362 if (vfs_filteropt(mp->mnt_optnew, ffs_opts))
363 return (EINVAL);
364 if (uma_inode == NULL) {
365 uma_inode = uma_zcreate("FFS inode",
366 sizeof(struct inode), NULL, NULL, NULL, NULL,
367 UMA_ALIGN_PTR, 0);
368 uma_ufs1 = uma_zcreate("FFS1 dinode",
369 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL,
370 UMA_ALIGN_PTR, 0);
371 uma_ufs2 = uma_zcreate("FFS2 dinode",
372 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL,
373 UMA_ALIGN_PTR, 0);
374 VFS_SMR_ZONE_SET(uma_inode);
375 }
376
377 vfs_deleteopt(mp->mnt_optnew, "groupquota");
378 vfs_deleteopt(mp->mnt_optnew, "userquota");
379
380 fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
381 if (error)
382 return (error);
383
384 mntorflags = 0;
385 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0)
386 mntorflags |= MNT_UNTRUSTED;
387
388 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0)
389 mntorflags |= MNT_ACLS;
390
391 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) {
392 mntorflags |= MNT_SNAPSHOT;
393 /*
394 * Once we have set the MNT_SNAPSHOT flag, do not
395 * persist "snapshot" in the options list.
396 */
397 vfs_deleteopt(mp->mnt_optnew, "snapshot");
398 vfs_deleteopt(mp->mnt_opt, "snapshot");
399 }
400
401 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) {
402 if (mntorflags & MNT_ACLS) {
403 vfs_mount_error(mp,
404 "\"acls\" and \"nfsv4acls\" options "
405 "are mutually exclusive");
406 return (EINVAL);
407 }
408 mntorflags |= MNT_NFS4ACLS;
409 }
410
411 MNT_ILOCK(mp);
412 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP;
413 mp->mnt_flag |= mntorflags;
414 MNT_IUNLOCK(mp);
415
416 /*
417 * If this is a snapshot request, take the snapshot.
418 */
419 if (mp->mnt_flag & MNT_SNAPSHOT) {
420 if ((mp->mnt_flag & MNT_UPDATE) == 0)
421 return (EINVAL);
422 return (ffs_snapshot(mp, fspec));
423 }
424
425 /*
426 * Must not call namei() while owning busy ref.
427 */
428 if (mp->mnt_flag & MNT_UPDATE)
429 vfs_unbusy(mp);
430
431 /*
432 * Not an update, or updating the name: look up the name
433 * and verify that it refers to a sensible disk device.
434 */
435 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec);
436 error = namei(&ndp);
437 if ((mp->mnt_flag & MNT_UPDATE) != 0) {
438 /*
439 * Unmount does not start if MNT_UPDATE is set. Mount
440 * update busies mp before setting MNT_UPDATE. We
441 * must be able to retain our busy ref successfully,
442 * without sleep.
443 */
444 error1 = vfs_busy(mp, MBF_NOWAIT);
445 MPASS(error1 == 0);
446 }
447 if (error != 0)
448 return (error);
449 NDFREE_PNBUF(&ndp);
450 if (!vn_isdisk_error(ndp.ni_vp, &error)) {
451 vput(ndp.ni_vp);
452 return (error);
453 }
454
455 /*
456 * If mount by non-root, then verify that user has necessary
457 * permissions on the device.
458 */
459 accmode = VREAD;
460 if ((mp->mnt_flag & MNT_RDONLY) == 0)
461 accmode |= VWRITE;
462 error = VOP_ACCESS(ndp.ni_vp, accmode, td->td_ucred, td);
463 if (error)
464 error = priv_check(td, PRIV_VFS_MOUNT_PERM);
465 if (error) {
466 vput(ndp.ni_vp);
467 return (error);
468 }
469
470 /*
471 * New mount
472 *
473 * We need the name for the mount point (also used for
474 * "last mounted on") copied in. If an error occurs,
475 * the mount point is discarded by the upper level code.
476 * Note that vfs_mount_alloc() populates f_mntonname for us.
477 */
478 if ((mp->mnt_flag & MNT_UPDATE) == 0) {
479 if ((error = ffs_mountfs(ndp.ni_vp, mp, td)) != 0) {
480 vrele(ndp.ni_vp);
481 return (error);
482 }
483 } else {
484 /*
485 * When updating, check whether changing from read-only to
486 * read/write; if there is no device name, that's all we do.
487 */
488 ump = VFSTOUFS(mp);
489 fs = ump->um_fs;
490 odevvp = ump->um_odevvp;
491 devvp = ump->um_devvp;
492
493 /*
494 * If it's not the same vnode, or at least the same device
495 * then it's not correct.
496 */
497 if (ndp.ni_vp->v_rdev != ump->um_odevvp->v_rdev)
498 error = EINVAL; /* needs translation */
499 vput(ndp.ni_vp);
500 if (error)
501 return (error);
502 if (fs->fs_ronly == 0 &&
503 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
504 /*
505 * Flush any dirty data and suspend filesystem.
506 */
507 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
508 return (error);
509 error = vfs_write_suspend_umnt(mp);
510 if (error != 0)
511 return (error);
512
513 fs->fs_ronly = 1;
514 if (MOUNTEDSOFTDEP(mp)) {
515 MNT_ILOCK(mp);
516 mp->mnt_flag &= ~MNT_SOFTDEP;
517 MNT_IUNLOCK(mp);
518 mounted_softdep = true;
519 } else
520 mounted_softdep = false;
521
522 /*
523 * Check for and optionally get rid of files open
524 * for writing.
525 */
526 flags = WRITECLOSE;
527 if (mp->mnt_flag & MNT_FORCE)
528 flags |= FORCECLOSE;
529 if (mounted_softdep) {
530 error = softdep_flushfiles(mp, flags, td);
531 } else {
532 error = ffs_flushfiles(mp, flags, td);
533 }
534 if (error) {
535 fs->fs_ronly = 0;
536 if (mounted_softdep) {
537 MNT_ILOCK(mp);
538 mp->mnt_flag |= MNT_SOFTDEP;
539 MNT_IUNLOCK(mp);
540 }
541 vfs_write_resume(mp, 0);
542 return (error);
543 }
544
545 if (fs->fs_pendingblocks != 0 ||
546 fs->fs_pendinginodes != 0) {
547 printf("WARNING: %s Update error: blocks %jd "
548 "files %d\n", fs->fs_fsmnt,
549 (intmax_t)fs->fs_pendingblocks,
550 fs->fs_pendinginodes);
551 fs->fs_pendingblocks = 0;
552 fs->fs_pendinginodes = 0;
553 }
554 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0)
555 fs->fs_clean = 1;
556 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
557 fs->fs_ronly = 0;
558 fs->fs_clean = 0;
559 if (mounted_softdep) {
560 MNT_ILOCK(mp);
561 mp->mnt_flag |= MNT_SOFTDEP;
562 MNT_IUNLOCK(mp);
563 }
564 vfs_write_resume(mp, 0);
565 return (error);
566 }
567 if (mounted_softdep)
568 softdep_unmount(mp);
569 g_topology_lock();
570 /*
571 * Drop our write and exclusive access.
572 */
573 g_access(ump->um_cp, 0, -1, -1);
574 g_topology_unlock();
575 MNT_ILOCK(mp);
576 mp->mnt_flag |= MNT_RDONLY;
577 MNT_IUNLOCK(mp);
578 /*
579 * Allow the writers to note that filesystem
580 * is ro now.
581 */
582 vfs_write_resume(mp, 0);
583 }
584 if ((mp->mnt_flag & MNT_RELOAD) &&
585 (error = ffs_reload(mp, 0)) != 0) {
586 return (error);
587 } else {
588 /* ffs_reload replaces the superblock structure */
589 fs = ump->um_fs;
590 }
591 if (fs->fs_ronly &&
592 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
593 /*
594 * If upgrade to read-write by non-root, then verify
595 * that user has necessary permissions on the device.
596 */
597 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY);
598 error = VOP_ACCESS(odevvp, VREAD | VWRITE,
599 td->td_ucred, td);
600 if (error)
601 error = priv_check(td, PRIV_VFS_MOUNT_PERM);
602 VOP_UNLOCK(odevvp);
603 if (error) {
604 return (error);
605 }
606 fs->fs_flags &= ~FS_UNCLEAN;
607 if (fs->fs_clean == 0) {
608 fs->fs_flags |= FS_UNCLEAN;
609 if ((mp->mnt_flag & MNT_FORCE) ||
610 ((fs->fs_flags &
611 (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
612 (fs->fs_flags & FS_DOSOFTDEP))) {
613 printf("WARNING: %s was not properly "
614 "dismounted\n",
615 mp->mnt_stat.f_mntonname);
616 } else {
617 vfs_mount_error(mp,
618 "R/W mount of %s denied. %s.%s",
619 mp->mnt_stat.f_mntonname,
620 "Filesystem is not clean - run fsck",
621 (fs->fs_flags & FS_SUJ) == 0 ? "" :
622 " Forced mount will invalidate"
623 " journal contents");
624 return (EPERM);
625 }
626 }
627 g_topology_lock();
628 /*
629 * Request exclusive write access.
630 */
631 error = g_access(ump->um_cp, 0, 1, 1);
632 g_topology_unlock();
633 if (error)
634 return (error);
635 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
636 return (error);
637 error = vfs_write_suspend_umnt(mp);
638 if (error != 0)
639 return (error);
640 fs->fs_ronly = 0;
641 MNT_ILOCK(mp);
642 saved_mnt_flag = MNT_RDONLY;
643 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag &
644 MNT_ASYNC) != 0)
645 saved_mnt_flag |= MNT_ASYNC;
646 mp->mnt_flag &= ~saved_mnt_flag;
647 MNT_IUNLOCK(mp);
648 fs->fs_mtime = time_second;
649 /* check to see if we need to start softdep */
650 if ((fs->fs_flags & FS_DOSOFTDEP) &&
651 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){
652 fs->fs_ronly = 1;
653 MNT_ILOCK(mp);
654 mp->mnt_flag |= saved_mnt_flag;
655 MNT_IUNLOCK(mp);
656 vfs_write_resume(mp, 0);
657 return (error);
658 }
659 fs->fs_clean = 0;
660 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
661 fs->fs_ronly = 1;
662 if ((fs->fs_flags & FS_DOSOFTDEP) != 0)
663 softdep_unmount(mp);
664 MNT_ILOCK(mp);
665 mp->mnt_flag |= saved_mnt_flag;
666 MNT_IUNLOCK(mp);
667 vfs_write_resume(mp, 0);
668 return (error);
669 }
670 if (fs->fs_snapinum[0] != 0)
671 ffs_snapshot_mount(mp);
672 vfs_write_resume(mp, 0);
673 }
674 /*
675 * Soft updates is incompatible with "async",
676 * so if we are doing softupdates stop the user
677 * from setting the async flag in an update.
678 * Softdep_mount() clears it in an initial mount
679 * or ro->rw remount.
680 */
681 if (MOUNTEDSOFTDEP(mp)) {
682 /* XXX: Reset too late ? */
683 MNT_ILOCK(mp);
684 mp->mnt_flag &= ~MNT_ASYNC;
685 MNT_IUNLOCK(mp);
686 }
687 /*
688 * Keep MNT_ACLS flag if it is stored in superblock.
689 */
690 if ((fs->fs_flags & FS_ACLS) != 0) {
691 /* XXX: Set too late ? */
692 MNT_ILOCK(mp);
693 mp->mnt_flag |= MNT_ACLS;
694 MNT_IUNLOCK(mp);
695 }
696
697 if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
698 /* XXX: Set too late ? */
699 MNT_ILOCK(mp);
700 mp->mnt_flag |= MNT_NFS4ACLS;
701 MNT_IUNLOCK(mp);
702 }
703
704 }
705
706 MNT_ILOCK(mp);
707 /*
708 * This is racy versus lookup, see ufs_fplookup_vexec for details.
709 */
710 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0)
711 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp);
712 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0)
713 mp->mnt_kern_flag |= MNTK_FPLOOKUP;
714 MNT_IUNLOCK(mp);
715
716 vfs_mountedfrom(mp, fspec);
717 return (0);
718 }
719
720 /*
721 * Compatibility with old mount system call.
722 */
723
724 static int
ffs_cmount(struct mntarg * ma,void * data,uint64_t flags)725 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags)
726 {
727 struct ufs_args args;
728 int error;
729
730 if (data == NULL)
731 return (EINVAL);
732 error = copyin(data, &args, sizeof args);
733 if (error)
734 return (error);
735
736 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN);
737 ma = mount_arg(ma, "export", &args.export, sizeof(args.export));
738 error = kernel_mount(ma, flags);
739
740 return (error);
741 }
742
743 /*
744 * Reload all incore data for a filesystem (used after running fsck on
745 * the root filesystem and finding things to fix). If the 'force' flag
746 * is 0, the filesystem must be mounted read-only.
747 *
748 * Things to do to update the mount:
749 * 1) invalidate all cached meta-data.
750 * 2) re-read superblock from disk.
751 * 3) If requested, clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags
752 * to allow secondary writers.
753 * 4) invalidate all cached file data.
754 * 5) re-read inode data for all active vnodes.
755 */
756 int
ffs_reload(struct mount * mp,int flags)757 ffs_reload(struct mount *mp, int flags)
758 {
759 struct vnode *vp, *mvp, *devvp;
760 struct inode *ip;
761 struct buf *bp;
762 struct fs *fs, *newfs;
763 struct ufsmount *ump;
764 int error;
765
766 ump = VFSTOUFS(mp);
767
768 MNT_ILOCK(mp);
769 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) {
770 MNT_IUNLOCK(mp);
771 return (EINVAL);
772 }
773 MNT_IUNLOCK(mp);
774
775 /*
776 * Step 1: invalidate all cached meta-data.
777 */
778 devvp = VFSTOUFS(mp)->um_devvp;
779 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
780 if (vinvalbuf(devvp, 0, 0, 0) != 0)
781 panic("ffs_reload: dirty1");
782 VOP_UNLOCK(devvp);
783
784 /*
785 * Step 2: re-read superblock from disk.
786 */
787 if ((error = ffs_sbget(devvp, &newfs, UFS_STDSB, 0, M_UFSMNT,
788 ffs_use_bread)) != 0)
789 return (error);
790 /*
791 * Replace our superblock with the new superblock. Preserve
792 * our read-only status.
793 */
794 fs = VFSTOUFS(mp)->um_fs;
795 newfs->fs_ronly = fs->fs_ronly;
796 free(fs->fs_csp, M_UFSMNT);
797 free(fs->fs_si, M_UFSMNT);
798 free(fs, M_UFSMNT);
799 fs = VFSTOUFS(mp)->um_fs = newfs;
800 ump->um_bsize = fs->fs_bsize;
801 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
802 UFS_LOCK(ump);
803 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
804 printf("WARNING: %s: reload pending error: blocks %jd "
805 "files %d\n", mp->mnt_stat.f_mntonname,
806 (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes);
807 fs->fs_pendingblocks = 0;
808 fs->fs_pendinginodes = 0;
809 }
810 UFS_UNLOCK(ump);
811 /*
812 * Step 3: If requested, clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags
813 * to allow secondary writers.
814 */
815 if ((flags & FFSR_UNSUSPEND) != 0) {
816 MNT_ILOCK(mp);
817 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
818 wakeup(&mp->mnt_flag);
819 MNT_IUNLOCK(mp);
820 }
821
822 loop:
823 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
824 /*
825 * Skip syncer vnode.
826 */
827 if (vp->v_type == VNON) {
828 VI_UNLOCK(vp);
829 continue;
830 }
831 /*
832 * Step 4: invalidate all cached file data.
833 */
834 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
835 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
836 goto loop;
837 }
838 if (vinvalbuf(vp, 0, 0, 0))
839 panic("ffs_reload: dirty2");
840 /*
841 * Step 5: re-read inode data for all active vnodes.
842 */
843 ip = VTOI(vp);
844 error =
845 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
846 (int)fs->fs_bsize, NOCRED, &bp);
847 if (error) {
848 vput(vp);
849 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
850 return (error);
851 }
852 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) {
853 brelse(bp);
854 vput(vp);
855 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
856 return (error);
857 }
858 ip->i_effnlink = ip->i_nlink;
859 brelse(bp);
860 vput(vp);
861 }
862 return (0);
863 }
864
865 /*
866 * Common code for mount and mountroot
867 */
868 static int
ffs_mountfs(struct vnode * odevvp,struct mount * mp,struct thread * td)869 ffs_mountfs(struct vnode *odevvp, struct mount *mp, struct thread *td)
870 {
871 struct ufsmount *ump;
872 struct fs *fs;
873 struct cdev *dev;
874 int error, i, len, ronly;
875 struct ucred *cred;
876 struct g_consumer *cp;
877 struct mount *nmp;
878 struct vnode *devvp;
879 int candelete, canspeedup;
880
881 fs = NULL;
882 ump = NULL;
883 cred = td ? td->td_ucred : NOCRED;
884 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
885
886 devvp = mntfs_allocvp(mp, odevvp);
887 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp"));
888 dev = devvp->v_rdev;
889 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data"));
890 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0,
891 (uintptr_t)mp) == 0) {
892 mntfs_freevp(devvp);
893 return (EBUSY);
894 }
895 g_topology_lock();
896 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1);
897 g_topology_unlock();
898 if (error != 0) {
899 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
900 mntfs_freevp(devvp);
901 return (error);
902 }
903 dev_ref(dev);
904 devvp->v_bufobj.bo_ops = &ffs_ops;
905 BO_LOCK(&odevvp->v_bufobj);
906 odevvp->v_bufobj.bo_flag |= BO_NOBUFS;
907 BO_UNLOCK(&odevvp->v_bufobj);
908 VOP_UNLOCK(devvp);
909 if (dev->si_iosize_max != 0)
910 mp->mnt_iosize_max = dev->si_iosize_max;
911 if (mp->mnt_iosize_max > maxphys)
912 mp->mnt_iosize_max = maxphys;
913 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) {
914 error = EINVAL;
915 vfs_mount_error(mp,
916 "Invalid sectorsize %d for superblock size %d",
917 cp->provider->sectorsize, SBLOCKSIZE);
918 goto out;
919 }
920 /* fetch the superblock and summary information */
921 if ((mp->mnt_flag & (MNT_ROOTFS | MNT_FORCE)) != 0)
922 error = ffs_sbsearch(devvp, &fs, 0, M_UFSMNT, ffs_use_bread);
923 else
924 error = ffs_sbget(devvp, &fs, UFS_STDSB, 0, M_UFSMNT,
925 ffs_use_bread);
926 if (error != 0)
927 goto out;
928 fs->fs_flags &= ~FS_UNCLEAN;
929 if (fs->fs_clean == 0) {
930 fs->fs_flags |= FS_UNCLEAN;
931 if (ronly || (mp->mnt_flag & MNT_FORCE) ||
932 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
933 (fs->fs_flags & FS_DOSOFTDEP))) {
934 printf("WARNING: %s was not properly dismounted\n",
935 mp->mnt_stat.f_mntonname);
936 } else {
937 vfs_mount_error(mp, "R/W mount on %s denied. "
938 "Filesystem is not clean - run fsck.%s",
939 mp->mnt_stat.f_mntonname,
940 (fs->fs_flags & FS_SUJ) == 0 ? "" :
941 " Forced mount will invalidate journal contents");
942 error = EPERM;
943 goto out;
944 }
945 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) &&
946 (mp->mnt_flag & MNT_FORCE)) {
947 printf("WARNING: %s: lost blocks %jd files %d\n",
948 mp->mnt_stat.f_mntonname,
949 (intmax_t)fs->fs_pendingblocks,
950 fs->fs_pendinginodes);
951 fs->fs_pendingblocks = 0;
952 fs->fs_pendinginodes = 0;
953 }
954 }
955 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
956 printf("WARNING: %s: mount pending error: blocks %jd "
957 "files %d\n", mp->mnt_stat.f_mntonname,
958 (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes);
959 fs->fs_pendingblocks = 0;
960 fs->fs_pendinginodes = 0;
961 }
962 if ((fs->fs_flags & FS_GJOURNAL) != 0) {
963 #ifdef UFS_GJOURNAL
964 /*
965 * Get journal provider name.
966 */
967 len = 1024;
968 mp->mnt_gjprovider = malloc((uint64_t)len, M_UFSMNT, M_WAITOK);
969 if (g_io_getattr("GJOURNAL::provider", cp, &len,
970 mp->mnt_gjprovider) == 0) {
971 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len,
972 M_UFSMNT, M_WAITOK);
973 MNT_ILOCK(mp);
974 mp->mnt_flag |= MNT_GJOURNAL;
975 MNT_IUNLOCK(mp);
976 } else {
977 if ((mp->mnt_flag & MNT_RDONLY) == 0)
978 printf("WARNING: %s: GJOURNAL flag on fs "
979 "but no gjournal provider below\n",
980 mp->mnt_stat.f_mntonname);
981 free(mp->mnt_gjprovider, M_UFSMNT);
982 mp->mnt_gjprovider = NULL;
983 }
984 #else
985 printf("WARNING: %s: GJOURNAL flag on fs but no "
986 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname);
987 #endif
988 } else {
989 mp->mnt_gjprovider = NULL;
990 }
991 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
992 ump->um_cp = cp;
993 ump->um_bo = &devvp->v_bufobj;
994 ump->um_fs = fs;
995 if (fs->fs_magic == FS_UFS1_MAGIC) {
996 ump->um_fstype = UFS1;
997 ump->um_balloc = ffs_balloc_ufs1;
998 } else {
999 ump->um_fstype = UFS2;
1000 ump->um_balloc = ffs_balloc_ufs2;
1001 }
1002 ump->um_blkatoff = ffs_blkatoff;
1003 ump->um_truncate = ffs_truncate;
1004 ump->um_update = ffs_update;
1005 ump->um_valloc = ffs_valloc;
1006 ump->um_vfree = ffs_vfree;
1007 ump->um_ifree = ffs_ifree;
1008 ump->um_rdonly = ffs_rdonly;
1009 ump->um_snapgone = ffs_snapgone;
1010 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0)
1011 ump->um_check_blkno = ffs_check_blkno;
1012 else
1013 ump->um_check_blkno = NULL;
1014 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF);
1015 sx_init(&ump->um_checkpath_lock, "uchpth");
1016 fs->fs_ronly = ronly;
1017 fs->fs_active = NULL;
1018 mp->mnt_data = ump;
1019 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0];
1020 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
1021 nmp = NULL;
1022 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 ||
1023 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) {
1024 if (nmp)
1025 vfs_rel(nmp);
1026 vfs_getnewfsid(mp);
1027 }
1028 ump->um_bsize = fs->fs_bsize;
1029 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1030 MNT_ILOCK(mp);
1031 mp->mnt_flag |= MNT_LOCAL;
1032 MNT_IUNLOCK(mp);
1033 if ((fs->fs_flags & FS_MULTILABEL) != 0) {
1034 #ifdef MAC
1035 MNT_ILOCK(mp);
1036 mp->mnt_flag |= MNT_MULTILABEL;
1037 MNT_IUNLOCK(mp);
1038 #else
1039 printf("WARNING: %s: multilabel flag on fs but "
1040 "no MAC support\n", mp->mnt_stat.f_mntonname);
1041 #endif
1042 }
1043 if ((fs->fs_flags & FS_ACLS) != 0) {
1044 #ifdef UFS_ACL
1045 MNT_ILOCK(mp);
1046
1047 if (mp->mnt_flag & MNT_NFS4ACLS)
1048 printf("WARNING: %s: ACLs flag on fs conflicts with "
1049 "\"nfsv4acls\" mount option; option ignored\n",
1050 mp->mnt_stat.f_mntonname);
1051 mp->mnt_flag &= ~MNT_NFS4ACLS;
1052 mp->mnt_flag |= MNT_ACLS;
1053
1054 MNT_IUNLOCK(mp);
1055 #else
1056 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n",
1057 mp->mnt_stat.f_mntonname);
1058 #endif
1059 }
1060 if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
1061 #ifdef UFS_ACL
1062 MNT_ILOCK(mp);
1063
1064 if (mp->mnt_flag & MNT_ACLS)
1065 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
1066 "with \"acls\" mount option; option ignored\n",
1067 mp->mnt_stat.f_mntonname);
1068 mp->mnt_flag &= ~MNT_ACLS;
1069 mp->mnt_flag |= MNT_NFS4ACLS;
1070
1071 MNT_IUNLOCK(mp);
1072 #else
1073 printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
1074 "ACLs support\n", mp->mnt_stat.f_mntonname);
1075 #endif
1076 }
1077 if ((fs->fs_flags & FS_TRIM) != 0) {
1078 len = sizeof(int);
1079 if (g_io_getattr("GEOM::candelete", cp, &len,
1080 &candelete) == 0) {
1081 if (candelete)
1082 ump->um_flags |= UM_CANDELETE;
1083 else
1084 printf("WARNING: %s: TRIM flag on fs but disk "
1085 "does not support TRIM\n",
1086 mp->mnt_stat.f_mntonname);
1087 } else {
1088 printf("WARNING: %s: TRIM flag on fs but disk does "
1089 "not confirm that it supports TRIM\n",
1090 mp->mnt_stat.f_mntonname);
1091 }
1092 if (((ump->um_flags) & UM_CANDELETE) != 0) {
1093 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK,
1094 taskqueue_thread_enqueue, &ump->um_trim_tq);
1095 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS,
1096 "%s trim", mp->mnt_stat.f_mntonname);
1097 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM,
1098 &ump->um_trimlisthashsize);
1099 }
1100 }
1101
1102 len = sizeof(int);
1103 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) {
1104 if (canspeedup)
1105 ump->um_flags |= UM_CANSPEEDUP;
1106 }
1107
1108 ump->um_mountp = mp;
1109 ump->um_dev = dev;
1110 ump->um_devvp = devvp;
1111 ump->um_odevvp = odevvp;
1112 ump->um_nindir = fs->fs_nindir;
1113 ump->um_bptrtodb = fs->fs_fsbtodb;
1114 ump->um_seqinc = fs->fs_frag;
1115 for (i = 0; i < MAXQUOTAS; i++)
1116 ump->um_quotas[i] = NULLVP;
1117 #ifdef UFS_EXTATTR
1118 ufs_extattr_uepm_init(&ump->um_extattr);
1119 #endif
1120 /*
1121 * Set FS local "last mounted on" information (NULL pad)
1122 */
1123 bzero(fs->fs_fsmnt, MAXMNTLEN);
1124 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN);
1125 mp->mnt_stat.f_iosize = fs->fs_bsize;
1126
1127 if (mp->mnt_flag & MNT_ROOTFS) {
1128 /*
1129 * Root mount; update timestamp in mount structure.
1130 * this will be used by the common root mount code
1131 * to update the system clock.
1132 */
1133 mp->mnt_time = fs->fs_time;
1134 }
1135
1136 if (ronly == 0) {
1137 fs->fs_mtime = time_second;
1138 if ((fs->fs_flags & FS_DOSOFTDEP) &&
1139 (error = softdep_mount(devvp, mp, fs, cred)) != 0) {
1140 ffs_flushfiles(mp, FORCECLOSE, td);
1141 goto out;
1142 }
1143 if (fs->fs_snapinum[0] != 0)
1144 ffs_snapshot_mount(mp);
1145 fs->fs_fmod = 1;
1146 fs->fs_clean = 0;
1147 (void) ffs_sbupdate(ump, MNT_WAIT, 0);
1148 }
1149 /*
1150 * Initialize filesystem state information in mount struct.
1151 */
1152 MNT_ILOCK(mp);
1153 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
1154 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE;
1155 MNT_IUNLOCK(mp);
1156 #ifdef UFS_EXTATTR
1157 #ifdef UFS_EXTATTR_AUTOSTART
1158 /*
1159 *
1160 * Auto-starting does the following:
1161 * - check for /.attribute in the fs, and extattr_start if so
1162 * - for each file in .attribute, enable that file with
1163 * an attribute of the same name.
1164 * Not clear how to report errors -- probably eat them.
1165 * This would all happen while the filesystem was busy/not
1166 * available, so would effectively be "atomic".
1167 */
1168 (void) ufs_extattr_autostart(mp, td);
1169 #endif /* !UFS_EXTATTR_AUTOSTART */
1170 #endif /* !UFS_EXTATTR */
1171 return (0);
1172 out:
1173 if (fs != NULL) {
1174 free(fs->fs_csp, M_UFSMNT);
1175 free(fs->fs_si, M_UFSMNT);
1176 free(fs, M_UFSMNT);
1177 }
1178 if (cp != NULL) {
1179 g_topology_lock();
1180 g_vfs_close(cp);
1181 g_topology_unlock();
1182 }
1183 if (ump != NULL) {
1184 mtx_destroy(UFS_MTX(ump));
1185 sx_destroy(&ump->um_checkpath_lock);
1186 if (mp->mnt_gjprovider != NULL) {
1187 free(mp->mnt_gjprovider, M_UFSMNT);
1188 mp->mnt_gjprovider = NULL;
1189 }
1190 MPASS(ump->um_softdep == NULL);
1191 free(ump, M_UFSMNT);
1192 mp->mnt_data = NULL;
1193 }
1194 BO_LOCK(&odevvp->v_bufobj);
1195 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1196 BO_UNLOCK(&odevvp->v_bufobj);
1197 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
1198 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1199 mntfs_freevp(devvp);
1200 dev_rel(dev);
1201 return (error);
1202 }
1203
1204 /*
1205 * A read function for use by filesystem-layer routines.
1206 */
1207 static int
ffs_use_bread(void * devfd,off_t loc,void ** bufp,int size)1208 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size)
1209 {
1210 struct buf *bp;
1211 int error;
1212
1213 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp));
1214 *bufp = malloc(size, M_UFSMNT, M_WAITOK);
1215 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED,
1216 &bp)) != 0)
1217 return (error);
1218 bcopy(bp->b_data, *bufp, size);
1219 bp->b_flags |= B_INVAL | B_NOCACHE;
1220 brelse(bp);
1221 return (0);
1222 }
1223
1224 /*
1225 * unmount system call
1226 */
1227 static int
ffs_unmount(struct mount * mp,int mntflags)1228 ffs_unmount(struct mount *mp, int mntflags)
1229 {
1230 struct thread *td;
1231 struct ufsmount *ump = VFSTOUFS(mp);
1232 struct fs *fs;
1233 int error, flags, susp;
1234 #ifdef UFS_EXTATTR
1235 int e_restart;
1236 #endif
1237
1238 flags = 0;
1239 td = curthread;
1240 fs = ump->um_fs;
1241 if (mntflags & MNT_FORCE)
1242 flags |= FORCECLOSE;
1243 susp = fs->fs_ronly == 0;
1244 #ifdef UFS_EXTATTR
1245 if ((error = ufs_extattr_stop(mp, td))) {
1246 if (error != EOPNOTSUPP)
1247 printf("WARNING: unmount %s: ufs_extattr_stop "
1248 "returned errno %d\n", mp->mnt_stat.f_mntonname,
1249 error);
1250 e_restart = 0;
1251 } else {
1252 ufs_extattr_uepm_destroy(&ump->um_extattr);
1253 e_restart = 1;
1254 }
1255 #endif
1256 if (susp) {
1257 error = vfs_write_suspend_umnt(mp);
1258 if (error != 0)
1259 goto fail1;
1260 }
1261 if (MOUNTEDSOFTDEP(mp))
1262 error = softdep_flushfiles(mp, flags, td);
1263 else
1264 error = ffs_flushfiles(mp, flags, td);
1265 if (error != 0 && !ffs_fsfail_cleanup(ump, error))
1266 goto fail;
1267
1268 UFS_LOCK(ump);
1269 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1270 printf("WARNING: unmount %s: pending error: blocks %jd "
1271 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
1272 fs->fs_pendinginodes);
1273 fs->fs_pendingblocks = 0;
1274 fs->fs_pendinginodes = 0;
1275 }
1276 UFS_UNLOCK(ump);
1277 if (MOUNTEDSOFTDEP(mp))
1278 softdep_unmount(mp);
1279 MPASS(ump->um_softdep == NULL);
1280 if (fs->fs_ronly == 0) {
1281 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1;
1282 error = ffs_sbupdate(ump, MNT_WAIT, 0);
1283 if (ffs_fsfail_cleanup(ump, error))
1284 error = 0;
1285 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) {
1286 fs->fs_clean = 0;
1287 goto fail;
1288 }
1289 }
1290 if (susp)
1291 vfs_write_resume(mp, VR_START_WRITE);
1292 if (ump->um_trim_tq != NULL) {
1293 MPASS(ump->um_trim_inflight == 0);
1294 taskqueue_free(ump->um_trim_tq);
1295 free (ump->um_trimhash, M_TRIM);
1296 }
1297 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1298 g_topology_lock();
1299 g_vfs_close(ump->um_cp);
1300 g_topology_unlock();
1301 BO_LOCK(&ump->um_odevvp->v_bufobj);
1302 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1303 BO_UNLOCK(&ump->um_odevvp->v_bufobj);
1304 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0);
1305 mntfs_freevp(ump->um_devvp);
1306 vrele(ump->um_odevvp);
1307 dev_rel(ump->um_dev);
1308 mtx_destroy(UFS_MTX(ump));
1309 sx_destroy(&ump->um_checkpath_lock);
1310 if (mp->mnt_gjprovider != NULL) {
1311 free(mp->mnt_gjprovider, M_UFSMNT);
1312 mp->mnt_gjprovider = NULL;
1313 }
1314 free(fs->fs_csp, M_UFSMNT);
1315 free(fs->fs_si, M_UFSMNT);
1316 free(fs, M_UFSMNT);
1317 free(ump, M_UFSMNT);
1318 mp->mnt_data = NULL;
1319 if (td->td_su == mp) {
1320 td->td_su = NULL;
1321 vfs_rel(mp);
1322 }
1323 return (error);
1324
1325 fail:
1326 if (susp)
1327 vfs_write_resume(mp, VR_START_WRITE);
1328 fail1:
1329 #ifdef UFS_EXTATTR
1330 if (e_restart) {
1331 ufs_extattr_uepm_init(&ump->um_extattr);
1332 #ifdef UFS_EXTATTR_AUTOSTART
1333 (void) ufs_extattr_autostart(mp, td);
1334 #endif
1335 }
1336 #endif
1337
1338 return (error);
1339 }
1340
1341 /*
1342 * Flush out all the files in a filesystem.
1343 */
1344 int
ffs_flushfiles(struct mount * mp,int flags,struct thread * td)1345 ffs_flushfiles(struct mount *mp, int flags, struct thread *td)
1346 {
1347 struct ufsmount *ump;
1348 int qerror, error;
1349
1350 ump = VFSTOUFS(mp);
1351 qerror = 0;
1352 #ifdef QUOTA
1353 if (mp->mnt_flag & MNT_QUOTA) {
1354 int i;
1355 error = vflush(mp, 0, SKIPSYSTEM|flags, td);
1356 if (error)
1357 return (error);
1358 for (i = 0; i < MAXQUOTAS; i++) {
1359 error = quotaoff(td, mp, i);
1360 if (error != 0) {
1361 if ((flags & EARLYFLUSH) == 0)
1362 return (error);
1363 else
1364 qerror = error;
1365 }
1366 }
1367
1368 /*
1369 * Here we fall through to vflush again to ensure that
1370 * we have gotten rid of all the system vnodes, unless
1371 * quotas must not be closed.
1372 */
1373 }
1374 #endif
1375 /* devvp is not locked there */
1376 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) {
1377 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0)
1378 return (error);
1379 ffs_snapshot_unmount(mp);
1380 flags |= FORCECLOSE;
1381 /*
1382 * Here we fall through to vflush again to ensure
1383 * that we have gotten rid of all the system vnodes.
1384 */
1385 }
1386
1387 /*
1388 * Do not close system files if quotas were not closed, to be
1389 * able to sync the remaining dquots. The freeblks softupdate
1390 * workitems might hold a reference on a dquot, preventing
1391 * quotaoff() from completing. Next round of
1392 * softdep_flushworklist() iteration should process the
1393 * blockers, allowing the next run of quotaoff() to finally
1394 * flush held dquots.
1395 *
1396 * Otherwise, flush all the files.
1397 */
1398 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0)
1399 return (error);
1400
1401 /*
1402 * If this is a forcible unmount and there were any files that
1403 * were unlinked but still open, then vflush() will have
1404 * truncated and freed those files, which might have started
1405 * some trim work. Wait here for any trims to complete
1406 * and process the blkfrees which follow the trims.
1407 * This may create more dirty devvp buffers and softdep deps.
1408 */
1409 if (ump->um_trim_tq != NULL) {
1410 while (ump->um_trim_inflight != 0)
1411 pause("ufsutr", hz);
1412 taskqueue_drain_all(ump->um_trim_tq);
1413 }
1414
1415 /*
1416 * Flush filesystem metadata.
1417 */
1418 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1419 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td);
1420 VOP_UNLOCK(ump->um_devvp);
1421 return (error);
1422 }
1423
1424 /*
1425 * Get filesystem statistics.
1426 */
1427 static int
ffs_statfs(struct mount * mp,struct statfs * sbp)1428 ffs_statfs(struct mount *mp, struct statfs *sbp)
1429 {
1430 struct ufsmount *ump;
1431 struct fs *fs;
1432
1433 ump = VFSTOUFS(mp);
1434 fs = ump->um_fs;
1435 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC)
1436 panic("ffs_statfs");
1437 sbp->f_version = STATFS_VERSION;
1438 sbp->f_bsize = fs->fs_fsize;
1439 sbp->f_iosize = fs->fs_bsize;
1440 sbp->f_blocks = fs->fs_dsize;
1441 UFS_LOCK(ump);
1442 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag +
1443 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1444 sbp->f_bavail = freespace(fs, fs->fs_minfree) +
1445 dbtofsb(fs, fs->fs_pendingblocks);
1446 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1447 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1448 UFS_UNLOCK(ump);
1449 sbp->f_namemax = UFS_MAXNAMLEN;
1450 return (0);
1451 }
1452
1453 static bool
sync_doupdate(struct inode * ip)1454 sync_doupdate(struct inode *ip)
1455 {
1456
1457 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED |
1458 IN_UPDATE)) != 0);
1459 }
1460
1461 static int
ffs_sync_lazy_filter(struct vnode * vp,void * arg __unused)1462 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused)
1463 {
1464 struct inode *ip;
1465
1466 /*
1467 * Flags are safe to access because ->v_data invalidation
1468 * is held off by listmtx.
1469 */
1470 if (vp->v_type == VNON)
1471 return (false);
1472 ip = VTOI(vp);
1473 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0)
1474 return (false);
1475 return (true);
1476 }
1477
1478 /*
1479 * For a lazy sync, we only care about access times, quotas and the
1480 * superblock. Other filesystem changes are already converted to
1481 * cylinder group blocks or inode blocks updates and are written to
1482 * disk by syncer.
1483 */
1484 static int
ffs_sync_lazy(struct mount * mp)1485 ffs_sync_lazy(struct mount *mp)
1486 {
1487 struct vnode *mvp, *vp;
1488 struct inode *ip;
1489 int allerror, error;
1490
1491 allerror = 0;
1492 if ((mp->mnt_flag & MNT_NOATIME) != 0) {
1493 #ifdef QUOTA
1494 qsync(mp);
1495 #endif
1496 goto sbupdate;
1497 }
1498 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) {
1499 if (vp->v_type == VNON) {
1500 VI_UNLOCK(vp);
1501 continue;
1502 }
1503 ip = VTOI(vp);
1504
1505 /*
1506 * The IN_ACCESS flag is converted to IN_MODIFIED by
1507 * ufs_close() and ufs_getattr() by the calls to
1508 * ufs_itimes_locked(), without subsequent UFS_UPDATE().
1509 * Test also all the other timestamp flags too, to pick up
1510 * any other cases that could be missed.
1511 */
1512 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) {
1513 VI_UNLOCK(vp);
1514 continue;
1515 }
1516 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0)
1517 continue;
1518 #ifdef QUOTA
1519 qsyncvp(vp);
1520 #endif
1521 if (sync_doupdate(ip))
1522 error = ffs_update(vp, 0);
1523 if (error != 0)
1524 allerror = error;
1525 vput(vp);
1526 }
1527 sbupdate:
1528 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 &&
1529 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0)
1530 allerror = error;
1531 return (allerror);
1532 }
1533
1534 /*
1535 * Go through the disk queues to initiate sandbagged IO;
1536 * go through the inodes to write those that have been modified;
1537 * initiate the writing of the super block if it has been modified.
1538 *
1539 * Note: we are always called with the filesystem marked busy using
1540 * vfs_busy().
1541 */
1542 static int
ffs_sync(struct mount * mp,int waitfor)1543 ffs_sync(struct mount *mp, int waitfor)
1544 {
1545 struct vnode *mvp, *vp, *devvp;
1546 struct thread *td;
1547 struct inode *ip;
1548 struct ufsmount *ump = VFSTOUFS(mp);
1549 struct fs *fs;
1550 int error, count, lockreq, allerror = 0;
1551 int suspend;
1552 int suspended;
1553 int secondary_writes;
1554 int secondary_accwrites;
1555 int softdep_deps;
1556 int softdep_accdeps;
1557 struct bufobj *bo;
1558
1559 suspend = 0;
1560 suspended = 0;
1561 td = curthread;
1562 fs = ump->um_fs;
1563 if (fs->fs_fmod != 0 && fs->fs_ronly != 0)
1564 panic("%s: ffs_sync: modification on read-only filesystem",
1565 fs->fs_fsmnt);
1566 if (waitfor == MNT_LAZY) {
1567 if (!rebooting)
1568 return (ffs_sync_lazy(mp));
1569 waitfor = MNT_NOWAIT;
1570 }
1571
1572 /*
1573 * Write back each (modified) inode.
1574 */
1575 lockreq = LK_EXCLUSIVE | LK_NOWAIT;
1576 if (waitfor == MNT_SUSPEND) {
1577 suspend = 1;
1578 waitfor = MNT_WAIT;
1579 }
1580 if (waitfor == MNT_WAIT)
1581 lockreq = LK_EXCLUSIVE;
1582 lockreq |= LK_INTERLOCK;
1583 loop:
1584 /* Grab snapshot of secondary write counts */
1585 MNT_ILOCK(mp);
1586 secondary_writes = mp->mnt_secondary_writes;
1587 secondary_accwrites = mp->mnt_secondary_accwrites;
1588 MNT_IUNLOCK(mp);
1589
1590 /* Grab snapshot of softdep dependency counts */
1591 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps);
1592
1593 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1594 /*
1595 * Depend on the vnode interlock to keep things stable enough
1596 * for a quick test. Since there might be hundreds of
1597 * thousands of vnodes, we cannot afford even a subroutine
1598 * call unless there's a good chance that we have work to do.
1599 */
1600 if (vp->v_type == VNON) {
1601 VI_UNLOCK(vp);
1602 continue;
1603 }
1604 ip = VTOI(vp);
1605 if ((ip->i_flag &
1606 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
1607 vp->v_bufobj.bo_dirty.bv_cnt == 0) {
1608 VI_UNLOCK(vp);
1609 continue;
1610 }
1611 if ((error = vget(vp, lockreq)) != 0) {
1612 if (error == ENOENT) {
1613 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1614 goto loop;
1615 }
1616 continue;
1617 }
1618 #ifdef QUOTA
1619 qsyncvp(vp);
1620 #endif
1621 for (;;) {
1622 error = ffs_syncvnode(vp, waitfor, 0);
1623 if (error == ERELOOKUP)
1624 continue;
1625 if (error != 0)
1626 allerror = error;
1627 break;
1628 }
1629 vput(vp);
1630 }
1631 /*
1632 * Force stale filesystem control information to be flushed.
1633 */
1634 if (waitfor == MNT_WAIT || rebooting) {
1635 if ((error = softdep_flushworklist(ump->um_mountp, &count, td)))
1636 allerror = error;
1637 if (ffs_fsfail_cleanup(ump, allerror))
1638 allerror = 0;
1639 /* Flushed work items may create new vnodes to clean */
1640 if (allerror == 0 && count)
1641 goto loop;
1642 }
1643
1644 devvp = ump->um_devvp;
1645 bo = &devvp->v_bufobj;
1646 BO_LOCK(bo);
1647 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
1648 BO_UNLOCK(bo);
1649 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1650 error = VOP_FSYNC(devvp, waitfor, td);
1651 VOP_UNLOCK(devvp);
1652 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN))
1653 error = ffs_sbupdate(ump, waitfor, 0);
1654 if (error != 0)
1655 allerror = error;
1656 if (ffs_fsfail_cleanup(ump, allerror))
1657 allerror = 0;
1658 if (allerror == 0 && waitfor == MNT_WAIT)
1659 goto loop;
1660 } else if (suspend != 0) {
1661 if (softdep_check_suspend(mp,
1662 devvp,
1663 softdep_deps,
1664 softdep_accdeps,
1665 secondary_writes,
1666 secondary_accwrites) != 0) {
1667 MNT_IUNLOCK(mp);
1668 goto loop; /* More work needed */
1669 }
1670 mtx_assert(MNT_MTX(mp), MA_OWNED);
1671 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED;
1672 MNT_IUNLOCK(mp);
1673 suspended = 1;
1674 } else
1675 BO_UNLOCK(bo);
1676 /*
1677 * Write back modified superblock.
1678 */
1679 if (fs->fs_fmod != 0 &&
1680 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0)
1681 allerror = error;
1682 if (ffs_fsfail_cleanup(ump, allerror))
1683 allerror = 0;
1684 return (allerror);
1685 }
1686
1687 int
ffs_vget(struct mount * mp,ino_t ino,int flags,struct vnode ** vpp)1688 ffs_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp)
1689 {
1690 return (ffs_vgetf(mp, ino, flags, vpp, 0));
1691 }
1692
1693 int
ffs_vgetf(struct mount * mp,ino_t ino,int flags,struct vnode ** vpp,int ffs_flags)1694 ffs_vgetf(struct mount *mp,
1695 ino_t ino,
1696 int flags,
1697 struct vnode **vpp,
1698 int ffs_flags)
1699 {
1700 struct fs *fs;
1701 struct inode *ip;
1702 struct ufsmount *ump;
1703 struct buf *bp;
1704 struct vnode *vp;
1705 daddr_t dbn;
1706 int error;
1707
1708 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 ||
1709 (flags & LK_EXCLUSIVE) != 0);
1710
1711 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
1712 if (error != 0)
1713 return (error);
1714 if (*vpp != NULL) {
1715 if ((ffs_flags & FFSV_REPLACE) == 0 ||
1716 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 ||
1717 !VN_IS_DOOMED(*vpp)))
1718 return (0);
1719 vgone(*vpp);
1720 vput(*vpp);
1721 }
1722
1723 /*
1724 * We must promote to an exclusive lock for vnode creation. This
1725 * can happen if lookup is passed LOCKSHARED.
1726 */
1727 if ((flags & LK_TYPE_MASK) == LK_SHARED) {
1728 flags &= ~LK_TYPE_MASK;
1729 flags |= LK_EXCLUSIVE;
1730 }
1731
1732 /*
1733 * We do not lock vnode creation as it is believed to be too
1734 * expensive for such rare case as simultaneous creation of vnode
1735 * for same ino by different processes. We just allow them to race
1736 * and check later to decide who wins. Let the race begin!
1737 */
1738
1739 ump = VFSTOUFS(mp);
1740 fs = ump->um_fs;
1741 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO);
1742
1743 /* Allocate a new vnode/inode. */
1744 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ?
1745 &ffs_vnodeops1 : &ffs_vnodeops2, &vp);
1746 if (error) {
1747 *vpp = NULL;
1748 uma_zfree_smr(uma_inode, ip);
1749 return (error);
1750 }
1751 /*
1752 * FFS supports recursive locking.
1753 */
1754 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1755 VN_LOCK_AREC(vp);
1756 vp->v_data = ip;
1757 vp->v_bufobj.bo_bsize = fs->fs_bsize;
1758 ip->i_vnode = vp;
1759 ip->i_ump = ump;
1760 ip->i_number = ino;
1761 ip->i_ea_refs = 0;
1762 ip->i_nextclustercg = -1;
1763 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2;
1764 ip->i_mode = 0; /* ensure error cases below throw away vnode */
1765 cluster_init_vn(&ip->i_clusterw);
1766 #ifdef DIAGNOSTIC
1767 ufs_init_trackers(ip);
1768 #endif
1769 #ifdef QUOTA
1770 {
1771 int i;
1772 for (i = 0; i < MAXQUOTAS; i++)
1773 ip->i_dquot[i] = NODQUOT;
1774 }
1775 #endif
1776
1777 if (ffs_flags & FFSV_FORCEINSMQ)
1778 vp->v_vflag |= VV_FORCEINSMQ;
1779 error = insmntque(vp, mp);
1780 if (error != 0) {
1781 uma_zfree_smr(uma_inode, ip);
1782 *vpp = NULL;
1783 return (error);
1784 }
1785 vp->v_vflag &= ~VV_FORCEINSMQ;
1786 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL);
1787 if (error != 0)
1788 return (error);
1789 if (*vpp != NULL) {
1790 /*
1791 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set)
1792 * operate on empty inode, which must not be found by
1793 * other threads until fully filled. Vnode for empty
1794 * inode must be not re-inserted on the hash by other
1795 * thread, after removal by us at the beginning.
1796 */
1797 MPASS((ffs_flags & FFSV_REPLACE) == 0);
1798 return (0);
1799 }
1800 if (I_IS_UFS1(ip))
1801 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK);
1802 else
1803 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK);
1804
1805 if ((ffs_flags & FFSV_NEWINODE) != 0) {
1806 /* New inode, just zero out its contents. */
1807 if (I_IS_UFS1(ip))
1808 memset(ip->i_din1, 0, sizeof(struct ufs1_dinode));
1809 else
1810 memset(ip->i_din2, 0, sizeof(struct ufs2_dinode));
1811 } else {
1812 /* Read the disk contents for the inode, copy into the inode. */
1813 dbn = fsbtodb(fs, ino_to_fsba(fs, ino));
1814 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
1815 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
1816 if (error != 0) {
1817 /*
1818 * The inode does not contain anything useful, so it
1819 * would be misleading to leave it on its hash chain.
1820 * With mode still zero, it will be unlinked and
1821 * returned to the free list by vput().
1822 */
1823 vgone(vp);
1824 vput(vp);
1825 *vpp = NULL;
1826 return (error);
1827 }
1828 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) {
1829 bqrelse(bp);
1830 vgone(vp);
1831 vput(vp);
1832 *vpp = NULL;
1833 return (error);
1834 }
1835 bqrelse(bp);
1836 }
1837 if (DOINGSOFTDEP(vp) && (!fs->fs_ronly ||
1838 (ffs_flags & FFSV_FORCEINODEDEP) != 0))
1839 softdep_load_inodeblock(ip);
1840 else
1841 ip->i_effnlink = ip->i_nlink;
1842
1843 /*
1844 * Initialize the vnode from the inode, check for aliases.
1845 * Note that the underlying vnode may have changed.
1846 */
1847 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2,
1848 &vp);
1849 if (error) {
1850 vgone(vp);
1851 vput(vp);
1852 *vpp = NULL;
1853 return (error);
1854 }
1855
1856 /*
1857 * Finish inode initialization.
1858 */
1859 if (vp->v_type != VFIFO) {
1860 /* FFS supports shared locking for all files except fifos. */
1861 VN_LOCK_ASHARE(vp);
1862 }
1863
1864 /*
1865 * Set up a generation number for this inode if it does not
1866 * already have one. This should only happen on old filesystems.
1867 */
1868 if (ip->i_gen == 0) {
1869 while (ip->i_gen == 0)
1870 ip->i_gen = arc4random();
1871 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
1872 UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
1873 DIP_SET(ip, i_gen, ip->i_gen);
1874 }
1875 }
1876 #ifdef MAC
1877 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) {
1878 /*
1879 * If this vnode is already allocated, and we're running
1880 * multi-label, attempt to perform a label association
1881 * from the extended attributes on the inode.
1882 */
1883 error = mac_vnode_associate_extattr(mp, vp);
1884 if (error) {
1885 /* ufs_inactive will release ip->i_devvp ref. */
1886 vgone(vp);
1887 vput(vp);
1888 *vpp = NULL;
1889 return (error);
1890 }
1891 }
1892 #endif
1893
1894 vn_set_state(vp, VSTATE_CONSTRUCTED);
1895 *vpp = vp;
1896 return (0);
1897 }
1898
1899 /*
1900 * File handle to vnode
1901 *
1902 * Have to be really careful about stale file handles:
1903 * - check that the inode number is valid
1904 * - for UFS2 check that the inode number is initialized
1905 * - call ffs_vget() to get the locked inode
1906 * - check for an unallocated inode (i_mode == 0)
1907 * - check that the given client host has export rights and return
1908 * those rights via. exflagsp and credanonp
1909 */
1910 static int
ffs_fhtovp(struct mount * mp,struct fid * fhp,int flags,struct vnode ** vpp)1911 ffs_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp)
1912 {
1913 struct ufid *ufhp;
1914
1915 ufhp = (struct ufid *)fhp;
1916 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags,
1917 vpp, 0));
1918 }
1919
1920 /*
1921 * Return a vnode from a mounted filesystem for inode with specified
1922 * generation number. Return ESTALE if the inode with given generation
1923 * number no longer exists on that filesystem.
1924 */
1925 int
ffs_inotovp(struct mount * mp,ino_t ino,uint64_t gen,int lflags,struct vnode ** vpp,int ffs_flags)1926 ffs_inotovp(struct mount *mp,
1927 ino_t ino,
1928 uint64_t gen,
1929 int lflags,
1930 struct vnode **vpp,
1931 int ffs_flags)
1932 {
1933 struct ufsmount *ump;
1934 struct vnode *nvp;
1935 struct inode *ip;
1936 struct fs *fs;
1937 struct cg *cgp;
1938 struct buf *bp;
1939 uint64_t cg;
1940
1941 ump = VFSTOUFS(mp);
1942 fs = ump->um_fs;
1943 *vpp = NULL;
1944
1945 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg)
1946 return (ESTALE);
1947
1948 /*
1949 * Need to check if inode is initialized because UFS2 does lazy
1950 * initialization and nfs_fhtovp can offer arbitrary inode numbers.
1951 */
1952 if (fs->fs_magic == FS_UFS2_MAGIC) {
1953 cg = ino_to_cg(fs, ino);
1954 if (ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp) != 0)
1955 return (ESTALE);
1956 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) {
1957 brelse(bp);
1958 return (ESTALE);
1959 }
1960 brelse(bp);
1961 }
1962
1963 if (ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags) != 0)
1964 return (ESTALE);
1965
1966 ip = VTOI(nvp);
1967 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) {
1968 if (ip->i_mode == 0)
1969 vgone(nvp);
1970 vput(nvp);
1971 return (ESTALE);
1972 }
1973
1974 vnode_create_vobject(nvp, DIP(ip, i_size), curthread);
1975 *vpp = nvp;
1976 return (0);
1977 }
1978
1979 /*
1980 * Initialize the filesystem.
1981 */
1982 static int
ffs_init(struct vfsconf * vfsp)1983 ffs_init(struct vfsconf *vfsp)
1984 {
1985
1986 ffs_susp_initialize();
1987 softdep_initialize();
1988 return (ufs_init(vfsp));
1989 }
1990
1991 /*
1992 * Undo the work of ffs_init().
1993 */
1994 static int
ffs_uninit(struct vfsconf * vfsp)1995 ffs_uninit(struct vfsconf *vfsp)
1996 {
1997 int ret;
1998
1999 ret = ufs_uninit(vfsp);
2000 softdep_uninitialize();
2001 ffs_susp_uninitialize();
2002 taskqueue_drain_all(taskqueue_thread);
2003 return (ret);
2004 }
2005
2006 /*
2007 * Structure used to pass information from ffs_sbupdate to its
2008 * helper routine ffs_use_bwrite.
2009 */
2010 struct devfd {
2011 struct ufsmount *ump;
2012 struct buf *sbbp;
2013 int waitfor;
2014 int suspended;
2015 int error;
2016 };
2017
2018 /*
2019 * Write a superblock and associated information back to disk.
2020 */
2021 int
ffs_sbupdate(struct ufsmount * ump,int waitfor,int suspended)2022 ffs_sbupdate(struct ufsmount *ump, int waitfor, int suspended)
2023 {
2024 struct fs *fs;
2025 struct buf *sbbp;
2026 struct devfd devfd;
2027
2028 fs = ump->um_fs;
2029 if (fs->fs_ronly == 1 &&
2030 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) !=
2031 (MNT_RDONLY | MNT_UPDATE))
2032 panic("ffs_sbupdate: write read-only filesystem");
2033 /*
2034 * We use the superblock's buf to serialize calls to ffs_sbupdate().
2035 */
2036 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
2037 (int)fs->fs_sbsize, 0, 0, 0);
2038 /*
2039 * Initialize info needed for write function.
2040 */
2041 devfd.ump = ump;
2042 devfd.sbbp = sbbp;
2043 devfd.waitfor = waitfor;
2044 devfd.suspended = suspended;
2045 devfd.error = 0;
2046 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite));
2047 }
2048
2049 /*
2050 * Write function for use by filesystem-layer routines.
2051 */
2052 static int
ffs_use_bwrite(void * devfd,off_t loc,void * buf,int size)2053 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size)
2054 {
2055 struct devfd *devfdp;
2056 struct ufsmount *ump;
2057 struct buf *bp;
2058 struct fs *fs;
2059 int error;
2060
2061 devfdp = devfd;
2062 ump = devfdp->ump;
2063 fs = ump->um_fs;
2064 /*
2065 * Writing the superblock summary information.
2066 */
2067 if (loc != fs->fs_sblockloc) {
2068 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0);
2069 bcopy(buf, bp->b_data, (uint64_t)size);
2070 if (devfdp->suspended)
2071 bp->b_flags |= B_VALIDSUSPWRT;
2072 if (devfdp->waitfor != MNT_WAIT)
2073 bawrite(bp);
2074 else if ((error = bwrite(bp)) != 0)
2075 devfdp->error = error;
2076 return (0);
2077 }
2078 /*
2079 * Writing the superblock itself. We need to do special checks for it.
2080 */
2081 bp = devfdp->sbbp;
2082 if (ffs_fsfail_cleanup(ump, devfdp->error))
2083 devfdp->error = 0;
2084 if (devfdp->error != 0) {
2085 brelse(bp);
2086 return (devfdp->error);
2087 }
2088 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 &&
2089 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2090 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2091 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1);
2092 fs->fs_sblockloc = SBLOCK_UFS1;
2093 }
2094 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 &&
2095 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2096 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2097 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2);
2098 fs->fs_sblockloc = SBLOCK_UFS2;
2099 }
2100 if (MOUNTEDSOFTDEP(ump->um_mountp))
2101 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp);
2102 UFS_LOCK(ump);
2103 bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
2104 UFS_UNLOCK(ump);
2105 fs = (struct fs *)bp->b_data;
2106 fs->fs_fmod = 0;
2107 ffs_oldfscompat_write(fs);
2108 fs->fs_si = NULL;
2109 /* Recalculate the superblock hash */
2110 fs->fs_ckhash = ffs_calc_sbhash(fs);
2111 if (devfdp->suspended)
2112 bp->b_flags |= B_VALIDSUSPWRT;
2113 if (devfdp->waitfor != MNT_WAIT)
2114 bawrite(bp);
2115 else if ((error = bwrite(bp)) != 0)
2116 devfdp->error = error;
2117 return (devfdp->error);
2118 }
2119
2120 static int
ffs_extattrctl(struct mount * mp,int cmd,struct vnode * filename_vp,int attrnamespace,const char * attrname)2121 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
2122 int attrnamespace, const char *attrname)
2123 {
2124
2125 #ifdef UFS_EXTATTR
2126 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace,
2127 attrname));
2128 #else
2129 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace,
2130 attrname));
2131 #endif
2132 }
2133
2134 static void
ffs_ifree(struct ufsmount * ump,struct inode * ip)2135 ffs_ifree(struct ufsmount *ump, struct inode *ip)
2136 {
2137
2138 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL)
2139 uma_zfree(uma_ufs1, ip->i_din1);
2140 else if (ip->i_din2 != NULL)
2141 uma_zfree(uma_ufs2, ip->i_din2);
2142 uma_zfree_smr(uma_inode, ip);
2143 }
2144
2145 static int dobkgrdwrite = 1;
2146 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
2147 "Do background writes (honoring the BV_BKGRDWRITE flag)?");
2148
2149 /*
2150 * Complete a background write started from bwrite.
2151 */
2152 static void
ffs_backgroundwritedone(struct buf * bp)2153 ffs_backgroundwritedone(struct buf *bp)
2154 {
2155 struct bufobj *bufobj;
2156 struct buf *origbp;
2157
2158 #ifdef SOFTUPDATES
2159 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0)
2160 softdep_handle_error(bp);
2161 #endif
2162
2163 /*
2164 * Find the original buffer that we are writing.
2165 */
2166 bufobj = bp->b_bufobj;
2167 BO_LOCK(bufobj);
2168 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
2169 panic("backgroundwritedone: lost buffer");
2170
2171 /*
2172 * We should mark the cylinder group buffer origbp as
2173 * dirty, to not lose the failed write.
2174 */
2175 if ((bp->b_ioflags & BIO_ERROR) != 0)
2176 origbp->b_vflags |= BV_BKGRDERR;
2177 BO_UNLOCK(bufobj);
2178 /*
2179 * Process dependencies then return any unfinished ones.
2180 */
2181 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0)
2182 buf_complete(bp);
2183 #ifdef SOFTUPDATES
2184 if (!LIST_EMPTY(&bp->b_dep))
2185 softdep_move_dependencies(bp, origbp);
2186 #endif
2187 /*
2188 * This buffer is marked B_NOCACHE so when it is released
2189 * by biodone it will be tossed. Clear B_IOSTARTED in case of error.
2190 */
2191 bp->b_flags |= B_NOCACHE;
2192 bp->b_flags &= ~(B_CACHE | B_IOSTARTED);
2193 pbrelvp(bp);
2194
2195 /*
2196 * Prevent brelse() from trying to keep and re-dirtying bp on
2197 * errors. It causes b_bufobj dereference in
2198 * bdirty()/reassignbuf(), and b_bufobj was cleared in
2199 * pbrelvp() above.
2200 */
2201 if ((bp->b_ioflags & BIO_ERROR) != 0)
2202 bp->b_flags |= B_INVAL;
2203 bufdone(bp);
2204 BO_LOCK(bufobj);
2205 /*
2206 * Clear the BV_BKGRDINPROG flag in the original buffer
2207 * and awaken it if it is waiting for the write to complete.
2208 * If BV_BKGRDINPROG is not set in the original buffer it must
2209 * have been released and re-instantiated - which is not legal.
2210 */
2211 KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
2212 ("backgroundwritedone: lost buffer2"));
2213 origbp->b_vflags &= ~BV_BKGRDINPROG;
2214 if (origbp->b_vflags & BV_BKGRDWAIT) {
2215 origbp->b_vflags &= ~BV_BKGRDWAIT;
2216 wakeup(&origbp->b_xflags);
2217 }
2218 BO_UNLOCK(bufobj);
2219 }
2220
2221 /*
2222 * Write, release buffer on completion. (Done by iodone
2223 * if async). Do not bother writing anything if the buffer
2224 * is invalid.
2225 *
2226 * Note that we set B_CACHE here, indicating that buffer is
2227 * fully valid and thus cacheable. This is true even of NFS
2228 * now so we set it generally. This could be set either here
2229 * or in biodone() since the I/O is synchronous. We put it
2230 * here.
2231 */
2232 static int
ffs_bufwrite(struct buf * bp)2233 ffs_bufwrite(struct buf *bp)
2234 {
2235 struct buf *newbp;
2236 struct cg *cgp;
2237
2238 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2239 if (bp->b_flags & B_INVAL) {
2240 brelse(bp);
2241 return (0);
2242 }
2243
2244 if (!BUF_ISLOCKED(bp))
2245 panic("bufwrite: buffer is not busy???");
2246 /*
2247 * If a background write is already in progress, delay
2248 * writing this block if it is asynchronous. Otherwise
2249 * wait for the background write to complete.
2250 */
2251 BO_LOCK(bp->b_bufobj);
2252 if (bp->b_vflags & BV_BKGRDINPROG) {
2253 if (bp->b_flags & B_ASYNC) {
2254 BO_UNLOCK(bp->b_bufobj);
2255 bdwrite(bp);
2256 return (0);
2257 }
2258 bp->b_vflags |= BV_BKGRDWAIT;
2259 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO,
2260 "bwrbg", 0);
2261 if (bp->b_vflags & BV_BKGRDINPROG)
2262 panic("bufwrite: still writing");
2263 }
2264 bp->b_vflags &= ~BV_BKGRDERR;
2265 BO_UNLOCK(bp->b_bufobj);
2266
2267 /*
2268 * If this buffer is marked for background writing and we
2269 * do not have to wait for it, make a copy and write the
2270 * copy so as to leave this buffer ready for further use.
2271 *
2272 * This optimization eats a lot of memory. If we have a page
2273 * or buffer shortfall we can't do it.
2274 */
2275 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
2276 (bp->b_flags & B_ASYNC) &&
2277 !vm_page_count_severe() &&
2278 !buf_dirty_count_severe()) {
2279 KASSERT(bp->b_iodone == NULL,
2280 ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
2281
2282 /* get a new block */
2283 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD);
2284 if (newbp == NULL)
2285 goto normal_write;
2286
2287 KASSERT(buf_mapped(bp), ("Unmapped cg"));
2288 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
2289 BO_LOCK(bp->b_bufobj);
2290 bp->b_vflags |= BV_BKGRDINPROG;
2291 BO_UNLOCK(bp->b_bufobj);
2292 newbp->b_xflags |=
2293 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER;
2294 newbp->b_lblkno = bp->b_lblkno;
2295 newbp->b_blkno = bp->b_blkno;
2296 newbp->b_offset = bp->b_offset;
2297 newbp->b_iodone = ffs_backgroundwritedone;
2298 newbp->b_flags |= B_ASYNC;
2299 newbp->b_flags &= ~B_INVAL;
2300 pbgetvp(bp->b_vp, newbp);
2301
2302 #ifdef SOFTUPDATES
2303 /*
2304 * Move over the dependencies. If there are rollbacks,
2305 * leave the parent buffer dirtied as it will need to
2306 * be written again.
2307 */
2308 if (LIST_EMPTY(&bp->b_dep) ||
2309 softdep_move_dependencies(bp, newbp) == 0)
2310 bundirty(bp);
2311 #else
2312 bundirty(bp);
2313 #endif
2314
2315 /*
2316 * Initiate write on the copy, release the original. The
2317 * BKGRDINPROG flag prevents it from going away until
2318 * the background write completes. We have to recalculate
2319 * its check hash in case the buffer gets freed and then
2320 * reconstituted from the buffer cache during a later read.
2321 */
2322 if ((bp->b_xflags & BX_CYLGRP) != 0) {
2323 cgp = (struct cg *)bp->b_data;
2324 cgp->cg_ckhash = 0;
2325 cgp->cg_ckhash =
2326 calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2327 }
2328 bqrelse(bp);
2329 bp = newbp;
2330 } else
2331 /* Mark the buffer clean */
2332 bundirty(bp);
2333
2334 /* Let the normal bufwrite do the rest for us */
2335 normal_write:
2336 /*
2337 * If we are writing a cylinder group, update its time.
2338 */
2339 if ((bp->b_xflags & BX_CYLGRP) != 0) {
2340 cgp = (struct cg *)bp->b_data;
2341 cgp->cg_old_time = cgp->cg_time = time_second;
2342 }
2343 return (bufwrite(bp));
2344 }
2345
2346 static void
ffs_geom_strategy(struct bufobj * bo,struct buf * bp)2347 ffs_geom_strategy(struct bufobj *bo, struct buf *bp)
2348 {
2349 struct vnode *vp;
2350 struct buf *tbp;
2351 int error, nocopy;
2352
2353 /*
2354 * This is the bufobj strategy for the private VCHR vnodes
2355 * used by FFS to access the underlying storage device.
2356 * We override the default bufobj strategy and thus bypass
2357 * VOP_STRATEGY() for these vnodes.
2358 */
2359 vp = bo2vnode(bo);
2360 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR ||
2361 bp->b_vp->v_rdev == NULL ||
2362 bp->b_vp->v_rdev->si_mountpt == NULL ||
2363 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL ||
2364 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp,
2365 ("ffs_geom_strategy() with wrong vp"));
2366 if (bp->b_iocmd == BIO_WRITE) {
2367 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
2368 bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
2369 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2370 panic("ffs_geom_strategy: bad I/O");
2371 nocopy = bp->b_flags & B_NOCOPY;
2372 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY);
2373 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 &&
2374 vp->v_rdev->si_snapdata != NULL) {
2375 if ((bp->b_flags & B_CLUSTER) != 0) {
2376 runningbufwakeup(bp);
2377 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2378 b_cluster.cluster_entry) {
2379 error = ffs_copyonwrite(vp, tbp);
2380 if (error != 0 &&
2381 error != EOPNOTSUPP) {
2382 bp->b_error = error;
2383 bp->b_ioflags |= BIO_ERROR;
2384 bp->b_flags &= ~B_BARRIER;
2385 bufdone(bp);
2386 return;
2387 }
2388 }
2389 (void)runningbufclaim(bp, bp->b_bufsize);
2390 } else {
2391 error = ffs_copyonwrite(vp, bp);
2392 if (error != 0 && error != EOPNOTSUPP) {
2393 bp->b_error = error;
2394 bp->b_ioflags |= BIO_ERROR;
2395 bp->b_flags &= ~B_BARRIER;
2396 bufdone(bp);
2397 return;
2398 }
2399 }
2400 }
2401 #ifdef SOFTUPDATES
2402 if ((bp->b_flags & B_CLUSTER) != 0) {
2403 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2404 b_cluster.cluster_entry) {
2405 if (!LIST_EMPTY(&tbp->b_dep))
2406 buf_start(tbp);
2407 }
2408 } else {
2409 if (!LIST_EMPTY(&bp->b_dep))
2410 buf_start(bp);
2411 }
2412
2413 #endif
2414 /*
2415 * Check for metadata that needs check-hashes and update them.
2416 */
2417 switch (bp->b_xflags & BX_FSPRIV) {
2418 case BX_CYLGRP:
2419 ((struct cg *)bp->b_data)->cg_ckhash = 0;
2420 ((struct cg *)bp->b_data)->cg_ckhash =
2421 calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2422 break;
2423
2424 case BX_SUPERBLOCK:
2425 case BX_INODE:
2426 case BX_INDIR:
2427 case BX_DIR:
2428 printf("Check-hash write is unimplemented!!!\n");
2429 break;
2430
2431 case 0:
2432 break;
2433
2434 default:
2435 printf("multiple buffer types 0x%b\n",
2436 (bp->b_xflags & BX_FSPRIV), PRINT_UFS_BUF_XFLAGS);
2437 break;
2438 }
2439 }
2440 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable)
2441 bp->b_xflags |= BX_CVTENXIO;
2442 g_vfs_strategy(bo, bp);
2443 }
2444
2445 int
ffs_own_mount(const struct mount * mp)2446 ffs_own_mount(const struct mount *mp)
2447 {
2448
2449 if (mp->mnt_op == &ufs_vfsops)
2450 return (1);
2451 return (0);
2452 }
2453
2454 #ifdef DDB
2455 #ifdef SOFTUPDATES
2456
2457 /* defined in ffs_softdep.c */
2458 extern void db_print_ffs(struct ufsmount *ump);
2459
DB_SHOW_COMMAND(ffs,db_show_ffs)2460 DB_SHOW_COMMAND(ffs, db_show_ffs)
2461 {
2462 struct mount *mp;
2463 struct ufsmount *ump;
2464
2465 if (have_addr) {
2466 ump = VFSTOUFS((struct mount *)addr);
2467 db_print_ffs(ump);
2468 return;
2469 }
2470
2471 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2472 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name))
2473 db_print_ffs(VFSTOUFS(mp));
2474 }
2475 }
2476
2477 #endif /* SOFTUPDATES */
2478 #endif /* DDB */
2479