1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41 #endif
42
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44
45 #define FEEDVOLUME_CALC8(s, v) (SND_VOL_CALC_SAMPLE((intpcm_t) \
46 (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN) \
52 static void \
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix, \
54 uint32_t channels, uint8_t *dst, uint32_t count) \
55 { \
56 intpcm##BIT##_t v; \
57 intpcm_t x; \
58 uint32_t i; \
59 \
60 dst += count * PCM_##BIT##_BPS * channels; \
61 do { \
62 i = channels; \
63 do { \
64 dst -= PCM_##BIT##_BPS; \
65 i--; \
66 x = pcm_sample_read_calc(dst, \
67 AFMT_##SIGN##BIT##_##ENDIAN); \
68 v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]); \
69 x = pcm_clamp_calc(v, \
70 AFMT_##SIGN##BIT##_##ENDIAN); \
71 pcm_sample_write(dst, x, \
72 AFMT_##SIGN##BIT##_##ENDIAN); \
73 } while (i != 0); \
74 } while (--count != 0); \
75 }
76
77 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
78 FEEDVOLUME_DECLARE(S, 16, LE)
79 FEEDVOLUME_DECLARE(S, 32, LE)
80 #endif
81 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
82 FEEDVOLUME_DECLARE(S, 16, BE)
83 FEEDVOLUME_DECLARE(S, 32, BE)
84 #endif
85 #ifdef SND_FEEDER_MULTIFORMAT
86 FEEDVOLUME_DECLARE(S, 8, NE)
87 FEEDVOLUME_DECLARE(S, 24, LE)
88 FEEDVOLUME_DECLARE(S, 24, BE)
89 FEEDVOLUME_DECLARE(U, 8, NE)
90 FEEDVOLUME_DECLARE(U, 16, LE)
91 FEEDVOLUME_DECLARE(U, 24, LE)
92 FEEDVOLUME_DECLARE(U, 32, LE)
93 FEEDVOLUME_DECLARE(U, 16, BE)
94 FEEDVOLUME_DECLARE(U, 24, BE)
95 FEEDVOLUME_DECLARE(U, 32, BE)
96 FEEDVOLUME_DECLARE(F, 32, LE)
97 FEEDVOLUME_DECLARE(F, 32, BE)
98 #endif
99
100 struct feed_volume_info {
101 uint32_t bps, channels;
102 feed_volume_t apply;
103 int volume_class;
104 int state;
105 int matrix[SND_CHN_MAX];
106 };
107
108 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN) \
109 { \
110 AFMT_##SIGN##BIT##_##ENDIAN, \
111 feed_volume_##SIGN##BIT##ENDIAN \
112 }
113
114 static const struct {
115 uint32_t format;
116 feed_volume_t apply;
117 } feed_volume_info_tab[] = {
118 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
119 FEEDVOLUME_ENTRY(S, 16, LE),
120 FEEDVOLUME_ENTRY(S, 32, LE),
121 #endif
122 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
123 FEEDVOLUME_ENTRY(S, 16, BE),
124 FEEDVOLUME_ENTRY(S, 32, BE),
125 #endif
126 #ifdef SND_FEEDER_MULTIFORMAT
127 FEEDVOLUME_ENTRY(S, 8, NE),
128 FEEDVOLUME_ENTRY(S, 24, LE),
129 FEEDVOLUME_ENTRY(S, 24, BE),
130 FEEDVOLUME_ENTRY(U, 8, NE),
131 FEEDVOLUME_ENTRY(U, 16, LE),
132 FEEDVOLUME_ENTRY(U, 24, LE),
133 FEEDVOLUME_ENTRY(U, 32, LE),
134 FEEDVOLUME_ENTRY(U, 16, BE),
135 FEEDVOLUME_ENTRY(U, 24, BE),
136 FEEDVOLUME_ENTRY(U, 32, BE)
137 #endif
138 };
139
140 #define FEEDVOLUME_TAB_SIZE ((int32_t) \
141 (sizeof(feed_volume_info_tab) / \
142 sizeof(feed_volume_info_tab[0])))
143
144 static int
feed_volume_init(struct pcm_feeder * f)145 feed_volume_init(struct pcm_feeder *f)
146 {
147 struct feed_volume_info *info;
148 struct pcmchan_matrix *m;
149 uint32_t i;
150 int ret;
151
152 if (f->desc->in != f->desc->out ||
153 AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
154 return (EINVAL);
155
156 for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
157 if (AFMT_ENCODING(f->desc->in) ==
158 feed_volume_info_tab[i].format) {
159 info = malloc(sizeof(*info), M_DEVBUF,
160 M_NOWAIT | M_ZERO);
161 if (info == NULL)
162 return (ENOMEM);
163
164 info->bps = AFMT_BPS(f->desc->in);
165 info->channels = AFMT_CHANNEL(f->desc->in);
166 info->apply = feed_volume_info_tab[i].apply;
167 info->volume_class = SND_VOL_C_PCM;
168 info->state = FEEDVOLUME_ENABLE;
169
170 f->data = info;
171 m = feeder_matrix_default_channel_map(info->channels);
172 if (m == NULL) {
173 free(info, M_DEVBUF);
174 return (EINVAL);
175 }
176
177 ret = feeder_volume_apply_matrix(f, m);
178 if (ret != 0)
179 free(info, M_DEVBUF);
180
181 return (ret);
182 }
183 }
184
185 return (EINVAL);
186 }
187
188 static int
feed_volume_free(struct pcm_feeder * f)189 feed_volume_free(struct pcm_feeder *f)
190 {
191 struct feed_volume_info *info;
192
193 info = f->data;
194 if (info != NULL)
195 free(info, M_DEVBUF);
196
197 f->data = NULL;
198
199 return (0);
200 }
201
202 static int
feed_volume_set(struct pcm_feeder * f,int what,int value)203 feed_volume_set(struct pcm_feeder *f, int what, int value)
204 {
205 struct feed_volume_info *info;
206 struct pcmchan_matrix *m;
207 int ret;
208
209 info = f->data;
210 ret = 0;
211
212 switch (what) {
213 case FEEDVOLUME_CLASS:
214 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
215 return (EINVAL);
216 info->volume_class = value;
217 break;
218 case FEEDVOLUME_CHANNELS:
219 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
220 return (EINVAL);
221 m = feeder_matrix_default_channel_map(value);
222 if (m == NULL)
223 return (EINVAL);
224 ret = feeder_volume_apply_matrix(f, m);
225 break;
226 case FEEDVOLUME_STATE:
227 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
228 return (EINVAL);
229 info->state = value;
230 break;
231 default:
232 return (EINVAL);
233 break;
234 }
235
236 return (ret);
237 }
238
239 static int
feed_volume_feed(struct pcm_feeder * f,struct pcm_channel * c,uint8_t * b,uint32_t count,void * source)240 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
241 uint32_t count, void *source)
242 {
243 int temp_vol[SND_CHN_T_VOL_MAX];
244 struct feed_volume_info *info;
245 uint32_t j, align;
246 int i, *matrix;
247 uint8_t *dst;
248 const int16_t *vol;
249 const int8_t *muted;
250
251 /*
252 * Fetch filter data operation.
253 */
254 info = f->data;
255
256 if (info->state == FEEDVOLUME_BYPASS)
257 return (FEEDER_FEED(f->source, c, b, count, source));
258
259 vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
260 muted = c->muted[SND_VOL_C_VAL(info->volume_class)];
261 matrix = info->matrix;
262
263 /*
264 * First, let see if we really need to apply gain at all.
265 */
266 j = 0;
267 i = info->channels;
268 while (i--) {
269 if (vol[matrix[i]] != SND_VOL_FLAT ||
270 muted[matrix[i]] != 0) {
271 j = 1;
272 break;
273 }
274 }
275
276 /* Nope, just bypass entirely. */
277 if (j == 0)
278 return (FEEDER_FEED(f->source, c, b, count, source));
279
280 /* Check if any controls are muted. */
281 for (j = 0; j != SND_CHN_T_VOL_MAX; j++)
282 temp_vol[j] = muted[j] ? 0 : vol[j];
283
284 dst = b;
285 align = info->bps * info->channels;
286
287 do {
288 if (count < align)
289 break;
290
291 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
292 align);
293 if (j == 0)
294 break;
295
296 info->apply(temp_vol, matrix, info->channels, dst, j);
297
298 j *= align;
299 dst += j;
300 count -= j;
301
302 } while (count != 0);
303
304 return (dst - b);
305 }
306
307 static struct pcm_feederdesc feeder_volume_desc[] = {
308 { FEEDER_VOLUME, 0, 0, 0, 0 },
309 { 0, 0, 0, 0, 0 }
310 };
311
312 static kobj_method_t feeder_volume_methods[] = {
313 KOBJMETHOD(feeder_init, feed_volume_init),
314 KOBJMETHOD(feeder_free, feed_volume_free),
315 KOBJMETHOD(feeder_set, feed_volume_set),
316 KOBJMETHOD(feeder_feed, feed_volume_feed),
317 KOBJMETHOD_END
318 };
319
320 FEEDER_DECLARE(feeder_volume, NULL);
321
322 /* Extern */
323
324 /*
325 * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
326 * to feeder_volume matrix structure. There are
327 * possibilites that feeder_volume be inserted
328 * before or after feeder_matrix, which in this
329 * case feeder_volume must be in a good terms
330 * with _current_ matrix.
331 */
332 int
feeder_volume_apply_matrix(struct pcm_feeder * f,struct pcmchan_matrix * m)333 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
334 {
335 struct feed_volume_info *info;
336 uint32_t i;
337
338 if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
339 f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
340 m->channels > SND_CHN_MAX)
341 return (EINVAL);
342
343 info = f->data;
344
345 for (i = 0; i < nitems(info->matrix); i++) {
346 if (i < m->channels)
347 info->matrix[i] = m->map[i].type;
348 else
349 info->matrix[i] = SND_CHN_T_FL;
350 }
351
352 info->channels = m->channels;
353
354 return (0);
355 }
356