1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
6 * Copyright (c) 2009 Apple, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #include "opt_ktrace.h"
33 #include "opt_kqueue.h"
34
35 #ifdef COMPAT_FREEBSD11
36 #define _WANT_FREEBSD11_KEVENT
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/capsicum.h>
42 #include <sys/kernel.h>
43 #include <sys/limits.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/unistd.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/filio.h>
52 #include <sys/fcntl.h>
53 #include <sys/jail.h>
54 #include <sys/kthread.h>
55 #include <sys/selinfo.h>
56 #include <sys/queue.h>
57 #include <sys/event.h>
58 #include <sys/eventvar.h>
59 #include <sys/poll.h>
60 #include <sys/protosw.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sbuf.h>
63 #include <sys/sigio.h>
64 #include <sys/signalvar.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/sysproto.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/taskqueue.h>
73 #include <sys/uio.h>
74 #include <sys/user.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 #include <machine/atomic.h>
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32.h>
81 #include <compat/freebsd32/freebsd32_util.h>
82 #endif
83
84 #include <vm/uma.h>
85
86 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
87
88 /*
89 * This lock is used if multiple kq locks are required. This possibly
90 * should be made into a per proc lock.
91 */
92 static struct mtx kq_global;
93 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
94 #define KQ_GLOBAL_LOCK(lck, haslck) do { \
95 if (!haslck) \
96 mtx_lock(lck); \
97 haslck = 1; \
98 } while (0)
99 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
100 if (haslck) \
101 mtx_unlock(lck); \
102 haslck = 0; \
103 } while (0)
104
105 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
106
107 static int kevent_copyout(void *arg, struct kevent *kevp, int count);
108 static int kevent_copyin(void *arg, struct kevent *kevp, int count);
109 static int kqueue_register(struct kqueue *kq, struct kevent *kev,
110 struct thread *td, int mflag);
111 static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
112 static void kqueue_release(struct kqueue *kq, int locked);
113 static void kqueue_destroy(struct kqueue *kq);
114 static void kqueue_drain(struct kqueue *kq, struct thread *td);
115 static int kqueue_expand(struct kqueue *kq, const struct filterops *fops,
116 uintptr_t ident, int mflag);
117 static void kqueue_task(void *arg, int pending);
118 static int kqueue_scan(struct kqueue *kq, int maxevents,
119 struct kevent_copyops *k_ops,
120 const struct timespec *timeout,
121 struct kevent *keva, struct thread *td);
122 static void kqueue_wakeup(struct kqueue *kq);
123 static const struct filterops *kqueue_fo_find(int filt);
124 static void kqueue_fo_release(int filt);
125 struct g_kevent_args;
126 static int kern_kevent_generic(struct thread *td,
127 struct g_kevent_args *uap,
128 struct kevent_copyops *k_ops, const char *struct_name);
129
130 static fo_ioctl_t kqueue_ioctl;
131 static fo_poll_t kqueue_poll;
132 static fo_kqfilter_t kqueue_kqfilter;
133 static fo_stat_t kqueue_stat;
134 static fo_close_t kqueue_close;
135 static fo_fill_kinfo_t kqueue_fill_kinfo;
136
137 static const struct fileops kqueueops = {
138 .fo_read = invfo_rdwr,
139 .fo_write = invfo_rdwr,
140 .fo_truncate = invfo_truncate,
141 .fo_ioctl = kqueue_ioctl,
142 .fo_poll = kqueue_poll,
143 .fo_kqfilter = kqueue_kqfilter,
144 .fo_stat = kqueue_stat,
145 .fo_close = kqueue_close,
146 .fo_chmod = invfo_chmod,
147 .fo_chown = invfo_chown,
148 .fo_sendfile = invfo_sendfile,
149 .fo_cmp = file_kcmp_generic,
150 .fo_fill_kinfo = kqueue_fill_kinfo,
151 };
152
153 static int knote_attach(struct knote *kn, struct kqueue *kq);
154 static void knote_drop(struct knote *kn, struct thread *td);
155 static void knote_drop_detached(struct knote *kn, struct thread *td);
156 static void knote_enqueue(struct knote *kn);
157 static void knote_dequeue(struct knote *kn);
158 static void knote_init(void);
159 static struct knote *knote_alloc(int mflag);
160 static void knote_free(struct knote *kn);
161
162 static void filt_kqdetach(struct knote *kn);
163 static int filt_kqueue(struct knote *kn, long hint);
164 static int filt_procattach(struct knote *kn);
165 static void filt_procdetach(struct knote *kn);
166 static int filt_proc(struct knote *kn, long hint);
167 static int filt_jailattach(struct knote *kn);
168 static void filt_jaildetach(struct knote *kn);
169 static int filt_jail(struct knote *kn, long hint);
170 static int filt_fileattach(struct knote *kn);
171 static void filt_timerexpire(void *knx);
172 static void filt_timerexpire_l(struct knote *kn, bool proc_locked);
173 static int filt_timerattach(struct knote *kn);
174 static void filt_timerdetach(struct knote *kn);
175 static void filt_timerstart(struct knote *kn, sbintime_t to);
176 static void filt_timertouch(struct knote *kn, struct kevent *kev,
177 u_long type);
178 static int filt_timervalidate(struct knote *kn, sbintime_t *to);
179 static int filt_timer(struct knote *kn, long hint);
180 static int filt_userattach(struct knote *kn);
181 static void filt_userdetach(struct knote *kn);
182 static int filt_user(struct knote *kn, long hint);
183 static void filt_usertouch(struct knote *kn, struct kevent *kev,
184 u_long type);
185
186 static const struct filterops file_filtops = {
187 .f_isfd = 1,
188 .f_attach = filt_fileattach,
189 };
190 static const struct filterops kqread_filtops = {
191 .f_isfd = 1,
192 .f_detach = filt_kqdetach,
193 .f_event = filt_kqueue,
194 };
195 /* XXX - move to kern_proc.c? */
196 static const struct filterops proc_filtops = {
197 .f_isfd = 0,
198 .f_attach = filt_procattach,
199 .f_detach = filt_procdetach,
200 .f_event = filt_proc,
201 };
202 static const struct filterops jail_filtops = {
203 .f_isfd = 0,
204 .f_attach = filt_jailattach,
205 .f_detach = filt_jaildetach,
206 .f_event = filt_jail,
207 };
208 static const struct filterops timer_filtops = {
209 .f_isfd = 0,
210 .f_attach = filt_timerattach,
211 .f_detach = filt_timerdetach,
212 .f_event = filt_timer,
213 .f_touch = filt_timertouch,
214 };
215 static const struct filterops user_filtops = {
216 .f_attach = filt_userattach,
217 .f_detach = filt_userdetach,
218 .f_event = filt_user,
219 .f_touch = filt_usertouch,
220 };
221
222 static uma_zone_t knote_zone;
223 static unsigned int __exclusive_cache_line kq_ncallouts;
224 static unsigned int kq_calloutmax = 4 * 1024;
225 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
226 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
227
228 /* XXX - ensure not influx ? */
229 #define KNOTE_ACTIVATE(kn, islock) do { \
230 if ((islock)) \
231 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \
232 else \
233 KQ_LOCK((kn)->kn_kq); \
234 (kn)->kn_status |= KN_ACTIVE; \
235 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
236 knote_enqueue((kn)); \
237 if (!(islock)) \
238 KQ_UNLOCK((kn)->kn_kq); \
239 } while (0)
240 #define KQ_LOCK(kq) do { \
241 mtx_lock(&(kq)->kq_lock); \
242 } while (0)
243 #define KQ_FLUX_WAKEUP(kq) do { \
244 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \
245 (kq)->kq_state &= ~KQ_FLUXWAIT; \
246 wakeup((kq)); \
247 } \
248 } while (0)
249 #define KQ_UNLOCK_FLUX(kq) do { \
250 KQ_FLUX_WAKEUP(kq); \
251 mtx_unlock(&(kq)->kq_lock); \
252 } while (0)
253 #define KQ_UNLOCK(kq) do { \
254 mtx_unlock(&(kq)->kq_lock); \
255 } while (0)
256 #define KQ_OWNED(kq) do { \
257 mtx_assert(&(kq)->kq_lock, MA_OWNED); \
258 } while (0)
259 #define KQ_NOTOWNED(kq) do { \
260 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
261 } while (0)
262
263 static struct knlist *
kn_list_lock(struct knote * kn)264 kn_list_lock(struct knote *kn)
265 {
266 struct knlist *knl;
267
268 knl = kn->kn_knlist;
269 if (knl != NULL)
270 knl->kl_lock(knl->kl_lockarg);
271 return (knl);
272 }
273
274 static void
kn_list_unlock(struct knlist * knl)275 kn_list_unlock(struct knlist *knl)
276 {
277 bool do_free;
278
279 if (knl == NULL)
280 return;
281 do_free = knl->kl_autodestroy && knlist_empty(knl);
282 knl->kl_unlock(knl->kl_lockarg);
283 if (do_free) {
284 knlist_destroy(knl);
285 free(knl, M_KQUEUE);
286 }
287 }
288
289 static bool
kn_in_flux(struct knote * kn)290 kn_in_flux(struct knote *kn)
291 {
292
293 return (kn->kn_influx > 0);
294 }
295
296 static void
kn_enter_flux(struct knote * kn)297 kn_enter_flux(struct knote *kn)
298 {
299
300 KQ_OWNED(kn->kn_kq);
301 MPASS(kn->kn_influx < INT_MAX);
302 kn->kn_influx++;
303 }
304
305 static bool
kn_leave_flux(struct knote * kn)306 kn_leave_flux(struct knote *kn)
307 {
308
309 KQ_OWNED(kn->kn_kq);
310 MPASS(kn->kn_influx > 0);
311 kn->kn_influx--;
312 return (kn->kn_influx == 0);
313 }
314
315 #define KNL_ASSERT_LOCK(knl, islocked) do { \
316 if (islocked) \
317 KNL_ASSERT_LOCKED(knl); \
318 else \
319 KNL_ASSERT_UNLOCKED(knl); \
320 } while (0)
321 #ifdef INVARIANTS
322 #define KNL_ASSERT_LOCKED(knl) do { \
323 knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED); \
324 } while (0)
325 #define KNL_ASSERT_UNLOCKED(knl) do { \
326 knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED); \
327 } while (0)
328 #else /* !INVARIANTS */
329 #define KNL_ASSERT_LOCKED(knl) do {} while (0)
330 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
331 #endif /* INVARIANTS */
332
333 #ifndef KN_HASHSIZE
334 #define KN_HASHSIZE 64 /* XXX should be tunable */
335 #endif
336
337 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
338
339 static int
filt_nullattach(struct knote * kn)340 filt_nullattach(struct knote *kn)
341 {
342
343 return (ENXIO);
344 };
345
346 static const struct filterops null_filtops = {
347 .f_isfd = 0,
348 .f_attach = filt_nullattach,
349 };
350
351 /* XXX - make SYSINIT to add these, and move into respective modules. */
352 extern const struct filterops sig_filtops;
353 extern const struct filterops fs_filtops;
354
355 /*
356 * Table for all system-defined filters.
357 */
358 static struct mtx filterops_lock;
359 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", MTX_DEF);
360 static struct {
361 const struct filterops *for_fop;
362 int for_nolock;
363 int for_refcnt;
364 } sysfilt_ops[EVFILT_SYSCOUNT] = {
365 [~EVFILT_READ] = { &file_filtops, 1 },
366 [~EVFILT_WRITE] = { &file_filtops, 1 },
367 [~EVFILT_AIO] = { &null_filtops },
368 [~EVFILT_VNODE] = { &file_filtops, 1 },
369 [~EVFILT_PROC] = { &proc_filtops, 1 },
370 [~EVFILT_SIGNAL] = { &sig_filtops, 1 },
371 [~EVFILT_TIMER] = { &timer_filtops, 1 },
372 [~EVFILT_PROCDESC] = { &file_filtops, 1 },
373 [~EVFILT_FS] = { &fs_filtops, 1 },
374 [~EVFILT_LIO] = { &null_filtops },
375 [~EVFILT_USER] = { &user_filtops, 1 },
376 [~EVFILT_SENDFILE] = { &null_filtops },
377 [~EVFILT_EMPTY] = { &file_filtops, 1 },
378 [~EVFILT_JAIL] = { &jail_filtops, 1 },
379 };
380
381 /*
382 * Simple redirection for all cdevsw style objects to call their fo_kqfilter
383 * method.
384 */
385 static int
filt_fileattach(struct knote * kn)386 filt_fileattach(struct knote *kn)
387 {
388
389 return (fo_kqfilter(kn->kn_fp, kn));
390 }
391
392 /*ARGSUSED*/
393 static int
kqueue_kqfilter(struct file * fp,struct knote * kn)394 kqueue_kqfilter(struct file *fp, struct knote *kn)
395 {
396 struct kqueue *kq = kn->kn_fp->f_data;
397
398 if (kn->kn_filter != EVFILT_READ)
399 return (EINVAL);
400
401 kn->kn_status |= KN_KQUEUE;
402 kn->kn_fop = &kqread_filtops;
403 knlist_add(&kq->kq_sel.si_note, kn, 0);
404
405 return (0);
406 }
407
408 static void
filt_kqdetach(struct knote * kn)409 filt_kqdetach(struct knote *kn)
410 {
411 struct kqueue *kq = kn->kn_fp->f_data;
412
413 knlist_remove(&kq->kq_sel.si_note, kn, 0);
414 }
415
416 /*ARGSUSED*/
417 static int
filt_kqueue(struct knote * kn,long hint)418 filt_kqueue(struct knote *kn, long hint)
419 {
420 struct kqueue *kq = kn->kn_fp->f_data;
421
422 kn->kn_data = kq->kq_count;
423 return (kn->kn_data > 0);
424 }
425
426 /* XXX - move to kern_proc.c? */
427 static int
filt_procattach(struct knote * kn)428 filt_procattach(struct knote *kn)
429 {
430 struct proc *p;
431 int error;
432 bool exiting, immediate;
433
434 exiting = immediate = false;
435 if (kn->kn_sfflags & NOTE_EXIT)
436 p = pfind_any(kn->kn_id);
437 else
438 p = pfind(kn->kn_id);
439 if (p == NULL)
440 return (ESRCH);
441 if (p->p_flag & P_WEXIT)
442 exiting = true;
443
444 if ((error = p_cansee(curthread, p))) {
445 PROC_UNLOCK(p);
446 return (error);
447 }
448
449 kn->kn_ptr.p_proc = p;
450 kn->kn_flags |= EV_CLEAR; /* automatically set */
451
452 /*
453 * Internal flag indicating registration done by kernel for the
454 * purposes of getting a NOTE_CHILD notification.
455 */
456 if (kn->kn_flags & EV_FLAG2) {
457 kn->kn_flags &= ~EV_FLAG2;
458 kn->kn_data = kn->kn_sdata; /* ppid */
459 kn->kn_fflags = NOTE_CHILD;
460 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
461 immediate = true; /* Force immediate activation of child note. */
462 }
463 /*
464 * Internal flag indicating registration done by kernel (for other than
465 * NOTE_CHILD).
466 */
467 if (kn->kn_flags & EV_FLAG1) {
468 kn->kn_flags &= ~EV_FLAG1;
469 }
470
471 knlist_add(p->p_klist, kn, 1);
472
473 /*
474 * Immediately activate any child notes or, in the case of a zombie
475 * target process, exit notes. The latter is necessary to handle the
476 * case where the target process, e.g. a child, dies before the kevent
477 * is registered.
478 */
479 if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
480 KNOTE_ACTIVATE(kn, 0);
481
482 PROC_UNLOCK(p);
483
484 return (0);
485 }
486
487 /*
488 * The knote may be attached to a different process, which may exit,
489 * leaving nothing for the knote to be attached to. So when the process
490 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
491 * it will be deleted when read out. However, as part of the knote deletion,
492 * this routine is called, so a check is needed to avoid actually performing
493 * a detach, because the original process does not exist any more.
494 */
495 /* XXX - move to kern_proc.c? */
496 static void
filt_procdetach(struct knote * kn)497 filt_procdetach(struct knote *kn)
498 {
499
500 knlist_remove(kn->kn_knlist, kn, 0);
501 kn->kn_ptr.p_proc = NULL;
502 }
503
504 /* XXX - move to kern_proc.c? */
505 static int
filt_proc(struct knote * kn,long hint)506 filt_proc(struct knote *kn, long hint)
507 {
508 struct proc *p;
509 u_int event;
510
511 p = kn->kn_ptr.p_proc;
512 if (p == NULL) /* already activated, from attach filter */
513 return (0);
514
515 /* Mask off extra data. */
516 event = (u_int)hint & NOTE_PCTRLMASK;
517
518 /* If the user is interested in this event, record it. */
519 if (kn->kn_sfflags & event)
520 kn->kn_fflags |= event;
521
522 /* Process is gone, so flag the event as finished. */
523 if (event == NOTE_EXIT) {
524 kn->kn_flags |= EV_EOF | EV_ONESHOT;
525 kn->kn_ptr.p_proc = NULL;
526 if (kn->kn_fflags & NOTE_EXIT)
527 kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
528 if (kn->kn_fflags == 0)
529 kn->kn_flags |= EV_DROP;
530 return (1);
531 }
532
533 return (kn->kn_fflags != 0);
534 }
535
536 /*
537 * Called when the process forked. It mostly does the same as the
538 * knote(), activating all knotes registered to be activated when the
539 * process forked. Additionally, for each knote attached to the
540 * parent, check whether user wants to track the new process. If so
541 * attach a new knote to it, and immediately report an event with the
542 * child's pid. This is also called on jail creation, which is treated
543 * the same way by jail events.
544 */
545 void
knote_fork(struct knlist * list,int pid)546 knote_fork(struct knlist *list, int pid)
547 {
548 struct kqueue *kq;
549 struct knote *kn;
550 struct kevent kev;
551 int error;
552
553 MPASS(list != NULL);
554 KNL_ASSERT_LOCKED(list);
555 if (SLIST_EMPTY(&list->kl_list))
556 return;
557
558 memset(&kev, 0, sizeof(kev));
559 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
560 kq = kn->kn_kq;
561 KQ_LOCK(kq);
562 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
563 KQ_UNLOCK(kq);
564 continue;
565 }
566
567 /*
568 * The same as knote(), activate the event.
569 */
570 _Static_assert(NOTE_JAIL_CHILD == NOTE_FORK,
571 "NOTE_JAIL_CHILD should be the same as NOTE_FORK");
572 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
573 if (kn->kn_fop->f_event(kn, NOTE_FORK))
574 KNOTE_ACTIVATE(kn, 1);
575 KQ_UNLOCK(kq);
576 continue;
577 }
578
579 /*
580 * The NOTE_TRACK case. In addition to the activation
581 * of the event, we need to register new events to
582 * track the child. Drop the locks in preparation for
583 * the call to kqueue_register().
584 */
585 kn_enter_flux(kn);
586 KQ_UNLOCK(kq);
587 list->kl_unlock(list->kl_lockarg);
588
589 /*
590 * Activate existing knote and register tracking knotes with
591 * new process.
592 *
593 * First register a knote to get just the child notice. This
594 * must be a separate note from a potential NOTE_EXIT
595 * notification since both NOTE_CHILD and NOTE_EXIT are defined
596 * to use the data field (in conflicting ways).
597 */
598 kev.ident = pid;
599 kev.filter = kn->kn_filter;
600 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
601 EV_FLAG2;
602 kev.fflags = kn->kn_sfflags;
603 kev.data = kn->kn_id; /* parent */
604 kev.udata = kn->kn_kevent.udata;/* preserve udata */
605 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
606 if (error)
607 kn->kn_fflags |= NOTE_TRACKERR;
608
609 /*
610 * Then register another knote to track other potential events
611 * from the new process.
612 */
613 kev.ident = pid;
614 kev.filter = kn->kn_filter;
615 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
616 kev.fflags = kn->kn_sfflags;
617 kev.data = kn->kn_id; /* parent */
618 kev.udata = kn->kn_kevent.udata;/* preserve udata */
619 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
620 if (error)
621 kn->kn_fflags |= NOTE_TRACKERR;
622 if (kn->kn_fop->f_event(kn, NOTE_FORK))
623 KNOTE_ACTIVATE(kn, 0);
624 list->kl_lock(list->kl_lockarg);
625 KQ_LOCK(kq);
626 kn_leave_flux(kn);
627 KQ_UNLOCK_FLUX(kq);
628 }
629 }
630
631 int
filt_jailattach(struct knote * kn)632 filt_jailattach(struct knote *kn)
633 {
634 struct prison *pr;
635 bool immediate;
636
637 immediate = false;
638 if (kn->kn_id == 0) {
639 /* Let jid=0 watch the current prison (including prison0). */
640 pr = curthread->td_ucred->cr_prison;
641 mtx_lock(&pr->pr_mtx);
642 } else if (kn->kn_flags & (EV_FLAG1 | EV_FLAG2)) {
643 /*
644 * The kernel registers prisons before they are valid,
645 * so prison_find_child will fail.
646 */
647 TAILQ_FOREACH(pr, &allprison, pr_list) {
648 if (pr->pr_id < kn->kn_id)
649 continue;
650 if (pr->pr_id > kn->kn_id) {
651 pr = NULL;
652 break;
653 }
654 mtx_lock(&pr->pr_mtx);
655 break;
656 }
657 if (pr == NULL)
658 return (ENOENT);
659 } else {
660 sx_slock(&allprison_lock);
661 pr = prison_find_child(curthread->td_ucred->cr_prison,
662 kn->kn_id);
663 sx_sunlock(&allprison_lock);
664 if (pr == NULL)
665 return (ENOENT);
666 if (!prison_isalive(pr)) {
667 mtx_unlock(&pr->pr_mtx);
668 return (ENOENT);
669 }
670 }
671 kn->kn_ptr.p_prison = pr;
672 kn->kn_flags |= EV_CLEAR;
673
674 /*
675 * Internal flag indicating registration done by kernel for the
676 * purposes of getting a NOTE_CHILD notification.
677 */
678 if (kn->kn_flags & EV_FLAG2) {
679 kn->kn_flags &= ~EV_FLAG2;
680 kn->kn_data = kn->kn_sdata; /* parent id */
681 kn->kn_fflags = NOTE_CHILD;
682 kn->kn_sfflags &= ~NOTE_JAIL_CTRLMASK;
683 immediate = true; /* Force immediate activation of child note. */
684 }
685 /*
686 * Internal flag indicating registration done by kernel (for other than
687 * NOTE_CHILD).
688 */
689 if (kn->kn_flags & EV_FLAG1) {
690 kn->kn_flags &= ~EV_FLAG1;
691 }
692
693 knlist_add(pr->pr_klist, kn, 1);
694
695 /* Immediately activate any child notes. */
696 if (immediate)
697 KNOTE_ACTIVATE(kn, 0);
698
699 mtx_unlock(&pr->pr_mtx);
700 return (0);
701 }
702
703 void
filt_jaildetach(struct knote * kn)704 filt_jaildetach(struct knote *kn)
705 {
706 if (kn->kn_ptr.p_prison != NULL) {
707 knlist_remove(kn->kn_knlist, kn, 0);
708 kn->kn_ptr.p_prison = NULL;
709 } else
710 kn->kn_status |= KN_DETACHED;
711 }
712
713 int
filt_jail(struct knote * kn,long hint)714 filt_jail(struct knote *kn, long hint)
715 {
716 struct prison *pr;
717 u_int event;
718
719 pr = kn->kn_ptr.p_prison;
720 if (pr == NULL) /* already activated, from attach filter */
721 return (0);
722
723 /* Mask off extra data. */
724 event = (u_int)hint & NOTE_JAIL_CTRLMASK;
725
726 /* If the user is interested in this event, record it. */
727 if (kn->kn_sfflags & event)
728 kn->kn_fflags |= event;
729
730 /* Report the attached process id. */
731 if (event == NOTE_JAIL_ATTACH) {
732 if (kn->kn_data != 0)
733 kn->kn_fflags |= NOTE_JAIL_ATTACH_MULTI;
734 kn->kn_data = hint & NOTE_JAIL_DATAMASK;
735 }
736
737 /* Prison is gone, so flag the event as finished. */
738 if (event == NOTE_JAIL_REMOVE) {
739 kn->kn_flags |= EV_EOF | EV_ONESHOT;
740 kn->kn_ptr.p_prison = NULL;
741 if (kn->kn_fflags == 0)
742 kn->kn_flags |= EV_DROP;
743 return (1);
744 }
745
746 return (kn->kn_fflags != 0);
747 }
748
749 /*
750 * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
751 * interval timer support code.
752 */
753
754 #define NOTE_TIMER_PRECMASK \
755 (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
756
757 static sbintime_t
timer2sbintime(int64_t data,int flags)758 timer2sbintime(int64_t data, int flags)
759 {
760 int64_t secs;
761
762 /*
763 * Macros for converting to the fractional second portion of an
764 * sbintime_t using 64bit multiplication to improve precision.
765 */
766 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
767 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
768 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
769 switch (flags & NOTE_TIMER_PRECMASK) {
770 case NOTE_SECONDS:
771 #ifdef __LP64__
772 if (data > (SBT_MAX / SBT_1S))
773 return (SBT_MAX);
774 #endif
775 return ((sbintime_t)data << 32);
776 case NOTE_MSECONDS: /* FALLTHROUGH */
777 case 0:
778 if (data >= 1000) {
779 secs = data / 1000;
780 #ifdef __LP64__
781 if (secs > (SBT_MAX / SBT_1S))
782 return (SBT_MAX);
783 #endif
784 return (secs << 32 | MS_TO_SBT(data % 1000));
785 }
786 return (MS_TO_SBT(data));
787 case NOTE_USECONDS:
788 if (data >= 1000000) {
789 secs = data / 1000000;
790 #ifdef __LP64__
791 if (secs > (SBT_MAX / SBT_1S))
792 return (SBT_MAX);
793 #endif
794 return (secs << 32 | US_TO_SBT(data % 1000000));
795 }
796 return (US_TO_SBT(data));
797 case NOTE_NSECONDS:
798 if (data >= 1000000000) {
799 secs = data / 1000000000;
800 #ifdef __LP64__
801 if (secs > (SBT_MAX / SBT_1S))
802 return (SBT_MAX);
803 #endif
804 return (secs << 32 | NS_TO_SBT(data % 1000000000));
805 }
806 return (NS_TO_SBT(data));
807 default:
808 break;
809 }
810 return (-1);
811 }
812
813 struct kq_timer_cb_data {
814 struct callout c;
815 struct proc *p;
816 struct knote *kn;
817 int cpuid;
818 int flags;
819 TAILQ_ENTRY(kq_timer_cb_data) link;
820 sbintime_t next; /* next timer event fires at */
821 sbintime_t to; /* precalculated timer period, 0 for abs */
822 };
823
824 #define KQ_TIMER_CB_ENQUEUED 0x01
825
826 static void
kqtimer_sched_callout(struct kq_timer_cb_data * kc)827 kqtimer_sched_callout(struct kq_timer_cb_data *kc)
828 {
829 callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
830 kc->cpuid, C_ABSOLUTE);
831 }
832
833 void
kqtimer_proc_continue(struct proc * p)834 kqtimer_proc_continue(struct proc *p)
835 {
836 struct kq_timer_cb_data *kc, *kc1;
837 struct bintime bt;
838 sbintime_t now;
839
840 PROC_LOCK_ASSERT(p, MA_OWNED);
841
842 getboottimebin(&bt);
843 now = bttosbt(bt);
844
845 TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
846 TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
847 kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
848 if (kc->next <= now)
849 filt_timerexpire_l(kc->kn, true);
850 else
851 kqtimer_sched_callout(kc);
852 }
853 }
854
855 static void
filt_timerexpire_l(struct knote * kn,bool proc_locked)856 filt_timerexpire_l(struct knote *kn, bool proc_locked)
857 {
858 struct kq_timer_cb_data *kc;
859 struct proc *p;
860 uint64_t delta;
861 sbintime_t now;
862
863 kc = kn->kn_ptr.p_v;
864
865 if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
866 kn->kn_data++;
867 KNOTE_ACTIVATE(kn, 0);
868 return;
869 }
870
871 now = sbinuptime();
872 if (now >= kc->next) {
873 delta = (now - kc->next) / kc->to;
874 if (delta == 0)
875 delta = 1;
876 kn->kn_data += delta;
877 kc->next += delta * kc->to;
878 if (now >= kc->next) /* overflow */
879 kc->next = now + kc->to;
880 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */
881 }
882
883 /*
884 * Initial check for stopped kc->p is racy. It is fine to
885 * miss the set of the stop flags, at worst we would schedule
886 * one more callout. On the other hand, it is not fine to not
887 * schedule when we we missed clearing of the flags, we
888 * recheck them under the lock and observe consistent state.
889 */
890 p = kc->p;
891 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
892 if (!proc_locked)
893 PROC_LOCK(p);
894 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
895 if ((kc->flags & KQ_TIMER_CB_ENQUEUED) == 0) {
896 kc->flags |= KQ_TIMER_CB_ENQUEUED;
897 TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
898 }
899 if (!proc_locked)
900 PROC_UNLOCK(p);
901 return;
902 }
903 if (!proc_locked)
904 PROC_UNLOCK(p);
905 }
906 kqtimer_sched_callout(kc);
907 }
908
909 static void
filt_timerexpire(void * knx)910 filt_timerexpire(void *knx)
911 {
912 filt_timerexpire_l(knx, false);
913 }
914
915 /*
916 * data contains amount of time to sleep
917 */
918 static int
filt_timervalidate(struct knote * kn,sbintime_t * to)919 filt_timervalidate(struct knote *kn, sbintime_t *to)
920 {
921 struct bintime bt;
922 sbintime_t sbt;
923
924 if (kn->kn_sdata < 0)
925 return (EINVAL);
926 if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
927 kn->kn_sdata = 1;
928 /*
929 * The only fflags values supported are the timer unit
930 * (precision) and the absolute time indicator.
931 */
932 if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
933 return (EINVAL);
934
935 *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
936 if (*to < 0)
937 return (EINVAL);
938 if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
939 getboottimebin(&bt);
940 sbt = bttosbt(bt);
941 *to = MAX(0, *to - sbt);
942 }
943 return (0);
944 }
945
946 static int
filt_timerattach(struct knote * kn)947 filt_timerattach(struct knote *kn)
948 {
949 struct kq_timer_cb_data *kc;
950 sbintime_t to;
951 int error;
952
953 to = -1;
954 error = filt_timervalidate(kn, &to);
955 if (error != 0)
956 return (error);
957 KASSERT(to > 0 || (kn->kn_flags & EV_ONESHOT) != 0 ||
958 (kn->kn_sfflags & NOTE_ABSTIME) != 0,
959 ("%s: periodic timer has a calculated zero timeout", __func__));
960 KASSERT(to >= 0,
961 ("%s: timer has a calculated negative timeout", __func__));
962
963 if (atomic_fetchadd_int(&kq_ncallouts, 1) + 1 > kq_calloutmax) {
964 atomic_subtract_int(&kq_ncallouts, 1);
965 return (ENOMEM);
966 }
967
968 if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
969 kn->kn_flags |= EV_CLEAR; /* automatically set */
970 kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */
971 kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
972 kc->kn = kn;
973 kc->p = curproc;
974 kc->cpuid = PCPU_GET(cpuid);
975 kc->flags = 0;
976 callout_init(&kc->c, 1);
977 filt_timerstart(kn, to);
978
979 return (0);
980 }
981
982 static void
filt_timerstart(struct knote * kn,sbintime_t to)983 filt_timerstart(struct knote *kn, sbintime_t to)
984 {
985 struct kq_timer_cb_data *kc;
986
987 kc = kn->kn_ptr.p_v;
988 if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
989 kc->next = to;
990 kc->to = 0;
991 } else {
992 kc->next = to + sbinuptime();
993 kc->to = to;
994 }
995 kqtimer_sched_callout(kc);
996 }
997
998 static void
filt_timerdetach(struct knote * kn)999 filt_timerdetach(struct knote *kn)
1000 {
1001 struct kq_timer_cb_data *kc;
1002 unsigned int old __unused;
1003 bool pending;
1004
1005 kc = kn->kn_ptr.p_v;
1006 do {
1007 callout_drain(&kc->c);
1008
1009 /*
1010 * kqtimer_proc_continue() might have rescheduled this callout.
1011 * Double-check, using the process mutex as an interlock.
1012 */
1013 PROC_LOCK(kc->p);
1014 if ((kc->flags & KQ_TIMER_CB_ENQUEUED) != 0) {
1015 kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
1016 TAILQ_REMOVE(&kc->p->p_kqtim_stop, kc, link);
1017 }
1018 pending = callout_pending(&kc->c);
1019 PROC_UNLOCK(kc->p);
1020 } while (pending);
1021 free(kc, M_KQUEUE);
1022 old = atomic_fetchadd_int(&kq_ncallouts, -1);
1023 KASSERT(old > 0, ("Number of callouts cannot become negative"));
1024 kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */
1025 }
1026
1027 static void
filt_timertouch(struct knote * kn,struct kevent * kev,u_long type)1028 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
1029 {
1030 struct kq_timer_cb_data *kc;
1031 struct kqueue *kq;
1032 sbintime_t to;
1033 int error;
1034
1035 switch (type) {
1036 case EVENT_REGISTER:
1037 /* Handle re-added timers that update data/fflags */
1038 if (kev->flags & EV_ADD) {
1039 kc = kn->kn_ptr.p_v;
1040
1041 /* Drain any existing callout. */
1042 callout_drain(&kc->c);
1043
1044 /* Throw away any existing undelivered record
1045 * of the timer expiration. This is done under
1046 * the presumption that if a process is
1047 * re-adding this timer with new parameters,
1048 * it is no longer interested in what may have
1049 * happened under the old parameters. If it is
1050 * interested, it can wait for the expiration,
1051 * delete the old timer definition, and then
1052 * add the new one.
1053 *
1054 * This has to be done while the kq is locked:
1055 * - if enqueued, dequeue
1056 * - make it no longer active
1057 * - clear the count of expiration events
1058 */
1059 kq = kn->kn_kq;
1060 KQ_LOCK(kq);
1061 if (kn->kn_status & KN_QUEUED)
1062 knote_dequeue(kn);
1063
1064 kn->kn_status &= ~KN_ACTIVE;
1065 kn->kn_data = 0;
1066 KQ_UNLOCK(kq);
1067
1068 /* Reschedule timer based on new data/fflags */
1069 kn->kn_sfflags = kev->fflags;
1070 kn->kn_sdata = kev->data;
1071 error = filt_timervalidate(kn, &to);
1072 if (error != 0) {
1073 kn->kn_flags |= EV_ERROR;
1074 kn->kn_data = error;
1075 } else
1076 filt_timerstart(kn, to);
1077 }
1078 break;
1079
1080 case EVENT_PROCESS:
1081 *kev = kn->kn_kevent;
1082 if (kn->kn_flags & EV_CLEAR) {
1083 kn->kn_data = 0;
1084 kn->kn_fflags = 0;
1085 }
1086 break;
1087
1088 default:
1089 panic("filt_timertouch() - invalid type (%ld)", type);
1090 break;
1091 }
1092 }
1093
1094 static int
filt_timer(struct knote * kn,long hint)1095 filt_timer(struct knote *kn, long hint)
1096 {
1097
1098 return (kn->kn_data != 0);
1099 }
1100
1101 static int
filt_userattach(struct knote * kn)1102 filt_userattach(struct knote *kn)
1103 {
1104
1105 /*
1106 * EVFILT_USER knotes are not attached to anything in the kernel.
1107 */
1108 kn->kn_hook = NULL;
1109 if (kn->kn_fflags & NOTE_TRIGGER)
1110 kn->kn_hookid = 1;
1111 else
1112 kn->kn_hookid = 0;
1113 return (0);
1114 }
1115
1116 static void
filt_userdetach(__unused struct knote * kn)1117 filt_userdetach(__unused struct knote *kn)
1118 {
1119
1120 /*
1121 * EVFILT_USER knotes are not attached to anything in the kernel.
1122 */
1123 }
1124
1125 static int
filt_user(struct knote * kn,__unused long hint)1126 filt_user(struct knote *kn, __unused long hint)
1127 {
1128
1129 return (kn->kn_hookid);
1130 }
1131
1132 static void
filt_usertouch(struct knote * kn,struct kevent * kev,u_long type)1133 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
1134 {
1135 u_int ffctrl;
1136
1137 switch (type) {
1138 case EVENT_REGISTER:
1139 if (kev->fflags & NOTE_TRIGGER)
1140 kn->kn_hookid = 1;
1141
1142 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1143 kev->fflags &= NOTE_FFLAGSMASK;
1144 switch (ffctrl) {
1145 case NOTE_FFNOP:
1146 break;
1147
1148 case NOTE_FFAND:
1149 kn->kn_sfflags &= kev->fflags;
1150 break;
1151
1152 case NOTE_FFOR:
1153 kn->kn_sfflags |= kev->fflags;
1154 break;
1155
1156 case NOTE_FFCOPY:
1157 kn->kn_sfflags = kev->fflags;
1158 break;
1159
1160 default:
1161 /* XXX Return error? */
1162 break;
1163 }
1164 kn->kn_sdata = kev->data;
1165 if (kev->flags & EV_CLEAR) {
1166 kn->kn_hookid = 0;
1167 kn->kn_data = 0;
1168 kn->kn_fflags = 0;
1169 }
1170 break;
1171
1172 case EVENT_PROCESS:
1173 *kev = kn->kn_kevent;
1174 kev->fflags = kn->kn_sfflags;
1175 kev->data = kn->kn_sdata;
1176 if (kn->kn_flags & EV_CLEAR) {
1177 kn->kn_hookid = 0;
1178 kn->kn_data = 0;
1179 kn->kn_fflags = 0;
1180 }
1181 break;
1182
1183 default:
1184 panic("filt_usertouch() - invalid type (%ld)", type);
1185 break;
1186 }
1187 }
1188
1189 int
sys_kqueue(struct thread * td,struct kqueue_args * uap)1190 sys_kqueue(struct thread *td, struct kqueue_args *uap)
1191 {
1192
1193 return (kern_kqueue(td, 0, NULL));
1194 }
1195
1196 int
sys_kqueuex(struct thread * td,struct kqueuex_args * uap)1197 sys_kqueuex(struct thread *td, struct kqueuex_args *uap)
1198 {
1199 int flags;
1200
1201 if ((uap->flags & ~(KQUEUE_CLOEXEC)) != 0)
1202 return (EINVAL);
1203 flags = 0;
1204 if ((uap->flags & KQUEUE_CLOEXEC) != 0)
1205 flags |= O_CLOEXEC;
1206 return (kern_kqueue(td, flags, NULL));
1207 }
1208
1209 static void
kqueue_init(struct kqueue * kq)1210 kqueue_init(struct kqueue *kq)
1211 {
1212
1213 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
1214 TAILQ_INIT(&kq->kq_head);
1215 knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
1216 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
1217 }
1218
1219 int
kern_kqueue(struct thread * td,int flags,struct filecaps * fcaps)1220 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
1221 {
1222 struct filedesc *fdp;
1223 struct kqueue *kq;
1224 struct file *fp;
1225 struct ucred *cred;
1226 int fd, error;
1227
1228 fdp = td->td_proc->p_fd;
1229 cred = td->td_ucred;
1230 if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
1231 return (ENOMEM);
1232
1233 error = falloc_caps(td, &fp, &fd, flags, fcaps);
1234 if (error != 0) {
1235 chgkqcnt(cred->cr_ruidinfo, -1, 0);
1236 return (error);
1237 }
1238
1239 /* An extra reference on `fp' has been held for us by falloc(). */
1240 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
1241 kqueue_init(kq);
1242 kq->kq_fdp = fdp;
1243 kq->kq_cred = crhold(cred);
1244
1245 FILEDESC_XLOCK(fdp);
1246 TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
1247 FILEDESC_XUNLOCK(fdp);
1248
1249 finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
1250 fdrop(fp, td);
1251
1252 td->td_retval[0] = fd;
1253 return (0);
1254 }
1255
1256 struct g_kevent_args {
1257 int fd;
1258 const void *changelist;
1259 int nchanges;
1260 void *eventlist;
1261 int nevents;
1262 const struct timespec *timeout;
1263 };
1264
1265 int
sys_kevent(struct thread * td,struct kevent_args * uap)1266 sys_kevent(struct thread *td, struct kevent_args *uap)
1267 {
1268 struct kevent_copyops k_ops = {
1269 .arg = uap,
1270 .k_copyout = kevent_copyout,
1271 .k_copyin = kevent_copyin,
1272 .kevent_size = sizeof(struct kevent),
1273 };
1274 struct g_kevent_args gk_args = {
1275 .fd = uap->fd,
1276 .changelist = uap->changelist,
1277 .nchanges = uap->nchanges,
1278 .eventlist = uap->eventlist,
1279 .nevents = uap->nevents,
1280 .timeout = uap->timeout,
1281 };
1282
1283 return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
1284 }
1285
1286 static int
kern_kevent_generic(struct thread * td,struct g_kevent_args * uap,struct kevent_copyops * k_ops,const char * struct_name)1287 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
1288 struct kevent_copyops *k_ops, const char *struct_name)
1289 {
1290 struct timespec ts, *tsp;
1291 #ifdef KTRACE
1292 struct kevent *eventlist = uap->eventlist;
1293 #endif
1294 int error;
1295
1296 if (uap->timeout != NULL) {
1297 error = copyin(uap->timeout, &ts, sizeof(ts));
1298 if (error)
1299 return (error);
1300 tsp = &ts;
1301 } else
1302 tsp = NULL;
1303
1304 #ifdef KTRACE
1305 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
1306 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
1307 uap->nchanges, k_ops->kevent_size);
1308 #endif
1309
1310 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
1311 k_ops, tsp);
1312
1313 #ifdef KTRACE
1314 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1315 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
1316 td->td_retval[0], k_ops->kevent_size);
1317 #endif
1318
1319 return (error);
1320 }
1321
1322 /*
1323 * Copy 'count' items into the destination list pointed to by uap->eventlist.
1324 */
1325 static int
kevent_copyout(void * arg,struct kevent * kevp,int count)1326 kevent_copyout(void *arg, struct kevent *kevp, int count)
1327 {
1328 struct kevent_args *uap;
1329 int error;
1330
1331 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1332 uap = (struct kevent_args *)arg;
1333
1334 error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
1335 if (error == 0)
1336 uap->eventlist += count;
1337 return (error);
1338 }
1339
1340 /*
1341 * Copy 'count' items from the list pointed to by uap->changelist.
1342 */
1343 static int
kevent_copyin(void * arg,struct kevent * kevp,int count)1344 kevent_copyin(void *arg, struct kevent *kevp, int count)
1345 {
1346 struct kevent_args *uap;
1347 int error;
1348
1349 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1350 uap = (struct kevent_args *)arg;
1351
1352 error = copyin(uap->changelist, kevp, count * sizeof *kevp);
1353 if (error == 0)
1354 uap->changelist += count;
1355 return (error);
1356 }
1357
1358 #ifdef COMPAT_FREEBSD11
1359 static int
kevent11_copyout(void * arg,struct kevent * kevp,int count)1360 kevent11_copyout(void *arg, struct kevent *kevp, int count)
1361 {
1362 struct freebsd11_kevent_args *uap;
1363 struct freebsd11_kevent kev11;
1364 int error, i;
1365
1366 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1367 uap = (struct freebsd11_kevent_args *)arg;
1368
1369 for (i = 0; i < count; i++) {
1370 kev11.ident = kevp->ident;
1371 kev11.filter = kevp->filter;
1372 kev11.flags = kevp->flags;
1373 kev11.fflags = kevp->fflags;
1374 kev11.data = kevp->data;
1375 kev11.udata = kevp->udata;
1376 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
1377 if (error != 0)
1378 break;
1379 uap->eventlist++;
1380 kevp++;
1381 }
1382 return (error);
1383 }
1384
1385 /*
1386 * Copy 'count' items from the list pointed to by uap->changelist.
1387 */
1388 static int
kevent11_copyin(void * arg,struct kevent * kevp,int count)1389 kevent11_copyin(void *arg, struct kevent *kevp, int count)
1390 {
1391 struct freebsd11_kevent_args *uap;
1392 struct freebsd11_kevent kev11;
1393 int error, i;
1394
1395 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1396 uap = (struct freebsd11_kevent_args *)arg;
1397
1398 for (i = 0; i < count; i++) {
1399 error = copyin(uap->changelist, &kev11, sizeof(kev11));
1400 if (error != 0)
1401 break;
1402 kevp->ident = kev11.ident;
1403 kevp->filter = kev11.filter;
1404 kevp->flags = kev11.flags;
1405 kevp->fflags = kev11.fflags;
1406 kevp->data = (uintptr_t)kev11.data;
1407 kevp->udata = kev11.udata;
1408 bzero(&kevp->ext, sizeof(kevp->ext));
1409 uap->changelist++;
1410 kevp++;
1411 }
1412 return (error);
1413 }
1414
1415 int
freebsd11_kevent(struct thread * td,struct freebsd11_kevent_args * uap)1416 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
1417 {
1418 struct kevent_copyops k_ops = {
1419 .arg = uap,
1420 .k_copyout = kevent11_copyout,
1421 .k_copyin = kevent11_copyin,
1422 .kevent_size = sizeof(struct freebsd11_kevent),
1423 };
1424 struct g_kevent_args gk_args = {
1425 .fd = uap->fd,
1426 .changelist = uap->changelist,
1427 .nchanges = uap->nchanges,
1428 .eventlist = uap->eventlist,
1429 .nevents = uap->nevents,
1430 .timeout = uap->timeout,
1431 };
1432
1433 return (kern_kevent_generic(td, &gk_args, &k_ops, "freebsd11_kevent"));
1434 }
1435 #endif
1436
1437 int
kern_kevent(struct thread * td,int fd,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1438 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
1439 struct kevent_copyops *k_ops, const struct timespec *timeout)
1440 {
1441 cap_rights_t rights;
1442 struct file *fp;
1443 int error;
1444
1445 cap_rights_init_zero(&rights);
1446 if (nchanges > 0)
1447 cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
1448 if (nevents > 0)
1449 cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
1450 error = fget(td, fd, &rights, &fp);
1451 if (error != 0)
1452 return (error);
1453
1454 error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
1455 fdrop(fp, td);
1456
1457 return (error);
1458 }
1459
1460 static int
kqueue_kevent(struct kqueue * kq,struct thread * td,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1461 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
1462 struct kevent_copyops *k_ops, const struct timespec *timeout)
1463 {
1464 struct kevent keva[KQ_NEVENTS];
1465 struct kevent *kevp, *changes;
1466 int i, n, nerrors, error;
1467
1468 if (nchanges < 0)
1469 return (EINVAL);
1470
1471 nerrors = 0;
1472 while (nchanges > 0) {
1473 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
1474 error = k_ops->k_copyin(k_ops->arg, keva, n);
1475 if (error)
1476 return (error);
1477 changes = keva;
1478 for (i = 0; i < n; i++) {
1479 kevp = &changes[i];
1480 if (!kevp->filter)
1481 continue;
1482 kevp->flags &= ~EV_SYSFLAGS;
1483 error = kqueue_register(kq, kevp, td, M_WAITOK);
1484 if (error || (kevp->flags & EV_RECEIPT)) {
1485 if (nevents == 0)
1486 return (error);
1487 kevp->flags = EV_ERROR;
1488 kevp->data = error;
1489 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
1490 nevents--;
1491 nerrors++;
1492 }
1493 }
1494 nchanges -= n;
1495 }
1496 if (nerrors) {
1497 td->td_retval[0] = nerrors;
1498 return (0);
1499 }
1500
1501 return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1502 }
1503
1504 int
kern_kevent_fp(struct thread * td,struct file * fp,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1505 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1506 struct kevent_copyops *k_ops, const struct timespec *timeout)
1507 {
1508 struct kqueue *kq;
1509 int error;
1510
1511 error = kqueue_acquire(fp, &kq);
1512 if (error != 0)
1513 return (error);
1514 error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1515 kqueue_release(kq, 0);
1516 return (error);
1517 }
1518
1519 /*
1520 * Performs a kevent() call on a temporarily created kqueue. This can be
1521 * used to perform one-shot polling, similar to poll() and select().
1522 */
1523 int
kern_kevent_anonymous(struct thread * td,int nevents,struct kevent_copyops * k_ops)1524 kern_kevent_anonymous(struct thread *td, int nevents,
1525 struct kevent_copyops *k_ops)
1526 {
1527 struct kqueue kq = {};
1528 int error;
1529
1530 kqueue_init(&kq);
1531 kq.kq_refcnt = 1;
1532 error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1533 kqueue_drain(&kq, td);
1534 kqueue_destroy(&kq);
1535 return (error);
1536 }
1537
1538 int
kqueue_add_filteropts(int filt,const struct filterops * filtops)1539 kqueue_add_filteropts(int filt, const struct filterops *filtops)
1540 {
1541 int error;
1542
1543 error = 0;
1544 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1545 printf(
1546 "trying to add a filterop that is out of range: %d is beyond %d\n",
1547 ~filt, EVFILT_SYSCOUNT);
1548 return EINVAL;
1549 }
1550 mtx_lock(&filterops_lock);
1551 if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1552 sysfilt_ops[~filt].for_fop != NULL)
1553 error = EEXIST;
1554 else {
1555 sysfilt_ops[~filt].for_fop = filtops;
1556 sysfilt_ops[~filt].for_refcnt = 0;
1557 }
1558 mtx_unlock(&filterops_lock);
1559
1560 return (error);
1561 }
1562
1563 int
kqueue_del_filteropts(int filt)1564 kqueue_del_filteropts(int filt)
1565 {
1566 int error;
1567
1568 error = 0;
1569 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1570 return EINVAL;
1571
1572 mtx_lock(&filterops_lock);
1573 if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1574 sysfilt_ops[~filt].for_fop == NULL)
1575 error = EINVAL;
1576 else if (sysfilt_ops[~filt].for_refcnt != 0)
1577 error = EBUSY;
1578 else {
1579 sysfilt_ops[~filt].for_fop = &null_filtops;
1580 sysfilt_ops[~filt].for_refcnt = 0;
1581 }
1582 mtx_unlock(&filterops_lock);
1583
1584 return error;
1585 }
1586
1587 static const struct filterops *
kqueue_fo_find(int filt)1588 kqueue_fo_find(int filt)
1589 {
1590
1591 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1592 return NULL;
1593
1594 if (sysfilt_ops[~filt].for_nolock)
1595 return sysfilt_ops[~filt].for_fop;
1596
1597 mtx_lock(&filterops_lock);
1598 sysfilt_ops[~filt].for_refcnt++;
1599 if (sysfilt_ops[~filt].for_fop == NULL)
1600 sysfilt_ops[~filt].for_fop = &null_filtops;
1601 mtx_unlock(&filterops_lock);
1602
1603 return sysfilt_ops[~filt].for_fop;
1604 }
1605
1606 static void
kqueue_fo_release(int filt)1607 kqueue_fo_release(int filt)
1608 {
1609
1610 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1611 return;
1612
1613 if (sysfilt_ops[~filt].for_nolock)
1614 return;
1615
1616 mtx_lock(&filterops_lock);
1617 KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1618 ("filter object refcount not valid on release"));
1619 sysfilt_ops[~filt].for_refcnt--;
1620 mtx_unlock(&filterops_lock);
1621 }
1622
1623 /*
1624 * A ref to kq (obtained via kqueue_acquire) must be held.
1625 */
1626 static int
kqueue_register(struct kqueue * kq,struct kevent * kev,struct thread * td,int mflag)1627 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
1628 int mflag)
1629 {
1630 const struct filterops *fops;
1631 struct file *fp;
1632 struct knote *kn, *tkn;
1633 struct knlist *knl;
1634 int error, filt, event;
1635 int haskqglobal, filedesc_unlock;
1636
1637 if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1638 return (EINVAL);
1639
1640 fp = NULL;
1641 kn = NULL;
1642 knl = NULL;
1643 error = 0;
1644 haskqglobal = 0;
1645 filedesc_unlock = 0;
1646
1647 filt = kev->filter;
1648 fops = kqueue_fo_find(filt);
1649 if (fops == NULL)
1650 return EINVAL;
1651
1652 if (kev->flags & EV_ADD) {
1653 /* Reject an invalid flag pair early */
1654 if (kev->flags & EV_KEEPUDATA) {
1655 tkn = NULL;
1656 error = EINVAL;
1657 goto done;
1658 }
1659
1660 /*
1661 * Prevent waiting with locks. Non-sleepable
1662 * allocation failures are handled in the loop, only
1663 * if the spare knote appears to be actually required.
1664 */
1665 tkn = knote_alloc(mflag);
1666 } else {
1667 tkn = NULL;
1668 }
1669
1670 findkn:
1671 if (fops->f_isfd) {
1672 KASSERT(td != NULL, ("td is NULL"));
1673 if (kev->ident > INT_MAX)
1674 error = EBADF;
1675 else
1676 error = fget(td, kev->ident, &cap_event_rights, &fp);
1677 if (error)
1678 goto done;
1679
1680 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1681 kev->ident, M_NOWAIT) != 0) {
1682 /* try again */
1683 fdrop(fp, td);
1684 fp = NULL;
1685 error = kqueue_expand(kq, fops, kev->ident, mflag);
1686 if (error)
1687 goto done;
1688 goto findkn;
1689 }
1690
1691 if (fp->f_type == DTYPE_KQUEUE) {
1692 /*
1693 * If we add some intelligence about what we are doing,
1694 * we should be able to support events on ourselves.
1695 * We need to know when we are doing this to prevent
1696 * getting both the knlist lock and the kq lock since
1697 * they are the same thing.
1698 */
1699 if (fp->f_data == kq) {
1700 error = EINVAL;
1701 goto done;
1702 }
1703
1704 /*
1705 * Pre-lock the filedesc before the global
1706 * lock mutex, see the comment in
1707 * kqueue_close().
1708 */
1709 FILEDESC_XLOCK(td->td_proc->p_fd);
1710 filedesc_unlock = 1;
1711 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1712 }
1713
1714 KQ_LOCK(kq);
1715 if (kev->ident < kq->kq_knlistsize) {
1716 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1717 if (kev->filter == kn->kn_filter)
1718 break;
1719 }
1720 } else {
1721 if ((kev->flags & EV_ADD) == EV_ADD) {
1722 error = kqueue_expand(kq, fops, kev->ident, mflag);
1723 if (error != 0)
1724 goto done;
1725 }
1726
1727 KQ_LOCK(kq);
1728
1729 /*
1730 * If possible, find an existing knote to use for this kevent.
1731 */
1732 if ((kev->filter == EVFILT_PROC || kev->filter == EVFILT_JAIL)
1733 && (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1734 /* This is an internal creation of a process tracking
1735 * note. Don't attempt to coalesce this with an
1736 * existing note.
1737 */
1738 ;
1739 } else if (kq->kq_knhashmask != 0) {
1740 struct klist *list;
1741
1742 list = &kq->kq_knhash[
1743 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1744 SLIST_FOREACH(kn, list, kn_link)
1745 if (kev->ident == kn->kn_id &&
1746 kev->filter == kn->kn_filter)
1747 break;
1748 }
1749 }
1750
1751 /* knote is in the process of changing, wait for it to stabilize. */
1752 if (kn != NULL && kn_in_flux(kn)) {
1753 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1754 if (filedesc_unlock) {
1755 FILEDESC_XUNLOCK(td->td_proc->p_fd);
1756 filedesc_unlock = 0;
1757 }
1758 kq->kq_state |= KQ_FLUXWAIT;
1759 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1760 if (fp != NULL) {
1761 fdrop(fp, td);
1762 fp = NULL;
1763 }
1764 goto findkn;
1765 }
1766
1767 /*
1768 * kn now contains the matching knote, or NULL if no match
1769 */
1770 if (kn == NULL) {
1771 if (kev->flags & EV_ADD) {
1772 kn = tkn;
1773 tkn = NULL;
1774 if (kn == NULL) {
1775 KQ_UNLOCK(kq);
1776 error = ENOMEM;
1777 goto done;
1778 }
1779 kn->kn_fp = fp;
1780 kn->kn_kq = kq;
1781 kn->kn_fop = fops;
1782 /*
1783 * apply reference counts to knote structure, and
1784 * do not release it at the end of this routine.
1785 */
1786 fops = NULL;
1787 fp = NULL;
1788
1789 kn->kn_sfflags = kev->fflags;
1790 kn->kn_sdata = kev->data;
1791 kev->fflags = 0;
1792 kev->data = 0;
1793 kn->kn_kevent = *kev;
1794 kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1795 EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1796 kn->kn_status = KN_DETACHED;
1797 if ((kev->flags & EV_DISABLE) != 0)
1798 kn->kn_status |= KN_DISABLED;
1799 kn_enter_flux(kn);
1800
1801 error = knote_attach(kn, kq);
1802 KQ_UNLOCK(kq);
1803 if (error != 0) {
1804 tkn = kn;
1805 goto done;
1806 }
1807
1808 if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1809 knote_drop_detached(kn, td);
1810 goto done;
1811 }
1812 knl = kn_list_lock(kn);
1813 goto done_ev_add;
1814 } else {
1815 /* No matching knote and the EV_ADD flag is not set. */
1816 KQ_UNLOCK(kq);
1817 error = ENOENT;
1818 goto done;
1819 }
1820 }
1821
1822 if (kev->flags & EV_DELETE) {
1823 kn_enter_flux(kn);
1824 KQ_UNLOCK(kq);
1825 knote_drop(kn, td);
1826 goto done;
1827 }
1828
1829 if (kev->flags & EV_FORCEONESHOT) {
1830 kn->kn_flags |= EV_ONESHOT;
1831 KNOTE_ACTIVATE(kn, 1);
1832 }
1833
1834 if ((kev->flags & EV_ENABLE) != 0)
1835 kn->kn_status &= ~KN_DISABLED;
1836 else if ((kev->flags & EV_DISABLE) != 0)
1837 kn->kn_status |= KN_DISABLED;
1838
1839 /*
1840 * The user may change some filter values after the initial EV_ADD,
1841 * but doing so will not reset any filter which has already been
1842 * triggered.
1843 */
1844 kn->kn_status |= KN_SCAN;
1845 kn_enter_flux(kn);
1846 KQ_UNLOCK(kq);
1847 knl = kn_list_lock(kn);
1848 if ((kev->flags & EV_KEEPUDATA) == 0)
1849 kn->kn_kevent.udata = kev->udata;
1850 if (!fops->f_isfd && fops->f_touch != NULL) {
1851 fops->f_touch(kn, kev, EVENT_REGISTER);
1852 } else {
1853 kn->kn_sfflags = kev->fflags;
1854 kn->kn_sdata = kev->data;
1855 }
1856
1857 done_ev_add:
1858 /*
1859 * We can get here with kn->kn_knlist == NULL. This can happen when
1860 * the initial attach event decides that the event is "completed"
1861 * already, e.g., filt_procattach() is called on a zombie process. It
1862 * will call filt_proc() which will remove it from the list, and NULL
1863 * kn_knlist.
1864 *
1865 * KN_DISABLED will be stable while the knote is in flux, so the
1866 * unlocked read will not race with an update.
1867 */
1868 if ((kn->kn_status & KN_DISABLED) == 0)
1869 event = kn->kn_fop->f_event(kn, 0);
1870 else
1871 event = 0;
1872
1873 KQ_LOCK(kq);
1874 if (event)
1875 kn->kn_status |= KN_ACTIVE;
1876 if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1877 KN_ACTIVE)
1878 knote_enqueue(kn);
1879 kn->kn_status &= ~KN_SCAN;
1880 kn_leave_flux(kn);
1881 kn_list_unlock(knl);
1882 KQ_UNLOCK_FLUX(kq);
1883
1884 done:
1885 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1886 if (filedesc_unlock)
1887 FILEDESC_XUNLOCK(td->td_proc->p_fd);
1888 if (fp != NULL)
1889 fdrop(fp, td);
1890 knote_free(tkn);
1891 if (fops != NULL)
1892 kqueue_fo_release(filt);
1893 return (error);
1894 }
1895
1896 static int
kqueue_acquire(struct file * fp,struct kqueue ** kqp)1897 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1898 {
1899 int error;
1900 struct kqueue *kq;
1901
1902 error = 0;
1903
1904 kq = fp->f_data;
1905 if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1906 return (EINVAL);
1907 *kqp = kq;
1908 KQ_LOCK(kq);
1909 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1910 KQ_UNLOCK(kq);
1911 return (EBADF);
1912 }
1913 kq->kq_refcnt++;
1914 KQ_UNLOCK(kq);
1915
1916 return error;
1917 }
1918
1919 static void
kqueue_release(struct kqueue * kq,int locked)1920 kqueue_release(struct kqueue *kq, int locked)
1921 {
1922 if (locked)
1923 KQ_OWNED(kq);
1924 else
1925 KQ_LOCK(kq);
1926 kq->kq_refcnt--;
1927 if (kq->kq_refcnt == 1)
1928 wakeup(&kq->kq_refcnt);
1929 if (!locked)
1930 KQ_UNLOCK(kq);
1931 }
1932
1933 static void
ast_kqueue(struct thread * td,int tda __unused)1934 ast_kqueue(struct thread *td, int tda __unused)
1935 {
1936 taskqueue_quiesce(taskqueue_kqueue_ctx);
1937 }
1938
1939 static void
kqueue_schedtask(struct kqueue * kq)1940 kqueue_schedtask(struct kqueue *kq)
1941 {
1942 KQ_OWNED(kq);
1943 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1944 ("scheduling kqueue task while draining"));
1945
1946 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1947 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
1948 kq->kq_state |= KQ_TASKSCHED;
1949 ast_sched(curthread, TDA_KQUEUE);
1950 }
1951 }
1952
1953 /*
1954 * Expand the kq to make sure we have storage for fops/ident pair.
1955 *
1956 * Return 0 on success (or no work necessary), return errno on failure.
1957 */
1958 static int
kqueue_expand(struct kqueue * kq,const struct filterops * fops,uintptr_t ident,int mflag)1959 kqueue_expand(struct kqueue *kq, const struct filterops *fops, uintptr_t ident,
1960 int mflag)
1961 {
1962 struct klist *list, *tmp_knhash, *to_free;
1963 u_long tmp_knhashmask;
1964 int error, fd, size;
1965
1966 KQ_NOTOWNED(kq);
1967
1968 error = 0;
1969 to_free = NULL;
1970 if (fops->f_isfd) {
1971 fd = ident;
1972 if (kq->kq_knlistsize <= fd) {
1973 size = kq->kq_knlistsize;
1974 while (size <= fd)
1975 size += KQEXTENT;
1976 list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1977 if (list == NULL)
1978 return ENOMEM;
1979 KQ_LOCK(kq);
1980 if ((kq->kq_state & KQ_CLOSING) != 0) {
1981 to_free = list;
1982 error = EBADF;
1983 } else if (kq->kq_knlistsize > fd) {
1984 to_free = list;
1985 } else {
1986 if (kq->kq_knlist != NULL) {
1987 bcopy(kq->kq_knlist, list,
1988 kq->kq_knlistsize * sizeof(*list));
1989 to_free = kq->kq_knlist;
1990 kq->kq_knlist = NULL;
1991 }
1992 bzero((caddr_t)list +
1993 kq->kq_knlistsize * sizeof(*list),
1994 (size - kq->kq_knlistsize) * sizeof(*list));
1995 kq->kq_knlistsize = size;
1996 kq->kq_knlist = list;
1997 }
1998 KQ_UNLOCK(kq);
1999 }
2000 } else {
2001 if (kq->kq_knhashmask == 0) {
2002 tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
2003 &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
2004 HASH_WAITOK : HASH_NOWAIT);
2005 if (tmp_knhash == NULL)
2006 return (ENOMEM);
2007 KQ_LOCK(kq);
2008 if ((kq->kq_state & KQ_CLOSING) != 0) {
2009 to_free = tmp_knhash;
2010 error = EBADF;
2011 } else if (kq->kq_knhashmask == 0) {
2012 kq->kq_knhash = tmp_knhash;
2013 kq->kq_knhashmask = tmp_knhashmask;
2014 } else {
2015 to_free = tmp_knhash;
2016 }
2017 KQ_UNLOCK(kq);
2018 }
2019 }
2020 free(to_free, M_KQUEUE);
2021
2022 KQ_NOTOWNED(kq);
2023 return (error);
2024 }
2025
2026 static void
kqueue_task(void * arg,int pending)2027 kqueue_task(void *arg, int pending)
2028 {
2029 struct kqueue *kq;
2030 int haskqglobal;
2031
2032 haskqglobal = 0;
2033 kq = arg;
2034
2035 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
2036 KQ_LOCK(kq);
2037
2038 KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
2039
2040 kq->kq_state &= ~KQ_TASKSCHED;
2041 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
2042 wakeup(&kq->kq_state);
2043 }
2044 KQ_UNLOCK(kq);
2045 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2046 }
2047
2048 /*
2049 * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
2050 * We treat KN_MARKER knotes as if they are in flux.
2051 */
2052 static int
kqueue_scan(struct kqueue * kq,int maxevents,struct kevent_copyops * k_ops,const struct timespec * tsp,struct kevent * keva,struct thread * td)2053 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
2054 const struct timespec *tsp, struct kevent *keva, struct thread *td)
2055 {
2056 struct kevent *kevp;
2057 struct knote *kn, *marker;
2058 struct knlist *knl;
2059 sbintime_t asbt, rsbt;
2060 int count, error, haskqglobal, influx, nkev, touch;
2061
2062 count = maxevents;
2063 nkev = 0;
2064 error = 0;
2065 haskqglobal = 0;
2066
2067 if (maxevents == 0)
2068 goto done_nl;
2069 if (maxevents < 0) {
2070 error = EINVAL;
2071 goto done_nl;
2072 }
2073
2074 rsbt = 0;
2075 if (tsp != NULL) {
2076 if (!timespecvalid_interval(tsp)) {
2077 error = EINVAL;
2078 goto done_nl;
2079 }
2080 if (timespecisset(tsp)) {
2081 if (tsp->tv_sec <= INT32_MAX) {
2082 rsbt = tstosbt(*tsp);
2083 if (TIMESEL(&asbt, rsbt))
2084 asbt += tc_tick_sbt;
2085 if (asbt <= SBT_MAX - rsbt)
2086 asbt += rsbt;
2087 else
2088 asbt = 0;
2089 rsbt >>= tc_precexp;
2090 } else
2091 asbt = 0;
2092 } else
2093 asbt = -1;
2094 } else
2095 asbt = 0;
2096 marker = knote_alloc(M_WAITOK);
2097 marker->kn_status = KN_MARKER;
2098 KQ_LOCK(kq);
2099
2100 retry:
2101 kevp = keva;
2102 if (kq->kq_count == 0) {
2103 if (asbt == -1) {
2104 error = EWOULDBLOCK;
2105 } else {
2106 kq->kq_state |= KQ_SLEEP;
2107 error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
2108 "kqread", asbt, rsbt, C_ABSOLUTE);
2109 }
2110 if (error == 0)
2111 goto retry;
2112 /* don't restart after signals... */
2113 if (error == ERESTART)
2114 error = EINTR;
2115 else if (error == EWOULDBLOCK)
2116 error = 0;
2117 goto done;
2118 }
2119
2120 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2121 influx = 0;
2122 while (count) {
2123 KQ_OWNED(kq);
2124 kn = TAILQ_FIRST(&kq->kq_head);
2125
2126 if ((kn->kn_status == KN_MARKER && kn != marker) ||
2127 kn_in_flux(kn)) {
2128 if (influx) {
2129 influx = 0;
2130 KQ_FLUX_WAKEUP(kq);
2131 }
2132 kq->kq_state |= KQ_FLUXWAIT;
2133 error = msleep(kq, &kq->kq_lock, PSOCK,
2134 "kqflxwt", 0);
2135 continue;
2136 }
2137
2138 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2139 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
2140 kn->kn_status &= ~KN_QUEUED;
2141 kq->kq_count--;
2142 continue;
2143 }
2144 if (kn == marker) {
2145 KQ_FLUX_WAKEUP(kq);
2146 if (count == maxevents)
2147 goto retry;
2148 goto done;
2149 }
2150 KASSERT(!kn_in_flux(kn),
2151 ("knote %p is unexpectedly in flux", kn));
2152
2153 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
2154 kn->kn_status &= ~KN_QUEUED;
2155 kn_enter_flux(kn);
2156 kq->kq_count--;
2157 KQ_UNLOCK(kq);
2158 /*
2159 * We don't need to lock the list since we've
2160 * marked it as in flux.
2161 */
2162 knote_drop(kn, td);
2163 KQ_LOCK(kq);
2164 continue;
2165 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
2166 kn->kn_status &= ~KN_QUEUED;
2167 kn_enter_flux(kn);
2168 kq->kq_count--;
2169 KQ_UNLOCK(kq);
2170 /*
2171 * We don't need to lock the list since we've
2172 * marked the knote as being in flux.
2173 */
2174 *kevp = kn->kn_kevent;
2175 knote_drop(kn, td);
2176 KQ_LOCK(kq);
2177 kn = NULL;
2178 } else {
2179 kn->kn_status |= KN_SCAN;
2180 kn_enter_flux(kn);
2181 KQ_UNLOCK(kq);
2182 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
2183 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
2184 knl = kn_list_lock(kn);
2185 if (kn->kn_fop->f_event(kn, 0) == 0) {
2186 KQ_LOCK(kq);
2187 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2188 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
2189 KN_SCAN);
2190 kn_leave_flux(kn);
2191 kq->kq_count--;
2192 kn_list_unlock(knl);
2193 influx = 1;
2194 continue;
2195 }
2196 touch = (!kn->kn_fop->f_isfd &&
2197 kn->kn_fop->f_touch != NULL);
2198 if (touch)
2199 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
2200 else
2201 *kevp = kn->kn_kevent;
2202 KQ_LOCK(kq);
2203 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2204 if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
2205 /*
2206 * Manually clear knotes who weren't
2207 * 'touch'ed.
2208 */
2209 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
2210 kn->kn_data = 0;
2211 kn->kn_fflags = 0;
2212 }
2213 if (kn->kn_flags & EV_DISPATCH)
2214 kn->kn_status |= KN_DISABLED;
2215 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
2216 kq->kq_count--;
2217 } else
2218 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2219
2220 kn->kn_status &= ~KN_SCAN;
2221 kn_leave_flux(kn);
2222 kn_list_unlock(knl);
2223 influx = 1;
2224 }
2225
2226 /* we are returning a copy to the user */
2227 kevp++;
2228 nkev++;
2229 count--;
2230
2231 if (nkev == KQ_NEVENTS) {
2232 influx = 0;
2233 KQ_UNLOCK_FLUX(kq);
2234 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2235 nkev = 0;
2236 kevp = keva;
2237 KQ_LOCK(kq);
2238 if (error)
2239 break;
2240 }
2241 }
2242 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2243 done:
2244 KQ_OWNED(kq);
2245 KQ_UNLOCK_FLUX(kq);
2246 knote_free(marker);
2247 done_nl:
2248 KQ_NOTOWNED(kq);
2249 if (nkev != 0)
2250 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2251 td->td_retval[0] = maxevents - count;
2252 return (error);
2253 }
2254
2255 /*ARGSUSED*/
2256 static int
kqueue_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)2257 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
2258 struct ucred *active_cred, struct thread *td)
2259 {
2260 /*
2261 * Enabling sigio causes two major problems:
2262 * 1) infinite recursion:
2263 * Synopsys: kevent is being used to track signals and have FIOASYNC
2264 * set. On receipt of a signal this will cause a kqueue to recurse
2265 * into itself over and over. Sending the sigio causes the kqueue
2266 * to become ready, which in turn posts sigio again, forever.
2267 * Solution: this can be solved by setting a flag in the kqueue that
2268 * we have a SIGIO in progress.
2269 * 2) locking problems:
2270 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
2271 * us above the proc and pgrp locks.
2272 * Solution: Post a signal using an async mechanism, being sure to
2273 * record a generation count in the delivery so that we do not deliver
2274 * a signal to the wrong process.
2275 *
2276 * Note, these two mechanisms are somewhat mutually exclusive!
2277 */
2278 #if 0
2279 struct kqueue *kq;
2280
2281 kq = fp->f_data;
2282 switch (cmd) {
2283 case FIOASYNC:
2284 if (*(int *)data) {
2285 kq->kq_state |= KQ_ASYNC;
2286 } else {
2287 kq->kq_state &= ~KQ_ASYNC;
2288 }
2289 return (0);
2290
2291 case FIOSETOWN:
2292 return (fsetown(*(int *)data, &kq->kq_sigio));
2293
2294 case FIOGETOWN:
2295 *(int *)data = fgetown(&kq->kq_sigio);
2296 return (0);
2297 }
2298 #endif
2299
2300 return (ENOTTY);
2301 }
2302
2303 /*ARGSUSED*/
2304 static int
kqueue_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)2305 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
2306 struct thread *td)
2307 {
2308 struct kqueue *kq;
2309 int revents = 0;
2310 int error;
2311
2312 if ((error = kqueue_acquire(fp, &kq)))
2313 return POLLERR;
2314
2315 KQ_LOCK(kq);
2316 if (events & (POLLIN | POLLRDNORM)) {
2317 if (kq->kq_count) {
2318 revents |= events & (POLLIN | POLLRDNORM);
2319 } else {
2320 selrecord(td, &kq->kq_sel);
2321 if (SEL_WAITING(&kq->kq_sel))
2322 kq->kq_state |= KQ_SEL;
2323 }
2324 }
2325 kqueue_release(kq, 1);
2326 KQ_UNLOCK(kq);
2327 return (revents);
2328 }
2329
2330 /*ARGSUSED*/
2331 static int
kqueue_stat(struct file * fp,struct stat * st,struct ucred * active_cred)2332 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred)
2333 {
2334
2335 bzero((void *)st, sizeof *st);
2336 /*
2337 * We no longer return kq_count because the unlocked value is useless.
2338 * If you spent all this time getting the count, why not spend your
2339 * syscall better by calling kevent?
2340 *
2341 * XXX - This is needed for libc_r.
2342 */
2343 st->st_mode = S_IFIFO;
2344 return (0);
2345 }
2346
2347 static void
kqueue_drain(struct kqueue * kq,struct thread * td)2348 kqueue_drain(struct kqueue *kq, struct thread *td)
2349 {
2350 struct knote *kn;
2351 int i;
2352
2353 KQ_LOCK(kq);
2354
2355 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
2356 ("kqueue already closing"));
2357 kq->kq_state |= KQ_CLOSING;
2358 if (kq->kq_refcnt > 1)
2359 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
2360
2361 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
2362
2363 KASSERT(knlist_empty(&kq->kq_sel.si_note),
2364 ("kqueue's knlist not empty"));
2365
2366 for (i = 0; i < kq->kq_knlistsize; i++) {
2367 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
2368 if (kn_in_flux(kn)) {
2369 kq->kq_state |= KQ_FLUXWAIT;
2370 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
2371 continue;
2372 }
2373 kn_enter_flux(kn);
2374 KQ_UNLOCK(kq);
2375 knote_drop(kn, td);
2376 KQ_LOCK(kq);
2377 }
2378 }
2379 if (kq->kq_knhashmask != 0) {
2380 for (i = 0; i <= kq->kq_knhashmask; i++) {
2381 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
2382 if (kn_in_flux(kn)) {
2383 kq->kq_state |= KQ_FLUXWAIT;
2384 msleep(kq, &kq->kq_lock, PSOCK,
2385 "kqclo2", 0);
2386 continue;
2387 }
2388 kn_enter_flux(kn);
2389 KQ_UNLOCK(kq);
2390 knote_drop(kn, td);
2391 KQ_LOCK(kq);
2392 }
2393 }
2394 }
2395
2396 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
2397 kq->kq_state |= KQ_TASKDRAIN;
2398 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
2399 }
2400
2401 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2402 selwakeuppri(&kq->kq_sel, PSOCK);
2403 if (!SEL_WAITING(&kq->kq_sel))
2404 kq->kq_state &= ~KQ_SEL;
2405 }
2406
2407 KQ_UNLOCK(kq);
2408 }
2409
2410 static void
kqueue_destroy(struct kqueue * kq)2411 kqueue_destroy(struct kqueue *kq)
2412 {
2413
2414 KASSERT(kq->kq_fdp == NULL,
2415 ("kqueue still attached to a file descriptor"));
2416 seldrain(&kq->kq_sel);
2417 knlist_destroy(&kq->kq_sel.si_note);
2418 mtx_destroy(&kq->kq_lock);
2419
2420 if (kq->kq_knhash != NULL)
2421 free(kq->kq_knhash, M_KQUEUE);
2422 if (kq->kq_knlist != NULL)
2423 free(kq->kq_knlist, M_KQUEUE);
2424
2425 funsetown(&kq->kq_sigio);
2426 }
2427
2428 /*ARGSUSED*/
2429 static int
kqueue_close(struct file * fp,struct thread * td)2430 kqueue_close(struct file *fp, struct thread *td)
2431 {
2432 struct kqueue *kq = fp->f_data;
2433 struct filedesc *fdp;
2434 int error;
2435 int filedesc_unlock;
2436
2437 if ((error = kqueue_acquire(fp, &kq)))
2438 return error;
2439 kqueue_drain(kq, td);
2440
2441 /*
2442 * We could be called due to the knote_drop() doing fdrop(),
2443 * called from kqueue_register(). In this case the global
2444 * lock is owned, and filedesc sx is locked before, to not
2445 * take the sleepable lock after non-sleepable.
2446 */
2447 fdp = kq->kq_fdp;
2448 kq->kq_fdp = NULL;
2449 if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
2450 FILEDESC_XLOCK(fdp);
2451 filedesc_unlock = 1;
2452 } else
2453 filedesc_unlock = 0;
2454 TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
2455 if (filedesc_unlock)
2456 FILEDESC_XUNLOCK(fdp);
2457
2458 kqueue_destroy(kq);
2459 chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
2460 crfree(kq->kq_cred);
2461 free(kq, M_KQUEUE);
2462 fp->f_data = NULL;
2463
2464 return (0);
2465 }
2466
2467 static int
kqueue_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2468 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2469 {
2470 struct kqueue *kq = fp->f_data;
2471
2472 kif->kf_type = KF_TYPE_KQUEUE;
2473 kif->kf_un.kf_kqueue.kf_kqueue_addr = (uintptr_t)kq;
2474 kif->kf_un.kf_kqueue.kf_kqueue_count = kq->kq_count;
2475 kif->kf_un.kf_kqueue.kf_kqueue_state = kq->kq_state;
2476 return (0);
2477 }
2478
2479 static void
kqueue_wakeup(struct kqueue * kq)2480 kqueue_wakeup(struct kqueue *kq)
2481 {
2482 KQ_OWNED(kq);
2483
2484 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
2485 kq->kq_state &= ~KQ_SLEEP;
2486 wakeup(kq);
2487 }
2488 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2489 selwakeuppri(&kq->kq_sel, PSOCK);
2490 if (!SEL_WAITING(&kq->kq_sel))
2491 kq->kq_state &= ~KQ_SEL;
2492 }
2493 if (!knlist_empty(&kq->kq_sel.si_note))
2494 kqueue_schedtask(kq);
2495 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
2496 pgsigio(&kq->kq_sigio, SIGIO, 0);
2497 }
2498 }
2499
2500 /*
2501 * Walk down a list of knotes, activating them if their event has triggered.
2502 *
2503 * There is a possibility to optimize in the case of one kq watching another.
2504 * Instead of scheduling a task to wake it up, you could pass enough state
2505 * down the chain to make up the parent kqueue. Make this code functional
2506 * first.
2507 */
2508 void
knote(struct knlist * list,long hint,int lockflags)2509 knote(struct knlist *list, long hint, int lockflags)
2510 {
2511 struct kqueue *kq;
2512 struct knote *kn, *tkn;
2513 int error;
2514
2515 if (list == NULL)
2516 return;
2517
2518 KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
2519
2520 if ((lockflags & KNF_LISTLOCKED) == 0)
2521 list->kl_lock(list->kl_lockarg);
2522
2523 /*
2524 * If we unlock the list lock (and enter influx), we can
2525 * eliminate the kqueue scheduling, but this will introduce
2526 * four lock/unlock's for each knote to test. Also, marker
2527 * would be needed to keep iteration position, since filters
2528 * or other threads could remove events.
2529 */
2530 SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2531 kq = kn->kn_kq;
2532 KQ_LOCK(kq);
2533 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
2534 /*
2535 * Do not process the influx notes, except for
2536 * the influx coming from the kq unlock in the
2537 * kqueue_scan(). In the later case, we do
2538 * not interfere with the scan, since the code
2539 * fragment in kqueue_scan() locks the knlist,
2540 * and cannot proceed until we finished.
2541 */
2542 KQ_UNLOCK(kq);
2543 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
2544 kn_enter_flux(kn);
2545 KQ_UNLOCK(kq);
2546 error = kn->kn_fop->f_event(kn, hint);
2547 KQ_LOCK(kq);
2548 kn_leave_flux(kn);
2549 if (error)
2550 KNOTE_ACTIVATE(kn, 1);
2551 KQ_UNLOCK_FLUX(kq);
2552 } else {
2553 if (kn->kn_fop->f_event(kn, hint))
2554 KNOTE_ACTIVATE(kn, 1);
2555 KQ_UNLOCK(kq);
2556 }
2557 }
2558 if ((lockflags & KNF_LISTLOCKED) == 0)
2559 list->kl_unlock(list->kl_lockarg);
2560 }
2561
2562 /*
2563 * add a knote to a knlist
2564 */
2565 void
knlist_add(struct knlist * knl,struct knote * kn,int islocked)2566 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2567 {
2568
2569 KNL_ASSERT_LOCK(knl, islocked);
2570 KQ_NOTOWNED(kn->kn_kq);
2571 KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
2572 KASSERT((kn->kn_status & KN_DETACHED) != 0,
2573 ("knote %p was not detached", kn));
2574 if (!islocked)
2575 knl->kl_lock(knl->kl_lockarg);
2576 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2577 if (!islocked)
2578 knl->kl_unlock(knl->kl_lockarg);
2579 KQ_LOCK(kn->kn_kq);
2580 kn->kn_knlist = knl;
2581 kn->kn_status &= ~KN_DETACHED;
2582 KQ_UNLOCK(kn->kn_kq);
2583 }
2584
2585 static void
knlist_remove_kq(struct knlist * knl,struct knote * kn,int knlislocked,int kqislocked)2586 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
2587 int kqislocked)
2588 {
2589
2590 KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
2591 KNL_ASSERT_LOCK(knl, knlislocked);
2592 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2593 KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
2594 KASSERT((kn->kn_status & KN_DETACHED) == 0,
2595 ("knote %p was already detached", kn));
2596 if (!knlislocked)
2597 knl->kl_lock(knl->kl_lockarg);
2598 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2599 kn->kn_knlist = NULL;
2600 if (!knlislocked)
2601 kn_list_unlock(knl);
2602 if (!kqislocked)
2603 KQ_LOCK(kn->kn_kq);
2604 kn->kn_status |= KN_DETACHED;
2605 if (!kqislocked)
2606 KQ_UNLOCK(kn->kn_kq);
2607 }
2608
2609 /*
2610 * remove knote from the specified knlist
2611 */
2612 void
knlist_remove(struct knlist * knl,struct knote * kn,int islocked)2613 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2614 {
2615
2616 knlist_remove_kq(knl, kn, islocked, 0);
2617 }
2618
2619 int
knlist_empty(struct knlist * knl)2620 knlist_empty(struct knlist *knl)
2621 {
2622
2623 KNL_ASSERT_LOCKED(knl);
2624 return (SLIST_EMPTY(&knl->kl_list));
2625 }
2626
2627 static struct mtx knlist_lock;
2628 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2629 MTX_DEF);
2630 static void knlist_mtx_lock(void *arg);
2631 static void knlist_mtx_unlock(void *arg);
2632
2633 static void
knlist_mtx_lock(void * arg)2634 knlist_mtx_lock(void *arg)
2635 {
2636
2637 mtx_lock((struct mtx *)arg);
2638 }
2639
2640 static void
knlist_mtx_unlock(void * arg)2641 knlist_mtx_unlock(void *arg)
2642 {
2643
2644 mtx_unlock((struct mtx *)arg);
2645 }
2646
2647 static void
knlist_mtx_assert_lock(void * arg,int what)2648 knlist_mtx_assert_lock(void *arg, int what)
2649 {
2650
2651 if (what == LA_LOCKED)
2652 mtx_assert((struct mtx *)arg, MA_OWNED);
2653 else
2654 mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2655 }
2656
2657 void
knlist_init(struct knlist * knl,void * lock,void (* kl_lock)(void *),void (* kl_unlock)(void *),void (* kl_assert_lock)(void *,int))2658 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2659 void (*kl_unlock)(void *),
2660 void (*kl_assert_lock)(void *, int))
2661 {
2662
2663 if (lock == NULL)
2664 knl->kl_lockarg = &knlist_lock;
2665 else
2666 knl->kl_lockarg = lock;
2667
2668 if (kl_lock == NULL)
2669 knl->kl_lock = knlist_mtx_lock;
2670 else
2671 knl->kl_lock = kl_lock;
2672 if (kl_unlock == NULL)
2673 knl->kl_unlock = knlist_mtx_unlock;
2674 else
2675 knl->kl_unlock = kl_unlock;
2676 if (kl_assert_lock == NULL)
2677 knl->kl_assert_lock = knlist_mtx_assert_lock;
2678 else
2679 knl->kl_assert_lock = kl_assert_lock;
2680
2681 knl->kl_autodestroy = 0;
2682 SLIST_INIT(&knl->kl_list);
2683 }
2684
2685 void
knlist_init_mtx(struct knlist * knl,struct mtx * lock)2686 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2687 {
2688
2689 knlist_init(knl, lock, NULL, NULL, NULL);
2690 }
2691
2692 struct knlist *
knlist_alloc(struct mtx * lock)2693 knlist_alloc(struct mtx *lock)
2694 {
2695 struct knlist *knl;
2696
2697 knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
2698 knlist_init_mtx(knl, lock);
2699 return (knl);
2700 }
2701
2702 void
knlist_destroy(struct knlist * knl)2703 knlist_destroy(struct knlist *knl)
2704 {
2705
2706 KASSERT(KNLIST_EMPTY(knl),
2707 ("destroying knlist %p with knotes on it", knl));
2708 }
2709
2710 void
knlist_detach(struct knlist * knl)2711 knlist_detach(struct knlist *knl)
2712 {
2713
2714 KNL_ASSERT_LOCKED(knl);
2715 knl->kl_autodestroy = 1;
2716 if (knlist_empty(knl)) {
2717 knlist_destroy(knl);
2718 free(knl, M_KQUEUE);
2719 }
2720 }
2721
2722 /*
2723 * Even if we are locked, we may need to drop the lock to allow any influx
2724 * knotes time to "settle".
2725 */
2726 void
knlist_cleardel(struct knlist * knl,struct thread * td,int islocked,int killkn)2727 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2728 {
2729 struct knote *kn, *kn2;
2730 struct kqueue *kq;
2731
2732 KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
2733 if (islocked)
2734 KNL_ASSERT_LOCKED(knl);
2735 else {
2736 KNL_ASSERT_UNLOCKED(knl);
2737 again: /* need to reacquire lock since we have dropped it */
2738 knl->kl_lock(knl->kl_lockarg);
2739 }
2740
2741 SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2742 kq = kn->kn_kq;
2743 KQ_LOCK(kq);
2744 if (kn_in_flux(kn)) {
2745 KQ_UNLOCK(kq);
2746 continue;
2747 }
2748 knlist_remove_kq(knl, kn, 1, 1);
2749 if (killkn) {
2750 kn_enter_flux(kn);
2751 KQ_UNLOCK(kq);
2752 knote_drop_detached(kn, td);
2753 } else {
2754 /* Make sure cleared knotes disappear soon */
2755 kn->kn_flags |= EV_EOF | EV_ONESHOT;
2756 KQ_UNLOCK(kq);
2757 }
2758 kq = NULL;
2759 }
2760
2761 if (!SLIST_EMPTY(&knl->kl_list)) {
2762 /* there are still in flux knotes remaining */
2763 kn = SLIST_FIRST(&knl->kl_list);
2764 kq = kn->kn_kq;
2765 KQ_LOCK(kq);
2766 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
2767 knl->kl_unlock(knl->kl_lockarg);
2768 kq->kq_state |= KQ_FLUXWAIT;
2769 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2770 kq = NULL;
2771 goto again;
2772 }
2773
2774 if (islocked)
2775 KNL_ASSERT_LOCKED(knl);
2776 else {
2777 knl->kl_unlock(knl->kl_lockarg);
2778 KNL_ASSERT_UNLOCKED(knl);
2779 }
2780 }
2781
2782 /*
2783 * Remove all knotes referencing a specified fd must be called with FILEDESC
2784 * lock. This prevents a race where a new fd comes along and occupies the
2785 * entry and we attach a knote to the fd.
2786 */
2787 void
knote_fdclose(struct thread * td,int fd)2788 knote_fdclose(struct thread *td, int fd)
2789 {
2790 struct filedesc *fdp = td->td_proc->p_fd;
2791 struct kqueue *kq;
2792 struct knote *kn;
2793 int influx;
2794
2795 FILEDESC_XLOCK_ASSERT(fdp);
2796
2797 /*
2798 * We shouldn't have to worry about new kevents appearing on fd
2799 * since filedesc is locked.
2800 */
2801 TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2802 KQ_LOCK(kq);
2803
2804 again:
2805 influx = 0;
2806 while (kq->kq_knlistsize > fd &&
2807 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2808 if (kn_in_flux(kn)) {
2809 /* someone else might be waiting on our knote */
2810 if (influx)
2811 wakeup(kq);
2812 kq->kq_state |= KQ_FLUXWAIT;
2813 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2814 goto again;
2815 }
2816 kn_enter_flux(kn);
2817 KQ_UNLOCK(kq);
2818 influx = 1;
2819 knote_drop(kn, td);
2820 KQ_LOCK(kq);
2821 }
2822 KQ_UNLOCK_FLUX(kq);
2823 }
2824 }
2825
2826 static int
knote_attach(struct knote * kn,struct kqueue * kq)2827 knote_attach(struct knote *kn, struct kqueue *kq)
2828 {
2829 struct klist *list;
2830
2831 KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
2832 KQ_OWNED(kq);
2833
2834 if ((kq->kq_state & KQ_CLOSING) != 0)
2835 return (EBADF);
2836 if (kn->kn_fop->f_isfd) {
2837 if (kn->kn_id >= kq->kq_knlistsize)
2838 return (ENOMEM);
2839 list = &kq->kq_knlist[kn->kn_id];
2840 } else {
2841 if (kq->kq_knhash == NULL)
2842 return (ENOMEM);
2843 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2844 }
2845 SLIST_INSERT_HEAD(list, kn, kn_link);
2846 return (0);
2847 }
2848
2849 static void
knote_drop(struct knote * kn,struct thread * td)2850 knote_drop(struct knote *kn, struct thread *td)
2851 {
2852
2853 if ((kn->kn_status & KN_DETACHED) == 0)
2854 kn->kn_fop->f_detach(kn);
2855 knote_drop_detached(kn, td);
2856 }
2857
2858 static void
knote_drop_detached(struct knote * kn,struct thread * td)2859 knote_drop_detached(struct knote *kn, struct thread *td)
2860 {
2861 struct kqueue *kq;
2862 struct klist *list;
2863
2864 kq = kn->kn_kq;
2865
2866 KASSERT((kn->kn_status & KN_DETACHED) != 0,
2867 ("knote %p still attached", kn));
2868 KQ_NOTOWNED(kq);
2869
2870 KQ_LOCK(kq);
2871 for (;;) {
2872 KASSERT(kn->kn_influx >= 1,
2873 ("knote_drop called on %p with influx %d",
2874 kn, kn->kn_influx));
2875 if (kn->kn_influx == 1)
2876 break;
2877 kq->kq_state |= KQ_FLUXWAIT;
2878 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2879 }
2880
2881 if (kn->kn_fop->f_isfd)
2882 list = &kq->kq_knlist[kn->kn_id];
2883 else
2884 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2885
2886 if (!SLIST_EMPTY(list))
2887 SLIST_REMOVE(list, kn, knote, kn_link);
2888 if (kn->kn_status & KN_QUEUED)
2889 knote_dequeue(kn);
2890 KQ_UNLOCK_FLUX(kq);
2891
2892 if (kn->kn_fop->f_isfd) {
2893 fdrop(kn->kn_fp, td);
2894 kn->kn_fp = NULL;
2895 }
2896 kqueue_fo_release(kn->kn_kevent.filter);
2897 kn->kn_fop = NULL;
2898 knote_free(kn);
2899 }
2900
2901 static void
knote_enqueue(struct knote * kn)2902 knote_enqueue(struct knote *kn)
2903 {
2904 struct kqueue *kq = kn->kn_kq;
2905
2906 KQ_OWNED(kn->kn_kq);
2907 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2908
2909 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2910 kn->kn_status |= KN_QUEUED;
2911 kq->kq_count++;
2912 kqueue_wakeup(kq);
2913 }
2914
2915 static void
knote_dequeue(struct knote * kn)2916 knote_dequeue(struct knote *kn)
2917 {
2918 struct kqueue *kq = kn->kn_kq;
2919
2920 KQ_OWNED(kn->kn_kq);
2921 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2922
2923 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2924 kn->kn_status &= ~KN_QUEUED;
2925 kq->kq_count--;
2926 }
2927
2928 static void
knote_init(void)2929 knote_init(void)
2930 {
2931
2932 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2933 NULL, NULL, UMA_ALIGN_PTR, 0);
2934 ast_register(TDA_KQUEUE, ASTR_ASTF_REQUIRED, 0, ast_kqueue);
2935 prison0.pr_klist = knlist_alloc(&prison0.pr_mtx);
2936 }
2937 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2938
2939 static struct knote *
knote_alloc(int mflag)2940 knote_alloc(int mflag)
2941 {
2942
2943 return (uma_zalloc(knote_zone, mflag | M_ZERO));
2944 }
2945
2946 static void
knote_free(struct knote * kn)2947 knote_free(struct knote *kn)
2948 {
2949
2950 uma_zfree(knote_zone, kn);
2951 }
2952
2953 /*
2954 * Register the kev w/ the kq specified by fd.
2955 */
2956 int
kqfd_register(int fd,struct kevent * kev,struct thread * td,int mflag)2957 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
2958 {
2959 struct kqueue *kq;
2960 struct file *fp;
2961 cap_rights_t rights;
2962 int error;
2963
2964 error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
2965 &fp);
2966 if (error != 0)
2967 return (error);
2968 if ((error = kqueue_acquire(fp, &kq)) != 0)
2969 goto noacquire;
2970
2971 error = kqueue_register(kq, kev, td, mflag);
2972 kqueue_release(kq, 0);
2973
2974 noacquire:
2975 fdrop(fp, td);
2976 return (error);
2977 }
2978
2979 struct knote_status_export_bit {
2980 int kn_status_bit;
2981 int knt_status_bit;
2982 };
2983
2984 #define ST(name) \
2985 { .kn_status_bit = KN_##name, .knt_status_bit = KNOTE_STATUS_##name }
2986 static const struct knote_status_export_bit knote_status_export_bits[] = {
2987 ST(ACTIVE),
2988 ST(QUEUED),
2989 ST(DISABLED),
2990 ST(DETACHED),
2991 ST(KQUEUE),
2992 };
2993 #undef ST
2994
2995 static int
knote_status_export(int kn_status)2996 knote_status_export(int kn_status)
2997 {
2998 const struct knote_status_export_bit *b;
2999 unsigned i;
3000 int res;
3001
3002 res = 0;
3003 for (i = 0; i < nitems(knote_status_export_bits); i++) {
3004 b = &knote_status_export_bits[i];
3005 if ((kn_status & b->kn_status_bit) != 0)
3006 res |= b->knt_status_bit;
3007 }
3008 return (res);
3009 }
3010
3011 static int
kern_proc_kqueue_report_one(struct sbuf * s,struct proc * p,int kq_fd,struct kqueue * kq,struct knote * kn,bool compat32 __unused)3012 kern_proc_kqueue_report_one(struct sbuf *s, struct proc *p,
3013 int kq_fd, struct kqueue *kq, struct knote *kn, bool compat32 __unused)
3014 {
3015 struct kinfo_knote kin;
3016 #ifdef COMPAT_FREEBSD32
3017 struct kinfo_knote32 kin32;
3018 #endif
3019 int error;
3020
3021 if (kn->kn_status == KN_MARKER)
3022 return (0);
3023
3024 memset(&kin, 0, sizeof(kin));
3025 kin.knt_kq_fd = kq_fd;
3026 memcpy(&kin.knt_event, &kn->kn_kevent, sizeof(struct kevent));
3027 kin.knt_status = knote_status_export(kn->kn_status);
3028 kn_enter_flux(kn);
3029 KQ_UNLOCK_FLUX(kq);
3030 if (kn->kn_fop->f_userdump != NULL)
3031 (void)kn->kn_fop->f_userdump(p, kn, &kin);
3032 #ifdef COMPAT_FREEBSD32
3033 if (compat32) {
3034 freebsd32_kinfo_knote_to_32(&kin, &kin32);
3035 error = sbuf_bcat(s, &kin32, sizeof(kin32));
3036 } else
3037 #endif
3038 error = sbuf_bcat(s, &kin, sizeof(kin));
3039 KQ_LOCK(kq);
3040 kn_leave_flux(kn);
3041 return (error);
3042 }
3043
3044 static int
kern_proc_kqueue_report(struct sbuf * s,struct proc * p,int kq_fd,struct kqueue * kq,bool compat32)3045 kern_proc_kqueue_report(struct sbuf *s, struct proc *p, int kq_fd,
3046 struct kqueue *kq, bool compat32)
3047 {
3048 struct knote *kn;
3049 int error, i;
3050
3051 error = 0;
3052 KQ_LOCK(kq);
3053 for (i = 0; i < kq->kq_knlistsize; i++) {
3054 SLIST_FOREACH(kn, &kq->kq_knlist[i], kn_link) {
3055 error = kern_proc_kqueue_report_one(s, p, kq_fd,
3056 kq, kn, compat32);
3057 if (error != 0)
3058 goto out;
3059 }
3060 }
3061 if (kq->kq_knhashmask == 0)
3062 goto out;
3063 for (i = 0; i <= kq->kq_knhashmask; i++) {
3064 SLIST_FOREACH(kn, &kq->kq_knhash[i], kn_link) {
3065 error = kern_proc_kqueue_report_one(s, p, kq_fd,
3066 kq, kn, compat32);
3067 if (error != 0)
3068 goto out;
3069 }
3070 }
3071 out:
3072 KQ_UNLOCK_FLUX(kq);
3073 return (error);
3074 }
3075
3076 struct kern_proc_kqueues_out1_cb_args {
3077 struct sbuf *s;
3078 bool compat32;
3079 };
3080
3081 static int
kern_proc_kqueues_out1_cb(struct proc * p,int fd,struct file * fp,void * arg)3082 kern_proc_kqueues_out1_cb(struct proc *p, int fd, struct file *fp, void *arg)
3083 {
3084 struct kqueue *kq;
3085 struct kern_proc_kqueues_out1_cb_args *a;
3086
3087 if (fp->f_type != DTYPE_KQUEUE)
3088 return (0);
3089 a = arg;
3090 kq = fp->f_data;
3091 return (kern_proc_kqueue_report(a->s, p, fd, kq, a->compat32));
3092 }
3093
3094 static int
kern_proc_kqueues_out1(struct thread * td,struct proc * p,struct sbuf * s,bool compat32)3095 kern_proc_kqueues_out1(struct thread *td, struct proc *p, struct sbuf *s,
3096 bool compat32)
3097 {
3098 struct kern_proc_kqueues_out1_cb_args a;
3099
3100 a.s = s;
3101 a.compat32 = compat32;
3102 return (fget_remote_foreach(td, p, kern_proc_kqueues_out1_cb, &a));
3103 }
3104
3105 int
kern_proc_kqueues_out(struct proc * p,struct sbuf * sb,size_t maxlen,bool compat32)3106 kern_proc_kqueues_out(struct proc *p, struct sbuf *sb, size_t maxlen,
3107 bool compat32)
3108 {
3109 struct sbuf *s, sm;
3110 size_t sb_len;
3111 int error;
3112
3113 if (maxlen == -1 || maxlen == 0)
3114 sb_len = 128;
3115 else
3116 sb_len = maxlen;
3117 s = sbuf_new(&sm, NULL, sb_len, maxlen == -1 ? SBUF_AUTOEXTEND :
3118 SBUF_FIXEDLEN);
3119 error = kern_proc_kqueues_out1(curthread, p, s, compat32);
3120 sbuf_finish(s);
3121 if (error == 0) {
3122 sbuf_bcat(sb, sbuf_data(s), MIN(sbuf_len(s), maxlen == -1 ?
3123 SIZE_T_MAX : maxlen));
3124 }
3125 sbuf_delete(s);
3126 return (error);
3127 }
3128
3129 static int
sysctl_kern_proc_kqueue_one(struct thread * td,struct sbuf * s,struct proc * p,int kq_fd,bool compat32)3130 sysctl_kern_proc_kqueue_one(struct thread *td, struct sbuf *s, struct proc *p,
3131 int kq_fd, bool compat32)
3132 {
3133 struct file *fp;
3134 struct kqueue *kq;
3135 int error;
3136
3137 error = fget_remote(td, p, kq_fd, &fp);
3138 if (error == 0) {
3139 if (fp->f_type != DTYPE_KQUEUE) {
3140 error = EINVAL;
3141 } else {
3142 kq = fp->f_data;
3143 error = kern_proc_kqueue_report(s, p, kq_fd, kq,
3144 compat32);
3145 }
3146 fdrop(fp, td);
3147 }
3148 return (error);
3149 }
3150
3151 static int
sysctl_kern_proc_kqueue(SYSCTL_HANDLER_ARGS)3152 sysctl_kern_proc_kqueue(SYSCTL_HANDLER_ARGS)
3153 {
3154 struct thread *td;
3155 struct proc *p;
3156 struct sbuf *s, sm;
3157 int error, error1, *name;
3158 bool compat32;
3159
3160 name = (int *)arg1;
3161 if ((u_int)arg2 > 2 || (u_int)arg2 == 0)
3162 return (EINVAL);
3163
3164 error = pget((pid_t)name[0], PGET_HOLD | PGET_CANDEBUG, &p);
3165 if (error != 0)
3166 return (error);
3167
3168 td = curthread;
3169 #ifdef FREEBSD_COMPAT32
3170 compat32 = SV_CURPROC_FLAG(SV_ILP32);
3171 #else
3172 compat32 = false;
3173 #endif
3174
3175 s = sbuf_new_for_sysctl(&sm, NULL, 0, req);
3176 if (s == NULL) {
3177 error = ENOMEM;
3178 goto out;
3179 }
3180 sbuf_clear_flags(s, SBUF_INCLUDENUL);
3181
3182 if ((u_int)arg2 == 1) {
3183 error = kern_proc_kqueues_out1(td, p, s, compat32);
3184 } else {
3185 error = sysctl_kern_proc_kqueue_one(td, s, p,
3186 name[1] /* kq_fd */, compat32);
3187 }
3188
3189 error1 = sbuf_finish(s);
3190 if (error == 0)
3191 error = error1;
3192 sbuf_delete(s);
3193
3194 out:
3195 PRELE(p);
3196 return (error);
3197 }
3198
3199 static SYSCTL_NODE(_kern_proc, KERN_PROC_KQUEUE, kq,
3200 CTLFLAG_RD | CTLFLAG_MPSAFE,
3201 sysctl_kern_proc_kqueue, "KQueue events");
3202