1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that AVR uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AVRISelLowering.h"
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/Support/ErrorHandling.h"
27
28 #include "AVR.h"
29 #include "AVRMachineFunctionInfo.h"
30 #include "AVRSubtarget.h"
31 #include "AVRTargetMachine.h"
32 #include "MCTargetDesc/AVRMCTargetDesc.h"
33
34 namespace llvm {
35
AVRTargetLowering(const AVRTargetMachine & TM,const AVRSubtarget & STI)36 AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
37 const AVRSubtarget &STI)
38 : TargetLowering(TM), Subtarget(STI) {
39 // Set up the register classes.
40 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
41 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
42
43 // Compute derived properties from the register classes.
44 computeRegisterProperties(Subtarget.getRegisterInfo());
45
46 setBooleanContents(ZeroOrOneBooleanContent);
47 setBooleanVectorContents(ZeroOrOneBooleanContent);
48 setSchedulingPreference(Sched::RegPressure);
49 setStackPointerRegisterToSaveRestore(AVR::SP);
50 setSupportsUnalignedAtomics(true);
51
52 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
53 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
54
55 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
56 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
57 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
58 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
59
60 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
61
62 for (MVT VT : MVT::integer_valuetypes()) {
63 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
64 setLoadExtAction(N, VT, MVT::i1, Promote);
65 setLoadExtAction(N, VT, MVT::i8, Expand);
66 }
67 }
68
69 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
70
71 for (MVT VT : MVT::integer_valuetypes()) {
72 setOperationAction(ISD::ADDC, VT, Legal);
73 setOperationAction(ISD::SUBC, VT, Legal);
74 setOperationAction(ISD::ADDE, VT, Legal);
75 setOperationAction(ISD::SUBE, VT, Legal);
76 }
77
78 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
79 // revert into a sub since we don't have an add with immediate instruction.
80 setOperationAction(ISD::ADD, MVT::i32, Custom);
81 setOperationAction(ISD::ADD, MVT::i64, Custom);
82
83 // our shift instructions are only able to shift 1 bit at a time, so handle
84 // this in a custom way.
85 setOperationAction(ISD::SRA, MVT::i8, Custom);
86 setOperationAction(ISD::SHL, MVT::i8, Custom);
87 setOperationAction(ISD::SRL, MVT::i8, Custom);
88 setOperationAction(ISD::SRA, MVT::i16, Custom);
89 setOperationAction(ISD::SHL, MVT::i16, Custom);
90 setOperationAction(ISD::SRL, MVT::i16, Custom);
91 setOperationAction(ISD::SRA, MVT::i32, Custom);
92 setOperationAction(ISD::SHL, MVT::i32, Custom);
93 setOperationAction(ISD::SRL, MVT::i32, Custom);
94 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
95 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
96 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
97
98 setOperationAction(ISD::ROTL, MVT::i8, Custom);
99 setOperationAction(ISD::ROTL, MVT::i16, Expand);
100 setOperationAction(ISD::ROTR, MVT::i8, Custom);
101 setOperationAction(ISD::ROTR, MVT::i16, Expand);
102
103 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
104 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
105 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
106 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
107 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
108
109 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
110 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
111 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
112 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
113 setOperationAction(ISD::SETCC, MVT::i8, Custom);
114 setOperationAction(ISD::SETCC, MVT::i16, Custom);
115 setOperationAction(ISD::SETCC, MVT::i32, Custom);
116 setOperationAction(ISD::SETCC, MVT::i64, Custom);
117 setOperationAction(ISD::SELECT, MVT::i8, Expand);
118 setOperationAction(ISD::SELECT, MVT::i16, Expand);
119
120 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
121
122 // Add support for postincrement and predecrement load/stores.
123 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
124 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
125 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
126 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
127 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
128 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
129 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
130 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
131
132 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
133
134 setOperationAction(ISD::VASTART, MVT::Other, Custom);
135 setOperationAction(ISD::VAEND, MVT::Other, Expand);
136 setOperationAction(ISD::VAARG, MVT::Other, Expand);
137 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138
139 // Atomic operations which must be lowered to rtlib calls
140 for (MVT VT : MVT::integer_valuetypes()) {
141 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
142 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
143 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
144 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
145 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
146 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
147 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
148 }
149
150 // Division/remainder
151 setOperationAction(ISD::UDIV, MVT::i8, Expand);
152 setOperationAction(ISD::UDIV, MVT::i16, Expand);
153 setOperationAction(ISD::UREM, MVT::i8, Expand);
154 setOperationAction(ISD::UREM, MVT::i16, Expand);
155 setOperationAction(ISD::SDIV, MVT::i8, Expand);
156 setOperationAction(ISD::SDIV, MVT::i16, Expand);
157 setOperationAction(ISD::SREM, MVT::i8, Expand);
158 setOperationAction(ISD::SREM, MVT::i16, Expand);
159
160 // Make division and modulus custom
161 setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
162 setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
163 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
164 setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
165 setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
166 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
167
168 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
169 setOperationAction(ISD::MUL, MVT::i8, Expand);
170 setOperationAction(ISD::MUL, MVT::i16, Expand);
171
172 // Expand 16 bit multiplications.
173 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
174 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
175
176 // Expand multiplications to libcalls when there is
177 // no hardware MUL.
178 if (!Subtarget.supportsMultiplication()) {
179 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
180 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
181 }
182
183 for (MVT VT : MVT::integer_valuetypes()) {
184 setOperationAction(ISD::MULHS, VT, Expand);
185 setOperationAction(ISD::MULHU, VT, Expand);
186 }
187
188 for (MVT VT : MVT::integer_valuetypes()) {
189 setOperationAction(ISD::CTPOP, VT, Expand);
190 setOperationAction(ISD::CTLZ, VT, Expand);
191 setOperationAction(ISD::CTTZ, VT, Expand);
192 }
193
194 for (MVT VT : MVT::integer_valuetypes()) {
195 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
196 // TODO: The generated code is pretty poor. Investigate using the
197 // same "shift and subtract with carry" trick that we do for
198 // extending 8-bit to 16-bit. This may require infrastructure
199 // improvements in how we treat 16-bit "registers" to be feasible.
200 }
201
202 // Division and modulus rtlib functions
203 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
204 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
205 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
206 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
207 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
208 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
209
210 // Several of the runtime library functions use a special calling conv
211 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
212 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
213 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
214 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
215
216 // Trigonometric rtlib functions
217 setLibcallName(RTLIB::SIN_F32, "sin");
218 setLibcallName(RTLIB::COS_F32, "cos");
219
220 setMinFunctionAlignment(Align(2));
221 setMinimumJumpTableEntries(UINT_MAX);
222 }
223
getTargetNodeName(unsigned Opcode) const224 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
225 #define NODE(name) \
226 case AVRISD::name: \
227 return #name
228
229 switch (Opcode) {
230 default:
231 return nullptr;
232 NODE(RET_GLUE);
233 NODE(RETI_GLUE);
234 NODE(CALL);
235 NODE(WRAPPER);
236 NODE(LSL);
237 NODE(LSLW);
238 NODE(LSR);
239 NODE(LSRW);
240 NODE(ROL);
241 NODE(ROR);
242 NODE(ASR);
243 NODE(ASRW);
244 NODE(LSLLOOP);
245 NODE(LSRLOOP);
246 NODE(ROLLOOP);
247 NODE(RORLOOP);
248 NODE(ASRLOOP);
249 NODE(BRCOND);
250 NODE(CMP);
251 NODE(CMPC);
252 NODE(TST);
253 NODE(SELECT_CC);
254 #undef NODE
255 }
256 }
257
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const258 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
259 EVT VT) const {
260 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
261 return MVT::i8;
262 }
263
LowerShifts(SDValue Op,SelectionDAG & DAG) const264 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
265 unsigned Opc8;
266 const SDNode *N = Op.getNode();
267 EVT VT = Op.getValueType();
268 SDLoc dl(N);
269 assert(llvm::has_single_bit<uint32_t>(VT.getSizeInBits()) &&
270 "Expected power-of-2 shift amount");
271
272 if (VT.getSizeInBits() == 32) {
273 if (!isa<ConstantSDNode>(N->getOperand(1))) {
274 // 32-bit shifts are converted to a loop in IR.
275 // This should be unreachable.
276 report_fatal_error("Expected a constant shift amount!");
277 }
278 SDVTList ResTys = DAG.getVTList(MVT::i16, MVT::i16);
279 SDValue SrcLo =
280 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0),
281 DAG.getConstant(0, dl, MVT::i16));
282 SDValue SrcHi =
283 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i16, Op.getOperand(0),
284 DAG.getConstant(1, dl, MVT::i16));
285 uint64_t ShiftAmount = N->getConstantOperandVal(1);
286 if (ShiftAmount == 16) {
287 // Special case these two operations because they appear to be used by the
288 // generic codegen parts to lower 32-bit numbers.
289 // TODO: perhaps we can lower shift amounts bigger than 16 to a 16-bit
290 // shift of a part of the 32-bit value?
291 switch (Op.getOpcode()) {
292 case ISD::SHL: {
293 SDValue Zero = DAG.getConstant(0, dl, MVT::i16);
294 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Zero, SrcLo);
295 }
296 case ISD::SRL: {
297 SDValue Zero = DAG.getConstant(0, dl, MVT::i16);
298 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, SrcHi, Zero);
299 }
300 }
301 }
302 SDValue Cnt = DAG.getTargetConstant(ShiftAmount, dl, MVT::i8);
303 unsigned Opc;
304 switch (Op.getOpcode()) {
305 default:
306 llvm_unreachable("Invalid 32-bit shift opcode!");
307 case ISD::SHL:
308 Opc = AVRISD::LSLW;
309 break;
310 case ISD::SRL:
311 Opc = AVRISD::LSRW;
312 break;
313 case ISD::SRA:
314 Opc = AVRISD::ASRW;
315 break;
316 }
317 SDValue Result = DAG.getNode(Opc, dl, ResTys, SrcLo, SrcHi, Cnt);
318 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i32, Result.getValue(0),
319 Result.getValue(1));
320 }
321
322 // Expand non-constant shifts to loops.
323 if (!isa<ConstantSDNode>(N->getOperand(1))) {
324 switch (Op.getOpcode()) {
325 default:
326 llvm_unreachable("Invalid shift opcode!");
327 case ISD::SHL:
328 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
329 N->getOperand(1));
330 case ISD::SRL:
331 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
332 N->getOperand(1));
333 case ISD::ROTL: {
334 SDValue Amt = N->getOperand(1);
335 EVT AmtVT = Amt.getValueType();
336 Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
337 DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
338 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
339 }
340 case ISD::ROTR: {
341 SDValue Amt = N->getOperand(1);
342 EVT AmtVT = Amt.getValueType();
343 Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
344 DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
345 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
346 }
347 case ISD::SRA:
348 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
349 N->getOperand(1));
350 }
351 }
352
353 uint64_t ShiftAmount = N->getConstantOperandVal(1);
354 SDValue Victim = N->getOperand(0);
355
356 switch (Op.getOpcode()) {
357 case ISD::SRA:
358 Opc8 = AVRISD::ASR;
359 break;
360 case ISD::ROTL:
361 Opc8 = AVRISD::ROL;
362 ShiftAmount = ShiftAmount % VT.getSizeInBits();
363 break;
364 case ISD::ROTR:
365 Opc8 = AVRISD::ROR;
366 ShiftAmount = ShiftAmount % VT.getSizeInBits();
367 break;
368 case ISD::SRL:
369 Opc8 = AVRISD::LSR;
370 break;
371 case ISD::SHL:
372 Opc8 = AVRISD::LSL;
373 break;
374 default:
375 llvm_unreachable("Invalid shift opcode");
376 }
377
378 // Optimize int8/int16 shifts.
379 if (VT.getSizeInBits() == 8) {
380 if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) {
381 // Optimize LSL when 4 <= ShiftAmount <= 6.
382 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
383 Victim =
384 DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT));
385 ShiftAmount -= 4;
386 } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount &&
387 ShiftAmount < 7) {
388 // Optimize LSR when 4 <= ShiftAmount <= 6.
389 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
390 Victim =
391 DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT));
392 ShiftAmount -= 4;
393 } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) {
394 // Optimize LSL when ShiftAmount == 7.
395 Victim = DAG.getNode(AVRISD::LSLBN, dl, VT, Victim,
396 DAG.getConstant(7, dl, VT));
397 ShiftAmount = 0;
398 } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) {
399 // Optimize LSR when ShiftAmount == 7.
400 Victim = DAG.getNode(AVRISD::LSRBN, dl, VT, Victim,
401 DAG.getConstant(7, dl, VT));
402 ShiftAmount = 0;
403 } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 6) {
404 // Optimize ASR when ShiftAmount == 6.
405 Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim,
406 DAG.getConstant(6, dl, VT));
407 ShiftAmount = 0;
408 } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) {
409 // Optimize ASR when ShiftAmount == 7.
410 Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim,
411 DAG.getConstant(7, dl, VT));
412 ShiftAmount = 0;
413 } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 3) {
414 // Optimize left rotation 3 bits to swap then right rotation 1 bit.
415 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
416 Victim =
417 DAG.getNode(AVRISD::ROR, dl, VT, Victim, DAG.getConstant(1, dl, VT));
418 ShiftAmount = 0;
419 } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 3) {
420 // Optimize right rotation 3 bits to swap then left rotation 1 bit.
421 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
422 Victim =
423 DAG.getNode(AVRISD::ROL, dl, VT, Victim, DAG.getConstant(1, dl, VT));
424 ShiftAmount = 0;
425 } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 7) {
426 // Optimize left rotation 7 bits to right rotation 1 bit.
427 Victim =
428 DAG.getNode(AVRISD::ROR, dl, VT, Victim, DAG.getConstant(1, dl, VT));
429 ShiftAmount = 0;
430 } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 7) {
431 // Optimize right rotation 7 bits to left rotation 1 bit.
432 Victim =
433 DAG.getNode(AVRISD::ROL, dl, VT, Victim, DAG.getConstant(1, dl, VT));
434 ShiftAmount = 0;
435 } else if ((Op.getOpcode() == ISD::ROTR || Op.getOpcode() == ISD::ROTL) &&
436 ShiftAmount >= 4) {
437 // Optimize left/right rotation with the SWAP instruction.
438 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
439 ShiftAmount -= 4;
440 }
441 } else if (VT.getSizeInBits() == 16) {
442 if (Op.getOpcode() == ISD::SRA)
443 // Special optimization for int16 arithmetic right shift.
444 switch (ShiftAmount) {
445 case 15:
446 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
447 DAG.getConstant(15, dl, VT));
448 ShiftAmount = 0;
449 break;
450 case 14:
451 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
452 DAG.getConstant(14, dl, VT));
453 ShiftAmount = 0;
454 break;
455 case 7:
456 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
457 DAG.getConstant(7, dl, VT));
458 ShiftAmount = 0;
459 break;
460 default:
461 break;
462 }
463 if (4 <= ShiftAmount && ShiftAmount < 8)
464 switch (Op.getOpcode()) {
465 case ISD::SHL:
466 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
467 DAG.getConstant(4, dl, VT));
468 ShiftAmount -= 4;
469 break;
470 case ISD::SRL:
471 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
472 DAG.getConstant(4, dl, VT));
473 ShiftAmount -= 4;
474 break;
475 default:
476 break;
477 }
478 else if (8 <= ShiftAmount && ShiftAmount < 12)
479 switch (Op.getOpcode()) {
480 case ISD::SHL:
481 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
482 DAG.getConstant(8, dl, VT));
483 ShiftAmount -= 8;
484 // Only operate on the higher byte for remaining shift bits.
485 Opc8 = AVRISD::LSLHI;
486 break;
487 case ISD::SRL:
488 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
489 DAG.getConstant(8, dl, VT));
490 ShiftAmount -= 8;
491 // Only operate on the lower byte for remaining shift bits.
492 Opc8 = AVRISD::LSRLO;
493 break;
494 case ISD::SRA:
495 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
496 DAG.getConstant(8, dl, VT));
497 ShiftAmount -= 8;
498 // Only operate on the lower byte for remaining shift bits.
499 Opc8 = AVRISD::ASRLO;
500 break;
501 default:
502 break;
503 }
504 else if (12 <= ShiftAmount)
505 switch (Op.getOpcode()) {
506 case ISD::SHL:
507 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
508 DAG.getConstant(12, dl, VT));
509 ShiftAmount -= 12;
510 // Only operate on the higher byte for remaining shift bits.
511 Opc8 = AVRISD::LSLHI;
512 break;
513 case ISD::SRL:
514 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
515 DAG.getConstant(12, dl, VT));
516 ShiftAmount -= 12;
517 // Only operate on the lower byte for remaining shift bits.
518 Opc8 = AVRISD::LSRLO;
519 break;
520 case ISD::SRA:
521 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
522 DAG.getConstant(8, dl, VT));
523 ShiftAmount -= 8;
524 // Only operate on the lower byte for remaining shift bits.
525 Opc8 = AVRISD::ASRLO;
526 break;
527 default:
528 break;
529 }
530 }
531
532 while (ShiftAmount--) {
533 Victim = DAG.getNode(Opc8, dl, VT, Victim);
534 }
535
536 return Victim;
537 }
538
LowerDivRem(SDValue Op,SelectionDAG & DAG) const539 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
540 unsigned Opcode = Op->getOpcode();
541 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
542 "Invalid opcode for Div/Rem lowering");
543 bool IsSigned = (Opcode == ISD::SDIVREM);
544 EVT VT = Op->getValueType(0);
545 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
546
547 RTLIB::Libcall LC;
548 switch (VT.getSimpleVT().SimpleTy) {
549 default:
550 llvm_unreachable("Unexpected request for libcall!");
551 case MVT::i8:
552 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
553 break;
554 case MVT::i16:
555 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
556 break;
557 case MVT::i32:
558 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
559 break;
560 }
561
562 SDValue InChain = DAG.getEntryNode();
563
564 TargetLowering::ArgListTy Args;
565 TargetLowering::ArgListEntry Entry;
566 for (SDValue const &Value : Op->op_values()) {
567 Entry.Node = Value;
568 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
569 Entry.IsSExt = IsSigned;
570 Entry.IsZExt = !IsSigned;
571 Args.push_back(Entry);
572 }
573
574 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
575 getPointerTy(DAG.getDataLayout()));
576
577 Type *RetTy = (Type *)StructType::get(Ty, Ty);
578
579 SDLoc dl(Op);
580 TargetLowering::CallLoweringInfo CLI(DAG);
581 CLI.setDebugLoc(dl)
582 .setChain(InChain)
583 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
584 .setInRegister()
585 .setSExtResult(IsSigned)
586 .setZExtResult(!IsSigned);
587
588 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
589 return CallInfo.first;
590 }
591
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const592 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
593 SelectionDAG &DAG) const {
594 auto DL = DAG.getDataLayout();
595
596 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
597 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
598
599 // Create the TargetGlobalAddress node, folding in the constant offset.
600 SDValue Result =
601 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
602 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
603 }
604
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const605 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
606 SelectionDAG &DAG) const {
607 auto DL = DAG.getDataLayout();
608 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
609
610 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
611
612 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
613 }
614
615 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
intCCToAVRCC(ISD::CondCode CC)616 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
617 switch (CC) {
618 default:
619 llvm_unreachable("Unknown condition code!");
620 case ISD::SETEQ:
621 return AVRCC::COND_EQ;
622 case ISD::SETNE:
623 return AVRCC::COND_NE;
624 case ISD::SETGE:
625 return AVRCC::COND_GE;
626 case ISD::SETLT:
627 return AVRCC::COND_LT;
628 case ISD::SETUGE:
629 return AVRCC::COND_SH;
630 case ISD::SETULT:
631 return AVRCC::COND_LO;
632 }
633 }
634
635 /// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands.
getAVRCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,SDLoc DL) const636 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS,
637 SelectionDAG &DAG, SDLoc DL) const {
638 assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) &&
639 "LHS and RHS have different types");
640 assert(((LHS.getSimpleValueType() == MVT::i16) ||
641 (LHS.getSimpleValueType() == MVT::i8)) &&
642 "invalid comparison type");
643
644 SDValue Cmp;
645
646 if (LHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(RHS)) {
647 uint64_t Imm = RHS->getAsZExtVal();
648 // Generate a CPI/CPC pair if RHS is a 16-bit constant. Use the zero
649 // register for the constant RHS if its lower or higher byte is zero.
650 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
651 DAG.getIntPtrConstant(0, DL));
652 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
653 DAG.getIntPtrConstant(1, DL));
654 SDValue RHSlo = (Imm & 0xff) == 0
655 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)
656 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
657 DAG.getIntPtrConstant(0, DL));
658 SDValue RHShi = (Imm & 0xff00) == 0
659 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)
660 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
661 DAG.getIntPtrConstant(1, DL));
662 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
663 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
664 } else if (RHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(LHS)) {
665 // Generate a CPI/CPC pair if LHS is a 16-bit constant. Use the zero
666 // register for the constant LHS if its lower or higher byte is zero.
667 uint64_t Imm = LHS->getAsZExtVal();
668 SDValue LHSlo = (Imm & 0xff) == 0
669 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)
670 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
671 DAG.getIntPtrConstant(0, DL));
672 SDValue LHShi = (Imm & 0xff00) == 0
673 ? DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8)
674 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
675 DAG.getIntPtrConstant(1, DL));
676 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
677 DAG.getIntPtrConstant(0, DL));
678 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
679 DAG.getIntPtrConstant(1, DL));
680 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
681 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
682 } else {
683 // Generate ordinary 16-bit comparison.
684 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
685 }
686
687 return Cmp;
688 }
689
690 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
691 /// the given operands.
getAVRCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AVRcc,SelectionDAG & DAG,SDLoc DL) const692 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
693 SDValue &AVRcc, SelectionDAG &DAG,
694 SDLoc DL) const {
695 SDValue Cmp;
696 EVT VT = LHS.getValueType();
697 bool UseTest = false;
698
699 switch (CC) {
700 default:
701 break;
702 case ISD::SETLE: {
703 // Swap operands and reverse the branching condition.
704 std::swap(LHS, RHS);
705 CC = ISD::SETGE;
706 break;
707 }
708 case ISD::SETGT: {
709 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
710 switch (C->getSExtValue()) {
711 case -1: {
712 // When doing lhs > -1 use a tst instruction on the top part of lhs
713 // and use brpl instead of using a chain of cp/cpc.
714 UseTest = true;
715 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
716 break;
717 }
718 case 0: {
719 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
720 // __zero_reg__ in lhs.
721 RHS = LHS;
722 LHS = DAG.getConstant(0, DL, VT);
723 CC = ISD::SETLT;
724 break;
725 }
726 default: {
727 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
728 // us to fold the constant into the cmp instruction.
729 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
730 CC = ISD::SETGE;
731 break;
732 }
733 }
734 break;
735 }
736 // Swap operands and reverse the branching condition.
737 std::swap(LHS, RHS);
738 CC = ISD::SETLT;
739 break;
740 }
741 case ISD::SETLT: {
742 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
743 switch (C->getSExtValue()) {
744 case 1: {
745 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
746 // __zero_reg__ in lhs.
747 RHS = LHS;
748 LHS = DAG.getConstant(0, DL, VT);
749 CC = ISD::SETGE;
750 break;
751 }
752 case 0: {
753 // When doing lhs < 0 use a tst instruction on the top part of lhs
754 // and use brmi instead of using a chain of cp/cpc.
755 UseTest = true;
756 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
757 break;
758 }
759 }
760 }
761 break;
762 }
763 case ISD::SETULE: {
764 // Swap operands and reverse the branching condition.
765 std::swap(LHS, RHS);
766 CC = ISD::SETUGE;
767 break;
768 }
769 case ISD::SETUGT: {
770 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
771 // fold the constant into the cmp instruction.
772 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
773 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
774 CC = ISD::SETUGE;
775 break;
776 }
777 // Swap operands and reverse the branching condition.
778 std::swap(LHS, RHS);
779 CC = ISD::SETULT;
780 break;
781 }
782 }
783
784 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
785 // using the default and/or/xor expansion code which is much longer.
786 if (VT == MVT::i32) {
787 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
788 DAG.getIntPtrConstant(0, DL));
789 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
790 DAG.getIntPtrConstant(1, DL));
791 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
792 DAG.getIntPtrConstant(0, DL));
793 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
794 DAG.getIntPtrConstant(1, DL));
795
796 if (UseTest) {
797 // When using tst we only care about the highest part.
798 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
799 DAG.getIntPtrConstant(1, DL));
800 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
801 } else {
802 Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL);
803 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
804 }
805 } else if (VT == MVT::i64) {
806 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
807 DAG.getIntPtrConstant(0, DL));
808 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
809 DAG.getIntPtrConstant(1, DL));
810
811 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
812 DAG.getIntPtrConstant(0, DL));
813 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
814 DAG.getIntPtrConstant(1, DL));
815 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
816 DAG.getIntPtrConstant(0, DL));
817 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
818 DAG.getIntPtrConstant(1, DL));
819
820 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
821 DAG.getIntPtrConstant(0, DL));
822 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
823 DAG.getIntPtrConstant(1, DL));
824
825 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
826 DAG.getIntPtrConstant(0, DL));
827 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
828 DAG.getIntPtrConstant(1, DL));
829 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
830 DAG.getIntPtrConstant(0, DL));
831 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
832 DAG.getIntPtrConstant(1, DL));
833
834 if (UseTest) {
835 // When using tst we only care about the highest part.
836 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
837 DAG.getIntPtrConstant(1, DL));
838 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
839 } else {
840 Cmp = getAVRCmp(LHS0, RHS0, DAG, DL);
841 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
842 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
843 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
844 }
845 } else if (VT == MVT::i8 || VT == MVT::i16) {
846 if (UseTest) {
847 // When using tst we only care about the highest part.
848 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
849 (VT == MVT::i8)
850 ? LHS
851 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
852 LHS, DAG.getIntPtrConstant(1, DL)));
853 } else {
854 Cmp = getAVRCmp(LHS, RHS, DAG, DL);
855 }
856 } else {
857 llvm_unreachable("Invalid comparison size");
858 }
859
860 // When using a test instruction AVRcc is already set.
861 if (!UseTest) {
862 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
863 }
864
865 return Cmp;
866 }
867
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const868 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
869 SDValue Chain = Op.getOperand(0);
870 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
871 SDValue LHS = Op.getOperand(2);
872 SDValue RHS = Op.getOperand(3);
873 SDValue Dest = Op.getOperand(4);
874 SDLoc dl(Op);
875
876 SDValue TargetCC;
877 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
878
879 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
880 Cmp);
881 }
882
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const883 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
884 SDValue LHS = Op.getOperand(0);
885 SDValue RHS = Op.getOperand(1);
886 SDValue TrueV = Op.getOperand(2);
887 SDValue FalseV = Op.getOperand(3);
888 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
889 SDLoc dl(Op);
890
891 SDValue TargetCC;
892 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
893
894 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
895 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
896
897 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
898 }
899
LowerSETCC(SDValue Op,SelectionDAG & DAG) const900 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
901 SDValue LHS = Op.getOperand(0);
902 SDValue RHS = Op.getOperand(1);
903 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
904 SDLoc DL(Op);
905
906 SDValue TargetCC;
907 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
908
909 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
910 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
911 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
912 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
913
914 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
915 }
916
LowerVASTART(SDValue Op,SelectionDAG & DAG) const917 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
918 const MachineFunction &MF = DAG.getMachineFunction();
919 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
920 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
921 auto DL = DAG.getDataLayout();
922 SDLoc dl(Op);
923
924 // Vastart just stores the address of the VarArgsFrameIndex slot into the
925 // memory location argument.
926 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
927
928 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
929 MachinePointerInfo(SV));
930 }
931
932 // Modify the existing ISD::INLINEASM node to add the implicit zero register.
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const933 SDValue AVRTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
934 SDValue ZeroReg = DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8);
935 if (Op.getOperand(Op.getNumOperands() - 1) == ZeroReg ||
936 Op.getOperand(Op.getNumOperands() - 2) == ZeroReg) {
937 // Zero register has already been added. Don't add it again.
938 // If this isn't handled, we get called over and over again.
939 return Op;
940 }
941
942 // Get a list of operands to the new INLINEASM node. This is mostly a copy,
943 // with some edits.
944 // Add the following operands at the end (but before the glue node, if it's
945 // there):
946 // - The flags of the implicit zero register operand.
947 // - The implicit zero register operand itself.
948 SDLoc dl(Op);
949 SmallVector<SDValue, 8> Ops;
950 SDNode *N = Op.getNode();
951 SDValue Glue;
952 for (unsigned I = 0; I < N->getNumOperands(); I++) {
953 SDValue Operand = N->getOperand(I);
954 if (Operand.getValueType() == MVT::Glue) {
955 // The glue operand always needs to be at the end, so we need to treat it
956 // specially.
957 Glue = Operand;
958 } else {
959 Ops.push_back(Operand);
960 }
961 }
962 InlineAsm::Flag Flags(InlineAsm::Kind::RegUse, 1);
963 Ops.push_back(DAG.getTargetConstant(Flags, dl, MVT::i32));
964 Ops.push_back(ZeroReg);
965 if (Glue) {
966 Ops.push_back(Glue);
967 }
968
969 // Replace the current INLINEASM node with a new one that has the zero
970 // register as implicit parameter.
971 SDValue New = DAG.getNode(N->getOpcode(), dl, N->getVTList(), Ops);
972 DAG.ReplaceAllUsesOfValueWith(Op, New);
973 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), New.getValue(1));
974
975 return New;
976 }
977
LowerOperation(SDValue Op,SelectionDAG & DAG) const978 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
979 switch (Op.getOpcode()) {
980 default:
981 llvm_unreachable("Don't know how to custom lower this!");
982 case ISD::SHL:
983 case ISD::SRA:
984 case ISD::SRL:
985 case ISD::ROTL:
986 case ISD::ROTR:
987 return LowerShifts(Op, DAG);
988 case ISD::GlobalAddress:
989 return LowerGlobalAddress(Op, DAG);
990 case ISD::BlockAddress:
991 return LowerBlockAddress(Op, DAG);
992 case ISD::BR_CC:
993 return LowerBR_CC(Op, DAG);
994 case ISD::SELECT_CC:
995 return LowerSELECT_CC(Op, DAG);
996 case ISD::SETCC:
997 return LowerSETCC(Op, DAG);
998 case ISD::VASTART:
999 return LowerVASTART(Op, DAG);
1000 case ISD::SDIVREM:
1001 case ISD::UDIVREM:
1002 return LowerDivRem(Op, DAG);
1003 case ISD::INLINEASM:
1004 return LowerINLINEASM(Op, DAG);
1005 }
1006
1007 return SDValue();
1008 }
1009
1010 /// Replace a node with an illegal result type
1011 /// with a new node built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1012 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
1013 SmallVectorImpl<SDValue> &Results,
1014 SelectionDAG &DAG) const {
1015 SDLoc DL(N);
1016
1017 switch (N->getOpcode()) {
1018 case ISD::ADD: {
1019 // Convert add (x, imm) into sub (x, -imm).
1020 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1021 SDValue Sub = DAG.getNode(
1022 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
1023 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
1024 Results.push_back(Sub);
1025 }
1026 break;
1027 }
1028 default: {
1029 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1030
1031 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1032 Results.push_back(Res.getValue(I));
1033
1034 break;
1035 }
1036 }
1037 }
1038
1039 /// Return true if the addressing mode represented
1040 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1041 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1042 const AddrMode &AM, Type *Ty,
1043 unsigned AS,
1044 Instruction *I) const {
1045 int64_t Offs = AM.BaseOffs;
1046
1047 // Allow absolute addresses.
1048 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
1049 return true;
1050 }
1051
1052 // Flash memory instructions only allow zero offsets.
1053 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
1054 return false;
1055 }
1056
1057 // Allow reg+<6bit> offset.
1058 if (Offs < 0)
1059 Offs = -Offs;
1060 if (AM.BaseGV == nullptr && AM.HasBaseReg && AM.Scale == 0 &&
1061 isUInt<6>(Offs)) {
1062 return true;
1063 }
1064
1065 return false;
1066 }
1067
1068 /// Returns true by value, base pointer and
1069 /// offset pointer and addressing mode by reference if the node's address
1070 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1071 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1072 SDValue &Offset,
1073 ISD::MemIndexedMode &AM,
1074 SelectionDAG &DAG) const {
1075 EVT VT;
1076 const SDNode *Op;
1077 SDLoc DL(N);
1078
1079 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1080 VT = LD->getMemoryVT();
1081 Op = LD->getBasePtr().getNode();
1082 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1083 return false;
1084 if (AVR::isProgramMemoryAccess(LD)) {
1085 return false;
1086 }
1087 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1088 VT = ST->getMemoryVT();
1089 Op = ST->getBasePtr().getNode();
1090 if (AVR::isProgramMemoryAccess(ST)) {
1091 return false;
1092 }
1093 } else {
1094 return false;
1095 }
1096
1097 if (VT != MVT::i8 && VT != MVT::i16) {
1098 return false;
1099 }
1100
1101 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
1102 return false;
1103 }
1104
1105 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1106 int RHSC = RHS->getSExtValue();
1107 if (Op->getOpcode() == ISD::SUB)
1108 RHSC = -RHSC;
1109
1110 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
1111 return false;
1112 }
1113
1114 Base = Op->getOperand(0);
1115 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
1116 AM = ISD::PRE_DEC;
1117
1118 return true;
1119 }
1120
1121 return false;
1122 }
1123
1124 /// Returns true by value, base pointer and
1125 /// offset pointer and addressing mode by reference if this node can be
1126 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1127 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1128 SDValue &Base,
1129 SDValue &Offset,
1130 ISD::MemIndexedMode &AM,
1131 SelectionDAG &DAG) const {
1132 EVT VT;
1133 SDLoc DL(N);
1134
1135 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1136 VT = LD->getMemoryVT();
1137 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1138 return false;
1139 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1140 VT = ST->getMemoryVT();
1141 // We can not store to program memory.
1142 if (AVR::isProgramMemoryAccess(ST))
1143 return false;
1144 // Since the high byte need to be stored first, we can not emit
1145 // i16 post increment store like:
1146 // st X+, r24
1147 // st X+, r25
1148 if (VT == MVT::i16 && !Subtarget.hasLowByteFirst())
1149 return false;
1150 } else {
1151 return false;
1152 }
1153
1154 if (VT != MVT::i8 && VT != MVT::i16) {
1155 return false;
1156 }
1157
1158 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
1159 return false;
1160 }
1161
1162 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1163 int RHSC = RHS->getSExtValue();
1164 if (Op->getOpcode() == ISD::SUB)
1165 RHSC = -RHSC;
1166 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
1167 return false;
1168 }
1169
1170 // FIXME: We temporarily disable post increment load from program memory,
1171 // due to bug https://github.com/llvm/llvm-project/issues/59914.
1172 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
1173 if (AVR::isProgramMemoryAccess(LD))
1174 return false;
1175
1176 Base = Op->getOperand(0);
1177 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
1178 AM = ISD::POST_INC;
1179
1180 return true;
1181 }
1182
1183 return false;
1184 }
1185
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1186 bool AVRTargetLowering::isOffsetFoldingLegal(
1187 const GlobalAddressSDNode *GA) const {
1188 return true;
1189 }
1190
1191 //===----------------------------------------------------------------------===//
1192 // Formal Arguments Calling Convention Implementation
1193 //===----------------------------------------------------------------------===//
1194
1195 #include "AVRGenCallingConv.inc"
1196
1197 /// Registers for calling conventions, ordered in reverse as required by ABI.
1198 /// Both arrays must be of the same length.
1199 static const MCPhysReg RegList8AVR[] = {
1200 AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
1201 AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
1202 AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8};
1203 static const MCPhysReg RegList8Tiny[] = {AVR::R25, AVR::R24, AVR::R23,
1204 AVR::R22, AVR::R21, AVR::R20};
1205 static const MCPhysReg RegList16AVR[] = {
1206 AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21,
1207 AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16,
1208 AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11,
1209 AVR::R11R10, AVR::R10R9, AVR::R9R8};
1210 static const MCPhysReg RegList16Tiny[] = {AVR::R26R25, AVR::R25R24,
1211 AVR::R24R23, AVR::R23R22,
1212 AVR::R22R21, AVR::R21R20};
1213
1214 static_assert(std::size(RegList8AVR) == std::size(RegList16AVR),
1215 "8-bit and 16-bit register arrays must be of equal length");
1216 static_assert(std::size(RegList8Tiny) == std::size(RegList16Tiny),
1217 "8-bit and 16-bit register arrays must be of equal length");
1218
1219 /// Analyze incoming and outgoing function arguments. We need custom C++ code
1220 /// to handle special constraints in the ABI.
1221 /// In addition, all pieces of a certain argument have to be passed either
1222 /// using registers or the stack but never mixing both.
1223 template <typename ArgT>
analyzeArguments(TargetLowering::CallLoweringInfo * CLI,const Function * F,const DataLayout * TD,const SmallVectorImpl<ArgT> & Args,SmallVectorImpl<CCValAssign> & ArgLocs,CCState & CCInfo,bool Tiny)1224 static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1225 const Function *F, const DataLayout *TD,
1226 const SmallVectorImpl<ArgT> &Args,
1227 SmallVectorImpl<CCValAssign> &ArgLocs,
1228 CCState &CCInfo, bool Tiny) {
1229 // Choose the proper register list for argument passing according to the ABI.
1230 ArrayRef<MCPhysReg> RegList8;
1231 ArrayRef<MCPhysReg> RegList16;
1232 if (Tiny) {
1233 RegList8 = ArrayRef(RegList8Tiny);
1234 RegList16 = ArrayRef(RegList16Tiny);
1235 } else {
1236 RegList8 = ArrayRef(RegList8AVR);
1237 RegList16 = ArrayRef(RegList16AVR);
1238 }
1239
1240 unsigned NumArgs = Args.size();
1241 // This is the index of the last used register, in RegList*.
1242 // -1 means R26 (R26 is never actually used in CC).
1243 int RegLastIdx = -1;
1244 // Once a value is passed to the stack it will always be used
1245 bool UseStack = false;
1246 for (unsigned i = 0; i != NumArgs;) {
1247 MVT VT = Args[i].VT;
1248 // We have to count the number of bytes for each function argument, that is
1249 // those Args with the same OrigArgIndex. This is important in case the
1250 // function takes an aggregate type.
1251 // Current argument will be between [i..j).
1252 unsigned ArgIndex = Args[i].OrigArgIndex;
1253 unsigned TotalBytes = VT.getStoreSize();
1254 unsigned j = i + 1;
1255 for (; j != NumArgs; ++j) {
1256 if (Args[j].OrigArgIndex != ArgIndex)
1257 break;
1258 TotalBytes += Args[j].VT.getStoreSize();
1259 }
1260 // Round up to even number of bytes.
1261 TotalBytes = alignTo(TotalBytes, 2);
1262 // Skip zero sized arguments
1263 if (TotalBytes == 0)
1264 continue;
1265 // The index of the first register to be used
1266 unsigned RegIdx = RegLastIdx + TotalBytes;
1267 RegLastIdx = RegIdx;
1268 // If there are not enough registers, use the stack
1269 if (RegIdx >= RegList8.size()) {
1270 UseStack = true;
1271 }
1272 for (; i != j; ++i) {
1273 MVT VT = Args[i].VT;
1274
1275 if (UseStack) {
1276 auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
1277 unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
1278 TD->getABITypeAlign(evt));
1279 CCInfo.addLoc(
1280 CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
1281 } else {
1282 unsigned Reg;
1283 if (VT == MVT::i8) {
1284 Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1285 } else if (VT == MVT::i16) {
1286 Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1287 } else {
1288 llvm_unreachable(
1289 "calling convention can only manage i8 and i16 types");
1290 }
1291 assert(Reg && "register not available in calling convention");
1292 CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1293 // Registers inside a particular argument are sorted in increasing order
1294 // (remember the array is reversed).
1295 RegIdx -= VT.getStoreSize();
1296 }
1297 }
1298 }
1299 }
1300
1301 /// Count the total number of bytes needed to pass or return these arguments.
1302 template <typename ArgT>
1303 static unsigned
getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> & Args)1304 getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
1305 unsigned TotalBytes = 0;
1306
1307 for (const ArgT &Arg : Args) {
1308 TotalBytes += Arg.VT.getStoreSize();
1309 }
1310 return TotalBytes;
1311 }
1312
1313 /// Analyze incoming and outgoing value of returning from a function.
1314 /// The algorithm is similar to analyzeArguments, but there can only be
1315 /// one value, possibly an aggregate, and it is limited to 8 bytes.
1316 template <typename ArgT>
analyzeReturnValues(const SmallVectorImpl<ArgT> & Args,CCState & CCInfo,bool Tiny)1317 static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
1318 CCState &CCInfo, bool Tiny) {
1319 unsigned NumArgs = Args.size();
1320 unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
1321 // CanLowerReturn() guarantees this assertion.
1322 if (Tiny)
1323 assert(TotalBytes <= 4 &&
1324 "return values greater than 4 bytes cannot be lowered on AVRTiny");
1325 else
1326 assert(TotalBytes <= 8 &&
1327 "return values greater than 8 bytes cannot be lowered on AVR");
1328
1329 // Choose the proper register list for argument passing according to the ABI.
1330 ArrayRef<MCPhysReg> RegList8;
1331 ArrayRef<MCPhysReg> RegList16;
1332 if (Tiny) {
1333 RegList8 = ArrayRef(RegList8Tiny);
1334 RegList16 = ArrayRef(RegList16Tiny);
1335 } else {
1336 RegList8 = ArrayRef(RegList8AVR);
1337 RegList16 = ArrayRef(RegList16AVR);
1338 }
1339
1340 // GCC-ABI says that the size is rounded up to the next even number,
1341 // but actually once it is more than 4 it will always round up to 8.
1342 if (TotalBytes > 4) {
1343 TotalBytes = 8;
1344 } else {
1345 TotalBytes = alignTo(TotalBytes, 2);
1346 }
1347
1348 // The index of the first register to use.
1349 int RegIdx = TotalBytes - 1;
1350 for (unsigned i = 0; i != NumArgs; ++i) {
1351 MVT VT = Args[i].VT;
1352 unsigned Reg;
1353 if (VT == MVT::i8) {
1354 Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1355 } else if (VT == MVT::i16) {
1356 Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1357 } else {
1358 llvm_unreachable("calling convention can only manage i8 and i16 types");
1359 }
1360 assert(Reg && "register not available in calling convention");
1361 CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1362 // Registers sort in increasing order
1363 RegIdx -= VT.getStoreSize();
1364 }
1365 }
1366
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1367 SDValue AVRTargetLowering::LowerFormalArguments(
1368 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1371 MachineFunction &MF = DAG.getMachineFunction();
1372 MachineFrameInfo &MFI = MF.getFrameInfo();
1373 auto DL = DAG.getDataLayout();
1374
1375 // Assign locations to all of the incoming arguments.
1376 SmallVector<CCValAssign, 16> ArgLocs;
1377 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1378 *DAG.getContext());
1379
1380 // Variadic functions do not need all the analysis below.
1381 if (isVarArg) {
1382 CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
1383 } else {
1384 analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo,
1385 Subtarget.hasTinyEncoding());
1386 }
1387
1388 SDValue ArgValue;
1389 for (CCValAssign &VA : ArgLocs) {
1390
1391 // Arguments stored on registers.
1392 if (VA.isRegLoc()) {
1393 EVT RegVT = VA.getLocVT();
1394 const TargetRegisterClass *RC;
1395 if (RegVT == MVT::i8) {
1396 RC = &AVR::GPR8RegClass;
1397 } else if (RegVT == MVT::i16) {
1398 RC = &AVR::DREGSRegClass;
1399 } else {
1400 llvm_unreachable("Unknown argument type!");
1401 }
1402
1403 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
1404 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1405
1406 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1407 // following code will handle zexts or sexts generated by other
1408 // front ends. Otherwise:
1409 // If this is an 8 bit value, it is really passed promoted
1410 // to 16 bits. Insert an assert[sz]ext to capture this, then
1411 // truncate to the right size.
1412 switch (VA.getLocInfo()) {
1413 default:
1414 llvm_unreachable("Unknown loc info!");
1415 case CCValAssign::Full:
1416 break;
1417 case CCValAssign::BCvt:
1418 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1419 break;
1420 case CCValAssign::SExt:
1421 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1422 DAG.getValueType(VA.getValVT()));
1423 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1424 break;
1425 case CCValAssign::ZExt:
1426 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1427 DAG.getValueType(VA.getValVT()));
1428 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1429 break;
1430 }
1431
1432 InVals.push_back(ArgValue);
1433 } else {
1434 // Only arguments passed on the stack should make it here.
1435 assert(VA.isMemLoc());
1436
1437 EVT LocVT = VA.getLocVT();
1438
1439 // Create the frame index object for this incoming parameter.
1440 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1441 VA.getLocMemOffset(), true);
1442
1443 // Create the SelectionDAG nodes corresponding to a load
1444 // from this parameter.
1445 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1446 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1447 MachinePointerInfo::getFixedStack(MF, FI)));
1448 }
1449 }
1450
1451 // If the function takes variable number of arguments, make a frame index for
1452 // the start of the first vararg value... for expansion of llvm.va_start.
1453 if (isVarArg) {
1454 unsigned StackSize = CCInfo.getStackSize();
1455 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1456
1457 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1458 }
1459
1460 return Chain;
1461 }
1462
1463 //===----------------------------------------------------------------------===//
1464 // Call Calling Convention Implementation
1465 //===----------------------------------------------------------------------===//
1466
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1467 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1468 SmallVectorImpl<SDValue> &InVals) const {
1469 SelectionDAG &DAG = CLI.DAG;
1470 SDLoc &DL = CLI.DL;
1471 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1472 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1473 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1474 SDValue Chain = CLI.Chain;
1475 SDValue Callee = CLI.Callee;
1476 bool &isTailCall = CLI.IsTailCall;
1477 CallingConv::ID CallConv = CLI.CallConv;
1478 bool isVarArg = CLI.IsVarArg;
1479
1480 MachineFunction &MF = DAG.getMachineFunction();
1481
1482 // AVR does not yet support tail call optimization.
1483 isTailCall = false;
1484
1485 // Analyze operands of the call, assigning locations to each operand.
1486 SmallVector<CCValAssign, 16> ArgLocs;
1487 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1488 *DAG.getContext());
1489
1490 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1491 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1492 // node so that legalize doesn't hack it.
1493 const Function *F = nullptr;
1494 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1495 const GlobalValue *GV = G->getGlobal();
1496 if (isa<Function>(GV))
1497 F = cast<Function>(GV);
1498 Callee =
1499 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1500 } else if (const ExternalSymbolSDNode *ES =
1501 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1502 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1503 getPointerTy(DAG.getDataLayout()));
1504 }
1505
1506 // Variadic functions do not need all the analysis below.
1507 if (isVarArg) {
1508 CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
1509 } else {
1510 analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo,
1511 Subtarget.hasTinyEncoding());
1512 }
1513
1514 // Get a count of how many bytes are to be pushed on the stack.
1515 unsigned NumBytes = CCInfo.getStackSize();
1516
1517 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1518
1519 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1520
1521 // First, walk the register assignments, inserting copies.
1522 unsigned AI, AE;
1523 bool HasStackArgs = false;
1524 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1525 CCValAssign &VA = ArgLocs[AI];
1526 EVT RegVT = VA.getLocVT();
1527 SDValue Arg = OutVals[AI];
1528
1529 // Promote the value if needed. With Clang this should not happen.
1530 switch (VA.getLocInfo()) {
1531 default:
1532 llvm_unreachable("Unknown loc info!");
1533 case CCValAssign::Full:
1534 break;
1535 case CCValAssign::SExt:
1536 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1537 break;
1538 case CCValAssign::ZExt:
1539 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1540 break;
1541 case CCValAssign::AExt:
1542 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1543 break;
1544 case CCValAssign::BCvt:
1545 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1546 break;
1547 }
1548
1549 // Stop when we encounter a stack argument, we need to process them
1550 // in reverse order in the loop below.
1551 if (VA.isMemLoc()) {
1552 HasStackArgs = true;
1553 break;
1554 }
1555
1556 // Arguments that can be passed on registers must be kept in the RegsToPass
1557 // vector.
1558 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1559 }
1560
1561 // Second, stack arguments have to walked.
1562 // Previously this code created chained stores but those chained stores appear
1563 // to be unchained in the legalization phase. Therefore, do not attempt to
1564 // chain them here. In fact, chaining them here somehow causes the first and
1565 // second store to be reversed which is the exact opposite of the intended
1566 // effect.
1567 if (HasStackArgs) {
1568 SmallVector<SDValue, 8> MemOpChains;
1569 for (; AI != AE; AI++) {
1570 CCValAssign &VA = ArgLocs[AI];
1571 SDValue Arg = OutVals[AI];
1572
1573 assert(VA.isMemLoc());
1574
1575 // SP points to one stack slot further so add one to adjust it.
1576 SDValue PtrOff = DAG.getNode(
1577 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1578 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1579 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1580
1581 MemOpChains.push_back(
1582 DAG.getStore(Chain, DL, Arg, PtrOff,
1583 MachinePointerInfo::getStack(MF, VA.getLocMemOffset())));
1584 }
1585
1586 if (!MemOpChains.empty())
1587 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1588 }
1589
1590 // Build a sequence of copy-to-reg nodes chained together with token chain and
1591 // flag operands which copy the outgoing args into registers. The InGlue in
1592 // necessary since all emited instructions must be stuck together.
1593 SDValue InGlue;
1594 for (auto Reg : RegsToPass) {
1595 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InGlue);
1596 InGlue = Chain.getValue(1);
1597 }
1598
1599 // Returns a chain & a flag for retval copy to use.
1600 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1601 SmallVector<SDValue, 8> Ops;
1602 Ops.push_back(Chain);
1603 Ops.push_back(Callee);
1604
1605 // Add argument registers to the end of the list so that they are known live
1606 // into the call.
1607 for (auto Reg : RegsToPass) {
1608 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1609 }
1610
1611 // The zero register (usually R1) must be passed as an implicit register so
1612 // that this register is correctly zeroed in interrupts.
1613 Ops.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8));
1614
1615 // Add a register mask operand representing the call-preserved registers.
1616 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1617 const uint32_t *Mask =
1618 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1619 assert(Mask && "Missing call preserved mask for calling convention");
1620 Ops.push_back(DAG.getRegisterMask(Mask));
1621
1622 if (InGlue.getNode()) {
1623 Ops.push_back(InGlue);
1624 }
1625
1626 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1627 InGlue = Chain.getValue(1);
1628
1629 // Create the CALLSEQ_END node.
1630 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
1631
1632 if (!Ins.empty()) {
1633 InGlue = Chain.getValue(1);
1634 }
1635
1636 // Handle result values, copying them out of physregs into vregs that we
1637 // return.
1638 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, DL, DAG,
1639 InVals);
1640 }
1641
1642 /// Lower the result values of a call into the
1643 /// appropriate copies out of appropriate physical registers.
1644 ///
LowerCallResult(SDValue Chain,SDValue InGlue,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1645 SDValue AVRTargetLowering::LowerCallResult(
1646 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
1647 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1648 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1649
1650 // Assign locations to each value returned by this call.
1651 SmallVector<CCValAssign, 16> RVLocs;
1652 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1653 *DAG.getContext());
1654
1655 // Handle runtime calling convs.
1656 if (CallConv == CallingConv::AVR_BUILTIN) {
1657 CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
1658 } else {
1659 analyzeReturnValues(Ins, CCInfo, Subtarget.hasTinyEncoding());
1660 }
1661
1662 // Copy all of the result registers out of their specified physreg.
1663 for (CCValAssign const &RVLoc : RVLocs) {
1664 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1665 InGlue)
1666 .getValue(1);
1667 InGlue = Chain.getValue(2);
1668 InVals.push_back(Chain.getValue(0));
1669 }
1670
1671 return Chain;
1672 }
1673
1674 //===----------------------------------------------------------------------===//
1675 // Return Value Calling Convention Implementation
1676 //===----------------------------------------------------------------------===//
1677
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1678 bool AVRTargetLowering::CanLowerReturn(
1679 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
1680 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1681 if (CallConv == CallingConv::AVR_BUILTIN) {
1682 SmallVector<CCValAssign, 16> RVLocs;
1683 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1684 return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
1685 }
1686
1687 unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
1688 return TotalBytes <= (unsigned)(Subtarget.hasTinyEncoding() ? 4 : 8);
1689 }
1690
1691 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1692 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1693 bool isVarArg,
1694 const SmallVectorImpl<ISD::OutputArg> &Outs,
1695 const SmallVectorImpl<SDValue> &OutVals,
1696 const SDLoc &dl, SelectionDAG &DAG) const {
1697 // CCValAssign - represent the assignment of the return value to locations.
1698 SmallVector<CCValAssign, 16> RVLocs;
1699
1700 // CCState - Info about the registers and stack slot.
1701 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1702 *DAG.getContext());
1703
1704 MachineFunction &MF = DAG.getMachineFunction();
1705
1706 // Analyze return values.
1707 if (CallConv == CallingConv::AVR_BUILTIN) {
1708 CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
1709 } else {
1710 analyzeReturnValues(Outs, CCInfo, Subtarget.hasTinyEncoding());
1711 }
1712
1713 SDValue Glue;
1714 SmallVector<SDValue, 4> RetOps(1, Chain);
1715 // Copy the result values into the output registers.
1716 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1717 CCValAssign &VA = RVLocs[i];
1718 assert(VA.isRegLoc() && "Can only return in registers!");
1719
1720 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Glue);
1721
1722 // Guarantee that all emitted copies are stuck together with flags.
1723 Glue = Chain.getValue(1);
1724 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1725 }
1726
1727 // Don't emit the ret/reti instruction when the naked attribute is present in
1728 // the function being compiled.
1729 if (MF.getFunction().getAttributes().hasFnAttr(Attribute::Naked)) {
1730 return Chain;
1731 }
1732
1733 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1734
1735 if (!AFI->isInterruptOrSignalHandler()) {
1736 // The return instruction has an implicit zero register operand: it must
1737 // contain zero on return.
1738 // This is not needed in interrupts however, where the zero register is
1739 // handled specially (only pushed/popped when needed).
1740 RetOps.push_back(DAG.getRegister(Subtarget.getZeroRegister(), MVT::i8));
1741 }
1742
1743 unsigned RetOpc =
1744 AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_GLUE : AVRISD::RET_GLUE;
1745
1746 RetOps[0] = Chain; // Update chain.
1747
1748 if (Glue.getNode()) {
1749 RetOps.push_back(Glue);
1750 }
1751
1752 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1753 }
1754
1755 //===----------------------------------------------------------------------===//
1756 // Custom Inserters
1757 //===----------------------------------------------------------------------===//
1758
insertShift(MachineInstr & MI,MachineBasicBlock * BB,bool Tiny) const1759 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1760 MachineBasicBlock *BB,
1761 bool Tiny) const {
1762 unsigned Opc;
1763 const TargetRegisterClass *RC;
1764 bool HasRepeatedOperand = false;
1765 MachineFunction *F = BB->getParent();
1766 MachineRegisterInfo &RI = F->getRegInfo();
1767 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1768 DebugLoc dl = MI.getDebugLoc();
1769
1770 switch (MI.getOpcode()) {
1771 default:
1772 llvm_unreachable("Invalid shift opcode!");
1773 case AVR::Lsl8:
1774 Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1775 RC = &AVR::GPR8RegClass;
1776 HasRepeatedOperand = true;
1777 break;
1778 case AVR::Lsl16:
1779 Opc = AVR::LSLWRd;
1780 RC = &AVR::DREGSRegClass;
1781 break;
1782 case AVR::Asr8:
1783 Opc = AVR::ASRRd;
1784 RC = &AVR::GPR8RegClass;
1785 break;
1786 case AVR::Asr16:
1787 Opc = AVR::ASRWRd;
1788 RC = &AVR::DREGSRegClass;
1789 break;
1790 case AVR::Lsr8:
1791 Opc = AVR::LSRRd;
1792 RC = &AVR::GPR8RegClass;
1793 break;
1794 case AVR::Lsr16:
1795 Opc = AVR::LSRWRd;
1796 RC = &AVR::DREGSRegClass;
1797 break;
1798 case AVR::Rol8:
1799 Opc = Tiny ? AVR::ROLBRdR17 : AVR::ROLBRdR1;
1800 RC = &AVR::GPR8RegClass;
1801 break;
1802 case AVR::Rol16:
1803 Opc = AVR::ROLWRd;
1804 RC = &AVR::DREGSRegClass;
1805 break;
1806 case AVR::Ror8:
1807 Opc = AVR::RORBRd;
1808 RC = &AVR::GPR8RegClass;
1809 break;
1810 case AVR::Ror16:
1811 Opc = AVR::RORWRd;
1812 RC = &AVR::DREGSRegClass;
1813 break;
1814 }
1815
1816 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1817
1818 MachineFunction::iterator I;
1819 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I)
1820 ;
1821 if (I != F->end())
1822 ++I;
1823
1824 // Create loop block.
1825 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1826 MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB);
1827 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1828
1829 F->insert(I, LoopBB);
1830 F->insert(I, CheckBB);
1831 F->insert(I, RemBB);
1832
1833 // Update machine-CFG edges by transferring all successors of the current
1834 // block to the block containing instructions after shift.
1835 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1836 BB->end());
1837 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1838
1839 // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB.
1840 BB->addSuccessor(CheckBB);
1841 LoopBB->addSuccessor(CheckBB);
1842 CheckBB->addSuccessor(LoopBB);
1843 CheckBB->addSuccessor(RemBB);
1844
1845 Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass);
1846 Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass);
1847 Register ShiftReg = RI.createVirtualRegister(RC);
1848 Register ShiftReg2 = RI.createVirtualRegister(RC);
1849 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1850 Register SrcReg = MI.getOperand(1).getReg();
1851 Register DstReg = MI.getOperand(0).getReg();
1852
1853 // BB:
1854 // rjmp CheckBB
1855 BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB);
1856
1857 // LoopBB:
1858 // ShiftReg2 = shift ShiftReg
1859 auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1860 if (HasRepeatedOperand)
1861 ShiftMI.addReg(ShiftReg);
1862
1863 // CheckBB:
1864 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1865 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1866 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1867 // ShiftAmt2 = ShiftAmt - 1;
1868 // if (ShiftAmt2 >= 0) goto LoopBB;
1869 BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg)
1870 .addReg(SrcReg)
1871 .addMBB(BB)
1872 .addReg(ShiftReg2)
1873 .addMBB(LoopBB);
1874 BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1875 .addReg(ShiftAmtSrcReg)
1876 .addMBB(BB)
1877 .addReg(ShiftAmtReg2)
1878 .addMBB(LoopBB);
1879 BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg)
1880 .addReg(SrcReg)
1881 .addMBB(BB)
1882 .addReg(ShiftReg2)
1883 .addMBB(LoopBB);
1884
1885 BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2).addReg(ShiftAmtReg);
1886 BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB);
1887
1888 MI.eraseFromParent(); // The pseudo instruction is gone now.
1889 return RemBB;
1890 }
1891
1892 // Do a multibyte AVR shift. Insert shift instructions and put the output
1893 // registers in the Regs array.
1894 // Because AVR does not have a normal shift instruction (only a single bit shift
1895 // instruction), we have to emulate this behavior with other instructions.
1896 // It first tries large steps (moving registers around) and then smaller steps
1897 // like single bit shifts.
1898 // Large shifts actually reduce the number of shifted registers, so the below
1899 // algorithms have to work independently of the number of registers that are
1900 // shifted.
1901 // For more information and background, see this blogpost:
1902 // https://aykevl.nl/2021/02/avr-bitshift
insertMultibyteShift(MachineInstr & MI,MachineBasicBlock * BB,MutableArrayRef<std::pair<Register,int>> Regs,ISD::NodeType Opc,int64_t ShiftAmt)1903 static void insertMultibyteShift(MachineInstr &MI, MachineBasicBlock *BB,
1904 MutableArrayRef<std::pair<Register, int>> Regs,
1905 ISD::NodeType Opc, int64_t ShiftAmt) {
1906 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1907 const AVRSubtarget &STI = BB->getParent()->getSubtarget<AVRSubtarget>();
1908 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
1909 const DebugLoc &dl = MI.getDebugLoc();
1910
1911 const bool ShiftLeft = Opc == ISD::SHL;
1912 const bool ArithmeticShift = Opc == ISD::SRA;
1913
1914 // Zero a register, for use in later operations.
1915 Register ZeroReg = MRI.createVirtualRegister(&AVR::GPR8RegClass);
1916 BuildMI(*BB, MI, dl, TII.get(AVR::COPY), ZeroReg)
1917 .addReg(STI.getZeroRegister());
1918
1919 // Do a shift modulo 6 or 7. This is a bit more complicated than most shifts
1920 // and is hard to compose with the rest, so these are special cased.
1921 // The basic idea is to shift one or two bits in the opposite direction and
1922 // then move registers around to get the correct end result.
1923 if (ShiftLeft && (ShiftAmt % 8) >= 6) {
1924 // Left shift modulo 6 or 7.
1925
1926 // Create a slice of the registers we're going to modify, to ease working
1927 // with them.
1928 size_t ShiftRegsOffset = ShiftAmt / 8;
1929 size_t ShiftRegsSize = Regs.size() - ShiftRegsOffset;
1930 MutableArrayRef<std::pair<Register, int>> ShiftRegs =
1931 Regs.slice(ShiftRegsOffset, ShiftRegsSize);
1932
1933 // Shift one to the right, keeping the least significant bit as the carry
1934 // bit.
1935 insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1);
1936
1937 // Rotate the least significant bit from the carry bit into a new register
1938 // (that starts out zero).
1939 Register LowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass);
1940 BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), LowByte).addReg(ZeroReg);
1941
1942 // Shift one more to the right if this is a modulo-6 shift.
1943 if (ShiftAmt % 8 == 6) {
1944 insertMultibyteShift(MI, BB, ShiftRegs, ISD::SRL, 1);
1945 Register NewLowByte = MRI.createVirtualRegister(&AVR::GPR8RegClass);
1946 BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), NewLowByte).addReg(LowByte);
1947 LowByte = NewLowByte;
1948 }
1949
1950 // Move all registers to the left, zeroing the bottom registers as needed.
1951 for (size_t I = 0; I < Regs.size(); I++) {
1952 int ShiftRegsIdx = I + 1;
1953 if (ShiftRegsIdx < (int)ShiftRegs.size()) {
1954 Regs[I] = ShiftRegs[ShiftRegsIdx];
1955 } else if (ShiftRegsIdx == (int)ShiftRegs.size()) {
1956 Regs[I] = std::pair(LowByte, 0);
1957 } else {
1958 Regs[I] = std::pair(ZeroReg, 0);
1959 }
1960 }
1961
1962 return;
1963 }
1964
1965 // Right shift modulo 6 or 7.
1966 if (!ShiftLeft && (ShiftAmt % 8) >= 6) {
1967 // Create a view on the registers we're going to modify, to ease working
1968 // with them.
1969 size_t ShiftRegsSize = Regs.size() - (ShiftAmt / 8);
1970 MutableArrayRef<std::pair<Register, int>> ShiftRegs =
1971 Regs.slice(0, ShiftRegsSize);
1972
1973 // Shift one to the left.
1974 insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1);
1975
1976 // Sign or zero extend the most significant register into a new register.
1977 // The HighByte is the byte that still has one (or two) bits from the
1978 // original value. The ExtByte is purely a zero/sign extend byte (all bits
1979 // are either 0 or 1).
1980 Register HighByte = MRI.createVirtualRegister(&AVR::GPR8RegClass);
1981 Register ExtByte = 0;
1982 if (ArithmeticShift) {
1983 // Sign-extend bit that was shifted out last.
1984 BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), HighByte)
1985 .addReg(HighByte, RegState::Undef)
1986 .addReg(HighByte, RegState::Undef);
1987 ExtByte = HighByte;
1988 // The highest bit of the original value is the same as the zero-extend
1989 // byte, so HighByte and ExtByte are the same.
1990 } else {
1991 // Use the zero register for zero extending.
1992 ExtByte = ZeroReg;
1993 // Rotate most significant bit into a new register (that starts out zero).
1994 BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), HighByte)
1995 .addReg(ExtByte)
1996 .addReg(ExtByte);
1997 }
1998
1999 // Shift one more to the left for modulo 6 shifts.
2000 if (ShiftAmt % 8 == 6) {
2001 insertMultibyteShift(MI, BB, ShiftRegs, ISD::SHL, 1);
2002 // Shift the topmost bit into the HighByte.
2003 Register NewExt = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2004 BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), NewExt)
2005 .addReg(HighByte)
2006 .addReg(HighByte);
2007 HighByte = NewExt;
2008 }
2009
2010 // Move all to the right, while sign or zero extending.
2011 for (int I = Regs.size() - 1; I >= 0; I--) {
2012 int ShiftRegsIdx = I - (Regs.size() - ShiftRegs.size()) - 1;
2013 if (ShiftRegsIdx >= 0) {
2014 Regs[I] = ShiftRegs[ShiftRegsIdx];
2015 } else if (ShiftRegsIdx == -1) {
2016 Regs[I] = std::pair(HighByte, 0);
2017 } else {
2018 Regs[I] = std::pair(ExtByte, 0);
2019 }
2020 }
2021
2022 return;
2023 }
2024
2025 // For shift amounts of at least one register, simply rename the registers and
2026 // zero the bottom registers.
2027 while (ShiftLeft && ShiftAmt >= 8) {
2028 // Move all registers one to the left.
2029 for (size_t I = 0; I < Regs.size() - 1; I++) {
2030 Regs[I] = Regs[I + 1];
2031 }
2032
2033 // Zero the least significant register.
2034 Regs[Regs.size() - 1] = std::pair(ZeroReg, 0);
2035
2036 // Continue shifts with the leftover registers.
2037 Regs = Regs.drop_back(1);
2038
2039 ShiftAmt -= 8;
2040 }
2041
2042 // And again, the same for right shifts.
2043 Register ShrExtendReg = 0;
2044 if (!ShiftLeft && ShiftAmt >= 8) {
2045 if (ArithmeticShift) {
2046 // Sign extend the most significant register into ShrExtendReg.
2047 ShrExtendReg = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2048 Register Tmp = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2049 BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Tmp)
2050 .addReg(Regs[0].first, 0, Regs[0].second)
2051 .addReg(Regs[0].first, 0, Regs[0].second);
2052 BuildMI(*BB, MI, dl, TII.get(AVR::SBCRdRr), ShrExtendReg)
2053 .addReg(Tmp)
2054 .addReg(Tmp);
2055 } else {
2056 ShrExtendReg = ZeroReg;
2057 }
2058 for (; ShiftAmt >= 8; ShiftAmt -= 8) {
2059 // Move all registers one to the right.
2060 for (size_t I = Regs.size() - 1; I != 0; I--) {
2061 Regs[I] = Regs[I - 1];
2062 }
2063
2064 // Zero or sign extend the most significant register.
2065 Regs[0] = std::pair(ShrExtendReg, 0);
2066
2067 // Continue shifts with the leftover registers.
2068 Regs = Regs.drop_front(1);
2069 }
2070 }
2071
2072 // The bigger shifts are already handled above.
2073 assert((ShiftAmt < 8) && "Unexpect shift amount");
2074
2075 // Shift by four bits, using a complicated swap/eor/andi/eor sequence.
2076 // It only works for logical shifts because the bits shifted in are all
2077 // zeroes.
2078 // To shift a single byte right, it produces code like this:
2079 // swap r0
2080 // andi r0, 0x0f
2081 // For a two-byte (16-bit) shift, it adds the following instructions to shift
2082 // the upper byte into the lower byte:
2083 // swap r1
2084 // eor r0, r1
2085 // andi r1, 0x0f
2086 // eor r0, r1
2087 // For bigger shifts, it repeats the above sequence. For example, for a 3-byte
2088 // (24-bit) shift it adds:
2089 // swap r2
2090 // eor r1, r2
2091 // andi r2, 0x0f
2092 // eor r1, r2
2093 if (!ArithmeticShift && ShiftAmt >= 4) {
2094 Register Prev = 0;
2095 for (size_t I = 0; I < Regs.size(); I++) {
2096 size_t Idx = ShiftLeft ? I : Regs.size() - I - 1;
2097 Register SwapReg = MRI.createVirtualRegister(&AVR::LD8RegClass);
2098 BuildMI(*BB, MI, dl, TII.get(AVR::SWAPRd), SwapReg)
2099 .addReg(Regs[Idx].first, 0, Regs[Idx].second);
2100 if (I != 0) {
2101 Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2102 BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R)
2103 .addReg(Prev)
2104 .addReg(SwapReg);
2105 Prev = R;
2106 }
2107 Register AndReg = MRI.createVirtualRegister(&AVR::LD8RegClass);
2108 BuildMI(*BB, MI, dl, TII.get(AVR::ANDIRdK), AndReg)
2109 .addReg(SwapReg)
2110 .addImm(ShiftLeft ? 0xf0 : 0x0f);
2111 if (I != 0) {
2112 Register R = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2113 BuildMI(*BB, MI, dl, TII.get(AVR::EORRdRr), R)
2114 .addReg(Prev)
2115 .addReg(AndReg);
2116 size_t PrevIdx = ShiftLeft ? Idx - 1 : Idx + 1;
2117 Regs[PrevIdx] = std::pair(R, 0);
2118 }
2119 Prev = AndReg;
2120 Regs[Idx] = std::pair(AndReg, 0);
2121 }
2122 ShiftAmt -= 4;
2123 }
2124
2125 // Shift by one. This is the fallback that always works, and the shift
2126 // operation that is used for 1, 2, and 3 bit shifts.
2127 while (ShiftLeft && ShiftAmt) {
2128 // Shift one to the left.
2129 for (ssize_t I = Regs.size() - 1; I >= 0; I--) {
2130 Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2131 Register In = Regs[I].first;
2132 Register InSubreg = Regs[I].second;
2133 if (I == (ssize_t)Regs.size() - 1) { // first iteration
2134 BuildMI(*BB, MI, dl, TII.get(AVR::ADDRdRr), Out)
2135 .addReg(In, 0, InSubreg)
2136 .addReg(In, 0, InSubreg);
2137 } else {
2138 BuildMI(*BB, MI, dl, TII.get(AVR::ADCRdRr), Out)
2139 .addReg(In, 0, InSubreg)
2140 .addReg(In, 0, InSubreg);
2141 }
2142 Regs[I] = std::pair(Out, 0);
2143 }
2144 ShiftAmt--;
2145 }
2146 while (!ShiftLeft && ShiftAmt) {
2147 // Shift one to the right.
2148 for (size_t I = 0; I < Regs.size(); I++) {
2149 Register Out = MRI.createVirtualRegister(&AVR::GPR8RegClass);
2150 Register In = Regs[I].first;
2151 Register InSubreg = Regs[I].second;
2152 if (I == 0) {
2153 unsigned Opc = ArithmeticShift ? AVR::ASRRd : AVR::LSRRd;
2154 BuildMI(*BB, MI, dl, TII.get(Opc), Out).addReg(In, 0, InSubreg);
2155 } else {
2156 BuildMI(*BB, MI, dl, TII.get(AVR::RORRd), Out).addReg(In, 0, InSubreg);
2157 }
2158 Regs[I] = std::pair(Out, 0);
2159 }
2160 ShiftAmt--;
2161 }
2162
2163 if (ShiftAmt != 0) {
2164 llvm_unreachable("don't know how to shift!"); // sanity check
2165 }
2166 }
2167
2168 // Do a wide (32-bit) shift.
2169 MachineBasicBlock *
insertWideShift(MachineInstr & MI,MachineBasicBlock * BB) const2170 AVRTargetLowering::insertWideShift(MachineInstr &MI,
2171 MachineBasicBlock *BB) const {
2172 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2173 const DebugLoc &dl = MI.getDebugLoc();
2174
2175 // How much to shift to the right (meaning: a negative number indicates a left
2176 // shift).
2177 int64_t ShiftAmt = MI.getOperand(4).getImm();
2178 ISD::NodeType Opc;
2179 switch (MI.getOpcode()) {
2180 case AVR::Lsl32:
2181 Opc = ISD::SHL;
2182 break;
2183 case AVR::Lsr32:
2184 Opc = ISD::SRL;
2185 break;
2186 case AVR::Asr32:
2187 Opc = ISD::SRA;
2188 break;
2189 }
2190
2191 // Read the input registers, with the most significant register at index 0.
2192 std::array<std::pair<Register, int>, 4> Registers = {
2193 std::pair(MI.getOperand(3).getReg(), AVR::sub_hi),
2194 std::pair(MI.getOperand(3).getReg(), AVR::sub_lo),
2195 std::pair(MI.getOperand(2).getReg(), AVR::sub_hi),
2196 std::pair(MI.getOperand(2).getReg(), AVR::sub_lo),
2197 };
2198
2199 // Do the shift. The registers are modified in-place.
2200 insertMultibyteShift(MI, BB, Registers, Opc, ShiftAmt);
2201
2202 // Combine the 8-bit registers into 16-bit register pairs.
2203 // This done either from LSB to MSB or from MSB to LSB, depending on the
2204 // shift. It's an optimization so that the register allocator will use the
2205 // fewest movs possible (which order we use isn't a correctness issue, just an
2206 // optimization issue).
2207 // - lsl prefers starting from the most significant byte (2nd case).
2208 // - lshr prefers starting from the least significant byte (1st case).
2209 // - for ashr it depends on the number of shifted bytes.
2210 // Some shift operations still don't get the most optimal mov sequences even
2211 // with this distinction. TODO: figure out why and try to fix it (but we're
2212 // already equal to or faster than avr-gcc in all cases except ashr 8).
2213 if (Opc != ISD::SHL &&
2214 (Opc != ISD::SRA || (ShiftAmt < 16 || ShiftAmt >= 22))) {
2215 // Use the resulting registers starting with the least significant byte.
2216 BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg())
2217 .addReg(Registers[3].first, 0, Registers[3].second)
2218 .addImm(AVR::sub_lo)
2219 .addReg(Registers[2].first, 0, Registers[2].second)
2220 .addImm(AVR::sub_hi);
2221 BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg())
2222 .addReg(Registers[1].first, 0, Registers[1].second)
2223 .addImm(AVR::sub_lo)
2224 .addReg(Registers[0].first, 0, Registers[0].second)
2225 .addImm(AVR::sub_hi);
2226 } else {
2227 // Use the resulting registers starting with the most significant byte.
2228 BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(1).getReg())
2229 .addReg(Registers[0].first, 0, Registers[0].second)
2230 .addImm(AVR::sub_hi)
2231 .addReg(Registers[1].first, 0, Registers[1].second)
2232 .addImm(AVR::sub_lo);
2233 BuildMI(*BB, MI, dl, TII.get(AVR::REG_SEQUENCE), MI.getOperand(0).getReg())
2234 .addReg(Registers[2].first, 0, Registers[2].second)
2235 .addImm(AVR::sub_hi)
2236 .addReg(Registers[3].first, 0, Registers[3].second)
2237 .addImm(AVR::sub_lo);
2238 }
2239
2240 // Remove the pseudo instruction.
2241 MI.eraseFromParent();
2242 return BB;
2243 }
2244
isCopyMulResult(MachineBasicBlock::iterator const & I)2245 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
2246 if (I->getOpcode() == AVR::COPY) {
2247 Register SrcReg = I->getOperand(1).getReg();
2248 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
2249 }
2250
2251 return false;
2252 }
2253
2254 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
2255 // after the result has been evacuated. This is probably not the best way to do
2256 // it, but it works for now.
insertMul(MachineInstr & MI,MachineBasicBlock * BB) const2257 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
2258 MachineBasicBlock *BB) const {
2259 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2260 MachineBasicBlock::iterator I(MI);
2261 ++I; // in any case insert *after* the mul instruction
2262 if (isCopyMulResult(I))
2263 ++I;
2264 if (isCopyMulResult(I))
2265 ++I;
2266 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
2267 .addReg(AVR::R1)
2268 .addReg(AVR::R1);
2269 return BB;
2270 }
2271
2272 // Insert a read from the zero register.
2273 MachineBasicBlock *
insertCopyZero(MachineInstr & MI,MachineBasicBlock * BB) const2274 AVRTargetLowering::insertCopyZero(MachineInstr &MI,
2275 MachineBasicBlock *BB) const {
2276 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2277 MachineBasicBlock::iterator I(MI);
2278 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::COPY))
2279 .add(MI.getOperand(0))
2280 .addReg(Subtarget.getZeroRegister());
2281 MI.eraseFromParent();
2282 return BB;
2283 }
2284
2285 // Lower atomicrmw operation to disable interrupts, do operation, and restore
2286 // interrupts. This works because all AVR microcontrollers are single core.
insertAtomicArithmeticOp(MachineInstr & MI,MachineBasicBlock * BB,unsigned Opcode,int Width) const2287 MachineBasicBlock *AVRTargetLowering::insertAtomicArithmeticOp(
2288 MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, int Width) const {
2289 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
2290 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2291 MachineBasicBlock::iterator I(MI);
2292 DebugLoc dl = MI.getDebugLoc();
2293
2294 // Example instruction sequence, for an atomic 8-bit add:
2295 // ldi r25, 5
2296 // in r0, SREG
2297 // cli
2298 // ld r24, X
2299 // add r25, r24
2300 // st X, r25
2301 // out SREG, r0
2302
2303 const TargetRegisterClass *RC =
2304 (Width == 8) ? &AVR::GPR8RegClass : &AVR::DREGSRegClass;
2305 unsigned LoadOpcode = (Width == 8) ? AVR::LDRdPtr : AVR::LDWRdPtr;
2306 unsigned StoreOpcode = (Width == 8) ? AVR::STPtrRr : AVR::STWPtrRr;
2307
2308 // Disable interrupts.
2309 BuildMI(*BB, I, dl, TII.get(AVR::INRdA), Subtarget.getTmpRegister())
2310 .addImm(Subtarget.getIORegSREG());
2311 BuildMI(*BB, I, dl, TII.get(AVR::BCLRs)).addImm(7);
2312
2313 // Load the original value.
2314 BuildMI(*BB, I, dl, TII.get(LoadOpcode), MI.getOperand(0).getReg())
2315 .add(MI.getOperand(1));
2316
2317 // Do the arithmetic operation.
2318 Register Result = MRI.createVirtualRegister(RC);
2319 BuildMI(*BB, I, dl, TII.get(Opcode), Result)
2320 .addReg(MI.getOperand(0).getReg())
2321 .add(MI.getOperand(2));
2322
2323 // Store the result.
2324 BuildMI(*BB, I, dl, TII.get(StoreOpcode))
2325 .add(MI.getOperand(1))
2326 .addReg(Result);
2327
2328 // Restore interrupts.
2329 BuildMI(*BB, I, dl, TII.get(AVR::OUTARr))
2330 .addImm(Subtarget.getIORegSREG())
2331 .addReg(Subtarget.getTmpRegister());
2332
2333 // Remove the pseudo instruction.
2334 MI.eraseFromParent();
2335 return BB;
2336 }
2337
2338 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const2339 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
2340 MachineBasicBlock *MBB) const {
2341 int Opc = MI.getOpcode();
2342 const AVRSubtarget &STI = MBB->getParent()->getSubtarget<AVRSubtarget>();
2343
2344 // Pseudo shift instructions with a non constant shift amount are expanded
2345 // into a loop.
2346 switch (Opc) {
2347 case AVR::Lsl8:
2348 case AVR::Lsl16:
2349 case AVR::Lsr8:
2350 case AVR::Lsr16:
2351 case AVR::Rol8:
2352 case AVR::Rol16:
2353 case AVR::Ror8:
2354 case AVR::Ror16:
2355 case AVR::Asr8:
2356 case AVR::Asr16:
2357 return insertShift(MI, MBB, STI.hasTinyEncoding());
2358 case AVR::Lsl32:
2359 case AVR::Lsr32:
2360 case AVR::Asr32:
2361 return insertWideShift(MI, MBB);
2362 case AVR::MULRdRr:
2363 case AVR::MULSRdRr:
2364 return insertMul(MI, MBB);
2365 case AVR::CopyZero:
2366 return insertCopyZero(MI, MBB);
2367 case AVR::AtomicLoadAdd8:
2368 return insertAtomicArithmeticOp(MI, MBB, AVR::ADDRdRr, 8);
2369 case AVR::AtomicLoadAdd16:
2370 return insertAtomicArithmeticOp(MI, MBB, AVR::ADDWRdRr, 16);
2371 case AVR::AtomicLoadSub8:
2372 return insertAtomicArithmeticOp(MI, MBB, AVR::SUBRdRr, 8);
2373 case AVR::AtomicLoadSub16:
2374 return insertAtomicArithmeticOp(MI, MBB, AVR::SUBWRdRr, 16);
2375 case AVR::AtomicLoadAnd8:
2376 return insertAtomicArithmeticOp(MI, MBB, AVR::ANDRdRr, 8);
2377 case AVR::AtomicLoadAnd16:
2378 return insertAtomicArithmeticOp(MI, MBB, AVR::ANDWRdRr, 16);
2379 case AVR::AtomicLoadOr8:
2380 return insertAtomicArithmeticOp(MI, MBB, AVR::ORRdRr, 8);
2381 case AVR::AtomicLoadOr16:
2382 return insertAtomicArithmeticOp(MI, MBB, AVR::ORWRdRr, 16);
2383 case AVR::AtomicLoadXor8:
2384 return insertAtomicArithmeticOp(MI, MBB, AVR::EORRdRr, 8);
2385 case AVR::AtomicLoadXor16:
2386 return insertAtomicArithmeticOp(MI, MBB, AVR::EORWRdRr, 16);
2387 }
2388
2389 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
2390 "Unexpected instr type to insert");
2391
2392 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
2393 ->getParent()
2394 ->getSubtarget()
2395 .getInstrInfo();
2396 DebugLoc dl = MI.getDebugLoc();
2397
2398 // To "insert" a SELECT instruction, we insert the diamond
2399 // control-flow pattern. The incoming instruction knows the
2400 // destination vreg to set, the condition code register to branch
2401 // on, the true/false values to select between, and a branch opcode
2402 // to use.
2403
2404 MachineFunction *MF = MBB->getParent();
2405 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
2406 MachineBasicBlock *FallThrough = MBB->getFallThrough();
2407
2408 // If the current basic block falls through to another basic block,
2409 // we must insert an unconditional branch to the fallthrough destination
2410 // if we are to insert basic blocks at the prior fallthrough point.
2411 if (FallThrough != nullptr) {
2412 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
2413 }
2414
2415 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
2416 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
2417
2418 MachineFunction::iterator I;
2419 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I)
2420 ;
2421 if (I != MF->end())
2422 ++I;
2423 MF->insert(I, trueMBB);
2424 MF->insert(I, falseMBB);
2425
2426 // Set the call frame size on entry to the new basic blocks.
2427 unsigned CallFrameSize = TII.getCallFrameSizeAt(MI);
2428 trueMBB->setCallFrameSize(CallFrameSize);
2429 falseMBB->setCallFrameSize(CallFrameSize);
2430
2431 // Transfer remaining instructions and all successors of the current
2432 // block to the block which will contain the Phi node for the
2433 // select.
2434 trueMBB->splice(trueMBB->begin(), MBB,
2435 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2436 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
2437
2438 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
2439 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
2440 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
2441 MBB->addSuccessor(falseMBB);
2442 MBB->addSuccessor(trueMBB);
2443
2444 // Unconditionally flow back to the true block
2445 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
2446 falseMBB->addSuccessor(trueMBB);
2447
2448 // Set up the Phi node to determine where we came from
2449 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI),
2450 MI.getOperand(0).getReg())
2451 .addReg(MI.getOperand(1).getReg())
2452 .addMBB(MBB)
2453 .addReg(MI.getOperand(2).getReg())
2454 .addMBB(falseMBB);
2455
2456 MI.eraseFromParent(); // The pseudo instruction is gone now.
2457 return trueMBB;
2458 }
2459
2460 //===----------------------------------------------------------------------===//
2461 // Inline Asm Support
2462 //===----------------------------------------------------------------------===//
2463
2464 AVRTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2465 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
2466 if (Constraint.size() == 1) {
2467 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
2468 switch (Constraint[0]) {
2469 default:
2470 break;
2471 case 'a': // Simple upper registers
2472 case 'b': // Base pointer registers pairs
2473 case 'd': // Upper register
2474 case 'l': // Lower registers
2475 case 'e': // Pointer register pairs
2476 case 'q': // Stack pointer register
2477 case 'r': // Any register
2478 case 'w': // Special upper register pairs
2479 return C_RegisterClass;
2480 case 't': // Temporary register
2481 case 'x':
2482 case 'X': // Pointer register pair X
2483 case 'y':
2484 case 'Y': // Pointer register pair Y
2485 case 'z':
2486 case 'Z': // Pointer register pair Z
2487 return C_Register;
2488 case 'Q': // A memory address based on Y or Z pointer with displacement.
2489 return C_Memory;
2490 case 'G': // Floating point constant
2491 case 'I': // 6-bit positive integer constant
2492 case 'J': // 6-bit negative integer constant
2493 case 'K': // Integer constant (Range: 2)
2494 case 'L': // Integer constant (Range: 0)
2495 case 'M': // 8-bit integer constant
2496 case 'N': // Integer constant (Range: -1)
2497 case 'O': // Integer constant (Range: 8, 16, 24)
2498 case 'P': // Integer constant (Range: 1)
2499 case 'R': // Integer constant (Range: -6 to 5)x
2500 return C_Immediate;
2501 }
2502 }
2503
2504 return TargetLowering::getConstraintType(Constraint);
2505 }
2506
2507 InlineAsm::ConstraintCode
getInlineAsmMemConstraint(StringRef ConstraintCode) const2508 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2509 // Not sure if this is actually the right thing to do, but we got to do
2510 // *something* [agnat]
2511 switch (ConstraintCode[0]) {
2512 case 'Q':
2513 return InlineAsm::ConstraintCode::Q;
2514 }
2515 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2516 }
2517
2518 AVRTargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const2519 AVRTargetLowering::getSingleConstraintMatchWeight(
2520 AsmOperandInfo &info, const char *constraint) const {
2521 ConstraintWeight weight = CW_Invalid;
2522 Value *CallOperandVal = info.CallOperandVal;
2523
2524 // If we don't have a value, we can't do a match,
2525 // but allow it at the lowest weight.
2526 // (this behaviour has been copied from the ARM backend)
2527 if (!CallOperandVal) {
2528 return CW_Default;
2529 }
2530
2531 // Look at the constraint type.
2532 switch (*constraint) {
2533 default:
2534 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2535 break;
2536 case 'd':
2537 case 'r':
2538 case 'l':
2539 weight = CW_Register;
2540 break;
2541 case 'a':
2542 case 'b':
2543 case 'e':
2544 case 'q':
2545 case 't':
2546 case 'w':
2547 case 'x':
2548 case 'X':
2549 case 'y':
2550 case 'Y':
2551 case 'z':
2552 case 'Z':
2553 weight = CW_SpecificReg;
2554 break;
2555 case 'G':
2556 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
2557 if (C->isZero()) {
2558 weight = CW_Constant;
2559 }
2560 }
2561 break;
2562 case 'I':
2563 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2564 if (isUInt<6>(C->getZExtValue())) {
2565 weight = CW_Constant;
2566 }
2567 }
2568 break;
2569 case 'J':
2570 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2571 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
2572 weight = CW_Constant;
2573 }
2574 }
2575 break;
2576 case 'K':
2577 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2578 if (C->getZExtValue() == 2) {
2579 weight = CW_Constant;
2580 }
2581 }
2582 break;
2583 case 'L':
2584 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2585 if (C->getZExtValue() == 0) {
2586 weight = CW_Constant;
2587 }
2588 }
2589 break;
2590 case 'M':
2591 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2592 if (isUInt<8>(C->getZExtValue())) {
2593 weight = CW_Constant;
2594 }
2595 }
2596 break;
2597 case 'N':
2598 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2599 if (C->getSExtValue() == -1) {
2600 weight = CW_Constant;
2601 }
2602 }
2603 break;
2604 case 'O':
2605 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2606 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
2607 (C->getZExtValue() == 24)) {
2608 weight = CW_Constant;
2609 }
2610 }
2611 break;
2612 case 'P':
2613 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2614 if (C->getZExtValue() == 1) {
2615 weight = CW_Constant;
2616 }
2617 }
2618 break;
2619 case 'R':
2620 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2621 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
2622 weight = CW_Constant;
2623 }
2624 }
2625 break;
2626 case 'Q':
2627 weight = CW_Memory;
2628 break;
2629 }
2630
2631 return weight;
2632 }
2633
2634 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const2635 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2636 StringRef Constraint,
2637 MVT VT) const {
2638 if (Constraint.size() == 1) {
2639 switch (Constraint[0]) {
2640 case 'a': // Simple upper registers r16..r23.
2641 if (VT == MVT::i8)
2642 return std::make_pair(0U, &AVR::LD8loRegClass);
2643 else if (VT == MVT::i16)
2644 return std::make_pair(0U, &AVR::DREGSLD8loRegClass);
2645 break;
2646 case 'b': // Base pointer registers: y, z.
2647 if (VT == MVT::i8 || VT == MVT::i16)
2648 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
2649 break;
2650 case 'd': // Upper registers r16..r31.
2651 if (VT == MVT::i8)
2652 return std::make_pair(0U, &AVR::LD8RegClass);
2653 else if (VT == MVT::i16)
2654 return std::make_pair(0U, &AVR::DLDREGSRegClass);
2655 break;
2656 case 'l': // Lower registers r0..r15.
2657 if (VT == MVT::i8)
2658 return std::make_pair(0U, &AVR::GPR8loRegClass);
2659 else if (VT == MVT::i16)
2660 return std::make_pair(0U, &AVR::DREGSloRegClass);
2661 break;
2662 case 'e': // Pointer register pairs: x, y, z.
2663 if (VT == MVT::i8 || VT == MVT::i16)
2664 return std::make_pair(0U, &AVR::PTRREGSRegClass);
2665 break;
2666 case 'q': // Stack pointer register: SPH:SPL.
2667 return std::make_pair(0U, &AVR::GPRSPRegClass);
2668 case 'r': // Any register: r0..r31.
2669 if (VT == MVT::i8)
2670 return std::make_pair(0U, &AVR::GPR8RegClass);
2671 else if (VT == MVT::i16)
2672 return std::make_pair(0U, &AVR::DREGSRegClass);
2673 break;
2674 case 't': // Temporary register: r0.
2675 if (VT == MVT::i8)
2676 return std::make_pair(unsigned(Subtarget.getTmpRegister()),
2677 &AVR::GPR8RegClass);
2678 break;
2679 case 'w': // Special upper register pairs: r24, r26, r28, r30.
2680 if (VT == MVT::i8 || VT == MVT::i16)
2681 return std::make_pair(0U, &AVR::IWREGSRegClass);
2682 break;
2683 case 'x': // Pointer register pair X: r27:r26.
2684 case 'X':
2685 if (VT == MVT::i8 || VT == MVT::i16)
2686 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
2687 break;
2688 case 'y': // Pointer register pair Y: r29:r28.
2689 case 'Y':
2690 if (VT == MVT::i8 || VT == MVT::i16)
2691 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
2692 break;
2693 case 'z': // Pointer register pair Z: r31:r30.
2694 case 'Z':
2695 if (VT == MVT::i8 || VT == MVT::i16)
2696 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
2697 break;
2698 default:
2699 break;
2700 }
2701 }
2702
2703 return TargetLowering::getRegForInlineAsmConstraint(
2704 Subtarget.getRegisterInfo(), Constraint, VT);
2705 }
2706
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2707 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2708 StringRef Constraint,
2709 std::vector<SDValue> &Ops,
2710 SelectionDAG &DAG) const {
2711 SDValue Result;
2712 SDLoc DL(Op);
2713 EVT Ty = Op.getValueType();
2714
2715 // Currently only support length 1 constraints.
2716 if (Constraint.size() != 1) {
2717 return;
2718 }
2719
2720 char ConstraintLetter = Constraint[0];
2721 switch (ConstraintLetter) {
2722 default:
2723 break;
2724 // Deal with integers first:
2725 case 'I':
2726 case 'J':
2727 case 'K':
2728 case 'L':
2729 case 'M':
2730 case 'N':
2731 case 'O':
2732 case 'P':
2733 case 'R': {
2734 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2735 if (!C) {
2736 return;
2737 }
2738
2739 int64_t CVal64 = C->getSExtValue();
2740 uint64_t CUVal64 = C->getZExtValue();
2741 switch (ConstraintLetter) {
2742 case 'I': // 0..63
2743 if (!isUInt<6>(CUVal64))
2744 return;
2745 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2746 break;
2747 case 'J': // -63..0
2748 if (CVal64 < -63 || CVal64 > 0)
2749 return;
2750 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2751 break;
2752 case 'K': // 2
2753 if (CUVal64 != 2)
2754 return;
2755 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2756 break;
2757 case 'L': // 0
2758 if (CUVal64 != 0)
2759 return;
2760 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2761 break;
2762 case 'M': // 0..255
2763 if (!isUInt<8>(CUVal64))
2764 return;
2765 // i8 type may be printed as a negative number,
2766 // e.g. 254 would be printed as -2,
2767 // so we force it to i16 at least.
2768 if (Ty.getSimpleVT() == MVT::i8) {
2769 Ty = MVT::i16;
2770 }
2771 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2772 break;
2773 case 'N': // -1
2774 if (CVal64 != -1)
2775 return;
2776 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2777 break;
2778 case 'O': // 8, 16, 24
2779 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
2780 return;
2781 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2782 break;
2783 case 'P': // 1
2784 if (CUVal64 != 1)
2785 return;
2786 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2787 break;
2788 case 'R': // -6..5
2789 if (CVal64 < -6 || CVal64 > 5)
2790 return;
2791 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2792 break;
2793 }
2794
2795 break;
2796 }
2797 case 'G':
2798 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
2799 if (!FC || !FC->isZero())
2800 return;
2801 // Soften float to i8 0
2802 Result = DAG.getTargetConstant(0, DL, MVT::i8);
2803 break;
2804 }
2805
2806 if (Result.getNode()) {
2807 Ops.push_back(Result);
2808 return;
2809 }
2810
2811 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2812 }
2813
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const2814 Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2815 const MachineFunction &MF) const {
2816 Register Reg;
2817
2818 if (VT == LLT::scalar(8)) {
2819 Reg = StringSwitch<unsigned>(RegName)
2820 .Case("r0", AVR::R0)
2821 .Case("r1", AVR::R1)
2822 .Default(0);
2823 } else {
2824 Reg = StringSwitch<unsigned>(RegName)
2825 .Case("r0", AVR::R1R0)
2826 .Case("sp", AVR::SP)
2827 .Default(0);
2828 }
2829
2830 if (Reg)
2831 return Reg;
2832
2833 report_fatal_error(
2834 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2835 }
2836
2837 } // end of namespace llvm
2838