xref: /linux/kernel/time/timer.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/sched/nohz.h>
42 #include <linux/sched/debug.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 #include <linux/random.h>
46 #include <linux/sysctl.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 #include "timer_migration.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ level
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefore the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 /*
191  * If multiple bases need to be locked, use the base ordering for lock
192  * nesting, i.e. lowest number first.
193  */
194 # define NR_BASES	3
195 # define BASE_LOCAL	0
196 # define BASE_GLOBAL	1
197 # define BASE_DEF	2
198 #else
199 # define NR_BASES	1
200 # define BASE_LOCAL	0
201 # define BASE_GLOBAL	0
202 # define BASE_DEF	0
203 #endif
204 
205 /**
206  * struct timer_base - Per CPU timer base (number of base depends on config)
207  * @lock:		Lock protecting the timer_base
208  * @running_timer:	When expiring timers, the lock is dropped. To make
209  *			sure not to race against deleting/modifying a
210  *			currently running timer, the pointer is set to the
211  *			timer, which expires at the moment. If no timer is
212  *			running, the pointer is NULL.
213  * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
214  *			timer expiry callback execution and when trying to
215  *			delete a running timer and it wasn't successful in
216  *			the first glance. It prevents priority inversion
217  *			when callback was preempted on a remote CPU and a
218  *			caller tries to delete the running timer. It also
219  *			prevents a life lock, when the task which tries to
220  *			delete a timer preempted the softirq thread which
221  *			is running the timer callback function.
222  * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
223  *			waiting for the end of the timer callback function
224  *			execution.
225  * @clk:		clock of the timer base; is updated before enqueue
226  *			of a timer; during expiry, it is 1 offset ahead of
227  *			jiffies to avoid endless requeuing to current
228  *			jiffies
229  * @next_expiry:	expiry value of the first timer; it is updated when
230  *			finding the next timer and during enqueue; the
231  *			value is not valid, when next_expiry_recalc is set
232  * @cpu:		Number of CPU the timer base belongs to
233  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
234  *			required. Value is set true, when a timer was
235  *			deleted.
236  * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
237  *			code. This state is only used in standard
238  *			base. Deferrable timers, which are enqueued remotely
239  *			never wake up an idle CPU. So no matter of supporting it
240  *			for this base.
241  * @timers_pending:	Is set, when a timer is pending in the base. It is only
242  *			reliable when next_expiry_recalc is not set.
243  * @pending_map:	bitmap of the timer wheel; each bit reflects a
244  *			bucket of the wheel. When a bit is set, at least a
245  *			single timer is enqueued in the related bucket.
246  * @vectors:		Array of lists; Each array member reflects a bucket
247  *			of the timer wheel. The list contains all timers
248  *			which are enqueued into a specific bucket.
249  */
250 struct timer_base {
251 	raw_spinlock_t		lock;
252 	struct timer_list	*running_timer;
253 #ifdef CONFIG_PREEMPT_RT
254 	spinlock_t		expiry_lock;
255 	atomic_t		timer_waiters;
256 #endif
257 	unsigned long		clk;
258 	unsigned long		next_expiry;
259 	unsigned int		cpu;
260 	bool			next_expiry_recalc;
261 	bool			is_idle;
262 	bool			timers_pending;
263 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
264 	struct hlist_head	vectors[WHEEL_SIZE];
265 } ____cacheline_aligned;
266 
267 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
268 
269 #ifdef CONFIG_NO_HZ_COMMON
270 
271 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
272 static DEFINE_MUTEX(timer_keys_mutex);
273 
274 static void timer_update_keys(struct work_struct *work);
275 static DECLARE_WORK(timer_update_work, timer_update_keys);
276 
277 #ifdef CONFIG_SMP
278 static unsigned int sysctl_timer_migration = 1;
279 
280 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
281 
timers_update_migration(void)282 static void timers_update_migration(void)
283 {
284 	if (sysctl_timer_migration && tick_nohz_active)
285 		static_branch_enable(&timers_migration_enabled);
286 	else
287 		static_branch_disable(&timers_migration_enabled);
288 }
289 
290 #ifdef CONFIG_SYSCTL
timer_migration_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)291 static int timer_migration_handler(const struct ctl_table *table, int write,
292 			    void *buffer, size_t *lenp, loff_t *ppos)
293 {
294 	int ret;
295 
296 	mutex_lock(&timer_keys_mutex);
297 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
298 	if (!ret && write)
299 		timers_update_migration();
300 	mutex_unlock(&timer_keys_mutex);
301 	return ret;
302 }
303 
304 static const struct ctl_table timer_sysctl[] = {
305 	{
306 		.procname	= "timer_migration",
307 		.data		= &sysctl_timer_migration,
308 		.maxlen		= sizeof(unsigned int),
309 		.mode		= 0644,
310 		.proc_handler	= timer_migration_handler,
311 		.extra1		= SYSCTL_ZERO,
312 		.extra2		= SYSCTL_ONE,
313 	},
314 };
315 
timer_sysctl_init(void)316 static int __init timer_sysctl_init(void)
317 {
318 	register_sysctl("kernel", timer_sysctl);
319 	return 0;
320 }
321 device_initcall(timer_sysctl_init);
322 #endif /* CONFIG_SYSCTL */
323 #else /* CONFIG_SMP */
timers_update_migration(void)324 static inline void timers_update_migration(void) { }
325 #endif /* !CONFIG_SMP */
326 
timer_update_keys(struct work_struct * work)327 static void timer_update_keys(struct work_struct *work)
328 {
329 	mutex_lock(&timer_keys_mutex);
330 	timers_update_migration();
331 	static_branch_enable(&timers_nohz_active);
332 	mutex_unlock(&timer_keys_mutex);
333 }
334 
timers_update_nohz(void)335 void timers_update_nohz(void)
336 {
337 	schedule_work(&timer_update_work);
338 }
339 
is_timers_nohz_active(void)340 static inline bool is_timers_nohz_active(void)
341 {
342 	return static_branch_unlikely(&timers_nohz_active);
343 }
344 #else
is_timers_nohz_active(void)345 static inline bool is_timers_nohz_active(void) { return false; }
346 #endif /* NO_HZ_COMMON */
347 
round_jiffies_common(unsigned long j,int cpu,bool force_up)348 static unsigned long round_jiffies_common(unsigned long j, int cpu,
349 		bool force_up)
350 {
351 	int rem;
352 	unsigned long original = j;
353 
354 	/*
355 	 * We don't want all cpus firing their timers at once hitting the
356 	 * same lock or cachelines, so we skew each extra cpu with an extra
357 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
358 	 * already did this.
359 	 * The skew is done by adding 3*cpunr, then round, then subtract this
360 	 * extra offset again.
361 	 */
362 	j += cpu * 3;
363 
364 	rem = j % HZ;
365 
366 	/*
367 	 * If the target jiffy is just after a whole second (which can happen
368 	 * due to delays of the timer irq, long irq off times etc etc) then
369 	 * we should round down to the whole second, not up. Use 1/4th second
370 	 * as cutoff for this rounding as an extreme upper bound for this.
371 	 * But never round down if @force_up is set.
372 	 */
373 	if (rem < HZ/4 && !force_up) /* round down */
374 		j = j - rem;
375 	else /* round up */
376 		j = j - rem + HZ;
377 
378 	/* now that we have rounded, subtract the extra skew again */
379 	j -= cpu * 3;
380 
381 	/*
382 	 * Make sure j is still in the future. Otherwise return the
383 	 * unmodified value.
384 	 */
385 	return time_is_after_jiffies(j) ? j : original;
386 }
387 
388 /**
389  * __round_jiffies - function to round jiffies to a full second
390  * @j: the time in (absolute) jiffies that should be rounded
391  * @cpu: the processor number on which the timeout will happen
392  *
393  * __round_jiffies() rounds an absolute time in the future (in jiffies)
394  * up or down to (approximately) full seconds. This is useful for timers
395  * for which the exact time they fire does not matter too much, as long as
396  * they fire approximately every X seconds.
397  *
398  * By rounding these timers to whole seconds, all such timers will fire
399  * at the same time, rather than at various times spread out. The goal
400  * of this is to have the CPU wake up less, which saves power.
401  *
402  * The exact rounding is skewed for each processor to avoid all
403  * processors firing at the exact same time, which could lead
404  * to lock contention or spurious cache line bouncing.
405  *
406  * The return value is the rounded version of the @j parameter.
407  */
__round_jiffies(unsigned long j,int cpu)408 unsigned long __round_jiffies(unsigned long j, int cpu)
409 {
410 	return round_jiffies_common(j, cpu, false);
411 }
412 EXPORT_SYMBOL_GPL(__round_jiffies);
413 
414 /**
415  * __round_jiffies_relative - function to round jiffies to a full second
416  * @j: the time in (relative) jiffies that should be rounded
417  * @cpu: the processor number on which the timeout will happen
418  *
419  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
420  * up or down to (approximately) full seconds. This is useful for timers
421  * for which the exact time they fire does not matter too much, as long as
422  * they fire approximately every X seconds.
423  *
424  * By rounding these timers to whole seconds, all such timers will fire
425  * at the same time, rather than at various times spread out. The goal
426  * of this is to have the CPU wake up less, which saves power.
427  *
428  * The exact rounding is skewed for each processor to avoid all
429  * processors firing at the exact same time, which could lead
430  * to lock contention or spurious cache line bouncing.
431  *
432  * The return value is the rounded version of the @j parameter.
433  */
__round_jiffies_relative(unsigned long j,int cpu)434 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
435 {
436 	unsigned long j0 = jiffies;
437 
438 	/* Use j0 because jiffies might change while we run */
439 	return round_jiffies_common(j + j0, cpu, false) - j0;
440 }
441 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
442 
443 /**
444  * round_jiffies - function to round jiffies to a full second
445  * @j: the time in (absolute) jiffies that should be rounded
446  *
447  * round_jiffies() rounds an absolute time in the future (in jiffies)
448  * up or down to (approximately) full seconds. This is useful for timers
449  * for which the exact time they fire does not matter too much, as long as
450  * they fire approximately every X seconds.
451  *
452  * By rounding these timers to whole seconds, all such timers will fire
453  * at the same time, rather than at various times spread out. The goal
454  * of this is to have the CPU wake up less, which saves power.
455  *
456  * The return value is the rounded version of the @j parameter.
457  */
round_jiffies(unsigned long j)458 unsigned long round_jiffies(unsigned long j)
459 {
460 	return round_jiffies_common(j, raw_smp_processor_id(), false);
461 }
462 EXPORT_SYMBOL_GPL(round_jiffies);
463 
464 /**
465  * round_jiffies_relative - function to round jiffies to a full second
466  * @j: the time in (relative) jiffies that should be rounded
467  *
468  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
469  * up or down to (approximately) full seconds. This is useful for timers
470  * for which the exact time they fire does not matter too much, as long as
471  * they fire approximately every X seconds.
472  *
473  * By rounding these timers to whole seconds, all such timers will fire
474  * at the same time, rather than at various times spread out. The goal
475  * of this is to have the CPU wake up less, which saves power.
476  *
477  * The return value is the rounded version of the @j parameter.
478  */
round_jiffies_relative(unsigned long j)479 unsigned long round_jiffies_relative(unsigned long j)
480 {
481 	return __round_jiffies_relative(j, raw_smp_processor_id());
482 }
483 EXPORT_SYMBOL_GPL(round_jiffies_relative);
484 
485 /**
486  * __round_jiffies_up - function to round jiffies up to a full second
487  * @j: the time in (absolute) jiffies that should be rounded
488  * @cpu: the processor number on which the timeout will happen
489  *
490  * This is the same as __round_jiffies() except that it will never
491  * round down.  This is useful for timeouts for which the exact time
492  * of firing does not matter too much, as long as they don't fire too
493  * early.
494  */
__round_jiffies_up(unsigned long j,int cpu)495 unsigned long __round_jiffies_up(unsigned long j, int cpu)
496 {
497 	return round_jiffies_common(j, cpu, true);
498 }
499 EXPORT_SYMBOL_GPL(__round_jiffies_up);
500 
501 /**
502  * __round_jiffies_up_relative - function to round jiffies up to a full second
503  * @j: the time in (relative) jiffies that should be rounded
504  * @cpu: the processor number on which the timeout will happen
505  *
506  * This is the same as __round_jiffies_relative() except that it will never
507  * round down.  This is useful for timeouts for which the exact time
508  * of firing does not matter too much, as long as they don't fire too
509  * early.
510  */
__round_jiffies_up_relative(unsigned long j,int cpu)511 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
512 {
513 	unsigned long j0 = jiffies;
514 
515 	/* Use j0 because jiffies might change while we run */
516 	return round_jiffies_common(j + j0, cpu, true) - j0;
517 }
518 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
519 
520 /**
521  * round_jiffies_up - function to round jiffies up to a full second
522  * @j: the time in (absolute) jiffies that should be rounded
523  *
524  * This is the same as round_jiffies() except that it will never
525  * round down.  This is useful for timeouts for which the exact time
526  * of firing does not matter too much, as long as they don't fire too
527  * early.
528  */
round_jiffies_up(unsigned long j)529 unsigned long round_jiffies_up(unsigned long j)
530 {
531 	return round_jiffies_common(j, raw_smp_processor_id(), true);
532 }
533 EXPORT_SYMBOL_GPL(round_jiffies_up);
534 
535 /**
536  * round_jiffies_up_relative - function to round jiffies up to a full second
537  * @j: the time in (relative) jiffies that should be rounded
538  *
539  * This is the same as round_jiffies_relative() except that it will never
540  * round down.  This is useful for timeouts for which the exact time
541  * of firing does not matter too much, as long as they don't fire too
542  * early.
543  */
round_jiffies_up_relative(unsigned long j)544 unsigned long round_jiffies_up_relative(unsigned long j)
545 {
546 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
547 }
548 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
549 
550 
timer_get_idx(struct timer_list * timer)551 static inline unsigned int timer_get_idx(struct timer_list *timer)
552 {
553 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
554 }
555 
timer_set_idx(struct timer_list * timer,unsigned int idx)556 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
557 {
558 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
559 			idx << TIMER_ARRAYSHIFT;
560 }
561 
562 /*
563  * Helper function to calculate the array index for a given expiry
564  * time.
565  */
calc_index(unsigned long expires,unsigned lvl,unsigned long * bucket_expiry)566 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
567 				  unsigned long *bucket_expiry)
568 {
569 
570 	/*
571 	 * The timer wheel has to guarantee that a timer does not fire
572 	 * early. Early expiry can happen due to:
573 	 * - Timer is armed at the edge of a tick
574 	 * - Truncation of the expiry time in the outer wheel levels
575 	 *
576 	 * Round up with level granularity to prevent this.
577 	 */
578 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
579 	*bucket_expiry = expires << LVL_SHIFT(lvl);
580 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
581 }
582 
calc_wheel_index(unsigned long expires,unsigned long clk,unsigned long * bucket_expiry)583 static int calc_wheel_index(unsigned long expires, unsigned long clk,
584 			    unsigned long *bucket_expiry)
585 {
586 	unsigned long delta = expires - clk;
587 	unsigned int idx;
588 
589 	if (delta < LVL_START(1)) {
590 		idx = calc_index(expires, 0, bucket_expiry);
591 	} else if (delta < LVL_START(2)) {
592 		idx = calc_index(expires, 1, bucket_expiry);
593 	} else if (delta < LVL_START(3)) {
594 		idx = calc_index(expires, 2, bucket_expiry);
595 	} else if (delta < LVL_START(4)) {
596 		idx = calc_index(expires, 3, bucket_expiry);
597 	} else if (delta < LVL_START(5)) {
598 		idx = calc_index(expires, 4, bucket_expiry);
599 	} else if (delta < LVL_START(6)) {
600 		idx = calc_index(expires, 5, bucket_expiry);
601 	} else if (delta < LVL_START(7)) {
602 		idx = calc_index(expires, 6, bucket_expiry);
603 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
604 		idx = calc_index(expires, 7, bucket_expiry);
605 	} else if ((long) delta < 0) {
606 		idx = clk & LVL_MASK;
607 		*bucket_expiry = clk;
608 	} else {
609 		/*
610 		 * Force expire obscene large timeouts to expire at the
611 		 * capacity limit of the wheel.
612 		 */
613 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
614 			expires = clk + WHEEL_TIMEOUT_MAX;
615 
616 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
617 	}
618 	return idx;
619 }
620 
621 static void
trigger_dyntick_cpu(struct timer_base * base,struct timer_list * timer)622 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
623 {
624 	/*
625 	 * Deferrable timers do not prevent the CPU from entering dynticks and
626 	 * are not taken into account on the idle/nohz_full path. An IPI when a
627 	 * new deferrable timer is enqueued will wake up the remote CPU but
628 	 * nothing will be done with the deferrable timer base. Therefore skip
629 	 * the remote IPI for deferrable timers completely.
630 	 */
631 	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
632 		return;
633 
634 	/*
635 	 * We might have to IPI the remote CPU if the base is idle and the
636 	 * timer is pinned. If it is a non pinned timer, it is only queued
637 	 * on the remote CPU, when timer was running during queueing. Then
638 	 * everything is handled by remote CPU anyway. If the other CPU is
639 	 * on the way to idle then it can't set base->is_idle as we hold
640 	 * the base lock:
641 	 */
642 	if (base->is_idle) {
643 		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
644 			       tick_nohz_full_cpu(base->cpu)));
645 		wake_up_nohz_cpu(base->cpu);
646 	}
647 }
648 
649 /*
650  * Enqueue the timer into the hash bucket, mark it pending in
651  * the bitmap, store the index in the timer flags then wake up
652  * the target CPU if needed.
653  */
enqueue_timer(struct timer_base * base,struct timer_list * timer,unsigned int idx,unsigned long bucket_expiry)654 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
655 			  unsigned int idx, unsigned long bucket_expiry)
656 {
657 
658 	hlist_add_head(&timer->entry, base->vectors + idx);
659 	__set_bit(idx, base->pending_map);
660 	timer_set_idx(timer, idx);
661 
662 	trace_timer_start(timer, bucket_expiry);
663 
664 	/*
665 	 * Check whether this is the new first expiring timer. The
666 	 * effective expiry time of the timer is required here
667 	 * (bucket_expiry) instead of timer->expires.
668 	 */
669 	if (time_before(bucket_expiry, base->next_expiry)) {
670 		/*
671 		 * Set the next expiry time and kick the CPU so it
672 		 * can reevaluate the wheel:
673 		 */
674 		WRITE_ONCE(base->next_expiry, bucket_expiry);
675 		base->timers_pending = true;
676 		base->next_expiry_recalc = false;
677 		trigger_dyntick_cpu(base, timer);
678 	}
679 }
680 
internal_add_timer(struct timer_base * base,struct timer_list * timer)681 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
682 {
683 	unsigned long bucket_expiry;
684 	unsigned int idx;
685 
686 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
687 	enqueue_timer(base, timer, idx, bucket_expiry);
688 }
689 
690 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
691 
692 static const struct debug_obj_descr timer_debug_descr;
693 
694 struct timer_hint {
695 	void	(*function)(struct timer_list *t);
696 	long	offset;
697 };
698 
699 #define TIMER_HINT(fn, container, timr, hintfn)			\
700 	{							\
701 		.function = fn,					\
702 		.offset	  = offsetof(container, hintfn) -	\
703 			    offsetof(container, timr)		\
704 	}
705 
706 static const struct timer_hint timer_hints[] = {
707 	TIMER_HINT(delayed_work_timer_fn,
708 		   struct delayed_work, timer, work.func),
709 	TIMER_HINT(kthread_delayed_work_timer_fn,
710 		   struct kthread_delayed_work, timer, work.func),
711 };
712 
timer_debug_hint(void * addr)713 static void *timer_debug_hint(void *addr)
714 {
715 	struct timer_list *timer = addr;
716 	int i;
717 
718 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
719 		if (timer_hints[i].function == timer->function) {
720 			void (**fn)(void) = addr + timer_hints[i].offset;
721 
722 			return *fn;
723 		}
724 	}
725 
726 	return timer->function;
727 }
728 
timer_is_static_object(void * addr)729 static bool timer_is_static_object(void *addr)
730 {
731 	struct timer_list *timer = addr;
732 
733 	return (timer->entry.pprev == NULL &&
734 		timer->entry.next == TIMER_ENTRY_STATIC);
735 }
736 
737 /*
738  * timer_fixup_init is called when:
739  * - an active object is initialized
740  */
timer_fixup_init(void * addr,enum debug_obj_state state)741 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
742 {
743 	struct timer_list *timer = addr;
744 
745 	switch (state) {
746 	case ODEBUG_STATE_ACTIVE:
747 		del_timer_sync(timer);
748 		debug_object_init(timer, &timer_debug_descr);
749 		return true;
750 	default:
751 		return false;
752 	}
753 }
754 
755 /* Stub timer callback for improperly used timers. */
stub_timer(struct timer_list * unused)756 static void stub_timer(struct timer_list *unused)
757 {
758 	WARN_ON(1);
759 }
760 
761 /*
762  * timer_fixup_activate is called when:
763  * - an active object is activated
764  * - an unknown non-static object is activated
765  */
timer_fixup_activate(void * addr,enum debug_obj_state state)766 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
767 {
768 	struct timer_list *timer = addr;
769 
770 	switch (state) {
771 	case ODEBUG_STATE_NOTAVAILABLE:
772 		timer_setup(timer, stub_timer, 0);
773 		return true;
774 
775 	case ODEBUG_STATE_ACTIVE:
776 		WARN_ON(1);
777 		fallthrough;
778 	default:
779 		return false;
780 	}
781 }
782 
783 /*
784  * timer_fixup_free is called when:
785  * - an active object is freed
786  */
timer_fixup_free(void * addr,enum debug_obj_state state)787 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
788 {
789 	struct timer_list *timer = addr;
790 
791 	switch (state) {
792 	case ODEBUG_STATE_ACTIVE:
793 		del_timer_sync(timer);
794 		debug_object_free(timer, &timer_debug_descr);
795 		return true;
796 	default:
797 		return false;
798 	}
799 }
800 
801 /*
802  * timer_fixup_assert_init is called when:
803  * - an untracked/uninit-ed object is found
804  */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)805 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
806 {
807 	struct timer_list *timer = addr;
808 
809 	switch (state) {
810 	case ODEBUG_STATE_NOTAVAILABLE:
811 		timer_setup(timer, stub_timer, 0);
812 		return true;
813 	default:
814 		return false;
815 	}
816 }
817 
818 static const struct debug_obj_descr timer_debug_descr = {
819 	.name			= "timer_list",
820 	.debug_hint		= timer_debug_hint,
821 	.is_static_object	= timer_is_static_object,
822 	.fixup_init		= timer_fixup_init,
823 	.fixup_activate		= timer_fixup_activate,
824 	.fixup_free		= timer_fixup_free,
825 	.fixup_assert_init	= timer_fixup_assert_init,
826 };
827 
debug_timer_init(struct timer_list * timer)828 static inline void debug_timer_init(struct timer_list *timer)
829 {
830 	debug_object_init(timer, &timer_debug_descr);
831 }
832 
debug_timer_activate(struct timer_list * timer)833 static inline void debug_timer_activate(struct timer_list *timer)
834 {
835 	debug_object_activate(timer, &timer_debug_descr);
836 }
837 
debug_timer_deactivate(struct timer_list * timer)838 static inline void debug_timer_deactivate(struct timer_list *timer)
839 {
840 	debug_object_deactivate(timer, &timer_debug_descr);
841 }
842 
debug_timer_assert_init(struct timer_list * timer)843 static inline void debug_timer_assert_init(struct timer_list *timer)
844 {
845 	debug_object_assert_init(timer, &timer_debug_descr);
846 }
847 
848 static void do_init_timer(struct timer_list *timer,
849 			  void (*func)(struct timer_list *),
850 			  unsigned int flags,
851 			  const char *name, struct lock_class_key *key);
852 
init_timer_on_stack_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)853 void init_timer_on_stack_key(struct timer_list *timer,
854 			     void (*func)(struct timer_list *),
855 			     unsigned int flags,
856 			     const char *name, struct lock_class_key *key)
857 {
858 	debug_object_init_on_stack(timer, &timer_debug_descr);
859 	do_init_timer(timer, func, flags, name, key);
860 }
861 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
862 
destroy_timer_on_stack(struct timer_list * timer)863 void destroy_timer_on_stack(struct timer_list *timer)
864 {
865 	debug_object_free(timer, &timer_debug_descr);
866 }
867 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
868 
869 #else
debug_timer_init(struct timer_list * timer)870 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)871 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)872 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)873 static inline void debug_timer_assert_init(struct timer_list *timer) { }
874 #endif
875 
debug_init(struct timer_list * timer)876 static inline void debug_init(struct timer_list *timer)
877 {
878 	debug_timer_init(timer);
879 	trace_timer_init(timer);
880 }
881 
debug_deactivate(struct timer_list * timer)882 static inline void debug_deactivate(struct timer_list *timer)
883 {
884 	debug_timer_deactivate(timer);
885 	trace_timer_cancel(timer);
886 }
887 
debug_assert_init(struct timer_list * timer)888 static inline void debug_assert_init(struct timer_list *timer)
889 {
890 	debug_timer_assert_init(timer);
891 }
892 
do_init_timer(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)893 static void do_init_timer(struct timer_list *timer,
894 			  void (*func)(struct timer_list *),
895 			  unsigned int flags,
896 			  const char *name, struct lock_class_key *key)
897 {
898 	timer->entry.pprev = NULL;
899 	timer->function = func;
900 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
901 		flags &= TIMER_INIT_FLAGS;
902 	timer->flags = flags | raw_smp_processor_id();
903 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
904 }
905 
906 /**
907  * init_timer_key - initialize a timer
908  * @timer: the timer to be initialized
909  * @func: timer callback function
910  * @flags: timer flags
911  * @name: name of the timer
912  * @key: lockdep class key of the fake lock used for tracking timer
913  *       sync lock dependencies
914  *
915  * init_timer_key() must be done to a timer prior to calling *any* of the
916  * other timer functions.
917  */
init_timer_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)918 void init_timer_key(struct timer_list *timer,
919 		    void (*func)(struct timer_list *), unsigned int flags,
920 		    const char *name, struct lock_class_key *key)
921 {
922 	debug_init(timer);
923 	do_init_timer(timer, func, flags, name, key);
924 }
925 EXPORT_SYMBOL(init_timer_key);
926 
detach_timer(struct timer_list * timer,bool clear_pending)927 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
928 {
929 	struct hlist_node *entry = &timer->entry;
930 
931 	debug_deactivate(timer);
932 
933 	__hlist_del(entry);
934 	if (clear_pending)
935 		entry->pprev = NULL;
936 	entry->next = LIST_POISON2;
937 }
938 
detach_if_pending(struct timer_list * timer,struct timer_base * base,bool clear_pending)939 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
940 			     bool clear_pending)
941 {
942 	unsigned idx = timer_get_idx(timer);
943 
944 	if (!timer_pending(timer))
945 		return 0;
946 
947 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
948 		__clear_bit(idx, base->pending_map);
949 		base->next_expiry_recalc = true;
950 	}
951 
952 	detach_timer(timer, clear_pending);
953 	return 1;
954 }
955 
get_timer_cpu_base(u32 tflags,u32 cpu)956 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
957 {
958 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
959 
960 	/*
961 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
962 	 * to use the deferrable base.
963 	 */
964 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
965 		index = BASE_DEF;
966 
967 	return per_cpu_ptr(&timer_bases[index], cpu);
968 }
969 
get_timer_this_cpu_base(u32 tflags)970 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
971 {
972 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
973 
974 	/*
975 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
976 	 * to use the deferrable base.
977 	 */
978 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
979 		index = BASE_DEF;
980 
981 	return this_cpu_ptr(&timer_bases[index]);
982 }
983 
get_timer_base(u32 tflags)984 static inline struct timer_base *get_timer_base(u32 tflags)
985 {
986 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
987 }
988 
__forward_timer_base(struct timer_base * base,unsigned long basej)989 static inline void __forward_timer_base(struct timer_base *base,
990 					unsigned long basej)
991 {
992 	/*
993 	 * Check whether we can forward the base. We can only do that when
994 	 * @basej is past base->clk otherwise we might rewind base->clk.
995 	 */
996 	if (time_before_eq(basej, base->clk))
997 		return;
998 
999 	/*
1000 	 * If the next expiry value is > jiffies, then we fast forward to
1001 	 * jiffies otherwise we forward to the next expiry value.
1002 	 */
1003 	if (time_after(base->next_expiry, basej)) {
1004 		base->clk = basej;
1005 	} else {
1006 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1007 			return;
1008 		base->clk = base->next_expiry;
1009 	}
1010 
1011 }
1012 
forward_timer_base(struct timer_base * base)1013 static inline void forward_timer_base(struct timer_base *base)
1014 {
1015 	__forward_timer_base(base, READ_ONCE(jiffies));
1016 }
1017 
1018 /*
1019  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1020  * that all timers which are tied to this base are locked, and the base itself
1021  * is locked too.
1022  *
1023  * So __run_timers/migrate_timers can safely modify all timers which could
1024  * be found in the base->vectors array.
1025  *
1026  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1027  * to wait until the migration is done.
1028  */
lock_timer_base(struct timer_list * timer,unsigned long * flags)1029 static struct timer_base *lock_timer_base(struct timer_list *timer,
1030 					  unsigned long *flags)
1031 	__acquires(timer->base->lock)
1032 {
1033 	for (;;) {
1034 		struct timer_base *base;
1035 		u32 tf;
1036 
1037 		/*
1038 		 * We need to use READ_ONCE() here, otherwise the compiler
1039 		 * might re-read @tf between the check for TIMER_MIGRATING
1040 		 * and spin_lock().
1041 		 */
1042 		tf = READ_ONCE(timer->flags);
1043 
1044 		if (!(tf & TIMER_MIGRATING)) {
1045 			base = get_timer_base(tf);
1046 			raw_spin_lock_irqsave(&base->lock, *flags);
1047 			if (timer->flags == tf)
1048 				return base;
1049 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1050 		}
1051 		cpu_relax();
1052 	}
1053 }
1054 
1055 #define MOD_TIMER_PENDING_ONLY		0x01
1056 #define MOD_TIMER_REDUCE		0x02
1057 #define MOD_TIMER_NOTPENDING		0x04
1058 
1059 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,unsigned int options)1060 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1061 {
1062 	unsigned long clk = 0, flags, bucket_expiry;
1063 	struct timer_base *base, *new_base;
1064 	unsigned int idx = UINT_MAX;
1065 	int ret = 0;
1066 
1067 	debug_assert_init(timer);
1068 
1069 	/*
1070 	 * This is a common optimization triggered by the networking code - if
1071 	 * the timer is re-modified to have the same timeout or ends up in the
1072 	 * same array bucket then just return:
1073 	 */
1074 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1075 		/*
1076 		 * The downside of this optimization is that it can result in
1077 		 * larger granularity than you would get from adding a new
1078 		 * timer with this expiry.
1079 		 */
1080 		long diff = timer->expires - expires;
1081 
1082 		if (!diff)
1083 			return 1;
1084 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1085 			return 1;
1086 
1087 		/*
1088 		 * We lock timer base and calculate the bucket index right
1089 		 * here. If the timer ends up in the same bucket, then we
1090 		 * just update the expiry time and avoid the whole
1091 		 * dequeue/enqueue dance.
1092 		 */
1093 		base = lock_timer_base(timer, &flags);
1094 		/*
1095 		 * Has @timer been shutdown? This needs to be evaluated
1096 		 * while holding base lock to prevent a race against the
1097 		 * shutdown code.
1098 		 */
1099 		if (!timer->function)
1100 			goto out_unlock;
1101 
1102 		forward_timer_base(base);
1103 
1104 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1105 		    time_before_eq(timer->expires, expires)) {
1106 			ret = 1;
1107 			goto out_unlock;
1108 		}
1109 
1110 		clk = base->clk;
1111 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1112 
1113 		/*
1114 		 * Retrieve and compare the array index of the pending
1115 		 * timer. If it matches set the expiry to the new value so a
1116 		 * subsequent call will exit in the expires check above.
1117 		 */
1118 		if (idx == timer_get_idx(timer)) {
1119 			if (!(options & MOD_TIMER_REDUCE))
1120 				timer->expires = expires;
1121 			else if (time_after(timer->expires, expires))
1122 				timer->expires = expires;
1123 			ret = 1;
1124 			goto out_unlock;
1125 		}
1126 	} else {
1127 		base = lock_timer_base(timer, &flags);
1128 		/*
1129 		 * Has @timer been shutdown? This needs to be evaluated
1130 		 * while holding base lock to prevent a race against the
1131 		 * shutdown code.
1132 		 */
1133 		if (!timer->function)
1134 			goto out_unlock;
1135 
1136 		forward_timer_base(base);
1137 	}
1138 
1139 	ret = detach_if_pending(timer, base, false);
1140 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1141 		goto out_unlock;
1142 
1143 	new_base = get_timer_this_cpu_base(timer->flags);
1144 
1145 	if (base != new_base) {
1146 		/*
1147 		 * We are trying to schedule the timer on the new base.
1148 		 * However we can't change timer's base while it is running,
1149 		 * otherwise timer_delete_sync() can't detect that the timer's
1150 		 * handler yet has not finished. This also guarantees that the
1151 		 * timer is serialized wrt itself.
1152 		 */
1153 		if (likely(base->running_timer != timer)) {
1154 			/* See the comment in lock_timer_base() */
1155 			timer->flags |= TIMER_MIGRATING;
1156 
1157 			raw_spin_unlock(&base->lock);
1158 			base = new_base;
1159 			raw_spin_lock(&base->lock);
1160 			WRITE_ONCE(timer->flags,
1161 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1162 			forward_timer_base(base);
1163 		}
1164 	}
1165 
1166 	debug_timer_activate(timer);
1167 
1168 	timer->expires = expires;
1169 	/*
1170 	 * If 'idx' was calculated above and the base time did not advance
1171 	 * between calculating 'idx' and possibly switching the base, only
1172 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1173 	 * the wheel index via internal_add_timer().
1174 	 */
1175 	if (idx != UINT_MAX && clk == base->clk)
1176 		enqueue_timer(base, timer, idx, bucket_expiry);
1177 	else
1178 		internal_add_timer(base, timer);
1179 
1180 out_unlock:
1181 	raw_spin_unlock_irqrestore(&base->lock, flags);
1182 
1183 	return ret;
1184 }
1185 
1186 /**
1187  * mod_timer_pending - Modify a pending timer's timeout
1188  * @timer:	The pending timer to be modified
1189  * @expires:	New absolute timeout in jiffies
1190  *
1191  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1192  * will not activate inactive timers.
1193  *
1194  * If @timer->function == NULL then the start operation is silently
1195  * discarded.
1196  *
1197  * Return:
1198  * * %0 - The timer was inactive and not modified or was in
1199  *	  shutdown state and the operation was discarded
1200  * * %1 - The timer was active and requeued to expire at @expires
1201  */
mod_timer_pending(struct timer_list * timer,unsigned long expires)1202 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1203 {
1204 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1205 }
1206 EXPORT_SYMBOL(mod_timer_pending);
1207 
1208 /**
1209  * mod_timer - Modify a timer's timeout
1210  * @timer:	The timer to be modified
1211  * @expires:	New absolute timeout in jiffies
1212  *
1213  * mod_timer(timer, expires) is equivalent to:
1214  *
1215  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1216  *
1217  * mod_timer() is more efficient than the above open coded sequence. In
1218  * case that the timer is inactive, the del_timer() part is a NOP. The
1219  * timer is in any case activated with the new expiry time @expires.
1220  *
1221  * Note that if there are multiple unserialized concurrent users of the
1222  * same timer, then mod_timer() is the only safe way to modify the timeout,
1223  * since add_timer() cannot modify an already running timer.
1224  *
1225  * If @timer->function == NULL then the start operation is silently
1226  * discarded. In this case the return value is 0 and meaningless.
1227  *
1228  * Return:
1229  * * %0 - The timer was inactive and started or was in shutdown
1230  *	  state and the operation was discarded
1231  * * %1 - The timer was active and requeued to expire at @expires or
1232  *	  the timer was active and not modified because @expires did
1233  *	  not change the effective expiry time
1234  */
mod_timer(struct timer_list * timer,unsigned long expires)1235 int mod_timer(struct timer_list *timer, unsigned long expires)
1236 {
1237 	return __mod_timer(timer, expires, 0);
1238 }
1239 EXPORT_SYMBOL(mod_timer);
1240 
1241 /**
1242  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1243  * @timer:	The timer to be modified
1244  * @expires:	New absolute timeout in jiffies
1245  *
1246  * timer_reduce() is very similar to mod_timer(), except that it will only
1247  * modify an enqueued timer if that would reduce the expiration time. If
1248  * @timer is not enqueued it starts the timer.
1249  *
1250  * If @timer->function == NULL then the start operation is silently
1251  * discarded.
1252  *
1253  * Return:
1254  * * %0 - The timer was inactive and started or was in shutdown
1255  *	  state and the operation was discarded
1256  * * %1 - The timer was active and requeued to expire at @expires or
1257  *	  the timer was active and not modified because @expires
1258  *	  did not change the effective expiry time such that the
1259  *	  timer would expire earlier than already scheduled
1260  */
timer_reduce(struct timer_list * timer,unsigned long expires)1261 int timer_reduce(struct timer_list *timer, unsigned long expires)
1262 {
1263 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1264 }
1265 EXPORT_SYMBOL(timer_reduce);
1266 
1267 /**
1268  * add_timer - Start a timer
1269  * @timer:	The timer to be started
1270  *
1271  * Start @timer to expire at @timer->expires in the future. @timer->expires
1272  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1273  * timer->function(timer) will be invoked from soft interrupt context.
1274  *
1275  * The @timer->expires and @timer->function fields must be set prior
1276  * to calling this function.
1277  *
1278  * If @timer->function == NULL then the start operation is silently
1279  * discarded.
1280  *
1281  * If @timer->expires is already in the past @timer will be queued to
1282  * expire at the next timer tick.
1283  *
1284  * This can only operate on an inactive timer. Attempts to invoke this on
1285  * an active timer are rejected with a warning.
1286  */
add_timer(struct timer_list * timer)1287 void add_timer(struct timer_list *timer)
1288 {
1289 	if (WARN_ON_ONCE(timer_pending(timer)))
1290 		return;
1291 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1292 }
1293 EXPORT_SYMBOL(add_timer);
1294 
1295 /**
1296  * add_timer_local() - Start a timer on the local CPU
1297  * @timer:	The timer to be started
1298  *
1299  * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1300  *
1301  * See add_timer() for further details.
1302  */
add_timer_local(struct timer_list * timer)1303 void add_timer_local(struct timer_list *timer)
1304 {
1305 	if (WARN_ON_ONCE(timer_pending(timer)))
1306 		return;
1307 	timer->flags |= TIMER_PINNED;
1308 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1309 }
1310 EXPORT_SYMBOL(add_timer_local);
1311 
1312 /**
1313  * add_timer_global() - Start a timer without TIMER_PINNED flag set
1314  * @timer:	The timer to be started
1315  *
1316  * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1317  *
1318  * See add_timer() for further details.
1319  */
add_timer_global(struct timer_list * timer)1320 void add_timer_global(struct timer_list *timer)
1321 {
1322 	if (WARN_ON_ONCE(timer_pending(timer)))
1323 		return;
1324 	timer->flags &= ~TIMER_PINNED;
1325 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1326 }
1327 EXPORT_SYMBOL(add_timer_global);
1328 
1329 /**
1330  * add_timer_on - Start a timer on a particular CPU
1331  * @timer:	The timer to be started
1332  * @cpu:	The CPU to start it on
1333  *
1334  * Same as add_timer() except that it starts the timer on the given CPU and
1335  * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1336  * the next round, add_timer_global() should be used instead as it unsets
1337  * the TIMER_PINNED flag.
1338  *
1339  * See add_timer() for further details.
1340  */
add_timer_on(struct timer_list * timer,int cpu)1341 void add_timer_on(struct timer_list *timer, int cpu)
1342 {
1343 	struct timer_base *new_base, *base;
1344 	unsigned long flags;
1345 
1346 	debug_assert_init(timer);
1347 
1348 	if (WARN_ON_ONCE(timer_pending(timer)))
1349 		return;
1350 
1351 	/* Make sure timer flags have TIMER_PINNED flag set */
1352 	timer->flags |= TIMER_PINNED;
1353 
1354 	new_base = get_timer_cpu_base(timer->flags, cpu);
1355 
1356 	/*
1357 	 * If @timer was on a different CPU, it should be migrated with the
1358 	 * old base locked to prevent other operations proceeding with the
1359 	 * wrong base locked.  See lock_timer_base().
1360 	 */
1361 	base = lock_timer_base(timer, &flags);
1362 	/*
1363 	 * Has @timer been shutdown? This needs to be evaluated while
1364 	 * holding base lock to prevent a race against the shutdown code.
1365 	 */
1366 	if (!timer->function)
1367 		goto out_unlock;
1368 
1369 	if (base != new_base) {
1370 		timer->flags |= TIMER_MIGRATING;
1371 
1372 		raw_spin_unlock(&base->lock);
1373 		base = new_base;
1374 		raw_spin_lock(&base->lock);
1375 		WRITE_ONCE(timer->flags,
1376 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1377 	}
1378 	forward_timer_base(base);
1379 
1380 	debug_timer_activate(timer);
1381 	internal_add_timer(base, timer);
1382 out_unlock:
1383 	raw_spin_unlock_irqrestore(&base->lock, flags);
1384 }
1385 EXPORT_SYMBOL_GPL(add_timer_on);
1386 
1387 /**
1388  * __timer_delete - Internal function: Deactivate a timer
1389  * @timer:	The timer to be deactivated
1390  * @shutdown:	If true, this indicates that the timer is about to be
1391  *		shutdown permanently.
1392  *
1393  * If @shutdown is true then @timer->function is set to NULL under the
1394  * timer base lock which prevents further rearming of the time. In that
1395  * case any attempt to rearm @timer after this function returns will be
1396  * silently ignored.
1397  *
1398  * Return:
1399  * * %0 - The timer was not pending
1400  * * %1 - The timer was pending and deactivated
1401  */
__timer_delete(struct timer_list * timer,bool shutdown)1402 static int __timer_delete(struct timer_list *timer, bool shutdown)
1403 {
1404 	struct timer_base *base;
1405 	unsigned long flags;
1406 	int ret = 0;
1407 
1408 	debug_assert_init(timer);
1409 
1410 	/*
1411 	 * If @shutdown is set then the lock has to be taken whether the
1412 	 * timer is pending or not to protect against a concurrent rearm
1413 	 * which might hit between the lockless pending check and the lock
1414 	 * acquisition. By taking the lock it is ensured that such a newly
1415 	 * enqueued timer is dequeued and cannot end up with
1416 	 * timer->function == NULL in the expiry code.
1417 	 *
1418 	 * If timer->function is currently executed, then this makes sure
1419 	 * that the callback cannot requeue the timer.
1420 	 */
1421 	if (timer_pending(timer) || shutdown) {
1422 		base = lock_timer_base(timer, &flags);
1423 		ret = detach_if_pending(timer, base, true);
1424 		if (shutdown)
1425 			timer->function = NULL;
1426 		raw_spin_unlock_irqrestore(&base->lock, flags);
1427 	}
1428 
1429 	return ret;
1430 }
1431 
1432 /**
1433  * timer_delete - Deactivate a timer
1434  * @timer:	The timer to be deactivated
1435  *
1436  * The function only deactivates a pending timer, but contrary to
1437  * timer_delete_sync() it does not take into account whether the timer's
1438  * callback function is concurrently executed on a different CPU or not.
1439  * It neither prevents rearming of the timer.  If @timer can be rearmed
1440  * concurrently then the return value of this function is meaningless.
1441  *
1442  * Return:
1443  * * %0 - The timer was not pending
1444  * * %1 - The timer was pending and deactivated
1445  */
timer_delete(struct timer_list * timer)1446 int timer_delete(struct timer_list *timer)
1447 {
1448 	return __timer_delete(timer, false);
1449 }
1450 EXPORT_SYMBOL(timer_delete);
1451 
1452 /**
1453  * timer_shutdown - Deactivate a timer and prevent rearming
1454  * @timer:	The timer to be deactivated
1455  *
1456  * The function does not wait for an eventually running timer callback on a
1457  * different CPU but it prevents rearming of the timer. Any attempt to arm
1458  * @timer after this function returns will be silently ignored.
1459  *
1460  * This function is useful for teardown code and should only be used when
1461  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1462  *
1463  * Return:
1464  * * %0 - The timer was not pending
1465  * * %1 - The timer was pending
1466  */
timer_shutdown(struct timer_list * timer)1467 int timer_shutdown(struct timer_list *timer)
1468 {
1469 	return __timer_delete(timer, true);
1470 }
1471 EXPORT_SYMBOL_GPL(timer_shutdown);
1472 
1473 /**
1474  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1475  * @timer:	Timer to deactivate
1476  * @shutdown:	If true, this indicates that the timer is about to be
1477  *		shutdown permanently.
1478  *
1479  * If @shutdown is true then @timer->function is set to NULL under the
1480  * timer base lock which prevents further rearming of the timer. Any
1481  * attempt to rearm @timer after this function returns will be silently
1482  * ignored.
1483  *
1484  * This function cannot guarantee that the timer cannot be rearmed
1485  * right after dropping the base lock if @shutdown is false. That
1486  * needs to be prevented by the calling code if necessary.
1487  *
1488  * Return:
1489  * * %0  - The timer was not pending
1490  * * %1  - The timer was pending and deactivated
1491  * * %-1 - The timer callback function is running on a different CPU
1492  */
__try_to_del_timer_sync(struct timer_list * timer,bool shutdown)1493 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1494 {
1495 	struct timer_base *base;
1496 	unsigned long flags;
1497 	int ret = -1;
1498 
1499 	debug_assert_init(timer);
1500 
1501 	base = lock_timer_base(timer, &flags);
1502 
1503 	if (base->running_timer != timer)
1504 		ret = detach_if_pending(timer, base, true);
1505 	if (shutdown)
1506 		timer->function = NULL;
1507 
1508 	raw_spin_unlock_irqrestore(&base->lock, flags);
1509 
1510 	return ret;
1511 }
1512 
1513 /**
1514  * try_to_del_timer_sync - Try to deactivate a timer
1515  * @timer:	Timer to deactivate
1516  *
1517  * This function tries to deactivate a timer. On success the timer is not
1518  * queued and the timer callback function is not running on any CPU.
1519  *
1520  * This function does not guarantee that the timer cannot be rearmed right
1521  * after dropping the base lock. That needs to be prevented by the calling
1522  * code if necessary.
1523  *
1524  * Return:
1525  * * %0  - The timer was not pending
1526  * * %1  - The timer was pending and deactivated
1527  * * %-1 - The timer callback function is running on a different CPU
1528  */
try_to_del_timer_sync(struct timer_list * timer)1529 int try_to_del_timer_sync(struct timer_list *timer)
1530 {
1531 	return __try_to_del_timer_sync(timer, false);
1532 }
1533 EXPORT_SYMBOL(try_to_del_timer_sync);
1534 
1535 #ifdef CONFIG_PREEMPT_RT
timer_base_init_expiry_lock(struct timer_base * base)1536 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1537 {
1538 	spin_lock_init(&base->expiry_lock);
1539 }
1540 
timer_base_lock_expiry(struct timer_base * base)1541 static inline void timer_base_lock_expiry(struct timer_base *base)
1542 {
1543 	spin_lock(&base->expiry_lock);
1544 }
1545 
timer_base_unlock_expiry(struct timer_base * base)1546 static inline void timer_base_unlock_expiry(struct timer_base *base)
1547 {
1548 	spin_unlock(&base->expiry_lock);
1549 }
1550 
1551 /*
1552  * The counterpart to del_timer_wait_running().
1553  *
1554  * If there is a waiter for base->expiry_lock, then it was waiting for the
1555  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1556  * the waiter to acquire the lock and make progress.
1557  */
timer_sync_wait_running(struct timer_base * base)1558 static void timer_sync_wait_running(struct timer_base *base)
1559 	__releases(&base->lock) __releases(&base->expiry_lock)
1560 	__acquires(&base->expiry_lock) __acquires(&base->lock)
1561 {
1562 	if (atomic_read(&base->timer_waiters)) {
1563 		raw_spin_unlock_irq(&base->lock);
1564 		spin_unlock(&base->expiry_lock);
1565 		spin_lock(&base->expiry_lock);
1566 		raw_spin_lock_irq(&base->lock);
1567 	}
1568 }
1569 
1570 /*
1571  * This function is called on PREEMPT_RT kernels when the fast path
1572  * deletion of a timer failed because the timer callback function was
1573  * running.
1574  *
1575  * This prevents priority inversion, if the softirq thread on a remote CPU
1576  * got preempted, and it prevents a life lock when the task which tries to
1577  * delete a timer preempted the softirq thread running the timer callback
1578  * function.
1579  */
del_timer_wait_running(struct timer_list * timer)1580 static void del_timer_wait_running(struct timer_list *timer)
1581 {
1582 	u32 tf;
1583 
1584 	tf = READ_ONCE(timer->flags);
1585 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1586 		struct timer_base *base = get_timer_base(tf);
1587 
1588 		/*
1589 		 * Mark the base as contended and grab the expiry lock,
1590 		 * which is held by the softirq across the timer
1591 		 * callback. Drop the lock immediately so the softirq can
1592 		 * expire the next timer. In theory the timer could already
1593 		 * be running again, but that's more than unlikely and just
1594 		 * causes another wait loop.
1595 		 */
1596 		atomic_inc(&base->timer_waiters);
1597 		spin_lock_bh(&base->expiry_lock);
1598 		atomic_dec(&base->timer_waiters);
1599 		spin_unlock_bh(&base->expiry_lock);
1600 	}
1601 }
1602 #else
timer_base_init_expiry_lock(struct timer_base * base)1603 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
timer_base_lock_expiry(struct timer_base * base)1604 static inline void timer_base_lock_expiry(struct timer_base *base) { }
timer_base_unlock_expiry(struct timer_base * base)1605 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
timer_sync_wait_running(struct timer_base * base)1606 static inline void timer_sync_wait_running(struct timer_base *base) { }
del_timer_wait_running(struct timer_list * timer)1607 static inline void del_timer_wait_running(struct timer_list *timer) { }
1608 #endif
1609 
1610 /**
1611  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1612  *			 for the handler to finish.
1613  * @timer:	The timer to be deactivated
1614  * @shutdown:	If true, @timer->function will be set to NULL under the
1615  *		timer base lock which prevents rearming of @timer
1616  *
1617  * If @shutdown is not set the timer can be rearmed later. If the timer can
1618  * be rearmed concurrently, i.e. after dropping the base lock then the
1619  * return value is meaningless.
1620  *
1621  * If @shutdown is set then @timer->function is set to NULL under timer
1622  * base lock which prevents rearming of the timer. Any attempt to rearm
1623  * a shutdown timer is silently ignored.
1624  *
1625  * If the timer should be reused after shutdown it has to be initialized
1626  * again.
1627  *
1628  * Return:
1629  * * %0	- The timer was not pending
1630  * * %1	- The timer was pending and deactivated
1631  */
__timer_delete_sync(struct timer_list * timer,bool shutdown)1632 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1633 {
1634 	int ret;
1635 
1636 #ifdef CONFIG_LOCKDEP
1637 	unsigned long flags;
1638 
1639 	/*
1640 	 * If lockdep gives a backtrace here, please reference
1641 	 * the synchronization rules above.
1642 	 */
1643 	local_irq_save(flags);
1644 	lock_map_acquire(&timer->lockdep_map);
1645 	lock_map_release(&timer->lockdep_map);
1646 	local_irq_restore(flags);
1647 #endif
1648 	/*
1649 	 * don't use it in hardirq context, because it
1650 	 * could lead to deadlock.
1651 	 */
1652 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1653 
1654 	/*
1655 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1656 	 * del_timer_wait_running().
1657 	 */
1658 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1659 		lockdep_assert_preemption_enabled();
1660 
1661 	do {
1662 		ret = __try_to_del_timer_sync(timer, shutdown);
1663 
1664 		if (unlikely(ret < 0)) {
1665 			del_timer_wait_running(timer);
1666 			cpu_relax();
1667 		}
1668 	} while (ret < 0);
1669 
1670 	return ret;
1671 }
1672 
1673 /**
1674  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1675  * @timer:	The timer to be deactivated
1676  *
1677  * Synchronization rules: Callers must prevent restarting of the timer,
1678  * otherwise this function is meaningless. It must not be called from
1679  * interrupt contexts unless the timer is an irqsafe one. The caller must
1680  * not hold locks which would prevent completion of the timer's callback
1681  * function. The timer's handler must not call add_timer_on(). Upon exit
1682  * the timer is not queued and the handler is not running on any CPU.
1683  *
1684  * For !irqsafe timers, the caller must not hold locks that are held in
1685  * interrupt context. Even if the lock has nothing to do with the timer in
1686  * question.  Here's why::
1687  *
1688  *    CPU0                             CPU1
1689  *    ----                             ----
1690  *                                     <SOFTIRQ>
1691  *                                       call_timer_fn();
1692  *                                       base->running_timer = mytimer;
1693  *    spin_lock_irq(somelock);
1694  *                                     <IRQ>
1695  *                                        spin_lock(somelock);
1696  *    timer_delete_sync(mytimer);
1697  *    while (base->running_timer == mytimer);
1698  *
1699  * Now timer_delete_sync() will never return and never release somelock.
1700  * The interrupt on the other CPU is waiting to grab somelock but it has
1701  * interrupted the softirq that CPU0 is waiting to finish.
1702  *
1703  * This function cannot guarantee that the timer is not rearmed again by
1704  * some concurrent or preempting code, right after it dropped the base
1705  * lock. If there is the possibility of a concurrent rearm then the return
1706  * value of the function is meaningless.
1707  *
1708  * If such a guarantee is needed, e.g. for teardown situations then use
1709  * timer_shutdown_sync() instead.
1710  *
1711  * Return:
1712  * * %0	- The timer was not pending
1713  * * %1	- The timer was pending and deactivated
1714  */
timer_delete_sync(struct timer_list * timer)1715 int timer_delete_sync(struct timer_list *timer)
1716 {
1717 	return __timer_delete_sync(timer, false);
1718 }
1719 EXPORT_SYMBOL(timer_delete_sync);
1720 
1721 /**
1722  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1723  * @timer: The timer to be shutdown
1724  *
1725  * When the function returns it is guaranteed that:
1726  *   - @timer is not queued
1727  *   - The callback function of @timer is not running
1728  *   - @timer cannot be enqueued again. Any attempt to rearm
1729  *     @timer is silently ignored.
1730  *
1731  * See timer_delete_sync() for synchronization rules.
1732  *
1733  * This function is useful for final teardown of an infrastructure where
1734  * the timer is subject to a circular dependency problem.
1735  *
1736  * A common pattern for this is a timer and a workqueue where the timer can
1737  * schedule work and work can arm the timer. On shutdown the workqueue must
1738  * be destroyed and the timer must be prevented from rearming. Unless the
1739  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1740  * there is no way to get this correct with timer_delete_sync().
1741  *
1742  * timer_shutdown_sync() is solving the problem. The correct ordering of
1743  * calls in this case is:
1744  *
1745  *	timer_shutdown_sync(&mything->timer);
1746  *	workqueue_destroy(&mything->workqueue);
1747  *
1748  * After this 'mything' can be safely freed.
1749  *
1750  * This obviously implies that the timer is not required to be functional
1751  * for the rest of the shutdown operation.
1752  *
1753  * Return:
1754  * * %0 - The timer was not pending
1755  * * %1 - The timer was pending
1756  */
timer_shutdown_sync(struct timer_list * timer)1757 int timer_shutdown_sync(struct timer_list *timer)
1758 {
1759 	return __timer_delete_sync(timer, true);
1760 }
1761 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1762 
call_timer_fn(struct timer_list * timer,void (* fn)(struct timer_list *),unsigned long baseclk)1763 static void call_timer_fn(struct timer_list *timer,
1764 			  void (*fn)(struct timer_list *),
1765 			  unsigned long baseclk)
1766 {
1767 	int count = preempt_count();
1768 
1769 #ifdef CONFIG_LOCKDEP
1770 	/*
1771 	 * It is permissible to free the timer from inside the
1772 	 * function that is called from it, this we need to take into
1773 	 * account for lockdep too. To avoid bogus "held lock freed"
1774 	 * warnings as well as problems when looking into
1775 	 * timer->lockdep_map, make a copy and use that here.
1776 	 */
1777 	struct lockdep_map lockdep_map;
1778 
1779 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1780 #endif
1781 	/*
1782 	 * Couple the lock chain with the lock chain at
1783 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1784 	 * call here and in timer_delete_sync().
1785 	 */
1786 	lock_map_acquire(&lockdep_map);
1787 
1788 	trace_timer_expire_entry(timer, baseclk);
1789 	fn(timer);
1790 	trace_timer_expire_exit(timer);
1791 
1792 	lock_map_release(&lockdep_map);
1793 
1794 	if (count != preempt_count()) {
1795 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1796 			  fn, count, preempt_count());
1797 		/*
1798 		 * Restore the preempt count. That gives us a decent
1799 		 * chance to survive and extract information. If the
1800 		 * callback kept a lock held, bad luck, but not worse
1801 		 * than the BUG() we had.
1802 		 */
1803 		preempt_count_set(count);
1804 	}
1805 }
1806 
expire_timers(struct timer_base * base,struct hlist_head * head)1807 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1808 {
1809 	/*
1810 	 * This value is required only for tracing. base->clk was
1811 	 * incremented directly before expire_timers was called. But expiry
1812 	 * is related to the old base->clk value.
1813 	 */
1814 	unsigned long baseclk = base->clk - 1;
1815 
1816 	while (!hlist_empty(head)) {
1817 		struct timer_list *timer;
1818 		void (*fn)(struct timer_list *);
1819 
1820 		timer = hlist_entry(head->first, struct timer_list, entry);
1821 
1822 		base->running_timer = timer;
1823 		detach_timer(timer, true);
1824 
1825 		fn = timer->function;
1826 
1827 		if (WARN_ON_ONCE(!fn)) {
1828 			/* Should never happen. Emphasis on should! */
1829 			base->running_timer = NULL;
1830 			continue;
1831 		}
1832 
1833 		if (timer->flags & TIMER_IRQSAFE) {
1834 			raw_spin_unlock(&base->lock);
1835 			call_timer_fn(timer, fn, baseclk);
1836 			raw_spin_lock(&base->lock);
1837 			base->running_timer = NULL;
1838 		} else {
1839 			raw_spin_unlock_irq(&base->lock);
1840 			call_timer_fn(timer, fn, baseclk);
1841 			raw_spin_lock_irq(&base->lock);
1842 			base->running_timer = NULL;
1843 			timer_sync_wait_running(base);
1844 		}
1845 	}
1846 }
1847 
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1848 static int collect_expired_timers(struct timer_base *base,
1849 				  struct hlist_head *heads)
1850 {
1851 	unsigned long clk = base->clk = base->next_expiry;
1852 	struct hlist_head *vec;
1853 	int i, levels = 0;
1854 	unsigned int idx;
1855 
1856 	for (i = 0; i < LVL_DEPTH; i++) {
1857 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1858 
1859 		if (__test_and_clear_bit(idx, base->pending_map)) {
1860 			vec = base->vectors + idx;
1861 			hlist_move_list(vec, heads++);
1862 			levels++;
1863 		}
1864 		/* Is it time to look at the next level? */
1865 		if (clk & LVL_CLK_MASK)
1866 			break;
1867 		/* Shift clock for the next level granularity */
1868 		clk >>= LVL_CLK_SHIFT;
1869 	}
1870 	return levels;
1871 }
1872 
1873 /*
1874  * Find the next pending bucket of a level. Search from level start (@offset)
1875  * + @clk upwards and if nothing there, search from start of the level
1876  * (@offset) up to @offset + clk.
1877  */
next_pending_bucket(struct timer_base * base,unsigned offset,unsigned clk)1878 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1879 			       unsigned clk)
1880 {
1881 	unsigned pos, start = offset + clk;
1882 	unsigned end = offset + LVL_SIZE;
1883 
1884 	pos = find_next_bit(base->pending_map, end, start);
1885 	if (pos < end)
1886 		return pos - start;
1887 
1888 	pos = find_next_bit(base->pending_map, start, offset);
1889 	return pos < start ? pos + LVL_SIZE - start : -1;
1890 }
1891 
1892 /*
1893  * Search the first expiring timer in the various clock levels. Caller must
1894  * hold base->lock.
1895  *
1896  * Store next expiry time in base->next_expiry.
1897  */
timer_recalc_next_expiry(struct timer_base * base)1898 static void timer_recalc_next_expiry(struct timer_base *base)
1899 {
1900 	unsigned long clk, next, adj;
1901 	unsigned lvl, offset = 0;
1902 
1903 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1904 	clk = base->clk;
1905 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1906 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1907 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1908 
1909 		if (pos >= 0) {
1910 			unsigned long tmp = clk + (unsigned long) pos;
1911 
1912 			tmp <<= LVL_SHIFT(lvl);
1913 			if (time_before(tmp, next))
1914 				next = tmp;
1915 
1916 			/*
1917 			 * If the next expiration happens before we reach
1918 			 * the next level, no need to check further.
1919 			 */
1920 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1921 				break;
1922 		}
1923 		/*
1924 		 * Clock for the next level. If the current level clock lower
1925 		 * bits are zero, we look at the next level as is. If not we
1926 		 * need to advance it by one because that's going to be the
1927 		 * next expiring bucket in that level. base->clk is the next
1928 		 * expiring jiffy. So in case of:
1929 		 *
1930 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1931 		 *  0    0    0    0    0    0
1932 		 *
1933 		 * we have to look at all levels @index 0. With
1934 		 *
1935 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1936 		 *  0    0    0    0    0    2
1937 		 *
1938 		 * LVL0 has the next expiring bucket @index 2. The upper
1939 		 * levels have the next expiring bucket @index 1.
1940 		 *
1941 		 * In case that the propagation wraps the next level the same
1942 		 * rules apply:
1943 		 *
1944 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1945 		 *  0    0    0    0    F    2
1946 		 *
1947 		 * So after looking at LVL0 we get:
1948 		 *
1949 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1950 		 *  0    0    0    1    0
1951 		 *
1952 		 * So no propagation from LVL1 to LVL2 because that happened
1953 		 * with the add already, but then we need to propagate further
1954 		 * from LVL2 to LVL3.
1955 		 *
1956 		 * So the simple check whether the lower bits of the current
1957 		 * level are 0 or not is sufficient for all cases.
1958 		 */
1959 		adj = lvl_clk ? 1 : 0;
1960 		clk >>= LVL_CLK_SHIFT;
1961 		clk += adj;
1962 	}
1963 
1964 	WRITE_ONCE(base->next_expiry, next);
1965 	base->next_expiry_recalc = false;
1966 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1967 }
1968 
1969 #ifdef CONFIG_NO_HZ_COMMON
1970 /*
1971  * Check, if the next hrtimer event is before the next timer wheel
1972  * event:
1973  */
cmp_next_hrtimer_event(u64 basem,u64 expires)1974 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1975 {
1976 	u64 nextevt = hrtimer_get_next_event();
1977 
1978 	/*
1979 	 * If high resolution timers are enabled
1980 	 * hrtimer_get_next_event() returns KTIME_MAX.
1981 	 */
1982 	if (expires <= nextevt)
1983 		return expires;
1984 
1985 	/*
1986 	 * If the next timer is already expired, return the tick base
1987 	 * time so the tick is fired immediately.
1988 	 */
1989 	if (nextevt <= basem)
1990 		return basem;
1991 
1992 	/*
1993 	 * Round up to the next jiffy. High resolution timers are
1994 	 * off, so the hrtimers are expired in the tick and we need to
1995 	 * make sure that this tick really expires the timer to avoid
1996 	 * a ping pong of the nohz stop code.
1997 	 *
1998 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1999 	 */
2000 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2001 }
2002 
next_timer_interrupt(struct timer_base * base,unsigned long basej)2003 static unsigned long next_timer_interrupt(struct timer_base *base,
2004 					  unsigned long basej)
2005 {
2006 	if (base->next_expiry_recalc)
2007 		timer_recalc_next_expiry(base);
2008 
2009 	/*
2010 	 * Move next_expiry for the empty base into the future to prevent an
2011 	 * unnecessary raise of the timer softirq when the next_expiry value
2012 	 * will be reached even if there is no timer pending.
2013 	 *
2014 	 * This update is also required to make timer_base::next_expiry values
2015 	 * easy comparable to find out which base holds the first pending timer.
2016 	 */
2017 	if (!base->timers_pending)
2018 		WRITE_ONCE(base->next_expiry, basej + NEXT_TIMER_MAX_DELTA);
2019 
2020 	return base->next_expiry;
2021 }
2022 
fetch_next_timer_interrupt(unsigned long basej,u64 basem,struct timer_base * base_local,struct timer_base * base_global,struct timer_events * tevt)2023 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2024 						struct timer_base *base_local,
2025 						struct timer_base *base_global,
2026 						struct timer_events *tevt)
2027 {
2028 	unsigned long nextevt, nextevt_local, nextevt_global;
2029 	bool local_first;
2030 
2031 	nextevt_local = next_timer_interrupt(base_local, basej);
2032 	nextevt_global = next_timer_interrupt(base_global, basej);
2033 
2034 	local_first = time_before_eq(nextevt_local, nextevt_global);
2035 
2036 	nextevt = local_first ? nextevt_local : nextevt_global;
2037 
2038 	/*
2039 	 * If the @nextevt is at max. one tick away, use @nextevt and store
2040 	 * it in the local expiry value. The next global event is irrelevant in
2041 	 * this case and can be left as KTIME_MAX.
2042 	 */
2043 	if (time_before_eq(nextevt, basej + 1)) {
2044 		/* If we missed a tick already, force 0 delta */
2045 		if (time_before(nextevt, basej))
2046 			nextevt = basej;
2047 		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2048 
2049 		/*
2050 		 * This is required for the remote check only but it doesn't
2051 		 * hurt, when it is done for both call sites:
2052 		 *
2053 		 * * The remote callers will only take care of the global timers
2054 		 *   as local timers will be handled by CPU itself. When not
2055 		 *   updating tevt->global with the already missed first global
2056 		 *   timer, it is possible that it will be missed completely.
2057 		 *
2058 		 * * The local callers will ignore the tevt->global anyway, when
2059 		 *   nextevt is max. one tick away.
2060 		 */
2061 		if (!local_first)
2062 			tevt->global = tevt->local;
2063 		return nextevt;
2064 	}
2065 
2066 	/*
2067 	 * Update tevt.* values:
2068 	 *
2069 	 * If the local queue expires first, then the global event can be
2070 	 * ignored. If the global queue is empty, nothing to do either.
2071 	 */
2072 	if (!local_first && base_global->timers_pending)
2073 		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2074 
2075 	if (base_local->timers_pending)
2076 		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2077 
2078 	return nextevt;
2079 }
2080 
2081 # ifdef CONFIG_SMP
2082 /**
2083  * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2084  * @basej:	base time jiffies
2085  * @basem:	base time clock monotonic
2086  * @tevt:	Pointer to the storage for the expiry values
2087  * @cpu:	Remote CPU
2088  *
2089  * Stores the next pending local and global timer expiry values in the
2090  * struct pointed to by @tevt. If a queue is empty the corresponding
2091  * field is set to KTIME_MAX. If local event expires before global
2092  * event, global event is set to KTIME_MAX as well.
2093  *
2094  * Caller needs to make sure timer base locks are held (use
2095  * timer_lock_remote_bases() for this purpose).
2096  */
fetch_next_timer_interrupt_remote(unsigned long basej,u64 basem,struct timer_events * tevt,unsigned int cpu)2097 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2098 				       struct timer_events *tevt,
2099 				       unsigned int cpu)
2100 {
2101 	struct timer_base *base_local, *base_global;
2102 
2103 	/* Preset local / global events */
2104 	tevt->local = tevt->global = KTIME_MAX;
2105 
2106 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2107 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2108 
2109 	lockdep_assert_held(&base_local->lock);
2110 	lockdep_assert_held(&base_global->lock);
2111 
2112 	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2113 }
2114 
2115 /**
2116  * timer_unlock_remote_bases - unlock timer bases of cpu
2117  * @cpu:	Remote CPU
2118  *
2119  * Unlocks the remote timer bases.
2120  */
timer_unlock_remote_bases(unsigned int cpu)2121 void timer_unlock_remote_bases(unsigned int cpu)
2122 	__releases(timer_bases[BASE_LOCAL]->lock)
2123 	__releases(timer_bases[BASE_GLOBAL]->lock)
2124 {
2125 	struct timer_base *base_local, *base_global;
2126 
2127 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2128 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2129 
2130 	raw_spin_unlock(&base_global->lock);
2131 	raw_spin_unlock(&base_local->lock);
2132 }
2133 
2134 /**
2135  * timer_lock_remote_bases - lock timer bases of cpu
2136  * @cpu:	Remote CPU
2137  *
2138  * Locks the remote timer bases.
2139  */
timer_lock_remote_bases(unsigned int cpu)2140 void timer_lock_remote_bases(unsigned int cpu)
2141 	__acquires(timer_bases[BASE_LOCAL]->lock)
2142 	__acquires(timer_bases[BASE_GLOBAL]->lock)
2143 {
2144 	struct timer_base *base_local, *base_global;
2145 
2146 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2147 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2148 
2149 	lockdep_assert_irqs_disabled();
2150 
2151 	raw_spin_lock(&base_local->lock);
2152 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2153 }
2154 
2155 /**
2156  * timer_base_is_idle() - Return whether timer base is set idle
2157  *
2158  * Returns value of local timer base is_idle value.
2159  */
timer_base_is_idle(void)2160 bool timer_base_is_idle(void)
2161 {
2162 	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2163 }
2164 
2165 static void __run_timer_base(struct timer_base *base);
2166 
2167 /**
2168  * timer_expire_remote() - expire global timers of cpu
2169  * @cpu:	Remote CPU
2170  *
2171  * Expire timers of global base of remote CPU.
2172  */
timer_expire_remote(unsigned int cpu)2173 void timer_expire_remote(unsigned int cpu)
2174 {
2175 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2176 
2177 	__run_timer_base(base);
2178 }
2179 
timer_use_tmigr(unsigned long basej,u64 basem,unsigned long * nextevt,bool * tick_stop_path,bool timer_base_idle,struct timer_events * tevt)2180 static void timer_use_tmigr(unsigned long basej, u64 basem,
2181 			    unsigned long *nextevt, bool *tick_stop_path,
2182 			    bool timer_base_idle, struct timer_events *tevt)
2183 {
2184 	u64 next_tmigr;
2185 
2186 	if (timer_base_idle)
2187 		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2188 	else if (tick_stop_path)
2189 		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2190 	else
2191 		next_tmigr = tmigr_quick_check(tevt->global);
2192 
2193 	/*
2194 	 * If the CPU is the last going idle in timer migration hierarchy, make
2195 	 * sure the CPU will wake up in time to handle remote timers.
2196 	 * next_tmigr == KTIME_MAX if other CPUs are still active.
2197 	 */
2198 	if (next_tmigr < tevt->local) {
2199 		u64 tmp;
2200 
2201 		/* If we missed a tick already, force 0 delta */
2202 		if (next_tmigr < basem)
2203 			next_tmigr = basem;
2204 
2205 		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2206 
2207 		*nextevt = basej + (unsigned long)tmp;
2208 		tevt->local = next_tmigr;
2209 	}
2210 }
2211 # else
timer_use_tmigr(unsigned long basej,u64 basem,unsigned long * nextevt,bool * tick_stop_path,bool timer_base_idle,struct timer_events * tevt)2212 static void timer_use_tmigr(unsigned long basej, u64 basem,
2213 			    unsigned long *nextevt, bool *tick_stop_path,
2214 			    bool timer_base_idle, struct timer_events *tevt)
2215 {
2216 	/*
2217 	 * Make sure first event is written into tevt->local to not miss a
2218 	 * timer on !SMP systems.
2219 	 */
2220 	tevt->local = min_t(u64, tevt->local, tevt->global);
2221 }
2222 # endif /* CONFIG_SMP */
2223 
__get_next_timer_interrupt(unsigned long basej,u64 basem,bool * idle)2224 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2225 					     bool *idle)
2226 {
2227 	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2228 	struct timer_base *base_local, *base_global;
2229 	unsigned long nextevt;
2230 	bool idle_is_possible;
2231 
2232 	/*
2233 	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2234 	 * to try to stop it.
2235 	 */
2236 	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2237 		if (idle)
2238 			*idle = true;
2239 		return tevt.local;
2240 	}
2241 
2242 	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2243 	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2244 
2245 	raw_spin_lock(&base_local->lock);
2246 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2247 
2248 	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2249 					     base_global, &tevt);
2250 
2251 	/*
2252 	 * If the next event is only one jiffy ahead there is no need to call
2253 	 * timer migration hierarchy related functions. The value for the next
2254 	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2255 	 * true, when the timer base is idle.
2256 	 *
2257 	 * The proper timer migration hierarchy function depends on the callsite
2258 	 * and whether timer base is idle or not. @nextevt will be updated when
2259 	 * this CPU needs to handle the first timer migration hierarchy
2260 	 * event. See timer_use_tmigr() for detailed information.
2261 	 */
2262 	idle_is_possible = time_after(nextevt, basej + 1);
2263 	if (idle_is_possible)
2264 		timer_use_tmigr(basej, basem, &nextevt, idle,
2265 				base_local->is_idle, &tevt);
2266 
2267 	/*
2268 	 * We have a fresh next event. Check whether we can forward the
2269 	 * base.
2270 	 */
2271 	__forward_timer_base(base_local, basej);
2272 	__forward_timer_base(base_global, basej);
2273 
2274 	/*
2275 	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2276 	 */
2277 	if (idle) {
2278 		/*
2279 		 * Bases are idle if the next event is more than a tick
2280 		 * away. Caution: @nextevt could have changed by enqueueing a
2281 		 * global timer into timer migration hierarchy. Therefore a new
2282 		 * check is required here.
2283 		 *
2284 		 * If the base is marked idle then any timer add operation must
2285 		 * forward the base clk itself to keep granularity small. This
2286 		 * idle logic is only maintained for the BASE_LOCAL and
2287 		 * BASE_GLOBAL base, deferrable timers may still see large
2288 		 * granularity skew (by design).
2289 		 */
2290 		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2291 			base_local->is_idle = true;
2292 			/*
2293 			 * Global timers queued locally while running in a task
2294 			 * in nohz_full mode need a self-IPI to kick reprogramming
2295 			 * in IRQ tail.
2296 			 */
2297 			if (tick_nohz_full_cpu(base_local->cpu))
2298 				base_global->is_idle = true;
2299 			trace_timer_base_idle(true, base_local->cpu);
2300 		}
2301 		*idle = base_local->is_idle;
2302 
2303 		/*
2304 		 * When timer base is not set idle, undo the effect of
2305 		 * tmigr_cpu_deactivate() to prevent inconsistent states - active
2306 		 * timer base but inactive timer migration hierarchy.
2307 		 *
2308 		 * When timer base was already marked idle, nothing will be
2309 		 * changed here.
2310 		 */
2311 		if (!base_local->is_idle && idle_is_possible)
2312 			tmigr_cpu_activate();
2313 	}
2314 
2315 	raw_spin_unlock(&base_global->lock);
2316 	raw_spin_unlock(&base_local->lock);
2317 
2318 	return cmp_next_hrtimer_event(basem, tevt.local);
2319 }
2320 
2321 /**
2322  * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2323  * @basej:	base time jiffies
2324  * @basem:	base time clock monotonic
2325  *
2326  * Returns the tick aligned clock monotonic time of the next pending timer or
2327  * KTIME_MAX if no timer is pending. If timer of global base was queued into
2328  * timer migration hierarchy, first global timer is not taken into account. If
2329  * it was the last CPU of timer migration hierarchy going idle, first global
2330  * event is taken into account.
2331  */
get_next_timer_interrupt(unsigned long basej,u64 basem)2332 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2333 {
2334 	return __get_next_timer_interrupt(basej, basem, NULL);
2335 }
2336 
2337 /**
2338  * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2339  * @basej:	base time jiffies
2340  * @basem:	base time clock monotonic
2341  * @idle:	pointer to store the value of timer_base->is_idle on return;
2342  *		*idle contains the information whether tick was already stopped
2343  *
2344  * Returns the tick aligned clock monotonic time of the next pending timer or
2345  * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2346  * returned as well.
2347  */
timer_base_try_to_set_idle(unsigned long basej,u64 basem,bool * idle)2348 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2349 {
2350 	if (*idle)
2351 		return KTIME_MAX;
2352 
2353 	return __get_next_timer_interrupt(basej, basem, idle);
2354 }
2355 
2356 /**
2357  * timer_clear_idle - Clear the idle state of the timer base
2358  *
2359  * Called with interrupts disabled
2360  */
timer_clear_idle(void)2361 void timer_clear_idle(void)
2362 {
2363 	/*
2364 	 * We do this unlocked. The worst outcome is a remote pinned timer
2365 	 * enqueue sending a pointless IPI, but taking the lock would just
2366 	 * make the window for sending the IPI a few instructions smaller
2367 	 * for the cost of taking the lock in the exit from idle
2368 	 * path. Required for BASE_LOCAL only.
2369 	 */
2370 	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2371 	if (tick_nohz_full_cpu(smp_processor_id()))
2372 		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2373 	trace_timer_base_idle(false, smp_processor_id());
2374 
2375 	/* Activate without holding the timer_base->lock */
2376 	tmigr_cpu_activate();
2377 }
2378 #endif
2379 
2380 /**
2381  * __run_timers - run all expired timers (if any) on this CPU.
2382  * @base: the timer vector to be processed.
2383  */
__run_timers(struct timer_base * base)2384 static inline void __run_timers(struct timer_base *base)
2385 {
2386 	struct hlist_head heads[LVL_DEPTH];
2387 	int levels;
2388 
2389 	lockdep_assert_held(&base->lock);
2390 
2391 	if (base->running_timer)
2392 		return;
2393 
2394 	while (time_after_eq(jiffies, base->clk) &&
2395 	       time_after_eq(jiffies, base->next_expiry)) {
2396 		levels = collect_expired_timers(base, heads);
2397 		/*
2398 		 * The two possible reasons for not finding any expired
2399 		 * timer at this clk are that all matching timers have been
2400 		 * dequeued or no timer has been queued since
2401 		 * base::next_expiry was set to base::clk +
2402 		 * NEXT_TIMER_MAX_DELTA.
2403 		 */
2404 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2405 			     && base->timers_pending);
2406 		/*
2407 		 * While executing timers, base->clk is set 1 offset ahead of
2408 		 * jiffies to avoid endless requeuing to current jiffies.
2409 		 */
2410 		base->clk++;
2411 		timer_recalc_next_expiry(base);
2412 
2413 		while (levels--)
2414 			expire_timers(base, heads + levels);
2415 	}
2416 }
2417 
__run_timer_base(struct timer_base * base)2418 static void __run_timer_base(struct timer_base *base)
2419 {
2420 	/* Can race against a remote CPU updating next_expiry under the lock */
2421 	if (time_before(jiffies, READ_ONCE(base->next_expiry)))
2422 		return;
2423 
2424 	timer_base_lock_expiry(base);
2425 	raw_spin_lock_irq(&base->lock);
2426 	__run_timers(base);
2427 	raw_spin_unlock_irq(&base->lock);
2428 	timer_base_unlock_expiry(base);
2429 }
2430 
run_timer_base(int index)2431 static void run_timer_base(int index)
2432 {
2433 	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2434 
2435 	__run_timer_base(base);
2436 }
2437 
2438 /*
2439  * This function runs timers and the timer-tq in bottom half context.
2440  */
run_timer_softirq(void)2441 static __latent_entropy void run_timer_softirq(void)
2442 {
2443 	run_timer_base(BASE_LOCAL);
2444 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2445 		run_timer_base(BASE_GLOBAL);
2446 		run_timer_base(BASE_DEF);
2447 
2448 		if (is_timers_nohz_active())
2449 			tmigr_handle_remote();
2450 	}
2451 }
2452 
2453 /*
2454  * Called by the local, per-CPU timer interrupt on SMP.
2455  */
run_local_timers(void)2456 static void run_local_timers(void)
2457 {
2458 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2459 
2460 	hrtimer_run_queues();
2461 
2462 	for (int i = 0; i < NR_BASES; i++, base++) {
2463 		/*
2464 		 * Raise the softirq only if required.
2465 		 *
2466 		 * timer_base::next_expiry can be written by a remote CPU while
2467 		 * holding the lock. If this write happens at the same time than
2468 		 * the lockless local read, sanity checker could complain about
2469 		 * data corruption.
2470 		 *
2471 		 * There are two possible situations where
2472 		 * timer_base::next_expiry is written by a remote CPU:
2473 		 *
2474 		 * 1. Remote CPU expires global timers of this CPU and updates
2475 		 * timer_base::next_expiry of BASE_GLOBAL afterwards in
2476 		 * next_timer_interrupt() or timer_recalc_next_expiry(). The
2477 		 * worst outcome is a superfluous raise of the timer softirq
2478 		 * when the not yet updated value is read.
2479 		 *
2480 		 * 2. A new first pinned timer is enqueued by a remote CPU
2481 		 * and therefore timer_base::next_expiry of BASE_LOCAL is
2482 		 * updated. When this update is missed, this isn't a
2483 		 * problem, as an IPI is executed nevertheless when the CPU
2484 		 * was idle before. When the CPU wasn't idle but the update
2485 		 * is missed, then the timer would expire one jiffy late -
2486 		 * bad luck.
2487 		 *
2488 		 * Those unlikely corner cases where the worst outcome is only a
2489 		 * one jiffy delay or a superfluous raise of the softirq are
2490 		 * not that expensive as doing the check always while holding
2491 		 * the lock.
2492 		 *
2493 		 * Possible remote writers are using WRITE_ONCE(). Local reader
2494 		 * uses therefore READ_ONCE().
2495 		 */
2496 		if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
2497 		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2498 			raise_timer_softirq(TIMER_SOFTIRQ);
2499 			return;
2500 		}
2501 	}
2502 }
2503 
2504 /*
2505  * Called from the timer interrupt handler to charge one tick to the current
2506  * process.  user_tick is 1 if the tick is user time, 0 for system.
2507  */
update_process_times(int user_tick)2508 void update_process_times(int user_tick)
2509 {
2510 	struct task_struct *p = current;
2511 
2512 	/* Note: this timer irq context must be accounted for as well. */
2513 	account_process_tick(p, user_tick);
2514 	run_local_timers();
2515 	rcu_sched_clock_irq(user_tick);
2516 #ifdef CONFIG_IRQ_WORK
2517 	if (in_irq())
2518 		irq_work_tick();
2519 #endif
2520 	sched_tick();
2521 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2522 		run_posix_cpu_timers();
2523 }
2524 
2525 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct timer_base * new_base,struct hlist_head * head)2526 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2527 {
2528 	struct timer_list *timer;
2529 	int cpu = new_base->cpu;
2530 
2531 	while (!hlist_empty(head)) {
2532 		timer = hlist_entry(head->first, struct timer_list, entry);
2533 		detach_timer(timer, false);
2534 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2535 		internal_add_timer(new_base, timer);
2536 	}
2537 }
2538 
timers_prepare_cpu(unsigned int cpu)2539 int timers_prepare_cpu(unsigned int cpu)
2540 {
2541 	struct timer_base *base;
2542 	int b;
2543 
2544 	for (b = 0; b < NR_BASES; b++) {
2545 		base = per_cpu_ptr(&timer_bases[b], cpu);
2546 		base->clk = jiffies;
2547 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2548 		base->next_expiry_recalc = false;
2549 		base->timers_pending = false;
2550 		base->is_idle = false;
2551 	}
2552 	return 0;
2553 }
2554 
timers_dead_cpu(unsigned int cpu)2555 int timers_dead_cpu(unsigned int cpu)
2556 {
2557 	struct timer_base *old_base;
2558 	struct timer_base *new_base;
2559 	int b, i;
2560 
2561 	for (b = 0; b < NR_BASES; b++) {
2562 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2563 		new_base = get_cpu_ptr(&timer_bases[b]);
2564 		/*
2565 		 * The caller is globally serialized and nobody else
2566 		 * takes two locks at once, deadlock is not possible.
2567 		 */
2568 		raw_spin_lock_irq(&new_base->lock);
2569 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2570 
2571 		/*
2572 		 * The current CPUs base clock might be stale. Update it
2573 		 * before moving the timers over.
2574 		 */
2575 		forward_timer_base(new_base);
2576 
2577 		WARN_ON_ONCE(old_base->running_timer);
2578 		old_base->running_timer = NULL;
2579 
2580 		for (i = 0; i < WHEEL_SIZE; i++)
2581 			migrate_timer_list(new_base, old_base->vectors + i);
2582 
2583 		raw_spin_unlock(&old_base->lock);
2584 		raw_spin_unlock_irq(&new_base->lock);
2585 		put_cpu_ptr(&timer_bases);
2586 	}
2587 	return 0;
2588 }
2589 
2590 #endif /* CONFIG_HOTPLUG_CPU */
2591 
init_timer_cpu(int cpu)2592 static void __init init_timer_cpu(int cpu)
2593 {
2594 	struct timer_base *base;
2595 	int i;
2596 
2597 	for (i = 0; i < NR_BASES; i++) {
2598 		base = per_cpu_ptr(&timer_bases[i], cpu);
2599 		base->cpu = cpu;
2600 		raw_spin_lock_init(&base->lock);
2601 		base->clk = jiffies;
2602 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2603 		timer_base_init_expiry_lock(base);
2604 	}
2605 }
2606 
init_timer_cpus(void)2607 static void __init init_timer_cpus(void)
2608 {
2609 	int cpu;
2610 
2611 	for_each_possible_cpu(cpu)
2612 		init_timer_cpu(cpu);
2613 }
2614 
init_timers(void)2615 void __init init_timers(void)
2616 {
2617 	init_timer_cpus();
2618 	posix_cputimers_init_work();
2619 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2620 }
2621