xref: /linux/drivers/acpi/pptt.c (revision 3c21441eeffc3fd7eb990ae2fe99333484b1f7f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
fetch_pptt_subtable(struct acpi_table_header * table_hdr,u32 pptt_ref)24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
fetch_pptt_node(struct acpi_table_header * table_hdr,u32 pptt_ref)47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
fetch_pptt_cache(struct acpi_table_header * table_hdr,u32 pptt_ref)53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
acpi_get_pptt_resource(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * node,int resource)59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
acpi_pptt_match_type(int table_type,int type)74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @split_levels: Number of split cache levels (data/instruction).
85  * @res: cache resource in the PPTT we want to walk
86  * @found: returns a pointer to the requested level if found
87  * @level: the requested cache level
88  * @type: the requested cache type
89  *
90  * Attempt to find a given cache level, while counting the max number
91  * of cache levels for the cache node.
92  *
93  * Given a pptt resource, verify that it is a cache node, then walk
94  * down each level of caches, counting how many levels are found
95  * as well as checking the cache type (icache, dcache, unified). If a
96  * level & type match, then we set found, and continue the search.
97  * Once the entire cache branch has been walked return its max
98  * depth.
99  *
100  * Return: The cache structure and the level we terminated with.
101  */
acpi_pptt_walk_cache(struct acpi_table_header * table_hdr,unsigned int local_level,unsigned int * split_levels,struct acpi_subtable_header * res,struct acpi_pptt_cache ** found,unsigned int level,int type)102 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
103 					 unsigned int local_level,
104 					 unsigned int *split_levels,
105 					 struct acpi_subtable_header *res,
106 					 struct acpi_pptt_cache **found,
107 					 unsigned int level, int type)
108 {
109 	struct acpi_pptt_cache *cache;
110 
111 	if (res->type != ACPI_PPTT_TYPE_CACHE)
112 		return 0;
113 
114 	cache = (struct acpi_pptt_cache *) res;
115 	while (cache) {
116 		local_level++;
117 
118 		if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
119 			cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
120 			continue;
121 		}
122 
123 		if (split_levels &&
124 		    (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
125 		     acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
126 			*split_levels = local_level;
127 
128 		if (local_level == level &&
129 		    acpi_pptt_match_type(cache->attributes, type)) {
130 			if (*found != NULL && cache != *found)
131 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
132 
133 			pr_debug("Found cache @ level %u\n", level);
134 			*found = cache;
135 			/*
136 			 * continue looking at this node's resource list
137 			 * to verify that we don't find a duplicate
138 			 * cache node.
139 			 */
140 		}
141 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
142 	}
143 	return local_level;
144 }
145 
146 static struct acpi_pptt_cache *
acpi_find_cache_level(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu_node,unsigned int * starting_level,unsigned int * split_levels,unsigned int level,int type)147 acpi_find_cache_level(struct acpi_table_header *table_hdr,
148 		      struct acpi_pptt_processor *cpu_node,
149 		      unsigned int *starting_level, unsigned int *split_levels,
150 		      unsigned int level, int type)
151 {
152 	struct acpi_subtable_header *res;
153 	unsigned int number_of_levels = *starting_level;
154 	int resource = 0;
155 	struct acpi_pptt_cache *ret = NULL;
156 	unsigned int local_level;
157 
158 	/* walk down from processor node */
159 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
160 		resource++;
161 
162 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
163 						   split_levels, res, &ret,
164 						   level, type);
165 		/*
166 		 * we are looking for the max depth. Since its potentially
167 		 * possible for a given node to have resources with differing
168 		 * depths verify that the depth we have found is the largest.
169 		 */
170 		if (number_of_levels < local_level)
171 			number_of_levels = local_level;
172 	}
173 	if (number_of_levels > *starting_level)
174 		*starting_level = number_of_levels;
175 
176 	return ret;
177 }
178 
179 /**
180  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache
181  * levels and split cache levels (data/instruction).
182  * @table_hdr: Pointer to the head of the PPTT table
183  * @cpu_node: processor node we wish to count caches for
184  * @levels: Number of levels if success.
185  * @split_levels:	Number of split cache levels (data/instruction) if
186  *			success. Can by NULL.
187  *
188  * Given a processor node containing a processing unit, walk into it and count
189  * how many levels exist solely for it, and then walk up each level until we hit
190  * the root node (ignore the package level because it may be possible to have
191  * caches that exist across packages). Count the number of cache levels and
192  * split cache levels (data/instruction) that exist at each level on the way
193  * up.
194  */
acpi_count_levels(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu_node,unsigned int * levels,unsigned int * split_levels)195 static void acpi_count_levels(struct acpi_table_header *table_hdr,
196 			      struct acpi_pptt_processor *cpu_node,
197 			      unsigned int *levels, unsigned int *split_levels)
198 {
199 	do {
200 		acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0);
201 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
202 	} while (cpu_node);
203 }
204 
205 /**
206  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
207  * @table_hdr: Pointer to the head of the PPTT table
208  * @node: passed node is checked to see if its a leaf
209  *
210  * Determine if the *node parameter is a leaf node by iterating the
211  * PPTT table, looking for nodes which reference it.
212  *
213  * Return: 0 if we find a node referencing the passed node (or table error),
214  * or 1 if we don't.
215  */
acpi_pptt_leaf_node(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * node)216 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
217 			       struct acpi_pptt_processor *node)
218 {
219 	struct acpi_subtable_header *entry;
220 	unsigned long table_end;
221 	u32 node_entry;
222 	struct acpi_pptt_processor *cpu_node;
223 	u32 proc_sz;
224 
225 	if (table_hdr->revision > 1)
226 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
227 
228 	table_end = (unsigned long)table_hdr + table_hdr->length;
229 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
230 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
231 			     sizeof(struct acpi_table_pptt));
232 	proc_sz = sizeof(struct acpi_pptt_processor);
233 
234 	/* ignore subtable types that are smaller than a processor node */
235 	while ((unsigned long)entry + proc_sz <= table_end) {
236 		cpu_node = (struct acpi_pptt_processor *)entry;
237 
238 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
239 		    cpu_node->parent == node_entry)
240 			return 0;
241 		if (entry->length == 0)
242 			return 0;
243 
244 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
245 				     entry->length);
246 	}
247 	return 1;
248 }
249 
250 /**
251  * acpi_find_processor_node() - Given a PPTT table find the requested processor
252  * @table_hdr:  Pointer to the head of the PPTT table
253  * @acpi_cpu_id: CPU we are searching for
254  *
255  * Find the subtable entry describing the provided processor.
256  * This is done by iterating the PPTT table looking for processor nodes
257  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
258  * passed into the function. If we find a node that matches this criteria
259  * we verify that its a leaf node in the topology rather than depending
260  * on the valid flag, which doesn't need to be set for leaf nodes.
261  *
262  * Return: NULL, or the processors acpi_pptt_processor*
263  */
acpi_find_processor_node(struct acpi_table_header * table_hdr,u32 acpi_cpu_id)264 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
265 							    u32 acpi_cpu_id)
266 {
267 	struct acpi_subtable_header *entry;
268 	unsigned long table_end;
269 	struct acpi_pptt_processor *cpu_node;
270 	u32 proc_sz;
271 
272 	table_end = (unsigned long)table_hdr + table_hdr->length;
273 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
274 			     sizeof(struct acpi_table_pptt));
275 	proc_sz = sizeof(struct acpi_pptt_processor);
276 
277 	/* find the processor structure associated with this cpuid */
278 	while ((unsigned long)entry + proc_sz <= table_end) {
279 		cpu_node = (struct acpi_pptt_processor *)entry;
280 
281 		if (entry->length == 0) {
282 			pr_warn("Invalid zero length subtable\n");
283 			break;
284 		}
285 		/* entry->length may not equal proc_sz, revalidate the processor structure length */
286 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
287 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
288 		    (unsigned long)entry + entry->length <= table_end &&
289 		    entry->length == proc_sz + cpu_node->number_of_priv_resources * sizeof(u32) &&
290 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
291 			return (struct acpi_pptt_processor *)entry;
292 		}
293 
294 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
295 				     entry->length);
296 	}
297 
298 	return NULL;
299 }
300 
acpi_cache_type(enum cache_type type)301 static u8 acpi_cache_type(enum cache_type type)
302 {
303 	switch (type) {
304 	case CACHE_TYPE_DATA:
305 		pr_debug("Looking for data cache\n");
306 		return ACPI_PPTT_CACHE_TYPE_DATA;
307 	case CACHE_TYPE_INST:
308 		pr_debug("Looking for instruction cache\n");
309 		return ACPI_PPTT_CACHE_TYPE_INSTR;
310 	default:
311 	case CACHE_TYPE_UNIFIED:
312 		pr_debug("Looking for unified cache\n");
313 		/*
314 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
315 		 * contains the bit pattern that will match both
316 		 * ACPI unified bit patterns because we use it later
317 		 * to match both cases.
318 		 */
319 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
320 	}
321 }
322 
acpi_find_cache_node(struct acpi_table_header * table_hdr,u32 acpi_cpu_id,enum cache_type type,unsigned int level,struct acpi_pptt_processor ** node)323 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
324 						    u32 acpi_cpu_id,
325 						    enum cache_type type,
326 						    unsigned int level,
327 						    struct acpi_pptt_processor **node)
328 {
329 	unsigned int total_levels = 0;
330 	struct acpi_pptt_cache *found = NULL;
331 	struct acpi_pptt_processor *cpu_node;
332 	u8 acpi_type = acpi_cache_type(type);
333 
334 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
335 		 acpi_cpu_id, level, acpi_type);
336 
337 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
338 
339 	while (cpu_node && !found) {
340 		found = acpi_find_cache_level(table_hdr, cpu_node,
341 					      &total_levels, NULL, level, acpi_type);
342 		*node = cpu_node;
343 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
344 	}
345 
346 	return found;
347 }
348 
349 /**
350  * update_cache_properties() - Update cacheinfo for the given processor
351  * @this_leaf: Kernel cache info structure being updated
352  * @found_cache: The PPTT node describing this cache instance
353  * @cpu_node: A unique reference to describe this cache instance
354  * @revision: The revision of the PPTT table
355  *
356  * The ACPI spec implies that the fields in the cache structures are used to
357  * extend and correct the information probed from the hardware. Lets only
358  * set fields that we determine are VALID.
359  *
360  * Return: nothing. Side effect of updating the global cacheinfo
361  */
update_cache_properties(struct cacheinfo * this_leaf,struct acpi_pptt_cache * found_cache,struct acpi_pptt_processor * cpu_node,u8 revision)362 static void update_cache_properties(struct cacheinfo *this_leaf,
363 				    struct acpi_pptt_cache *found_cache,
364 				    struct acpi_pptt_processor *cpu_node,
365 				    u8 revision)
366 {
367 	struct acpi_pptt_cache_v1* found_cache_v1;
368 
369 	this_leaf->fw_token = cpu_node;
370 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
371 		this_leaf->size = found_cache->size;
372 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
373 		this_leaf->coherency_line_size = found_cache->line_size;
374 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
375 		this_leaf->number_of_sets = found_cache->number_of_sets;
376 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
377 		this_leaf->ways_of_associativity = found_cache->associativity;
378 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
379 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
380 		case ACPI_PPTT_CACHE_POLICY_WT:
381 			this_leaf->attributes = CACHE_WRITE_THROUGH;
382 			break;
383 		case ACPI_PPTT_CACHE_POLICY_WB:
384 			this_leaf->attributes = CACHE_WRITE_BACK;
385 			break;
386 		}
387 	}
388 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
389 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
390 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
391 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
392 			break;
393 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
394 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
395 			break;
396 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
397 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
398 			this_leaf->attributes |=
399 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
400 			break;
401 		}
402 	}
403 	/*
404 	 * If cache type is NOCACHE, then the cache hasn't been specified
405 	 * via other mechanisms.  Update the type if a cache type has been
406 	 * provided.
407 	 *
408 	 * Note, we assume such caches are unified based on conventional system
409 	 * design and known examples.  Significant work is required elsewhere to
410 	 * fully support data/instruction only type caches which are only
411 	 * specified in PPTT.
412 	 */
413 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
414 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
415 		this_leaf->type = CACHE_TYPE_UNIFIED;
416 
417 	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
418 		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
419 	                                      found_cache, sizeof(struct acpi_pptt_cache));
420 		this_leaf->id = found_cache_v1->cache_id;
421 		this_leaf->attributes |= CACHE_ID;
422 	}
423 }
424 
cache_setup_acpi_cpu(struct acpi_table_header * table,unsigned int cpu)425 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
426 				 unsigned int cpu)
427 {
428 	struct acpi_pptt_cache *found_cache;
429 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
430 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
431 	struct cacheinfo *this_leaf;
432 	unsigned int index = 0;
433 	struct acpi_pptt_processor *cpu_node = NULL;
434 
435 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
436 		this_leaf = this_cpu_ci->info_list + index;
437 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
438 						   this_leaf->type,
439 						   this_leaf->level,
440 						   &cpu_node);
441 		pr_debug("found = %p %p\n", found_cache, cpu_node);
442 		if (found_cache)
443 			update_cache_properties(this_leaf, found_cache,
444 						ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
445 						table->revision);
446 
447 		index++;
448 	}
449 }
450 
flag_identical(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu)451 static bool flag_identical(struct acpi_table_header *table_hdr,
452 			   struct acpi_pptt_processor *cpu)
453 {
454 	struct acpi_pptt_processor *next;
455 
456 	/* heterogeneous machines must use PPTT revision > 1 */
457 	if (table_hdr->revision < 2)
458 		return false;
459 
460 	/* Locate the last node in the tree with IDENTICAL set */
461 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
462 		next = fetch_pptt_node(table_hdr, cpu->parent);
463 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
464 			return true;
465 	}
466 
467 	return false;
468 }
469 
470 /* Passing level values greater than this will result in search termination */
471 #define PPTT_ABORT_PACKAGE 0xFF
472 
acpi_find_processor_tag(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu,int level,int flag)473 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
474 							   struct acpi_pptt_processor *cpu,
475 							   int level, int flag)
476 {
477 	struct acpi_pptt_processor *prev_node;
478 
479 	while (cpu && level) {
480 		/* special case the identical flag to find last identical */
481 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
482 			if (flag_identical(table_hdr, cpu))
483 				break;
484 		} else if (cpu->flags & flag)
485 			break;
486 		pr_debug("level %d\n", level);
487 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
488 		if (prev_node == NULL)
489 			break;
490 		cpu = prev_node;
491 		level--;
492 	}
493 	return cpu;
494 }
495 
acpi_pptt_warn_missing(void)496 static void acpi_pptt_warn_missing(void)
497 {
498 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
499 }
500 
501 /**
502  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
503  * @table: Pointer to the head of the PPTT table
504  * @cpu: Kernel logical CPU number
505  * @level: A level that terminates the search
506  * @flag: A flag which terminates the search
507  *
508  * Get a unique value given a CPU, and a topology level, that can be
509  * matched to determine which cpus share common topological features
510  * at that level.
511  *
512  * Return: Unique value, or -ENOENT if unable to locate CPU
513  */
topology_get_acpi_cpu_tag(struct acpi_table_header * table,unsigned int cpu,int level,int flag)514 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
515 				     unsigned int cpu, int level, int flag)
516 {
517 	struct acpi_pptt_processor *cpu_node;
518 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
519 
520 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
521 	if (cpu_node) {
522 		cpu_node = acpi_find_processor_tag(table, cpu_node,
523 						   level, flag);
524 		/*
525 		 * As per specification if the processor structure represents
526 		 * an actual processor, then ACPI processor ID must be valid.
527 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
528 		 * should be set if the UID is valid
529 		 */
530 		if (level == 0 ||
531 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
532 			return cpu_node->acpi_processor_id;
533 		return ACPI_PTR_DIFF(cpu_node, table);
534 	}
535 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
536 		    cpu, acpi_cpu_id);
537 	return -ENOENT;
538 }
539 
540 
acpi_get_pptt(void)541 static struct acpi_table_header *acpi_get_pptt(void)
542 {
543 	static struct acpi_table_header *pptt;
544 	static bool is_pptt_checked;
545 	acpi_status status;
546 
547 	/*
548 	 * PPTT will be used at runtime on every CPU hotplug in path, so we
549 	 * don't need to call acpi_put_table() to release the table mapping.
550 	 */
551 	if (!pptt && !is_pptt_checked) {
552 		status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
553 		if (ACPI_FAILURE(status))
554 			acpi_pptt_warn_missing();
555 
556 		is_pptt_checked = true;
557 	}
558 
559 	return pptt;
560 }
561 
find_acpi_cpu_topology_tag(unsigned int cpu,int level,int flag)562 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
563 {
564 	struct acpi_table_header *table;
565 	int retval;
566 
567 	table = acpi_get_pptt();
568 	if (!table)
569 		return -ENOENT;
570 
571 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
572 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
573 		 cpu, level, retval);
574 
575 	return retval;
576 }
577 
578 /**
579  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
580  * @cpu: Kernel logical CPU number
581  * @rev: The minimum PPTT revision defining the flag
582  * @flag: The flag itself
583  *
584  * Check the node representing a CPU for a given flag.
585  *
586  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
587  *	   the table revision isn't new enough.
588  *	   1, any passed flag set
589  *	   0, flag unset
590  */
check_acpi_cpu_flag(unsigned int cpu,int rev,u32 flag)591 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
592 {
593 	struct acpi_table_header *table;
594 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
595 	struct acpi_pptt_processor *cpu_node = NULL;
596 	int ret = -ENOENT;
597 
598 	table = acpi_get_pptt();
599 	if (!table)
600 		return -ENOENT;
601 
602 	if (table->revision >= rev)
603 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
604 
605 	if (cpu_node)
606 		ret = (cpu_node->flags & flag) != 0;
607 
608 	return ret;
609 }
610 
611 /**
612  * acpi_get_cache_info() - Determine the number of cache levels and
613  * split cache levels (data/instruction) and for a PE.
614  * @cpu: Kernel logical CPU number
615  * @levels: Number of levels if success.
616  * @split_levels:	Number of levels being split (i.e. data/instruction)
617  *			if success. Can by NULL.
618  *
619  * Given a logical CPU number, returns the number of levels of cache represented
620  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
621  * indicating we didn't find any cache levels.
622  *
623  * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
624  *	   0 on success.
625  */
acpi_get_cache_info(unsigned int cpu,unsigned int * levels,unsigned int * split_levels)626 int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
627 			unsigned int *split_levels)
628 {
629 	struct acpi_pptt_processor *cpu_node;
630 	struct acpi_table_header *table;
631 	u32 acpi_cpu_id;
632 
633 	*levels = 0;
634 	if (split_levels)
635 		*split_levels = 0;
636 
637 	table = acpi_get_pptt();
638 	if (!table)
639 		return -ENOENT;
640 
641 	pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
642 
643 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
644 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
645 	if (!cpu_node)
646 		return -ENOENT;
647 
648 	acpi_count_levels(table, cpu_node, levels, split_levels);
649 
650 	pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
651 		 *levels, split_levels ? *split_levels : -1);
652 
653 	return 0;
654 }
655 
656 /**
657  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
658  * @cpu: Kernel logical CPU number
659  *
660  * Updates the global cache info provided by cpu_get_cacheinfo()
661  * when there are valid properties in the acpi_pptt_cache nodes. A
662  * successful parse may not result in any updates if none of the
663  * cache levels have any valid flags set.  Further, a unique value is
664  * associated with each known CPU cache entry. This unique value
665  * can be used to determine whether caches are shared between CPUs.
666  *
667  * Return: -ENOENT on failure to find table, or 0 on success
668  */
cache_setup_acpi(unsigned int cpu)669 int cache_setup_acpi(unsigned int cpu)
670 {
671 	struct acpi_table_header *table;
672 
673 	table = acpi_get_pptt();
674 	if (!table)
675 		return -ENOENT;
676 
677 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
678 
679 	cache_setup_acpi_cpu(table, cpu);
680 
681 	return 0;
682 }
683 
684 /**
685  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
686  * @cpu: Kernel logical CPU number
687  *
688  * Return: 1, a thread
689  *         0, not a thread
690  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
691  *         the table revision isn't new enough.
692  */
acpi_pptt_cpu_is_thread(unsigned int cpu)693 int acpi_pptt_cpu_is_thread(unsigned int cpu)
694 {
695 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
696 }
697 
698 /**
699  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
700  * @cpu: Kernel logical CPU number
701  * @level: The topological level for which we would like a unique ID
702  *
703  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
704  * /socket/etc. This ID can then be used to group peers, which will have
705  * matching ids.
706  *
707  * The search terminates when either the requested level is found or
708  * we reach a root node. Levels beyond the termination point will return the
709  * same unique ID. The unique id for level 0 is the acpi processor id. All
710  * other levels beyond this use a generated value to uniquely identify
711  * a topological feature.
712  *
713  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
714  * Otherwise returns a value which represents a unique topological feature.
715  */
find_acpi_cpu_topology(unsigned int cpu,int level)716 int find_acpi_cpu_topology(unsigned int cpu, int level)
717 {
718 	return find_acpi_cpu_topology_tag(cpu, level, 0);
719 }
720 
721 /**
722  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
723  * @cpu: Kernel logical CPU number
724  *
725  * Determine a topology unique package ID for the given CPU.
726  * This ID can then be used to group peers, which will have matching ids.
727  *
728  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
729  * flag set or we reach a root node.
730  *
731  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
732  * Otherwise returns a value which represents the package for this CPU.
733  */
find_acpi_cpu_topology_package(unsigned int cpu)734 int find_acpi_cpu_topology_package(unsigned int cpu)
735 {
736 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
737 					  ACPI_PPTT_PHYSICAL_PACKAGE);
738 }
739 
740 /**
741  * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
742  * @cpu: Kernel logical CPU number
743  *
744  * Determine a topology unique cluster ID for the given CPU/thread.
745  * This ID can then be used to group peers, which will have matching ids.
746  *
747  * The cluster, if present is the level of topology above CPUs. In a
748  * multi-thread CPU, it will be the level above the CPU, not the thread.
749  * It may not exist in single CPU systems. In simple multi-CPU systems,
750  * it may be equal to the package topology level.
751  *
752  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
753  * or there is no toplogy level above the CPU..
754  * Otherwise returns a value which represents the package for this CPU.
755  */
756 
find_acpi_cpu_topology_cluster(unsigned int cpu)757 int find_acpi_cpu_topology_cluster(unsigned int cpu)
758 {
759 	struct acpi_table_header *table;
760 	struct acpi_pptt_processor *cpu_node, *cluster_node;
761 	u32 acpi_cpu_id;
762 	int retval;
763 	int is_thread;
764 
765 	table = acpi_get_pptt();
766 	if (!table)
767 		return -ENOENT;
768 
769 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
770 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
771 	if (!cpu_node || !cpu_node->parent)
772 		return -ENOENT;
773 
774 	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
775 	cluster_node = fetch_pptt_node(table, cpu_node->parent);
776 	if (!cluster_node)
777 		return -ENOENT;
778 
779 	if (is_thread) {
780 		if (!cluster_node->parent)
781 			return -ENOENT;
782 
783 		cluster_node = fetch_pptt_node(table, cluster_node->parent);
784 		if (!cluster_node)
785 			return -ENOENT;
786 	}
787 	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
788 		retval = cluster_node->acpi_processor_id;
789 	else
790 		retval = ACPI_PTR_DIFF(cluster_node, table);
791 
792 	return retval;
793 }
794 
795 /**
796  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
797  * @cpu: Kernel logical CPU number
798  *
799  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
800  * implementation should have matching tags.
801  *
802  * The returned tag can be used to group peers with identical implementation.
803  *
804  * The search terminates when a level is found with the identical implementation
805  * flag set or we reach a root node.
806  *
807  * Due to limitations in the PPTT data structure, there may be rare situations
808  * where two cores in a heterogeneous machine may be identical, but won't have
809  * the same tag.
810  *
811  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
812  * Otherwise returns a value which represents a group of identical cores
813  * similar to this CPU.
814  */
find_acpi_cpu_topology_hetero_id(unsigned int cpu)815 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
816 {
817 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
818 					  ACPI_PPTT_ACPI_IDENTICAL);
819 }
820