1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34
35 /**
36 * DOC: Scheduler
37 *
38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39 * the firmware takes care of scheduling aspects, to some extent.
40 *
41 * The scheduling happens at the scheduling group level, each group
42 * contains 1 to N queues (N is FW/hardware dependent, and exposed
43 * through the firmware interface). Each queue is assigned a command
44 * stream ring buffer, which serves as a way to get jobs submitted to
45 * the GPU, among other things.
46 *
47 * The firmware can schedule a maximum of M groups (M is FW/hardware
48 * dependent, and exposed through the firmware interface). Passed
49 * this maximum number of groups, the kernel must take care of
50 * rotating the groups passed to the firmware so every group gets
51 * a chance to have his queues scheduled for execution.
52 *
53 * The current implementation only supports with kernel-mode queues.
54 * In other terms, userspace doesn't have access to the ring-buffer.
55 * Instead, userspace passes indirect command stream buffers that are
56 * called from the queue ring-buffer by the kernel using a pre-defined
57 * sequence of command stream instructions to ensure the userspace driver
58 * always gets consistent results (cache maintenance,
59 * synchronization, ...).
60 *
61 * We rely on the drm_gpu_scheduler framework to deal with job
62 * dependencies and submission. As any other driver dealing with a
63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64 * entity has its own job scheduler. When a job is ready to be executed
65 * (all its dependencies are met), it is pushed to the appropriate
66 * queue ring-buffer, and the group is scheduled for execution if it
67 * wasn't already active.
68 *
69 * Kernel-side group scheduling is timeslice-based. When we have less
70 * groups than there are slots, the periodic tick is disabled and we
71 * just let the FW schedule the active groups. When there are more
72 * groups than slots, we let each group a chance to execute stuff for
73 * a given amount of time, and then re-evaluate and pick new groups
74 * to schedule. The group selection algorithm is based on
75 * priority+round-robin.
76 *
77 * Even though user-mode queues is out of the scope right now, the
78 * current design takes them into account by avoiding any guess on the
79 * group/queue state that would be based on information we wouldn't have
80 * if userspace was in charge of the ring-buffer. That's also one of the
81 * reason we don't do 'cooperative' scheduling (encoding FW group slot
82 * reservation as dma_fence that would be returned from the
83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84 * a queue of waiters, ordered by job submission order). This approach
85 * would work for kernel-mode queues, but would make user-mode queues a
86 * lot more complicated to retrofit.
87 */
88
89 #define JOB_TIMEOUT_MS 5000
90
91 #define MIN_CS_PER_CSG 8
92
93 #define MIN_CSGS 3
94 #define MAX_CSG_PRIO 0xf
95
96 #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64))
97 #define MAX_INSTRS_PER_JOB 24
98
99 struct panthor_group;
100
101 /**
102 * struct panthor_csg_slot - Command stream group slot
103 *
104 * This represents a FW slot for a scheduling group.
105 */
106 struct panthor_csg_slot {
107 /** @group: Scheduling group bound to this slot. */
108 struct panthor_group *group;
109
110 /** @priority: Group priority. */
111 u8 priority;
112
113 /**
114 * @idle: True if the group bound to this slot is idle.
115 *
116 * A group is idle when it has nothing waiting for execution on
117 * all its queues, or when queues are blocked waiting for something
118 * to happen (synchronization object).
119 */
120 bool idle;
121 };
122
123 /**
124 * enum panthor_csg_priority - Group priority
125 */
126 enum panthor_csg_priority {
127 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
128 PANTHOR_CSG_PRIORITY_LOW = 0,
129
130 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
131 PANTHOR_CSG_PRIORITY_MEDIUM,
132
133 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
134 PANTHOR_CSG_PRIORITY_HIGH,
135
136 /**
137 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
138 *
139 * Real-time priority allows one to preempt scheduling of other
140 * non-real-time groups. When such a group becomes executable,
141 * it will evict the group with the lowest non-rt priority if
142 * there's no free group slot available.
143 */
144 PANTHOR_CSG_PRIORITY_RT,
145
146 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
147 PANTHOR_CSG_PRIORITY_COUNT,
148 };
149
150 /**
151 * struct panthor_scheduler - Object used to manage the scheduler
152 */
153 struct panthor_scheduler {
154 /** @ptdev: Device. */
155 struct panthor_device *ptdev;
156
157 /**
158 * @wq: Workqueue used by our internal scheduler logic and
159 * drm_gpu_scheduler.
160 *
161 * Used for the scheduler tick, group update or other kind of FW
162 * event processing that can't be handled in the threaded interrupt
163 * path. Also passed to the drm_gpu_scheduler instances embedded
164 * in panthor_queue.
165 */
166 struct workqueue_struct *wq;
167
168 /**
169 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
170 *
171 * We have a queue dedicated to heap chunk allocation works to avoid
172 * blocking the rest of the scheduler if the allocation tries to
173 * reclaim memory.
174 */
175 struct workqueue_struct *heap_alloc_wq;
176
177 /** @tick_work: Work executed on a scheduling tick. */
178 struct delayed_work tick_work;
179
180 /**
181 * @sync_upd_work: Work used to process synchronization object updates.
182 *
183 * We use this work to unblock queues/groups that were waiting on a
184 * synchronization object.
185 */
186 struct work_struct sync_upd_work;
187
188 /**
189 * @fw_events_work: Work used to process FW events outside the interrupt path.
190 *
191 * Even if the interrupt is threaded, we need any event processing
192 * that require taking the panthor_scheduler::lock to be processed
193 * outside the interrupt path so we don't block the tick logic when
194 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
195 * event processing requires taking this lock, we just delegate all
196 * FW event processing to the scheduler workqueue.
197 */
198 struct work_struct fw_events_work;
199
200 /**
201 * @fw_events: Bitmask encoding pending FW events.
202 */
203 atomic_t fw_events;
204
205 /**
206 * @resched_target: When the next tick should occur.
207 *
208 * Expressed in jiffies.
209 */
210 u64 resched_target;
211
212 /**
213 * @last_tick: When the last tick occurred.
214 *
215 * Expressed in jiffies.
216 */
217 u64 last_tick;
218
219 /** @tick_period: Tick period in jiffies. */
220 u64 tick_period;
221
222 /**
223 * @lock: Lock protecting access to all the scheduler fields.
224 *
225 * Should be taken in the tick work, the irq handler, and anywhere the @groups
226 * fields are touched.
227 */
228 struct mutex lock;
229
230 /** @groups: Various lists used to classify groups. */
231 struct {
232 /**
233 * @runnable: Runnable group lists.
234 *
235 * When a group has queues that want to execute something,
236 * its panthor_group::run_node should be inserted here.
237 *
238 * One list per-priority.
239 */
240 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
241
242 /**
243 * @idle: Idle group lists.
244 *
245 * When all queues of a group are idle (either because they
246 * have nothing to execute, or because they are blocked), the
247 * panthor_group::run_node field should be inserted here.
248 *
249 * One list per-priority.
250 */
251 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
252
253 /**
254 * @waiting: List of groups whose queues are blocked on a
255 * synchronization object.
256 *
257 * Insert panthor_group::wait_node here when a group is waiting
258 * for synchronization objects to be signaled.
259 *
260 * This list is evaluated in the @sync_upd_work work.
261 */
262 struct list_head waiting;
263 } groups;
264
265 /**
266 * @csg_slots: FW command stream group slots.
267 */
268 struct panthor_csg_slot csg_slots[MAX_CSGS];
269
270 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */
271 u32 csg_slot_count;
272
273 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
274 u32 cs_slot_count;
275
276 /** @as_slot_count: Number of address space slots supported by the MMU. */
277 u32 as_slot_count;
278
279 /** @used_csg_slot_count: Number of command stream group slot currently used. */
280 u32 used_csg_slot_count;
281
282 /** @sb_slot_count: Number of scoreboard slots. */
283 u32 sb_slot_count;
284
285 /**
286 * @might_have_idle_groups: True if an active group might have become idle.
287 *
288 * This will force a tick, so other runnable groups can be scheduled if one
289 * or more active groups became idle.
290 */
291 bool might_have_idle_groups;
292
293 /** @pm: Power management related fields. */
294 struct {
295 /** @has_ref: True if the scheduler owns a runtime PM reference. */
296 bool has_ref;
297 } pm;
298
299 /** @reset: Reset related fields. */
300 struct {
301 /** @lock: Lock protecting the other reset fields. */
302 struct mutex lock;
303
304 /**
305 * @in_progress: True if a reset is in progress.
306 *
307 * Set to true in panthor_sched_pre_reset() and back to false in
308 * panthor_sched_post_reset().
309 */
310 atomic_t in_progress;
311
312 /**
313 * @stopped_groups: List containing all groups that were stopped
314 * before a reset.
315 *
316 * Insert panthor_group::run_node in the pre_reset path.
317 */
318 struct list_head stopped_groups;
319 } reset;
320 };
321
322 /**
323 * struct panthor_syncobj_32b - 32-bit FW synchronization object
324 */
325 struct panthor_syncobj_32b {
326 /** @seqno: Sequence number. */
327 u32 seqno;
328
329 /**
330 * @status: Status.
331 *
332 * Not zero on failure.
333 */
334 u32 status;
335 };
336
337 /**
338 * struct panthor_syncobj_64b - 64-bit FW synchronization object
339 */
340 struct panthor_syncobj_64b {
341 /** @seqno: Sequence number. */
342 u64 seqno;
343
344 /**
345 * @status: Status.
346 *
347 * Not zero on failure.
348 */
349 u32 status;
350
351 /** @pad: MBZ. */
352 u32 pad;
353 };
354
355 /**
356 * struct panthor_queue - Execution queue
357 */
358 struct panthor_queue {
359 /** @scheduler: DRM scheduler used for this queue. */
360 struct drm_gpu_scheduler scheduler;
361
362 /** @entity: DRM scheduling entity used for this queue. */
363 struct drm_sched_entity entity;
364
365 /**
366 * @remaining_time: Time remaining before the job timeout expires.
367 *
368 * The job timeout is suspended when the queue is not scheduled by the
369 * FW. Every time we suspend the timer, we need to save the remaining
370 * time so we can restore it later on.
371 */
372 unsigned long remaining_time;
373
374 /** @timeout_suspended: True if the job timeout was suspended. */
375 bool timeout_suspended;
376
377 /**
378 * @doorbell_id: Doorbell assigned to this queue.
379 *
380 * Right now, all groups share the same doorbell, and the doorbell ID
381 * is assigned to group_slot + 1 when the group is assigned a slot. But
382 * we might decide to provide fine grained doorbell assignment at some
383 * point, so don't have to wake up all queues in a group every time one
384 * of them is updated.
385 */
386 u8 doorbell_id;
387
388 /**
389 * @priority: Priority of the queue inside the group.
390 *
391 * Must be less than 16 (Only 4 bits available).
392 */
393 u8 priority;
394 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0)
395
396 /** @ringbuf: Command stream ring-buffer. */
397 struct panthor_kernel_bo *ringbuf;
398
399 /** @iface: Firmware interface. */
400 struct {
401 /** @mem: FW memory allocated for this interface. */
402 struct panthor_kernel_bo *mem;
403
404 /** @input: Input interface. */
405 struct panthor_fw_ringbuf_input_iface *input;
406
407 /** @output: Output interface. */
408 const struct panthor_fw_ringbuf_output_iface *output;
409
410 /** @input_fw_va: FW virtual address of the input interface buffer. */
411 u32 input_fw_va;
412
413 /** @output_fw_va: FW virtual address of the output interface buffer. */
414 u32 output_fw_va;
415 } iface;
416
417 /**
418 * @syncwait: Stores information about the synchronization object this
419 * queue is waiting on.
420 */
421 struct {
422 /** @gpu_va: GPU address of the synchronization object. */
423 u64 gpu_va;
424
425 /** @ref: Reference value to compare against. */
426 u64 ref;
427
428 /** @gt: True if this is a greater-than test. */
429 bool gt;
430
431 /** @sync64: True if this is a 64-bit sync object. */
432 bool sync64;
433
434 /** @bo: Buffer object holding the synchronization object. */
435 struct drm_gem_object *obj;
436
437 /** @offset: Offset of the synchronization object inside @bo. */
438 u64 offset;
439
440 /**
441 * @kmap: Kernel mapping of the buffer object holding the
442 * synchronization object.
443 */
444 void *kmap;
445 } syncwait;
446
447 /** @fence_ctx: Fence context fields. */
448 struct {
449 /** @lock: Used to protect access to all fences allocated by this context. */
450 spinlock_t lock;
451
452 /**
453 * @id: Fence context ID.
454 *
455 * Allocated with dma_fence_context_alloc().
456 */
457 u64 id;
458
459 /** @seqno: Sequence number of the last initialized fence. */
460 atomic64_t seqno;
461
462 /**
463 * @last_fence: Fence of the last submitted job.
464 *
465 * We return this fence when we get an empty command stream.
466 * This way, we are guaranteed that all earlier jobs have completed
467 * when drm_sched_job::s_fence::finished without having to feed
468 * the CS ring buffer with a dummy job that only signals the fence.
469 */
470 struct dma_fence *last_fence;
471
472 /**
473 * @in_flight_jobs: List containing all in-flight jobs.
474 *
475 * Used to keep track and signal panthor_job::done_fence when the
476 * synchronization object attached to the queue is signaled.
477 */
478 struct list_head in_flight_jobs;
479 } fence_ctx;
480
481 /** @profiling: Job profiling data slots and access information. */
482 struct {
483 /** @slots: Kernel BO holding the slots. */
484 struct panthor_kernel_bo *slots;
485
486 /** @slot_count: Number of jobs ringbuffer can hold at once. */
487 u32 slot_count;
488
489 /** @seqno: Index of the next available profiling information slot. */
490 u32 seqno;
491 } profiling;
492 };
493
494 /**
495 * enum panthor_group_state - Scheduling group state.
496 */
497 enum panthor_group_state {
498 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
499 PANTHOR_CS_GROUP_CREATED,
500
501 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
502 PANTHOR_CS_GROUP_ACTIVE,
503
504 /**
505 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
506 * inactive/suspended right now.
507 */
508 PANTHOR_CS_GROUP_SUSPENDED,
509
510 /**
511 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
512 *
513 * Can no longer be scheduled. The only allowed action is a destruction.
514 */
515 PANTHOR_CS_GROUP_TERMINATED,
516
517 /**
518 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
519 *
520 * The FW returned an inconsistent state. The group is flagged unusable
521 * and can no longer be scheduled. The only allowed action is a
522 * destruction.
523 *
524 * When that happens, we also schedule a FW reset, to start from a fresh
525 * state.
526 */
527 PANTHOR_CS_GROUP_UNKNOWN_STATE,
528 };
529
530 /**
531 * struct panthor_group - Scheduling group object
532 */
533 struct panthor_group {
534 /** @refcount: Reference count */
535 struct kref refcount;
536
537 /** @ptdev: Device. */
538 struct panthor_device *ptdev;
539
540 /** @vm: VM bound to the group. */
541 struct panthor_vm *vm;
542
543 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
544 u64 compute_core_mask;
545
546 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
547 u64 fragment_core_mask;
548
549 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
550 u64 tiler_core_mask;
551
552 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
553 u8 max_compute_cores;
554
555 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
556 u8 max_fragment_cores;
557
558 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
559 u8 max_tiler_cores;
560
561 /** @priority: Group priority (check panthor_csg_priority). */
562 u8 priority;
563
564 /** @blocked_queues: Bitmask reflecting the blocked queues. */
565 u32 blocked_queues;
566
567 /** @idle_queues: Bitmask reflecting the idle queues. */
568 u32 idle_queues;
569
570 /** @fatal_lock: Lock used to protect access to fatal fields. */
571 spinlock_t fatal_lock;
572
573 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
574 u32 fatal_queues;
575
576 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
577 atomic_t tiler_oom;
578
579 /** @queue_count: Number of queues in this group. */
580 u32 queue_count;
581
582 /** @queues: Queues owned by this group. */
583 struct panthor_queue *queues[MAX_CS_PER_CSG];
584
585 /**
586 * @csg_id: ID of the FW group slot.
587 *
588 * -1 when the group is not scheduled/active.
589 */
590 int csg_id;
591
592 /**
593 * @destroyed: True when the group has been destroyed.
594 *
595 * If a group is destroyed it becomes useless: no further jobs can be submitted
596 * to its queues. We simply wait for all references to be dropped so we can
597 * release the group object.
598 */
599 bool destroyed;
600
601 /**
602 * @timedout: True when a timeout occurred on any of the queues owned by
603 * this group.
604 *
605 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
606 * and the group can't be suspended, this also leads to a timeout. In any case,
607 * any timeout situation is unrecoverable, and the group becomes useless. We
608 * simply wait for all references to be dropped so we can release the group
609 * object.
610 */
611 bool timedout;
612
613 /**
614 * @innocent: True when the group becomes unusable because the group suspension
615 * failed during a reset.
616 *
617 * Sometimes the FW was put in a bad state by other groups, causing the group
618 * suspension happening in the reset path to fail. In that case, we consider the
619 * group innocent.
620 */
621 bool innocent;
622
623 /**
624 * @syncobjs: Pool of per-queue synchronization objects.
625 *
626 * One sync object per queue. The position of the sync object is
627 * determined by the queue index.
628 */
629 struct panthor_kernel_bo *syncobjs;
630
631 /** @fdinfo: Per-file total cycle and timestamp values reference. */
632 struct {
633 /** @data: Total sampled values for jobs in queues from this group. */
634 struct panthor_gpu_usage data;
635
636 /**
637 * @lock: Mutex to govern concurrent access from drm file's fdinfo callback
638 * and job post-completion processing function
639 */
640 struct mutex lock;
641 } fdinfo;
642
643 /** @state: Group state. */
644 enum panthor_group_state state;
645
646 /**
647 * @suspend_buf: Suspend buffer.
648 *
649 * Stores the state of the group and its queues when a group is suspended.
650 * Used at resume time to restore the group in its previous state.
651 *
652 * The size of the suspend buffer is exposed through the FW interface.
653 */
654 struct panthor_kernel_bo *suspend_buf;
655
656 /**
657 * @protm_suspend_buf: Protection mode suspend buffer.
658 *
659 * Stores the state of the group and its queues when a group that's in
660 * protection mode is suspended.
661 *
662 * Used at resume time to restore the group in its previous state.
663 *
664 * The size of the protection mode suspend buffer is exposed through the
665 * FW interface.
666 */
667 struct panthor_kernel_bo *protm_suspend_buf;
668
669 /** @sync_upd_work: Work used to check/signal job fences. */
670 struct work_struct sync_upd_work;
671
672 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
673 struct work_struct tiler_oom_work;
674
675 /** @term_work: Work used to finish the group termination procedure. */
676 struct work_struct term_work;
677
678 /**
679 * @release_work: Work used to release group resources.
680 *
681 * We need to postpone the group release to avoid a deadlock when
682 * the last ref is released in the tick work.
683 */
684 struct work_struct release_work;
685
686 /**
687 * @run_node: Node used to insert the group in the
688 * panthor_group::groups::{runnable,idle} and
689 * panthor_group::reset.stopped_groups lists.
690 */
691 struct list_head run_node;
692
693 /**
694 * @wait_node: Node used to insert the group in the
695 * panthor_group::groups::waiting list.
696 */
697 struct list_head wait_node;
698 };
699
700 struct panthor_job_profiling_data {
701 struct {
702 u64 before;
703 u64 after;
704 } cycles;
705
706 struct {
707 u64 before;
708 u64 after;
709 } time;
710 };
711
712 /**
713 * group_queue_work() - Queue a group work
714 * @group: Group to queue the work for.
715 * @wname: Work name.
716 *
717 * Grabs a ref and queue a work item to the scheduler workqueue. If
718 * the work was already queued, we release the reference we grabbed.
719 *
720 * Work callbacks must release the reference we grabbed here.
721 */
722 #define group_queue_work(group, wname) \
723 do { \
724 group_get(group); \
725 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
726 group_put(group); \
727 } while (0)
728
729 /**
730 * sched_queue_work() - Queue a scheduler work.
731 * @sched: Scheduler object.
732 * @wname: Work name.
733 *
734 * Conditionally queues a scheduler work if no reset is pending/in-progress.
735 */
736 #define sched_queue_work(sched, wname) \
737 do { \
738 if (!atomic_read(&(sched)->reset.in_progress) && \
739 !panthor_device_reset_is_pending((sched)->ptdev)) \
740 queue_work((sched)->wq, &(sched)->wname ## _work); \
741 } while (0)
742
743 /**
744 * sched_queue_delayed_work() - Queue a scheduler delayed work.
745 * @sched: Scheduler object.
746 * @wname: Work name.
747 * @delay: Work delay in jiffies.
748 *
749 * Conditionally queues a scheduler delayed work if no reset is
750 * pending/in-progress.
751 */
752 #define sched_queue_delayed_work(sched, wname, delay) \
753 do { \
754 if (!atomic_read(&sched->reset.in_progress) && \
755 !panthor_device_reset_is_pending((sched)->ptdev)) \
756 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
757 } while (0)
758
759 /*
760 * We currently set the maximum of groups per file to an arbitrary low value.
761 * But this can be updated if we need more.
762 */
763 #define MAX_GROUPS_PER_POOL 128
764
765 /**
766 * struct panthor_group_pool - Group pool
767 *
768 * Each file get assigned a group pool.
769 */
770 struct panthor_group_pool {
771 /** @xa: Xarray used to manage group handles. */
772 struct xarray xa;
773 };
774
775 /**
776 * struct panthor_job - Used to manage GPU job
777 */
778 struct panthor_job {
779 /** @base: Inherit from drm_sched_job. */
780 struct drm_sched_job base;
781
782 /** @refcount: Reference count. */
783 struct kref refcount;
784
785 /** @group: Group of the queue this job will be pushed to. */
786 struct panthor_group *group;
787
788 /** @queue_idx: Index of the queue inside @group. */
789 u32 queue_idx;
790
791 /** @call_info: Information about the userspace command stream call. */
792 struct {
793 /** @start: GPU address of the userspace command stream. */
794 u64 start;
795
796 /** @size: Size of the userspace command stream. */
797 u32 size;
798
799 /**
800 * @latest_flush: Flush ID at the time the userspace command
801 * stream was built.
802 *
803 * Needed for the flush reduction mechanism.
804 */
805 u32 latest_flush;
806 } call_info;
807
808 /** @ringbuf: Position of this job is in the ring buffer. */
809 struct {
810 /** @start: Start offset. */
811 u64 start;
812
813 /** @end: End offset. */
814 u64 end;
815 } ringbuf;
816
817 /**
818 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
819 * list.
820 */
821 struct list_head node;
822
823 /** @done_fence: Fence signaled when the job is finished or cancelled. */
824 struct dma_fence *done_fence;
825
826 /** @profiling: Job profiling information. */
827 struct {
828 /** @mask: Current device job profiling enablement bitmask. */
829 u32 mask;
830
831 /** @slot: Job index in the profiling slots BO. */
832 u32 slot;
833 } profiling;
834 };
835
836 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)837 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
838 {
839 if (queue->syncwait.kmap) {
840 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
841
842 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
843 queue->syncwait.kmap = NULL;
844 }
845
846 drm_gem_object_put(queue->syncwait.obj);
847 queue->syncwait.obj = NULL;
848 }
849
850 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)851 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
852 {
853 struct panthor_device *ptdev = group->ptdev;
854 struct panthor_gem_object *bo;
855 struct iosys_map map;
856 int ret;
857
858 if (queue->syncwait.kmap)
859 return queue->syncwait.kmap + queue->syncwait.offset;
860
861 bo = panthor_vm_get_bo_for_va(group->vm,
862 queue->syncwait.gpu_va,
863 &queue->syncwait.offset);
864 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
865 goto err_put_syncwait_obj;
866
867 queue->syncwait.obj = &bo->base.base;
868 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
869 if (drm_WARN_ON(&ptdev->base, ret))
870 goto err_put_syncwait_obj;
871
872 queue->syncwait.kmap = map.vaddr;
873 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
874 goto err_put_syncwait_obj;
875
876 return queue->syncwait.kmap + queue->syncwait.offset;
877
878 err_put_syncwait_obj:
879 panthor_queue_put_syncwait_obj(queue);
880 return NULL;
881 }
882
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)883 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
884 {
885 if (IS_ERR_OR_NULL(queue))
886 return;
887
888 if (queue->entity.fence_context)
889 drm_sched_entity_destroy(&queue->entity);
890
891 if (queue->scheduler.ops)
892 drm_sched_fini(&queue->scheduler);
893
894 panthor_queue_put_syncwait_obj(queue);
895
896 panthor_kernel_bo_destroy(queue->ringbuf);
897 panthor_kernel_bo_destroy(queue->iface.mem);
898 panthor_kernel_bo_destroy(queue->profiling.slots);
899
900 /* Release the last_fence we were holding, if any. */
901 dma_fence_put(queue->fence_ctx.last_fence);
902
903 kfree(queue);
904 }
905
group_release_work(struct work_struct * work)906 static void group_release_work(struct work_struct *work)
907 {
908 struct panthor_group *group = container_of(work,
909 struct panthor_group,
910 release_work);
911 u32 i;
912
913 mutex_destroy(&group->fdinfo.lock);
914
915 for (i = 0; i < group->queue_count; i++)
916 group_free_queue(group, group->queues[i]);
917
918 panthor_kernel_bo_destroy(group->suspend_buf);
919 panthor_kernel_bo_destroy(group->protm_suspend_buf);
920 panthor_kernel_bo_destroy(group->syncobjs);
921
922 panthor_vm_put(group->vm);
923 kfree(group);
924 }
925
group_release(struct kref * kref)926 static void group_release(struct kref *kref)
927 {
928 struct panthor_group *group = container_of(kref,
929 struct panthor_group,
930 refcount);
931 struct panthor_device *ptdev = group->ptdev;
932
933 drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
934 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
935 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
936
937 queue_work(panthor_cleanup_wq, &group->release_work);
938 }
939
group_put(struct panthor_group * group)940 static void group_put(struct panthor_group *group)
941 {
942 if (group)
943 kref_put(&group->refcount, group_release);
944 }
945
946 static struct panthor_group *
group_get(struct panthor_group * group)947 group_get(struct panthor_group *group)
948 {
949 if (group)
950 kref_get(&group->refcount);
951
952 return group;
953 }
954
955 /**
956 * group_bind_locked() - Bind a group to a group slot
957 * @group: Group.
958 * @csg_id: Slot.
959 *
960 * Return: 0 on success, a negative error code otherwise.
961 */
962 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)963 group_bind_locked(struct panthor_group *group, u32 csg_id)
964 {
965 struct panthor_device *ptdev = group->ptdev;
966 struct panthor_csg_slot *csg_slot;
967 int ret;
968
969 lockdep_assert_held(&ptdev->scheduler->lock);
970
971 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
972 ptdev->scheduler->csg_slots[csg_id].group))
973 return -EINVAL;
974
975 ret = panthor_vm_active(group->vm);
976 if (ret)
977 return ret;
978
979 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
980 group_get(group);
981 group->csg_id = csg_id;
982
983 /* Dummy doorbell allocation: doorbell is assigned to the group and
984 * all queues use the same doorbell.
985 *
986 * TODO: Implement LRU-based doorbell assignment, so the most often
987 * updated queues get their own doorbell, thus avoiding useless checks
988 * on queues belonging to the same group that are rarely updated.
989 */
990 for (u32 i = 0; i < group->queue_count; i++)
991 group->queues[i]->doorbell_id = csg_id + 1;
992
993 csg_slot->group = group;
994
995 return 0;
996 }
997
998 /**
999 * group_unbind_locked() - Unbind a group from a slot.
1000 * @group: Group to unbind.
1001 *
1002 * Return: 0 on success, a negative error code otherwise.
1003 */
1004 static int
group_unbind_locked(struct panthor_group * group)1005 group_unbind_locked(struct panthor_group *group)
1006 {
1007 struct panthor_device *ptdev = group->ptdev;
1008 struct panthor_csg_slot *slot;
1009
1010 lockdep_assert_held(&ptdev->scheduler->lock);
1011
1012 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1013 return -EINVAL;
1014
1015 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1016 return -EINVAL;
1017
1018 slot = &ptdev->scheduler->csg_slots[group->csg_id];
1019 panthor_vm_idle(group->vm);
1020 group->csg_id = -1;
1021
1022 /* Tiler OOM events will be re-issued next time the group is scheduled. */
1023 atomic_set(&group->tiler_oom, 0);
1024 cancel_work(&group->tiler_oom_work);
1025
1026 for (u32 i = 0; i < group->queue_count; i++)
1027 group->queues[i]->doorbell_id = -1;
1028
1029 slot->group = NULL;
1030
1031 group_put(group);
1032 return 0;
1033 }
1034
1035 /**
1036 * cs_slot_prog_locked() - Program a queue slot
1037 * @ptdev: Device.
1038 * @csg_id: Group slot ID.
1039 * @cs_id: Queue slot ID.
1040 *
1041 * Program a queue slot with the queue information so things can start being
1042 * executed on this queue.
1043 *
1044 * The group slot must have a group bound to it already (group_bind_locked()).
1045 */
1046 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1047 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1048 {
1049 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1050 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1051
1052 lockdep_assert_held(&ptdev->scheduler->lock);
1053
1054 queue->iface.input->extract = queue->iface.output->extract;
1055 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1056
1057 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1058 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1059 cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1060 cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1061 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1062 CS_CONFIG_DOORBELL(queue->doorbell_id);
1063 cs_iface->input->ack_irq_mask = ~0;
1064 panthor_fw_update_reqs(cs_iface, req,
1065 CS_IDLE_SYNC_WAIT |
1066 CS_IDLE_EMPTY |
1067 CS_STATE_START |
1068 CS_EXTRACT_EVENT,
1069 CS_IDLE_SYNC_WAIT |
1070 CS_IDLE_EMPTY |
1071 CS_STATE_MASK |
1072 CS_EXTRACT_EVENT);
1073 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1074 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1075 queue->timeout_suspended = false;
1076 }
1077 }
1078
1079 /**
1080 * cs_slot_reset_locked() - Reset a queue slot
1081 * @ptdev: Device.
1082 * @csg_id: Group slot.
1083 * @cs_id: Queue slot.
1084 *
1085 * Change the queue slot state to STOP and suspend the queue timeout if
1086 * the queue is not blocked.
1087 *
1088 * The group slot must have a group bound to it (group_bind_locked()).
1089 */
1090 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1091 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1092 {
1093 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1094 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1095 struct panthor_queue *queue = group->queues[cs_id];
1096
1097 lockdep_assert_held(&ptdev->scheduler->lock);
1098
1099 panthor_fw_update_reqs(cs_iface, req,
1100 CS_STATE_STOP,
1101 CS_STATE_MASK);
1102
1103 /* If the queue is blocked, we want to keep the timeout running, so
1104 * we can detect unbounded waits and kill the group when that happens.
1105 */
1106 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1107 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1108 queue->timeout_suspended = true;
1109 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1110 }
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1117 * @ptdev: Device.
1118 * @csg_id: Group slot ID.
1119 *
1120 * Group slot priority update happens asynchronously. When we receive a
1121 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1122 * reflect it to our panthor_csg_slot object.
1123 */
1124 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1125 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1126 {
1127 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1128 struct panthor_fw_csg_iface *csg_iface;
1129
1130 lockdep_assert_held(&ptdev->scheduler->lock);
1131
1132 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1133 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1134 }
1135
1136 /**
1137 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1138 * @ptdev: Device.
1139 * @csg_id: Group slot.
1140 * @cs_id: Queue slot.
1141 *
1142 * Queue state is updated on group suspend or STATUS_UPDATE event.
1143 */
1144 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1145 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1146 {
1147 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1148 struct panthor_queue *queue = group->queues[cs_id];
1149 struct panthor_fw_cs_iface *cs_iface =
1150 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1151
1152 u32 status_wait_cond;
1153
1154 switch (cs_iface->output->status_blocked_reason) {
1155 case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1156 if (queue->iface.input->insert == queue->iface.output->extract &&
1157 cs_iface->output->status_scoreboards == 0)
1158 group->idle_queues |= BIT(cs_id);
1159 break;
1160
1161 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1162 if (list_empty(&group->wait_node)) {
1163 list_move_tail(&group->wait_node,
1164 &group->ptdev->scheduler->groups.waiting);
1165 }
1166
1167 /* The queue is only blocked if there's no deferred operation
1168 * pending, which can be checked through the scoreboard status.
1169 */
1170 if (!cs_iface->output->status_scoreboards)
1171 group->blocked_queues |= BIT(cs_id);
1172
1173 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1174 queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1175 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1176 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1177 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1178 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1179
1180 queue->syncwait.sync64 = true;
1181 queue->syncwait.ref |= sync_val_hi << 32;
1182 } else {
1183 queue->syncwait.sync64 = false;
1184 }
1185 break;
1186
1187 default:
1188 /* Other reasons are not blocking. Consider the queue as runnable
1189 * in those cases.
1190 */
1191 break;
1192 }
1193 }
1194
1195 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1196 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1197 {
1198 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1199 struct panthor_group *group = csg_slot->group;
1200 u32 i;
1201
1202 lockdep_assert_held(&ptdev->scheduler->lock);
1203
1204 group->idle_queues = 0;
1205 group->blocked_queues = 0;
1206
1207 for (i = 0; i < group->queue_count; i++) {
1208 if (group->queues[i])
1209 cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1210 }
1211 }
1212
1213 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1214 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1215 {
1216 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1217 struct panthor_fw_csg_iface *csg_iface;
1218 struct panthor_group *group;
1219 enum panthor_group_state new_state, old_state;
1220 u32 csg_state;
1221
1222 lockdep_assert_held(&ptdev->scheduler->lock);
1223
1224 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1225 group = csg_slot->group;
1226
1227 if (!group)
1228 return;
1229
1230 old_state = group->state;
1231 csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1232 switch (csg_state) {
1233 case CSG_STATE_START:
1234 case CSG_STATE_RESUME:
1235 new_state = PANTHOR_CS_GROUP_ACTIVE;
1236 break;
1237 case CSG_STATE_TERMINATE:
1238 new_state = PANTHOR_CS_GROUP_TERMINATED;
1239 break;
1240 case CSG_STATE_SUSPEND:
1241 new_state = PANTHOR_CS_GROUP_SUSPENDED;
1242 break;
1243 default:
1244 /* The unknown state might be caused by a FW state corruption,
1245 * which means the group metadata can't be trusted anymore, and
1246 * the SUSPEND operation might propagate the corruption to the
1247 * suspend buffers. Flag the group state as unknown to make
1248 * sure it's unusable after that point.
1249 */
1250 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1251 csg_id, csg_state);
1252 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1253 break;
1254 }
1255
1256 if (old_state == new_state)
1257 return;
1258
1259 /* The unknown state might be caused by a FW issue, reset the FW to
1260 * take a fresh start.
1261 */
1262 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1263 panthor_device_schedule_reset(ptdev);
1264
1265 if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1266 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1267
1268 if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1269 u32 i;
1270
1271 /* Reset the queue slots so we start from a clean
1272 * state when starting/resuming a new group on this
1273 * CSG slot. No wait needed here, and no ringbell
1274 * either, since the CS slot will only be re-used
1275 * on the next CSG start operation.
1276 */
1277 for (i = 0; i < group->queue_count; i++) {
1278 if (group->queues[i])
1279 cs_slot_reset_locked(ptdev, csg_id, i);
1280 }
1281 }
1282
1283 group->state = new_state;
1284 }
1285
1286 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1287 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1288 {
1289 struct panthor_fw_csg_iface *csg_iface;
1290 struct panthor_csg_slot *csg_slot;
1291 struct panthor_group *group;
1292 u32 queue_mask = 0, i;
1293
1294 lockdep_assert_held(&ptdev->scheduler->lock);
1295
1296 if (priority > MAX_CSG_PRIO)
1297 return -EINVAL;
1298
1299 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1300 return -EINVAL;
1301
1302 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1303 group = csg_slot->group;
1304 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1305 return 0;
1306
1307 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1308
1309 for (i = 0; i < group->queue_count; i++) {
1310 if (group->queues[i]) {
1311 cs_slot_prog_locked(ptdev, csg_id, i);
1312 queue_mask |= BIT(i);
1313 }
1314 }
1315
1316 csg_iface->input->allow_compute = group->compute_core_mask;
1317 csg_iface->input->allow_fragment = group->fragment_core_mask;
1318 csg_iface->input->allow_other = group->tiler_core_mask;
1319 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1320 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1321 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1322 CSG_EP_REQ_PRIORITY(priority);
1323 csg_iface->input->config = panthor_vm_as(group->vm);
1324
1325 if (group->suspend_buf)
1326 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1327 else
1328 csg_iface->input->suspend_buf = 0;
1329
1330 if (group->protm_suspend_buf) {
1331 csg_iface->input->protm_suspend_buf =
1332 panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1333 } else {
1334 csg_iface->input->protm_suspend_buf = 0;
1335 }
1336
1337 csg_iface->input->ack_irq_mask = ~0;
1338 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1339 return 0;
1340 }
1341
1342 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1343 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1344 u32 csg_id, u32 cs_id)
1345 {
1346 struct panthor_scheduler *sched = ptdev->scheduler;
1347 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1348 struct panthor_group *group = csg_slot->group;
1349 struct panthor_fw_cs_iface *cs_iface;
1350 u32 fatal;
1351 u64 info;
1352
1353 lockdep_assert_held(&sched->lock);
1354
1355 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1356 fatal = cs_iface->output->fatal;
1357 info = cs_iface->output->fatal_info;
1358
1359 if (group)
1360 group->fatal_queues |= BIT(cs_id);
1361
1362 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1363 /* If this exception is unrecoverable, queue a reset, and make
1364 * sure we stop scheduling groups until the reset has happened.
1365 */
1366 panthor_device_schedule_reset(ptdev);
1367 cancel_delayed_work(&sched->tick_work);
1368 } else {
1369 sched_queue_delayed_work(sched, tick, 0);
1370 }
1371
1372 drm_warn(&ptdev->base,
1373 "CSG slot %d CS slot: %d\n"
1374 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1375 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1376 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1377 csg_id, cs_id,
1378 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1379 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1380 (unsigned int)CS_EXCEPTION_DATA(fatal),
1381 info);
1382 }
1383
1384 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1385 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1386 u32 csg_id, u32 cs_id)
1387 {
1388 struct panthor_scheduler *sched = ptdev->scheduler;
1389 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1390 struct panthor_group *group = csg_slot->group;
1391 struct panthor_queue *queue = group && cs_id < group->queue_count ?
1392 group->queues[cs_id] : NULL;
1393 struct panthor_fw_cs_iface *cs_iface;
1394 u32 fault;
1395 u64 info;
1396
1397 lockdep_assert_held(&sched->lock);
1398
1399 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1400 fault = cs_iface->output->fault;
1401 info = cs_iface->output->fault_info;
1402
1403 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1404 u64 cs_extract = queue->iface.output->extract;
1405 struct panthor_job *job;
1406
1407 spin_lock(&queue->fence_ctx.lock);
1408 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1409 if (cs_extract >= job->ringbuf.end)
1410 continue;
1411
1412 if (cs_extract < job->ringbuf.start)
1413 break;
1414
1415 dma_fence_set_error(job->done_fence, -EINVAL);
1416 }
1417 spin_unlock(&queue->fence_ctx.lock);
1418 }
1419
1420 drm_warn(&ptdev->base,
1421 "CSG slot %d CS slot: %d\n"
1422 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1423 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1424 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1425 csg_id, cs_id,
1426 (unsigned int)CS_EXCEPTION_TYPE(fault),
1427 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1428 (unsigned int)CS_EXCEPTION_DATA(fault),
1429 info);
1430 }
1431
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1432 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1433 {
1434 struct panthor_device *ptdev = group->ptdev;
1435 struct panthor_scheduler *sched = ptdev->scheduler;
1436 u32 renderpasses_in_flight, pending_frag_count;
1437 struct panthor_heap_pool *heaps = NULL;
1438 u64 heap_address, new_chunk_va = 0;
1439 u32 vt_start, vt_end, frag_end;
1440 int ret, csg_id;
1441
1442 mutex_lock(&sched->lock);
1443 csg_id = group->csg_id;
1444 if (csg_id >= 0) {
1445 struct panthor_fw_cs_iface *cs_iface;
1446
1447 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1448 heaps = panthor_vm_get_heap_pool(group->vm, false);
1449 heap_address = cs_iface->output->heap_address;
1450 vt_start = cs_iface->output->heap_vt_start;
1451 vt_end = cs_iface->output->heap_vt_end;
1452 frag_end = cs_iface->output->heap_frag_end;
1453 renderpasses_in_flight = vt_start - frag_end;
1454 pending_frag_count = vt_end - frag_end;
1455 }
1456 mutex_unlock(&sched->lock);
1457
1458 /* The group got scheduled out, we stop here. We will get a new tiler OOM event
1459 * when it's scheduled again.
1460 */
1461 if (unlikely(csg_id < 0))
1462 return 0;
1463
1464 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1465 ret = -EINVAL;
1466 } else {
1467 /* We do the allocation without holding the scheduler lock to avoid
1468 * blocking the scheduling.
1469 */
1470 ret = panthor_heap_grow(heaps, heap_address,
1471 renderpasses_in_flight,
1472 pending_frag_count, &new_chunk_va);
1473 }
1474
1475 /* If the heap context doesn't have memory for us, we want to let the
1476 * FW try to reclaim memory by waiting for fragment jobs to land or by
1477 * executing the tiler OOM exception handler, which is supposed to
1478 * implement incremental rendering.
1479 */
1480 if (ret && ret != -ENOMEM) {
1481 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1482 group->fatal_queues |= BIT(cs_id);
1483 sched_queue_delayed_work(sched, tick, 0);
1484 goto out_put_heap_pool;
1485 }
1486
1487 mutex_lock(&sched->lock);
1488 csg_id = group->csg_id;
1489 if (csg_id >= 0) {
1490 struct panthor_fw_csg_iface *csg_iface;
1491 struct panthor_fw_cs_iface *cs_iface;
1492
1493 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1494 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1495
1496 cs_iface->input->heap_start = new_chunk_va;
1497 cs_iface->input->heap_end = new_chunk_va;
1498 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1499 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1500 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1501 }
1502 mutex_unlock(&sched->lock);
1503
1504 /* We allocated a chunck, but couldn't link it to the heap
1505 * context because the group was scheduled out while we were
1506 * allocating memory. We need to return this chunk to the heap.
1507 */
1508 if (unlikely(csg_id < 0 && new_chunk_va))
1509 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1510
1511 ret = 0;
1512
1513 out_put_heap_pool:
1514 panthor_heap_pool_put(heaps);
1515 return ret;
1516 }
1517
group_tiler_oom_work(struct work_struct * work)1518 static void group_tiler_oom_work(struct work_struct *work)
1519 {
1520 struct panthor_group *group =
1521 container_of(work, struct panthor_group, tiler_oom_work);
1522 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1523
1524 while (tiler_oom) {
1525 u32 cs_id = ffs(tiler_oom) - 1;
1526
1527 group_process_tiler_oom(group, cs_id);
1528 tiler_oom &= ~BIT(cs_id);
1529 }
1530
1531 group_put(group);
1532 }
1533
1534 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1535 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1536 u32 csg_id, u32 cs_id)
1537 {
1538 struct panthor_scheduler *sched = ptdev->scheduler;
1539 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1540 struct panthor_group *group = csg_slot->group;
1541
1542 lockdep_assert_held(&sched->lock);
1543
1544 if (drm_WARN_ON(&ptdev->base, !group))
1545 return;
1546
1547 atomic_or(BIT(cs_id), &group->tiler_oom);
1548
1549 /* We don't use group_queue_work() here because we want to queue the
1550 * work item to the heap_alloc_wq.
1551 */
1552 group_get(group);
1553 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1554 group_put(group);
1555 }
1556
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1557 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1558 u32 csg_id, u32 cs_id)
1559 {
1560 struct panthor_fw_cs_iface *cs_iface;
1561 u32 req, ack, events;
1562
1563 lockdep_assert_held(&ptdev->scheduler->lock);
1564
1565 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1566 req = cs_iface->input->req;
1567 ack = cs_iface->output->ack;
1568 events = (req ^ ack) & CS_EVT_MASK;
1569
1570 if (events & CS_FATAL)
1571 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1572
1573 if (events & CS_FAULT)
1574 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1575
1576 if (events & CS_TILER_OOM)
1577 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1578
1579 /* We don't acknowledge the TILER_OOM event since its handling is
1580 * deferred to a separate work.
1581 */
1582 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1583
1584 return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1585 }
1586
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1587 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1588 {
1589 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1590 struct panthor_fw_csg_iface *csg_iface;
1591
1592 lockdep_assert_held(&ptdev->scheduler->lock);
1593
1594 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1595 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1596 }
1597
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1598 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1599 {
1600 struct panthor_scheduler *sched = ptdev->scheduler;
1601
1602 lockdep_assert_held(&sched->lock);
1603
1604 sched->might_have_idle_groups = true;
1605
1606 /* Schedule a tick so we can evict idle groups and schedule non-idle
1607 * ones. This will also update runtime PM and devfreq busy/idle states,
1608 * so the device can lower its frequency or get suspended.
1609 */
1610 sched_queue_delayed_work(sched, tick, 0);
1611 }
1612
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1613 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1614 u32 csg_id)
1615 {
1616 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1617 struct panthor_group *group = csg_slot->group;
1618
1619 lockdep_assert_held(&ptdev->scheduler->lock);
1620
1621 if (group)
1622 group_queue_work(group, sync_upd);
1623
1624 sched_queue_work(ptdev->scheduler, sync_upd);
1625 }
1626
1627 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1628 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1629 {
1630 struct panthor_scheduler *sched = ptdev->scheduler;
1631 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1632 struct panthor_group *group = csg_slot->group;
1633
1634 lockdep_assert_held(&sched->lock);
1635
1636 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1637
1638 group = csg_slot->group;
1639 if (!drm_WARN_ON(&ptdev->base, !group))
1640 group->timedout = true;
1641
1642 sched_queue_delayed_work(sched, tick, 0);
1643 }
1644
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1645 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1646 {
1647 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1648 struct panthor_fw_csg_iface *csg_iface;
1649 u32 ring_cs_db_mask = 0;
1650
1651 lockdep_assert_held(&ptdev->scheduler->lock);
1652
1653 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1654 return;
1655
1656 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1657 req = READ_ONCE(csg_iface->input->req);
1658 ack = READ_ONCE(csg_iface->output->ack);
1659 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1660 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1661 csg_events = (req ^ ack) & CSG_EVT_MASK;
1662
1663 /* There may not be any pending CSG/CS interrupts to process */
1664 if (req == ack && cs_irq_req == cs_irq_ack)
1665 return;
1666
1667 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1668 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1669 * doesn't miss an interrupt for the CS in the race scenario where
1670 * whilst Host is servicing an interrupt for the CS, firmware sends
1671 * another interrupt for that CS.
1672 */
1673 csg_iface->input->cs_irq_ack = cs_irq_req;
1674
1675 panthor_fw_update_reqs(csg_iface, req, ack,
1676 CSG_SYNC_UPDATE |
1677 CSG_IDLE |
1678 CSG_PROGRESS_TIMER_EVENT);
1679
1680 if (csg_events & CSG_IDLE)
1681 csg_slot_process_idle_event_locked(ptdev, csg_id);
1682
1683 if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1684 csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1685
1686 cs_irqs = cs_irq_req ^ cs_irq_ack;
1687 while (cs_irqs) {
1688 u32 cs_id = ffs(cs_irqs) - 1;
1689
1690 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1691 ring_cs_db_mask |= BIT(cs_id);
1692
1693 cs_irqs &= ~BIT(cs_id);
1694 }
1695
1696 if (csg_events & CSG_SYNC_UPDATE)
1697 csg_slot_sync_update_locked(ptdev, csg_id);
1698
1699 if (ring_cs_db_mask)
1700 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1701
1702 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1703 }
1704
sched_process_idle_event_locked(struct panthor_device * ptdev)1705 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1706 {
1707 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1708
1709 lockdep_assert_held(&ptdev->scheduler->lock);
1710
1711 /* Acknowledge the idle event and schedule a tick. */
1712 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1713 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1714 }
1715
1716 /**
1717 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1718 * @ptdev: Device.
1719 */
sched_process_global_irq_locked(struct panthor_device * ptdev)1720 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1721 {
1722 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1723 u32 req, ack, evts;
1724
1725 lockdep_assert_held(&ptdev->scheduler->lock);
1726
1727 req = READ_ONCE(glb_iface->input->req);
1728 ack = READ_ONCE(glb_iface->output->ack);
1729 evts = (req ^ ack) & GLB_EVT_MASK;
1730
1731 if (evts & GLB_IDLE)
1732 sched_process_idle_event_locked(ptdev);
1733 }
1734
process_fw_events_work(struct work_struct * work)1735 static void process_fw_events_work(struct work_struct *work)
1736 {
1737 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1738 fw_events_work);
1739 u32 events = atomic_xchg(&sched->fw_events, 0);
1740 struct panthor_device *ptdev = sched->ptdev;
1741
1742 mutex_lock(&sched->lock);
1743
1744 if (events & JOB_INT_GLOBAL_IF) {
1745 sched_process_global_irq_locked(ptdev);
1746 events &= ~JOB_INT_GLOBAL_IF;
1747 }
1748
1749 while (events) {
1750 u32 csg_id = ffs(events) - 1;
1751
1752 sched_process_csg_irq_locked(ptdev, csg_id);
1753 events &= ~BIT(csg_id);
1754 }
1755
1756 mutex_unlock(&sched->lock);
1757 }
1758
1759 /**
1760 * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1761 */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1762 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1763 {
1764 if (!ptdev->scheduler)
1765 return;
1766
1767 atomic_or(events, &ptdev->scheduler->fw_events);
1768 sched_queue_work(ptdev->scheduler, fw_events);
1769 }
1770
fence_get_driver_name(struct dma_fence * fence)1771 static const char *fence_get_driver_name(struct dma_fence *fence)
1772 {
1773 return "panthor";
1774 }
1775
queue_fence_get_timeline_name(struct dma_fence * fence)1776 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1777 {
1778 return "queue-fence";
1779 }
1780
1781 static const struct dma_fence_ops panthor_queue_fence_ops = {
1782 .get_driver_name = fence_get_driver_name,
1783 .get_timeline_name = queue_fence_get_timeline_name,
1784 };
1785
1786 struct panthor_csg_slots_upd_ctx {
1787 u32 update_mask;
1788 u32 timedout_mask;
1789 struct {
1790 u32 value;
1791 u32 mask;
1792 } requests[MAX_CSGS];
1793 };
1794
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1795 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1796 {
1797 memset(ctx, 0, sizeof(*ctx));
1798 }
1799
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1800 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1801 struct panthor_csg_slots_upd_ctx *ctx,
1802 u32 csg_id, u32 value, u32 mask)
1803 {
1804 if (drm_WARN_ON(&ptdev->base, !mask) ||
1805 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1806 return;
1807
1808 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1809 ctx->requests[csg_id].mask |= mask;
1810 ctx->update_mask |= BIT(csg_id);
1811 }
1812
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1813 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1814 struct panthor_csg_slots_upd_ctx *ctx)
1815 {
1816 struct panthor_scheduler *sched = ptdev->scheduler;
1817 u32 update_slots = ctx->update_mask;
1818
1819 lockdep_assert_held(&sched->lock);
1820
1821 if (!ctx->update_mask)
1822 return 0;
1823
1824 while (update_slots) {
1825 struct panthor_fw_csg_iface *csg_iface;
1826 u32 csg_id = ffs(update_slots) - 1;
1827
1828 update_slots &= ~BIT(csg_id);
1829 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1830 panthor_fw_update_reqs(csg_iface, req,
1831 ctx->requests[csg_id].value,
1832 ctx->requests[csg_id].mask);
1833 }
1834
1835 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1836
1837 update_slots = ctx->update_mask;
1838 while (update_slots) {
1839 struct panthor_fw_csg_iface *csg_iface;
1840 u32 csg_id = ffs(update_slots) - 1;
1841 u32 req_mask = ctx->requests[csg_id].mask, acked;
1842 int ret;
1843
1844 update_slots &= ~BIT(csg_id);
1845 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1846
1847 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1848
1849 if (acked & CSG_ENDPOINT_CONFIG)
1850 csg_slot_sync_priority_locked(ptdev, csg_id);
1851
1852 if (acked & CSG_STATE_MASK)
1853 csg_slot_sync_state_locked(ptdev, csg_id);
1854
1855 if (acked & CSG_STATUS_UPDATE) {
1856 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1857 csg_slot_sync_idle_state_locked(ptdev, csg_id);
1858 }
1859
1860 if (ret && acked != req_mask &&
1861 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1862 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1863 ctx->timedout_mask |= BIT(csg_id);
1864 }
1865 }
1866
1867 if (ctx->timedout_mask)
1868 return -ETIMEDOUT;
1869
1870 return 0;
1871 }
1872
1873 struct panthor_sched_tick_ctx {
1874 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1875 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1876 u32 idle_group_count;
1877 u32 group_count;
1878 enum panthor_csg_priority min_priority;
1879 struct panthor_vm *vms[MAX_CS_PER_CSG];
1880 u32 as_count;
1881 bool immediate_tick;
1882 u32 csg_upd_failed_mask;
1883 };
1884
1885 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)1886 tick_ctx_is_full(const struct panthor_scheduler *sched,
1887 const struct panthor_sched_tick_ctx *ctx)
1888 {
1889 return ctx->group_count == sched->csg_slot_count;
1890 }
1891
1892 static bool
group_is_idle(struct panthor_group * group)1893 group_is_idle(struct panthor_group *group)
1894 {
1895 struct panthor_device *ptdev = group->ptdev;
1896 u32 inactive_queues;
1897
1898 if (group->csg_id >= 0)
1899 return ptdev->scheduler->csg_slots[group->csg_id].idle;
1900
1901 inactive_queues = group->idle_queues | group->blocked_queues;
1902 return hweight32(inactive_queues) == group->queue_count;
1903 }
1904
1905 static bool
group_can_run(struct panthor_group * group)1906 group_can_run(struct panthor_group *group)
1907 {
1908 return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1909 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1910 !group->destroyed && group->fatal_queues == 0 &&
1911 !group->timedout;
1912 }
1913
1914 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)1915 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1916 struct panthor_sched_tick_ctx *ctx,
1917 struct list_head *queue,
1918 bool skip_idle_groups,
1919 bool owned_by_tick_ctx)
1920 {
1921 struct panthor_group *group, *tmp;
1922
1923 if (tick_ctx_is_full(sched, ctx))
1924 return;
1925
1926 list_for_each_entry_safe(group, tmp, queue, run_node) {
1927 u32 i;
1928
1929 if (!group_can_run(group))
1930 continue;
1931
1932 if (skip_idle_groups && group_is_idle(group))
1933 continue;
1934
1935 for (i = 0; i < ctx->as_count; i++) {
1936 if (ctx->vms[i] == group->vm)
1937 break;
1938 }
1939
1940 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1941 continue;
1942
1943 if (!owned_by_tick_ctx)
1944 group_get(group);
1945
1946 list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1947 ctx->group_count++;
1948 if (group_is_idle(group))
1949 ctx->idle_group_count++;
1950
1951 if (i == ctx->as_count)
1952 ctx->vms[ctx->as_count++] = group->vm;
1953
1954 if (ctx->min_priority > group->priority)
1955 ctx->min_priority = group->priority;
1956
1957 if (tick_ctx_is_full(sched, ctx))
1958 return;
1959 }
1960 }
1961
1962 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)1963 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1964 struct panthor_sched_tick_ctx *ctx,
1965 struct panthor_group *group,
1966 bool full_tick)
1967 {
1968 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1969 struct panthor_group *other_group;
1970
1971 if (!full_tick) {
1972 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1973 return;
1974 }
1975
1976 /* Rotate to make sure groups with lower CSG slot
1977 * priorities have a chance to get a higher CSG slot
1978 * priority next time they get picked. This priority
1979 * has an impact on resource request ordering, so it's
1980 * important to make sure we don't let one group starve
1981 * all other groups with the same group priority.
1982 */
1983 list_for_each_entry(other_group,
1984 &ctx->old_groups[csg_slot->group->priority],
1985 run_node) {
1986 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1987
1988 if (other_csg_slot->priority > csg_slot->priority) {
1989 list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1990 return;
1991 }
1992 }
1993
1994 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1995 }
1996
1997 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)1998 tick_ctx_init(struct panthor_scheduler *sched,
1999 struct panthor_sched_tick_ctx *ctx,
2000 bool full_tick)
2001 {
2002 struct panthor_device *ptdev = sched->ptdev;
2003 struct panthor_csg_slots_upd_ctx upd_ctx;
2004 int ret;
2005 u32 i;
2006
2007 memset(ctx, 0, sizeof(*ctx));
2008 csgs_upd_ctx_init(&upd_ctx);
2009
2010 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2011 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2012 INIT_LIST_HEAD(&ctx->groups[i]);
2013 INIT_LIST_HEAD(&ctx->old_groups[i]);
2014 }
2015
2016 for (i = 0; i < sched->csg_slot_count; i++) {
2017 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2018 struct panthor_group *group = csg_slot->group;
2019 struct panthor_fw_csg_iface *csg_iface;
2020
2021 if (!group)
2022 continue;
2023
2024 csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2025 group_get(group);
2026
2027 /* If there was unhandled faults on the VM, force processing of
2028 * CSG IRQs, so we can flag the faulty queue.
2029 */
2030 if (panthor_vm_has_unhandled_faults(group->vm)) {
2031 sched_process_csg_irq_locked(ptdev, i);
2032
2033 /* No fatal fault reported, flag all queues as faulty. */
2034 if (!group->fatal_queues)
2035 group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2036 }
2037
2038 tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2039 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2040 csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2041 CSG_STATUS_UPDATE);
2042 }
2043
2044 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2045 if (ret) {
2046 panthor_device_schedule_reset(ptdev);
2047 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2048 }
2049 }
2050
2051 static void
group_term_post_processing(struct panthor_group * group)2052 group_term_post_processing(struct panthor_group *group)
2053 {
2054 struct panthor_job *job, *tmp;
2055 LIST_HEAD(faulty_jobs);
2056 bool cookie;
2057 u32 i = 0;
2058
2059 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2060 return;
2061
2062 cookie = dma_fence_begin_signalling();
2063 for (i = 0; i < group->queue_count; i++) {
2064 struct panthor_queue *queue = group->queues[i];
2065 struct panthor_syncobj_64b *syncobj;
2066 int err;
2067
2068 if (group->fatal_queues & BIT(i))
2069 err = -EINVAL;
2070 else if (group->timedout)
2071 err = -ETIMEDOUT;
2072 else
2073 err = -ECANCELED;
2074
2075 if (!queue)
2076 continue;
2077
2078 spin_lock(&queue->fence_ctx.lock);
2079 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2080 list_move_tail(&job->node, &faulty_jobs);
2081 dma_fence_set_error(job->done_fence, err);
2082 dma_fence_signal_locked(job->done_fence);
2083 }
2084 spin_unlock(&queue->fence_ctx.lock);
2085
2086 /* Manually update the syncobj seqno to unblock waiters. */
2087 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2088 syncobj->status = ~0;
2089 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2090 sched_queue_work(group->ptdev->scheduler, sync_upd);
2091 }
2092 dma_fence_end_signalling(cookie);
2093
2094 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2095 list_del_init(&job->node);
2096 panthor_job_put(&job->base);
2097 }
2098 }
2099
group_term_work(struct work_struct * work)2100 static void group_term_work(struct work_struct *work)
2101 {
2102 struct panthor_group *group =
2103 container_of(work, struct panthor_group, term_work);
2104
2105 group_term_post_processing(group);
2106 group_put(group);
2107 }
2108
2109 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2110 tick_ctx_cleanup(struct panthor_scheduler *sched,
2111 struct panthor_sched_tick_ctx *ctx)
2112 {
2113 struct panthor_device *ptdev = sched->ptdev;
2114 struct panthor_group *group, *tmp;
2115 u32 i;
2116
2117 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2118 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2119 /* If everything went fine, we should only have groups
2120 * to be terminated in the old_groups lists.
2121 */
2122 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2123 group_can_run(group));
2124
2125 if (!group_can_run(group)) {
2126 list_del_init(&group->run_node);
2127 list_del_init(&group->wait_node);
2128 group_queue_work(group, term);
2129 } else if (group->csg_id >= 0) {
2130 list_del_init(&group->run_node);
2131 } else {
2132 list_move(&group->run_node,
2133 group_is_idle(group) ?
2134 &sched->groups.idle[group->priority] :
2135 &sched->groups.runnable[group->priority]);
2136 }
2137 group_put(group);
2138 }
2139 }
2140
2141 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2142 /* If everything went fine, the groups to schedule lists should
2143 * be empty.
2144 */
2145 drm_WARN_ON(&ptdev->base,
2146 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2147
2148 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2149 if (group->csg_id >= 0) {
2150 list_del_init(&group->run_node);
2151 } else {
2152 list_move(&group->run_node,
2153 group_is_idle(group) ?
2154 &sched->groups.idle[group->priority] :
2155 &sched->groups.runnable[group->priority]);
2156 }
2157 group_put(group);
2158 }
2159 }
2160 }
2161
2162 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2163 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2164 {
2165 struct panthor_group *group, *tmp;
2166 struct panthor_device *ptdev = sched->ptdev;
2167 struct panthor_csg_slot *csg_slot;
2168 int prio, new_csg_prio = MAX_CSG_PRIO, i;
2169 u32 free_csg_slots = 0;
2170 struct panthor_csg_slots_upd_ctx upd_ctx;
2171 int ret;
2172
2173 csgs_upd_ctx_init(&upd_ctx);
2174
2175 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2176 /* Suspend or terminate evicted groups. */
2177 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2178 bool term = !group_can_run(group);
2179 int csg_id = group->csg_id;
2180
2181 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2182 continue;
2183
2184 csg_slot = &sched->csg_slots[csg_id];
2185 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2186 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2187 CSG_STATE_MASK);
2188 }
2189
2190 /* Update priorities on already running groups. */
2191 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2192 struct panthor_fw_csg_iface *csg_iface;
2193 int csg_id = group->csg_id;
2194
2195 if (csg_id < 0) {
2196 new_csg_prio--;
2197 continue;
2198 }
2199
2200 csg_slot = &sched->csg_slots[csg_id];
2201 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2202 if (csg_slot->priority == new_csg_prio) {
2203 new_csg_prio--;
2204 continue;
2205 }
2206
2207 panthor_fw_update_reqs(csg_iface, endpoint_req,
2208 CSG_EP_REQ_PRIORITY(new_csg_prio),
2209 CSG_EP_REQ_PRIORITY_MASK);
2210 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2211 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2212 CSG_ENDPOINT_CONFIG);
2213 new_csg_prio--;
2214 }
2215 }
2216
2217 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2218 if (ret) {
2219 panthor_device_schedule_reset(ptdev);
2220 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2221 return;
2222 }
2223
2224 /* Unbind evicted groups. */
2225 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2226 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2227 /* This group is gone. Process interrupts to clear
2228 * any pending interrupts before we start the new
2229 * group.
2230 */
2231 if (group->csg_id >= 0)
2232 sched_process_csg_irq_locked(ptdev, group->csg_id);
2233
2234 group_unbind_locked(group);
2235 }
2236 }
2237
2238 for (i = 0; i < sched->csg_slot_count; i++) {
2239 if (!sched->csg_slots[i].group)
2240 free_csg_slots |= BIT(i);
2241 }
2242
2243 csgs_upd_ctx_init(&upd_ctx);
2244 new_csg_prio = MAX_CSG_PRIO;
2245
2246 /* Start new groups. */
2247 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2248 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2249 int csg_id = group->csg_id;
2250 struct panthor_fw_csg_iface *csg_iface;
2251
2252 if (csg_id >= 0) {
2253 new_csg_prio--;
2254 continue;
2255 }
2256
2257 csg_id = ffs(free_csg_slots) - 1;
2258 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2259 break;
2260
2261 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2262 csg_slot = &sched->csg_slots[csg_id];
2263 group_bind_locked(group, csg_id);
2264 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2265 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2266 group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2267 CSG_STATE_RESUME : CSG_STATE_START,
2268 CSG_STATE_MASK);
2269 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2270 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2271 CSG_ENDPOINT_CONFIG);
2272 free_csg_slots &= ~BIT(csg_id);
2273 }
2274 }
2275
2276 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2277 if (ret) {
2278 panthor_device_schedule_reset(ptdev);
2279 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2280 return;
2281 }
2282
2283 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2284 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2285 list_del_init(&group->run_node);
2286
2287 /* If the group has been destroyed while we were
2288 * scheduling, ask for an immediate tick to
2289 * re-evaluate as soon as possible and get rid of
2290 * this dangling group.
2291 */
2292 if (group->destroyed)
2293 ctx->immediate_tick = true;
2294 group_put(group);
2295 }
2296
2297 /* Return evicted groups to the idle or run queues. Groups
2298 * that can no longer be run (because they've been destroyed
2299 * or experienced an unrecoverable error) will be scheduled
2300 * for destruction in tick_ctx_cleanup().
2301 */
2302 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2303 if (!group_can_run(group))
2304 continue;
2305
2306 if (group_is_idle(group))
2307 list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2308 else
2309 list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2310 group_put(group);
2311 }
2312 }
2313
2314 sched->used_csg_slot_count = ctx->group_count;
2315 sched->might_have_idle_groups = ctx->idle_group_count > 0;
2316 }
2317
2318 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2319 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2320 const struct panthor_sched_tick_ctx *ctx)
2321 {
2322 /* We had space left, no need to reschedule until some external event happens. */
2323 if (!tick_ctx_is_full(sched, ctx))
2324 goto no_tick;
2325
2326 /* If idle groups were scheduled, no need to wake up until some external
2327 * event happens (group unblocked, new job submitted, ...).
2328 */
2329 if (ctx->idle_group_count)
2330 goto no_tick;
2331
2332 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2333 goto no_tick;
2334
2335 /* If there are groups of the same priority waiting, we need to
2336 * keep the scheduler ticking, otherwise, we'll just wait for
2337 * new groups with higher priority to be queued.
2338 */
2339 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2340 u64 resched_target = sched->last_tick + sched->tick_period;
2341
2342 if (time_before64(sched->resched_target, sched->last_tick) ||
2343 time_before64(resched_target, sched->resched_target))
2344 sched->resched_target = resched_target;
2345
2346 return sched->resched_target - sched->last_tick;
2347 }
2348
2349 no_tick:
2350 sched->resched_target = U64_MAX;
2351 return U64_MAX;
2352 }
2353
tick_work(struct work_struct * work)2354 static void tick_work(struct work_struct *work)
2355 {
2356 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2357 tick_work.work);
2358 struct panthor_device *ptdev = sched->ptdev;
2359 struct panthor_sched_tick_ctx ctx;
2360 u64 remaining_jiffies = 0, resched_delay;
2361 u64 now = get_jiffies_64();
2362 int prio, ret, cookie;
2363
2364 if (!drm_dev_enter(&ptdev->base, &cookie))
2365 return;
2366
2367 ret = panthor_device_resume_and_get(ptdev);
2368 if (drm_WARN_ON(&ptdev->base, ret))
2369 goto out_dev_exit;
2370
2371 if (time_before64(now, sched->resched_target))
2372 remaining_jiffies = sched->resched_target - now;
2373
2374 mutex_lock(&sched->lock);
2375 if (panthor_device_reset_is_pending(sched->ptdev))
2376 goto out_unlock;
2377
2378 tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2379 if (ctx.csg_upd_failed_mask)
2380 goto out_cleanup_ctx;
2381
2382 if (remaining_jiffies) {
2383 /* Scheduling forced in the middle of a tick. Only RT groups
2384 * can preempt non-RT ones. Currently running RT groups can't be
2385 * preempted.
2386 */
2387 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2388 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2389 prio--) {
2390 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2391 true, true);
2392 if (prio == PANTHOR_CSG_PRIORITY_RT) {
2393 tick_ctx_pick_groups_from_list(sched, &ctx,
2394 &sched->groups.runnable[prio],
2395 true, false);
2396 }
2397 }
2398 }
2399
2400 /* First pick non-idle groups */
2401 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2402 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2403 prio--) {
2404 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2405 true, false);
2406 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2407 }
2408
2409 /* If we have free CSG slots left, pick idle groups */
2410 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2411 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2412 prio--) {
2413 /* Check the old_group queue first to avoid reprogramming the slots */
2414 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2415 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2416 false, false);
2417 }
2418
2419 tick_ctx_apply(sched, &ctx);
2420 if (ctx.csg_upd_failed_mask)
2421 goto out_cleanup_ctx;
2422
2423 if (ctx.idle_group_count == ctx.group_count) {
2424 panthor_devfreq_record_idle(sched->ptdev);
2425 if (sched->pm.has_ref) {
2426 pm_runtime_put_autosuspend(ptdev->base.dev);
2427 sched->pm.has_ref = false;
2428 }
2429 } else {
2430 panthor_devfreq_record_busy(sched->ptdev);
2431 if (!sched->pm.has_ref) {
2432 pm_runtime_get(ptdev->base.dev);
2433 sched->pm.has_ref = true;
2434 }
2435 }
2436
2437 sched->last_tick = now;
2438 resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2439 if (ctx.immediate_tick)
2440 resched_delay = 0;
2441
2442 if (resched_delay != U64_MAX)
2443 sched_queue_delayed_work(sched, tick, resched_delay);
2444
2445 out_cleanup_ctx:
2446 tick_ctx_cleanup(sched, &ctx);
2447
2448 out_unlock:
2449 mutex_unlock(&sched->lock);
2450 pm_runtime_mark_last_busy(ptdev->base.dev);
2451 pm_runtime_put_autosuspend(ptdev->base.dev);
2452
2453 out_dev_exit:
2454 drm_dev_exit(cookie);
2455 }
2456
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2457 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2458 {
2459 struct panthor_queue *queue = group->queues[queue_idx];
2460 union {
2461 struct panthor_syncobj_64b sync64;
2462 struct panthor_syncobj_32b sync32;
2463 } *syncobj;
2464 bool result;
2465 u64 value;
2466
2467 syncobj = panthor_queue_get_syncwait_obj(group, queue);
2468 if (!syncobj)
2469 return -EINVAL;
2470
2471 value = queue->syncwait.sync64 ?
2472 syncobj->sync64.seqno :
2473 syncobj->sync32.seqno;
2474
2475 if (queue->syncwait.gt)
2476 result = value > queue->syncwait.ref;
2477 else
2478 result = value <= queue->syncwait.ref;
2479
2480 if (result)
2481 panthor_queue_put_syncwait_obj(queue);
2482
2483 return result;
2484 }
2485
sync_upd_work(struct work_struct * work)2486 static void sync_upd_work(struct work_struct *work)
2487 {
2488 struct panthor_scheduler *sched = container_of(work,
2489 struct panthor_scheduler,
2490 sync_upd_work);
2491 struct panthor_group *group, *tmp;
2492 bool immediate_tick = false;
2493
2494 mutex_lock(&sched->lock);
2495 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2496 u32 tested_queues = group->blocked_queues;
2497 u32 unblocked_queues = 0;
2498
2499 while (tested_queues) {
2500 u32 cs_id = ffs(tested_queues) - 1;
2501 int ret;
2502
2503 ret = panthor_queue_eval_syncwait(group, cs_id);
2504 drm_WARN_ON(&group->ptdev->base, ret < 0);
2505 if (ret)
2506 unblocked_queues |= BIT(cs_id);
2507
2508 tested_queues &= ~BIT(cs_id);
2509 }
2510
2511 if (unblocked_queues) {
2512 group->blocked_queues &= ~unblocked_queues;
2513
2514 if (group->csg_id < 0) {
2515 list_move(&group->run_node,
2516 &sched->groups.runnable[group->priority]);
2517 if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2518 immediate_tick = true;
2519 }
2520 }
2521
2522 if (!group->blocked_queues)
2523 list_del_init(&group->wait_node);
2524 }
2525 mutex_unlock(&sched->lock);
2526
2527 if (immediate_tick)
2528 sched_queue_delayed_work(sched, tick, 0);
2529 }
2530
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2531 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2532 {
2533 struct panthor_device *ptdev = group->ptdev;
2534 struct panthor_scheduler *sched = ptdev->scheduler;
2535 struct list_head *queue = &sched->groups.runnable[group->priority];
2536 u64 delay_jiffies = 0;
2537 bool was_idle;
2538 u64 now;
2539
2540 if (!group_can_run(group))
2541 return;
2542
2543 /* All updated queues are blocked, no need to wake up the scheduler. */
2544 if ((queue_mask & group->blocked_queues) == queue_mask)
2545 return;
2546
2547 was_idle = group_is_idle(group);
2548 group->idle_queues &= ~queue_mask;
2549
2550 /* Don't mess up with the lists if we're in a middle of a reset. */
2551 if (atomic_read(&sched->reset.in_progress))
2552 return;
2553
2554 if (was_idle && !group_is_idle(group))
2555 list_move_tail(&group->run_node, queue);
2556
2557 /* RT groups are preemptive. */
2558 if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2559 sched_queue_delayed_work(sched, tick, 0);
2560 return;
2561 }
2562
2563 /* Some groups might be idle, force an immediate tick to
2564 * re-evaluate.
2565 */
2566 if (sched->might_have_idle_groups) {
2567 sched_queue_delayed_work(sched, tick, 0);
2568 return;
2569 }
2570
2571 /* Scheduler is ticking, nothing to do. */
2572 if (sched->resched_target != U64_MAX) {
2573 /* If there are free slots, force immediating ticking. */
2574 if (sched->used_csg_slot_count < sched->csg_slot_count)
2575 sched_queue_delayed_work(sched, tick, 0);
2576
2577 return;
2578 }
2579
2580 /* Scheduler tick was off, recalculate the resched_target based on the
2581 * last tick event, and queue the scheduler work.
2582 */
2583 now = get_jiffies_64();
2584 sched->resched_target = sched->last_tick + sched->tick_period;
2585 if (sched->used_csg_slot_count == sched->csg_slot_count &&
2586 time_before64(now, sched->resched_target))
2587 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2588
2589 sched_queue_delayed_work(sched, tick, delay_jiffies);
2590 }
2591
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2592 static void queue_stop(struct panthor_queue *queue,
2593 struct panthor_job *bad_job)
2594 {
2595 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2596 }
2597
queue_start(struct panthor_queue * queue)2598 static void queue_start(struct panthor_queue *queue)
2599 {
2600 struct panthor_job *job;
2601
2602 /* Re-assign the parent fences. */
2603 list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2604 job->base.s_fence->parent = dma_fence_get(job->done_fence);
2605
2606 drm_sched_start(&queue->scheduler, 0);
2607 }
2608
panthor_group_stop(struct panthor_group * group)2609 static void panthor_group_stop(struct panthor_group *group)
2610 {
2611 struct panthor_scheduler *sched = group->ptdev->scheduler;
2612
2613 lockdep_assert_held(&sched->reset.lock);
2614
2615 for (u32 i = 0; i < group->queue_count; i++)
2616 queue_stop(group->queues[i], NULL);
2617
2618 group_get(group);
2619 list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2620 }
2621
panthor_group_start(struct panthor_group * group)2622 static void panthor_group_start(struct panthor_group *group)
2623 {
2624 struct panthor_scheduler *sched = group->ptdev->scheduler;
2625
2626 lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2627
2628 for (u32 i = 0; i < group->queue_count; i++)
2629 queue_start(group->queues[i]);
2630
2631 if (group_can_run(group)) {
2632 list_move_tail(&group->run_node,
2633 group_is_idle(group) ?
2634 &sched->groups.idle[group->priority] :
2635 &sched->groups.runnable[group->priority]);
2636 } else {
2637 list_del_init(&group->run_node);
2638 list_del_init(&group->wait_node);
2639 group_queue_work(group, term);
2640 }
2641
2642 group_put(group);
2643 }
2644
panthor_sched_immediate_tick(struct panthor_device * ptdev)2645 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2646 {
2647 struct panthor_scheduler *sched = ptdev->scheduler;
2648
2649 sched_queue_delayed_work(sched, tick, 0);
2650 }
2651
2652 /**
2653 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2654 */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2655 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2656 {
2657 /* Force a tick to immediately kill faulty groups. */
2658 if (ptdev->scheduler)
2659 panthor_sched_immediate_tick(ptdev);
2660 }
2661
panthor_sched_resume(struct panthor_device * ptdev)2662 void panthor_sched_resume(struct panthor_device *ptdev)
2663 {
2664 /* Force a tick to re-evaluate after a resume. */
2665 panthor_sched_immediate_tick(ptdev);
2666 }
2667
panthor_sched_suspend(struct panthor_device * ptdev)2668 void panthor_sched_suspend(struct panthor_device *ptdev)
2669 {
2670 struct panthor_scheduler *sched = ptdev->scheduler;
2671 struct panthor_csg_slots_upd_ctx upd_ctx;
2672 struct panthor_group *group;
2673 u32 suspended_slots;
2674 u32 i;
2675
2676 mutex_lock(&sched->lock);
2677 csgs_upd_ctx_init(&upd_ctx);
2678 for (i = 0; i < sched->csg_slot_count; i++) {
2679 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2680
2681 if (csg_slot->group) {
2682 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2683 group_can_run(csg_slot->group) ?
2684 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2685 CSG_STATE_MASK);
2686 }
2687 }
2688
2689 suspended_slots = upd_ctx.update_mask;
2690
2691 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2692 suspended_slots &= ~upd_ctx.timedout_mask;
2693
2694 if (upd_ctx.timedout_mask) {
2695 u32 slot_mask = upd_ctx.timedout_mask;
2696
2697 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2698 csgs_upd_ctx_init(&upd_ctx);
2699 while (slot_mask) {
2700 u32 csg_id = ffs(slot_mask) - 1;
2701 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2702
2703 /* If the group was still usable before that point, we consider
2704 * it innocent.
2705 */
2706 if (group_can_run(csg_slot->group))
2707 csg_slot->group->innocent = true;
2708
2709 /* We consider group suspension failures as fatal and flag the
2710 * group as unusable by setting timedout=true.
2711 */
2712 csg_slot->group->timedout = true;
2713
2714 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2715 CSG_STATE_TERMINATE,
2716 CSG_STATE_MASK);
2717 slot_mask &= ~BIT(csg_id);
2718 }
2719
2720 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2721
2722 slot_mask = upd_ctx.timedout_mask;
2723 while (slot_mask) {
2724 u32 csg_id = ffs(slot_mask) - 1;
2725 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2726
2727 /* Terminate command timedout, but the soft-reset will
2728 * automatically terminate all active groups, so let's
2729 * force the state to halted here.
2730 */
2731 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2732 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2733 slot_mask &= ~BIT(csg_id);
2734 }
2735 }
2736
2737 /* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2738 * If the flush fails, flag all queues for termination.
2739 */
2740 if (suspended_slots) {
2741 bool flush_caches_failed = false;
2742 u32 slot_mask = suspended_slots;
2743
2744 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2745 flush_caches_failed = true;
2746
2747 while (slot_mask) {
2748 u32 csg_id = ffs(slot_mask) - 1;
2749 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2750
2751 if (flush_caches_failed)
2752 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2753 else
2754 csg_slot_sync_update_locked(ptdev, csg_id);
2755
2756 slot_mask &= ~BIT(csg_id);
2757 }
2758 }
2759
2760 for (i = 0; i < sched->csg_slot_count; i++) {
2761 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2762
2763 group = csg_slot->group;
2764 if (!group)
2765 continue;
2766
2767 group_get(group);
2768
2769 if (group->csg_id >= 0)
2770 sched_process_csg_irq_locked(ptdev, group->csg_id);
2771
2772 group_unbind_locked(group);
2773
2774 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2775
2776 if (group_can_run(group)) {
2777 list_add(&group->run_node,
2778 &sched->groups.idle[group->priority]);
2779 } else {
2780 /* We don't bother stopping the scheduler if the group is
2781 * faulty, the group termination work will finish the job.
2782 */
2783 list_del_init(&group->wait_node);
2784 group_queue_work(group, term);
2785 }
2786 group_put(group);
2787 }
2788 mutex_unlock(&sched->lock);
2789 }
2790
panthor_sched_pre_reset(struct panthor_device * ptdev)2791 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2792 {
2793 struct panthor_scheduler *sched = ptdev->scheduler;
2794 struct panthor_group *group, *group_tmp;
2795 u32 i;
2796
2797 mutex_lock(&sched->reset.lock);
2798 atomic_set(&sched->reset.in_progress, true);
2799
2800 /* Cancel all scheduler works. Once this is done, these works can't be
2801 * scheduled again until the reset operation is complete.
2802 */
2803 cancel_work_sync(&sched->sync_upd_work);
2804 cancel_delayed_work_sync(&sched->tick_work);
2805
2806 panthor_sched_suspend(ptdev);
2807
2808 /* Stop all groups that might still accept jobs, so we don't get passed
2809 * new jobs while we're resetting.
2810 */
2811 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2812 /* All groups should be in the idle lists. */
2813 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2814 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2815 panthor_group_stop(group);
2816 }
2817
2818 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2819 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2820 panthor_group_stop(group);
2821 }
2822
2823 mutex_unlock(&sched->reset.lock);
2824 }
2825
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2826 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2827 {
2828 struct panthor_scheduler *sched = ptdev->scheduler;
2829 struct panthor_group *group, *group_tmp;
2830
2831 mutex_lock(&sched->reset.lock);
2832
2833 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2834 /* Consider all previously running group as terminated if the
2835 * reset failed.
2836 */
2837 if (reset_failed)
2838 group->state = PANTHOR_CS_GROUP_TERMINATED;
2839
2840 panthor_group_start(group);
2841 }
2842
2843 /* We're done resetting the GPU, clear the reset.in_progress bit so we can
2844 * kick the scheduler.
2845 */
2846 atomic_set(&sched->reset.in_progress, false);
2847 mutex_unlock(&sched->reset.lock);
2848
2849 /* No need to queue a tick and update syncs if the reset failed. */
2850 if (!reset_failed) {
2851 sched_queue_delayed_work(sched, tick, 0);
2852 sched_queue_work(sched, sync_upd);
2853 }
2854 }
2855
update_fdinfo_stats(struct panthor_job * job)2856 static void update_fdinfo_stats(struct panthor_job *job)
2857 {
2858 struct panthor_group *group = job->group;
2859 struct panthor_queue *queue = group->queues[job->queue_idx];
2860 struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2861 struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2862 struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2863
2864 mutex_lock(&group->fdinfo.lock);
2865 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
2866 fdinfo->cycles += data->cycles.after - data->cycles.before;
2867 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
2868 fdinfo->time += data->time.after - data->time.before;
2869 mutex_unlock(&group->fdinfo.lock);
2870 }
2871
panthor_fdinfo_gather_group_samples(struct panthor_file * pfile)2872 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
2873 {
2874 struct panthor_group_pool *gpool = pfile->groups;
2875 struct panthor_group *group;
2876 unsigned long i;
2877
2878 if (IS_ERR_OR_NULL(gpool))
2879 return;
2880
2881 xa_for_each(&gpool->xa, i, group) {
2882 mutex_lock(&group->fdinfo.lock);
2883 pfile->stats.cycles += group->fdinfo.data.cycles;
2884 pfile->stats.time += group->fdinfo.data.time;
2885 group->fdinfo.data.cycles = 0;
2886 group->fdinfo.data.time = 0;
2887 mutex_unlock(&group->fdinfo.lock);
2888 }
2889 }
2890
group_sync_upd_work(struct work_struct * work)2891 static void group_sync_upd_work(struct work_struct *work)
2892 {
2893 struct panthor_group *group =
2894 container_of(work, struct panthor_group, sync_upd_work);
2895 struct panthor_job *job, *job_tmp;
2896 LIST_HEAD(done_jobs);
2897 u32 queue_idx;
2898 bool cookie;
2899
2900 cookie = dma_fence_begin_signalling();
2901 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2902 struct panthor_queue *queue = group->queues[queue_idx];
2903 struct panthor_syncobj_64b *syncobj;
2904
2905 if (!queue)
2906 continue;
2907
2908 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2909
2910 spin_lock(&queue->fence_ctx.lock);
2911 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2912 if (syncobj->seqno < job->done_fence->seqno)
2913 break;
2914
2915 list_move_tail(&job->node, &done_jobs);
2916 dma_fence_signal_locked(job->done_fence);
2917 }
2918 spin_unlock(&queue->fence_ctx.lock);
2919 }
2920 dma_fence_end_signalling(cookie);
2921
2922 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2923 if (job->profiling.mask)
2924 update_fdinfo_stats(job);
2925 list_del_init(&job->node);
2926 panthor_job_put(&job->base);
2927 }
2928
2929 group_put(group);
2930 }
2931
2932 struct panthor_job_ringbuf_instrs {
2933 u64 buffer[MAX_INSTRS_PER_JOB];
2934 u32 count;
2935 };
2936
2937 struct panthor_job_instr {
2938 u32 profile_mask;
2939 u64 instr;
2940 };
2941
2942 #define JOB_INSTR(__prof, __instr) \
2943 { \
2944 .profile_mask = __prof, \
2945 .instr = __instr, \
2946 }
2947
2948 static void
copy_instrs_to_ringbuf(struct panthor_queue * queue,struct panthor_job * job,struct panthor_job_ringbuf_instrs * instrs)2949 copy_instrs_to_ringbuf(struct panthor_queue *queue,
2950 struct panthor_job *job,
2951 struct panthor_job_ringbuf_instrs *instrs)
2952 {
2953 u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2954 u64 start = job->ringbuf.start & (ringbuf_size - 1);
2955 u64 size, written;
2956
2957 /*
2958 * We need to write a whole slot, including any trailing zeroes
2959 * that may come at the end of it. Also, because instrs.buffer has
2960 * been zero-initialised, there's no need to pad it with 0's
2961 */
2962 instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
2963 size = instrs->count * sizeof(u64);
2964 WARN_ON(size > ringbuf_size);
2965 written = min(ringbuf_size - start, size);
2966
2967 memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
2968
2969 if (written < size)
2970 memcpy(queue->ringbuf->kmap,
2971 &instrs->buffer[written / sizeof(u64)],
2972 size - written);
2973 }
2974
2975 struct panthor_job_cs_params {
2976 u32 profile_mask;
2977 u64 addr_reg; u64 val_reg;
2978 u64 cycle_reg; u64 time_reg;
2979 u64 sync_addr; u64 times_addr;
2980 u64 cs_start; u64 cs_size;
2981 u32 last_flush; u32 waitall_mask;
2982 };
2983
2984 static void
get_job_cs_params(struct panthor_job * job,struct panthor_job_cs_params * params)2985 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
2986 {
2987 struct panthor_group *group = job->group;
2988 struct panthor_queue *queue = group->queues[job->queue_idx];
2989 struct panthor_device *ptdev = group->ptdev;
2990 struct panthor_scheduler *sched = ptdev->scheduler;
2991
2992 params->addr_reg = ptdev->csif_info.cs_reg_count -
2993 ptdev->csif_info.unpreserved_cs_reg_count;
2994 params->val_reg = params->addr_reg + 2;
2995 params->cycle_reg = params->addr_reg;
2996 params->time_reg = params->val_reg;
2997
2998 params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2999 job->queue_idx * sizeof(struct panthor_syncobj_64b);
3000 params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3001 (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3002 params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3003
3004 params->cs_start = job->call_info.start;
3005 params->cs_size = job->call_info.size;
3006 params->last_flush = job->call_info.latest_flush;
3007
3008 params->profile_mask = job->profiling.mask;
3009 }
3010
3011 #define JOB_INSTR_ALWAYS(instr) \
3012 JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3013 #define JOB_INSTR_TIMESTAMP(instr) \
3014 JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3015 #define JOB_INSTR_CYCLES(instr) \
3016 JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3017
3018 static void
prepare_job_instrs(const struct panthor_job_cs_params * params,struct panthor_job_ringbuf_instrs * instrs)3019 prepare_job_instrs(const struct panthor_job_cs_params *params,
3020 struct panthor_job_ringbuf_instrs *instrs)
3021 {
3022 const struct panthor_job_instr instr_seq[] = {
3023 /* MOV32 rX+2, cs.latest_flush */
3024 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3025 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3026 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3027 (0 << 16) | 0x233),
3028 /* MOV48 rX:rX+1, cycles_offset */
3029 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3030 (params->times_addr +
3031 offsetof(struct panthor_job_profiling_data, cycles.before))),
3032 /* STORE_STATE cycles */
3033 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3034 /* MOV48 rX:rX+1, time_offset */
3035 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3036 (params->times_addr +
3037 offsetof(struct panthor_job_profiling_data, time.before))),
3038 /* STORE_STATE timer */
3039 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3040 /* MOV48 rX:rX+1, cs.start */
3041 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3042 /* MOV32 rX+2, cs.size */
3043 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3044 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3045 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3046 /* CALL rX:rX+1, rX+2 */
3047 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3048 (params->val_reg << 32)),
3049 /* MOV48 rX:rX+1, cycles_offset */
3050 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3051 (params->times_addr +
3052 offsetof(struct panthor_job_profiling_data, cycles.after))),
3053 /* STORE_STATE cycles */
3054 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3055 /* MOV48 rX:rX+1, time_offset */
3056 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3057 (params->times_addr +
3058 offsetof(struct panthor_job_profiling_data, time.after))),
3059 /* STORE_STATE timer */
3060 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3061 /* MOV48 rX:rX+1, sync_addr */
3062 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3063 /* MOV48 rX+2, #1 */
3064 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3065 /* WAIT(all) */
3066 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3067 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3068 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3069 (params->val_reg << 32) | (0 << 16) | 1),
3070 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3071 JOB_INSTR_ALWAYS((47ull << 56)),
3072 };
3073 u32 pad;
3074
3075 instrs->count = 0;
3076
3077 /* NEED to be cacheline aligned to please the prefetcher. */
3078 static_assert(sizeof(instrs->buffer) % 64 == 0,
3079 "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3080
3081 /* Make sure we have enough storage to store the whole sequence. */
3082 static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3083 ARRAY_SIZE(instrs->buffer),
3084 "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3085
3086 for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3087 /* If the profile mask of this instruction is not enabled, skip it. */
3088 if (instr_seq[i].profile_mask &&
3089 !(instr_seq[i].profile_mask & params->profile_mask))
3090 continue;
3091
3092 instrs->buffer[instrs->count++] = instr_seq[i].instr;
3093 }
3094
3095 pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3096 memset(&instrs->buffer[instrs->count], 0,
3097 (pad - instrs->count) * sizeof(instrs->buffer[0]));
3098 instrs->count = pad;
3099 }
3100
calc_job_credits(u32 profile_mask)3101 static u32 calc_job_credits(u32 profile_mask)
3102 {
3103 struct panthor_job_ringbuf_instrs instrs;
3104 struct panthor_job_cs_params params = {
3105 .profile_mask = profile_mask,
3106 };
3107
3108 prepare_job_instrs(¶ms, &instrs);
3109 return instrs.count;
3110 }
3111
3112 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)3113 queue_run_job(struct drm_sched_job *sched_job)
3114 {
3115 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3116 struct panthor_group *group = job->group;
3117 struct panthor_queue *queue = group->queues[job->queue_idx];
3118 struct panthor_device *ptdev = group->ptdev;
3119 struct panthor_scheduler *sched = ptdev->scheduler;
3120 struct panthor_job_ringbuf_instrs instrs;
3121 struct panthor_job_cs_params cs_params;
3122 struct dma_fence *done_fence;
3123 int ret;
3124
3125 /* Stream size is zero, nothing to do except making sure all previously
3126 * submitted jobs are done before we signal the
3127 * drm_sched_job::s_fence::finished fence.
3128 */
3129 if (!job->call_info.size) {
3130 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3131 return dma_fence_get(job->done_fence);
3132 }
3133
3134 ret = panthor_device_resume_and_get(ptdev);
3135 if (drm_WARN_ON(&ptdev->base, ret))
3136 return ERR_PTR(ret);
3137
3138 mutex_lock(&sched->lock);
3139 if (!group_can_run(group)) {
3140 done_fence = ERR_PTR(-ECANCELED);
3141 goto out_unlock;
3142 }
3143
3144 dma_fence_init(job->done_fence,
3145 &panthor_queue_fence_ops,
3146 &queue->fence_ctx.lock,
3147 queue->fence_ctx.id,
3148 atomic64_inc_return(&queue->fence_ctx.seqno));
3149
3150 job->profiling.slot = queue->profiling.seqno++;
3151 if (queue->profiling.seqno == queue->profiling.slot_count)
3152 queue->profiling.seqno = 0;
3153
3154 job->ringbuf.start = queue->iface.input->insert;
3155
3156 get_job_cs_params(job, &cs_params);
3157 prepare_job_instrs(&cs_params, &instrs);
3158 copy_instrs_to_ringbuf(queue, job, &instrs);
3159
3160 job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3161
3162 panthor_job_get(&job->base);
3163 spin_lock(&queue->fence_ctx.lock);
3164 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3165 spin_unlock(&queue->fence_ctx.lock);
3166
3167 /* Make sure the ring buffer is updated before the INSERT
3168 * register.
3169 */
3170 wmb();
3171
3172 queue->iface.input->extract = queue->iface.output->extract;
3173 queue->iface.input->insert = job->ringbuf.end;
3174
3175 if (group->csg_id < 0) {
3176 /* If the queue is blocked, we want to keep the timeout running, so we
3177 * can detect unbounded waits and kill the group when that happens.
3178 * Otherwise, we suspend the timeout so the time we spend waiting for
3179 * a CSG slot is not counted.
3180 */
3181 if (!(group->blocked_queues & BIT(job->queue_idx)) &&
3182 !queue->timeout_suspended) {
3183 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
3184 queue->timeout_suspended = true;
3185 }
3186
3187 group_schedule_locked(group, BIT(job->queue_idx));
3188 } else {
3189 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3190 if (!sched->pm.has_ref &&
3191 !(group->blocked_queues & BIT(job->queue_idx))) {
3192 pm_runtime_get(ptdev->base.dev);
3193 sched->pm.has_ref = true;
3194 }
3195 panthor_devfreq_record_busy(sched->ptdev);
3196 }
3197
3198 /* Update the last fence. */
3199 dma_fence_put(queue->fence_ctx.last_fence);
3200 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3201
3202 done_fence = dma_fence_get(job->done_fence);
3203
3204 out_unlock:
3205 mutex_unlock(&sched->lock);
3206 pm_runtime_mark_last_busy(ptdev->base.dev);
3207 pm_runtime_put_autosuspend(ptdev->base.dev);
3208
3209 return done_fence;
3210 }
3211
3212 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)3213 queue_timedout_job(struct drm_sched_job *sched_job)
3214 {
3215 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3216 struct panthor_group *group = job->group;
3217 struct panthor_device *ptdev = group->ptdev;
3218 struct panthor_scheduler *sched = ptdev->scheduler;
3219 struct panthor_queue *queue = group->queues[job->queue_idx];
3220
3221 drm_warn(&ptdev->base, "job timeout\n");
3222
3223 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3224
3225 queue_stop(queue, job);
3226
3227 mutex_lock(&sched->lock);
3228 group->timedout = true;
3229 if (group->csg_id >= 0) {
3230 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3231 } else {
3232 /* Remove from the run queues, so the scheduler can't
3233 * pick the group on the next tick.
3234 */
3235 list_del_init(&group->run_node);
3236 list_del_init(&group->wait_node);
3237
3238 group_queue_work(group, term);
3239 }
3240 mutex_unlock(&sched->lock);
3241
3242 queue_start(queue);
3243
3244 return DRM_GPU_SCHED_STAT_NOMINAL;
3245 }
3246
queue_free_job(struct drm_sched_job * sched_job)3247 static void queue_free_job(struct drm_sched_job *sched_job)
3248 {
3249 drm_sched_job_cleanup(sched_job);
3250 panthor_job_put(sched_job);
3251 }
3252
3253 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3254 .run_job = queue_run_job,
3255 .timedout_job = queue_timedout_job,
3256 .free_job = queue_free_job,
3257 };
3258
calc_profiling_ringbuf_num_slots(struct panthor_device * ptdev,u32 cs_ringbuf_size)3259 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3260 u32 cs_ringbuf_size)
3261 {
3262 u32 min_profiled_job_instrs = U32_MAX;
3263 u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3264
3265 /*
3266 * We want to calculate the minimum size of a profiled job's CS,
3267 * because since they need additional instructions for the sampling
3268 * of performance metrics, they might take up further slots in
3269 * the queue's ringbuffer. This means we might not need as many job
3270 * slots for keeping track of their profiling information. What we
3271 * need is the maximum number of slots we should allocate to this end,
3272 * which matches the maximum number of profiled jobs we can place
3273 * simultaneously in the queue's ring buffer.
3274 * That has to be calculated separately for every single job profiling
3275 * flag, but not in the case job profiling is disabled, since unprofiled
3276 * jobs don't need to keep track of this at all.
3277 */
3278 for (u32 i = 0; i < last_flag; i++) {
3279 min_profiled_job_instrs =
3280 min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3281 }
3282
3283 return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3284 }
3285
3286 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args)3287 group_create_queue(struct panthor_group *group,
3288 const struct drm_panthor_queue_create *args)
3289 {
3290 struct drm_gpu_scheduler *drm_sched;
3291 struct panthor_queue *queue;
3292 int ret;
3293
3294 if (args->pad[0] || args->pad[1] || args->pad[2])
3295 return ERR_PTR(-EINVAL);
3296
3297 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3298 !is_power_of_2(args->ringbuf_size))
3299 return ERR_PTR(-EINVAL);
3300
3301 if (args->priority > CSF_MAX_QUEUE_PRIO)
3302 return ERR_PTR(-EINVAL);
3303
3304 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3305 if (!queue)
3306 return ERR_PTR(-ENOMEM);
3307
3308 queue->fence_ctx.id = dma_fence_context_alloc(1);
3309 spin_lock_init(&queue->fence_ctx.lock);
3310 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3311
3312 queue->priority = args->priority;
3313
3314 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3315 args->ringbuf_size,
3316 DRM_PANTHOR_BO_NO_MMAP,
3317 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3318 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3319 PANTHOR_VM_KERNEL_AUTO_VA);
3320 if (IS_ERR(queue->ringbuf)) {
3321 ret = PTR_ERR(queue->ringbuf);
3322 goto err_free_queue;
3323 }
3324
3325 ret = panthor_kernel_bo_vmap(queue->ringbuf);
3326 if (ret)
3327 goto err_free_queue;
3328
3329 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3330 &queue->iface.input,
3331 &queue->iface.output,
3332 &queue->iface.input_fw_va,
3333 &queue->iface.output_fw_va);
3334 if (IS_ERR(queue->iface.mem)) {
3335 ret = PTR_ERR(queue->iface.mem);
3336 goto err_free_queue;
3337 }
3338
3339 queue->profiling.slot_count =
3340 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3341
3342 queue->profiling.slots =
3343 panthor_kernel_bo_create(group->ptdev, group->vm,
3344 queue->profiling.slot_count *
3345 sizeof(struct panthor_job_profiling_data),
3346 DRM_PANTHOR_BO_NO_MMAP,
3347 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3348 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3349 PANTHOR_VM_KERNEL_AUTO_VA);
3350
3351 if (IS_ERR(queue->profiling.slots)) {
3352 ret = PTR_ERR(queue->profiling.slots);
3353 goto err_free_queue;
3354 }
3355
3356 ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3357 if (ret)
3358 goto err_free_queue;
3359
3360 /*
3361 * Credit limit argument tells us the total number of instructions
3362 * across all CS slots in the ringbuffer, with some jobs requiring
3363 * twice as many as others, depending on their profiling status.
3364 */
3365 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3366 group->ptdev->scheduler->wq, 1,
3367 args->ringbuf_size / sizeof(u64),
3368 0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3369 group->ptdev->reset.wq,
3370 NULL, "panthor-queue", group->ptdev->base.dev);
3371 if (ret)
3372 goto err_free_queue;
3373
3374 drm_sched = &queue->scheduler;
3375 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3376
3377 return queue;
3378
3379 err_free_queue:
3380 group_free_queue(group, queue);
3381 return ERR_PTR(ret);
3382 }
3383
3384 #define MAX_GROUPS_PER_POOL 128
3385
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args)3386 int panthor_group_create(struct panthor_file *pfile,
3387 const struct drm_panthor_group_create *group_args,
3388 const struct drm_panthor_queue_create *queue_args)
3389 {
3390 struct panthor_device *ptdev = pfile->ptdev;
3391 struct panthor_group_pool *gpool = pfile->groups;
3392 struct panthor_scheduler *sched = ptdev->scheduler;
3393 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3394 struct panthor_group *group = NULL;
3395 u32 gid, i, suspend_size;
3396 int ret;
3397
3398 if (group_args->pad)
3399 return -EINVAL;
3400
3401 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3402 return -EINVAL;
3403
3404 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3405 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3406 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3407 return -EINVAL;
3408
3409 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3410 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3411 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3412 return -EINVAL;
3413
3414 group = kzalloc(sizeof(*group), GFP_KERNEL);
3415 if (!group)
3416 return -ENOMEM;
3417
3418 spin_lock_init(&group->fatal_lock);
3419 kref_init(&group->refcount);
3420 group->state = PANTHOR_CS_GROUP_CREATED;
3421 group->csg_id = -1;
3422
3423 group->ptdev = ptdev;
3424 group->max_compute_cores = group_args->max_compute_cores;
3425 group->compute_core_mask = group_args->compute_core_mask;
3426 group->max_fragment_cores = group_args->max_fragment_cores;
3427 group->fragment_core_mask = group_args->fragment_core_mask;
3428 group->max_tiler_cores = group_args->max_tiler_cores;
3429 group->tiler_core_mask = group_args->tiler_core_mask;
3430 group->priority = group_args->priority;
3431
3432 INIT_LIST_HEAD(&group->wait_node);
3433 INIT_LIST_HEAD(&group->run_node);
3434 INIT_WORK(&group->term_work, group_term_work);
3435 INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3436 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3437 INIT_WORK(&group->release_work, group_release_work);
3438
3439 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3440 if (!group->vm) {
3441 ret = -EINVAL;
3442 goto err_put_group;
3443 }
3444
3445 suspend_size = csg_iface->control->suspend_size;
3446 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3447 if (IS_ERR(group->suspend_buf)) {
3448 ret = PTR_ERR(group->suspend_buf);
3449 group->suspend_buf = NULL;
3450 goto err_put_group;
3451 }
3452
3453 suspend_size = csg_iface->control->protm_suspend_size;
3454 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3455 if (IS_ERR(group->protm_suspend_buf)) {
3456 ret = PTR_ERR(group->protm_suspend_buf);
3457 group->protm_suspend_buf = NULL;
3458 goto err_put_group;
3459 }
3460
3461 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3462 group_args->queues.count *
3463 sizeof(struct panthor_syncobj_64b),
3464 DRM_PANTHOR_BO_NO_MMAP,
3465 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3466 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3467 PANTHOR_VM_KERNEL_AUTO_VA);
3468 if (IS_ERR(group->syncobjs)) {
3469 ret = PTR_ERR(group->syncobjs);
3470 goto err_put_group;
3471 }
3472
3473 ret = panthor_kernel_bo_vmap(group->syncobjs);
3474 if (ret)
3475 goto err_put_group;
3476
3477 memset(group->syncobjs->kmap, 0,
3478 group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3479
3480 for (i = 0; i < group_args->queues.count; i++) {
3481 group->queues[i] = group_create_queue(group, &queue_args[i]);
3482 if (IS_ERR(group->queues[i])) {
3483 ret = PTR_ERR(group->queues[i]);
3484 group->queues[i] = NULL;
3485 goto err_put_group;
3486 }
3487
3488 group->queue_count++;
3489 }
3490
3491 group->idle_queues = GENMASK(group->queue_count - 1, 0);
3492
3493 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3494 if (ret)
3495 goto err_put_group;
3496
3497 mutex_lock(&sched->reset.lock);
3498 if (atomic_read(&sched->reset.in_progress)) {
3499 panthor_group_stop(group);
3500 } else {
3501 mutex_lock(&sched->lock);
3502 list_add_tail(&group->run_node,
3503 &sched->groups.idle[group->priority]);
3504 mutex_unlock(&sched->lock);
3505 }
3506 mutex_unlock(&sched->reset.lock);
3507
3508 mutex_init(&group->fdinfo.lock);
3509
3510 return gid;
3511
3512 err_put_group:
3513 group_put(group);
3514 return ret;
3515 }
3516
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3517 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3518 {
3519 struct panthor_group_pool *gpool = pfile->groups;
3520 struct panthor_device *ptdev = pfile->ptdev;
3521 struct panthor_scheduler *sched = ptdev->scheduler;
3522 struct panthor_group *group;
3523
3524 group = xa_erase(&gpool->xa, group_handle);
3525 if (!group)
3526 return -EINVAL;
3527
3528 for (u32 i = 0; i < group->queue_count; i++) {
3529 if (group->queues[i])
3530 drm_sched_entity_destroy(&group->queues[i]->entity);
3531 }
3532
3533 mutex_lock(&sched->reset.lock);
3534 mutex_lock(&sched->lock);
3535 group->destroyed = true;
3536 if (group->csg_id >= 0) {
3537 sched_queue_delayed_work(sched, tick, 0);
3538 } else if (!atomic_read(&sched->reset.in_progress)) {
3539 /* Remove from the run queues, so the scheduler can't
3540 * pick the group on the next tick.
3541 */
3542 list_del_init(&group->run_node);
3543 list_del_init(&group->wait_node);
3544 group_queue_work(group, term);
3545 }
3546 mutex_unlock(&sched->lock);
3547 mutex_unlock(&sched->reset.lock);
3548
3549 group_put(group);
3550 return 0;
3551 }
3552
group_from_handle(struct panthor_group_pool * pool,u32 group_handle)3553 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3554 u32 group_handle)
3555 {
3556 struct panthor_group *group;
3557
3558 xa_lock(&pool->xa);
3559 group = group_get(xa_load(&pool->xa, group_handle));
3560 xa_unlock(&pool->xa);
3561
3562 return group;
3563 }
3564
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3565 int panthor_group_get_state(struct panthor_file *pfile,
3566 struct drm_panthor_group_get_state *get_state)
3567 {
3568 struct panthor_group_pool *gpool = pfile->groups;
3569 struct panthor_device *ptdev = pfile->ptdev;
3570 struct panthor_scheduler *sched = ptdev->scheduler;
3571 struct panthor_group *group;
3572
3573 if (get_state->pad)
3574 return -EINVAL;
3575
3576 group = group_from_handle(gpool, get_state->group_handle);
3577 if (!group)
3578 return -EINVAL;
3579
3580 memset(get_state, 0, sizeof(*get_state));
3581
3582 mutex_lock(&sched->lock);
3583 if (group->timedout)
3584 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3585 if (group->fatal_queues) {
3586 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3587 get_state->fatal_queues = group->fatal_queues;
3588 }
3589 if (group->innocent)
3590 get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3591 mutex_unlock(&sched->lock);
3592
3593 group_put(group);
3594 return 0;
3595 }
3596
panthor_group_pool_create(struct panthor_file * pfile)3597 int panthor_group_pool_create(struct panthor_file *pfile)
3598 {
3599 struct panthor_group_pool *gpool;
3600
3601 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3602 if (!gpool)
3603 return -ENOMEM;
3604
3605 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3606 pfile->groups = gpool;
3607 return 0;
3608 }
3609
panthor_group_pool_destroy(struct panthor_file * pfile)3610 void panthor_group_pool_destroy(struct panthor_file *pfile)
3611 {
3612 struct panthor_group_pool *gpool = pfile->groups;
3613 struct panthor_group *group;
3614 unsigned long i;
3615
3616 if (IS_ERR_OR_NULL(gpool))
3617 return;
3618
3619 xa_for_each(&gpool->xa, i, group)
3620 panthor_group_destroy(pfile, i);
3621
3622 xa_destroy(&gpool->xa);
3623 kfree(gpool);
3624 pfile->groups = NULL;
3625 }
3626
job_release(struct kref * ref)3627 static void job_release(struct kref *ref)
3628 {
3629 struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3630
3631 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3632
3633 if (job->base.s_fence)
3634 drm_sched_job_cleanup(&job->base);
3635
3636 if (job->done_fence && job->done_fence->ops)
3637 dma_fence_put(job->done_fence);
3638 else
3639 dma_fence_free(job->done_fence);
3640
3641 group_put(job->group);
3642
3643 kfree(job);
3644 }
3645
panthor_job_get(struct drm_sched_job * sched_job)3646 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3647 {
3648 if (sched_job) {
3649 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3650
3651 kref_get(&job->refcount);
3652 }
3653
3654 return sched_job;
3655 }
3656
panthor_job_put(struct drm_sched_job * sched_job)3657 void panthor_job_put(struct drm_sched_job *sched_job)
3658 {
3659 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3660
3661 if (sched_job)
3662 kref_put(&job->refcount, job_release);
3663 }
3664
panthor_job_vm(struct drm_sched_job * sched_job)3665 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3666 {
3667 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3668
3669 return job->group->vm;
3670 }
3671
3672 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit)3673 panthor_job_create(struct panthor_file *pfile,
3674 u16 group_handle,
3675 const struct drm_panthor_queue_submit *qsubmit)
3676 {
3677 struct panthor_group_pool *gpool = pfile->groups;
3678 struct panthor_job *job;
3679 u32 credits;
3680 int ret;
3681
3682 if (qsubmit->pad)
3683 return ERR_PTR(-EINVAL);
3684
3685 /* If stream_addr is zero, so stream_size should be. */
3686 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3687 return ERR_PTR(-EINVAL);
3688
3689 /* Make sure the address is aligned on 64-byte (cacheline) and the size is
3690 * aligned on 8-byte (instruction size).
3691 */
3692 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3693 return ERR_PTR(-EINVAL);
3694
3695 /* bits 24:30 must be zero. */
3696 if (qsubmit->latest_flush & GENMASK(30, 24))
3697 return ERR_PTR(-EINVAL);
3698
3699 job = kzalloc(sizeof(*job), GFP_KERNEL);
3700 if (!job)
3701 return ERR_PTR(-ENOMEM);
3702
3703 kref_init(&job->refcount);
3704 job->queue_idx = qsubmit->queue_index;
3705 job->call_info.size = qsubmit->stream_size;
3706 job->call_info.start = qsubmit->stream_addr;
3707 job->call_info.latest_flush = qsubmit->latest_flush;
3708 INIT_LIST_HEAD(&job->node);
3709
3710 job->group = group_from_handle(gpool, group_handle);
3711 if (!job->group) {
3712 ret = -EINVAL;
3713 goto err_put_job;
3714 }
3715
3716 if (!group_can_run(job->group)) {
3717 ret = -EINVAL;
3718 goto err_put_job;
3719 }
3720
3721 if (job->queue_idx >= job->group->queue_count ||
3722 !job->group->queues[job->queue_idx]) {
3723 ret = -EINVAL;
3724 goto err_put_job;
3725 }
3726
3727 /* Empty command streams don't need a fence, they'll pick the one from
3728 * the previously submitted job.
3729 */
3730 if (job->call_info.size) {
3731 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3732 if (!job->done_fence) {
3733 ret = -ENOMEM;
3734 goto err_put_job;
3735 }
3736 }
3737
3738 job->profiling.mask = pfile->ptdev->profile_mask;
3739 credits = calc_job_credits(job->profiling.mask);
3740 if (credits == 0) {
3741 ret = -EINVAL;
3742 goto err_put_job;
3743 }
3744
3745 ret = drm_sched_job_init(&job->base,
3746 &job->group->queues[job->queue_idx]->entity,
3747 credits, job->group);
3748 if (ret)
3749 goto err_put_job;
3750
3751 return &job->base;
3752
3753 err_put_job:
3754 panthor_job_put(&job->base);
3755 return ERR_PTR(ret);
3756 }
3757
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)3758 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3759 {
3760 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3761
3762 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3763 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3764 }
3765
panthor_sched_unplug(struct panthor_device * ptdev)3766 void panthor_sched_unplug(struct panthor_device *ptdev)
3767 {
3768 struct panthor_scheduler *sched = ptdev->scheduler;
3769
3770 cancel_delayed_work_sync(&sched->tick_work);
3771
3772 mutex_lock(&sched->lock);
3773 if (sched->pm.has_ref) {
3774 pm_runtime_put(ptdev->base.dev);
3775 sched->pm.has_ref = false;
3776 }
3777 mutex_unlock(&sched->lock);
3778 }
3779
panthor_sched_fini(struct drm_device * ddev,void * res)3780 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3781 {
3782 struct panthor_scheduler *sched = res;
3783 int prio;
3784
3785 if (!sched || !sched->csg_slot_count)
3786 return;
3787
3788 cancel_delayed_work_sync(&sched->tick_work);
3789
3790 if (sched->wq)
3791 destroy_workqueue(sched->wq);
3792
3793 if (sched->heap_alloc_wq)
3794 destroy_workqueue(sched->heap_alloc_wq);
3795
3796 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3797 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3798 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3799 }
3800
3801 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3802 }
3803
panthor_sched_init(struct panthor_device * ptdev)3804 int panthor_sched_init(struct panthor_device *ptdev)
3805 {
3806 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3807 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3808 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3809 struct panthor_scheduler *sched;
3810 u32 gpu_as_count, num_groups;
3811 int prio, ret;
3812
3813 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3814 if (!sched)
3815 return -ENOMEM;
3816
3817 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3818 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3819 */
3820 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3821
3822 /* The FW-side scheduler might deadlock if two groups with the same
3823 * priority try to access a set of resources that overlaps, with part
3824 * of the resources being allocated to one group and the other part to
3825 * the other group, both groups waiting for the remaining resources to
3826 * be allocated. To avoid that, it is recommended to assign each CSG a
3827 * different priority. In theory we could allow several groups to have
3828 * the same CSG priority if they don't request the same resources, but
3829 * that makes the scheduling logic more complicated, so let's clamp
3830 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3831 */
3832 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3833
3834 /* We need at least one AS for the MCU and one for the GPU contexts. */
3835 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3836 if (!gpu_as_count) {
3837 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3838 gpu_as_count + 1);
3839 return -EINVAL;
3840 }
3841
3842 sched->ptdev = ptdev;
3843 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3844 sched->csg_slot_count = num_groups;
3845 sched->cs_slot_count = csg_iface->control->stream_num;
3846 sched->as_slot_count = gpu_as_count;
3847 ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3848 ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3849 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3850
3851 sched->last_tick = 0;
3852 sched->resched_target = U64_MAX;
3853 sched->tick_period = msecs_to_jiffies(10);
3854 INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3855 INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3856 INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3857
3858 ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3859 if (ret)
3860 return ret;
3861
3862 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3863 INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3864 INIT_LIST_HEAD(&sched->groups.idle[prio]);
3865 }
3866 INIT_LIST_HEAD(&sched->groups.waiting);
3867
3868 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3869 if (ret)
3870 return ret;
3871
3872 INIT_LIST_HEAD(&sched->reset.stopped_groups);
3873
3874 /* sched->heap_alloc_wq will be used for heap chunk allocation on
3875 * tiler OOM events, which means we can't use the same workqueue for
3876 * the scheduler because works queued by the scheduler are in
3877 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3878 * work around this limitation.
3879 *
3880 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3881 * allocation path that we can call when a heap OOM is reported. The
3882 * FW is smart enough to fall back on other methods if the kernel can't
3883 * allocate memory, and fail the tiling job if none of these
3884 * countermeasures worked.
3885 *
3886 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3887 * system is running out of memory.
3888 */
3889 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3890 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3891 if (!sched->wq || !sched->heap_alloc_wq) {
3892 panthor_sched_fini(&ptdev->base, sched);
3893 drm_err(&ptdev->base, "Failed to allocate the workqueues");
3894 return -ENOMEM;
3895 }
3896
3897 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3898 if (ret)
3899 return ret;
3900
3901 ptdev->scheduler = sched;
3902 return 0;
3903 }
3904