1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 */ 27 28 /* 29 * lofi (loopback file) driver - allows you to attach a file to a device, 30 * which can then be accessed through that device. The simple model is that 31 * you tell lofi to open a file, and then use the block device you get as 32 * you would any block device. lofi translates access to the block device 33 * into I/O on the underlying file. This is mostly useful for 34 * mounting images of filesystems. 35 * 36 * lofi is controlled through /dev/lofictl - this is the only device exported 37 * during attach, and is instance number 0. lofiadm communicates with lofi 38 * through ioctls on this device. When a file is attached to lofi, block and 39 * character devices are exported in /dev/lofi and /dev/rlofi. These devices 40 * are identified by lofi instance number, and the instance number is also used 41 * as the name in /dev/lofi. 42 * 43 * Virtual disks, or, labeled lofi, implements virtual disk support to 44 * support partition table and related tools. Such mappings will cause 45 * block and character devices to be exported in /dev/dsk and /dev/rdsk 46 * directories. 47 * 48 * To support virtual disks, the instance number space is divided to two 49 * parts, upper part for instance number and lower part for minor number 50 * space to identify partitions and slices. The virtual disk support is 51 * implemented by stacking cmlb module. For virtual disks, the partition 52 * related ioctl calls are routed to cmlb module. Compression and encryption 53 * is not supported for virtual disks. 54 * 55 * Mapped devices are tracked with state structures handled with 56 * ddi_soft_state(9F) for simplicity. 57 * 58 * A file attached to lofi is opened when attached and not closed until 59 * explicitly detached from lofi. This seems more sensible than deferring 60 * the open until the /dev/lofi device is opened, for a number of reasons. 61 * One is that any failure is likely to be noticed by the person (or script) 62 * running lofiadm. Another is that it would be a security problem if the 63 * file was replaced by another one after being added but before being opened. 64 * 65 * The only hard part about lofi is the ioctls. In order to support things 66 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 67 * So it has to fake disk geometry and partition information. More may need 68 * to be faked if your favorite utility doesn't work and you think it should 69 * (fdformat doesn't work because it really wants to know the type of floppy 70 * controller to talk to, and that didn't seem easy to fake. Or possibly even 71 * necessary, since we have mkfs_pcfs now). 72 * 73 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 74 * support simulation of hotplug events, an optional force flag is provided. 75 * If a lofi device is open when a force detach is requested, then the 76 * underlying file is closed and any subsequent operations return EIO. When the 77 * device is closed for the last time, it will be cleaned up at that time. In 78 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 79 * detached but not removed. 80 * 81 * Known problems: 82 * 83 * UFS logging. Mounting a UFS filesystem image "logging" 84 * works for basic copy testing but wedges during a build of ON through 85 * that image. Some deadlock in lufs holding the log mutex and then 86 * getting stuck on a buf. So for now, don't do that. 87 * 88 * Direct I/O. Since the filesystem data is being cached in the buffer 89 * cache, _and_ again in the underlying filesystem, it's tempting to 90 * enable direct I/O on the underlying file. Don't, because that deadlocks. 91 * I think to fix the cache-twice problem we might need filesystem support. 92 * 93 * Interesting things to do: 94 * 95 * Allow multiple files for each device. A poor-man's metadisk, basically. 96 * 97 * Pass-through ioctls on block devices. You can (though it's not 98 * documented), give lofi a block device as a file name. Then we shouldn't 99 * need to fake a geometry, however, it may be relevant if you're replacing 100 * metadisk, or using lofi to get crypto. 101 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 102 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 103 * In fact this even makes sense if you have lofi "above" metadisk. 104 * 105 * Encryption: 106 * Each lofi device can have its own symmetric key and cipher. 107 * They are passed to us by lofiadm(1m) in the correct format for use 108 * with the misc/kcf crypto_* routines. 109 * 110 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 111 * on the "master" key held in the lsp and the block number of the buffer. 112 */ 113 114 #include <sys/types.h> 115 #include <netinet/in.h> 116 #include <sys/sysmacros.h> 117 #include <sys/uio.h> 118 #include <sys/kmem.h> 119 #include <sys/cred.h> 120 #include <sys/mman.h> 121 #include <sys/errno.h> 122 #include <sys/aio_req.h> 123 #include <sys/stat.h> 124 #include <sys/file.h> 125 #include <sys/modctl.h> 126 #include <sys/conf.h> 127 #include <sys/debug.h> 128 #include <sys/vnode.h> 129 #include <sys/lofi.h> 130 #include <sys/fcntl.h> 131 #include <sys/pathname.h> 132 #include <sys/filio.h> 133 #include <sys/fdio.h> 134 #include <sys/open.h> 135 #include <sys/disp.h> 136 #include <vm/seg_map.h> 137 #include <sys/ddi.h> 138 #include <sys/sunddi.h> 139 #include <sys/zmod.h> 140 #include <sys/id_space.h> 141 #include <sys/mkdev.h> 142 #include <sys/crypto/common.h> 143 #include <sys/crypto/api.h> 144 #include <sys/rctl.h> 145 #include <sys/vtoc.h> 146 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */ 147 #include <sys/scsi/impl/uscsi.h> 148 #include <sys/sysevent/dev.h> 149 #include <LzmaDec.h> 150 151 /* 152 * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h. 153 * Crypto metadata, if it exists, is located at the end of the boot block 154 * (BBOFF + BBSIZE, which is SBOFF). The super block and everything after 155 * is offset by the size of the crypto metadata which is handled by 156 * lsp->ls_crypto_offset. 157 */ 158 #define CRYOFF ((off_t)8192) 159 160 #define NBLOCKS_PROP_NAME "Nblocks" 161 #define SIZE_PROP_NAME "Size" 162 #define ZONE_PROP_NAME "zone" 163 164 #define SETUP_C_DATA(cd, buf, len) \ 165 (cd).cd_format = CRYPTO_DATA_RAW; \ 166 (cd).cd_offset = 0; \ 167 (cd).cd_miscdata = NULL; \ 168 (cd).cd_length = (len); \ 169 (cd).cd_raw.iov_base = (buf); \ 170 (cd).cd_raw.iov_len = (len); 171 172 #define UIO_CHECK(uio) \ 173 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 174 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 175 return (EINVAL); \ 176 } 177 178 #define DEVFS_CHANNEL "devfsadm_event_channel" 179 #define LOFI_TIMEOUT 30 180 static evchan_t *lofi_chan; 181 static kmutex_t lofi_chan_lock; 182 static kcondvar_t lofi_chan_cv; 183 static nvlist_t *lofi_devlink_cache; 184 185 static void *lofi_statep; 186 static kmutex_t lofi_lock; /* state lock */ 187 static id_space_t *lofi_id; /* lofi ID values */ 188 static list_t lofi_list; 189 static zone_key_t lofi_zone_key; 190 191 /* 192 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 193 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 194 * high. If we want to be assured that the underlying device is always busy, 195 * we must be sure that the number of bytes enqueued when the number of 196 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 197 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 198 * set maxalloc to be the maximum throughput (in bytes per second) of the 199 * underlying device divided by the minimum I/O size. We assume a realistic 200 * maximum throughput of one hundred megabytes per second; we set maxalloc on 201 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 202 */ 203 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 204 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 205 206 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 207 208 /* 209 * To avoid decompressing data in a compressed segment multiple times 210 * when accessing small parts of a segment's data, we cache and reuse 211 * the uncompressed segment's data. 212 * 213 * A single cached segment is sufficient to avoid lots of duplicate 214 * segment decompress operations. A small cache size also reduces the 215 * memory footprint. 216 * 217 * lofi_max_comp_cache is the maximum number of decompressed data segments 218 * cached for each compressed lofi image. It can be set to 0 to disable 219 * caching. 220 */ 221 222 uint32_t lofi_max_comp_cache = 1; 223 224 static int gzip_decompress(void *src, size_t srclen, void *dst, 225 size_t *destlen, int level); 226 227 static int lzma_decompress(void *src, size_t srclen, void *dst, 228 size_t *dstlen, int level); 229 230 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 231 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 232 {gzip_decompress, NULL, 6, "gzip-6"}, 233 {gzip_decompress, NULL, 9, "gzip-9"}, 234 {lzma_decompress, NULL, 0, "lzma"} 235 }; 236 237 static void lofi_strategy_task(void *); 238 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, 239 size_t, void *); 240 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *); 241 242 struct cmlb_tg_ops lofi_tg_ops = { 243 TG_DK_OPS_VERSION_1, 244 lofi_tg_rdwr, 245 lofi_tg_getinfo 246 }; 247 248 /*ARGSUSED*/ 249 static void 250 *SzAlloc(void *p, size_t size) 251 { 252 return (kmem_alloc(size, KM_SLEEP)); 253 } 254 255 /*ARGSUSED*/ 256 static void 257 SzFree(void *p, void *address, size_t size) 258 { 259 kmem_free(address, size); 260 } 261 262 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 263 264 /* 265 * Free data referenced by the linked list of cached uncompressed 266 * segments. 267 */ 268 static void 269 lofi_free_comp_cache(struct lofi_state *lsp) 270 { 271 struct lofi_comp_cache *lc; 272 273 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 274 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 275 kmem_free(lc, sizeof (struct lofi_comp_cache)); 276 lsp->ls_comp_cache_count--; 277 } 278 ASSERT(lsp->ls_comp_cache_count == 0); 279 } 280 281 static int 282 is_opened(struct lofi_state *lsp) 283 { 284 int i; 285 boolean_t last = B_TRUE; 286 287 ASSERT(MUTEX_HELD(&lofi_lock)); 288 for (i = 0; i < LOFI_PART_MAX; i++) { 289 if (lsp->ls_open_lyr[i]) { 290 last = B_FALSE; 291 break; 292 } 293 } 294 295 for (i = 0; last && (i < OTYP_LYR); i++) { 296 if (lsp->ls_open_reg[i]) { 297 last = B_FALSE; 298 } 299 } 300 301 return (!last); 302 } 303 304 static void 305 lofi_free_crypto(struct lofi_state *lsp) 306 { 307 ASSERT(MUTEX_HELD(&lofi_lock)); 308 309 if (lsp->ls_crypto_enabled) { 310 /* 311 * Clean up the crypto state so that it doesn't hang around 312 * in memory after we are done with it. 313 */ 314 if (lsp->ls_key.ck_data != NULL) { 315 bzero(lsp->ls_key.ck_data, 316 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 317 kmem_free(lsp->ls_key.ck_data, 318 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 319 lsp->ls_key.ck_data = NULL; 320 lsp->ls_key.ck_length = 0; 321 } 322 323 if (lsp->ls_mech.cm_param != NULL) { 324 kmem_free(lsp->ls_mech.cm_param, 325 lsp->ls_mech.cm_param_len); 326 lsp->ls_mech.cm_param = NULL; 327 lsp->ls_mech.cm_param_len = 0; 328 } 329 330 if (lsp->ls_iv_mech.cm_param != NULL) { 331 kmem_free(lsp->ls_iv_mech.cm_param, 332 lsp->ls_iv_mech.cm_param_len); 333 lsp->ls_iv_mech.cm_param = NULL; 334 lsp->ls_iv_mech.cm_param_len = 0; 335 } 336 337 mutex_destroy(&lsp->ls_crypto_lock); 338 } 339 } 340 341 /* ARGSUSED */ 342 static int 343 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start, 344 size_t length, void *tg_cookie) 345 { 346 struct lofi_state *lsp; 347 buf_t *bp; 348 int instance; 349 int rv = 0; 350 351 instance = ddi_get_instance(dip); 352 if (instance == 0) /* control node does not have disk */ 353 return (ENXIO); 354 355 lsp = ddi_get_soft_state(lofi_statep, instance); 356 357 if (lsp == NULL) 358 return (ENXIO); 359 360 if (cmd != TG_READ && cmd != TG_WRITE) 361 return (EINVAL); 362 363 /* 364 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 365 */ 366 mutex_enter(&lsp->ls_vp_lock); 367 while (lsp->ls_vp_ready == B_FALSE) 368 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 369 mutex_exit(&lsp->ls_vp_lock); 370 371 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) { 372 /* We can only transfer whole blocks at a time! */ 373 return (EINVAL); 374 } 375 376 bp = getrbuf(KM_SLEEP); 377 378 if (cmd == TG_READ) { 379 bp->b_flags = B_READ; 380 } else { 381 if (lsp->ls_readonly == B_TRUE) { 382 freerbuf(bp); 383 return (EROFS); 384 } 385 bp->b_flags = B_WRITE; 386 } 387 388 bp->b_un.b_addr = bufaddr; 389 bp->b_bcount = length; 390 bp->b_lblkno = start; 391 bp->b_private = NULL; 392 bp->b_edev = lsp->ls_dev; 393 394 if (lsp->ls_kstat) { 395 mutex_enter(lsp->ls_kstat->ks_lock); 396 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 397 mutex_exit(lsp->ls_kstat->ks_lock); 398 } 399 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 400 (void) biowait(bp); 401 402 rv = geterror(bp); 403 freerbuf(bp); 404 return (rv); 405 } 406 407 /* 408 * Get device geometry info for cmlb. 409 * 410 * We have mapped disk image as virtual block device and have to report 411 * physical/virtual geometry to cmlb. 412 * 413 * So we have two principal cases: 414 * 1. Uninitialised image without any existing labels, 415 * for this case we fabricate the data based on mapped image. 416 * 2. Image with existing label information. 417 * Since we have no information how the image was created (it may be 418 * dump from some physical device), we need to rely on label information 419 * from image, or we get "corrupted label" errors. 420 * NOTE: label can be MBR, MBR+SMI, GPT 421 */ 422 static int 423 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 424 { 425 struct lofi_state *lsp; 426 int instance; 427 int ashift; 428 429 _NOTE(ARGUNUSED(tg_cookie)); 430 instance = ddi_get_instance(dip); 431 if (instance == 0) /* control device has no storage */ 432 return (ENXIO); 433 434 lsp = ddi_get_soft_state(lofi_statep, instance); 435 436 if (lsp == NULL) 437 return (ENXIO); 438 439 /* 440 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 441 * 442 * When mapping is created, new lofi instance is created and 443 * lofi_attach() will call cmlb_attach() as part of the procedure 444 * to set the mapping up. This chain of events will happen in 445 * the same thread. 446 * Since cmlb_attach() will call lofi_tg_getinfo to get 447 * capacity, we return error on that call if cookie is set, 448 * otherwise lofi_attach will be stuck as the mapping is not yet 449 * finalized and lofi is not yet ready. 450 * Note, such error is not fatal for cmlb, as the label setup 451 * will be finalized when cmlb_validate() is called. 452 */ 453 mutex_enter(&lsp->ls_vp_lock); 454 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) { 455 mutex_exit(&lsp->ls_vp_lock); 456 return (ENXIO); 457 } 458 while (lsp->ls_vp_ready == B_FALSE) 459 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 460 mutex_exit(&lsp->ls_vp_lock); 461 462 ashift = lsp->ls_lbshift; 463 464 switch (cmd) { 465 case TG_GETPHYGEOM: { 466 cmlb_geom_t *geomp = arg; 467 468 geomp->g_capacity = 469 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 470 geomp->g_nsect = lsp->ls_dkg.dkg_nsect; 471 geomp->g_nhead = lsp->ls_dkg.dkg_nhead; 472 geomp->g_acyl = lsp->ls_dkg.dkg_acyl; 473 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl; 474 geomp->g_secsize = (1U << ashift); 475 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv; 476 geomp->g_rpm = lsp->ls_dkg.dkg_rpm; 477 return (0); 478 } 479 480 case TG_GETCAPACITY: 481 *(diskaddr_t *)arg = 482 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 483 return (0); 484 485 case TG_GETBLOCKSIZE: 486 *(uint32_t *)arg = (1U << ashift); 487 return (0); 488 489 case TG_GETATTR: { 490 tg_attribute_t *tgattr = arg; 491 492 tgattr->media_is_writable = !lsp->ls_readonly; 493 tgattr->media_is_solid_state = B_FALSE; 494 return (0); 495 } 496 497 default: 498 return (EINVAL); 499 } 500 } 501 502 static void 503 lofi_destroy(struct lofi_state *lsp, cred_t *credp) 504 { 505 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 506 int i; 507 508 ASSERT(MUTEX_HELD(&lofi_lock)); 509 510 list_remove(&lofi_list, lsp); 511 512 lofi_free_crypto(lsp); 513 514 /* 515 * Free pre-allocated compressed buffers 516 */ 517 if (lsp->ls_comp_bufs != NULL) { 518 for (i = 0; i < lofi_taskq_nthreads; i++) { 519 if (lsp->ls_comp_bufs[i].bufsize > 0) 520 kmem_free(lsp->ls_comp_bufs[i].buf, 521 lsp->ls_comp_bufs[i].bufsize); 522 } 523 kmem_free(lsp->ls_comp_bufs, 524 sizeof (struct compbuf) * lofi_taskq_nthreads); 525 } 526 527 if (lsp->ls_vp != NULL) { 528 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL); 529 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 530 1, 0, credp, NULL); 531 VN_RELE(lsp->ls_vp); 532 } 533 if (lsp->ls_stacked_vp != lsp->ls_vp) 534 VN_RELE(lsp->ls_stacked_vp); 535 536 if (lsp->ls_taskq != NULL) 537 taskq_destroy(lsp->ls_taskq); 538 539 if (lsp->ls_kstat != NULL) 540 kstat_delete(lsp->ls_kstat); 541 542 /* 543 * Free cached decompressed segment data 544 */ 545 lofi_free_comp_cache(lsp); 546 list_destroy(&lsp->ls_comp_cache); 547 548 if (lsp->ls_uncomp_seg_sz > 0) { 549 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 550 lsp->ls_uncomp_seg_sz = 0; 551 } 552 553 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1); 554 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 555 556 mutex_destroy(&lsp->ls_comp_cache_lock); 557 mutex_destroy(&lsp->ls_comp_bufs_lock); 558 mutex_destroy(&lsp->ls_kstat_lock); 559 mutex_destroy(&lsp->ls_vp_lock); 560 cv_destroy(&lsp->ls_vp_cv); 561 lsp->ls_vp_ready = B_FALSE; 562 563 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp); 564 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE); 565 id_free(lofi_id, id); 566 } 567 568 static void 569 lofi_free_dev(struct lofi_state *lsp) 570 { 571 ASSERT(MUTEX_HELD(&lofi_lock)); 572 573 if (lsp->ls_cmlbhandle != NULL) { 574 cmlb_invalidate(lsp->ls_cmlbhandle, 0); 575 cmlb_detach(lsp->ls_cmlbhandle, 0); 576 cmlb_free_handle(&lsp->ls_cmlbhandle); 577 lsp->ls_cmlbhandle = NULL; 578 } 579 (void) ddi_prop_remove_all(lsp->ls_dip); 580 ddi_remove_minor_node(lsp->ls_dip, NULL); 581 } 582 583 /*ARGSUSED*/ 584 static void 585 lofi_zone_shutdown(zoneid_t zoneid, void *arg) 586 { 587 struct lofi_state *lsp; 588 struct lofi_state *next; 589 590 mutex_enter(&lofi_lock); 591 592 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) { 593 594 /* lofi_destroy() frees lsp */ 595 next = list_next(&lofi_list, lsp); 596 597 if (lsp->ls_zone.zref_zone->zone_id != zoneid) 598 continue; 599 600 /* 601 * No in-zone processes are running, but something has this 602 * open. It's either a global zone process, or a lofi 603 * mount. In either case we set ls_cleanup so the last 604 * user destroys the device. 605 */ 606 if (is_opened(lsp)) { 607 lsp->ls_cleanup = 1; 608 } else { 609 lofi_free_dev(lsp); 610 lofi_destroy(lsp, kcred); 611 } 612 } 613 614 mutex_exit(&lofi_lock); 615 } 616 617 /*ARGSUSED*/ 618 static int 619 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 620 { 621 int id; 622 minor_t part; 623 uint64_t mask; 624 diskaddr_t nblks; 625 diskaddr_t lba; 626 boolean_t ndelay; 627 628 struct lofi_state *lsp; 629 630 if (otyp >= OTYPCNT) 631 return (EINVAL); 632 633 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE; 634 635 /* 636 * lofiadm -a /dev/lofi/1 gets us here. 637 */ 638 if (mutex_owner(&lofi_lock) == curthread) 639 return (EINVAL); 640 641 mutex_enter(&lofi_lock); 642 643 id = LOFI_MINOR2ID(getminor(*devp)); 644 part = LOFI_PART(getminor(*devp)); 645 mask = (1U << part); 646 647 /* master control device */ 648 if (id == 0) { 649 mutex_exit(&lofi_lock); 650 return (0); 651 } 652 653 /* otherwise, the mapping should already exist */ 654 lsp = ddi_get_soft_state(lofi_statep, id); 655 if (lsp == NULL) { 656 mutex_exit(&lofi_lock); 657 return (EINVAL); 658 } 659 660 if (lsp->ls_vp == NULL) { 661 mutex_exit(&lofi_lock); 662 return (ENXIO); 663 } 664 665 if (lsp->ls_readonly && (flag & FWRITE)) { 666 mutex_exit(&lofi_lock); 667 return (EROFS); 668 } 669 670 if ((lsp->ls_open_excl) & (mask)) { 671 mutex_exit(&lofi_lock); 672 return (EBUSY); 673 } 674 675 if (flag & FEXCL) { 676 if (lsp->ls_open_lyr[part]) { 677 mutex_exit(&lofi_lock); 678 return (EBUSY); 679 } 680 for (int i = 0; i < OTYP_LYR; i++) { 681 if (lsp->ls_open_reg[i] & mask) { 682 mutex_exit(&lofi_lock); 683 return (EBUSY); 684 } 685 } 686 } 687 688 if (lsp->ls_cmlbhandle != NULL) { 689 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) { 690 /* 691 * non-blocking opens are allowed to succeed to 692 * support format and fdisk to create partitioning. 693 */ 694 if (!ndelay) { 695 mutex_exit(&lofi_lock); 696 return (ENXIO); 697 } 698 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba, 699 NULL, NULL, 0) == 0) { 700 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) { 701 mutex_exit(&lofi_lock); 702 return (ENXIO); 703 } 704 } else if (!ndelay) { 705 mutex_exit(&lofi_lock); 706 return (ENXIO); 707 } 708 } 709 710 if (otyp == OTYP_LYR) { 711 lsp->ls_open_lyr[part]++; 712 } else { 713 lsp->ls_open_reg[otyp] |= mask; 714 } 715 if (flag & FEXCL) { 716 lsp->ls_open_excl |= mask; 717 } 718 719 mutex_exit(&lofi_lock); 720 return (0); 721 } 722 723 /*ARGSUSED*/ 724 static int 725 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 726 { 727 minor_t part; 728 int id; 729 uint64_t mask; 730 struct lofi_state *lsp; 731 732 id = LOFI_MINOR2ID(getminor(dev)); 733 part = LOFI_PART(getminor(dev)); 734 mask = (1U << part); 735 736 mutex_enter(&lofi_lock); 737 lsp = ddi_get_soft_state(lofi_statep, id); 738 if (lsp == NULL) { 739 mutex_exit(&lofi_lock); 740 return (EINVAL); 741 } 742 743 if (id == 0) { 744 mutex_exit(&lofi_lock); 745 return (0); 746 } 747 748 if (lsp->ls_open_excl & mask) 749 lsp->ls_open_excl &= ~mask; 750 751 if (otyp == OTYP_LYR) { 752 lsp->ls_open_lyr[part]--; 753 } else { 754 lsp->ls_open_reg[otyp] &= ~mask; 755 } 756 757 /* 758 * If we forcibly closed the underlying device (li_force), or 759 * asked for cleanup (li_cleanup), finish up if we're the last 760 * out of the door. 761 */ 762 if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) { 763 lofi_free_dev(lsp); 764 lofi_destroy(lsp, credp); 765 } 766 767 mutex_exit(&lofi_lock); 768 return (0); 769 } 770 771 /* 772 * Sets the mechanism's initialization vector (IV) if one is needed. 773 * The IV is computed from the data block number. lsp->ls_mech is 774 * altered so that: 775 * lsp->ls_mech.cm_param_len is set to the IV len. 776 * lsp->ls_mech.cm_param is set to the IV. 777 */ 778 static int 779 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 780 { 781 int ret; 782 crypto_data_t cdata; 783 char *iv; 784 size_t iv_len; 785 size_t min; 786 void *data; 787 size_t datasz; 788 789 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock)); 790 791 if (lsp == NULL) 792 return (CRYPTO_DEVICE_ERROR); 793 794 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 795 if (lsp->ls_iv_type == IVM_NONE) { 796 return (CRYPTO_SUCCESS); 797 } 798 799 /* 800 * if kmem already alloced from previous call and it's the same size 801 * we need now, just recycle it; allocate new kmem only if we have to 802 */ 803 if (lsp->ls_mech.cm_param == NULL || 804 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 805 iv_len = lsp->ls_iv_len; 806 iv = kmem_zalloc(iv_len, KM_SLEEP); 807 } else { 808 iv_len = lsp->ls_mech.cm_param_len; 809 iv = lsp->ls_mech.cm_param; 810 bzero(iv, iv_len); 811 } 812 813 switch (lsp->ls_iv_type) { 814 case IVM_ENC_BLKNO: 815 /* iv is not static, lblkno changes each time */ 816 data = &lblkno; 817 datasz = sizeof (lblkno); 818 break; 819 default: 820 data = 0; 821 datasz = 0; 822 break; 823 } 824 825 /* 826 * write blkno into the iv buffer padded on the left in case 827 * blkno ever grows bigger than its current longlong_t size 828 * or a variation other than blkno is used for the iv data 829 */ 830 min = MIN(datasz, iv_len); 831 bcopy(data, iv + (iv_len - min), min); 832 833 /* encrypt the data in-place to get the IV */ 834 SETUP_C_DATA(cdata, iv, iv_len); 835 836 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 837 NULL, NULL, NULL); 838 if (ret != CRYPTO_SUCCESS) { 839 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 840 lblkno, ret); 841 if (lsp->ls_mech.cm_param != iv) 842 kmem_free(iv, iv_len); 843 844 return (ret); 845 } 846 847 /* clean up the iv from the last computation */ 848 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 849 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 850 851 lsp->ls_mech.cm_param_len = iv_len; 852 lsp->ls_mech.cm_param = iv; 853 854 return (CRYPTO_SUCCESS); 855 } 856 857 /* 858 * Performs encryption and decryption of a chunk of data of size "len", 859 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 860 * DEV_BSIZE. 861 */ 862 static int 863 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 864 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 865 { 866 crypto_data_t cdata; 867 crypto_data_t wdata; 868 int ret; 869 longlong_t lblkno = bp->b_lblkno; 870 871 mutex_enter(&lsp->ls_crypto_lock); 872 873 /* 874 * though we could encrypt/decrypt entire "len" chunk of data, we need 875 * to break it into DEV_BSIZE pieces to capture blkno incrementing 876 */ 877 SETUP_C_DATA(cdata, plaintext, len); 878 cdata.cd_length = DEV_BSIZE; 879 if (ciphertext != NULL) { /* not in-place crypto */ 880 SETUP_C_DATA(wdata, ciphertext, len); 881 wdata.cd_length = DEV_BSIZE; 882 } 883 884 do { 885 ret = lofi_blk_mech(lsp, lblkno); 886 if (ret != CRYPTO_SUCCESS) 887 continue; 888 889 if (op_encrypt) { 890 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 891 &lsp->ls_key, NULL, 892 ((ciphertext != NULL) ? &wdata : NULL), NULL); 893 } else { 894 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 895 &lsp->ls_key, NULL, 896 ((ciphertext != NULL) ? &wdata : NULL), NULL); 897 } 898 899 cdata.cd_offset += DEV_BSIZE; 900 if (ciphertext != NULL) 901 wdata.cd_offset += DEV_BSIZE; 902 lblkno++; 903 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 904 905 mutex_exit(&lsp->ls_crypto_lock); 906 907 if (ret != CRYPTO_SUCCESS) { 908 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 909 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 910 lblkno, ret); 911 } 912 913 return (ret); 914 } 915 916 #define RDWR_RAW 1 917 #define RDWR_BCOPY 2 918 919 static int 920 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 921 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 922 { 923 ssize_t resid; 924 int isread; 925 int error; 926 927 /* 928 * Handles reads/writes for both plain and encrypted lofi 929 * Note: offset is already shifted by lsp->ls_crypto_offset 930 * when it gets here. 931 */ 932 933 isread = bp->b_flags & B_READ; 934 if (isread) { 935 if (method == RDWR_BCOPY) { 936 /* DO NOT update bp->b_resid for bcopy */ 937 bcopy(bcopy_locn, bufaddr, len); 938 error = 0; 939 } else { /* RDWR_RAW */ 940 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 941 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 942 &resid); 943 bp->b_resid = resid; 944 } 945 if (lsp->ls_crypto_enabled && error == 0) { 946 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 947 B_FALSE) != CRYPTO_SUCCESS) { 948 /* 949 * XXX: original code didn't set residual 950 * back to len because no error was expected 951 * from bcopy() if encryption is not enabled 952 */ 953 if (method != RDWR_BCOPY) 954 bp->b_resid = len; 955 error = EIO; 956 } 957 } 958 return (error); 959 } else { 960 void *iobuf = bufaddr; 961 962 if (lsp->ls_crypto_enabled) { 963 /* don't do in-place crypto to keep bufaddr intact */ 964 iobuf = kmem_alloc(len, KM_SLEEP); 965 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 966 B_TRUE) != CRYPTO_SUCCESS) { 967 kmem_free(iobuf, len); 968 if (method != RDWR_BCOPY) 969 bp->b_resid = len; 970 return (EIO); 971 } 972 } 973 if (method == RDWR_BCOPY) { 974 /* DO NOT update bp->b_resid for bcopy */ 975 bcopy(iobuf, bcopy_locn, len); 976 error = 0; 977 } else { /* RDWR_RAW */ 978 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 979 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 980 &resid); 981 bp->b_resid = resid; 982 } 983 if (lsp->ls_crypto_enabled) { 984 kmem_free(iobuf, len); 985 } 986 return (error); 987 } 988 } 989 990 static int 991 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 992 struct lofi_state *lsp) 993 { 994 int error; 995 offset_t alignedoffset, mapoffset; 996 size_t xfersize; 997 int isread; 998 int smflags; 999 caddr_t mapaddr; 1000 size_t len; 1001 enum seg_rw srw; 1002 int save_error; 1003 1004 /* 1005 * Note: offset is already shifted by lsp->ls_crypto_offset 1006 * when it gets here. 1007 */ 1008 if (lsp->ls_crypto_enabled) 1009 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 1010 1011 /* 1012 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 1013 * an 8K boundary, but the buf transfer address may not be 1014 * aligned on more than a 512-byte boundary (we don't enforce 1015 * that even though we could). This matters since the initial 1016 * part of the transfer may not start at offset 0 within the 1017 * segmap'd chunk. So we have to compensate for that with 1018 * 'mapoffset'. Subsequent chunks always start off at the 1019 * beginning, and the last is capped by b_resid 1020 * 1021 * Visually, where "|" represents page map boundaries: 1022 * alignedoffset (mapaddr begins at this segmap boundary) 1023 * | offset (from beginning of file) 1024 * | | len 1025 * v v v 1026 * ===|====X========|====...======|========X====|==== 1027 * /-------------...---------------/ 1028 * ^ bp->b_bcount/bp->b_resid at start 1029 * /----/--------/----...------/--------/ 1030 * ^ ^ ^ ^ ^ 1031 * | | | | nth xfersize (<= MAXBSIZE) 1032 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 1033 * | 1st xfersize (<= MAXBSIZE) 1034 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 1035 * 1036 * Notes: "alignedoffset" is "offset" rounded down to nearest 1037 * MAXBSIZE boundary. "len" is next page boundary of size 1038 * PAGESIZE after "alignedoffset". 1039 */ 1040 mapoffset = offset & MAXBOFFSET; 1041 alignedoffset = offset - mapoffset; 1042 bp->b_resid = bp->b_bcount; 1043 isread = bp->b_flags & B_READ; 1044 srw = isread ? S_READ : S_WRITE; 1045 do { 1046 xfersize = MIN(lsp->ls_vp_comp_size - offset, 1047 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 1048 len = roundup(mapoffset + xfersize, PAGESIZE); 1049 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 1050 alignedoffset, MAXBSIZE, 1, srw); 1051 /* 1052 * Now fault in the pages. This lets us check 1053 * for errors before we reference mapaddr and 1054 * try to resolve the fault in bcopy (which would 1055 * panic instead). And this can easily happen, 1056 * particularly if you've lofi'd a file over NFS 1057 * and someone deletes the file on the server. 1058 */ 1059 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 1060 len, F_SOFTLOCK, srw); 1061 if (error) { 1062 (void) segmap_release(segkmap, mapaddr, 0); 1063 if (FC_CODE(error) == FC_OBJERR) 1064 error = FC_ERRNO(error); 1065 else 1066 error = EIO; 1067 break; 1068 } 1069 /* error may be non-zero for encrypted lofi */ 1070 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 1071 RDWR_BCOPY, mapaddr + mapoffset); 1072 if (error == 0) { 1073 bp->b_resid -= xfersize; 1074 bufaddr += xfersize; 1075 offset += xfersize; 1076 } 1077 smflags = 0; 1078 if (isread) { 1079 smflags |= SM_FREE; 1080 /* 1081 * If we're reading an entire page starting 1082 * at a page boundary, there's a good chance 1083 * we won't need it again. Put it on the 1084 * head of the freelist. 1085 */ 1086 if (mapoffset == 0 && xfersize == MAXBSIZE) 1087 smflags |= SM_DONTNEED; 1088 } else { 1089 /* 1090 * Write back good pages, it is okay to 1091 * always release asynchronous here as we'll 1092 * follow with VOP_FSYNC for B_SYNC buffers. 1093 */ 1094 if (error == 0) 1095 smflags |= SM_WRITE | SM_ASYNC; 1096 } 1097 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 1098 len, F_SOFTUNLOCK, srw); 1099 save_error = segmap_release(segkmap, mapaddr, smflags); 1100 if (error == 0) 1101 error = save_error; 1102 /* only the first map may start partial */ 1103 mapoffset = 0; 1104 alignedoffset += MAXBSIZE; 1105 } while ((error == 0) && (bp->b_resid > 0) && 1106 (offset < lsp->ls_vp_comp_size)); 1107 1108 return (error); 1109 } 1110 1111 /* 1112 * Check if segment seg_index is present in the decompressed segment 1113 * data cache. 1114 * 1115 * Returns a pointer to the decompressed segment data cache entry if 1116 * found, and NULL when decompressed data for this segment is not yet 1117 * cached. 1118 */ 1119 static struct lofi_comp_cache * 1120 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 1121 { 1122 struct lofi_comp_cache *lc; 1123 1124 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1125 1126 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 1127 lc = list_next(&lsp->ls_comp_cache, lc)) { 1128 if (lc->lc_index == seg_index) { 1129 /* 1130 * Decompressed segment data was found in the 1131 * cache. 1132 * 1133 * The cache uses an LRU replacement strategy; 1134 * move the entry to head of list. 1135 */ 1136 list_remove(&lsp->ls_comp_cache, lc); 1137 list_insert_head(&lsp->ls_comp_cache, lc); 1138 return (lc); 1139 } 1140 } 1141 return (NULL); 1142 } 1143 1144 /* 1145 * Add the data for a decompressed segment at segment index 1146 * seg_index to the cache of the decompressed segments. 1147 * 1148 * Returns a pointer to the cache element structure in case 1149 * the data was added to the cache; returns NULL when the data 1150 * wasn't cached. 1151 */ 1152 static struct lofi_comp_cache * 1153 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 1154 uchar_t *data) 1155 { 1156 struct lofi_comp_cache *lc; 1157 1158 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1159 1160 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 1161 lc = list_remove_tail(&lsp->ls_comp_cache); 1162 ASSERT(lc != NULL); 1163 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1164 kmem_free(lc, sizeof (struct lofi_comp_cache)); 1165 lsp->ls_comp_cache_count--; 1166 } 1167 1168 /* 1169 * Do not cache when disabled by tunable variable 1170 */ 1171 if (lofi_max_comp_cache == 0) 1172 return (NULL); 1173 1174 /* 1175 * When the cache has not yet reached the maximum allowed 1176 * number of segments, allocate a new cache element. 1177 * Otherwise the cache is full; reuse the last list element 1178 * (LRU) for caching the decompressed segment data. 1179 * 1180 * The cache element for the new decompressed segment data is 1181 * added to the head of the list. 1182 */ 1183 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 1184 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 1185 lc->lc_data = NULL; 1186 list_insert_head(&lsp->ls_comp_cache, lc); 1187 lsp->ls_comp_cache_count++; 1188 } else { 1189 lc = list_remove_tail(&lsp->ls_comp_cache); 1190 if (lc == NULL) 1191 return (NULL); 1192 list_insert_head(&lsp->ls_comp_cache, lc); 1193 } 1194 1195 /* 1196 * Free old uncompressed segment data when reusing a cache 1197 * entry. 1198 */ 1199 if (lc->lc_data != NULL) 1200 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1201 1202 lc->lc_data = data; 1203 lc->lc_index = seg_index; 1204 return (lc); 1205 } 1206 1207 1208 /*ARGSUSED*/ 1209 static int 1210 gzip_decompress(void *src, size_t srclen, void *dst, 1211 size_t *dstlen, int level) 1212 { 1213 ASSERT(*dstlen >= srclen); 1214 1215 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 1216 return (-1); 1217 return (0); 1218 } 1219 1220 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 1221 /*ARGSUSED*/ 1222 static int 1223 lzma_decompress(void *src, size_t srclen, void *dst, 1224 size_t *dstlen, int level) 1225 { 1226 size_t insizepure; 1227 void *actual_src; 1228 ELzmaStatus status; 1229 1230 insizepure = srclen - LZMA_HEADER_SIZE; 1231 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 1232 1233 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 1234 (const Byte *)actual_src, &insizepure, 1235 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 1236 &g_Alloc) != SZ_OK) { 1237 return (-1); 1238 } 1239 return (0); 1240 } 1241 1242 /* 1243 * This is basically what strategy used to be before we found we 1244 * needed task queues. 1245 */ 1246 static void 1247 lofi_strategy_task(void *arg) 1248 { 1249 struct buf *bp = (struct buf *)arg; 1250 int error; 1251 int syncflag = 0; 1252 struct lofi_state *lsp; 1253 offset_t offset; 1254 caddr_t bufaddr; 1255 size_t len; 1256 size_t xfersize; 1257 boolean_t bufinited = B_FALSE; 1258 1259 lsp = ddi_get_soft_state(lofi_statep, 1260 LOFI_MINOR2ID(getminor(bp->b_edev))); 1261 1262 if (lsp == NULL) { 1263 error = ENXIO; 1264 goto errout; 1265 } 1266 if (lsp->ls_kstat) { 1267 mutex_enter(lsp->ls_kstat->ks_lock); 1268 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 1269 mutex_exit(lsp->ls_kstat->ks_lock); 1270 } 1271 1272 mutex_enter(&lsp->ls_vp_lock); 1273 lsp->ls_vp_iocount++; 1274 mutex_exit(&lsp->ls_vp_lock); 1275 1276 bp_mapin(bp); 1277 bufaddr = bp->b_un.b_addr; 1278 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private) 1279 << lsp->ls_lbshift; /* offset within file */ 1280 if (lsp->ls_crypto_enabled) { 1281 /* encrypted data really begins after crypto header */ 1282 offset += lsp->ls_crypto_offset; 1283 } 1284 len = bp->b_bcount; 1285 bufinited = B_TRUE; 1286 1287 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1288 error = EIO; 1289 goto errout; 1290 } 1291 1292 /* 1293 * If we're writing and the buffer was not B_ASYNC 1294 * we'll follow up with a VOP_FSYNC() to force any 1295 * asynchronous I/O to stable storage. 1296 */ 1297 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 1298 syncflag = FSYNC; 1299 1300 /* 1301 * We used to always use vn_rdwr here, but we cannot do that because 1302 * we might decide to read or write from the the underlying 1303 * file during this call, which would be a deadlock because 1304 * we have the rw_lock. So instead we page, unless it's not 1305 * mapable or it's a character device or it's an encrypted lofi. 1306 */ 1307 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1308 lsp->ls_crypto_enabled) { 1309 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1310 NULL); 1311 } else if (lsp->ls_uncomp_seg_sz == 0) { 1312 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1313 } else { 1314 uchar_t *compressed_seg = NULL, *cmpbuf; 1315 uchar_t *uncompressed_seg = NULL; 1316 lofi_compress_info_t *li; 1317 size_t oblkcount; 1318 ulong_t seglen; 1319 uint64_t sblkno, eblkno, cmpbytes; 1320 uint64_t uncompressed_seg_index; 1321 struct lofi_comp_cache *lc; 1322 offset_t sblkoff, eblkoff; 1323 u_offset_t salign, ealign; 1324 u_offset_t sdiff; 1325 uint32_t comp_data_sz; 1326 uint64_t i; 1327 int j; 1328 1329 /* 1330 * From here on we're dealing primarily with compressed files 1331 */ 1332 ASSERT(!lsp->ls_crypto_enabled); 1333 1334 /* 1335 * Compressed files can only be read from and 1336 * not written to 1337 */ 1338 if (!(bp->b_flags & B_READ)) { 1339 bp->b_resid = bp->b_bcount; 1340 error = EROFS; 1341 goto done; 1342 } 1343 1344 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1345 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1346 /* 1347 * Compute starting and ending compressed segment numbers 1348 * We use only bitwise operations avoiding division and 1349 * modulus because we enforce the compression segment size 1350 * to a power of 2 1351 */ 1352 sblkno = offset >> lsp->ls_comp_seg_shift; 1353 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1354 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1355 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1356 1357 /* 1358 * Check the decompressed segment cache. 1359 * 1360 * The cache is used only when the requested data 1361 * is within a segment. Requests that cross 1362 * segment boundaries bypass the cache. 1363 */ 1364 if (sblkno == eblkno || 1365 (sblkno + 1 == eblkno && eblkoff == 0)) { 1366 /* 1367 * Request doesn't cross a segment boundary, 1368 * now check the cache. 1369 */ 1370 mutex_enter(&lsp->ls_comp_cache_lock); 1371 lc = lofi_find_comp_data(lsp, sblkno); 1372 if (lc != NULL) { 1373 /* 1374 * We've found the decompressed segment 1375 * data in the cache; reuse it. 1376 */ 1377 bcopy(lc->lc_data + sblkoff, bufaddr, 1378 bp->b_bcount); 1379 mutex_exit(&lsp->ls_comp_cache_lock); 1380 bp->b_resid = 0; 1381 error = 0; 1382 goto done; 1383 } 1384 mutex_exit(&lsp->ls_comp_cache_lock); 1385 } 1386 1387 /* 1388 * Align start offset to block boundary for segmap 1389 */ 1390 salign = lsp->ls_comp_seg_index[sblkno]; 1391 sdiff = salign & (DEV_BSIZE - 1); 1392 salign -= sdiff; 1393 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1394 /* 1395 * We're dealing with the last segment of 1396 * the compressed file -- the size of this 1397 * segment *may not* be the same as the 1398 * segment size for the file 1399 */ 1400 eblkoff = (offset + bp->b_bcount) & 1401 (lsp->ls_uncomp_last_seg_sz - 1); 1402 ealign = lsp->ls_vp_comp_size; 1403 } else { 1404 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1405 } 1406 1407 /* 1408 * Preserve original request paramaters 1409 */ 1410 oblkcount = bp->b_bcount; 1411 1412 /* 1413 * Assign the calculated parameters 1414 */ 1415 comp_data_sz = ealign - salign; 1416 bp->b_bcount = comp_data_sz; 1417 1418 /* 1419 * Buffers to hold compressed segments are pre-allocated 1420 * on a per-thread basis. Find a pre-allocated buffer 1421 * that is not currently in use and mark it for use. 1422 */ 1423 mutex_enter(&lsp->ls_comp_bufs_lock); 1424 for (j = 0; j < lofi_taskq_nthreads; j++) { 1425 if (lsp->ls_comp_bufs[j].inuse == 0) { 1426 lsp->ls_comp_bufs[j].inuse = 1; 1427 break; 1428 } 1429 } 1430 1431 mutex_exit(&lsp->ls_comp_bufs_lock); 1432 ASSERT(j < lofi_taskq_nthreads); 1433 1434 /* 1435 * If the pre-allocated buffer size does not match 1436 * the size of the I/O request, re-allocate it with 1437 * the appropriate size 1438 */ 1439 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { 1440 if (lsp->ls_comp_bufs[j].bufsize > 0) 1441 kmem_free(lsp->ls_comp_bufs[j].buf, 1442 lsp->ls_comp_bufs[j].bufsize); 1443 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, 1444 KM_SLEEP); 1445 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; 1446 } 1447 compressed_seg = lsp->ls_comp_bufs[j].buf; 1448 1449 /* 1450 * Map in the calculated number of blocks 1451 */ 1452 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1453 bp, lsp); 1454 1455 bp->b_bcount = oblkcount; 1456 bp->b_resid = oblkcount; 1457 if (error != 0) 1458 goto done; 1459 1460 /* 1461 * decompress compressed blocks start 1462 */ 1463 cmpbuf = compressed_seg + sdiff; 1464 for (i = sblkno; i <= eblkno; i++) { 1465 ASSERT(i < lsp->ls_comp_index_sz - 1); 1466 uchar_t *useg; 1467 1468 /* 1469 * The last segment is special in that it is 1470 * most likely not going to be the same 1471 * (uncompressed) size as the other segments. 1472 */ 1473 if (i == (lsp->ls_comp_index_sz - 2)) { 1474 seglen = lsp->ls_uncomp_last_seg_sz; 1475 } else { 1476 seglen = lsp->ls_uncomp_seg_sz; 1477 } 1478 1479 /* 1480 * Each of the segment index entries contains 1481 * the starting block number for that segment. 1482 * The number of compressed bytes in a segment 1483 * is thus the difference between the starting 1484 * block number of this segment and the starting 1485 * block number of the next segment. 1486 */ 1487 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1488 lsp->ls_comp_seg_index[i]; 1489 1490 /* 1491 * The first byte in a compressed segment is a flag 1492 * that indicates whether this segment is compressed 1493 * at all. 1494 * 1495 * The variable 'useg' is used (instead of 1496 * uncompressed_seg) in this loop to keep a 1497 * reference to the uncompressed segment. 1498 * 1499 * N.B. If 'useg' is replaced with uncompressed_seg, 1500 * it leads to memory leaks and heap corruption in 1501 * corner cases where compressed segments lie 1502 * adjacent to uncompressed segments. 1503 */ 1504 if (*cmpbuf == UNCOMPRESSED) { 1505 useg = cmpbuf + SEGHDR; 1506 } else { 1507 if (uncompressed_seg == NULL) 1508 uncompressed_seg = 1509 kmem_alloc(lsp->ls_uncomp_seg_sz, 1510 KM_SLEEP); 1511 useg = uncompressed_seg; 1512 uncompressed_seg_index = i; 1513 1514 if (li->l_decompress((cmpbuf + SEGHDR), 1515 (cmpbytes - SEGHDR), uncompressed_seg, 1516 &seglen, li->l_level) != 0) { 1517 error = EIO; 1518 goto done; 1519 } 1520 } 1521 1522 /* 1523 * Determine how much uncompressed data we 1524 * have to copy and copy it 1525 */ 1526 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1527 if (i == eblkno) 1528 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1529 1530 bcopy((useg + sblkoff), bufaddr, xfersize); 1531 1532 cmpbuf += cmpbytes; 1533 bufaddr += xfersize; 1534 bp->b_resid -= xfersize; 1535 sblkoff = 0; 1536 1537 if (bp->b_resid == 0) 1538 break; 1539 } /* decompress compressed blocks ends */ 1540 1541 /* 1542 * Skip to done if there is no uncompressed data to cache 1543 */ 1544 if (uncompressed_seg == NULL) 1545 goto done; 1546 1547 /* 1548 * Add the data for the last decompressed segment to 1549 * the cache. 1550 * 1551 * In case the uncompressed segment data was added to (and 1552 * is referenced by) the cache, make sure we don't free it 1553 * here. 1554 */ 1555 mutex_enter(&lsp->ls_comp_cache_lock); 1556 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1557 uncompressed_seg)) != NULL) { 1558 uncompressed_seg = NULL; 1559 } 1560 mutex_exit(&lsp->ls_comp_cache_lock); 1561 1562 done: 1563 if (compressed_seg != NULL) { 1564 mutex_enter(&lsp->ls_comp_bufs_lock); 1565 lsp->ls_comp_bufs[j].inuse = 0; 1566 mutex_exit(&lsp->ls_comp_bufs_lock); 1567 } 1568 if (uncompressed_seg != NULL) 1569 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1570 } /* end of handling compressed files */ 1571 1572 if ((error == 0) && (syncflag != 0)) 1573 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1574 1575 errout: 1576 if (bufinited && lsp->ls_kstat) { 1577 size_t n_done = bp->b_bcount - bp->b_resid; 1578 kstat_io_t *kioptr; 1579 1580 mutex_enter(lsp->ls_kstat->ks_lock); 1581 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1582 if (bp->b_flags & B_READ) { 1583 kioptr->nread += n_done; 1584 kioptr->reads++; 1585 } else { 1586 kioptr->nwritten += n_done; 1587 kioptr->writes++; 1588 } 1589 kstat_runq_exit(kioptr); 1590 mutex_exit(lsp->ls_kstat->ks_lock); 1591 } 1592 1593 mutex_enter(&lsp->ls_vp_lock); 1594 if (--lsp->ls_vp_iocount == 0) 1595 cv_broadcast(&lsp->ls_vp_cv); 1596 mutex_exit(&lsp->ls_vp_lock); 1597 1598 bioerror(bp, error); 1599 biodone(bp); 1600 } 1601 1602 static int 1603 lofi_strategy(struct buf *bp) 1604 { 1605 struct lofi_state *lsp; 1606 offset_t offset; 1607 minor_t part; 1608 diskaddr_t p_lba; 1609 diskaddr_t p_nblks; 1610 int shift; 1611 1612 /* 1613 * We cannot just do I/O here, because the current thread 1614 * _might_ end up back in here because the underlying filesystem 1615 * wants a buffer, which eventually gets into bio_recycle and 1616 * might call into lofi to write out a delayed-write buffer. 1617 * This is bad if the filesystem above lofi is the same as below. 1618 * 1619 * We could come up with a complex strategy using threads to 1620 * do the I/O asynchronously, or we could use task queues. task 1621 * queues were incredibly easy so they win. 1622 */ 1623 1624 lsp = ddi_get_soft_state(lofi_statep, 1625 LOFI_MINOR2ID(getminor(bp->b_edev))); 1626 part = LOFI_PART(getminor(bp->b_edev)); 1627 1628 if (lsp == NULL) { 1629 bioerror(bp, ENXIO); 1630 biodone(bp); 1631 return (0); 1632 } 1633 shift = lsp->ls_lbshift; 1634 1635 p_lba = 0; 1636 p_nblks = lsp->ls_vp_size >> shift; 1637 1638 if (lsp->ls_cmlbhandle != NULL) { 1639 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba, 1640 NULL, NULL, 0)) { 1641 bioerror(bp, ENXIO); 1642 biodone(bp); 1643 return (0); 1644 } 1645 } 1646 1647 /* start block past partition end? */ 1648 if (bp->b_lblkno > p_nblks) { 1649 bioerror(bp, ENXIO); 1650 biodone(bp); 1651 return (0); 1652 } 1653 1654 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */ 1655 1656 mutex_enter(&lsp->ls_vp_lock); 1657 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1658 bioerror(bp, EIO); 1659 biodone(bp); 1660 mutex_exit(&lsp->ls_vp_lock); 1661 return (0); 1662 } 1663 1664 if (lsp->ls_crypto_enabled) { 1665 /* encrypted data really begins after crypto header */ 1666 offset += lsp->ls_crypto_offset; 1667 } 1668 1669 /* make sure we will not pass the file or partition size */ 1670 if (offset == lsp->ls_vp_size || 1671 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) { 1672 /* EOF */ 1673 if ((bp->b_flags & B_READ) != 0) { 1674 bp->b_resid = bp->b_bcount; 1675 bioerror(bp, 0); 1676 } else { 1677 /* writes should fail */ 1678 bioerror(bp, ENXIO); 1679 } 1680 biodone(bp); 1681 mutex_exit(&lsp->ls_vp_lock); 1682 return (0); 1683 } 1684 if ((offset > lsp->ls_vp_size) || 1685 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) || 1686 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) { 1687 bioerror(bp, ENXIO); 1688 biodone(bp); 1689 mutex_exit(&lsp->ls_vp_lock); 1690 return (0); 1691 } 1692 1693 mutex_exit(&lsp->ls_vp_lock); 1694 1695 if (lsp->ls_kstat) { 1696 mutex_enter(lsp->ls_kstat->ks_lock); 1697 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1698 mutex_exit(lsp->ls_kstat->ks_lock); 1699 } 1700 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */ 1701 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1702 return (0); 1703 } 1704 1705 /*ARGSUSED2*/ 1706 static int 1707 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1708 { 1709 if (getminor(dev) == 0) 1710 return (EINVAL); 1711 UIO_CHECK(uio); 1712 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1713 } 1714 1715 /*ARGSUSED2*/ 1716 static int 1717 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1718 { 1719 if (getminor(dev) == 0) 1720 return (EINVAL); 1721 UIO_CHECK(uio); 1722 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1723 } 1724 1725 /*ARGSUSED2*/ 1726 static int 1727 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1728 { 1729 if (getminor(dev) == 0) 1730 return (EINVAL); 1731 UIO_CHECK(aio->aio_uio); 1732 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1733 } 1734 1735 /*ARGSUSED2*/ 1736 static int 1737 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1738 { 1739 if (getminor(dev) == 0) 1740 return (EINVAL); 1741 UIO_CHECK(aio->aio_uio); 1742 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1743 } 1744 1745 /*ARGSUSED*/ 1746 static int 1747 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1748 { 1749 struct lofi_state *lsp; 1750 dev_t dev = (dev_t)arg; 1751 int instance; 1752 1753 instance = LOFI_MINOR2ID(getminor(dev)); 1754 switch (infocmd) { 1755 case DDI_INFO_DEVT2DEVINFO: 1756 lsp = ddi_get_soft_state(lofi_statep, instance); 1757 if (lsp == NULL) 1758 return (DDI_FAILURE); 1759 *result = lsp->ls_dip; 1760 return (DDI_SUCCESS); 1761 case DDI_INFO_DEVT2INSTANCE: 1762 *result = (void *) (intptr_t)instance; 1763 return (DDI_SUCCESS); 1764 } 1765 return (DDI_FAILURE); 1766 } 1767 1768 static int 1769 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled) 1770 { 1771 int error = 0; 1772 int instance = ddi_get_instance(lsp->ls_dip); 1773 1774 if (labeled == B_TRUE) { 1775 cmlb_alloc_handle(&lsp->ls_cmlbhandle); 1776 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT, 1777 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN, 1778 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1); 1779 1780 if (error != DDI_SUCCESS) { 1781 cmlb_free_handle(&lsp->ls_cmlbhandle); 1782 lsp->ls_cmlbhandle = NULL; 1783 error = ENXIO; 1784 } 1785 } else { 1786 /* create minor nodes */ 1787 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE, 1788 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0); 1789 if (error == DDI_SUCCESS) { 1790 error = ddi_create_minor_node(lsp->ls_dip, 1791 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance), 1792 DDI_PSEUDO, 0); 1793 if (error != DDI_SUCCESS) { 1794 ddi_remove_minor_node(lsp->ls_dip, 1795 LOFI_BLOCK_NODE); 1796 error = ENXIO; 1797 } 1798 } else 1799 error = ENXIO; 1800 } 1801 return (error); 1802 } 1803 1804 static int 1805 lofi_zone_bind(struct lofi_state *lsp) 1806 { 1807 int error = 0; 1808 1809 mutex_enter(&curproc->p_lock); 1810 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) { 1811 mutex_exit(&curproc->p_lock); 1812 return (error); 1813 } 1814 mutex_exit(&curproc->p_lock); 1815 1816 if (ddi_prop_update_string(lsp->ls_dev, lsp->ls_dip, ZONE_PROP_NAME, 1817 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) { 1818 rctl_decr_lofi(curproc->p_zone, 1); 1819 error = EINVAL; 1820 } else { 1821 zone_init_ref(&lsp->ls_zone); 1822 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI); 1823 } 1824 return (error); 1825 } 1826 1827 static void 1828 lofi_zone_unbind(struct lofi_state *lsp) 1829 { 1830 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME); 1831 rctl_decr_lofi(curproc->p_zone, 1); 1832 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 1833 } 1834 1835 static int 1836 lofi_online_dev(dev_info_t *dip) 1837 { 1838 boolean_t labeled; 1839 int error; 1840 int instance = ddi_get_instance(dip); 1841 struct lofi_state *lsp; 1842 1843 labeled = B_FALSE; 1844 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled")) 1845 labeled = B_TRUE; 1846 1847 /* lsp alloc+init, soft state is freed in lofi_detach */ 1848 error = ddi_soft_state_zalloc(lofi_statep, instance); 1849 if (error == DDI_FAILURE) { 1850 return (ENOMEM); 1851 } 1852 1853 lsp = ddi_get_soft_state(lofi_statep, instance); 1854 lsp->ls_dip = dip; 1855 1856 if ((error = lofi_zone_bind(lsp)) != 0) 1857 goto err; 1858 1859 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1860 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1861 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); 1862 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1863 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1864 1865 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) { 1866 lofi_zone_unbind(lsp); 1867 goto lerr; 1868 } 1869 1870 /* driver handles kernel-issued IOCTLs */ 1871 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1872 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1873 error = DDI_FAILURE; 1874 goto merr; 1875 } 1876 1877 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance, 1878 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid()); 1879 if (lsp->ls_kstat == NULL) { 1880 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, 1881 DDI_KERNEL_IOCTL); 1882 error = ENOMEM; 1883 goto merr; 1884 } 1885 1886 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1887 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID); 1888 kstat_install(lsp->ls_kstat); 1889 return (DDI_SUCCESS); 1890 merr: 1891 if (lsp->ls_cmlbhandle != NULL) { 1892 cmlb_detach(lsp->ls_cmlbhandle, 0); 1893 cmlb_free_handle(&lsp->ls_cmlbhandle); 1894 } 1895 ddi_remove_minor_node(dip, NULL); 1896 lofi_zone_unbind(lsp); 1897 lerr: 1898 mutex_destroy(&lsp->ls_comp_cache_lock); 1899 mutex_destroy(&lsp->ls_comp_bufs_lock); 1900 mutex_destroy(&lsp->ls_kstat_lock); 1901 mutex_destroy(&lsp->ls_vp_lock); 1902 cv_destroy(&lsp->ls_vp_cv); 1903 err: 1904 ddi_soft_state_free(lofi_statep, instance); 1905 return (error); 1906 } 1907 1908 /*ARGSUSED*/ 1909 static int 1910 lofi_dev_callback(sysevent_t *ev, void *cookie) 1911 { 1912 nvlist_t *nvlist; 1913 char *class, *driver; 1914 char name[10]; 1915 int32_t instance; 1916 1917 class = sysevent_get_class_name(ev); 1918 if (strcmp(class, EC_DEV_ADD) && strcmp(class, EC_DEV_REMOVE)) 1919 return (0); 1920 1921 (void) sysevent_get_attr_list(ev, &nvlist); 1922 driver = fnvlist_lookup_string(nvlist, DEV_DRIVER_NAME); 1923 instance = fnvlist_lookup_int32(nvlist, DEV_INSTANCE); 1924 1925 if (strcmp(driver, LOFI_DRIVER_NAME) != 0) { 1926 fnvlist_free(nvlist); 1927 return (0); 1928 } 1929 1930 /* 1931 * insert or remove device info, then announce the change 1932 * via cv_broadcast. 1933 * This allows the MAP/UNMAP to monitor device change. 1934 */ 1935 (void) snprintf(name, sizeof (name), "%d", instance); 1936 if (strcmp(class, EC_DEV_ADD) == 0) { 1937 mutex_enter(&lofi_chan_lock); 1938 fnvlist_add_nvlist(lofi_devlink_cache, name, nvlist); 1939 cv_broadcast(&lofi_chan_cv); 1940 mutex_exit(&lofi_chan_lock); 1941 } else if (strcmp(class, EC_DEV_REMOVE) == 0) { 1942 mutex_enter(&lofi_chan_lock); 1943 /* Can not use fnvlist_remove() as we can get ENOENT. */ 1944 (void) nvlist_remove_all(lofi_devlink_cache, name); 1945 cv_broadcast(&lofi_chan_cv); 1946 mutex_exit(&lofi_chan_lock); 1947 } 1948 1949 fnvlist_free(nvlist); 1950 return (0); 1951 } 1952 1953 static int 1954 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1955 { 1956 int rv; 1957 int instance = ddi_get_instance(dip); 1958 struct lofi_state *lsp; 1959 1960 if (cmd != DDI_ATTACH) 1961 return (DDI_FAILURE); 1962 1963 /* 1964 * Instance 0 is control instance, attaching control instance 1965 * will set the lofi up and ready. 1966 */ 1967 if (instance == 0) { 1968 rv = ddi_soft_state_zalloc(lofi_statep, 0); 1969 if (rv == DDI_FAILURE) { 1970 return (DDI_FAILURE); 1971 } 1972 lsp = ddi_get_soft_state(lofi_statep, instance); 1973 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 1974 DDI_PSEUDO, 0); 1975 if (rv == DDI_FAILURE) { 1976 ddi_soft_state_free(lofi_statep, 0); 1977 return (DDI_FAILURE); 1978 } 1979 /* driver handles kernel-issued IOCTLs */ 1980 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1981 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1982 ddi_remove_minor_node(dip, NULL); 1983 ddi_soft_state_free(lofi_statep, 0); 1984 return (DDI_FAILURE); 1985 } 1986 1987 rv = sysevent_evc_bind(DEVFS_CHANNEL, &lofi_chan, 1988 EVCH_CREAT | EVCH_HOLD_PEND); 1989 if (rv == 0) { 1990 rv = sysevent_evc_subscribe(lofi_chan, "lofi", 1991 EC_ALL, lofi_dev_callback, NULL, 0); 1992 rv |= sysevent_evc_subscribe(lofi_chan, "disk", 1993 EC_ALL, lofi_dev_callback, NULL, 0); 1994 } else 1995 lofi_chan = NULL; 1996 if (rv != 0) { 1997 if (lofi_chan != NULL) 1998 (void) sysevent_evc_unbind(lofi_chan); 1999 ddi_prop_remove_all(dip); 2000 ddi_remove_minor_node(dip, NULL); 2001 ddi_soft_state_free(lofi_statep, 0); 2002 return (DDI_FAILURE); 2003 } 2004 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL); 2005 2006 lsp->ls_dip = dip; 2007 } else { 2008 if (lofi_online_dev(dip) == DDI_FAILURE) 2009 return (DDI_FAILURE); 2010 } 2011 2012 ddi_report_dev(dip); 2013 return (DDI_SUCCESS); 2014 } 2015 2016 static int 2017 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2018 { 2019 struct lofi_state *lsp; 2020 int instance = ddi_get_instance(dip); 2021 2022 if (cmd != DDI_DETACH) 2023 return (DDI_FAILURE); 2024 2025 /* 2026 * If the instance is not 0, release state. 2027 * The instance 0 is control device, we can not detach it 2028 * before other instances are detached. 2029 */ 2030 if (instance != 0) { 2031 lsp = ddi_get_soft_state(lofi_statep, instance); 2032 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) { 2033 ddi_soft_state_free(lofi_statep, instance); 2034 return (DDI_SUCCESS); 2035 } else 2036 return (DDI_FAILURE); 2037 } 2038 mutex_enter(&lofi_lock); 2039 2040 if (!list_is_empty(&lofi_list)) { 2041 mutex_exit(&lofi_lock); 2042 return (DDI_FAILURE); 2043 } 2044 2045 ddi_remove_minor_node(dip, NULL); 2046 ddi_prop_remove_all(dip); 2047 2048 mutex_exit(&lofi_lock); 2049 2050 (void) sysevent_evc_unbind(lofi_chan); 2051 if (zone_key_delete(lofi_zone_key) != 0) 2052 cmn_err(CE_WARN, "failed to delete zone key"); 2053 2054 ddi_soft_state_free(lofi_statep, 0); 2055 2056 return (DDI_SUCCESS); 2057 } 2058 2059 /* 2060 * With the addition of encryption, we must be careful that encryption key is 2061 * wiped before kernel's data structures are freed so it cannot accidentally 2062 * slip out to userland through uninitialized data elsewhere. 2063 */ 2064 static void 2065 free_lofi_ioctl(struct lofi_ioctl *klip) 2066 { 2067 /* Make sure this encryption key doesn't stick around */ 2068 bzero(klip->li_key, sizeof (klip->li_key)); 2069 kmem_free(klip, sizeof (struct lofi_ioctl)); 2070 } 2071 2072 /* 2073 * These two functions simplify the rest of the ioctls that need to copyin/out 2074 * the lofi_ioctl structure. 2075 */ 2076 int 2077 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp, 2078 int flag) 2079 { 2080 struct lofi_ioctl *klip; 2081 int error; 2082 2083 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 2084 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 2085 if (error) 2086 goto err; 2087 2088 /* ensure NULL termination */ 2089 klip->li_filename[MAXPATHLEN-1] = '\0'; 2090 klip->li_devpath[MAXPATHLEN-1] = '\0'; 2091 klip->li_algorithm[MAXALGLEN-1] = '\0'; 2092 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2093 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2094 2095 if (klip->li_id > L_MAXMIN32) { 2096 error = EINVAL; 2097 goto err; 2098 } 2099 2100 return (0); 2101 2102 err: 2103 free_lofi_ioctl(klip); 2104 return (error); 2105 } 2106 2107 int 2108 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 2109 int flag) 2110 { 2111 int error; 2112 2113 /* 2114 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 2115 * This ensures that an attacker can't trivially find the 2116 * key for a mapping just by issuing the ioctl. 2117 * 2118 * It can still be found by poking around in kmem with mdb(1), 2119 * but there is no point in making it easy when the info isn't 2120 * of any use in this direction anyway. 2121 * 2122 * Either way we don't actually have the raw key stored in 2123 * a form that we can get it anyway, since we just used it 2124 * to create a ctx template and didn't keep "the original". 2125 */ 2126 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 2127 if (error) 2128 return (EFAULT); 2129 return (0); 2130 } 2131 2132 static int 2133 lofi_access(struct lofi_state *lsp) 2134 { 2135 ASSERT(MUTEX_HELD(&lofi_lock)); 2136 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone) 2137 return (0); 2138 return (EPERM); 2139 } 2140 2141 /* 2142 * Find the lofi state for the given filename. We compare by vnode to 2143 * allow the global zone visibility into NGZ lofi nodes. 2144 */ 2145 static int 2146 file_to_lofi_nocheck(char *filename, boolean_t readonly, 2147 struct lofi_state **lspp) 2148 { 2149 struct lofi_state *lsp; 2150 vnode_t *vp = NULL; 2151 int err = 0; 2152 int rdfiles = 0; 2153 2154 ASSERT(MUTEX_HELD(&lofi_lock)); 2155 2156 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW, 2157 NULLVPP, &vp)) != 0) 2158 goto out; 2159 2160 if (vp->v_type == VREG) { 2161 vnode_t *realvp; 2162 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2163 VN_HOLD(realvp); 2164 VN_RELE(vp); 2165 vp = realvp; 2166 } 2167 } 2168 2169 for (lsp = list_head(&lofi_list); lsp != NULL; 2170 lsp = list_next(&lofi_list, lsp)) { 2171 if (lsp->ls_vp == vp) { 2172 if (lspp != NULL) 2173 *lspp = lsp; 2174 if (lsp->ls_readonly) { 2175 rdfiles++; 2176 /* Skip if '-r' is specified */ 2177 if (readonly) 2178 continue; 2179 } 2180 goto out; 2181 } 2182 } 2183 2184 err = ENOENT; 2185 2186 /* 2187 * If a filename is given as an argument for lofi_unmap, we shouldn't 2188 * allow unmap if there are multiple read-only lofi devices associated 2189 * with this file. 2190 */ 2191 if (lspp != NULL) { 2192 if (rdfiles == 1) 2193 err = 0; 2194 else if (rdfiles > 1) 2195 err = EBUSY; 2196 } 2197 2198 out: 2199 if (vp != NULL) 2200 VN_RELE(vp); 2201 return (err); 2202 } 2203 2204 /* 2205 * Find the minor for the given filename, checking the zone can access 2206 * it. 2207 */ 2208 static int 2209 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp) 2210 { 2211 int err = 0; 2212 2213 ASSERT(MUTEX_HELD(&lofi_lock)); 2214 2215 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0) 2216 return (err); 2217 2218 if ((err = lofi_access(*lspp)) != 0) 2219 return (err); 2220 2221 return (0); 2222 } 2223 2224 /* 2225 * Fakes up a disk geometry based on the size of the file. This is needed 2226 * to support newfs on traditional lofi device, but also will provide 2227 * geometry hint for cmlb. 2228 */ 2229 static void 2230 fake_disk_geometry(struct lofi_state *lsp) 2231 { 2232 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 2233 2234 /* dk_geom - see dkio(7I) */ 2235 /* 2236 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 2237 * of sectors), but that breaks programs like fdisk which want to 2238 * partition a disk by cylinder. With one cylinder, you can't create 2239 * an fdisk partition and put pcfs on it for testing (hard to pick 2240 * a number between one and one). 2241 * 2242 * The cheezy floppy test is an attempt to not have too few cylinders 2243 * for a small file, or so many on a big file that you waste space 2244 * for backup superblocks or cylinder group structures. 2245 */ 2246 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg)); 2247 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 2248 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 2249 else 2250 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 2251 /* in case file file is < 100k */ 2252 if (lsp->ls_dkg.dkg_ncyl == 0) 2253 lsp->ls_dkg.dkg_ncyl = 1; 2254 2255 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl; 2256 lsp->ls_dkg.dkg_nhead = 1; 2257 lsp->ls_dkg.dkg_rpm = 7200; 2258 2259 lsp->ls_dkg.dkg_nsect = dsize / 2260 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift); 2261 } 2262 2263 /* 2264 * build vtoc - see dkio(7I) 2265 * 2266 * Fakes one big partition based on the size of the file. This is needed 2267 * because we allow newfs'ing the traditional lofi device and newfs will 2268 * do several disk ioctls to figure out the geometry and partition information. 2269 * It uses that information to determine the parameters to pass to mkfs. 2270 */ 2271 static void 2272 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt) 2273 { 2274 bzero(vt, sizeof (struct vtoc)); 2275 vt->v_sanity = VTOC_SANE; 2276 vt->v_version = V_VERSION; 2277 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME, 2278 sizeof (vt->v_volume)); 2279 vt->v_sectorsz = 1 << lsp->ls_pbshift; 2280 vt->v_nparts = 1; 2281 vt->v_part[0].p_tag = V_UNASSIGNED; 2282 2283 /* 2284 * A compressed file is read-only, other files can 2285 * be read-write 2286 */ 2287 if (lsp->ls_uncomp_seg_sz > 0) { 2288 vt->v_part[0].p_flag = V_UNMNT | V_RONLY; 2289 } else { 2290 vt->v_part[0].p_flag = V_UNMNT; 2291 } 2292 vt->v_part[0].p_start = (daddr_t)0; 2293 /* 2294 * The partition size cannot just be the number of sectors, because 2295 * that might not end on a cylinder boundary. And if that's the case, 2296 * newfs/mkfs will print a scary warning. So just figure the size 2297 * based on the number of cylinders and sectors/cylinder. 2298 */ 2299 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 2300 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 2301 } 2302 2303 /* 2304 * build dk_cinfo - see dkio(7I) 2305 */ 2306 static void 2307 fake_disk_info(dev_t dev, struct dk_cinfo *ci) 2308 { 2309 bzero(ci, sizeof (struct dk_cinfo)); 2310 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname)); 2311 ci->dki_ctype = DKC_SCSI_CCS; 2312 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname)); 2313 ci->dki_unit = LOFI_MINOR2ID(getminor(dev)); 2314 ci->dki_partition = LOFI_PART(getminor(dev)); 2315 /* 2316 * newfs uses this to set maxcontig. Must not be < 16, or it 2317 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 2318 * it by the block size. Then tunefs doesn't work because 2319 * maxcontig is 0. 2320 */ 2321 ci->dki_maxtransfer = 16; 2322 } 2323 2324 /* 2325 * map in a compressed file 2326 * 2327 * Read in the header and the index that follows. 2328 * 2329 * The header is as follows - 2330 * 2331 * Signature (name of the compression algorithm) 2332 * Compression segment size (a multiple of 512) 2333 * Number of index entries 2334 * Size of the last block 2335 * The array containing the index entries 2336 * 2337 * The header information is always stored in 2338 * network byte order on disk. 2339 */ 2340 static int 2341 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 2342 { 2343 uint32_t index_sz, header_len, i; 2344 ssize_t resid; 2345 enum uio_rw rw; 2346 char *tbuf = buf; 2347 int error; 2348 2349 /* The signature has already been read */ 2350 tbuf += sizeof (lsp->ls_comp_algorithm); 2351 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 2352 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 2353 2354 /* 2355 * The compressed segment size must be a power of 2 2356 */ 2357 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 2358 !ISP2(lsp->ls_uncomp_seg_sz)) 2359 return (EINVAL); 2360 2361 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 2362 ; 2363 2364 lsp->ls_comp_seg_shift = i; 2365 2366 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 2367 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 2368 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 2369 2370 tbuf += sizeof (lsp->ls_comp_index_sz); 2371 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 2372 sizeof (lsp->ls_uncomp_last_seg_sz)); 2373 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 2374 2375 /* 2376 * Compute the total size of the uncompressed data 2377 * for use in fake_disk_geometry and other calculations. 2378 * Disk geometry has to be faked with respect to the 2379 * actual uncompressed data size rather than the 2380 * compressed file size. 2381 */ 2382 lsp->ls_vp_size = 2383 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 2384 + lsp->ls_uncomp_last_seg_sz; 2385 2386 /* 2387 * Index size is rounded up to DEV_BSIZE for ease 2388 * of segmapping 2389 */ 2390 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 2391 header_len = sizeof (lsp->ls_comp_algorithm) + 2392 sizeof (lsp->ls_uncomp_seg_sz) + 2393 sizeof (lsp->ls_comp_index_sz) + 2394 sizeof (lsp->ls_uncomp_last_seg_sz); 2395 lsp->ls_comp_offbase = header_len + index_sz; 2396 2397 index_sz += header_len; 2398 index_sz = roundup(index_sz, DEV_BSIZE); 2399 2400 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 2401 lsp->ls_comp_index_data_sz = index_sz; 2402 2403 /* 2404 * Read in the index -- this has a side-effect 2405 * of reading in the header as well 2406 */ 2407 rw = UIO_READ; 2408 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 2409 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2410 2411 if (error != 0) 2412 return (error); 2413 2414 /* Skip the header, this is where the index really begins */ 2415 lsp->ls_comp_seg_index = 2416 /*LINTED*/ 2417 (uint64_t *)(lsp->ls_comp_index_data + header_len); 2418 2419 /* 2420 * Now recompute offsets in the index to account for 2421 * the header length 2422 */ 2423 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 2424 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 2425 BE_64(lsp->ls_comp_seg_index[i]); 2426 } 2427 2428 return (error); 2429 } 2430 2431 static int 2432 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip) 2433 { 2434 struct crypto_meta chead; 2435 char buf[DEV_BSIZE]; 2436 ssize_t resid; 2437 char *marker; 2438 int error; 2439 int ret; 2440 int i; 2441 2442 if (!klip->li_crypto_enabled) 2443 return (0); 2444 2445 /* 2446 * All current algorithms have a max of 448 bits. 2447 */ 2448 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512)) 2449 return (EINVAL); 2450 2451 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key)) 2452 return (EINVAL); 2453 2454 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 2455 2456 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 2457 2458 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 2459 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 2460 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 2461 klip->li_cipher, klip->li_filename); 2462 return (EINVAL); 2463 } 2464 2465 /* this is just initialization here */ 2466 lsp->ls_mech.cm_param = NULL; 2467 lsp->ls_mech.cm_param_len = 0; 2468 2469 lsp->ls_iv_type = klip->li_iv_type; 2470 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 2471 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 2472 cmn_err(CE_WARN, "invalid iv cipher %s requested" 2473 " for %s", klip->li_iv_cipher, klip->li_filename); 2474 return (EINVAL); 2475 } 2476 2477 /* iv mech must itself take a null iv */ 2478 lsp->ls_iv_mech.cm_param = NULL; 2479 lsp->ls_iv_mech.cm_param_len = 0; 2480 lsp->ls_iv_len = klip->li_iv_len; 2481 2482 /* 2483 * Create ctx using li_cipher & the raw li_key after checking 2484 * that it isn't a weak key. 2485 */ 2486 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 2487 lsp->ls_key.ck_length = klip->li_key_len; 2488 lsp->ls_key.ck_data = kmem_alloc( 2489 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 2490 bcopy(klip->li_key, lsp->ls_key.ck_data, 2491 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2492 2493 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 2494 if (ret != CRYPTO_SUCCESS) { 2495 cmn_err(CE_WARN, "weak key check failed for cipher " 2496 "%s on file %s (0x%x)", klip->li_cipher, 2497 klip->li_filename, ret); 2498 return (EINVAL); 2499 } 2500 2501 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 2502 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2503 if (error != 0) 2504 return (error); 2505 2506 /* 2507 * This is the case where the header in the lofi image is already 2508 * initialized to indicate it is encrypted. 2509 */ 2510 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) { 2511 /* 2512 * The encryption header information is laid out this way: 2513 * 6 bytes: hex "CFLOFI" 2514 * 2 bytes: version = 0 ... for now 2515 * 96 bytes: reserved1 (not implemented yet) 2516 * 4 bytes: data_sector = 2 ... for now 2517 * more... not implemented yet 2518 */ 2519 2520 marker = buf; 2521 2522 /* copy the magic */ 2523 bcopy(marker, lsp->ls_crypto.magic, 2524 sizeof (lsp->ls_crypto.magic)); 2525 marker += sizeof (lsp->ls_crypto.magic); 2526 2527 /* read the encryption version number */ 2528 bcopy(marker, &(lsp->ls_crypto.version), 2529 sizeof (lsp->ls_crypto.version)); 2530 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2531 marker += sizeof (lsp->ls_crypto.version); 2532 2533 /* read a chunk of reserved data */ 2534 bcopy(marker, lsp->ls_crypto.reserved1, 2535 sizeof (lsp->ls_crypto.reserved1)); 2536 marker += sizeof (lsp->ls_crypto.reserved1); 2537 2538 /* read block number where encrypted data begins */ 2539 bcopy(marker, &(lsp->ls_crypto.data_sector), 2540 sizeof (lsp->ls_crypto.data_sector)); 2541 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2542 marker += sizeof (lsp->ls_crypto.data_sector); 2543 2544 /* and ignore the rest until it is implemented */ 2545 2546 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2547 return (0); 2548 } 2549 2550 /* 2551 * We've requested encryption, but no magic was found, so it must be 2552 * a new image. 2553 */ 2554 2555 for (i = 0; i < sizeof (struct crypto_meta); i++) { 2556 if (buf[i] != '\0') 2557 return (EINVAL); 2558 } 2559 2560 marker = buf; 2561 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2562 marker += sizeof (lofi_crypto_magic); 2563 chead.version = htons(LOFI_CRYPTO_VERSION); 2564 bcopy(&(chead.version), marker, sizeof (chead.version)); 2565 marker += sizeof (chead.version); 2566 marker += sizeof (chead.reserved1); 2567 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2568 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2569 2570 /* write the header */ 2571 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE, 2572 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2573 if (error != 0) 2574 return (error); 2575 2576 /* fix things up so it looks like we read this info */ 2577 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2578 sizeof (lofi_crypto_magic)); 2579 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2580 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2581 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2582 return (0); 2583 } 2584 2585 /* 2586 * Check to see if the passed in signature is a valid one. If it is 2587 * valid, return the index into lofi_compress_table. 2588 * 2589 * Return -1 if it is invalid 2590 */ 2591 static int 2592 lofi_compress_select(const char *signature) 2593 { 2594 int i; 2595 2596 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 2597 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 2598 return (i); 2599 } 2600 2601 return (-1); 2602 } 2603 2604 static int 2605 lofi_init_compress(struct lofi_state *lsp) 2606 { 2607 char buf[DEV_BSIZE]; 2608 int compress_index; 2609 ssize_t resid; 2610 int error; 2611 2612 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2613 0, RLIM64_INFINITY, kcred, &resid); 2614 2615 if (error != 0) 2616 return (error); 2617 2618 if ((compress_index = lofi_compress_select(buf)) == -1) 2619 return (0); 2620 2621 /* compression and encryption are mutually exclusive */ 2622 if (lsp->ls_crypto_enabled) 2623 return (ENOTSUP); 2624 2625 /* initialize compression info for compressed lofi */ 2626 lsp->ls_comp_algorithm_index = compress_index; 2627 (void) strlcpy(lsp->ls_comp_algorithm, 2628 lofi_compress_table[compress_index].l_name, 2629 sizeof (lsp->ls_comp_algorithm)); 2630 2631 /* Finally setup per-thread pre-allocated buffers */ 2632 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * 2633 sizeof (struct compbuf), KM_SLEEP); 2634 2635 return (lofi_map_compressed_file(lsp, buf)); 2636 } 2637 2638 /* 2639 * Allocate new or proposed id from lofi_id. 2640 * 2641 * Special cases for proposed id: 2642 * 0: not allowed, 0 is id for control device. 2643 * -1: allocate first usable id from lofi_id. 2644 * any other value is proposed value from userland 2645 * 2646 * returns DDI_SUCCESS or errno. 2647 */ 2648 static int 2649 lofi_alloc_id(int *idp) 2650 { 2651 int id, error = DDI_SUCCESS; 2652 2653 if (*idp == -1) { 2654 id = id_allocff_nosleep(lofi_id); 2655 if (id == -1) { 2656 error = EAGAIN; 2657 goto err; 2658 } 2659 } else if (*idp == 0) { 2660 error = EINVAL; 2661 goto err; 2662 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) { 2663 error = ERANGE; 2664 goto err; 2665 } else { 2666 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) { 2667 error = EEXIST; 2668 goto err; 2669 } 2670 2671 id = id_alloc_specific_nosleep(lofi_id, *idp); 2672 if (id == -1) { 2673 error = EAGAIN; 2674 goto err; 2675 } 2676 } 2677 *idp = id; 2678 err: 2679 return (error); 2680 } 2681 2682 static int 2683 lofi_create_dev(struct lofi_ioctl *klip) 2684 { 2685 dev_info_t *parent, *child; 2686 struct lofi_state *lsp = NULL; 2687 char namebuf[MAXNAMELEN]; 2688 int error, circ; 2689 2690 /* get control device */ 2691 lsp = ddi_get_soft_state(lofi_statep, 0); 2692 parent = ddi_get_parent(lsp->ls_dip); 2693 2694 if ((error = lofi_alloc_id((int *)&klip->li_id))) 2695 return (error); 2696 2697 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d", 2698 klip->li_id); 2699 2700 ndi_devi_enter(parent, &circ); 2701 child = ndi_devi_findchild(parent, namebuf); 2702 ndi_devi_exit(parent, circ); 2703 2704 if (child == NULL) { 2705 child = ddi_add_child(parent, LOFI_DRIVER_NAME, 2706 (pnode_t)DEVI_SID_NODEID, klip->li_id); 2707 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child, 2708 "instance", klip->li_id)) != DDI_PROP_SUCCESS) 2709 goto err; 2710 2711 if (klip->li_labeled == B_TRUE) { 2712 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child, 2713 DDI_PROP_CANSLEEP, "labeled", 0, 0)) 2714 != DDI_PROP_SUCCESS) 2715 goto err; 2716 } 2717 2718 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH)) 2719 != NDI_SUCCESS) 2720 goto err; 2721 } else { 2722 id_free(lofi_id, klip->li_id); 2723 error = EEXIST; 2724 return (error); 2725 } 2726 2727 goto done; 2728 2729 err: 2730 ddi_prop_remove_all(child); 2731 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE); 2732 id_free(lofi_id, klip->li_id); 2733 done: 2734 2735 return (error); 2736 } 2737 2738 static void 2739 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq) 2740 { 2741 char *p = NULL; 2742 2743 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid)); 2744 2745 mutex_enter(&lsp->ls_vp_lock); 2746 if (lsp->ls_vp != NULL) 2747 p = strrchr(lsp->ls_vp->v_path, '/'); 2748 if (p != NULL) 2749 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid)); 2750 mutex_exit(&lsp->ls_vp_lock); 2751 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision)); 2752 } 2753 2754 /* 2755 * copy devlink name from event cache 2756 */ 2757 static void 2758 lofi_copy_devpath(struct lofi_ioctl *klip) 2759 { 2760 int error; 2761 char namebuf[MAXNAMELEN], *str; 2762 clock_t ticks; 2763 nvlist_t *nvl; 2764 2765 if (klip->li_labeled == B_TRUE) 2766 klip->li_devpath[0] = '\0'; 2767 else { 2768 /* no need to wait for messages */ 2769 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath), 2770 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id); 2771 return; 2772 } 2773 2774 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id); 2775 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000); 2776 2777 nvl = NULL; 2778 2779 mutex_enter(&lofi_chan_lock); 2780 while (nvlist_lookup_nvlist(lofi_devlink_cache, namebuf, &nvl) != 0) { 2781 error = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks); 2782 if (error == -1) 2783 break; 2784 } 2785 2786 if (nvl != NULL) { 2787 if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) { 2788 (void) strlcpy(klip->li_devpath, str, 2789 sizeof (klip->li_devpath)); 2790 } 2791 } 2792 mutex_exit(&lofi_chan_lock); 2793 } 2794 2795 /* 2796 * map a file to a minor number. Return the minor number. 2797 */ 2798 static int 2799 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 2800 int *rvalp, struct cred *credp, int ioctl_flag) 2801 { 2802 int id = -1; 2803 struct lofi_state *lsp = NULL; 2804 struct lofi_ioctl *klip; 2805 int error; 2806 struct vnode *vp = NULL; 2807 vattr_t vattr; 2808 int flag; 2809 char namebuf[MAXNAMELEN]; 2810 2811 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2812 if (error != 0) 2813 return (error); 2814 2815 mutex_enter(&lofi_lock); 2816 2817 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly, 2818 NULL) == 0) { 2819 error = EBUSY; 2820 goto err; 2821 } 2822 2823 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 2824 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 2825 if (error) { 2826 /* try read-only */ 2827 flag &= ~FWRITE; 2828 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 2829 &vp, 0, 0); 2830 if (error) 2831 goto err; 2832 } 2833 2834 if (!V_ISLOFIABLE(vp->v_type)) { 2835 error = EINVAL; 2836 goto err; 2837 } 2838 2839 vattr.va_mask = AT_SIZE; 2840 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 2841 if (error) 2842 goto err; 2843 2844 /* the file needs to be a multiple of the block size */ 2845 if ((vattr.va_size % DEV_BSIZE) != 0) { 2846 error = EINVAL; 2847 goto err; 2848 } 2849 2850 if (pickminor) { 2851 klip->li_id = (uint32_t)-1; 2852 } 2853 if ((error = lofi_create_dev(klip)) != 0) 2854 goto err; 2855 2856 id = klip->li_id; 2857 lsp = ddi_get_soft_state(lofi_statep, id); 2858 if (lsp == NULL) 2859 goto err; 2860 2861 /* 2862 * from this point lofi_destroy() is used to clean up on error 2863 * make sure the basic data is set 2864 */ 2865 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id)); 2866 2867 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 2868 offsetof(struct lofi_comp_cache, lc_list)); 2869 2870 /* 2871 * save open mode so file can be closed properly and vnode counts 2872 * updated correctly. 2873 */ 2874 lsp->ls_openflag = flag; 2875 2876 lsp->ls_vp = vp; 2877 lsp->ls_stacked_vp = vp; 2878 2879 lsp->ls_vp_size = vattr.va_size; 2880 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2881 2882 /* 2883 * Try to handle stacked lofs vnodes. 2884 */ 2885 if (vp->v_type == VREG) { 2886 vnode_t *realvp; 2887 2888 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2889 /* 2890 * We need to use the realvp for uniqueness 2891 * checking, but keep the stacked vp for 2892 * LOFI_GET_FILENAME display. 2893 */ 2894 VN_HOLD(realvp); 2895 lsp->ls_vp = realvp; 2896 } 2897 } 2898 2899 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1; 2900 lsp->ls_pbshift = lsp->ls_lbshift; 2901 2902 lsp->ls_readonly = klip->li_readonly; 2903 lsp->ls_uncomp_seg_sz = 0; 2904 lsp->ls_comp_algorithm[0] = '\0'; 2905 lsp->ls_crypto_offset = 0; 2906 2907 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 2908 LOFI_DRIVER_NAME, id); 2909 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads, 2910 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0); 2911 2912 if ((error = lofi_init_crypto(lsp, klip)) != 0) 2913 goto err; 2914 2915 if ((error = lofi_init_compress(lsp)) != 0) 2916 goto err; 2917 2918 fake_disk_geometry(lsp); 2919 2920 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, SIZE_PROP_NAME, 2921 lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) { 2922 error = EINVAL; 2923 goto err; 2924 } 2925 2926 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, NBLOCKS_PROP_NAME, 2927 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE)) 2928 != DDI_PROP_SUCCESS) { 2929 error = EINVAL; 2930 goto err; 2931 } 2932 2933 list_insert_tail(&lofi_list, lsp); 2934 /* 2935 * Notify we are ready to rock. 2936 */ 2937 mutex_enter(&lsp->ls_vp_lock); 2938 lsp->ls_vp_ready = B_TRUE; 2939 cv_broadcast(&lsp->ls_vp_cv); 2940 mutex_exit(&lsp->ls_vp_lock); 2941 mutex_exit(&lofi_lock); 2942 2943 lofi_copy_devpath(klip); 2944 2945 if (rvalp) 2946 *rvalp = id; 2947 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2948 free_lofi_ioctl(klip); 2949 return (0); 2950 2951 err: 2952 if (lsp != NULL) { 2953 lofi_destroy(lsp, credp); 2954 } else { 2955 if (vp != NULL) { 2956 (void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL); 2957 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2958 VN_RELE(vp); 2959 } 2960 } 2961 2962 mutex_exit(&lofi_lock); 2963 free_lofi_ioctl(klip); 2964 return (error); 2965 } 2966 2967 /* 2968 * unmap a file. 2969 */ 2970 static int 2971 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename, 2972 struct cred *credp, int ioctl_flag) 2973 { 2974 struct lofi_state *lsp; 2975 struct lofi_ioctl *klip; 2976 nvlist_t *nvl = NULL; 2977 clock_t ticks; 2978 char name[MAXNAMELEN]; 2979 int err; 2980 2981 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2982 if (err != 0) 2983 return (err); 2984 2985 mutex_enter(&lofi_lock); 2986 if (byfilename) { 2987 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly, 2988 &lsp)) != 0) { 2989 mutex_exit(&lofi_lock); 2990 return (err); 2991 } 2992 } else if (klip->li_id == 0) { 2993 mutex_exit(&lofi_lock); 2994 free_lofi_ioctl(klip); 2995 return (ENXIO); 2996 } else { 2997 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 2998 } 2999 3000 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) { 3001 mutex_exit(&lofi_lock); 3002 free_lofi_ioctl(klip); 3003 return (ENXIO); 3004 } 3005 3006 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3007 3008 /* 3009 * If it's still held open, we'll do one of three things: 3010 * 3011 * If no flag is set, just return EBUSY. 3012 * 3013 * If the 'cleanup' flag is set, unmap and remove the device when 3014 * the last user finishes. 3015 * 3016 * If the 'force' flag is set, then we forcibly close the underlying 3017 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 3018 * will return DKIO_DEV_GONE. When the device is last closed, the 3019 * device will be cleaned up appropriately. 3020 * 3021 * This is complicated by the fact that we may have outstanding 3022 * dispatched I/Os. Rather than having a single mutex to serialize all 3023 * I/O, we keep a count of the number of outstanding I/O requests 3024 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 3025 * should be dispatched (ls_vp_closereq). 3026 * 3027 * We set the flag, wait for the number of outstanding I/Os to reach 0, 3028 * and then close the underlying vnode. 3029 */ 3030 if (is_opened(lsp)) { 3031 if (klip->li_force) { 3032 mutex_enter(&lsp->ls_vp_lock); 3033 lsp->ls_vp_closereq = B_TRUE; 3034 /* wake up any threads waiting on dkiocstate */ 3035 cv_broadcast(&lsp->ls_vp_cv); 3036 while (lsp->ls_vp_iocount > 0) 3037 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 3038 mutex_exit(&lsp->ls_vp_lock); 3039 3040 goto out; 3041 } else if (klip->li_cleanup) { 3042 lsp->ls_cleanup = 1; 3043 mutex_exit(&lofi_lock); 3044 free_lofi_ioctl(klip); 3045 return (0); 3046 } 3047 3048 mutex_exit(&lofi_lock); 3049 free_lofi_ioctl(klip); 3050 return (EBUSY); 3051 } 3052 3053 out: 3054 lofi_free_dev(lsp); 3055 lofi_destroy(lsp, credp); 3056 3057 /* 3058 * check the lofi_devlink_cache if device is really gone. 3059 * note: we just wait for timeout here and dont give error if 3060 * timer will expire. This check is to try to ensure the unmap is 3061 * really done when lofiadm -d completes. 3062 * Since lofi_lock is held, also hopefully the lofiadm -a calls 3063 * wont interfere the the unmap. 3064 */ 3065 (void) snprintf(name, sizeof (name), "%d", klip->li_id); 3066 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000); 3067 mutex_enter(&lofi_chan_lock); 3068 while (nvlist_lookup_nvlist(lofi_devlink_cache, name, &nvl) == 0) { 3069 err = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks); 3070 if (err == -1) 3071 break; 3072 } 3073 mutex_exit(&lofi_chan_lock); 3074 3075 mutex_exit(&lofi_lock); 3076 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3077 free_lofi_ioctl(klip); 3078 return (0); 3079 } 3080 3081 /* 3082 * get the filename given the minor number, or the minor number given 3083 * the name. 3084 */ 3085 /*ARGSUSED*/ 3086 static int 3087 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 3088 struct cred *credp, int ioctl_flag) 3089 { 3090 struct lofi_ioctl *klip; 3091 struct lofi_state *lsp; 3092 int error; 3093 3094 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 3095 if (error != 0) 3096 return (error); 3097 3098 switch (which) { 3099 case LOFI_GET_FILENAME: 3100 if (klip->li_id == 0) { 3101 free_lofi_ioctl(klip); 3102 return (EINVAL); 3103 } 3104 3105 mutex_enter(&lofi_lock); 3106 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 3107 if (lsp == NULL || lofi_access(lsp) != 0) { 3108 mutex_exit(&lofi_lock); 3109 free_lofi_ioctl(klip); 3110 return (ENXIO); 3111 } 3112 3113 /* 3114 * This may fail if, for example, we're trying to look 3115 * up a zoned NFS path from the global zone. 3116 */ 3117 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename, 3118 sizeof (klip->li_filename), CRED()) != 0) { 3119 (void) strlcpy(klip->li_filename, "?", 3120 sizeof (klip->li_filename)); 3121 } 3122 3123 klip->li_readonly = lsp->ls_readonly; 3124 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3125 3126 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3127 sizeof (klip->li_algorithm)); 3128 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 3129 mutex_exit(&lofi_lock); 3130 3131 lofi_copy_devpath(klip); 3132 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3133 free_lofi_ioctl(klip); 3134 return (error); 3135 case LOFI_GET_MINOR: 3136 mutex_enter(&lofi_lock); 3137 error = file_to_lofi(klip->li_filename, 3138 klip->li_readonly, &lsp); 3139 if (error != 0) { 3140 mutex_exit(&lofi_lock); 3141 free_lofi_ioctl(klip); 3142 return (error); 3143 } 3144 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3145 3146 klip->li_readonly = lsp->ls_readonly; 3147 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3148 mutex_exit(&lofi_lock); 3149 3150 lofi_copy_devpath(klip); 3151 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3152 3153 free_lofi_ioctl(klip); 3154 return (error); 3155 case LOFI_CHECK_COMPRESSED: 3156 mutex_enter(&lofi_lock); 3157 error = file_to_lofi(klip->li_filename, 3158 klip->li_readonly, &lsp); 3159 if (error != 0) { 3160 mutex_exit(&lofi_lock); 3161 free_lofi_ioctl(klip); 3162 return (error); 3163 } 3164 3165 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3166 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3167 sizeof (klip->li_algorithm)); 3168 3169 mutex_exit(&lofi_lock); 3170 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3171 free_lofi_ioctl(klip); 3172 return (error); 3173 default: 3174 free_lofi_ioctl(klip); 3175 return (EINVAL); 3176 } 3177 } 3178 3179 static int 3180 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb, 3181 struct uscsi_cmd *uscmd) 3182 { 3183 int rval; 3184 3185 #ifdef _MULTI_DATAMODEL 3186 switch (ddi_model_convert_from(flag & FMODELS)) { 3187 case DDI_MODEL_ILP32: { 3188 struct uscsi_cmd32 ucmd32; 3189 3190 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) { 3191 rval = EFAULT; 3192 goto err; 3193 } 3194 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd); 3195 break; 3196 } 3197 case DDI_MODEL_NONE: 3198 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3199 rval = EFAULT; 3200 goto err; 3201 } 3202 break; 3203 default: 3204 rval = EFAULT; 3205 goto err; 3206 } 3207 #else 3208 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3209 rval = EFAULT; 3210 goto err; 3211 } 3212 #endif /* _MULTI_DATAMODEL */ 3213 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) { 3214 rval = EFAULT; 3215 goto err; 3216 } 3217 if (cdb->scc_cmd == SCMD_INQUIRY) { 3218 return (0); 3219 } 3220 err: 3221 return (rval); 3222 } 3223 3224 static int 3225 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 3226 int *rvalp) 3227 { 3228 int error; 3229 enum dkio_state dkstate; 3230 struct lofi_state *lsp; 3231 int id; 3232 3233 id = LOFI_MINOR2ID(getminor(dev)); 3234 3235 /* lofi ioctls only apply to the master device */ 3236 if (id == 0) { 3237 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 3238 3239 /* 3240 * the query command only need read-access - i.e., normal 3241 * users are allowed to do those on the ctl device as 3242 * long as they can open it read-only. 3243 */ 3244 switch (cmd) { 3245 case LOFI_MAP_FILE: 3246 if ((flag & FWRITE) == 0) 3247 return (EPERM); 3248 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 3249 case LOFI_MAP_FILE_MINOR: 3250 if ((flag & FWRITE) == 0) 3251 return (EPERM); 3252 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 3253 case LOFI_UNMAP_FILE: 3254 if ((flag & FWRITE) == 0) 3255 return (EPERM); 3256 return (lofi_unmap_file(lip, 1, credp, flag)); 3257 case LOFI_UNMAP_FILE_MINOR: 3258 if ((flag & FWRITE) == 0) 3259 return (EPERM); 3260 return (lofi_unmap_file(lip, 0, credp, flag)); 3261 case LOFI_GET_FILENAME: 3262 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 3263 credp, flag)); 3264 case LOFI_GET_MINOR: 3265 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 3266 credp, flag)); 3267 3268 /* 3269 * This API made limited sense when this value was fixed 3270 * at LOFI_MAX_FILES. However, its use to iterate 3271 * across all possible devices in lofiadm means we don't 3272 * want to return L_MAXMIN, but the highest 3273 * *allocated* id. 3274 */ 3275 case LOFI_GET_MAXMINOR: 3276 id = 0; 3277 3278 mutex_enter(&lofi_lock); 3279 3280 for (lsp = list_head(&lofi_list); lsp != NULL; 3281 lsp = list_next(&lofi_list, lsp)) { 3282 int i; 3283 if (lofi_access(lsp) != 0) 3284 continue; 3285 3286 i = ddi_get_instance(lsp->ls_dip); 3287 if (i > id) 3288 id = i; 3289 } 3290 3291 mutex_exit(&lofi_lock); 3292 3293 error = ddi_copyout(&id, &lip->li_id, 3294 sizeof (id), flag); 3295 if (error) 3296 return (EFAULT); 3297 return (0); 3298 3299 case LOFI_CHECK_COMPRESSED: 3300 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 3301 credp, flag)); 3302 default: 3303 return (EINVAL); 3304 } 3305 } 3306 3307 mutex_enter(&lofi_lock); 3308 lsp = ddi_get_soft_state(lofi_statep, id); 3309 if (lsp == NULL || lsp->ls_vp_closereq) { 3310 mutex_exit(&lofi_lock); 3311 return (ENXIO); 3312 } 3313 mutex_exit(&lofi_lock); 3314 3315 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS, 3316 "labeled") == 1) { 3317 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag, 3318 credp, rvalp, 0); 3319 if (error != ENOTTY) 3320 return (error); 3321 } 3322 3323 /* 3324 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 3325 * EIO as if the device was no longer present. 3326 */ 3327 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 3328 return (EIO); 3329 3330 /* these are for faking out utilities like newfs */ 3331 switch (cmd) { 3332 case DKIOCGMEDIAINFO: 3333 case DKIOCGMEDIAINFOEXT: { 3334 struct dk_minfo_ext media_info; 3335 int shift = lsp->ls_lbshift; 3336 int size; 3337 3338 if (cmd == DKIOCGMEDIAINFOEXT) { 3339 media_info.dki_pbsize = 1U << lsp->ls_pbshift; 3340 size = sizeof (struct dk_minfo_ext); 3341 } else { 3342 size = sizeof (struct dk_minfo); 3343 } 3344 3345 media_info.dki_media_type = DK_FIXED_DISK; 3346 media_info.dki_lbsize = 1U << shift; 3347 media_info.dki_capacity = 3348 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift; 3349 3350 if (ddi_copyout(&media_info, (void *)arg, size, flag)) 3351 return (EFAULT); 3352 return (0); 3353 } 3354 case DKIOCREMOVABLE: { 3355 int i = 0; 3356 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag)) 3357 return (EFAULT); 3358 return (0); 3359 } 3360 3361 case DKIOCGVTOC: { 3362 struct vtoc vt; 3363 fake_disk_vtoc(lsp, &vt); 3364 3365 switch (ddi_model_convert_from(flag & FMODELS)) { 3366 case DDI_MODEL_ILP32: { 3367 struct vtoc32 vtoc32; 3368 3369 vtoctovtoc32(vt, vtoc32); 3370 if (ddi_copyout(&vtoc32, (void *)arg, 3371 sizeof (struct vtoc32), flag)) 3372 return (EFAULT); 3373 break; 3374 } 3375 3376 case DDI_MODEL_NONE: 3377 if (ddi_copyout(&vt, (void *)arg, 3378 sizeof (struct vtoc), flag)) 3379 return (EFAULT); 3380 break; 3381 } 3382 return (0); 3383 } 3384 case DKIOCINFO: { 3385 struct dk_cinfo ci; 3386 fake_disk_info(dev, &ci); 3387 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag)) 3388 return (EFAULT); 3389 return (0); 3390 } 3391 case DKIOCG_VIRTGEOM: 3392 case DKIOCG_PHYGEOM: 3393 case DKIOCGGEOM: 3394 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 3395 sizeof (struct dk_geom), flag); 3396 if (error) 3397 return (EFAULT); 3398 return (0); 3399 case DKIOCSTATE: 3400 /* 3401 * Normally, lofi devices are always in the INSERTED state. If 3402 * a device is forcefully unmapped, then the device transitions 3403 * to the DKIO_DEV_GONE state. 3404 */ 3405 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 3406 flag) != 0) 3407 return (EFAULT); 3408 3409 mutex_enter(&lsp->ls_vp_lock); 3410 lsp->ls_vp_iocount++; 3411 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 3412 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 3413 !lsp->ls_vp_closereq) { 3414 /* 3415 * By virtue of having the device open, we know that 3416 * 'lsp' will remain valid when we return. 3417 */ 3418 if (!cv_wait_sig(&lsp->ls_vp_cv, 3419 &lsp->ls_vp_lock)) { 3420 lsp->ls_vp_iocount--; 3421 cv_broadcast(&lsp->ls_vp_cv); 3422 mutex_exit(&lsp->ls_vp_lock); 3423 return (EINTR); 3424 } 3425 } 3426 3427 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ? 3428 DKIO_INSERTED : DKIO_DEV_GONE); 3429 lsp->ls_vp_iocount--; 3430 cv_broadcast(&lsp->ls_vp_cv); 3431 mutex_exit(&lsp->ls_vp_lock); 3432 3433 if (ddi_copyout(&dkstate, (void *)arg, 3434 sizeof (dkstate), flag) != 0) 3435 return (EFAULT); 3436 return (0); 3437 case USCSICMD: { 3438 struct uscsi_cmd uscmd; 3439 union scsi_cdb cdb; 3440 3441 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) { 3442 struct scsi_inquiry inq = {0}; 3443 3444 lofi_create_inquiry(lsp, &inq); 3445 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr, 3446 uscmd.uscsi_buflen, flag) != 0) 3447 return (EFAULT); 3448 return (0); 3449 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) { 3450 struct scsi_capacity capacity; 3451 3452 capacity.capacity = 3453 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >> 3454 lsp->ls_lbshift); 3455 capacity.lbasize = BE_32(1 << lsp->ls_lbshift); 3456 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr, 3457 uscmd.uscsi_buflen, flag) != 0) 3458 return (EFAULT); 3459 return (0); 3460 } 3461 3462 uscmd.uscsi_rqstatus = 0xff; 3463 #ifdef _MULTI_DATAMODEL 3464 switch (ddi_model_convert_from(flag & FMODELS)) { 3465 case DDI_MODEL_ILP32: { 3466 struct uscsi_cmd32 ucmd32; 3467 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32)); 3468 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32), 3469 flag) != 0) 3470 return (EFAULT); 3471 break; 3472 } 3473 case DDI_MODEL_NONE: 3474 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), 3475 flag) != 0) 3476 return (EFAULT); 3477 break; 3478 default: 3479 return (EFAULT); 3480 } 3481 #else 3482 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0) 3483 return (EFAULT); 3484 #endif /* _MULTI_DATAMODEL */ 3485 return (0); 3486 } 3487 default: 3488 #ifdef DEBUG 3489 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd); 3490 #endif /* DEBUG */ 3491 return (ENOTTY); 3492 } 3493 } 3494 3495 static int 3496 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 3497 char *name, caddr_t valuep, int *lengthp) 3498 { 3499 struct lofi_state *lsp; 3500 3501 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip)); 3502 if (lsp == NULL) { 3503 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 3504 name, valuep, lengthp)); 3505 } 3506 3507 return (cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags, 3508 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL)); 3509 } 3510 3511 static struct cb_ops lofi_cb_ops = { 3512 lofi_open, /* open */ 3513 lofi_close, /* close */ 3514 lofi_strategy, /* strategy */ 3515 nodev, /* print */ 3516 nodev, /* dump */ 3517 lofi_read, /* read */ 3518 lofi_write, /* write */ 3519 lofi_ioctl, /* ioctl */ 3520 nodev, /* devmap */ 3521 nodev, /* mmap */ 3522 nodev, /* segmap */ 3523 nochpoll, /* poll */ 3524 lofi_prop_op, /* prop_op */ 3525 0, /* streamtab */ 3526 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 3527 CB_REV, 3528 lofi_aread, 3529 lofi_awrite 3530 }; 3531 3532 static struct dev_ops lofi_ops = { 3533 DEVO_REV, /* devo_rev, */ 3534 0, /* refcnt */ 3535 lofi_info, /* info */ 3536 nulldev, /* identify */ 3537 nulldev, /* probe */ 3538 lofi_attach, /* attach */ 3539 lofi_detach, /* detach */ 3540 nodev, /* reset */ 3541 &lofi_cb_ops, /* driver operations */ 3542 NULL, /* no bus operations */ 3543 NULL, /* power */ 3544 ddi_quiesce_not_needed, /* quiesce */ 3545 }; 3546 3547 static struct modldrv modldrv = { 3548 &mod_driverops, 3549 "loopback file driver", 3550 &lofi_ops, 3551 }; 3552 3553 static struct modlinkage modlinkage = { 3554 MODREV_1, 3555 &modldrv, 3556 NULL 3557 }; 3558 3559 int 3560 _init(void) 3561 { 3562 int error; 3563 3564 list_create(&lofi_list, sizeof (struct lofi_state), 3565 offsetof(struct lofi_state, ls_list)); 3566 3567 error = ddi_soft_state_init((void **)&lofi_statep, 3568 sizeof (struct lofi_state), 0); 3569 if (error) { 3570 list_destroy(&lofi_list); 3571 return (error); 3572 } 3573 3574 /* 3575 * The minor number is stored as id << LOFI_CMLB_SHIFT as 3576 * we need to reserve space for cmlb minor numbers. 3577 * This will leave out 4096 id values on 32bit kernel, which should 3578 * still suffice. 3579 */ 3580 lofi_id = id_space_create("lofi_id", 1, 3581 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT))); 3582 3583 if (lofi_id == NULL) { 3584 ddi_soft_state_fini((void **)&lofi_statep); 3585 list_destroy(&lofi_list); 3586 return (DDI_FAILURE); 3587 } 3588 3589 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 3590 mutex_init(&lofi_chan_lock, NULL, MUTEX_DRIVER, NULL); 3591 cv_init(&lofi_chan_cv, NULL, CV_DRIVER, NULL); 3592 error = nvlist_alloc(&lofi_devlink_cache, NV_UNIQUE_NAME, KM_SLEEP); 3593 3594 if (error == 0) 3595 error = mod_install(&modlinkage); 3596 if (error) { 3597 id_space_destroy(lofi_id); 3598 if (lofi_devlink_cache != NULL) 3599 nvlist_free(lofi_devlink_cache); 3600 mutex_destroy(&lofi_chan_lock); 3601 cv_destroy(&lofi_chan_cv); 3602 mutex_destroy(&lofi_lock); 3603 ddi_soft_state_fini((void **)&lofi_statep); 3604 list_destroy(&lofi_list); 3605 } 3606 3607 return (error); 3608 } 3609 3610 int 3611 _fini(void) 3612 { 3613 int error; 3614 3615 mutex_enter(&lofi_lock); 3616 3617 if (!list_is_empty(&lofi_list)) { 3618 mutex_exit(&lofi_lock); 3619 return (EBUSY); 3620 } 3621 3622 mutex_exit(&lofi_lock); 3623 3624 error = mod_remove(&modlinkage); 3625 if (error) 3626 return (error); 3627 3628 mutex_enter(&lofi_chan_lock); 3629 nvlist_free(lofi_devlink_cache); 3630 lofi_devlink_cache = NULL; 3631 mutex_exit(&lofi_chan_lock); 3632 3633 mutex_destroy(&lofi_chan_lock); 3634 cv_destroy(&lofi_chan_cv); 3635 mutex_destroy(&lofi_lock); 3636 id_space_destroy(lofi_id); 3637 ddi_soft_state_fini((void **)&lofi_statep); 3638 list_destroy(&lofi_list); 3639 3640 return (error); 3641 } 3642 3643 int 3644 _info(struct modinfo *modinfop) 3645 { 3646 return (mod_info(&modlinkage, modinfop)); 3647 } 3648