1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #define EXTERR_CATEGORY EXTERR_CAT_FILEDESC
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/conf.h>
45 #include <sys/exterrvar.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/selinfo.h>
59 #include <sys/poll.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/protosw.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sbuf.h>
66 #include <sys/signalvar.h>
67 #include <sys/kdb.h>
68 #include <sys/smr.h>
69 #include <sys/stat.h>
70 #include <sys/sx.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/unistd.h>
75 #include <sys/user.h>
76 #include <sys/vnode.h>
77 #include <sys/ktrace.h>
78
79 #include <net/vnet.h>
80
81 #include <security/audit/audit.h>
82
83 #include <vm/uma.h>
84 #include <vm/vm.h>
85
86 #include <ddb/ddb.h>
87
88 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
89 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
90 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
91 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
92 "file desc to leader structures");
93 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
94 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
95
96 MALLOC_DECLARE(M_FADVISE);
97
98 static __read_mostly uma_zone_t file_zone;
99 static __read_mostly uma_zone_t filedesc0_zone;
100 __read_mostly uma_zone_t pwd_zone;
101 VFS_SMR_DECLARE;
102
103 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
104 struct thread *td, bool holdleaders, bool audit);
105 static void export_file_to_kinfo(struct file *fp, int fd,
106 cap_rights_t *rightsp, struct kinfo_file *kif,
107 struct filedesc *fdp, int flags);
108 static int fd_first_free(struct filedesc *fdp, int low, int size);
109 static void fdgrowtable(struct filedesc *fdp, int nfd);
110 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
111 static void fdunused(struct filedesc *fdp, int fd);
112 static void fdused(struct filedesc *fdp, int fd);
113 static int fget_unlocked_seq(struct thread *td, int fd,
114 const cap_rights_t *needrightsp, uint8_t *flagsp,
115 struct file **fpp, seqc_t *seqp);
116 static int getmaxfd(struct thread *td);
117 static u_long *filecaps_copy_prep(const struct filecaps *src);
118 static void filecaps_copy_finish(const struct filecaps *src,
119 struct filecaps *dst, u_long *ioctls);
120 static u_long *filecaps_free_prep(struct filecaps *fcaps);
121 static void filecaps_free_finish(u_long *ioctls);
122
123 static struct pwd *pwd_alloc(void);
124
125 /*
126 * Each process has:
127 *
128 * - An array of open file descriptors (fd_ofiles)
129 * - An array of file flags (fd_ofileflags)
130 * - A bitmap recording which descriptors are in use (fd_map)
131 *
132 * A process starts out with NDFILE descriptors. The value of NDFILE has
133 * been selected based the historical limit of 20 open files, and an
134 * assumption that the majority of processes, especially short-lived
135 * processes like shells, will never need more.
136 *
137 * If this initial allocation is exhausted, a larger descriptor table and
138 * map are allocated dynamically, and the pointers in the process's struct
139 * filedesc are updated to point to those. This is repeated every time
140 * the process runs out of file descriptors (provided it hasn't hit its
141 * resource limit).
142 *
143 * Since threads may hold references to individual descriptor table
144 * entries, the tables are never freed. Instead, they are placed on a
145 * linked list and freed only when the struct filedesc is released.
146 */
147 #define NDFILE 20
148 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
149 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
150 #define NDSLOT(x) ((x) / NDENTRIES)
151 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
152 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
153
154 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
155 struct filedesc *_fdp = (fdp); \
156 int _lastfile = fdlastfile_single(_fdp); \
157 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
158 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
159
160 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
161 struct filedesc *_fdp = (fdp); \
162 int _lastfile = fdlastfile_single(_fdp); \
163 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
164 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
165
166 /*
167 * SLIST entry used to keep track of ofiles which must be reclaimed when
168 * the process exits.
169 */
170 struct freetable {
171 struct fdescenttbl *ft_table;
172 SLIST_ENTRY(freetable) ft_next;
173 };
174
175 /*
176 * Initial allocation: a filedesc structure + the head of SLIST used to
177 * keep track of old ofiles + enough space for NDFILE descriptors.
178 */
179
180 struct fdescenttbl0 {
181 int fdt_nfiles;
182 struct filedescent fdt_ofiles[NDFILE];
183 };
184
185 struct filedesc0 {
186 struct filedesc fd_fd;
187 SLIST_HEAD(, freetable) fd_free;
188 struct fdescenttbl0 fd_dfiles;
189 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
190 };
191
192 /*
193 * Descriptor management.
194 */
195 static int __exclusive_cache_line openfiles; /* actual number of open files */
196 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
197 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
198
199 /*
200 * If low >= size, just return low. Otherwise find the first zero bit in the
201 * given bitmap, starting at low and not exceeding size - 1. Return size if
202 * not found.
203 */
204 static int
fd_first_free(struct filedesc * fdp,int low,int size)205 fd_first_free(struct filedesc *fdp, int low, int size)
206 {
207 NDSLOTTYPE *map = fdp->fd_map;
208 NDSLOTTYPE mask;
209 int off, maxoff;
210
211 if (low >= size)
212 return (low);
213
214 off = NDSLOT(low);
215 if (low % NDENTRIES) {
216 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
217 if ((mask &= ~map[off]) != 0UL)
218 return (off * NDENTRIES + ffsl(mask) - 1);
219 ++off;
220 }
221 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
222 if (map[off] != ~0UL)
223 return (off * NDENTRIES + ffsl(~map[off]) - 1);
224 return (size);
225 }
226
227 /*
228 * Find the last used fd.
229 *
230 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
231 * Otherwise use fdlastfile.
232 */
233 int
fdlastfile_single(struct filedesc * fdp)234 fdlastfile_single(struct filedesc *fdp)
235 {
236 NDSLOTTYPE *map = fdp->fd_map;
237 int off, minoff;
238
239 off = NDSLOT(fdp->fd_nfiles - 1);
240 for (minoff = NDSLOT(0); off >= minoff; --off)
241 if (map[off] != 0)
242 return (off * NDENTRIES + flsl(map[off]) - 1);
243 return (-1);
244 }
245
246 int
fdlastfile(struct filedesc * fdp)247 fdlastfile(struct filedesc *fdp)
248 {
249
250 FILEDESC_LOCK_ASSERT(fdp);
251 return (fdlastfile_single(fdp));
252 }
253
254 static int
fdisused(struct filedesc * fdp,int fd)255 fdisused(struct filedesc *fdp, int fd)
256 {
257
258 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
259 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
260
261 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
262 }
263
264 /*
265 * Mark a file descriptor as used.
266 */
267 static void
fdused_init(struct filedesc * fdp,int fd)268 fdused_init(struct filedesc *fdp, int fd)
269 {
270
271 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
272
273 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
274 }
275
276 static void
fdused(struct filedesc * fdp,int fd)277 fdused(struct filedesc *fdp, int fd)
278 {
279
280 FILEDESC_XLOCK_ASSERT(fdp);
281
282 fdused_init(fdp, fd);
283 if (fd == fdp->fd_freefile)
284 fdp->fd_freefile++;
285 }
286
287 /*
288 * Mark a file descriptor as unused.
289 */
290 static void
fdunused(struct filedesc * fdp,int fd)291 fdunused(struct filedesc *fdp, int fd)
292 {
293
294 FILEDESC_XLOCK_ASSERT(fdp);
295
296 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
297 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
298 ("fd=%d is still in use", fd));
299
300 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
301 if (fd < fdp->fd_freefile)
302 fdp->fd_freefile = fd;
303 }
304
305 /*
306 * Free a file descriptor.
307 *
308 * Avoid some work if fdp is about to be destroyed.
309 */
310 static inline void
fdefree_last(struct filedescent * fde)311 fdefree_last(struct filedescent *fde)
312 {
313
314 filecaps_free(&fde->fde_caps);
315 }
316
317 static inline void
fdfree(struct filedesc * fdp,int fd)318 fdfree(struct filedesc *fdp, int fd)
319 {
320 struct filedescent *fde;
321
322 FILEDESC_XLOCK_ASSERT(fdp);
323 fde = &fdp->fd_ofiles[fd];
324 #ifdef CAPABILITIES
325 seqc_write_begin(&fde->fde_seqc);
326 #endif
327 fde->fde_file = NULL;
328 #ifdef CAPABILITIES
329 seqc_write_end(&fde->fde_seqc);
330 #endif
331 fdefree_last(fde);
332 fdunused(fdp, fd);
333 }
334
335 /*
336 * System calls on descriptors.
337 */
338 #ifndef _SYS_SYSPROTO_H_
339 struct getdtablesize_args {
340 int dummy;
341 };
342 #endif
343 /* ARGSUSED */
344 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)345 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
346 {
347 #ifdef RACCT
348 uint64_t lim;
349 #endif
350
351 td->td_retval[0] = getmaxfd(td);
352 #ifdef RACCT
353 PROC_LOCK(td->td_proc);
354 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
355 PROC_UNLOCK(td->td_proc);
356 if (lim < td->td_retval[0])
357 td->td_retval[0] = lim;
358 #endif
359 return (0);
360 }
361
362 /*
363 * Duplicate a file descriptor to a particular value.
364 *
365 * Note: keep in mind that a potential race condition exists when closing
366 * descriptors from a shared descriptor table (via rfork).
367 */
368 #ifndef _SYS_SYSPROTO_H_
369 struct dup2_args {
370 u_int from;
371 u_int to;
372 };
373 #endif
374 /* ARGSUSED */
375 int
sys_dup2(struct thread * td,struct dup2_args * uap)376 sys_dup2(struct thread *td, struct dup2_args *uap)
377 {
378
379 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
380 }
381
382 /*
383 * Duplicate a file descriptor.
384 */
385 #ifndef _SYS_SYSPROTO_H_
386 struct dup_args {
387 u_int fd;
388 };
389 #endif
390 /* ARGSUSED */
391 int
sys_dup(struct thread * td,struct dup_args * uap)392 sys_dup(struct thread *td, struct dup_args *uap)
393 {
394
395 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
396 }
397
398 /*
399 * The file control system call.
400 */
401 #ifndef _SYS_SYSPROTO_H_
402 struct fcntl_args {
403 int fd;
404 int cmd;
405 long arg;
406 };
407 #endif
408 /* ARGSUSED */
409 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)410 sys_fcntl(struct thread *td, struct fcntl_args *uap)
411 {
412
413 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
414 }
415
416 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)417 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
418 {
419 struct flock fl;
420 struct __oflock ofl;
421 intptr_t arg1;
422 int error, newcmd;
423
424 error = 0;
425 newcmd = cmd;
426 switch (cmd) {
427 case F_OGETLK:
428 case F_OSETLK:
429 case F_OSETLKW:
430 /*
431 * Convert old flock structure to new.
432 */
433 error = copyin((void *)arg, &ofl, sizeof(ofl));
434 fl.l_start = ofl.l_start;
435 fl.l_len = ofl.l_len;
436 fl.l_pid = ofl.l_pid;
437 fl.l_type = ofl.l_type;
438 fl.l_whence = ofl.l_whence;
439 fl.l_sysid = 0;
440
441 switch (cmd) {
442 case F_OGETLK:
443 newcmd = F_GETLK;
444 break;
445 case F_OSETLK:
446 newcmd = F_SETLK;
447 break;
448 case F_OSETLKW:
449 newcmd = F_SETLKW;
450 break;
451 }
452 arg1 = (intptr_t)&fl;
453 break;
454 case F_GETLK:
455 case F_SETLK:
456 case F_SETLKW:
457 case F_SETLK_REMOTE:
458 error = copyin((void *)arg, &fl, sizeof(fl));
459 arg1 = (intptr_t)&fl;
460 break;
461 default:
462 arg1 = arg;
463 break;
464 }
465 if (error)
466 return (error);
467 error = kern_fcntl(td, fd, newcmd, arg1);
468 if (error)
469 return (error);
470 if (cmd == F_OGETLK) {
471 ofl.l_start = fl.l_start;
472 ofl.l_len = fl.l_len;
473 ofl.l_pid = fl.l_pid;
474 ofl.l_type = fl.l_type;
475 ofl.l_whence = fl.l_whence;
476 error = copyout(&ofl, (void *)arg, sizeof(ofl));
477 } else if (cmd == F_GETLK) {
478 error = copyout(&fl, (void *)arg, sizeof(fl));
479 }
480 return (error);
481 }
482
483 struct flags_trans_elem {
484 u_int f;
485 u_int t;
486 };
487
488 static u_int
flags_trans(const struct flags_trans_elem * ftes,int nitems,u_int from_flags)489 flags_trans(const struct flags_trans_elem *ftes, int nitems, u_int from_flags)
490 {
491 u_int res;
492 int i;
493
494 res = 0;
495 for (i = 0; i < nitems; i++) {
496 if ((from_flags & ftes[i].f) != 0)
497 res |= ftes[i].t;
498 }
499 return (res);
500 }
501
502 static uint8_t
fd_to_fde_flags(int fd_flags)503 fd_to_fde_flags(int fd_flags)
504 {
505 static const struct flags_trans_elem fd_to_fde_flags_s[] = {
506 { .f = FD_CLOEXEC, .t = UF_EXCLOSE },
507 { .f = FD_CLOFORK, .t = UF_FOCLOSE },
508 { .f = FD_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
509 };
510
511 return (flags_trans(fd_to_fde_flags_s, nitems(fd_to_fde_flags_s),
512 fd_flags));
513 }
514
515 static int
fde_to_fd_flags(uint8_t fde_flags)516 fde_to_fd_flags(uint8_t fde_flags)
517 {
518 static const struct flags_trans_elem fde_to_fd_flags_s[] = {
519 { .f = UF_EXCLOSE, .t = FD_CLOEXEC },
520 { .f = UF_FOCLOSE, .t = FD_CLOFORK },
521 { .f = UF_RESOLVE_BENEATH, .t = FD_RESOLVE_BENEATH },
522 };
523
524 return (flags_trans(fde_to_fd_flags_s, nitems(fde_to_fd_flags_s),
525 fde_flags));
526 }
527
528 static uint8_t
fddup_to_fde_flags(int fddup_flags)529 fddup_to_fde_flags(int fddup_flags)
530 {
531 static const struct flags_trans_elem fddup_to_fde_flags_s[] = {
532 { .f = FDDUP_FLAG_CLOEXEC, .t = UF_EXCLOSE },
533 { .f = FDDUP_FLAG_CLOFORK, .t = UF_FOCLOSE },
534 };
535
536 return (flags_trans(fddup_to_fde_flags_s, nitems(fddup_to_fde_flags_s),
537 fddup_flags));
538 }
539
540 static uint8_t
close_range_to_fde_flags(int close_range_flags)541 close_range_to_fde_flags(int close_range_flags)
542 {
543 static const struct flags_trans_elem close_range_to_fde_flags_s[] = {
544 { .f = CLOSE_RANGE_CLOEXEC, .t = UF_EXCLOSE },
545 { .f = CLOSE_RANGE_CLOFORK, .t = UF_FOCLOSE },
546 };
547
548 return (flags_trans(close_range_to_fde_flags_s,
549 nitems(close_range_to_fde_flags_s), close_range_flags));
550 }
551
552 static uint8_t
open_to_fde_flags(int open_flags,bool sticky_orb)553 open_to_fde_flags(int open_flags, bool sticky_orb)
554 {
555 static const struct flags_trans_elem open_to_fde_flags_s[] = {
556 { .f = O_CLOEXEC, .t = UF_EXCLOSE },
557 { .f = O_CLOFORK, .t = UF_FOCLOSE },
558 { .f = O_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
559 };
560 #if defined(__clang__) && __clang_major__ >= 19
561 _Static_assert(open_to_fde_flags_s[nitems(open_to_fde_flags_s) - 1].f ==
562 O_RESOLVE_BENEATH, "O_RESOLVE_BENEATH must be last, for sticky_orb");
563 #endif
564
565 return (flags_trans(open_to_fde_flags_s, nitems(open_to_fde_flags_s) -
566 (sticky_orb ? 0 : 1), open_flags));
567 }
568
569 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)570 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
571 {
572 struct filedesc *fdp;
573 struct flock *flp;
574 struct file *fp, *fp2;
575 struct filedescent *fde;
576 struct proc *p;
577 struct vnode *vp;
578 struct mount *mp;
579 struct kinfo_file *kif;
580 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
581 uint64_t bsize;
582 off_t foffset;
583 int flags;
584
585 error = 0;
586 flg = F_POSIX;
587 p = td->td_proc;
588 fdp = p->p_fd;
589
590 AUDIT_ARG_FD(cmd);
591 AUDIT_ARG_CMD(cmd);
592 switch (cmd) {
593 case F_DUPFD:
594 tmp = arg;
595 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
596 break;
597
598 case F_DUPFD_CLOEXEC:
599 tmp = arg;
600 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
601 break;
602
603 case F_DUPFD_CLOFORK:
604 tmp = arg;
605 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOFORK, fd, tmp);
606 break;
607
608 case F_DUP2FD:
609 tmp = arg;
610 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
611 break;
612
613 case F_DUP2FD_CLOEXEC:
614 tmp = arg;
615 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
616 break;
617
618 case F_GETFD:
619 error = EBADF;
620 FILEDESC_SLOCK(fdp);
621 fde = fdeget_noref(fdp, fd);
622 if (fde != NULL) {
623 td->td_retval[0] = fde_to_fd_flags(fde->fde_flags);
624 error = 0;
625 }
626 FILEDESC_SUNLOCK(fdp);
627 break;
628
629 case F_SETFD:
630 error = EBADF;
631 FILEDESC_XLOCK(fdp);
632 fde = fdeget_noref(fdp, fd);
633 if (fde != NULL) {
634 /*
635 * UF_RESOLVE_BENEATH is sticky and cannot be cleared.
636 */
637 fde->fde_flags = (fde->fde_flags &
638 ~(UF_EXCLOSE | UF_FOCLOSE)) | fd_to_fde_flags(arg);
639 error = 0;
640 }
641 FILEDESC_XUNLOCK(fdp);
642 break;
643
644 case F_GETFL:
645 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
646 if (error != 0)
647 break;
648 td->td_retval[0] = OFLAGS(fp->f_flag);
649 fdrop(fp, td);
650 break;
651
652 case F_SETFL:
653 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
654 if (error != 0)
655 break;
656 if (fp->f_ops == &path_fileops) {
657 fdrop(fp, td);
658 error = EBADF;
659 break;
660 }
661 do {
662 tmp = flg = fp->f_flag;
663 tmp &= ~FCNTLFLAGS;
664 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
665 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
666 got_set = tmp & ~flg;
667 got_cleared = flg & ~tmp;
668 tmp = fp->f_flag & FNONBLOCK;
669 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
670 if (error != 0)
671 goto revert_f_setfl;
672 tmp = fp->f_flag & FASYNC;
673 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
674 if (error == 0) {
675 fdrop(fp, td);
676 break;
677 }
678 atomic_clear_int(&fp->f_flag, FNONBLOCK);
679 tmp = 0;
680 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
681 revert_f_setfl:
682 do {
683 tmp = flg = fp->f_flag;
684 tmp &= ~FCNTLFLAGS;
685 tmp |= got_cleared;
686 tmp &= ~got_set;
687 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
688 fdrop(fp, td);
689 break;
690
691 case F_GETOWN:
692 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
693 if (error != 0)
694 break;
695 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
696 if (error == 0)
697 td->td_retval[0] = tmp;
698 fdrop(fp, td);
699 break;
700
701 case F_SETOWN:
702 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
703 if (error != 0)
704 break;
705 tmp = arg;
706 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
707 fdrop(fp, td);
708 break;
709
710 case F_SETLK_REMOTE:
711 error = priv_check(td, PRIV_NFS_LOCKD);
712 if (error != 0)
713 return (error);
714 flg = F_REMOTE;
715 goto do_setlk;
716
717 case F_SETLKW:
718 flg |= F_WAIT;
719 /* FALLTHROUGH F_SETLK */
720
721 case F_SETLK:
722 do_setlk:
723 flp = (struct flock *)arg;
724 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
725 error = EINVAL;
726 break;
727 }
728
729 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
730 if (error != 0)
731 break;
732 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
733 error = EBADF;
734 fdrop(fp, td);
735 break;
736 }
737
738 if (flp->l_whence == SEEK_CUR) {
739 foffset = foffset_get(fp);
740 if (foffset < 0 ||
741 (flp->l_start > 0 &&
742 foffset > OFF_MAX - flp->l_start)) {
743 error = EOVERFLOW;
744 fdrop(fp, td);
745 break;
746 }
747 flp->l_start += foffset;
748 }
749
750 vp = fp->f_vnode;
751 switch (flp->l_type) {
752 case F_RDLCK:
753 if ((fp->f_flag & FREAD) == 0) {
754 error = EBADF;
755 break;
756 }
757 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
758 PROC_LOCK(p->p_leader);
759 p->p_leader->p_flag |= P_ADVLOCK;
760 PROC_UNLOCK(p->p_leader);
761 }
762 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
763 flp, flg);
764 break;
765 case F_WRLCK:
766 if ((fp->f_flag & FWRITE) == 0) {
767 error = EBADF;
768 break;
769 }
770 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
771 PROC_LOCK(p->p_leader);
772 p->p_leader->p_flag |= P_ADVLOCK;
773 PROC_UNLOCK(p->p_leader);
774 }
775 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
776 flp, flg);
777 break;
778 case F_UNLCK:
779 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
780 flp, flg);
781 break;
782 case F_UNLCKSYS:
783 if (flg != F_REMOTE) {
784 error = EINVAL;
785 break;
786 }
787 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
788 F_UNLCKSYS, flp, flg);
789 break;
790 default:
791 error = EINVAL;
792 break;
793 }
794 if (error != 0 || flp->l_type == F_UNLCK ||
795 flp->l_type == F_UNLCKSYS) {
796 fdrop(fp, td);
797 break;
798 }
799
800 /*
801 * Check for a race with close.
802 *
803 * The vnode is now advisory locked (or unlocked, but this case
804 * is not really important) as the caller requested.
805 * We had to drop the filedesc lock, so we need to recheck if
806 * the descriptor is still valid, because if it was closed
807 * in the meantime we need to remove advisory lock from the
808 * vnode - close on any descriptor leading to an advisory
809 * locked vnode, removes that lock.
810 * We will return 0 on purpose in that case, as the result of
811 * successful advisory lock might have been externally visible
812 * already. This is fine - effectively we pretend to the caller
813 * that the closing thread was a bit slower and that the
814 * advisory lock succeeded before the close.
815 */
816 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
817 if (error != 0) {
818 fdrop(fp, td);
819 break;
820 }
821 if (fp != fp2) {
822 flp->l_whence = SEEK_SET;
823 flp->l_start = 0;
824 flp->l_len = 0;
825 flp->l_type = F_UNLCK;
826 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
827 F_UNLCK, flp, F_POSIX);
828 }
829 fdrop(fp, td);
830 fdrop(fp2, td);
831 break;
832
833 case F_GETLK:
834 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
835 if (error != 0)
836 break;
837 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
838 error = EBADF;
839 fdrop(fp, td);
840 break;
841 }
842 flp = (struct flock *)arg;
843 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
844 flp->l_type != F_UNLCK) {
845 error = EINVAL;
846 fdrop(fp, td);
847 break;
848 }
849 if (flp->l_whence == SEEK_CUR) {
850 foffset = foffset_get(fp);
851 if ((flp->l_start > 0 &&
852 foffset > OFF_MAX - flp->l_start) ||
853 (flp->l_start < 0 &&
854 foffset < OFF_MIN - flp->l_start)) {
855 error = EOVERFLOW;
856 fdrop(fp, td);
857 break;
858 }
859 flp->l_start += foffset;
860 }
861 vp = fp->f_vnode;
862 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
863 F_POSIX);
864 fdrop(fp, td);
865 break;
866
867 case F_ADD_SEALS:
868 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
869 if (error != 0)
870 break;
871 error = fo_add_seals(fp, arg);
872 fdrop(fp, td);
873 break;
874
875 case F_GET_SEALS:
876 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
877 if (error != 0)
878 break;
879 if (fo_get_seals(fp, &seals) == 0)
880 td->td_retval[0] = seals;
881 else
882 error = EINVAL;
883 fdrop(fp, td);
884 break;
885
886 case F_RDAHEAD:
887 arg = arg ? 128 * 1024: 0;
888 /* FALLTHROUGH */
889 case F_READAHEAD:
890 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
891 if (error != 0)
892 break;
893 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
894 fdrop(fp, td);
895 error = EBADF;
896 break;
897 }
898 vp = fp->f_vnode;
899 if (vp->v_type != VREG) {
900 fdrop(fp, td);
901 error = ENOTTY;
902 break;
903 }
904
905 /*
906 * Exclusive lock synchronizes against f_seqcount reads and
907 * writes in sequential_heuristic().
908 */
909 error = vn_lock(vp, LK_EXCLUSIVE);
910 if (error != 0) {
911 fdrop(fp, td);
912 break;
913 }
914 if (arg >= 0) {
915 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
916 arg = MIN(arg, INT_MAX - bsize + 1);
917 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
918 (arg + bsize - 1) / bsize);
919 atomic_set_int(&fp->f_flag, FRDAHEAD);
920 } else {
921 atomic_clear_int(&fp->f_flag, FRDAHEAD);
922 }
923 VOP_UNLOCK(vp);
924 fdrop(fp, td);
925 break;
926
927 case F_ISUNIONSTACK:
928 /*
929 * Check if the vnode is part of a union stack (either the
930 * "union" flag from mount(2) or unionfs).
931 *
932 * Prior to introduction of this op libc's readdir would call
933 * fstatfs(2), in effect unnecessarily copying kilobytes of
934 * data just to check fs name and a mount flag.
935 *
936 * Fixing the code to handle everything in the kernel instead
937 * is a non-trivial endeavor and has low priority, thus this
938 * horrible kludge facilitates the current behavior in a much
939 * cheaper manner until someone(tm) sorts this out.
940 */
941 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
942 if (error != 0)
943 break;
944 if (fp->f_type != DTYPE_VNODE) {
945 fdrop(fp, td);
946 error = EBADF;
947 break;
948 }
949 vp = fp->f_vnode;
950 /*
951 * Since we don't prevent dooming the vnode even non-null mp
952 * found can become immediately stale. This is tolerable since
953 * mount points are type-stable (providing safe memory access)
954 * and any vfs op on this vnode going forward will return an
955 * error (meaning return value in this case is meaningless).
956 */
957 mp = atomic_load_ptr(&vp->v_mount);
958 if (__predict_false(mp == NULL)) {
959 fdrop(fp, td);
960 error = EBADF;
961 break;
962 }
963 td->td_retval[0] = 0;
964 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
965 mp->mnt_flag & MNT_UNION)
966 td->td_retval[0] = 1;
967 fdrop(fp, td);
968 break;
969
970 case F_KINFO:
971 #ifdef CAPABILITY_MODE
972 if (CAP_TRACING(td))
973 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
974 if (IN_CAPABILITY_MODE(td)) {
975 error = ECAPMODE;
976 break;
977 }
978 #endif
979 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
980 if (error != 0)
981 break;
982 if (kif_sz != sizeof(*kif)) {
983 error = EINVAL;
984 break;
985 }
986 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
987 FILEDESC_SLOCK(fdp);
988 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
989 if (error == 0 && fhold(fp)) {
990 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
991 FILEDESC_SUNLOCK(fdp);
992 fdrop(fp, td);
993 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
994 kif->kf_structsize = sizeof(*kif);
995 error = copyout(kif, (void *)arg, sizeof(*kif));
996 } else {
997 error = EBADF;
998 }
999 } else {
1000 FILEDESC_SUNLOCK(fdp);
1001 if (error == 0)
1002 error = EBADF;
1003 }
1004 free(kif, M_TEMP);
1005 break;
1006
1007 default:
1008 if ((cmd & ((1u << F_DUP3FD_SHIFT) - 1)) != F_DUP3FD)
1009 return (EXTERROR(EINVAL, "invalid fcntl cmd"));
1010 /* Handle F_DUP3FD */
1011 flags = (cmd >> F_DUP3FD_SHIFT);
1012 if ((flags & ~(FD_CLOEXEC | FD_CLOFORK)) != 0)
1013 return (EXTERROR(EINVAL, "invalid flags for F_DUP3FD"));
1014 tmp = arg;
1015 error = kern_dup(td, FDDUP_FIXED,
1016 ((flags & FD_CLOEXEC) != 0 ? FDDUP_FLAG_CLOEXEC : 0) |
1017 ((flags & FD_CLOFORK) != 0 ? FDDUP_FLAG_CLOFORK : 0),
1018 fd, tmp);
1019 break;
1020 }
1021 return (error);
1022 }
1023
1024 static int
getmaxfd(struct thread * td)1025 getmaxfd(struct thread *td)
1026 {
1027
1028 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
1029 }
1030
1031 /*
1032 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
1033 */
1034 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)1035 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
1036 {
1037 struct filedesc *fdp;
1038 struct filedescent *oldfde, *newfde;
1039 struct proc *p;
1040 struct file *delfp, *oldfp;
1041 u_long *oioctls, *nioctls;
1042 int error, maxfd;
1043
1044 p = td->td_proc;
1045 fdp = p->p_fd;
1046 oioctls = NULL;
1047
1048 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC | FDDUP_FLAG_CLOFORK)) == 0);
1049 MPASS(mode < FDDUP_LASTMODE);
1050
1051 AUDIT_ARG_FD(old);
1052 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
1053
1054 /*
1055 * Verify we have a valid descriptor to dup from and possibly to
1056 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
1057 * return EINVAL when the new descriptor is out of bounds.
1058 */
1059 if (old < 0)
1060 return (EBADF);
1061 if (new < 0)
1062 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1063 maxfd = getmaxfd(td);
1064 if (new >= maxfd)
1065 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1066
1067 error = EBADF;
1068 FILEDESC_XLOCK(fdp);
1069 if (fget_noref(fdp, old) == NULL)
1070 goto unlock;
1071 if (mode == FDDUP_FIXED && old == new) {
1072 td->td_retval[0] = new;
1073 fdp->fd_ofiles[new].fde_flags |= fddup_to_fde_flags(flags);
1074 error = 0;
1075 goto unlock;
1076 }
1077
1078 oldfde = &fdp->fd_ofiles[old];
1079 oldfp = oldfde->fde_file;
1080 if (!fhold(oldfp))
1081 goto unlock;
1082
1083 /*
1084 * If the caller specified a file descriptor, make sure the file
1085 * table is large enough to hold it, and grab it. Otherwise, just
1086 * allocate a new descriptor the usual way.
1087 */
1088 switch (mode) {
1089 case FDDUP_NORMAL:
1090 case FDDUP_FCNTL:
1091 if ((error = fdalloc(td, new, &new)) != 0) {
1092 fdrop(oldfp, td);
1093 goto unlock;
1094 }
1095 break;
1096 case FDDUP_FIXED:
1097 if (new >= fdp->fd_nfiles) {
1098 /*
1099 * The resource limits are here instead of e.g.
1100 * fdalloc(), because the file descriptor table may be
1101 * shared between processes, so we can't really use
1102 * racct_add()/racct_sub(). Instead of counting the
1103 * number of actually allocated descriptors, just put
1104 * the limit on the size of the file descriptor table.
1105 */
1106 #ifdef RACCT
1107 if (RACCT_ENABLED()) {
1108 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1109 if (error != 0) {
1110 error = EMFILE;
1111 fdrop(oldfp, td);
1112 goto unlock;
1113 }
1114 }
1115 #endif
1116 fdgrowtable_exp(fdp, new + 1);
1117 }
1118 if (!fdisused(fdp, new))
1119 fdused(fdp, new);
1120 break;
1121 default:
1122 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1123 }
1124
1125 KASSERT(old != new, ("new fd is same as old"));
1126
1127 /* Refetch oldfde because the table may have grown and old one freed. */
1128 oldfde = &fdp->fd_ofiles[old];
1129 KASSERT(oldfp == oldfde->fde_file,
1130 ("fdt_ofiles shift from growth observed at fd %d",
1131 old));
1132
1133 newfde = &fdp->fd_ofiles[new];
1134 delfp = newfde->fde_file;
1135
1136 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1137
1138 /*
1139 * Duplicate the source descriptor.
1140 */
1141 #ifdef CAPABILITIES
1142 seqc_write_begin(&newfde->fde_seqc);
1143 #endif
1144 oioctls = filecaps_free_prep(&newfde->fde_caps);
1145 fde_copy(oldfde, newfde);
1146 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1147 nioctls);
1148 newfde->fde_flags = (oldfde->fde_flags & ~(UF_EXCLOSE | UF_FOCLOSE)) |
1149 fddup_to_fde_flags(flags);
1150 #ifdef CAPABILITIES
1151 seqc_write_end(&newfde->fde_seqc);
1152 #endif
1153 td->td_retval[0] = new;
1154
1155 error = 0;
1156
1157 if (delfp != NULL) {
1158 (void) closefp(fdp, new, delfp, td, true, false);
1159 FILEDESC_UNLOCK_ASSERT(fdp);
1160 } else {
1161 unlock:
1162 FILEDESC_XUNLOCK(fdp);
1163 }
1164
1165 filecaps_free_finish(oioctls);
1166 return (error);
1167 }
1168
1169 static void
sigiofree(struct sigio * sigio)1170 sigiofree(struct sigio *sigio)
1171 {
1172 crfree(sigio->sio_ucred);
1173 free(sigio, M_SIGIO);
1174 }
1175
1176 static struct sigio *
funsetown_locked(struct sigio * sigio)1177 funsetown_locked(struct sigio *sigio)
1178 {
1179 struct proc *p;
1180 struct pgrp *pg;
1181
1182 SIGIO_ASSERT_LOCKED();
1183
1184 if (sigio == NULL)
1185 return (NULL);
1186 *sigio->sio_myref = NULL;
1187 if (sigio->sio_pgid < 0) {
1188 pg = sigio->sio_pgrp;
1189 PGRP_LOCK(pg);
1190 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1191 PGRP_UNLOCK(pg);
1192 } else {
1193 p = sigio->sio_proc;
1194 PROC_LOCK(p);
1195 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1196 PROC_UNLOCK(p);
1197 }
1198 return (sigio);
1199 }
1200
1201 /*
1202 * If sigio is on the list associated with a process or process group,
1203 * disable signalling from the device, remove sigio from the list and
1204 * free sigio.
1205 */
1206 void
funsetown(struct sigio ** sigiop)1207 funsetown(struct sigio **sigiop)
1208 {
1209 struct sigio *sigio;
1210
1211 /* Racy check, consumers must provide synchronization. */
1212 if (*sigiop == NULL)
1213 return;
1214
1215 SIGIO_LOCK();
1216 sigio = funsetown_locked(*sigiop);
1217 SIGIO_UNLOCK();
1218 if (sigio != NULL)
1219 sigiofree(sigio);
1220 }
1221
1222 /*
1223 * Free a list of sigio structures. The caller must ensure that new sigio
1224 * structures cannot be added after this point. For process groups this is
1225 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1226 * as an interlock.
1227 */
1228 void
funsetownlst(struct sigiolst * sigiolst)1229 funsetownlst(struct sigiolst *sigiolst)
1230 {
1231 struct proc *p;
1232 struct pgrp *pg;
1233 struct sigio *sigio, *tmp;
1234
1235 /* Racy check. */
1236 sigio = SLIST_FIRST(sigiolst);
1237 if (sigio == NULL)
1238 return;
1239
1240 p = NULL;
1241 pg = NULL;
1242
1243 SIGIO_LOCK();
1244 sigio = SLIST_FIRST(sigiolst);
1245 if (sigio == NULL) {
1246 SIGIO_UNLOCK();
1247 return;
1248 }
1249
1250 /*
1251 * Every entry of the list should belong to a single proc or pgrp.
1252 */
1253 if (sigio->sio_pgid < 0) {
1254 pg = sigio->sio_pgrp;
1255 sx_assert(&proctree_lock, SX_XLOCKED);
1256 PGRP_LOCK(pg);
1257 } else /* if (sigio->sio_pgid > 0) */ {
1258 p = sigio->sio_proc;
1259 PROC_LOCK(p);
1260 KASSERT((p->p_flag & P_WEXIT) != 0,
1261 ("%s: process %p is not exiting", __func__, p));
1262 }
1263
1264 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1265 *sigio->sio_myref = NULL;
1266 if (pg != NULL) {
1267 KASSERT(sigio->sio_pgid < 0,
1268 ("Proc sigio in pgrp sigio list"));
1269 KASSERT(sigio->sio_pgrp == pg,
1270 ("Bogus pgrp in sigio list"));
1271 } else /* if (p != NULL) */ {
1272 KASSERT(sigio->sio_pgid > 0,
1273 ("Pgrp sigio in proc sigio list"));
1274 KASSERT(sigio->sio_proc == p,
1275 ("Bogus proc in sigio list"));
1276 }
1277 }
1278
1279 if (pg != NULL)
1280 PGRP_UNLOCK(pg);
1281 else
1282 PROC_UNLOCK(p);
1283 SIGIO_UNLOCK();
1284
1285 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1286 sigiofree(sigio);
1287 }
1288
1289 /*
1290 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1291 *
1292 * After permission checking, add a sigio structure to the sigio list for
1293 * the process or process group.
1294 */
1295 int
fsetown(pid_t pgid,struct sigio ** sigiop)1296 fsetown(pid_t pgid, struct sigio **sigiop)
1297 {
1298 struct proc *proc;
1299 struct pgrp *pgrp;
1300 struct sigio *osigio, *sigio;
1301 int ret;
1302
1303 if (pgid == 0) {
1304 funsetown(sigiop);
1305 return (0);
1306 }
1307
1308 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1309 sigio->sio_pgid = pgid;
1310 sigio->sio_ucred = crhold(curthread->td_ucred);
1311 sigio->sio_myref = sigiop;
1312
1313 ret = 0;
1314 if (pgid > 0) {
1315 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1316 SIGIO_LOCK();
1317 osigio = funsetown_locked(*sigiop);
1318 if (ret == 0) {
1319 PROC_LOCK(proc);
1320 _PRELE(proc);
1321 if ((proc->p_flag & P_WEXIT) != 0) {
1322 ret = ESRCH;
1323 } else if (proc->p_session !=
1324 curthread->td_proc->p_session) {
1325 /*
1326 * Policy - Don't allow a process to FSETOWN a
1327 * process in another session.
1328 *
1329 * Remove this test to allow maximum flexibility
1330 * or restrict FSETOWN to the current process or
1331 * process group for maximum safety.
1332 */
1333 ret = EPERM;
1334 } else {
1335 sigio->sio_proc = proc;
1336 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1337 sio_pgsigio);
1338 }
1339 PROC_UNLOCK(proc);
1340 }
1341 } else /* if (pgid < 0) */ {
1342 sx_slock(&proctree_lock);
1343 SIGIO_LOCK();
1344 osigio = funsetown_locked(*sigiop);
1345 pgrp = pgfind(-pgid);
1346 if (pgrp == NULL) {
1347 ret = ESRCH;
1348 } else {
1349 if (pgrp->pg_session != curthread->td_proc->p_session) {
1350 /*
1351 * Policy - Don't allow a process to FSETOWN a
1352 * process in another session.
1353 *
1354 * Remove this test to allow maximum flexibility
1355 * or restrict FSETOWN to the current process or
1356 * process group for maximum safety.
1357 */
1358 ret = EPERM;
1359 } else {
1360 sigio->sio_pgrp = pgrp;
1361 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1362 sio_pgsigio);
1363 }
1364 PGRP_UNLOCK(pgrp);
1365 }
1366 sx_sunlock(&proctree_lock);
1367 }
1368 if (ret == 0)
1369 *sigiop = sigio;
1370 SIGIO_UNLOCK();
1371 if (osigio != NULL)
1372 sigiofree(osigio);
1373 return (ret);
1374 }
1375
1376 /*
1377 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1378 */
1379 pid_t
fgetown(struct sigio ** sigiop)1380 fgetown(struct sigio **sigiop)
1381 {
1382 pid_t pgid;
1383
1384 SIGIO_LOCK();
1385 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1386 SIGIO_UNLOCK();
1387 return (pgid);
1388 }
1389
1390 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1391 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1392 bool audit)
1393 {
1394 int error;
1395
1396 FILEDESC_XLOCK_ASSERT(fdp);
1397
1398 /*
1399 * We now hold the fp reference that used to be owned by the
1400 * descriptor array. We have to unlock the FILEDESC *AFTER*
1401 * knote_fdclose to prevent a race of the fd getting opened, a knote
1402 * added, and deleteing a knote for the new fd.
1403 */
1404 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1405 knote_fdclose(td, fd);
1406
1407 /*
1408 * We need to notify mqueue if the object is of type mqueue.
1409 */
1410 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1411 mq_fdclose(td, fd, fp);
1412 FILEDESC_XUNLOCK(fdp);
1413
1414 #ifdef AUDIT
1415 if (AUDITING_TD(td) && audit)
1416 audit_sysclose(td, fd, fp);
1417 #endif
1418 error = closef(fp, td);
1419
1420 /*
1421 * All paths leading up to closefp() will have already removed or
1422 * replaced the fd in the filedesc table, so a restart would not
1423 * operate on the same file.
1424 */
1425 if (error == ERESTART)
1426 error = EINTR;
1427
1428 return (error);
1429 }
1430
1431 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1432 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1433 bool holdleaders, bool audit)
1434 {
1435 int error;
1436
1437 FILEDESC_XLOCK_ASSERT(fdp);
1438
1439 if (holdleaders) {
1440 if (td->td_proc->p_fdtol != NULL) {
1441 /*
1442 * Ask fdfree() to sleep to ensure that all relevant
1443 * process leaders can be traversed in closef().
1444 */
1445 fdp->fd_holdleaderscount++;
1446 } else {
1447 holdleaders = false;
1448 }
1449 }
1450
1451 error = closefp_impl(fdp, fd, fp, td, audit);
1452 if (holdleaders) {
1453 FILEDESC_XLOCK(fdp);
1454 fdp->fd_holdleaderscount--;
1455 if (fdp->fd_holdleaderscount == 0 &&
1456 fdp->fd_holdleaderswakeup != 0) {
1457 fdp->fd_holdleaderswakeup = 0;
1458 wakeup(&fdp->fd_holdleaderscount);
1459 }
1460 FILEDESC_XUNLOCK(fdp);
1461 }
1462 return (error);
1463 }
1464
1465 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1466 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1467 bool holdleaders, bool audit)
1468 {
1469
1470 FILEDESC_XLOCK_ASSERT(fdp);
1471
1472 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1473 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1474 } else {
1475 return (closefp_impl(fdp, fd, fp, td, audit));
1476 }
1477 }
1478
1479 /*
1480 * Close a file descriptor.
1481 */
1482 #ifndef _SYS_SYSPROTO_H_
1483 struct close_args {
1484 int fd;
1485 };
1486 #endif
1487 /* ARGSUSED */
1488 int
sys_close(struct thread * td,struct close_args * uap)1489 sys_close(struct thread *td, struct close_args *uap)
1490 {
1491
1492 return (kern_close(td, uap->fd));
1493 }
1494
1495 int
kern_close(struct thread * td,int fd)1496 kern_close(struct thread *td, int fd)
1497 {
1498 struct filedesc *fdp;
1499 struct file *fp;
1500
1501 fdp = td->td_proc->p_fd;
1502
1503 FILEDESC_XLOCK(fdp);
1504 if ((fp = fget_noref(fdp, fd)) == NULL) {
1505 FILEDESC_XUNLOCK(fdp);
1506 return (EBADF);
1507 }
1508 fdfree(fdp, fd);
1509
1510 /* closefp() drops the FILEDESC lock for us. */
1511 return (closefp(fdp, fd, fp, td, true, true));
1512 }
1513
1514 static int
close_range_flags(struct thread * td,u_int lowfd,u_int highfd,int flags)1515 close_range_flags(struct thread *td, u_int lowfd, u_int highfd, int flags)
1516 {
1517 struct filedesc *fdp;
1518 struct fdescenttbl *fdt;
1519 struct filedescent *fde;
1520 int fd, fde_flags;
1521
1522 fde_flags = close_range_to_fde_flags(flags);
1523 fdp = td->td_proc->p_fd;
1524 FILEDESC_XLOCK(fdp);
1525 fdt = atomic_load_ptr(&fdp->fd_files);
1526 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1527 fd = lowfd;
1528 if (__predict_false(fd > highfd)) {
1529 goto out_locked;
1530 }
1531 for (; fd <= highfd; fd++) {
1532 fde = &fdt->fdt_ofiles[fd];
1533 if (fde->fde_file != NULL)
1534 fde->fde_flags |= fde_flags;
1535 }
1536 out_locked:
1537 FILEDESC_XUNLOCK(fdp);
1538 return (0);
1539 }
1540
1541 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1542 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1543 {
1544 struct filedesc *fdp;
1545 const struct fdescenttbl *fdt;
1546 struct file *fp;
1547 int fd;
1548
1549 fdp = td->td_proc->p_fd;
1550 FILEDESC_XLOCK(fdp);
1551 fdt = atomic_load_ptr(&fdp->fd_files);
1552 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1553 fd = lowfd;
1554 if (__predict_false(fd > highfd)) {
1555 goto out_locked;
1556 }
1557 for (;;) {
1558 fp = fdt->fdt_ofiles[fd].fde_file;
1559 if (fp == NULL) {
1560 if (fd == highfd)
1561 goto out_locked;
1562 } else {
1563 fdfree(fdp, fd);
1564 (void) closefp(fdp, fd, fp, td, true, true);
1565 if (fd == highfd)
1566 goto out_unlocked;
1567 FILEDESC_XLOCK(fdp);
1568 fdt = atomic_load_ptr(&fdp->fd_files);
1569 }
1570 fd++;
1571 }
1572 out_locked:
1573 FILEDESC_XUNLOCK(fdp);
1574 out_unlocked:
1575 return (0);
1576 }
1577
1578 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1579 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1580 {
1581
1582 /*
1583 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1584 * open should not be a usage error. From a close_range() perspective,
1585 * close_range(3, ~0U, 0) in the same scenario should also likely not
1586 * be a usage error as all fd above 3 are in-fact already closed.
1587 */
1588 if (highfd < lowfd) {
1589 return (EINVAL);
1590 }
1591
1592 if ((flags & (CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1593 return (close_range_flags(td, lowfd, highfd, flags));
1594
1595 return (close_range_impl(td, lowfd, highfd));
1596 }
1597
1598 #ifndef _SYS_SYSPROTO_H_
1599 struct close_range_args {
1600 u_int lowfd;
1601 u_int highfd;
1602 int flags;
1603 };
1604 #endif
1605 int
sys_close_range(struct thread * td,struct close_range_args * uap)1606 sys_close_range(struct thread *td, struct close_range_args *uap)
1607 {
1608
1609 AUDIT_ARG_FD(uap->lowfd);
1610 AUDIT_ARG_CMD(uap->highfd);
1611 AUDIT_ARG_FFLAGS(uap->flags);
1612
1613 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1614 return (EINVAL);
1615 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1616 }
1617
1618 #ifdef COMPAT_FREEBSD12
1619 /*
1620 * Close open file descriptors.
1621 */
1622 #ifndef _SYS_SYSPROTO_H_
1623 struct freebsd12_closefrom_args {
1624 int lowfd;
1625 };
1626 #endif
1627 /* ARGSUSED */
1628 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1629 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1630 {
1631 u_int lowfd;
1632
1633 AUDIT_ARG_FD(uap->lowfd);
1634
1635 /*
1636 * Treat negative starting file descriptor values identical to
1637 * closefrom(0) which closes all files.
1638 */
1639 lowfd = MAX(0, uap->lowfd);
1640 return (kern_close_range(td, 0, lowfd, ~0U));
1641 }
1642 #endif /* COMPAT_FREEBSD12 */
1643
1644 #if defined(COMPAT_43)
1645 /*
1646 * Return status information about a file descriptor.
1647 */
1648 #ifndef _SYS_SYSPROTO_H_
1649 struct ofstat_args {
1650 int fd;
1651 struct ostat *sb;
1652 };
1653 #endif
1654 /* ARGSUSED */
1655 int
ofstat(struct thread * td,struct ofstat_args * uap)1656 ofstat(struct thread *td, struct ofstat_args *uap)
1657 {
1658 struct ostat oub;
1659 struct stat ub;
1660 int error;
1661
1662 error = kern_fstat(td, uap->fd, &ub);
1663 if (error == 0) {
1664 cvtstat(&ub, &oub);
1665 error = copyout(&oub, uap->sb, sizeof(oub));
1666 }
1667 return (error);
1668 }
1669 #endif /* COMPAT_43 */
1670
1671 #if defined(COMPAT_FREEBSD11)
1672 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1673 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1674 {
1675 struct stat sb;
1676 struct freebsd11_stat osb;
1677 int error;
1678
1679 error = kern_fstat(td, uap->fd, &sb);
1680 if (error != 0)
1681 return (error);
1682 error = freebsd11_cvtstat(&sb, &osb);
1683 if (error == 0)
1684 error = copyout(&osb, uap->sb, sizeof(osb));
1685 return (error);
1686 }
1687 #endif /* COMPAT_FREEBSD11 */
1688
1689 /*
1690 * Return status information about a file descriptor.
1691 */
1692 #ifndef _SYS_SYSPROTO_H_
1693 struct fstat_args {
1694 int fd;
1695 struct stat *sb;
1696 };
1697 #endif
1698 /* ARGSUSED */
1699 int
sys_fstat(struct thread * td,struct fstat_args * uap)1700 sys_fstat(struct thread *td, struct fstat_args *uap)
1701 {
1702 struct stat ub;
1703 int error;
1704
1705 error = kern_fstat(td, uap->fd, &ub);
1706 if (error == 0)
1707 error = copyout(&ub, uap->sb, sizeof(ub));
1708 return (error);
1709 }
1710
1711 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1712 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1713 {
1714 struct file *fp;
1715 int error;
1716
1717 AUDIT_ARG_FD(fd);
1718
1719 error = fget(td, fd, &cap_fstat_rights, &fp);
1720 if (__predict_false(error != 0))
1721 return (error);
1722
1723 AUDIT_ARG_FILE(td->td_proc, fp);
1724
1725 sbp->st_filerev = 0;
1726 sbp->st_bsdflags = 0;
1727 error = fo_stat(fp, sbp, td->td_ucred);
1728 fdrop(fp, td);
1729 #ifdef __STAT_TIME_T_EXT
1730 sbp->st_atim_ext = 0;
1731 sbp->st_mtim_ext = 0;
1732 sbp->st_ctim_ext = 0;
1733 sbp->st_btim_ext = 0;
1734 #endif
1735 #ifdef KTRACE
1736 if (KTRPOINT(td, KTR_STRUCT))
1737 ktrstat_error(sbp, error);
1738 #endif
1739 return (error);
1740 }
1741
1742 #if defined(COMPAT_FREEBSD11)
1743 /*
1744 * Return status information about a file descriptor.
1745 */
1746 #ifndef _SYS_SYSPROTO_H_
1747 struct freebsd11_nfstat_args {
1748 int fd;
1749 struct nstat *sb;
1750 };
1751 #endif
1752 /* ARGSUSED */
1753 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1754 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1755 {
1756 struct nstat nub;
1757 struct stat ub;
1758 int error;
1759
1760 error = kern_fstat(td, uap->fd, &ub);
1761 if (error != 0)
1762 return (error);
1763 error = freebsd11_cvtnstat(&ub, &nub);
1764 if (error != 0)
1765 error = copyout(&nub, uap->sb, sizeof(nub));
1766 return (error);
1767 }
1768 #endif /* COMPAT_FREEBSD11 */
1769
1770 /*
1771 * Return pathconf information about a file descriptor.
1772 */
1773 #ifndef _SYS_SYSPROTO_H_
1774 struct fpathconf_args {
1775 int fd;
1776 int name;
1777 };
1778 #endif
1779 /* ARGSUSED */
1780 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1781 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1782 {
1783 long value;
1784 int error;
1785
1786 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1787 if (error == 0)
1788 td->td_retval[0] = value;
1789 return (error);
1790 }
1791
1792 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1793 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1794 {
1795 struct file *fp;
1796 struct vnode *vp;
1797 int error;
1798
1799 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1800 if (error != 0)
1801 return (error);
1802
1803 if (name == _PC_ASYNC_IO) {
1804 *valuep = _POSIX_ASYNCHRONOUS_IO;
1805 goto out;
1806 }
1807 vp = fp->f_vnode;
1808 if (vp != NULL) {
1809 vn_lock(vp, LK_SHARED | LK_RETRY);
1810 error = VOP_PATHCONF(vp, name, valuep);
1811 VOP_UNLOCK(vp);
1812 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1813 if (name != _PC_PIPE_BUF) {
1814 error = EINVAL;
1815 } else {
1816 *valuep = PIPE_BUF;
1817 error = 0;
1818 }
1819 } else {
1820 error = EOPNOTSUPP;
1821 }
1822 out:
1823 fdrop(fp, td);
1824 return (error);
1825 }
1826
1827 /*
1828 * Copy filecaps structure allocating memory for ioctls array if needed.
1829 *
1830 * The last parameter indicates whether the fdtable is locked. If it is not and
1831 * ioctls are encountered, copying fails and the caller must lock the table.
1832 *
1833 * Note that if the table was not locked, the caller has to check the relevant
1834 * sequence counter to determine whether the operation was successful.
1835 */
1836 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1837 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1838 {
1839 size_t size;
1840
1841 if (src->fc_ioctls != NULL && !locked)
1842 return (false);
1843 memcpy(dst, src, sizeof(*src));
1844 if (src->fc_ioctls == NULL)
1845 return (true);
1846
1847 KASSERT(src->fc_nioctls > 0,
1848 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1849
1850 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1851 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1852 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1853 return (true);
1854 }
1855
1856 static u_long *
filecaps_copy_prep(const struct filecaps * src)1857 filecaps_copy_prep(const struct filecaps *src)
1858 {
1859 u_long *ioctls;
1860 size_t size;
1861
1862 if (__predict_true(src->fc_ioctls == NULL))
1863 return (NULL);
1864
1865 KASSERT(src->fc_nioctls > 0,
1866 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1867
1868 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1869 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1870 return (ioctls);
1871 }
1872
1873 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1874 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1875 u_long *ioctls)
1876 {
1877 size_t size;
1878
1879 *dst = *src;
1880 if (__predict_true(src->fc_ioctls == NULL)) {
1881 MPASS(ioctls == NULL);
1882 return;
1883 }
1884
1885 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1886 dst->fc_ioctls = ioctls;
1887 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1888 }
1889
1890 /*
1891 * Move filecaps structure to the new place and clear the old place.
1892 */
1893 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1894 filecaps_move(struct filecaps *src, struct filecaps *dst)
1895 {
1896
1897 *dst = *src;
1898 bzero(src, sizeof(*src));
1899 }
1900
1901 /*
1902 * Fill the given filecaps structure with full rights.
1903 */
1904 static void
filecaps_fill(struct filecaps * fcaps)1905 filecaps_fill(struct filecaps *fcaps)
1906 {
1907
1908 CAP_ALL(&fcaps->fc_rights);
1909 fcaps->fc_ioctls = NULL;
1910 fcaps->fc_nioctls = -1;
1911 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1912 }
1913
1914 /*
1915 * Free memory allocated within filecaps structure.
1916 */
1917 static void
filecaps_free_ioctl(struct filecaps * fcaps)1918 filecaps_free_ioctl(struct filecaps *fcaps)
1919 {
1920
1921 free(fcaps->fc_ioctls, M_FILECAPS);
1922 fcaps->fc_ioctls = NULL;
1923 }
1924
1925 void
filecaps_free(struct filecaps * fcaps)1926 filecaps_free(struct filecaps *fcaps)
1927 {
1928
1929 filecaps_free_ioctl(fcaps);
1930 bzero(fcaps, sizeof(*fcaps));
1931 }
1932
1933 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1934 filecaps_free_prep(struct filecaps *fcaps)
1935 {
1936 u_long *ioctls;
1937
1938 ioctls = fcaps->fc_ioctls;
1939 bzero(fcaps, sizeof(*fcaps));
1940 return (ioctls);
1941 }
1942
1943 static void
filecaps_free_finish(u_long * ioctls)1944 filecaps_free_finish(u_long *ioctls)
1945 {
1946
1947 free(ioctls, M_FILECAPS);
1948 }
1949
1950 /*
1951 * Validate the given filecaps structure.
1952 */
1953 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1954 filecaps_validate(const struct filecaps *fcaps, const char *func)
1955 {
1956
1957 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1958 ("%s: invalid rights", func));
1959 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1960 ("%s: invalid fcntls", func));
1961 KASSERT(fcaps->fc_fcntls == 0 ||
1962 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1963 ("%s: fcntls without CAP_FCNTL", func));
1964 /*
1965 * open calls without WANTIOCTLCAPS free caps but leave the counter
1966 */
1967 #if 0
1968 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1969 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1970 ("%s: invalid ioctls", func));
1971 #endif
1972 KASSERT(fcaps->fc_nioctls == 0 ||
1973 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1974 ("%s: ioctls without CAP_IOCTL", func));
1975 }
1976
1977 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1978 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1979 {
1980 int nfd1;
1981
1982 FILEDESC_XLOCK_ASSERT(fdp);
1983
1984 nfd1 = fdp->fd_nfiles * 2;
1985 if (nfd1 < nfd)
1986 nfd1 = nfd;
1987 fdgrowtable(fdp, nfd1);
1988 }
1989
1990 /*
1991 * Grow the file table to accommodate (at least) nfd descriptors.
1992 */
1993 static void
fdgrowtable(struct filedesc * fdp,int nfd)1994 fdgrowtable(struct filedesc *fdp, int nfd)
1995 {
1996 struct filedesc0 *fdp0;
1997 struct freetable *ft;
1998 struct fdescenttbl *ntable;
1999 struct fdescenttbl *otable;
2000 int nnfiles, onfiles;
2001 NDSLOTTYPE *nmap, *omap;
2002
2003 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
2004
2005 /* save old values */
2006 onfiles = fdp->fd_nfiles;
2007 otable = fdp->fd_files;
2008 omap = fdp->fd_map;
2009
2010 /* compute the size of the new table */
2011 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
2012 if (nnfiles <= onfiles)
2013 /* the table is already large enough */
2014 return;
2015
2016 /*
2017 * Allocate a new table. We need enough space for the number of
2018 * entries, file entries themselves and the struct freetable we will use
2019 * when we decommission the table and place it on the freelist.
2020 * We place the struct freetable in the middle so we don't have
2021 * to worry about padding.
2022 */
2023 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
2024 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
2025 sizeof(struct freetable),
2026 M_FILEDESC, M_ZERO | M_WAITOK);
2027 /* copy the old data */
2028 ntable->fdt_nfiles = nnfiles;
2029 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
2030 onfiles * sizeof(ntable->fdt_ofiles[0]));
2031
2032 /*
2033 * Allocate a new map only if the old is not large enough. It will
2034 * grow at a slower rate than the table as it can map more
2035 * entries than the table can hold.
2036 */
2037 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
2038 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
2039 M_ZERO | M_WAITOK);
2040 /* copy over the old data and update the pointer */
2041 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
2042 fdp->fd_map = nmap;
2043 }
2044
2045 /*
2046 * Make sure that ntable is correctly initialized before we replace
2047 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
2048 * data.
2049 */
2050 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
2051
2052 /*
2053 * Free the old file table when not shared by other threads or processes.
2054 * The old file table is considered to be shared when either are true:
2055 * - The process has more than one thread.
2056 * - The file descriptor table has been shared via fdshare().
2057 *
2058 * When shared, the old file table will be placed on a freelist
2059 * which will be processed when the struct filedesc is released.
2060 *
2061 * Note that if onfiles == NDFILE, we're dealing with the original
2062 * static allocation contained within (struct filedesc0 *)fdp,
2063 * which must not be freed.
2064 */
2065 if (onfiles > NDFILE) {
2066 /*
2067 * Note we may be called here from fdinit while allocating a
2068 * table for a new process in which case ->p_fd points
2069 * elsewhere.
2070 */
2071 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
2072 free(otable, M_FILEDESC);
2073 } else {
2074 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
2075 fdp0 = (struct filedesc0 *)fdp;
2076 ft->ft_table = otable;
2077 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
2078 }
2079 }
2080 /*
2081 * The map does not have the same possibility of threads still
2082 * holding references to it. So always free it as long as it
2083 * does not reference the original static allocation.
2084 */
2085 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
2086 free(omap, M_FILEDESC);
2087 }
2088
2089 /*
2090 * Allocate a file descriptor for the process.
2091 */
2092 int
fdalloc(struct thread * td,int minfd,int * result)2093 fdalloc(struct thread *td, int minfd, int *result)
2094 {
2095 struct proc *p = td->td_proc;
2096 struct filedesc *fdp = p->p_fd;
2097 int fd, maxfd, allocfd;
2098 #ifdef RACCT
2099 int error;
2100 #endif
2101
2102 FILEDESC_XLOCK_ASSERT(fdp);
2103
2104 if (fdp->fd_freefile > minfd)
2105 minfd = fdp->fd_freefile;
2106
2107 maxfd = getmaxfd(td);
2108
2109 /*
2110 * Search the bitmap for a free descriptor starting at minfd.
2111 * If none is found, grow the file table.
2112 */
2113 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2114 if (__predict_false(fd >= maxfd))
2115 return (EMFILE);
2116 if (__predict_false(fd >= fdp->fd_nfiles)) {
2117 allocfd = min(fd * 2, maxfd);
2118 #ifdef RACCT
2119 if (RACCT_ENABLED()) {
2120 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2121 if (error != 0)
2122 return (EMFILE);
2123 }
2124 #endif
2125 /*
2126 * fd is already equal to first free descriptor >= minfd, so
2127 * we only need to grow the table and we are done.
2128 */
2129 fdgrowtable_exp(fdp, allocfd);
2130 }
2131
2132 /*
2133 * Perform some sanity checks, then mark the file descriptor as
2134 * used and return it to the caller.
2135 */
2136 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2137 ("invalid descriptor %d", fd));
2138 KASSERT(!fdisused(fdp, fd),
2139 ("fd_first_free() returned non-free descriptor"));
2140 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2141 ("file descriptor isn't free"));
2142 fdused(fdp, fd);
2143 *result = fd;
2144 return (0);
2145 }
2146
2147 /*
2148 * Allocate n file descriptors for the process.
2149 */
2150 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2151 fdallocn(struct thread *td, int minfd, int *fds, int n)
2152 {
2153 struct proc *p = td->td_proc;
2154 struct filedesc *fdp = p->p_fd;
2155 int i;
2156
2157 FILEDESC_XLOCK_ASSERT(fdp);
2158
2159 for (i = 0; i < n; i++)
2160 if (fdalloc(td, 0, &fds[i]) != 0)
2161 break;
2162
2163 if (i < n) {
2164 for (i--; i >= 0; i--)
2165 fdunused(fdp, fds[i]);
2166 return (EMFILE);
2167 }
2168
2169 return (0);
2170 }
2171
2172 /*
2173 * Create a new open file structure and allocate a file descriptor for the
2174 * process that refers to it. We add one reference to the file for the
2175 * descriptor table and one reference for resultfp. This is to prevent us
2176 * being preempted and the entry in the descriptor table closed after we
2177 * release the FILEDESC lock.
2178 */
2179 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2180 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2181 struct filecaps *fcaps)
2182 {
2183 struct file *fp;
2184 int error, fd;
2185
2186 MPASS(resultfp != NULL);
2187 MPASS(resultfd != NULL);
2188
2189 error = _falloc_noinstall(td, &fp, 2);
2190 if (__predict_false(error != 0)) {
2191 return (error);
2192 }
2193
2194 error = finstall_refed(td, fp, &fd, flags, fcaps);
2195 if (__predict_false(error != 0)) {
2196 falloc_abort(td, fp);
2197 return (error);
2198 }
2199
2200 *resultfp = fp;
2201 *resultfd = fd;
2202
2203 return (0);
2204 }
2205
2206 /*
2207 * Create a new open file structure without allocating a file descriptor.
2208 */
2209 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2210 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2211 {
2212 struct file *fp;
2213 int maxuserfiles = maxfiles - (maxfiles / 20);
2214 int openfiles_new;
2215 static struct timeval lastfail;
2216 static int curfail;
2217
2218 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2219 MPASS(n > 0);
2220
2221 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2222 if ((openfiles_new >= maxuserfiles &&
2223 priv_check(td, PRIV_MAXFILES) != 0) ||
2224 openfiles_new >= maxfiles) {
2225 atomic_subtract_int(&openfiles, 1);
2226 if (ppsratecheck(&lastfail, &curfail, 1)) {
2227 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2228 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2229 }
2230 return (ENFILE);
2231 }
2232 fp = uma_zalloc(file_zone, M_WAITOK);
2233 bzero(fp, sizeof(*fp));
2234 refcount_init(&fp->f_count, n);
2235 fp->f_cred = crhold(td->td_ucred);
2236 fp->f_ops = &badfileops;
2237 *resultfp = fp;
2238 return (0);
2239 }
2240
2241 void
falloc_abort(struct thread * td,struct file * fp)2242 falloc_abort(struct thread *td, struct file *fp)
2243 {
2244
2245 /*
2246 * For assertion purposes.
2247 */
2248 refcount_init(&fp->f_count, 0);
2249 _fdrop(fp, td);
2250 }
2251
2252 /*
2253 * Install a file in a file descriptor table.
2254 */
2255 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2256 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2257 struct filecaps *fcaps)
2258 {
2259 struct filedescent *fde;
2260
2261 MPASS(fp != NULL);
2262 if (fcaps != NULL)
2263 filecaps_validate(fcaps, __func__);
2264 FILEDESC_XLOCK_ASSERT(fdp);
2265
2266 fde = &fdp->fd_ofiles[fd];
2267 #ifdef CAPABILITIES
2268 seqc_write_begin(&fde->fde_seqc);
2269 #endif
2270 fde->fde_file = fp;
2271 fde->fde_flags = open_to_fde_flags(flags, true);
2272 if (fcaps != NULL)
2273 filecaps_move(fcaps, &fde->fde_caps);
2274 else
2275 filecaps_fill(&fde->fde_caps);
2276 #ifdef CAPABILITIES
2277 seqc_write_end(&fde->fde_seqc);
2278 #endif
2279 }
2280
2281 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2282 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2283 struct filecaps *fcaps)
2284 {
2285 struct filedesc *fdp = td->td_proc->p_fd;
2286 int error;
2287
2288 MPASS(fd != NULL);
2289
2290 FILEDESC_XLOCK(fdp);
2291 error = fdalloc(td, 0, fd);
2292 if (__predict_true(error == 0)) {
2293 _finstall(fdp, fp, *fd, flags, fcaps);
2294 }
2295 FILEDESC_XUNLOCK(fdp);
2296 return (error);
2297 }
2298
2299 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2300 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2301 struct filecaps *fcaps)
2302 {
2303 int error;
2304
2305 MPASS(fd != NULL);
2306
2307 if (!fhold(fp))
2308 return (EBADF);
2309 error = finstall_refed(td, fp, fd, flags, fcaps);
2310 if (__predict_false(error != 0)) {
2311 fdrop(fp, td);
2312 }
2313 return (error);
2314 }
2315
2316 /*
2317 * Build a new filedesc structure from another.
2318 *
2319 * If fdp is not NULL, return with it shared locked.
2320 */
2321 struct filedesc *
fdinit(void)2322 fdinit(void)
2323 {
2324 struct filedesc0 *newfdp0;
2325 struct filedesc *newfdp;
2326
2327 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2328 newfdp = &newfdp0->fd_fd;
2329
2330 /* Create the file descriptor table. */
2331 FILEDESC_LOCK_INIT(newfdp);
2332 refcount_init(&newfdp->fd_refcnt, 1);
2333 refcount_init(&newfdp->fd_holdcnt, 1);
2334 newfdp->fd_map = newfdp0->fd_dmap;
2335 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2336 newfdp->fd_files->fdt_nfiles = NDFILE;
2337
2338 return (newfdp);
2339 }
2340
2341 /*
2342 * Build a pwddesc structure from another.
2343 * Copy the current, root, and jail root vnode references.
2344 *
2345 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2346 */
2347 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2348 pdinit(struct pwddesc *pdp, bool keeplock)
2349 {
2350 struct pwddesc *newpdp;
2351 struct pwd *newpwd;
2352
2353 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2354
2355 PWDDESC_LOCK_INIT(newpdp);
2356 refcount_init(&newpdp->pd_refcount, 1);
2357 newpdp->pd_cmask = CMASK;
2358
2359 if (pdp == NULL) {
2360 newpwd = pwd_alloc();
2361 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2362 return (newpdp);
2363 }
2364
2365 PWDDESC_XLOCK(pdp);
2366 newpwd = pwd_hold_pwddesc(pdp);
2367 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2368 if (!keeplock)
2369 PWDDESC_XUNLOCK(pdp);
2370 return (newpdp);
2371 }
2372
2373 /*
2374 * Hold either filedesc or pwddesc of the passed process.
2375 *
2376 * The process lock is used to synchronize against the target exiting and
2377 * freeing the data.
2378 *
2379 * Clearing can be ilustrated in 3 steps:
2380 * 1. set the pointer to NULL. Either routine can race against it, hence
2381 * atomic_load_ptr.
2382 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2383 * race to either still see the pointer or find NULL. It is still safe to
2384 * grab a reference as clearing is stalled.
2385 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2386 * guaranteed to see NULL, making it safe to finish clearing
2387 */
2388 static struct filedesc *
fdhold(struct proc * p)2389 fdhold(struct proc *p)
2390 {
2391 struct filedesc *fdp;
2392
2393 PROC_LOCK_ASSERT(p, MA_OWNED);
2394 fdp = atomic_load_ptr(&p->p_fd);
2395 if (fdp != NULL)
2396 refcount_acquire(&fdp->fd_holdcnt);
2397 return (fdp);
2398 }
2399
2400 static struct pwddesc *
pdhold(struct proc * p)2401 pdhold(struct proc *p)
2402 {
2403 struct pwddesc *pdp;
2404
2405 PROC_LOCK_ASSERT(p, MA_OWNED);
2406 pdp = atomic_load_ptr(&p->p_pd);
2407 if (pdp != NULL)
2408 refcount_acquire(&pdp->pd_refcount);
2409 return (pdp);
2410 }
2411
2412 static void
fddrop(struct filedesc * fdp)2413 fddrop(struct filedesc *fdp)
2414 {
2415
2416 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2417 if (refcount_release(&fdp->fd_holdcnt) == 0)
2418 return;
2419 }
2420
2421 FILEDESC_LOCK_DESTROY(fdp);
2422 uma_zfree(filedesc0_zone, fdp);
2423 }
2424
2425 static void
pddrop(struct pwddesc * pdp)2426 pddrop(struct pwddesc *pdp)
2427 {
2428 struct pwd *pwd;
2429
2430 if (refcount_release_if_not_last(&pdp->pd_refcount))
2431 return;
2432
2433 PWDDESC_XLOCK(pdp);
2434 if (refcount_release(&pdp->pd_refcount) == 0) {
2435 PWDDESC_XUNLOCK(pdp);
2436 return;
2437 }
2438 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2439 pwd_set(pdp, NULL);
2440 PWDDESC_XUNLOCK(pdp);
2441 pwd_drop(pwd);
2442
2443 PWDDESC_LOCK_DESTROY(pdp);
2444 free(pdp, M_PWDDESC);
2445 }
2446
2447 /*
2448 * Share a filedesc structure.
2449 */
2450 struct filedesc *
fdshare(struct filedesc * fdp)2451 fdshare(struct filedesc *fdp)
2452 {
2453
2454 refcount_acquire(&fdp->fd_refcnt);
2455 return (fdp);
2456 }
2457
2458 /*
2459 * Share a pwddesc structure.
2460 */
2461 struct pwddesc *
pdshare(struct pwddesc * pdp)2462 pdshare(struct pwddesc *pdp)
2463 {
2464 refcount_acquire(&pdp->pd_refcount);
2465 return (pdp);
2466 }
2467
2468 /*
2469 * Unshare a filedesc structure, if necessary by making a copy
2470 */
2471 void
fdunshare(struct thread * td)2472 fdunshare(struct thread *td)
2473 {
2474 struct filedesc *tmp;
2475 struct proc *p = td->td_proc;
2476
2477 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2478 return;
2479
2480 tmp = fdcopy(p->p_fd);
2481 fdescfree(td);
2482 p->p_fd = tmp;
2483 }
2484
2485 /*
2486 * Unshare a pwddesc structure.
2487 */
2488 void
pdunshare(struct thread * td)2489 pdunshare(struct thread *td)
2490 {
2491 struct pwddesc *pdp;
2492 struct proc *p;
2493
2494 p = td->td_proc;
2495 /* Not shared. */
2496 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2497 return;
2498
2499 pdp = pdcopy(p->p_pd);
2500 pdescfree(td);
2501 p->p_pd = pdp;
2502 }
2503
2504 /*
2505 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2506 * this is to ease callers, not catch errors.
2507 */
2508 struct filedesc *
fdcopy(struct filedesc * fdp)2509 fdcopy(struct filedesc *fdp)
2510 {
2511 struct filedesc *newfdp;
2512 struct filedescent *nfde, *ofde;
2513 int i, lastfile;
2514
2515 MPASS(fdp != NULL);
2516
2517 newfdp = fdinit();
2518 FILEDESC_SLOCK(fdp);
2519 for (;;) {
2520 lastfile = fdlastfile(fdp);
2521 if (lastfile < newfdp->fd_nfiles)
2522 break;
2523 FILEDESC_SUNLOCK(fdp);
2524 fdgrowtable(newfdp, lastfile + 1);
2525 FILEDESC_SLOCK(fdp);
2526 }
2527 /* copy all passable descriptors (i.e. not kqueue) */
2528 newfdp->fd_freefile = fdp->fd_freefile;
2529 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2530 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2531 (ofde->fde_flags & UF_FOCLOSE) != 0 ||
2532 !fhold(ofde->fde_file)) {
2533 if (newfdp->fd_freefile == fdp->fd_freefile)
2534 newfdp->fd_freefile = i;
2535 continue;
2536 }
2537 nfde = &newfdp->fd_ofiles[i];
2538 *nfde = *ofde;
2539 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2540 fdused_init(newfdp, i);
2541 }
2542 MPASS(newfdp->fd_freefile != -1);
2543 FILEDESC_SUNLOCK(fdp);
2544 return (newfdp);
2545 }
2546
2547 /*
2548 * Copy a pwddesc structure.
2549 */
2550 struct pwddesc *
pdcopy(struct pwddesc * pdp)2551 pdcopy(struct pwddesc *pdp)
2552 {
2553 struct pwddesc *newpdp;
2554
2555 MPASS(pdp != NULL);
2556
2557 newpdp = pdinit(pdp, true);
2558 newpdp->pd_cmask = pdp->pd_cmask;
2559 PWDDESC_XUNLOCK(pdp);
2560 return (newpdp);
2561 }
2562
2563 /*
2564 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2565 * one of processes using it exits) and the table used to be shared.
2566 */
2567 static void
fdclearlocks(struct thread * td)2568 fdclearlocks(struct thread *td)
2569 {
2570 struct filedesc *fdp;
2571 struct filedesc_to_leader *fdtol;
2572 struct flock lf;
2573 struct file *fp;
2574 struct proc *p;
2575 struct vnode *vp;
2576 int i;
2577
2578 p = td->td_proc;
2579 fdp = p->p_fd;
2580 fdtol = p->p_fdtol;
2581 MPASS(fdtol != NULL);
2582
2583 FILEDESC_XLOCK(fdp);
2584 KASSERT(fdtol->fdl_refcount > 0,
2585 ("filedesc_to_refcount botch: fdl_refcount=%d",
2586 fdtol->fdl_refcount));
2587 if (fdtol->fdl_refcount == 1 &&
2588 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2589 FILEDESC_FOREACH_FP(fdp, i, fp) {
2590 if (fp->f_type != DTYPE_VNODE ||
2591 !fhold(fp))
2592 continue;
2593 FILEDESC_XUNLOCK(fdp);
2594 lf.l_whence = SEEK_SET;
2595 lf.l_start = 0;
2596 lf.l_len = 0;
2597 lf.l_type = F_UNLCK;
2598 vp = fp->f_vnode;
2599 (void) VOP_ADVLOCK(vp,
2600 (caddr_t)p->p_leader, F_UNLCK,
2601 &lf, F_POSIX);
2602 FILEDESC_XLOCK(fdp);
2603 fdrop(fp, td);
2604 }
2605 }
2606 retry:
2607 if (fdtol->fdl_refcount == 1) {
2608 if (fdp->fd_holdleaderscount > 0 &&
2609 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2610 /*
2611 * close() or kern_dup() has cleared a reference
2612 * in a shared file descriptor table.
2613 */
2614 fdp->fd_holdleaderswakeup = 1;
2615 sx_sleep(&fdp->fd_holdleaderscount,
2616 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2617 goto retry;
2618 }
2619 if (fdtol->fdl_holdcount > 0) {
2620 /*
2621 * Ensure that fdtol->fdl_leader remains
2622 * valid in closef().
2623 */
2624 fdtol->fdl_wakeup = 1;
2625 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2626 "fdlhold", 0);
2627 goto retry;
2628 }
2629 }
2630 fdtol->fdl_refcount--;
2631 if (fdtol->fdl_refcount == 0 &&
2632 fdtol->fdl_holdcount == 0) {
2633 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2634 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2635 } else
2636 fdtol = NULL;
2637 p->p_fdtol = NULL;
2638 FILEDESC_XUNLOCK(fdp);
2639 if (fdtol != NULL)
2640 free(fdtol, M_FILEDESC_TO_LEADER);
2641 }
2642
2643 /*
2644 * Release a filedesc structure.
2645 */
2646 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2647 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2648 {
2649 struct filedesc0 *fdp0;
2650 struct freetable *ft, *tft;
2651 struct filedescent *fde;
2652 struct file *fp;
2653 int i;
2654
2655 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2656 ("%s: fd table %p carries references", __func__, fdp));
2657
2658 /*
2659 * Serialize with threads iterating over the table, if any.
2660 */
2661 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2662 FILEDESC_XLOCK(fdp);
2663 FILEDESC_XUNLOCK(fdp);
2664 }
2665
2666 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2667 fp = fde->fde_file;
2668 fdefree_last(fde);
2669 (void) closef(fp, td);
2670 }
2671
2672 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2673 free(fdp->fd_map, M_FILEDESC);
2674 if (fdp->fd_nfiles > NDFILE)
2675 free(fdp->fd_files, M_FILEDESC);
2676
2677 fdp0 = (struct filedesc0 *)fdp;
2678 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2679 free(ft->ft_table, M_FILEDESC);
2680
2681 fddrop(fdp);
2682 }
2683
2684 void
fdescfree(struct thread * td)2685 fdescfree(struct thread *td)
2686 {
2687 struct proc *p;
2688 struct filedesc *fdp;
2689
2690 p = td->td_proc;
2691 fdp = p->p_fd;
2692 MPASS(fdp != NULL);
2693
2694 #ifdef RACCT
2695 if (RACCT_ENABLED())
2696 racct_set_unlocked(p, RACCT_NOFILE, 0);
2697 #endif
2698
2699 if (p->p_fdtol != NULL)
2700 fdclearlocks(td);
2701
2702 /*
2703 * Check fdhold for an explanation.
2704 */
2705 atomic_store_ptr(&p->p_fd, NULL);
2706 atomic_thread_fence_seq_cst();
2707 PROC_WAIT_UNLOCKED(p);
2708
2709 if (refcount_release(&fdp->fd_refcnt) == 0)
2710 return;
2711
2712 fdescfree_fds(td, fdp);
2713 }
2714
2715 void
pdescfree(struct thread * td)2716 pdescfree(struct thread *td)
2717 {
2718 struct proc *p;
2719 struct pwddesc *pdp;
2720
2721 p = td->td_proc;
2722 pdp = p->p_pd;
2723 MPASS(pdp != NULL);
2724
2725 /*
2726 * Check pdhold for an explanation.
2727 */
2728 atomic_store_ptr(&p->p_pd, NULL);
2729 atomic_thread_fence_seq_cst();
2730 PROC_WAIT_UNLOCKED(p);
2731
2732 pddrop(pdp);
2733 }
2734
2735 /*
2736 * For setugid programs, we don't want to people to use that setugidness
2737 * to generate error messages which write to a file which otherwise would
2738 * otherwise be off-limits to the process. We check for filesystems where
2739 * the vnode can change out from under us after execve (like [lin]procfs).
2740 *
2741 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2742 * sufficient. We also don't check for setugidness since we know we are.
2743 */
2744 static bool
is_unsafe(struct file * fp)2745 is_unsafe(struct file *fp)
2746 {
2747 struct vnode *vp;
2748
2749 if (fp->f_type != DTYPE_VNODE)
2750 return (false);
2751
2752 vp = fp->f_vnode;
2753 return ((vp->v_vflag & VV_PROCDEP) != 0);
2754 }
2755
2756 /*
2757 * Make this setguid thing safe, if at all possible.
2758 */
2759 void
fdsetugidsafety(struct thread * td)2760 fdsetugidsafety(struct thread *td)
2761 {
2762 struct filedesc *fdp;
2763 struct file *fp;
2764 int i;
2765
2766 fdp = td->td_proc->p_fd;
2767 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2768 ("the fdtable should not be shared"));
2769 MPASS(fdp->fd_nfiles >= 3);
2770 for (i = 0; i <= 2; i++) {
2771 fp = fdp->fd_ofiles[i].fde_file;
2772 if (fp != NULL && is_unsafe(fp)) {
2773 FILEDESC_XLOCK(fdp);
2774 knote_fdclose(td, i);
2775 /*
2776 * NULL-out descriptor prior to close to avoid
2777 * a race while close blocks.
2778 */
2779 fdfree(fdp, i);
2780 FILEDESC_XUNLOCK(fdp);
2781 (void) closef(fp, td);
2782 }
2783 }
2784 }
2785
2786 /*
2787 * If a specific file object occupies a specific file descriptor, close the
2788 * file descriptor entry and drop a reference on the file object. This is a
2789 * convenience function to handle a subsequent error in a function that calls
2790 * falloc() that handles the race that another thread might have closed the
2791 * file descriptor out from under the thread creating the file object.
2792 */
2793 void
fdclose(struct thread * td,struct file * fp,int idx)2794 fdclose(struct thread *td, struct file *fp, int idx)
2795 {
2796 struct filedesc *fdp = td->td_proc->p_fd;
2797
2798 FILEDESC_XLOCK(fdp);
2799 if (fdp->fd_ofiles[idx].fde_file == fp) {
2800 fdfree(fdp, idx);
2801 FILEDESC_XUNLOCK(fdp);
2802 fdrop(fp, td);
2803 } else
2804 FILEDESC_XUNLOCK(fdp);
2805 }
2806
2807 /*
2808 * Close any files on exec?
2809 */
2810 void
fdcloseexec(struct thread * td)2811 fdcloseexec(struct thread *td)
2812 {
2813 struct filedesc *fdp;
2814 struct filedescent *fde;
2815 struct file *fp;
2816 int i;
2817
2818 fdp = td->td_proc->p_fd;
2819 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2820 ("the fdtable should not be shared"));
2821 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2822 fp = fde->fde_file;
2823 if (fp->f_type == DTYPE_MQUEUE ||
2824 (fde->fde_flags & UF_EXCLOSE)) {
2825 FILEDESC_XLOCK(fdp);
2826 fdfree(fdp, i);
2827 (void) closefp(fdp, i, fp, td, false, false);
2828 FILEDESC_UNLOCK_ASSERT(fdp);
2829 } else if (fde->fde_flags & UF_FOCLOSE) {
2830 /*
2831 * https://austingroupbugs.net/view.php?id=1851
2832 * FD_CLOFORK should not be preserved across exec
2833 */
2834 fde->fde_flags &= ~UF_FOCLOSE;
2835 }
2836 }
2837 }
2838
2839 /*
2840 * It is unsafe for set[ug]id processes to be started with file
2841 * descriptors 0..2 closed, as these descriptors are given implicit
2842 * significance in the Standard C library. fdcheckstd() will create a
2843 * descriptor referencing /dev/null for each of stdin, stdout, and
2844 * stderr that is not already open.
2845 */
2846 int
fdcheckstd(struct thread * td)2847 fdcheckstd(struct thread *td)
2848 {
2849 struct filedesc *fdp;
2850 register_t save;
2851 int i, error, devnull;
2852
2853 fdp = td->td_proc->p_fd;
2854 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2855 ("the fdtable should not be shared"));
2856 MPASS(fdp->fd_nfiles >= 3);
2857 devnull = -1;
2858 for (i = 0; i <= 2; i++) {
2859 if (fdp->fd_ofiles[i].fde_file != NULL)
2860 continue;
2861
2862 save = td->td_retval[0];
2863 if (devnull != -1) {
2864 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2865 } else {
2866 error = kern_openat(td, AT_FDCWD, "/dev/null",
2867 UIO_SYSSPACE, O_RDWR, 0);
2868 if (error == 0) {
2869 devnull = td->td_retval[0];
2870 KASSERT(devnull == i, ("we didn't get our fd"));
2871 }
2872 }
2873 td->td_retval[0] = save;
2874 if (error != 0)
2875 return (error);
2876 }
2877 return (0);
2878 }
2879
2880 /*
2881 * Internal form of close. Decrement reference count on file structure.
2882 * Note: td may be NULL when closing a file that was being passed in a
2883 * message.
2884 */
2885 int
closef(struct file * fp,struct thread * td)2886 closef(struct file *fp, struct thread *td)
2887 {
2888 struct vnode *vp;
2889 struct flock lf;
2890 struct filedesc_to_leader *fdtol;
2891 struct filedesc *fdp;
2892
2893 MPASS(td != NULL);
2894
2895 /*
2896 * POSIX record locking dictates that any close releases ALL
2897 * locks owned by this process. This is handled by setting
2898 * a flag in the unlock to free ONLY locks obeying POSIX
2899 * semantics, and not to free BSD-style file locks.
2900 * If the descriptor was in a message, POSIX-style locks
2901 * aren't passed with the descriptor, and the thread pointer
2902 * will be NULL. Callers should be careful only to pass a
2903 * NULL thread pointer when there really is no owning
2904 * context that might have locks, or the locks will be
2905 * leaked.
2906 */
2907 if (fp->f_type == DTYPE_VNODE) {
2908 vp = fp->f_vnode;
2909 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2910 lf.l_whence = SEEK_SET;
2911 lf.l_start = 0;
2912 lf.l_len = 0;
2913 lf.l_type = F_UNLCK;
2914 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2915 F_UNLCK, &lf, F_POSIX);
2916 }
2917 fdtol = td->td_proc->p_fdtol;
2918 if (fdtol != NULL) {
2919 /*
2920 * Handle special case where file descriptor table is
2921 * shared between multiple process leaders.
2922 */
2923 fdp = td->td_proc->p_fd;
2924 FILEDESC_XLOCK(fdp);
2925 for (fdtol = fdtol->fdl_next;
2926 fdtol != td->td_proc->p_fdtol;
2927 fdtol = fdtol->fdl_next) {
2928 if ((fdtol->fdl_leader->p_flag &
2929 P_ADVLOCK) == 0)
2930 continue;
2931 fdtol->fdl_holdcount++;
2932 FILEDESC_XUNLOCK(fdp);
2933 lf.l_whence = SEEK_SET;
2934 lf.l_start = 0;
2935 lf.l_len = 0;
2936 lf.l_type = F_UNLCK;
2937 vp = fp->f_vnode;
2938 (void) VOP_ADVLOCK(vp,
2939 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2940 F_POSIX);
2941 FILEDESC_XLOCK(fdp);
2942 fdtol->fdl_holdcount--;
2943 if (fdtol->fdl_holdcount == 0 &&
2944 fdtol->fdl_wakeup != 0) {
2945 fdtol->fdl_wakeup = 0;
2946 wakeup(fdtol);
2947 }
2948 }
2949 FILEDESC_XUNLOCK(fdp);
2950 }
2951 }
2952 return (fdrop_close(fp, td));
2953 }
2954
2955 /*
2956 * Hack for file descriptor passing code.
2957 */
2958 void
closef_nothread(struct file * fp)2959 closef_nothread(struct file *fp)
2960 {
2961
2962 fdrop(fp, NULL);
2963 }
2964
2965 /*
2966 * Initialize the file pointer with the specified properties.
2967 *
2968 * The ops are set with release semantics to be certain that the flags, type,
2969 * and data are visible when ops is. This is to prevent ops methods from being
2970 * called with bad data.
2971 */
2972 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)2973 finit(struct file *fp, u_int flag, short type, void *data,
2974 const struct fileops *ops)
2975 {
2976 fp->f_data = data;
2977 fp->f_flag = flag;
2978 fp->f_type = type;
2979 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2980 }
2981
2982 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)2983 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
2984 {
2985 fp->f_seqcount[UIO_READ] = 1;
2986 fp->f_seqcount[UIO_WRITE] = 1;
2987 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2988 data, ops);
2989 }
2990
2991 int
fget_cap_noref(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2992 fget_cap_noref(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
2993 struct file **fpp, struct filecaps *havecapsp)
2994 {
2995 struct filedescent *fde;
2996 int error;
2997
2998 FILEDESC_LOCK_ASSERT(fdp);
2999
3000 *fpp = NULL;
3001 fde = fdeget_noref(fdp, fd);
3002 if (fde == NULL) {
3003 error = EBADF;
3004 goto out;
3005 }
3006
3007 #ifdef CAPABILITIES
3008 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
3009 if (error != 0)
3010 goto out;
3011 #endif
3012
3013 if (havecapsp != NULL)
3014 filecaps_copy(&fde->fde_caps, havecapsp, true);
3015
3016 *fpp = fde->fde_file;
3017
3018 error = 0;
3019 out:
3020 return (error);
3021 }
3022
3023 #ifdef CAPABILITIES
3024 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3025 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3026 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3027 {
3028 struct filedesc *fdp = td->td_proc->p_fd;
3029 int error;
3030 struct file *fp;
3031 seqc_t seq;
3032
3033 *fpp = NULL;
3034 for (;;) {
3035 error = fget_unlocked_seq(td, fd, needrightsp, flagsp, &fp,
3036 &seq);
3037 if (error != 0)
3038 return (error);
3039
3040 if (havecapsp != NULL) {
3041 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
3042 havecapsp, false)) {
3043 fdrop(fp, td);
3044 goto get_locked;
3045 }
3046 }
3047
3048 if (!fd_modified(fdp, fd, seq))
3049 break;
3050 fdrop(fp, td);
3051 }
3052
3053 *fpp = fp;
3054 return (0);
3055
3056 get_locked:
3057 FILEDESC_SLOCK(fdp);
3058 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
3059 if (error == 0 && !fhold(*fpp))
3060 error = EBADF;
3061 FILEDESC_SUNLOCK(fdp);
3062 return (error);
3063 }
3064 #else
3065 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3066 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3067 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3068 {
3069 int error;
3070 error = fget_unlocked_flags(td, fd, needrightsp, flagsp, fpp);
3071 if (havecapsp != NULL && error == 0)
3072 filecaps_fill(havecapsp);
3073
3074 return (error);
3075 }
3076 #endif
3077
3078 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)3079 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
3080 {
3081 struct filedesc *fdp;
3082 struct file *fp;
3083 int error;
3084
3085 if (p == td->td_proc) /* curproc */
3086 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
3087
3088 PROC_LOCK(p);
3089 fdp = fdhold(p);
3090 PROC_UNLOCK(p);
3091 if (fdp == NULL)
3092 return (ENOENT);
3093 FILEDESC_SLOCK(fdp);
3094 if (refcount_load(&fdp->fd_refcnt) != 0) {
3095 fp = fget_noref(fdp, fd);
3096 if (fp != NULL && fhold(fp)) {
3097 *fpp = fp;
3098 error = 0;
3099 } else {
3100 error = EBADF;
3101 }
3102 } else {
3103 error = ENOENT;
3104 }
3105 FILEDESC_SUNLOCK(fdp);
3106 fddrop(fdp);
3107 return (error);
3108 }
3109
3110 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)3111 fget_remote_foreach(struct thread *td, struct proc *p,
3112 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
3113 {
3114 struct filedesc *fdp;
3115 struct fdescenttbl *fdt;
3116 struct file *fp;
3117 int error, error1, fd, highfd;
3118
3119 error = 0;
3120 PROC_LOCK(p);
3121 fdp = fdhold(p);
3122 PROC_UNLOCK(p);
3123 if (fdp == NULL)
3124 return (ENOENT);
3125
3126 FILEDESC_SLOCK(fdp);
3127 if (refcount_load(&fdp->fd_refcnt) != 0) {
3128 fdt = atomic_load_ptr(&fdp->fd_files);
3129 highfd = fdt->fdt_nfiles - 1;
3130 FILEDESC_SUNLOCK(fdp);
3131 } else {
3132 error = ENOENT;
3133 FILEDESC_SUNLOCK(fdp);
3134 goto out;
3135 }
3136
3137 for (fd = 0; fd <= highfd; fd++) {
3138 error1 = fget_remote(td, p, fd, &fp);
3139 if (error1 != 0)
3140 continue;
3141 error = fn(p, fd, fp, arg);
3142 fdrop(fp, td);
3143 if (error != 0)
3144 break;
3145 }
3146 out:
3147 fddrop(fdp);
3148 return (error);
3149 }
3150
3151 #ifdef CAPABILITIES
3152 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3153 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3154 {
3155 const struct filedescent *fde;
3156 const struct fdescenttbl *fdt;
3157 struct filedesc *fdp;
3158 struct file *fp;
3159 struct vnode *vp;
3160 const cap_rights_t *haverights;
3161 cap_rights_t rights;
3162 seqc_t seq;
3163 int fd, flags;
3164
3165 VFS_SMR_ASSERT_ENTERED();
3166
3167 fd = ndp->ni_dirfd;
3168 rights = *ndp->ni_rightsneeded;
3169 cap_rights_set_one(&rights, CAP_LOOKUP);
3170
3171 fdp = curproc->p_fd;
3172 fdt = fdp->fd_files;
3173 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3174 return (EBADF);
3175 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3176 fde = &fdt->fdt_ofiles[fd];
3177 haverights = cap_rights_fde_inline(fde);
3178 fp = fde->fde_file;
3179 if (__predict_false(fp == NULL))
3180 return (EAGAIN);
3181 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3182 return (EAGAIN);
3183 flags = fp->f_flag & FSEARCH;
3184 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3185 O_RESOLVE_BENEATH : 0;
3186 vp = fp->f_vnode;
3187 if (__predict_false(vp == NULL)) {
3188 return (EAGAIN);
3189 }
3190 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3191 return (EAGAIN);
3192 }
3193 /*
3194 * Use an acquire barrier to force re-reading of fdt so it is
3195 * refreshed for verification.
3196 */
3197 atomic_thread_fence_acq();
3198 fdt = fdp->fd_files;
3199 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3200 return (EAGAIN);
3201 /*
3202 * If file descriptor doesn't have all rights,
3203 * all lookups relative to it must also be
3204 * strictly relative.
3205 *
3206 * Not yet supported by fast path.
3207 */
3208 CAP_ALL(&rights);
3209 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3210 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3211 ndp->ni_filecaps.fc_nioctls != -1) {
3212 #ifdef notyet
3213 ndp->ni_lcf |= NI_LCF_STRICTREL;
3214 #else
3215 return (EAGAIN);
3216 #endif
3217 }
3218 *vpp = vp;
3219 *flagsp = flags;
3220 return (0);
3221 }
3222 #else
3223 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3224 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3225 {
3226 const struct filedescent *fde;
3227 const struct fdescenttbl *fdt;
3228 struct filedesc *fdp;
3229 struct file *fp;
3230 struct vnode *vp;
3231 int fd, flags;
3232
3233 VFS_SMR_ASSERT_ENTERED();
3234
3235 fd = ndp->ni_dirfd;
3236 fdp = curproc->p_fd;
3237 fdt = fdp->fd_files;
3238 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3239 return (EBADF);
3240 fde = &fdt->fdt_ofiles[fd];
3241 fp = fde->fde_file;
3242 if (__predict_false(fp == NULL))
3243 return (EAGAIN);
3244 flags = fp->f_flag & FSEARCH;
3245 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3246 O_RESOLVE_BENEATH : 0;
3247 vp = fp->f_vnode;
3248 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3249 return (EAGAIN);
3250 }
3251 /*
3252 * Use an acquire barrier to force re-reading of fdt so it is
3253 * refreshed for verification.
3254 */
3255 atomic_thread_fence_acq();
3256 fdt = fdp->fd_files;
3257 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3258 return (EAGAIN);
3259 filecaps_fill(&ndp->ni_filecaps);
3260 *vpp = vp;
3261 *flagsp = flags;
3262 return (0);
3263 }
3264 #endif
3265
3266 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3267 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3268 {
3269 struct thread *td;
3270 struct file *fp;
3271 struct vnode *vp;
3272 struct componentname *cnp;
3273 cap_rights_t rights;
3274 int error;
3275 uint8_t flags;
3276
3277 td = curthread;
3278 rights = *ndp->ni_rightsneeded;
3279 cap_rights_set_one(&rights, CAP_LOOKUP);
3280 cnp = &ndp->ni_cnd;
3281
3282 error = fget_cap(td, ndp->ni_dirfd, &rights, &flags, &fp,
3283 &ndp->ni_filecaps);
3284 if (__predict_false(error != 0))
3285 return (error);
3286 if (__predict_false(fp->f_ops == &badfileops)) {
3287 error = EBADF;
3288 goto out_free;
3289 }
3290 vp = fp->f_vnode;
3291 if (__predict_false(vp == NULL)) {
3292 error = ENOTDIR;
3293 goto out_free;
3294 }
3295 vrefact(vp);
3296 /*
3297 * XXX does not check for VDIR, handled by namei_setup
3298 */
3299 if ((fp->f_flag & FSEARCH) != 0)
3300 cnp->cn_flags |= NOEXECCHECK;
3301 if ((flags & UF_RESOLVE_BENEATH) != 0) {
3302 cnp->cn_flags |= RBENEATH;
3303 ndp->ni_resflags |= NIRES_BENEATH;
3304 }
3305 fdrop(fp, td);
3306
3307 #ifdef CAPABILITIES
3308 /*
3309 * If file descriptor doesn't have all rights,
3310 * all lookups relative to it must also be
3311 * strictly relative.
3312 */
3313 CAP_ALL(&rights);
3314 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3315 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3316 ndp->ni_filecaps.fc_nioctls != -1) {
3317 ndp->ni_lcf |= NI_LCF_STRICTREL;
3318 ndp->ni_resflags |= NIRES_STRICTREL;
3319 }
3320 #endif
3321
3322 /*
3323 * TODO: avoid copying ioctl caps if it can be helped to begin with
3324 */
3325 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3326 filecaps_free_ioctl(&ndp->ni_filecaps);
3327
3328 *vpp = vp;
3329 return (0);
3330
3331 out_free:
3332 filecaps_free(&ndp->ni_filecaps);
3333 fdrop(fp, td);
3334 return (error);
3335 }
3336
3337 /*
3338 * Fetch the descriptor locklessly.
3339 *
3340 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3341 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3342 * must be re-verified once we acquire a reference to be certain that the
3343 * identity is still correct and we did not lose a race due to preemption.
3344 *
3345 * Force a reload of fdt when looping. Another thread could reallocate
3346 * the table before this fd was closed, so it is possible that there is
3347 * a stale fp pointer in cached version.
3348 */
3349 #ifdef CAPABILITIES
3350 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp)3351 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3352 uint8_t *flagsp, struct file **fpp, seqc_t *seqp)
3353 {
3354 struct filedesc *fdp;
3355 const struct filedescent *fde;
3356 const struct fdescenttbl *fdt;
3357 struct file *fp;
3358 seqc_t seq;
3359 cap_rights_t haverights;
3360 int error;
3361 uint8_t flags;
3362
3363 fdp = td->td_proc->p_fd;
3364 fdt = fdp->fd_files;
3365 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3366 return (EBADF);
3367
3368 for (;;) {
3369 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3370 fde = &fdt->fdt_ofiles[fd];
3371 haverights = *cap_rights_fde_inline(fde);
3372 fp = fde->fde_file;
3373 flags = fde->fde_flags;
3374 if (__predict_false(fp == NULL)) {
3375 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3376 return (EBADF);
3377 fdt = atomic_load_ptr(&fdp->fd_files);
3378 continue;
3379 }
3380 error = cap_check_inline(&haverights, needrightsp);
3381 if (__predict_false(error != 0)) {
3382 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3383 return (error);
3384 fdt = atomic_load_ptr(&fdp->fd_files);
3385 continue;
3386 }
3387 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3388 fdt = atomic_load_ptr(&fdp->fd_files);
3389 continue;
3390 }
3391 /*
3392 * Use an acquire barrier to force re-reading of fdt so it is
3393 * refreshed for verification.
3394 */
3395 atomic_thread_fence_acq();
3396 fdt = fdp->fd_files;
3397 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3398 break;
3399 fdrop(fp, td);
3400 }
3401 *fpp = fp;
3402 if (flagsp != NULL)
3403 *flagsp = flags;
3404 if (seqp != NULL)
3405 *seqp = seq;
3406 return (0);
3407 }
3408 #else
3409 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp __unused)3410 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3411 uint8_t *flagsp, struct file **fpp, seqc_t *seqp __unused)
3412 {
3413 struct filedesc *fdp;
3414 const struct fdescenttbl *fdt;
3415 struct file *fp;
3416 uint8_t flags;
3417
3418 fdp = td->td_proc->p_fd;
3419 fdt = fdp->fd_files;
3420 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3421 return (EBADF);
3422
3423 for (;;) {
3424 fp = fdt->fdt_ofiles[fd].fde_file;
3425 flags = fdt->fdt_ofiles[fd].fde_flags;
3426 if (__predict_false(fp == NULL))
3427 return (EBADF);
3428 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3429 fdt = atomic_load_ptr(&fdp->fd_files);
3430 continue;
3431 }
3432 /*
3433 * Use an acquire barrier to force re-reading of fdt so it is
3434 * refreshed for verification.
3435 */
3436 atomic_thread_fence_acq();
3437 fdt = fdp->fd_files;
3438 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3439 break;
3440 fdrop(fp, td);
3441 }
3442 if (flagsp != NULL)
3443 *flagsp = flags;
3444 *fpp = fp;
3445 return (0);
3446 }
3447 #endif
3448
3449 /*
3450 * See the comments in fget_unlocked_seq for an explanation of how this works.
3451 *
3452 * This is a simplified variant which bails out to the aforementioned routine
3453 * if anything goes wrong. In practice this only happens when userspace is
3454 * racing with itself.
3455 */
3456 int
fget_unlocked_flags(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp)3457 fget_unlocked_flags(struct thread *td, int fd, const cap_rights_t *needrightsp,
3458 uint8_t *flagsp, struct file **fpp)
3459 {
3460 struct filedesc *fdp;
3461 #ifdef CAPABILITIES
3462 const struct filedescent *fde;
3463 #endif
3464 const struct fdescenttbl *fdt;
3465 struct file *fp;
3466 #ifdef CAPABILITIES
3467 seqc_t seq;
3468 const cap_rights_t *haverights;
3469 #endif
3470 uint8_t flags;
3471
3472 fdp = td->td_proc->p_fd;
3473 fdt = fdp->fd_files;
3474 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3475 *fpp = NULL;
3476 return (EBADF);
3477 }
3478 #ifdef CAPABILITIES
3479 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3480 fde = &fdt->fdt_ofiles[fd];
3481 haverights = cap_rights_fde_inline(fde);
3482 fp = fde->fde_file;
3483 flags = fde->fde_flags;
3484 #else
3485 fp = fdt->fdt_ofiles[fd].fde_file;
3486 flags = fdt->fdt_ofiles[fd].fde_flags;
3487 #endif
3488 if (__predict_false(fp == NULL))
3489 goto out_fallback;
3490 #ifdef CAPABILITIES
3491 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3492 goto out_fallback;
3493 #endif
3494 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3495 goto out_fallback;
3496
3497 /*
3498 * Use an acquire barrier to force re-reading of fdt so it is
3499 * refreshed for verification.
3500 */
3501 atomic_thread_fence_acq();
3502 fdt = fdp->fd_files;
3503 #ifdef CAPABILITIES
3504 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3505 #else
3506 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3507 #endif
3508 goto out_fdrop;
3509 *fpp = fp;
3510 if (flagsp != NULL)
3511 *flagsp = flags;
3512 return (0);
3513 out_fdrop:
3514 fdrop(fp, td);
3515 out_fallback:
3516 *fpp = NULL;
3517 return (fget_unlocked_seq(td, fd, needrightsp, flagsp, fpp, NULL));
3518 }
3519
3520 int
fget_unlocked(struct thread * td,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3521 fget_unlocked(struct thread *td, int fd, const cap_rights_t *needrightsp,
3522 struct file **fpp)
3523 {
3524 return (fget_unlocked_flags(td, fd, needrightsp, NULL, fpp));
3525 }
3526
3527 /*
3528 * Translate fd -> file when the caller guarantees the file descriptor table
3529 * can't be changed by others.
3530 *
3531 * Note this does not mean the file object itself is only visible to the caller,
3532 * merely that it wont disappear without having to be referenced.
3533 *
3534 * Must be paired with fput_only_user.
3535 */
3536 #ifdef CAPABILITIES
3537 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3538 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3539 struct file **fpp)
3540 {
3541 const struct filedescent *fde;
3542 const struct fdescenttbl *fdt;
3543 const cap_rights_t *haverights;
3544 struct file *fp;
3545 int error;
3546
3547 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3548
3549 *fpp = NULL;
3550 if (__predict_false(fd >= fdp->fd_nfiles))
3551 return (EBADF);
3552
3553 fdt = fdp->fd_files;
3554 fde = &fdt->fdt_ofiles[fd];
3555 fp = fde->fde_file;
3556 if (__predict_false(fp == NULL))
3557 return (EBADF);
3558 MPASS(refcount_load(&fp->f_count) > 0);
3559 haverights = cap_rights_fde_inline(fde);
3560 error = cap_check_inline(haverights, needrightsp);
3561 if (__predict_false(error != 0))
3562 return (error);
3563 *fpp = fp;
3564 return (0);
3565 }
3566 #else
3567 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3568 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3569 struct file **fpp)
3570 {
3571 struct file *fp;
3572
3573 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3574
3575 *fpp = NULL;
3576 if (__predict_false(fd >= fdp->fd_nfiles))
3577 return (EBADF);
3578
3579 fp = fdp->fd_ofiles[fd].fde_file;
3580 if (__predict_false(fp == NULL))
3581 return (EBADF);
3582
3583 MPASS(refcount_load(&fp->f_count) > 0);
3584 *fpp = fp;
3585 return (0);
3586 }
3587 #endif
3588
3589 /*
3590 * Extract the file pointer associated with the specified descriptor for the
3591 * current user process.
3592 *
3593 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3594 * returned.
3595 *
3596 * File's rights will be checked against the capability rights mask.
3597 *
3598 * If an error occurred the non-zero error is returned and *fpp is set to
3599 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3600 * responsible for fdrop().
3601 */
3602 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,const cap_rights_t * needrightsp)3603 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3604 const cap_rights_t *needrightsp)
3605 {
3606 struct file *fp;
3607 int error;
3608
3609 *fpp = NULL;
3610 error = fget_unlocked(td, fd, needrightsp, &fp);
3611 if (__predict_false(error != 0))
3612 return (error);
3613 if (__predict_false(fp->f_ops == &badfileops)) {
3614 fdrop(fp, td);
3615 return (EBADF);
3616 }
3617
3618 /*
3619 * FREAD and FWRITE failure return EBADF as per POSIX.
3620 */
3621 error = 0;
3622 switch (flags) {
3623 case FREAD:
3624 case FWRITE:
3625 if ((fp->f_flag & flags) == 0)
3626 error = EBADF;
3627 break;
3628 case FEXEC:
3629 if (fp->f_ops != &path_fileops &&
3630 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3631 (fp->f_flag & FWRITE) != 0))
3632 error = EBADF;
3633 break;
3634 case 0:
3635 break;
3636 default:
3637 KASSERT(0, ("wrong flags"));
3638 }
3639
3640 if (error != 0) {
3641 fdrop(fp, td);
3642 return (error);
3643 }
3644
3645 *fpp = fp;
3646 return (0);
3647 }
3648
3649 int
fget(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3650 fget(struct thread *td, int fd, const cap_rights_t *rightsp, struct file **fpp)
3651 {
3652
3653 return (_fget(td, fd, fpp, 0, rightsp));
3654 }
3655
3656 int
fget_mmap(struct thread * td,int fd,const cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3657 fget_mmap(struct thread *td, int fd, const cap_rights_t *rightsp,
3658 vm_prot_t *maxprotp, struct file **fpp)
3659 {
3660 int error;
3661 #ifndef CAPABILITIES
3662 error = _fget(td, fd, fpp, 0, rightsp);
3663 if (maxprotp != NULL)
3664 *maxprotp = VM_PROT_ALL;
3665 return (error);
3666 #else
3667 cap_rights_t fdrights;
3668 struct filedesc *fdp;
3669 struct file *fp;
3670 seqc_t seq;
3671
3672 *fpp = NULL;
3673 fdp = td->td_proc->p_fd;
3674 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3675 for (;;) {
3676 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3677 if (__predict_false(error != 0))
3678 return (error);
3679 if (__predict_false(fp->f_ops == &badfileops)) {
3680 fdrop(fp, td);
3681 return (EBADF);
3682 }
3683 if (maxprotp != NULL)
3684 fdrights = *cap_rights(fdp, fd);
3685 if (!fd_modified(fdp, fd, seq))
3686 break;
3687 fdrop(fp, td);
3688 }
3689
3690 /*
3691 * If requested, convert capability rights to access flags.
3692 */
3693 if (maxprotp != NULL)
3694 *maxprotp = cap_rights_to_vmprot(&fdrights);
3695 *fpp = fp;
3696 return (0);
3697 #endif
3698 }
3699
3700 int
fget_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3701 fget_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3702 struct file **fpp)
3703 {
3704
3705 return (_fget(td, fd, fpp, FREAD, rightsp));
3706 }
3707
3708 int
fget_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3709 fget_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3710 struct file **fpp)
3711 {
3712
3713 return (_fget(td, fd, fpp, FWRITE, rightsp));
3714 }
3715
3716 int
fget_fcntl(struct thread * td,int fd,const cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3717 fget_fcntl(struct thread *td, int fd, const cap_rights_t *rightsp,
3718 int needfcntl, struct file **fpp)
3719 {
3720 #ifndef CAPABILITIES
3721 return (fget_unlocked(td, fd, rightsp, fpp));
3722 #else
3723 struct filedesc *fdp = td->td_proc->p_fd;
3724 struct file *fp;
3725 int error;
3726 seqc_t seq;
3727
3728 *fpp = NULL;
3729 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3730 for (;;) {
3731 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3732 if (error != 0)
3733 return (error);
3734 error = cap_fcntl_check(fdp, fd, needfcntl);
3735 if (!fd_modified(fdp, fd, seq))
3736 break;
3737 fdrop(fp, td);
3738 }
3739 if (error != 0) {
3740 fdrop(fp, td);
3741 return (error);
3742 }
3743 *fpp = fp;
3744 return (0);
3745 #endif
3746 }
3747
3748 /*
3749 * Like fget() but loads the underlying vnode, or returns an error if the
3750 * descriptor does not represent a vnode. Note that pipes use vnodes but
3751 * never have VM objects. The returned vnode will be vref()'d.
3752 *
3753 * XXX: what about the unused flags ?
3754 */
3755 static __inline int
_fgetvp(struct thread * td,int fd,int flags,const cap_rights_t * needrightsp,struct vnode ** vpp)3756 _fgetvp(struct thread *td, int fd, int flags, const cap_rights_t *needrightsp,
3757 struct vnode **vpp)
3758 {
3759 struct file *fp;
3760 int error;
3761
3762 *vpp = NULL;
3763 error = _fget(td, fd, &fp, flags, needrightsp);
3764 if (error != 0)
3765 return (error);
3766 if (fp->f_vnode == NULL) {
3767 error = EINVAL;
3768 } else {
3769 *vpp = fp->f_vnode;
3770 vrefact(*vpp);
3771 }
3772 fdrop(fp, td);
3773
3774 return (error);
3775 }
3776
3777 int
fgetvp(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3778 fgetvp(struct thread *td, int fd, const cap_rights_t *rightsp,
3779 struct vnode **vpp)
3780 {
3781
3782 return (_fgetvp(td, fd, 0, rightsp, vpp));
3783 }
3784
3785 int
fgetvp_rights(struct thread * td,int fd,const cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3786 fgetvp_rights(struct thread *td, int fd, const cap_rights_t *needrightsp,
3787 struct filecaps *havecaps, struct vnode **vpp)
3788 {
3789 struct filecaps caps;
3790 struct file *fp;
3791 int error;
3792
3793 error = fget_cap(td, fd, needrightsp, NULL, &fp, &caps);
3794 if (error != 0)
3795 return (error);
3796 if (fp->f_ops == &badfileops) {
3797 error = EBADF;
3798 goto out;
3799 }
3800 if (fp->f_vnode == NULL) {
3801 error = EINVAL;
3802 goto out;
3803 }
3804
3805 *havecaps = caps;
3806 *vpp = fp->f_vnode;
3807 vrefact(*vpp);
3808 fdrop(fp, td);
3809
3810 return (0);
3811 out:
3812 filecaps_free(&caps);
3813 fdrop(fp, td);
3814 return (error);
3815 }
3816
3817 int
fgetvp_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3818 fgetvp_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3819 struct vnode **vpp)
3820 {
3821
3822 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3823 }
3824
3825 int
fgetvp_exec(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3826 fgetvp_exec(struct thread *td, int fd, const cap_rights_t *rightsp,
3827 struct vnode **vpp)
3828 {
3829
3830 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3831 }
3832
3833 #ifdef notyet
3834 int
fgetvp_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3835 fgetvp_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3836 struct vnode **vpp)
3837 {
3838
3839 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3840 }
3841 #endif
3842
3843 /*
3844 * Handle the last reference to a file being closed.
3845 *
3846 * Without the noinline attribute clang keeps inlining the func thorough this
3847 * file when fdrop is used.
3848 */
3849 int __noinline
_fdrop(struct file * fp,struct thread * td)3850 _fdrop(struct file *fp, struct thread *td)
3851 {
3852 int error;
3853
3854 KASSERT(refcount_load(&fp->f_count) == 0,
3855 ("fdrop: fp %p count %d", fp, refcount_load(&fp->f_count)));
3856
3857 error = fo_close(fp, td);
3858 atomic_subtract_int(&openfiles, 1);
3859 crfree(fp->f_cred);
3860 free(fp->f_advice, M_FADVISE);
3861 uma_zfree(file_zone, fp);
3862
3863 return (error);
3864 }
3865
3866 /*
3867 * Apply an advisory lock on a file descriptor.
3868 *
3869 * Just attempt to get a record lock of the requested type on the entire file
3870 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3871 */
3872 #ifndef _SYS_SYSPROTO_H_
3873 struct flock_args {
3874 int fd;
3875 int how;
3876 };
3877 #endif
3878 /* ARGSUSED */
3879 int
sys_flock(struct thread * td,struct flock_args * uap)3880 sys_flock(struct thread *td, struct flock_args *uap)
3881 {
3882 struct file *fp;
3883 struct vnode *vp;
3884 struct flock lf;
3885 int error;
3886
3887 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3888 if (error != 0)
3889 return (error);
3890 error = EOPNOTSUPP;
3891 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3892 goto done;
3893 }
3894 if (fp->f_ops == &path_fileops) {
3895 goto done;
3896 }
3897
3898 error = 0;
3899 vp = fp->f_vnode;
3900 lf.l_whence = SEEK_SET;
3901 lf.l_start = 0;
3902 lf.l_len = 0;
3903 if (uap->how & LOCK_UN) {
3904 lf.l_type = F_UNLCK;
3905 atomic_clear_int(&fp->f_flag, FHASLOCK);
3906 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3907 goto done;
3908 }
3909 if (uap->how & LOCK_EX)
3910 lf.l_type = F_WRLCK;
3911 else if (uap->how & LOCK_SH)
3912 lf.l_type = F_RDLCK;
3913 else {
3914 error = EBADF;
3915 goto done;
3916 }
3917 atomic_set_int(&fp->f_flag, FHASLOCK);
3918 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3919 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3920 done:
3921 fdrop(fp, td);
3922 return (error);
3923 }
3924 /*
3925 * Duplicate the specified descriptor to a free descriptor.
3926 */
3927 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3928 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3929 int openerror, int *indxp)
3930 {
3931 struct filedescent *newfde, *oldfde;
3932 struct file *fp;
3933 u_long *ioctls;
3934 int error, indx;
3935
3936 KASSERT(openerror == ENODEV || openerror == ENXIO,
3937 ("unexpected error %d in %s", openerror, __func__));
3938
3939 /*
3940 * If the to-be-dup'd fd number is greater than the allowed number
3941 * of file descriptors, or the fd to be dup'd has already been
3942 * closed, then reject.
3943 */
3944 FILEDESC_XLOCK(fdp);
3945 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3946 FILEDESC_XUNLOCK(fdp);
3947 return (EBADF);
3948 }
3949
3950 error = fdalloc(td, 0, &indx);
3951 if (error != 0) {
3952 FILEDESC_XUNLOCK(fdp);
3953 return (error);
3954 }
3955
3956 /*
3957 * There are two cases of interest here.
3958 *
3959 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3960 *
3961 * For ENXIO steal away the file structure from (dfd) and store it in
3962 * (indx). (dfd) is effectively closed by this operation.
3963 */
3964 switch (openerror) {
3965 case ENODEV:
3966 /*
3967 * Check that the mode the file is being opened for is a
3968 * subset of the mode of the existing descriptor.
3969 */
3970 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3971 fdunused(fdp, indx);
3972 FILEDESC_XUNLOCK(fdp);
3973 return (EACCES);
3974 }
3975 if (!fhold(fp)) {
3976 fdunused(fdp, indx);
3977 FILEDESC_XUNLOCK(fdp);
3978 return (EBADF);
3979 }
3980 newfde = &fdp->fd_ofiles[indx];
3981 oldfde = &fdp->fd_ofiles[dfd];
3982 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3983 #ifdef CAPABILITIES
3984 seqc_write_begin(&newfde->fde_seqc);
3985 #endif
3986 fde_copy(oldfde, newfde);
3987 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3988 ioctls);
3989 #ifdef CAPABILITIES
3990 seqc_write_end(&newfde->fde_seqc);
3991 #endif
3992 break;
3993 case ENXIO:
3994 /*
3995 * Steal away the file pointer from dfd and stuff it into indx.
3996 */
3997 newfde = &fdp->fd_ofiles[indx];
3998 oldfde = &fdp->fd_ofiles[dfd];
3999 #ifdef CAPABILITIES
4000 seqc_write_begin(&oldfde->fde_seqc);
4001 seqc_write_begin(&newfde->fde_seqc);
4002 #endif
4003 fde_copy(oldfde, newfde);
4004 oldfde->fde_file = NULL;
4005 fdunused(fdp, dfd);
4006 #ifdef CAPABILITIES
4007 seqc_write_end(&newfde->fde_seqc);
4008 seqc_write_end(&oldfde->fde_seqc);
4009 #endif
4010 break;
4011 }
4012 FILEDESC_XUNLOCK(fdp);
4013 *indxp = indx;
4014 return (0);
4015 }
4016
4017 /*
4018 * This sysctl determines if we will allow a process to chroot(2) if it
4019 * has a directory open:
4020 * 0: disallowed for all processes.
4021 * 1: allowed for processes that were not already chroot(2)'ed.
4022 * 2: allowed for all processes.
4023 */
4024
4025 static int chroot_allow_open_directories = 1;
4026
4027 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
4028 &chroot_allow_open_directories, 0,
4029 "Allow a process to chroot(2) if it has a directory open");
4030
4031 /*
4032 * Helper function for raised chroot(2) security function: Refuse if
4033 * any filedescriptors are open directories.
4034 */
4035 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)4036 chroot_refuse_vdir_fds(struct filedesc *fdp)
4037 {
4038 struct vnode *vp;
4039 struct file *fp;
4040 int i;
4041
4042 FILEDESC_LOCK_ASSERT(fdp);
4043
4044 FILEDESC_FOREACH_FP(fdp, i, fp) {
4045 if (fp->f_type == DTYPE_VNODE) {
4046 vp = fp->f_vnode;
4047 if (vp->v_type == VDIR)
4048 return (EPERM);
4049 }
4050 }
4051 return (0);
4052 }
4053
4054 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)4055 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
4056 {
4057
4058 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
4059 vrefact(oldpwd->pwd_cdir);
4060 newpwd->pwd_cdir = oldpwd->pwd_cdir;
4061 }
4062
4063 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
4064 vrefact(oldpwd->pwd_rdir);
4065 newpwd->pwd_rdir = oldpwd->pwd_rdir;
4066 }
4067
4068 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
4069 vrefact(oldpwd->pwd_jdir);
4070 newpwd->pwd_jdir = oldpwd->pwd_jdir;
4071 }
4072
4073 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
4074 vrefact(oldpwd->pwd_adir);
4075 newpwd->pwd_adir = oldpwd->pwd_adir;
4076 }
4077 }
4078
4079 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)4080 pwd_hold_pwddesc(struct pwddesc *pdp)
4081 {
4082 struct pwd *pwd;
4083
4084 PWDDESC_ASSERT_XLOCKED(pdp);
4085 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4086 if (pwd != NULL)
4087 refcount_acquire(&pwd->pwd_refcount);
4088 return (pwd);
4089 }
4090
4091 bool
pwd_hold_smr(struct pwd * pwd)4092 pwd_hold_smr(struct pwd *pwd)
4093 {
4094
4095 MPASS(pwd != NULL);
4096 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
4097 return (true);
4098 }
4099 return (false);
4100 }
4101
4102 struct pwd *
pwd_hold(struct thread * td)4103 pwd_hold(struct thread *td)
4104 {
4105 struct pwddesc *pdp;
4106 struct pwd *pwd;
4107
4108 pdp = td->td_proc->p_pd;
4109
4110 vfs_smr_enter();
4111 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
4112 if (pwd_hold_smr(pwd)) {
4113 vfs_smr_exit();
4114 return (pwd);
4115 }
4116 vfs_smr_exit();
4117 PWDDESC_XLOCK(pdp);
4118 pwd = pwd_hold_pwddesc(pdp);
4119 MPASS(pwd != NULL);
4120 PWDDESC_XUNLOCK(pdp);
4121 return (pwd);
4122 }
4123
4124 struct pwd *
pwd_hold_proc(struct proc * p)4125 pwd_hold_proc(struct proc *p)
4126 {
4127 struct pwddesc *pdp;
4128 struct pwd *pwd;
4129
4130 PROC_ASSERT_HELD(p);
4131 PROC_LOCK(p);
4132 pdp = pdhold(p);
4133 MPASS(pdp != NULL);
4134 PROC_UNLOCK(p);
4135
4136 PWDDESC_XLOCK(pdp);
4137 pwd = pwd_hold_pwddesc(pdp);
4138 MPASS(pwd != NULL);
4139 PWDDESC_XUNLOCK(pdp);
4140 pddrop(pdp);
4141 return (pwd);
4142 }
4143
4144 static struct pwd *
pwd_alloc(void)4145 pwd_alloc(void)
4146 {
4147 struct pwd *pwd;
4148
4149 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4150 bzero(pwd, sizeof(*pwd));
4151 refcount_init(&pwd->pwd_refcount, 1);
4152 return (pwd);
4153 }
4154
4155 void
pwd_drop(struct pwd * pwd)4156 pwd_drop(struct pwd *pwd)
4157 {
4158
4159 if (!refcount_release(&pwd->pwd_refcount))
4160 return;
4161
4162 if (pwd->pwd_cdir != NULL)
4163 vrele(pwd->pwd_cdir);
4164 if (pwd->pwd_rdir != NULL)
4165 vrele(pwd->pwd_rdir);
4166 if (pwd->pwd_jdir != NULL)
4167 vrele(pwd->pwd_jdir);
4168 if (pwd->pwd_adir != NULL)
4169 vrele(pwd->pwd_adir);
4170 uma_zfree_smr(pwd_zone, pwd);
4171 }
4172
4173 /*
4174 * The caller is responsible for invoking priv_check() and
4175 * mac_vnode_check_chroot() to authorize this operation.
4176 */
4177 int
pwd_chroot(struct thread * td,struct vnode * vp)4178 pwd_chroot(struct thread *td, struct vnode *vp)
4179 {
4180 struct pwddesc *pdp;
4181 struct filedesc *fdp;
4182 struct pwd *newpwd, *oldpwd;
4183 int error;
4184
4185 fdp = td->td_proc->p_fd;
4186 pdp = td->td_proc->p_pd;
4187 newpwd = pwd_alloc();
4188 FILEDESC_SLOCK(fdp);
4189 PWDDESC_XLOCK(pdp);
4190 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4191 if (chroot_allow_open_directories == 0 ||
4192 (chroot_allow_open_directories == 1 &&
4193 oldpwd->pwd_rdir != rootvnode)) {
4194 error = chroot_refuse_vdir_fds(fdp);
4195 FILEDESC_SUNLOCK(fdp);
4196 if (error != 0) {
4197 PWDDESC_XUNLOCK(pdp);
4198 pwd_drop(newpwd);
4199 return (error);
4200 }
4201 } else {
4202 FILEDESC_SUNLOCK(fdp);
4203 }
4204
4205 vrefact(vp);
4206 newpwd->pwd_rdir = vp;
4207 vrefact(vp);
4208 newpwd->pwd_adir = vp;
4209 if (oldpwd->pwd_jdir == NULL) {
4210 vrefact(vp);
4211 newpwd->pwd_jdir = vp;
4212 }
4213 pwd_fill(oldpwd, newpwd);
4214 pwd_set(pdp, newpwd);
4215 PWDDESC_XUNLOCK(pdp);
4216 pwd_drop(oldpwd);
4217 return (0);
4218 }
4219
4220 void
pwd_chdir(struct thread * td,struct vnode * vp)4221 pwd_chdir(struct thread *td, struct vnode *vp)
4222 {
4223 struct pwddesc *pdp;
4224 struct pwd *newpwd, *oldpwd;
4225
4226 VNPASS(vp->v_usecount > 0, vp);
4227
4228 newpwd = pwd_alloc();
4229 pdp = td->td_proc->p_pd;
4230 PWDDESC_XLOCK(pdp);
4231 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4232 newpwd->pwd_cdir = vp;
4233 pwd_fill(oldpwd, newpwd);
4234 pwd_set(pdp, newpwd);
4235 PWDDESC_XUNLOCK(pdp);
4236 pwd_drop(oldpwd);
4237 }
4238
4239 /*
4240 * Process is transitioning to/from a non-native ABI.
4241 */
4242 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4243 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4244 {
4245 struct pwddesc *pdp;
4246 struct pwd *newpwd, *oldpwd;
4247
4248 newpwd = pwd_alloc();
4249 pdp = td->td_proc->p_pd;
4250 PWDDESC_XLOCK(pdp);
4251 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4252 if (altroot_vp != NULL) {
4253 /*
4254 * Native process to a non-native ABI.
4255 */
4256
4257 vrefact(altroot_vp);
4258 newpwd->pwd_adir = altroot_vp;
4259 } else {
4260 /*
4261 * Non-native process to the native ABI.
4262 */
4263
4264 vrefact(oldpwd->pwd_rdir);
4265 newpwd->pwd_adir = oldpwd->pwd_rdir;
4266 }
4267 pwd_fill(oldpwd, newpwd);
4268 pwd_set(pdp, newpwd);
4269 PWDDESC_XUNLOCK(pdp);
4270 pwd_drop(oldpwd);
4271 }
4272
4273 /*
4274 * jail_attach(2) changes both root and working directories.
4275 */
4276 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4277 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4278 {
4279 struct pwddesc *pdp;
4280 struct filedesc *fdp;
4281 struct pwd *newpwd, *oldpwd;
4282 int error;
4283
4284 fdp = td->td_proc->p_fd;
4285 pdp = td->td_proc->p_pd;
4286 newpwd = pwd_alloc();
4287 FILEDESC_SLOCK(fdp);
4288 PWDDESC_XLOCK(pdp);
4289 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4290 error = chroot_refuse_vdir_fds(fdp);
4291 FILEDESC_SUNLOCK(fdp);
4292 if (error != 0) {
4293 PWDDESC_XUNLOCK(pdp);
4294 pwd_drop(newpwd);
4295 return (error);
4296 }
4297
4298 vrefact(vp);
4299 newpwd->pwd_rdir = vp;
4300 vrefact(vp);
4301 newpwd->pwd_cdir = vp;
4302 if (oldpwd->pwd_jdir == NULL) {
4303 vrefact(vp);
4304 newpwd->pwd_jdir = vp;
4305 }
4306 vrefact(vp);
4307 newpwd->pwd_adir = vp;
4308 pwd_fill(oldpwd, newpwd);
4309 pwd_set(pdp, newpwd);
4310 PWDDESC_XUNLOCK(pdp);
4311 pwd_drop(oldpwd);
4312 return (0);
4313 }
4314
4315 void
pwd_ensure_dirs(void)4316 pwd_ensure_dirs(void)
4317 {
4318 struct pwddesc *pdp;
4319 struct pwd *oldpwd, *newpwd;
4320
4321 pdp = curproc->p_pd;
4322 PWDDESC_XLOCK(pdp);
4323 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4324 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4325 oldpwd->pwd_adir != NULL) {
4326 PWDDESC_XUNLOCK(pdp);
4327 return;
4328 }
4329 PWDDESC_XUNLOCK(pdp);
4330
4331 newpwd = pwd_alloc();
4332 PWDDESC_XLOCK(pdp);
4333 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4334 pwd_fill(oldpwd, newpwd);
4335 if (newpwd->pwd_cdir == NULL) {
4336 vrefact(rootvnode);
4337 newpwd->pwd_cdir = rootvnode;
4338 }
4339 if (newpwd->pwd_rdir == NULL) {
4340 vrefact(rootvnode);
4341 newpwd->pwd_rdir = rootvnode;
4342 }
4343 if (newpwd->pwd_adir == NULL) {
4344 vrefact(rootvnode);
4345 newpwd->pwd_adir = rootvnode;
4346 }
4347 pwd_set(pdp, newpwd);
4348 PWDDESC_XUNLOCK(pdp);
4349 pwd_drop(oldpwd);
4350 }
4351
4352 void
pwd_set_rootvnode(void)4353 pwd_set_rootvnode(void)
4354 {
4355 struct pwddesc *pdp;
4356 struct pwd *oldpwd, *newpwd;
4357
4358 pdp = curproc->p_pd;
4359
4360 newpwd = pwd_alloc();
4361 PWDDESC_XLOCK(pdp);
4362 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4363 vrefact(rootvnode);
4364 newpwd->pwd_cdir = rootvnode;
4365 vrefact(rootvnode);
4366 newpwd->pwd_rdir = rootvnode;
4367 vrefact(rootvnode);
4368 newpwd->pwd_adir = rootvnode;
4369 pwd_fill(oldpwd, newpwd);
4370 pwd_set(pdp, newpwd);
4371 PWDDESC_XUNLOCK(pdp);
4372 pwd_drop(oldpwd);
4373 }
4374
4375 /*
4376 * Scan all active processes and prisons to see if any of them have a current
4377 * or root directory of `olddp'. If so, replace them with the new mount point.
4378 */
4379 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4380 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4381 {
4382 struct pwddesc *pdp;
4383 struct pwd *newpwd, *oldpwd;
4384 struct prison *pr;
4385 struct proc *p;
4386 int nrele;
4387
4388 if (vrefcnt(olddp) == 1)
4389 return;
4390 nrele = 0;
4391 newpwd = pwd_alloc();
4392 sx_slock(&allproc_lock);
4393 FOREACH_PROC_IN_SYSTEM(p) {
4394 PROC_LOCK(p);
4395 pdp = pdhold(p);
4396 PROC_UNLOCK(p);
4397 if (pdp == NULL)
4398 continue;
4399 PWDDESC_XLOCK(pdp);
4400 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4401 if (oldpwd == NULL ||
4402 (oldpwd->pwd_cdir != olddp &&
4403 oldpwd->pwd_rdir != olddp &&
4404 oldpwd->pwd_jdir != olddp &&
4405 oldpwd->pwd_adir != olddp)) {
4406 PWDDESC_XUNLOCK(pdp);
4407 pddrop(pdp);
4408 continue;
4409 }
4410 if (oldpwd->pwd_cdir == olddp) {
4411 vrefact(newdp);
4412 newpwd->pwd_cdir = newdp;
4413 }
4414 if (oldpwd->pwd_rdir == olddp) {
4415 vrefact(newdp);
4416 newpwd->pwd_rdir = newdp;
4417 }
4418 if (oldpwd->pwd_jdir == olddp) {
4419 vrefact(newdp);
4420 newpwd->pwd_jdir = newdp;
4421 }
4422 if (oldpwd->pwd_adir == olddp) {
4423 vrefact(newdp);
4424 newpwd->pwd_adir = newdp;
4425 }
4426 pwd_fill(oldpwd, newpwd);
4427 pwd_set(pdp, newpwd);
4428 PWDDESC_XUNLOCK(pdp);
4429 pwd_drop(oldpwd);
4430 pddrop(pdp);
4431 newpwd = pwd_alloc();
4432 }
4433 sx_sunlock(&allproc_lock);
4434 pwd_drop(newpwd);
4435 if (rootvnode == olddp) {
4436 vrefact(newdp);
4437 rootvnode = newdp;
4438 nrele++;
4439 }
4440 mtx_lock(&prison0.pr_mtx);
4441 if (prison0.pr_root == olddp) {
4442 vrefact(newdp);
4443 prison0.pr_root = newdp;
4444 nrele++;
4445 }
4446 mtx_unlock(&prison0.pr_mtx);
4447 sx_slock(&allprison_lock);
4448 TAILQ_FOREACH(pr, &allprison, pr_list) {
4449 mtx_lock(&pr->pr_mtx);
4450 if (pr->pr_root == olddp) {
4451 vrefact(newdp);
4452 pr->pr_root = newdp;
4453 nrele++;
4454 }
4455 mtx_unlock(&pr->pr_mtx);
4456 }
4457 sx_sunlock(&allprison_lock);
4458 while (nrele--)
4459 vrele(olddp);
4460 }
4461
4462 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4463 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4464 {
4465 struct file *fp;
4466 struct vnode *vp;
4467 int error, i;
4468
4469 error = 0;
4470 FILEDESC_SLOCK(fdp);
4471 FILEDESC_FOREACH_FP(fdp, i, fp) {
4472 if (fp->f_type != DTYPE_VNODE ||
4473 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4474 continue;
4475 vp = fp->f_vnode;
4476 if (vp->v_mount == mp) {
4477 error = EDEADLK;
4478 break;
4479 }
4480 }
4481 FILEDESC_SUNLOCK(fdp);
4482 return (error);
4483 }
4484
4485 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4486 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4487 struct proc *leader)
4488 {
4489 struct filedesc_to_leader *fdtol;
4490
4491 fdtol = malloc(sizeof(struct filedesc_to_leader),
4492 M_FILEDESC_TO_LEADER, M_WAITOK);
4493 fdtol->fdl_refcount = 1;
4494 fdtol->fdl_holdcount = 0;
4495 fdtol->fdl_wakeup = 0;
4496 fdtol->fdl_leader = leader;
4497 if (old != NULL) {
4498 FILEDESC_XLOCK(fdp);
4499 fdtol->fdl_next = old->fdl_next;
4500 fdtol->fdl_prev = old;
4501 old->fdl_next = fdtol;
4502 fdtol->fdl_next->fdl_prev = fdtol;
4503 FILEDESC_XUNLOCK(fdp);
4504 } else {
4505 fdtol->fdl_next = fdtol;
4506 fdtol->fdl_prev = fdtol;
4507 }
4508 return (fdtol);
4509 }
4510
4511 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4512 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4513 {
4514 FILEDESC_XLOCK(fdp);
4515 fdtol->fdl_refcount++;
4516 FILEDESC_XUNLOCK(fdp);
4517 return (fdtol);
4518 }
4519
4520 static int
filedesc_nfiles(struct filedesc * fdp)4521 filedesc_nfiles(struct filedesc *fdp)
4522 {
4523 NDSLOTTYPE *map;
4524 int count, off, minoff;
4525
4526 if (fdp == NULL)
4527 return (0);
4528 count = 0;
4529 FILEDESC_SLOCK(fdp);
4530 map = fdp->fd_map;
4531 off = NDSLOT(fdp->fd_nfiles - 1);
4532 for (minoff = NDSLOT(0); off >= minoff; --off)
4533 count += bitcountl(map[off]);
4534 FILEDESC_SUNLOCK(fdp);
4535 return (count);
4536 }
4537
4538 int
proc_nfiles(struct proc * p)4539 proc_nfiles(struct proc *p)
4540 {
4541 struct filedesc *fdp;
4542 int res;
4543
4544 PROC_LOCK(p);
4545 fdp = fdhold(p);
4546 PROC_UNLOCK(p);
4547 res = filedesc_nfiles(fdp);
4548 fddrop(fdp);
4549 return (res);
4550 }
4551
4552 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4553 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4554 {
4555 u_int namelen;
4556 int count;
4557
4558 namelen = arg2;
4559 if (namelen != 1)
4560 return (EINVAL);
4561
4562 if (*(int *)arg1 != 0)
4563 return (EINVAL);
4564
4565 count = filedesc_nfiles(curproc->p_fd);
4566 return (SYSCTL_OUT(req, &count, sizeof(count)));
4567 }
4568
4569 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4570 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4571 "Number of open file descriptors");
4572
4573 /*
4574 * Get file structures globally.
4575 */
4576 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4577 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4578 {
4579 struct xfile xf;
4580 struct filedesc *fdp;
4581 struct file *fp;
4582 struct proc *p;
4583 int error, n;
4584
4585 error = sysctl_wire_old_buffer(req, 0);
4586 if (error != 0)
4587 return (error);
4588 if (req->oldptr == NULL) {
4589 n = 0;
4590 sx_slock(&allproc_lock);
4591 FOREACH_PROC_IN_SYSTEM(p) {
4592 PROC_LOCK(p);
4593 if (p->p_state == PRS_NEW) {
4594 PROC_UNLOCK(p);
4595 continue;
4596 }
4597 fdp = fdhold(p);
4598 PROC_UNLOCK(p);
4599 if (fdp == NULL)
4600 continue;
4601 /* overestimates sparse tables. */
4602 n += fdp->fd_nfiles;
4603 fddrop(fdp);
4604 }
4605 sx_sunlock(&allproc_lock);
4606 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4607 }
4608 error = 0;
4609 bzero(&xf, sizeof(xf));
4610 xf.xf_size = sizeof(xf);
4611 sx_slock(&allproc_lock);
4612 FOREACH_PROC_IN_SYSTEM(p) {
4613 PROC_LOCK(p);
4614 if (p->p_state == PRS_NEW) {
4615 PROC_UNLOCK(p);
4616 continue;
4617 }
4618 if (p_cansee(req->td, p) != 0) {
4619 PROC_UNLOCK(p);
4620 continue;
4621 }
4622 xf.xf_pid = p->p_pid;
4623 xf.xf_uid = p->p_ucred->cr_uid;
4624 fdp = fdhold(p);
4625 PROC_UNLOCK(p);
4626 if (fdp == NULL)
4627 continue;
4628 FILEDESC_SLOCK(fdp);
4629 if (refcount_load(&fdp->fd_refcnt) == 0)
4630 goto nextproc;
4631 FILEDESC_FOREACH_FP(fdp, n, fp) {
4632 xf.xf_fd = n;
4633 xf.xf_file = (uintptr_t)fp;
4634 xf.xf_data = (uintptr_t)fp->f_data;
4635 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4636 xf.xf_type = (uintptr_t)fp->f_type;
4637 xf.xf_count = refcount_load(&fp->f_count);
4638 xf.xf_msgcount = 0;
4639 xf.xf_offset = foffset_get(fp);
4640 xf.xf_flag = fp->f_flag;
4641 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4642
4643 /*
4644 * There is no need to re-check the fdtable refcount
4645 * here since the filedesc lock is not dropped in the
4646 * loop body.
4647 */
4648 if (error != 0)
4649 break;
4650 }
4651 nextproc:
4652 FILEDESC_SUNLOCK(fdp);
4653 fddrop(fdp);
4654 if (error)
4655 break;
4656 }
4657 sx_sunlock(&allproc_lock);
4658 return (error);
4659 }
4660
4661 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4662 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4663
4664 #ifdef KINFO_FILE_SIZE
4665 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4666 #endif
4667
4668 static int
xlate_fflags(int fflags)4669 xlate_fflags(int fflags)
4670 {
4671 static const struct {
4672 int fflag;
4673 int kf_fflag;
4674 } fflags_table[] = {
4675 { FAPPEND, KF_FLAG_APPEND },
4676 { FASYNC, KF_FLAG_ASYNC },
4677 { FFSYNC, KF_FLAG_FSYNC },
4678 { FHASLOCK, KF_FLAG_HASLOCK },
4679 { FNONBLOCK, KF_FLAG_NONBLOCK },
4680 { FREAD, KF_FLAG_READ },
4681 { FWRITE, KF_FLAG_WRITE },
4682 { O_CREAT, KF_FLAG_CREAT },
4683 { O_DIRECT, KF_FLAG_DIRECT },
4684 { O_EXCL, KF_FLAG_EXCL },
4685 { O_EXEC, KF_FLAG_EXEC },
4686 { O_EXLOCK, KF_FLAG_EXLOCK },
4687 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4688 { O_SHLOCK, KF_FLAG_SHLOCK },
4689 { O_TRUNC, KF_FLAG_TRUNC }
4690 };
4691 unsigned int i;
4692 int kflags;
4693
4694 kflags = 0;
4695 for (i = 0; i < nitems(fflags_table); i++)
4696 if (fflags & fflags_table[i].fflag)
4697 kflags |= fflags_table[i].kf_fflag;
4698 return (kflags);
4699 }
4700
4701 /* Trim unused data from kf_path by truncating the structure size. */
4702 void
pack_kinfo(struct kinfo_file * kif)4703 pack_kinfo(struct kinfo_file *kif)
4704 {
4705
4706 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4707 strlen(kif->kf_path) + 1;
4708 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4709 }
4710
4711 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4712 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4713 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4714 {
4715 int error;
4716
4717 bzero(kif, sizeof(*kif));
4718
4719 /* Set a default type to allow for empty fill_kinfo() methods. */
4720 kif->kf_type = KF_TYPE_UNKNOWN;
4721 kif->kf_flags = xlate_fflags(fp->f_flag);
4722 if (rightsp != NULL)
4723 kif->kf_cap_rights = *rightsp;
4724 else
4725 cap_rights_init_zero(&kif->kf_cap_rights);
4726 kif->kf_fd = fd;
4727 kif->kf_ref_count = refcount_load(&fp->f_count);
4728 kif->kf_offset = foffset_get(fp);
4729
4730 /*
4731 * This may drop the filedesc lock, so the 'fp' cannot be
4732 * accessed after this call.
4733 */
4734 error = fo_fill_kinfo(fp, kif, fdp);
4735 if (error == 0)
4736 kif->kf_status |= KF_ATTR_VALID;
4737 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4738 pack_kinfo(kif);
4739 else
4740 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4741 }
4742
4743 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4744 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4745 struct kinfo_file *kif, int flags)
4746 {
4747 int error;
4748
4749 bzero(kif, sizeof(*kif));
4750
4751 kif->kf_type = KF_TYPE_VNODE;
4752 error = vn_fill_kinfo_vnode(vp, kif);
4753 if (error == 0)
4754 kif->kf_status |= KF_ATTR_VALID;
4755 kif->kf_flags = xlate_fflags(fflags);
4756 cap_rights_init_zero(&kif->kf_cap_rights);
4757 kif->kf_fd = fd;
4758 kif->kf_ref_count = -1;
4759 kif->kf_offset = -1;
4760 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4761 pack_kinfo(kif);
4762 else
4763 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4764 vrele(vp);
4765 }
4766
4767 struct export_fd_buf {
4768 struct filedesc *fdp;
4769 struct pwddesc *pdp;
4770 struct sbuf *sb;
4771 ssize_t remainder;
4772 struct kinfo_file kif;
4773 int flags;
4774 };
4775
4776 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4777 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4778 {
4779 struct kinfo_file *kif;
4780
4781 kif = &efbuf->kif;
4782 if (efbuf->remainder != -1) {
4783 if (efbuf->remainder < kif->kf_structsize)
4784 return (ENOMEM);
4785 efbuf->remainder -= kif->kf_structsize;
4786 }
4787 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4788 return (sbuf_error(efbuf->sb));
4789 return (0);
4790 }
4791
4792 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4793 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4794 struct export_fd_buf *efbuf)
4795 {
4796 int error;
4797
4798 if (efbuf->remainder == 0)
4799 return (ENOMEM);
4800 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4801 efbuf->flags);
4802 FILEDESC_SUNLOCK(efbuf->fdp);
4803 error = export_kinfo_to_sb(efbuf);
4804 FILEDESC_SLOCK(efbuf->fdp);
4805 return (error);
4806 }
4807
4808 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4809 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4810 struct export_fd_buf *efbuf)
4811 {
4812 int error;
4813
4814 if (efbuf->remainder == 0)
4815 return (ENOMEM);
4816 if (efbuf->pdp != NULL)
4817 PWDDESC_XUNLOCK(efbuf->pdp);
4818 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4819 error = export_kinfo_to_sb(efbuf);
4820 if (efbuf->pdp != NULL)
4821 PWDDESC_XLOCK(efbuf->pdp);
4822 return (error);
4823 }
4824
4825 /*
4826 * Store a process file descriptor information to sbuf.
4827 *
4828 * Takes a locked proc as argument, and returns with the proc unlocked.
4829 */
4830 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4831 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4832 int flags)
4833 {
4834 struct file *fp;
4835 struct filedesc *fdp;
4836 struct pwddesc *pdp;
4837 struct export_fd_buf *efbuf;
4838 struct vnode *cttyvp, *textvp, *tracevp;
4839 struct pwd *pwd;
4840 int error, i;
4841 cap_rights_t rights;
4842
4843 PROC_LOCK_ASSERT(p, MA_OWNED);
4844
4845 /* ktrace vnode */
4846 tracevp = ktr_get_tracevp(p, true);
4847 /* text vnode */
4848 textvp = p->p_textvp;
4849 if (textvp != NULL)
4850 vrefact(textvp);
4851 /* Controlling tty. */
4852 cttyvp = NULL;
4853 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4854 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4855 if (cttyvp != NULL)
4856 vrefact(cttyvp);
4857 }
4858 fdp = fdhold(p);
4859 pdp = pdhold(p);
4860 PROC_UNLOCK(p);
4861
4862 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4863 efbuf->fdp = NULL;
4864 efbuf->pdp = NULL;
4865 efbuf->sb = sb;
4866 efbuf->remainder = maxlen;
4867 efbuf->flags = flags;
4868
4869 error = 0;
4870 if (tracevp != NULL)
4871 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4872 FREAD | FWRITE, efbuf);
4873 if (error == 0 && textvp != NULL)
4874 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4875 efbuf);
4876 if (error == 0 && cttyvp != NULL)
4877 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4878 FREAD | FWRITE, efbuf);
4879 if (error != 0 || pdp == NULL || fdp == NULL)
4880 goto fail;
4881 efbuf->fdp = fdp;
4882 efbuf->pdp = pdp;
4883 PWDDESC_XLOCK(pdp);
4884 pwd = pwd_hold_pwddesc(pdp);
4885 if (pwd != NULL) {
4886 /* working directory */
4887 if (pwd->pwd_cdir != NULL) {
4888 vrefact(pwd->pwd_cdir);
4889 error = export_vnode_to_sb(pwd->pwd_cdir,
4890 KF_FD_TYPE_CWD, FREAD, efbuf);
4891 }
4892 /* root directory */
4893 if (error == 0 && pwd->pwd_rdir != NULL) {
4894 vrefact(pwd->pwd_rdir);
4895 error = export_vnode_to_sb(pwd->pwd_rdir,
4896 KF_FD_TYPE_ROOT, FREAD, efbuf);
4897 }
4898 /* jail directory */
4899 if (error == 0 && pwd->pwd_jdir != NULL) {
4900 vrefact(pwd->pwd_jdir);
4901 error = export_vnode_to_sb(pwd->pwd_jdir,
4902 KF_FD_TYPE_JAIL, FREAD, efbuf);
4903 }
4904 }
4905 PWDDESC_XUNLOCK(pdp);
4906 if (error != 0)
4907 goto fail;
4908 if (pwd != NULL)
4909 pwd_drop(pwd);
4910 FILEDESC_SLOCK(fdp);
4911 if (refcount_load(&fdp->fd_refcnt) == 0)
4912 goto skip;
4913 FILEDESC_FOREACH_FP(fdp, i, fp) {
4914 #ifdef CAPABILITIES
4915 rights = *cap_rights(fdp, i);
4916 #else /* !CAPABILITIES */
4917 rights = cap_no_rights;
4918 #endif
4919 /*
4920 * Create sysctl entry. It is OK to drop the filedesc
4921 * lock inside of export_file_to_sb() as we will
4922 * re-validate and re-evaluate its properties when the
4923 * loop continues.
4924 */
4925 error = export_file_to_sb(fp, i, &rights, efbuf);
4926 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4927 break;
4928 }
4929 skip:
4930 FILEDESC_SUNLOCK(fdp);
4931 fail:
4932 if (fdp != NULL)
4933 fddrop(fdp);
4934 if (pdp != NULL)
4935 pddrop(pdp);
4936 free(efbuf, M_TEMP);
4937 return (error);
4938 }
4939
4940 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4941
4942 /*
4943 * Get per-process file descriptors for use by procstat(1), et al.
4944 */
4945 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4946 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4947 {
4948 struct sbuf sb;
4949 struct proc *p;
4950 ssize_t maxlen;
4951 u_int namelen;
4952 int error, error2, *name;
4953
4954 namelen = arg2;
4955 if (namelen != 1)
4956 return (EINVAL);
4957
4958 name = (int *)arg1;
4959
4960 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4961 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4962 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4963 if (error != 0) {
4964 sbuf_delete(&sb);
4965 return (error);
4966 }
4967 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4968 error = kern_proc_filedesc_out(p, &sb, maxlen,
4969 KERN_FILEDESC_PACK_KINFO);
4970 error2 = sbuf_finish(&sb);
4971 sbuf_delete(&sb);
4972 return (error != 0 ? error : error2);
4973 }
4974
4975 #ifdef COMPAT_FREEBSD7
4976 #ifdef KINFO_OFILE_SIZE
4977 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4978 #endif
4979
4980 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4981 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4982 {
4983
4984 okif->kf_structsize = sizeof(*okif);
4985 okif->kf_type = kif->kf_type;
4986 okif->kf_fd = kif->kf_fd;
4987 okif->kf_ref_count = kif->kf_ref_count;
4988 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4989 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4990 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4991 okif->kf_offset = kif->kf_offset;
4992 if (kif->kf_type == KF_TYPE_VNODE)
4993 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4994 else
4995 okif->kf_vnode_type = KF_VTYPE_VNON;
4996 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4997 if (kif->kf_type == KF_TYPE_SOCKET) {
4998 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4999 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
5000 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
5001 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
5002 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
5003 } else {
5004 okif->kf_sa_local.ss_family = AF_UNSPEC;
5005 okif->kf_sa_peer.ss_family = AF_UNSPEC;
5006 }
5007 }
5008
5009 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)5010 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
5011 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
5012 {
5013 int error;
5014
5015 vrefact(vp);
5016 PWDDESC_XUNLOCK(pdp);
5017 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
5018 kinfo_to_okinfo(kif, okif);
5019 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5020 PWDDESC_XLOCK(pdp);
5021 return (error);
5022 }
5023
5024 /*
5025 * Get per-process file descriptors for use by procstat(1), et al.
5026 */
5027 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)5028 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
5029 {
5030 struct kinfo_ofile *okif;
5031 struct kinfo_file *kif;
5032 struct filedesc *fdp;
5033 struct pwddesc *pdp;
5034 struct pwd *pwd;
5035 u_int namelen;
5036 int error, i, *name;
5037 struct file *fp;
5038 struct proc *p;
5039
5040 namelen = arg2;
5041 if (namelen != 1)
5042 return (EINVAL);
5043
5044 name = (int *)arg1;
5045 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5046 if (error != 0)
5047 return (error);
5048 fdp = fdhold(p);
5049 if (fdp != NULL)
5050 pdp = pdhold(p);
5051 PROC_UNLOCK(p);
5052 if (fdp == NULL || pdp == NULL) {
5053 if (fdp != NULL)
5054 fddrop(fdp);
5055 return (ENOENT);
5056 }
5057 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
5058 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
5059 PWDDESC_XLOCK(pdp);
5060 pwd = pwd_hold_pwddesc(pdp);
5061 if (pwd != NULL) {
5062 if (pwd->pwd_cdir != NULL)
5063 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
5064 okif, pdp, req);
5065 if (pwd->pwd_rdir != NULL)
5066 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
5067 okif, pdp, req);
5068 if (pwd->pwd_jdir != NULL)
5069 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
5070 okif, pdp, req);
5071 }
5072 PWDDESC_XUNLOCK(pdp);
5073 if (pwd != NULL)
5074 pwd_drop(pwd);
5075 FILEDESC_SLOCK(fdp);
5076 if (refcount_load(&fdp->fd_refcnt) == 0)
5077 goto skip;
5078 FILEDESC_FOREACH_FP(fdp, i, fp) {
5079 export_file_to_kinfo(fp, i, NULL, kif, fdp,
5080 KERN_FILEDESC_PACK_KINFO);
5081 FILEDESC_SUNLOCK(fdp);
5082 kinfo_to_okinfo(kif, okif);
5083 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5084 FILEDESC_SLOCK(fdp);
5085 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
5086 break;
5087 }
5088 skip:
5089 FILEDESC_SUNLOCK(fdp);
5090 fddrop(fdp);
5091 pddrop(pdp);
5092 free(kif, M_TEMP);
5093 free(okif, M_TEMP);
5094 return (0);
5095 }
5096
5097 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
5098 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
5099 "Process ofiledesc entries");
5100 #endif /* COMPAT_FREEBSD7 */
5101
5102 int
vntype_to_kinfo(int vtype)5103 vntype_to_kinfo(int vtype)
5104 {
5105 struct {
5106 int vtype;
5107 int kf_vtype;
5108 } vtypes_table[] = {
5109 { VBAD, KF_VTYPE_VBAD },
5110 { VBLK, KF_VTYPE_VBLK },
5111 { VCHR, KF_VTYPE_VCHR },
5112 { VDIR, KF_VTYPE_VDIR },
5113 { VFIFO, KF_VTYPE_VFIFO },
5114 { VLNK, KF_VTYPE_VLNK },
5115 { VNON, KF_VTYPE_VNON },
5116 { VREG, KF_VTYPE_VREG },
5117 { VSOCK, KF_VTYPE_VSOCK }
5118 };
5119 unsigned int i;
5120
5121 /*
5122 * Perform vtype translation.
5123 */
5124 for (i = 0; i < nitems(vtypes_table); i++)
5125 if (vtypes_table[i].vtype == vtype)
5126 return (vtypes_table[i].kf_vtype);
5127
5128 return (KF_VTYPE_UNKNOWN);
5129 }
5130
5131 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
5132 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
5133 "Process filedesc entries");
5134
5135 /*
5136 * Store a process current working directory information to sbuf.
5137 *
5138 * Takes a locked proc as argument, and returns with the proc unlocked.
5139 */
5140 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)5141 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
5142 {
5143 struct pwddesc *pdp;
5144 struct pwd *pwd;
5145 struct export_fd_buf *efbuf;
5146 struct vnode *cdir;
5147 int error;
5148
5149 PROC_LOCK_ASSERT(p, MA_OWNED);
5150
5151 pdp = pdhold(p);
5152 PROC_UNLOCK(p);
5153 if (pdp == NULL)
5154 return (EINVAL);
5155
5156 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5157 efbuf->fdp = NULL;
5158 efbuf->pdp = pdp;
5159 efbuf->sb = sb;
5160 efbuf->remainder = maxlen;
5161 efbuf->flags = 0;
5162
5163 PWDDESC_XLOCK(pdp);
5164 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5165 cdir = pwd->pwd_cdir;
5166 if (cdir == NULL) {
5167 error = EINVAL;
5168 } else {
5169 vrefact(cdir);
5170 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5171 }
5172 PWDDESC_XUNLOCK(pdp);
5173 pddrop(pdp);
5174 free(efbuf, M_TEMP);
5175 return (error);
5176 }
5177
5178 /*
5179 * Get per-process current working directory.
5180 */
5181 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5182 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5183 {
5184 struct sbuf sb;
5185 struct proc *p;
5186 ssize_t maxlen;
5187 u_int namelen;
5188 int error, error2, *name;
5189
5190 namelen = arg2;
5191 if (namelen != 1)
5192 return (EINVAL);
5193
5194 name = (int *)arg1;
5195
5196 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5197 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5198 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5199 if (error != 0) {
5200 sbuf_delete(&sb);
5201 return (error);
5202 }
5203 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5204 error = kern_proc_cwd_out(p, &sb, maxlen);
5205 error2 = sbuf_finish(&sb);
5206 sbuf_delete(&sb);
5207 return (error != 0 ? error : error2);
5208 }
5209
5210 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5211 sysctl_kern_proc_cwd, "Process current working directory");
5212
5213 #ifdef DDB
5214 /*
5215 * For the purposes of debugging, generate a human-readable string for the
5216 * file type.
5217 */
5218 static const char *
file_type_to_name(short type)5219 file_type_to_name(short type)
5220 {
5221
5222 switch (type) {
5223 case 0:
5224 return ("zero");
5225 case DTYPE_VNODE:
5226 return ("vnode");
5227 case DTYPE_SOCKET:
5228 return ("socket");
5229 case DTYPE_PIPE:
5230 return ("pipe");
5231 case DTYPE_FIFO:
5232 return ("fifo");
5233 case DTYPE_KQUEUE:
5234 return ("kqueue");
5235 case DTYPE_CRYPTO:
5236 return ("crypto");
5237 case DTYPE_MQUEUE:
5238 return ("mqueue");
5239 case DTYPE_SHM:
5240 return ("shm");
5241 case DTYPE_SEM:
5242 return ("ksem");
5243 case DTYPE_PTS:
5244 return ("pts");
5245 case DTYPE_DEV:
5246 return ("dev");
5247 case DTYPE_PROCDESC:
5248 return ("proc");
5249 case DTYPE_EVENTFD:
5250 return ("eventfd");
5251 case DTYPE_TIMERFD:
5252 return ("timerfd");
5253 default:
5254 return ("unkn");
5255 }
5256 }
5257
5258 /*
5259 * For the purposes of debugging, identify a process (if any, perhaps one of
5260 * many) that references the passed file in its file descriptor array. Return
5261 * NULL if none.
5262 */
5263 static struct proc *
file_to_first_proc(struct file * fp)5264 file_to_first_proc(struct file *fp)
5265 {
5266 struct filedesc *fdp;
5267 struct proc *p;
5268 int n;
5269
5270 FOREACH_PROC_IN_SYSTEM(p) {
5271 if (p->p_state == PRS_NEW)
5272 continue;
5273 fdp = p->p_fd;
5274 if (fdp == NULL)
5275 continue;
5276 for (n = 0; n < fdp->fd_nfiles; n++) {
5277 if (fp == fdp->fd_ofiles[n].fde_file)
5278 return (p);
5279 }
5280 }
5281 return (NULL);
5282 }
5283
5284 static void
db_print_file(struct file * fp,int header)5285 db_print_file(struct file *fp, int header)
5286 {
5287 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5288 struct proc *p;
5289
5290 if (header)
5291 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5292 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5293 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5294 "FCmd");
5295 p = file_to_first_proc(fp);
5296 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5297 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5298 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5299 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5300
5301 #undef XPTRWIDTH
5302 }
5303
DB_SHOW_COMMAND(file,db_show_file)5304 DB_SHOW_COMMAND(file, db_show_file)
5305 {
5306 struct file *fp;
5307
5308 if (!have_addr) {
5309 db_printf("usage: show file <addr>\n");
5310 return;
5311 }
5312 fp = (struct file *)addr;
5313 db_print_file(fp, 1);
5314 }
5315
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5316 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5317 {
5318 struct filedesc *fdp;
5319 struct file *fp;
5320 struct proc *p;
5321 int header;
5322 int n;
5323
5324 header = 1;
5325 FOREACH_PROC_IN_SYSTEM(p) {
5326 if (p->p_state == PRS_NEW)
5327 continue;
5328 if ((fdp = p->p_fd) == NULL)
5329 continue;
5330 for (n = 0; n < fdp->fd_nfiles; ++n) {
5331 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5332 continue;
5333 db_print_file(fp, header);
5334 header = 0;
5335 }
5336 }
5337 }
5338 #endif
5339
5340 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5341 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5342 &maxfilesperproc, 0, "Maximum files allowed open per process");
5343
5344 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5345 &maxfiles, 0, "Maximum number of files");
5346
5347 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5348 &openfiles, 0, "System-wide number of open files");
5349
5350 /* ARGSUSED*/
5351 static void
filelistinit(void * dummy)5352 filelistinit(void *dummy)
5353 {
5354
5355 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5356 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5357 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5358 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5359 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5360 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5361 /*
5362 * XXXMJG this is a temporary hack due to boot ordering issues against
5363 * the vnode zone.
5364 */
5365 vfs_smr = uma_zone_get_smr(pwd_zone);
5366 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5367 }
5368 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5369
5370 /*-------------------------------------------------------------------*/
5371
5372 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5373 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5374 int flags, struct thread *td)
5375 {
5376
5377 return (EBADF);
5378 }
5379
5380 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5381 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5382 struct thread *td)
5383 {
5384
5385 return (EINVAL);
5386 }
5387
5388 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5389 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5390 struct thread *td)
5391 {
5392
5393 return (EBADF);
5394 }
5395
5396 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5397 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5398 struct thread *td)
5399 {
5400
5401 return (0);
5402 }
5403
5404 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5405 badfo_kqfilter(struct file *fp, struct knote *kn)
5406 {
5407
5408 return (EBADF);
5409 }
5410
5411 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5412 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5413 {
5414
5415 return (EBADF);
5416 }
5417
5418 static int
badfo_close(struct file * fp,struct thread * td)5419 badfo_close(struct file *fp, struct thread *td)
5420 {
5421
5422 return (0);
5423 }
5424
5425 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5426 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5427 struct thread *td)
5428 {
5429
5430 return (EBADF);
5431 }
5432
5433 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5434 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5435 struct thread *td)
5436 {
5437
5438 return (EBADF);
5439 }
5440
5441 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5442 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5443 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5444 struct thread *td)
5445 {
5446
5447 return (EBADF);
5448 }
5449
5450 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5451 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5452 {
5453
5454 return (0);
5455 }
5456
5457 const struct fileops badfileops = {
5458 .fo_read = badfo_readwrite,
5459 .fo_write = badfo_readwrite,
5460 .fo_truncate = badfo_truncate,
5461 .fo_ioctl = badfo_ioctl,
5462 .fo_poll = badfo_poll,
5463 .fo_kqfilter = badfo_kqfilter,
5464 .fo_stat = badfo_stat,
5465 .fo_close = badfo_close,
5466 .fo_chmod = badfo_chmod,
5467 .fo_chown = badfo_chown,
5468 .fo_sendfile = badfo_sendfile,
5469 .fo_fill_kinfo = badfo_fill_kinfo,
5470 };
5471
5472 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5473 path_poll(struct file *fp, int events, struct ucred *active_cred,
5474 struct thread *td)
5475 {
5476 return (POLLNVAL);
5477 }
5478
5479 static int
path_close(struct file * fp,struct thread * td)5480 path_close(struct file *fp, struct thread *td)
5481 {
5482 MPASS(fp->f_type == DTYPE_VNODE);
5483 fp->f_ops = &badfileops;
5484 vrele(fp->f_vnode);
5485 return (0);
5486 }
5487
5488 const struct fileops path_fileops = {
5489 .fo_read = badfo_readwrite,
5490 .fo_write = badfo_readwrite,
5491 .fo_truncate = badfo_truncate,
5492 .fo_ioctl = badfo_ioctl,
5493 .fo_poll = path_poll,
5494 .fo_kqfilter = vn_kqfilter_opath,
5495 .fo_stat = vn_statfile,
5496 .fo_close = path_close,
5497 .fo_chmod = badfo_chmod,
5498 .fo_chown = badfo_chown,
5499 .fo_sendfile = badfo_sendfile,
5500 .fo_fill_kinfo = vn_fill_kinfo,
5501 .fo_cmp = vn_cmp,
5502 .fo_flags = DFLAG_PASSABLE,
5503 };
5504
5505 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5506 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5507 int flags, struct thread *td)
5508 {
5509
5510 return (EOPNOTSUPP);
5511 }
5512
5513 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5514 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5515 struct thread *td)
5516 {
5517
5518 return (EINVAL);
5519 }
5520
5521 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5522 invfo_ioctl(struct file *fp, u_long com, void *data,
5523 struct ucred *active_cred, struct thread *td)
5524 {
5525
5526 return (ENOTTY);
5527 }
5528
5529 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5530 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5531 struct thread *td)
5532 {
5533
5534 return (poll_no_poll(events));
5535 }
5536
5537 int
invfo_kqfilter(struct file * fp,struct knote * kn)5538 invfo_kqfilter(struct file *fp, struct knote *kn)
5539 {
5540
5541 return (EINVAL);
5542 }
5543
5544 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5545 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5546 struct thread *td)
5547 {
5548
5549 return (EINVAL);
5550 }
5551
5552 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5553 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5554 struct thread *td)
5555 {
5556
5557 return (EINVAL);
5558 }
5559
5560 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5561 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5562 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5563 struct thread *td)
5564 {
5565
5566 return (EINVAL);
5567 }
5568
5569 /*-------------------------------------------------------------------*/
5570
5571 /*
5572 * File Descriptor pseudo-device driver (/dev/fd/).
5573 *
5574 * Opening minor device N dup()s the file (if any) connected to file
5575 * descriptor N belonging to the calling process. Note that this driver
5576 * consists of only the ``open()'' routine, because all subsequent
5577 * references to this file will be direct to the other driver.
5578 *
5579 * XXX: we could give this one a cloning event handler if necessary.
5580 */
5581
5582 /* ARGSUSED */
5583 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5584 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5585 {
5586
5587 /*
5588 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5589 * the file descriptor being sought for duplication. The error
5590 * return ensures that the vnode for this device will be released
5591 * by vn_open. Open will detect this special error and take the
5592 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5593 * will simply report the error.
5594 */
5595 td->td_dupfd = dev2unit(dev);
5596 return (ENODEV);
5597 }
5598
5599 static struct cdevsw fildesc_cdevsw = {
5600 .d_version = D_VERSION,
5601 .d_open = fdopen,
5602 .d_name = "FD",
5603 };
5604
5605 static void
fildesc_drvinit(void * unused)5606 fildesc_drvinit(void *unused)
5607 {
5608 struct cdev *dev;
5609
5610 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5611 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5612 make_dev_alias(dev, "stdin");
5613 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5614 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5615 make_dev_alias(dev, "stdout");
5616 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5617 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5618 make_dev_alias(dev, "stderr");
5619 }
5620
5621 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5622