1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41 #endif
42
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44
45 #define FEEDVOLUME_CALC8(s, v) (SND_VOL_CALC_SAMPLE((intpcm_t) \
46 (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN) \
52 static void \
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix, \
54 uint32_t channels, uint8_t *dst, uint32_t count) \
55 { \
56 intpcm##BIT##_t v; \
57 intpcm_t x; \
58 uint32_t i; \
59 \
60 dst += count * PCM_##BIT##_BPS * channels; \
61 do { \
62 i = channels; \
63 do { \
64 dst -= PCM_##BIT##_BPS; \
65 i--; \
66 x = pcm_sample_read_calc(dst, \
67 AFMT_##SIGN##BIT##_##ENDIAN); \
68 v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]); \
69 x = pcm_clamp_calc(v, \
70 AFMT_##SIGN##BIT##_##ENDIAN); \
71 pcm_sample_write(dst, x, \
72 AFMT_##SIGN##BIT##_##ENDIAN); \
73 } while (i != 0); \
74 } while (--count != 0); \
75 }
76
77 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
78 FEEDVOLUME_DECLARE(S, 16, LE)
79 FEEDVOLUME_DECLARE(S, 32, LE)
80 #endif
81 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
82 FEEDVOLUME_DECLARE(S, 16, BE)
83 FEEDVOLUME_DECLARE(S, 32, BE)
84 #endif
85 #ifdef SND_FEEDER_MULTIFORMAT
86 FEEDVOLUME_DECLARE(S, 8, NE)
87 FEEDVOLUME_DECLARE(S, 24, LE)
88 FEEDVOLUME_DECLARE(S, 24, BE)
89 FEEDVOLUME_DECLARE(U, 8, NE)
90 FEEDVOLUME_DECLARE(U, 16, LE)
91 FEEDVOLUME_DECLARE(U, 24, LE)
92 FEEDVOLUME_DECLARE(U, 32, LE)
93 FEEDVOLUME_DECLARE(U, 16, BE)
94 FEEDVOLUME_DECLARE(U, 24, BE)
95 FEEDVOLUME_DECLARE(U, 32, BE)
96 FEEDVOLUME_DECLARE(F, 32, LE)
97 FEEDVOLUME_DECLARE(F, 32, BE)
98 #endif
99
100 struct feed_volume_info {
101 uint32_t bps, channels;
102 feed_volume_t apply;
103 int volume_class;
104 int state;
105 int matrix[SND_CHN_MAX];
106 };
107
108 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN) \
109 { \
110 AFMT_##SIGN##BIT##_##ENDIAN, \
111 feed_volume_##SIGN##BIT##ENDIAN \
112 }
113
114 static const struct {
115 uint32_t format;
116 feed_volume_t apply;
117 } feed_volume_info_tab[] = {
118 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
119 FEEDVOLUME_ENTRY(S, 16, LE),
120 FEEDVOLUME_ENTRY(S, 32, LE),
121 #endif
122 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
123 FEEDVOLUME_ENTRY(S, 16, BE),
124 FEEDVOLUME_ENTRY(S, 32, BE),
125 #endif
126 #ifdef SND_FEEDER_MULTIFORMAT
127 FEEDVOLUME_ENTRY(S, 8, NE),
128 FEEDVOLUME_ENTRY(S, 24, LE),
129 FEEDVOLUME_ENTRY(S, 24, BE),
130 FEEDVOLUME_ENTRY(U, 8, NE),
131 FEEDVOLUME_ENTRY(U, 16, LE),
132 FEEDVOLUME_ENTRY(U, 24, LE),
133 FEEDVOLUME_ENTRY(U, 32, LE),
134 FEEDVOLUME_ENTRY(U, 16, BE),
135 FEEDVOLUME_ENTRY(U, 24, BE),
136 FEEDVOLUME_ENTRY(U, 32, BE),
137 FEEDVOLUME_ENTRY(F, 32, LE),
138 FEEDVOLUME_ENTRY(F, 32, BE),
139 #endif
140 };
141
142 #define FEEDVOLUME_TAB_SIZE ((int32_t) \
143 (sizeof(feed_volume_info_tab) / \
144 sizeof(feed_volume_info_tab[0])))
145
146 static int
feed_volume_init(struct pcm_feeder * f)147 feed_volume_init(struct pcm_feeder *f)
148 {
149 struct feed_volume_info *info;
150 struct pcmchan_matrix *m;
151 uint32_t i;
152 int ret;
153
154 if (f->desc->in != f->desc->out ||
155 AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
156 return (EINVAL);
157
158 for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
159 if (AFMT_ENCODING(f->desc->in) ==
160 feed_volume_info_tab[i].format) {
161 info = malloc(sizeof(*info), M_DEVBUF,
162 M_NOWAIT | M_ZERO);
163 if (info == NULL)
164 return (ENOMEM);
165
166 info->bps = AFMT_BPS(f->desc->in);
167 info->channels = AFMT_CHANNEL(f->desc->in);
168 info->apply = feed_volume_info_tab[i].apply;
169 info->volume_class = SND_VOL_C_PCM;
170 info->state = FEEDVOLUME_ENABLE;
171
172 f->data = info;
173 m = feeder_matrix_default_channel_map(info->channels);
174 if (m == NULL) {
175 free(info, M_DEVBUF);
176 return (EINVAL);
177 }
178
179 ret = feeder_volume_apply_matrix(f, m);
180 if (ret != 0)
181 free(info, M_DEVBUF);
182
183 return (ret);
184 }
185 }
186
187 return (EINVAL);
188 }
189
190 static int
feed_volume_free(struct pcm_feeder * f)191 feed_volume_free(struct pcm_feeder *f)
192 {
193 struct feed_volume_info *info;
194
195 info = f->data;
196 if (info != NULL)
197 free(info, M_DEVBUF);
198
199 f->data = NULL;
200
201 return (0);
202 }
203
204 static int
feed_volume_set(struct pcm_feeder * f,int what,int value)205 feed_volume_set(struct pcm_feeder *f, int what, int value)
206 {
207 struct feed_volume_info *info;
208 struct pcmchan_matrix *m;
209 int ret;
210
211 info = f->data;
212 ret = 0;
213
214 switch (what) {
215 case FEEDVOLUME_CLASS:
216 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
217 return (EINVAL);
218 info->volume_class = value;
219 break;
220 case FEEDVOLUME_CHANNELS:
221 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
222 return (EINVAL);
223 m = feeder_matrix_default_channel_map(value);
224 if (m == NULL)
225 return (EINVAL);
226 ret = feeder_volume_apply_matrix(f, m);
227 break;
228 case FEEDVOLUME_STATE:
229 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
230 return (EINVAL);
231 info->state = value;
232 break;
233 default:
234 return (EINVAL);
235 break;
236 }
237
238 return (ret);
239 }
240
241 static int
feed_volume_feed(struct pcm_feeder * f,struct pcm_channel * c,uint8_t * b,uint32_t count,void * source)242 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
243 uint32_t count, void *source)
244 {
245 int temp_vol[SND_CHN_T_VOL_MAX];
246 struct feed_volume_info *info;
247 uint32_t j, align;
248 int i, *matrix;
249 uint8_t *dst;
250 const int16_t *vol;
251 const int8_t *muted;
252
253 /*
254 * Fetch filter data operation.
255 */
256 info = f->data;
257
258 if (info->state == FEEDVOLUME_BYPASS)
259 return (FEEDER_FEED(f->source, c, b, count, source));
260
261 vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
262 muted = c->muted[SND_VOL_C_VAL(info->volume_class)];
263 matrix = info->matrix;
264
265 /*
266 * First, let see if we really need to apply gain at all.
267 */
268 j = 0;
269 i = info->channels;
270 while (i--) {
271 if (vol[matrix[i]] != SND_VOL_FLAT ||
272 muted[matrix[i]] != 0) {
273 j = 1;
274 break;
275 }
276 }
277
278 /* Nope, just bypass entirely. */
279 if (j == 0)
280 return (FEEDER_FEED(f->source, c, b, count, source));
281
282 /* Check if any controls are muted. */
283 for (j = 0; j != SND_CHN_T_VOL_MAX; j++)
284 temp_vol[j] = muted[j] ? 0 : vol[j];
285
286 dst = b;
287 align = info->bps * info->channels;
288
289 do {
290 if (count < align)
291 break;
292
293 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
294 align);
295 if (j == 0)
296 break;
297
298 info->apply(temp_vol, matrix, info->channels, dst, j);
299
300 j *= align;
301 dst += j;
302 count -= j;
303
304 } while (count != 0);
305
306 return (dst - b);
307 }
308
309 static struct pcm_feederdesc feeder_volume_desc[] = {
310 { FEEDER_VOLUME, 0, 0, 0, 0 },
311 { 0, 0, 0, 0, 0 }
312 };
313
314 static kobj_method_t feeder_volume_methods[] = {
315 KOBJMETHOD(feeder_init, feed_volume_init),
316 KOBJMETHOD(feeder_free, feed_volume_free),
317 KOBJMETHOD(feeder_set, feed_volume_set),
318 KOBJMETHOD(feeder_feed, feed_volume_feed),
319 KOBJMETHOD_END
320 };
321
322 FEEDER_DECLARE(feeder_volume, NULL);
323
324 /* Extern */
325
326 /*
327 * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
328 * to feeder_volume matrix structure. There are
329 * possibilites that feeder_volume be inserted
330 * before or after feeder_matrix, which in this
331 * case feeder_volume must be in a good terms
332 * with _current_ matrix.
333 */
334 int
feeder_volume_apply_matrix(struct pcm_feeder * f,struct pcmchan_matrix * m)335 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
336 {
337 struct feed_volume_info *info;
338 uint32_t i;
339
340 if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
341 f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
342 m->channels > SND_CHN_MAX)
343 return (EINVAL);
344
345 info = f->data;
346
347 for (i = 0; i < nitems(info->matrix); i++) {
348 if (i < m->channels)
349 info->matrix[i] = m->map[i].type;
350 else
351 info->matrix[i] = SND_CHN_T_FL;
352 }
353
354 info->channels = m->channels;
355
356 return (0);
357 }
358