1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
11 #include "Chunks.h"
12 #include "Config.h"
13 #include "DebugTypes.h"
14 #include "Driver.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "lld/Common/DWARF.h"
18 #include "llvm-c/lto.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28 #include "llvm/LTO/LTO.h"
29 #include "llvm/Object/Binary.h"
30 #include "llvm/Object/COFF.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Endian.h"
33 #include "llvm/Support/Error.h"
34 #include "llvm/Support/ErrorOr.h"
35 #include "llvm/Support/FileSystem.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/TargetParser/Triple.h"
39 #include <cstring>
40 #include <optional>
41 #include <system_error>
42 #include <utility>
43
44 using namespace llvm;
45 using namespace llvm::COFF;
46 using namespace llvm::codeview;
47 using namespace llvm::object;
48 using namespace llvm::support::endian;
49 using namespace lld;
50 using namespace lld::coff;
51
52 using llvm::Triple;
53 using llvm::support::ulittle32_t;
54
55 // Returns the last element of a path, which is supposed to be a filename.
getBasename(StringRef path)56 static StringRef getBasename(StringRef path) {
57 return sys::path::filename(path, sys::path::Style::windows);
58 }
59
60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
toString(const coff::InputFile * file)61 std::string lld::toString(const coff::InputFile *file) {
62 if (!file)
63 return "<internal>";
64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
65 return std::string(file->getName());
66
67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
68 ")")
69 .str();
70 }
71
72 /// Checks that Source is compatible with being a weak alias to Target.
73 /// If Source is Undefined and has no weak alias set, makes it a weak
74 /// alias to Target.
checkAndSetWeakAlias(COFFLinkerContext & ctx,InputFile * f,Symbol * source,Symbol * target)75 static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f,
76 Symbol *source, Symbol *target) {
77 if (auto *u = dyn_cast<Undefined>(source)) {
78 if (u->weakAlias && u->weakAlias != target) {
79 // Weak aliases as produced by GCC are named in the form
80 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
81 // of another symbol emitted near the weak symbol.
82 // Just use the definition from the first object file that defined
83 // this weak symbol.
84 if (ctx.config.allowDuplicateWeak)
85 return;
86 ctx.symtab.reportDuplicate(source, f);
87 }
88 u->weakAlias = target;
89 }
90 }
91
ignoredSymbolName(StringRef name)92 static bool ignoredSymbolName(StringRef name) {
93 return name == "@feat.00" || name == "@comp.id";
94 }
95
ArchiveFile(COFFLinkerContext & ctx,MemoryBufferRef m)96 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
97 : InputFile(ctx, ArchiveKind, m) {}
98
parse()99 void ArchiveFile::parse() {
100 // Parse a MemoryBufferRef as an archive file.
101 file = CHECK(Archive::create(mb), this);
102
103 // Read the symbol table to construct Lazy objects.
104 for (const Archive::Symbol &sym : file->symbols())
105 ctx.symtab.addLazyArchive(this, sym);
106 }
107
108 // Returns a buffer pointing to a member file containing a given symbol.
addMember(const Archive::Symbol & sym)109 void ArchiveFile::addMember(const Archive::Symbol &sym) {
110 const Archive::Child &c =
111 CHECK(sym.getMember(),
112 "could not get the member for symbol " + toCOFFString(ctx, sym));
113
114 // Return an empty buffer if we have already returned the same buffer.
115 if (!seen.insert(c.getChildOffset()).second)
116 return;
117
118 ctx.driver.enqueueArchiveMember(c, sym, getName());
119 }
120
getArchiveMembers(Archive * file)121 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
122 std::vector<MemoryBufferRef> v;
123 Error err = Error::success();
124 for (const Archive::Child &c : file->children(err)) {
125 MemoryBufferRef mbref =
126 CHECK(c.getMemoryBufferRef(),
127 file->getFileName() +
128 ": could not get the buffer for a child of the archive");
129 v.push_back(mbref);
130 }
131 if (err)
132 fatal(file->getFileName() +
133 ": Archive::children failed: " + toString(std::move(err)));
134 return v;
135 }
136
parseLazy()137 void ObjFile::parseLazy() {
138 // Native object file.
139 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
140 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
141 uint32_t numSymbols = coffObj->getNumberOfSymbols();
142 for (uint32_t i = 0; i < numSymbols; ++i) {
143 COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
144 if (coffSym.isUndefined() || !coffSym.isExternal() ||
145 coffSym.isWeakExternal())
146 continue;
147 StringRef name = check(coffObj->getSymbolName(coffSym));
148 if (coffSym.isAbsolute() && ignoredSymbolName(name))
149 continue;
150 ctx.symtab.addLazyObject(this, name);
151 i += coffSym.getNumberOfAuxSymbols();
152 }
153 }
154
155 struct ECMapEntry {
156 ulittle32_t src;
157 ulittle32_t dst;
158 ulittle32_t type;
159 };
160
initializeECThunks()161 void ObjFile::initializeECThunks() {
162 for (SectionChunk *chunk : hybmpChunks) {
163 if (chunk->getContents().size() % sizeof(ECMapEntry)) {
164 error("Invalid .hybmp chunk size " + Twine(chunk->getContents().size()));
165 continue;
166 }
167
168 const uint8_t *end =
169 chunk->getContents().data() + chunk->getContents().size();
170 for (const uint8_t *iter = chunk->getContents().data(); iter != end;
171 iter += sizeof(ECMapEntry)) {
172 auto entry = reinterpret_cast<const ECMapEntry *>(iter);
173 switch (entry->type) {
174 case Arm64ECThunkType::Entry:
175 ctx.symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst));
176 break;
177 case Arm64ECThunkType::Exit:
178 case Arm64ECThunkType::GuestExit:
179 break;
180 default:
181 warn("Ignoring unknown EC thunk type " + Twine(entry->type));
182 }
183 }
184 }
185 }
186
parse()187 void ObjFile::parse() {
188 // Parse a memory buffer as a COFF file.
189 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
190
191 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
192 bin.release();
193 coffObj.reset(obj);
194 } else {
195 fatal(toString(this) + " is not a COFF file");
196 }
197
198 // Read section and symbol tables.
199 initializeChunks();
200 initializeSymbols();
201 initializeFlags();
202 initializeDependencies();
203 initializeECThunks();
204 }
205
getSection(uint32_t i)206 const coff_section *ObjFile::getSection(uint32_t i) {
207 auto sec = coffObj->getSection(i);
208 if (!sec)
209 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
210 return *sec;
211 }
212
213 // We set SectionChunk pointers in the SparseChunks vector to this value
214 // temporarily to mark comdat sections as having an unknown resolution. As we
215 // walk the object file's symbol table, once we visit either a leader symbol or
216 // an associative section definition together with the parent comdat's leader,
217 // we set the pointer to either nullptr (to mark the section as discarded) or a
218 // valid SectionChunk for that section.
219 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
220
initializeChunks()221 void ObjFile::initializeChunks() {
222 uint32_t numSections = coffObj->getNumberOfSections();
223 sparseChunks.resize(numSections + 1);
224 for (uint32_t i = 1; i < numSections + 1; ++i) {
225 const coff_section *sec = getSection(i);
226 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
227 sparseChunks[i] = pendingComdat;
228 else
229 sparseChunks[i] = readSection(i, nullptr, "");
230 }
231 }
232
readSection(uint32_t sectionNumber,const coff_aux_section_definition * def,StringRef leaderName)233 SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
234 const coff_aux_section_definition *def,
235 StringRef leaderName) {
236 const coff_section *sec = getSection(sectionNumber);
237
238 StringRef name;
239 if (Expected<StringRef> e = coffObj->getSectionName(sec))
240 name = *e;
241 else
242 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
243 toString(e.takeError()));
244
245 if (name == ".drectve") {
246 ArrayRef<uint8_t> data;
247 cantFail(coffObj->getSectionContents(sec, data));
248 directives = StringRef((const char *)data.data(), data.size());
249 return nullptr;
250 }
251
252 if (name == ".llvm_addrsig") {
253 addrsigSec = sec;
254 return nullptr;
255 }
256
257 if (name == ".llvm.call-graph-profile") {
258 callgraphSec = sec;
259 return nullptr;
260 }
261
262 // Object files may have DWARF debug info or MS CodeView debug info
263 // (or both).
264 //
265 // DWARF sections don't need any special handling from the perspective
266 // of the linker; they are just a data section containing relocations.
267 // We can just link them to complete debug info.
268 //
269 // CodeView needs linker support. We need to interpret debug info,
270 // and then write it to a separate .pdb file.
271
272 // Ignore DWARF debug info unless requested to be included.
273 if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_"))
274 return nullptr;
275
276 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
277 return nullptr;
278 SectionChunk *c;
279 if (isArm64EC(getMachineType()))
280 c = make<SectionChunkEC>(this, sec);
281 else
282 c = make<SectionChunk>(this, sec);
283 if (def)
284 c->checksum = def->CheckSum;
285
286 // CodeView sections are stored to a different vector because they are not
287 // linked in the regular manner.
288 if (c->isCodeView())
289 debugChunks.push_back(c);
290 else if (name == ".gfids$y")
291 guardFidChunks.push_back(c);
292 else if (name == ".giats$y")
293 guardIATChunks.push_back(c);
294 else if (name == ".gljmp$y")
295 guardLJmpChunks.push_back(c);
296 else if (name == ".gehcont$y")
297 guardEHContChunks.push_back(c);
298 else if (name == ".sxdata")
299 sxDataChunks.push_back(c);
300 else if (isArm64EC(getMachineType()) && name == ".hybmp$x")
301 hybmpChunks.push_back(c);
302 else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
303 name == ".rdata" && leaderName.starts_with("??_C@"))
304 // COFF sections that look like string literal sections (i.e. no
305 // relocations, in .rdata, leader symbol name matches the MSVC name mangling
306 // for string literals) are subject to string tail merging.
307 MergeChunk::addSection(ctx, c);
308 else if (name == ".rsrc" || name.starts_with(".rsrc$"))
309 resourceChunks.push_back(c);
310 else
311 chunks.push_back(c);
312
313 return c;
314 }
315
includeResourceChunks()316 void ObjFile::includeResourceChunks() {
317 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
318 }
319
readAssociativeDefinition(COFFSymbolRef sym,const coff_aux_section_definition * def)320 void ObjFile::readAssociativeDefinition(
321 COFFSymbolRef sym, const coff_aux_section_definition *def) {
322 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
323 }
324
readAssociativeDefinition(COFFSymbolRef sym,const coff_aux_section_definition * def,uint32_t parentIndex)325 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
326 const coff_aux_section_definition *def,
327 uint32_t parentIndex) {
328 SectionChunk *parent = sparseChunks[parentIndex];
329 int32_t sectionNumber = sym.getSectionNumber();
330
331 auto diag = [&]() {
332 StringRef name = check(coffObj->getSymbolName(sym));
333
334 StringRef parentName;
335 const coff_section *parentSec = getSection(parentIndex);
336 if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
337 parentName = *e;
338 error(toString(this) + ": associative comdat " + name + " (sec " +
339 Twine(sectionNumber) + ") has invalid reference to section " +
340 parentName + " (sec " + Twine(parentIndex) + ")");
341 };
342
343 if (parent == pendingComdat) {
344 // This can happen if an associative comdat refers to another associative
345 // comdat that appears after it (invalid per COFF spec) or to a section
346 // without any symbols.
347 diag();
348 return;
349 }
350
351 // Check whether the parent is prevailing. If it is, so are we, and we read
352 // the section; otherwise mark it as discarded.
353 if (parent) {
354 SectionChunk *c = readSection(sectionNumber, def, "");
355 sparseChunks[sectionNumber] = c;
356 if (c) {
357 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
358 parent->addAssociative(c);
359 }
360 } else {
361 sparseChunks[sectionNumber] = nullptr;
362 }
363 }
364
recordPrevailingSymbolForMingw(COFFSymbolRef sym,DenseMap<StringRef,uint32_t> & prevailingSectionMap)365 void ObjFile::recordPrevailingSymbolForMingw(
366 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
367 // For comdat symbols in executable sections, where this is the copy
368 // of the section chunk we actually include instead of discarding it,
369 // add the symbol to a map to allow using it for implicitly
370 // associating .[px]data$<func> sections to it.
371 // Use the suffix from the .text$<func> instead of the leader symbol
372 // name, for cases where the names differ (i386 mangling/decorations,
373 // cases where the leader is a weak symbol named .weak.func.default*).
374 int32_t sectionNumber = sym.getSectionNumber();
375 SectionChunk *sc = sparseChunks[sectionNumber];
376 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
377 StringRef name = sc->getSectionName().split('$').second;
378 prevailingSectionMap[name] = sectionNumber;
379 }
380 }
381
maybeAssociateSEHForMingw(COFFSymbolRef sym,const coff_aux_section_definition * def,const DenseMap<StringRef,uint32_t> & prevailingSectionMap)382 void ObjFile::maybeAssociateSEHForMingw(
383 COFFSymbolRef sym, const coff_aux_section_definition *def,
384 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
385 StringRef name = check(coffObj->getSymbolName(sym));
386 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
387 name.consume_front(".eh_frame$")) {
388 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
389 // associative to the symbol <func>.
390 auto parentSym = prevailingSectionMap.find(name);
391 if (parentSym != prevailingSectionMap.end())
392 readAssociativeDefinition(sym, def, parentSym->second);
393 }
394 }
395
createRegular(COFFSymbolRef sym)396 Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
397 SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
398 if (sym.isExternal()) {
399 StringRef name = check(coffObj->getSymbolName(sym));
400 if (sc)
401 return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
402 sym.getValue());
403 // For MinGW symbols named .weak.* that point to a discarded section,
404 // don't create an Undefined symbol. If nothing ever refers to the symbol,
405 // everything should be fine. If something actually refers to the symbol
406 // (e.g. the undefined weak alias), linking will fail due to undefined
407 // references at the end.
408 if (ctx.config.mingw && name.starts_with(".weak."))
409 return nullptr;
410 return ctx.symtab.addUndefined(name, this, false);
411 }
412 if (sc)
413 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
414 /*IsExternal*/ false, sym.getGeneric(), sc);
415 return nullptr;
416 }
417
initializeSymbols()418 void ObjFile::initializeSymbols() {
419 uint32_t numSymbols = coffObj->getNumberOfSymbols();
420 symbols.resize(numSymbols);
421
422 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
423 std::vector<uint32_t> pendingIndexes;
424 pendingIndexes.reserve(numSymbols);
425
426 DenseMap<StringRef, uint32_t> prevailingSectionMap;
427 std::vector<const coff_aux_section_definition *> comdatDefs(
428 coffObj->getNumberOfSections() + 1);
429
430 for (uint32_t i = 0; i < numSymbols; ++i) {
431 COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
432 bool prevailingComdat;
433 if (coffSym.isUndefined()) {
434 symbols[i] = createUndefined(coffSym);
435 } else if (coffSym.isWeakExternal()) {
436 symbols[i] = createUndefined(coffSym);
437 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
438 weakAliases.emplace_back(symbols[i], tagIndex);
439 } else if (std::optional<Symbol *> optSym =
440 createDefined(coffSym, comdatDefs, prevailingComdat)) {
441 symbols[i] = *optSym;
442 if (ctx.config.mingw && prevailingComdat)
443 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
444 } else {
445 // createDefined() returns std::nullopt if a symbol belongs to a section
446 // that was pending at the point when the symbol was read. This can happen
447 // in two cases:
448 // 1) section definition symbol for a comdat leader;
449 // 2) symbol belongs to a comdat section associated with another section.
450 // In both of these cases, we can expect the section to be resolved by
451 // the time we finish visiting the remaining symbols in the symbol
452 // table. So we postpone the handling of this symbol until that time.
453 pendingIndexes.push_back(i);
454 }
455 i += coffSym.getNumberOfAuxSymbols();
456 }
457
458 for (uint32_t i : pendingIndexes) {
459 COFFSymbolRef sym = check(coffObj->getSymbol(i));
460 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
461 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
462 readAssociativeDefinition(sym, def);
463 else if (ctx.config.mingw)
464 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
465 }
466 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
467 StringRef name = check(coffObj->getSymbolName(sym));
468 log("comdat section " + name +
469 " without leader and unassociated, discarding");
470 continue;
471 }
472 symbols[i] = createRegular(sym);
473 }
474
475 for (auto &kv : weakAliases) {
476 Symbol *sym = kv.first;
477 uint32_t idx = kv.second;
478 checkAndSetWeakAlias(ctx, this, sym, symbols[idx]);
479 }
480
481 // Free the memory used by sparseChunks now that symbol loading is finished.
482 decltype(sparseChunks)().swap(sparseChunks);
483 }
484
createUndefined(COFFSymbolRef sym)485 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
486 StringRef name = check(coffObj->getSymbolName(sym));
487 return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
488 }
489
findSectionDef(COFFObjectFile * obj,int32_t section)490 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
491 int32_t section) {
492 uint32_t numSymbols = obj->getNumberOfSymbols();
493 for (uint32_t i = 0; i < numSymbols; ++i) {
494 COFFSymbolRef sym = check(obj->getSymbol(i));
495 if (sym.getSectionNumber() != section)
496 continue;
497 if (const coff_aux_section_definition *def = sym.getSectionDefinition())
498 return def;
499 }
500 return nullptr;
501 }
502
handleComdatSelection(COFFSymbolRef sym,COMDATType & selection,bool & prevailing,DefinedRegular * leader,const llvm::object::coff_aux_section_definition * def)503 void ObjFile::handleComdatSelection(
504 COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
505 DefinedRegular *leader,
506 const llvm::object::coff_aux_section_definition *def) {
507 if (prevailing)
508 return;
509 // There's already an existing comdat for this symbol: `Leader`.
510 // Use the comdats's selection field to determine if the new
511 // symbol in `Sym` should be discarded, produce a duplicate symbol
512 // error, etc.
513
514 SectionChunk *leaderChunk = leader->getChunk();
515 COMDATType leaderSelection = leaderChunk->selection;
516
517 assert(leader->data && "Comdat leader without SectionChunk?");
518 if (isa<BitcodeFile>(leader->file)) {
519 // If the leader is only a LTO symbol, we don't know e.g. its final size
520 // yet, so we can't do the full strict comdat selection checking yet.
521 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
522 }
523
524 if ((selection == IMAGE_COMDAT_SELECT_ANY &&
525 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
526 (selection == IMAGE_COMDAT_SELECT_LARGEST &&
527 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
528 // cl.exe picks "any" for vftables when building with /GR- and
529 // "largest" when building with /GR. To be able to link object files
530 // compiled with each flag, "any" and "largest" are merged as "largest".
531 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
532 }
533
534 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
535 // Clang on the other hand picks "any". To be able to link two object files
536 // with a __declspec(selectany) declaration, one compiled with gcc and the
537 // other with clang, we merge them as proper "same size as"
538 if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
539 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
540 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
541 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
542 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
543 }
544
545 // Other than that, comdat selections must match. This is a bit more
546 // strict than link.exe which allows merging "any" and "largest" if "any"
547 // is the first symbol the linker sees, and it allows merging "largest"
548 // with everything (!) if "largest" is the first symbol the linker sees.
549 // Making this symmetric independent of which selection is seen first
550 // seems better though.
551 // (This behavior matches ModuleLinker::getComdatResult().)
552 if (selection != leaderSelection) {
553 log(("conflicting comdat type for " + toString(ctx, *leader) + ": " +
554 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
555 " and " + Twine((int)selection) + " in " + toString(this))
556 .str());
557 ctx.symtab.reportDuplicate(leader, this);
558 return;
559 }
560
561 switch (selection) {
562 case IMAGE_COMDAT_SELECT_NODUPLICATES:
563 ctx.symtab.reportDuplicate(leader, this);
564 break;
565
566 case IMAGE_COMDAT_SELECT_ANY:
567 // Nothing to do.
568 break;
569
570 case IMAGE_COMDAT_SELECT_SAME_SIZE:
571 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
572 if (!ctx.config.mingw) {
573 ctx.symtab.reportDuplicate(leader, this);
574 } else {
575 const coff_aux_section_definition *leaderDef = nullptr;
576 if (leaderChunk->file)
577 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
578 leaderChunk->getSectionNumber());
579 if (!leaderDef || leaderDef->Length != def->Length)
580 ctx.symtab.reportDuplicate(leader, this);
581 }
582 }
583 break;
584
585 case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
586 SectionChunk newChunk(this, getSection(sym));
587 // link.exe only compares section contents here and doesn't complain
588 // if the two comdat sections have e.g. different alignment.
589 // Match that.
590 if (leaderChunk->getContents() != newChunk.getContents())
591 ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
592 break;
593 }
594
595 case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
596 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
597 // (This means lld-link doesn't produce duplicate symbol errors for
598 // associative comdats while link.exe does, but associate comdats
599 // are never extern in practice.)
600 llvm_unreachable("createDefined not called for associative comdats");
601
602 case IMAGE_COMDAT_SELECT_LARGEST:
603 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
604 // Replace the existing comdat symbol with the new one.
605 StringRef name = check(coffObj->getSymbolName(sym));
606 // FIXME: This is incorrect: With /opt:noref, the previous sections
607 // make it into the final executable as well. Correct handling would
608 // be to undo reading of the whole old section that's being replaced,
609 // or doing one pass that determines what the final largest comdat
610 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
611 // only the largest one.
612 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
613 /*IsExternal*/ true, sym.getGeneric(),
614 nullptr);
615 prevailing = true;
616 }
617 break;
618
619 case IMAGE_COMDAT_SELECT_NEWEST:
620 llvm_unreachable("should have been rejected earlier");
621 }
622 }
623
createDefined(COFFSymbolRef sym,std::vector<const coff_aux_section_definition * > & comdatDefs,bool & prevailing)624 std::optional<Symbol *> ObjFile::createDefined(
625 COFFSymbolRef sym,
626 std::vector<const coff_aux_section_definition *> &comdatDefs,
627 bool &prevailing) {
628 prevailing = false;
629 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
630
631 if (sym.isCommon()) {
632 auto *c = make<CommonChunk>(sym);
633 chunks.push_back(c);
634 return ctx.symtab.addCommon(this, getName(), sym.getValue(),
635 sym.getGeneric(), c);
636 }
637
638 if (sym.isAbsolute()) {
639 StringRef name = getName();
640
641 if (name == "@feat.00")
642 feat00Flags = sym.getValue();
643 // Skip special symbols.
644 if (ignoredSymbolName(name))
645 return nullptr;
646
647 if (sym.isExternal())
648 return ctx.symtab.addAbsolute(name, sym);
649 return make<DefinedAbsolute>(ctx, name, sym);
650 }
651
652 int32_t sectionNumber = sym.getSectionNumber();
653 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
654 return nullptr;
655
656 if (llvm::COFF::isReservedSectionNumber(sectionNumber))
657 fatal(toString(this) + ": " + getName() +
658 " should not refer to special section " + Twine(sectionNumber));
659
660 if ((uint32_t)sectionNumber >= sparseChunks.size())
661 fatal(toString(this) + ": " + getName() +
662 " should not refer to non-existent section " + Twine(sectionNumber));
663
664 // Comdat handling.
665 // A comdat symbol consists of two symbol table entries.
666 // The first symbol entry has the name of the section (e.g. .text), fixed
667 // values for the other fields, and one auxiliary record.
668 // The second symbol entry has the name of the comdat symbol, called the
669 // "comdat leader".
670 // When this function is called for the first symbol entry of a comdat,
671 // it sets comdatDefs and returns std::nullopt, and when it's called for the
672 // second symbol entry it reads comdatDefs and then sets it back to nullptr.
673
674 // Handle comdat leader.
675 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
676 comdatDefs[sectionNumber] = nullptr;
677 DefinedRegular *leader;
678
679 if (sym.isExternal()) {
680 std::tie(leader, prevailing) =
681 ctx.symtab.addComdat(this, getName(), sym.getGeneric());
682 } else {
683 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
684 /*IsExternal*/ false, sym.getGeneric());
685 prevailing = true;
686 }
687
688 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
689 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
690 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
691 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
692 fatal("unknown comdat type " + std::to_string((int)def->Selection) +
693 " for " + getName() + " in " + toString(this));
694 }
695 COMDATType selection = (COMDATType)def->Selection;
696
697 if (leader->isCOMDAT)
698 handleComdatSelection(sym, selection, prevailing, leader, def);
699
700 if (prevailing) {
701 SectionChunk *c = readSection(sectionNumber, def, getName());
702 sparseChunks[sectionNumber] = c;
703 if (!c)
704 return nullptr;
705 c->sym = cast<DefinedRegular>(leader);
706 c->selection = selection;
707 cast<DefinedRegular>(leader)->data = &c->repl;
708 } else {
709 sparseChunks[sectionNumber] = nullptr;
710 }
711 return leader;
712 }
713
714 // Prepare to handle the comdat leader symbol by setting the section's
715 // ComdatDefs pointer if we encounter a non-associative comdat.
716 if (sparseChunks[sectionNumber] == pendingComdat) {
717 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
718 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
719 comdatDefs[sectionNumber] = def;
720 }
721 return std::nullopt;
722 }
723
724 return createRegular(sym);
725 }
726
getMachineType()727 MachineTypes ObjFile::getMachineType() {
728 if (coffObj)
729 return static_cast<MachineTypes>(coffObj->getMachine());
730 return IMAGE_FILE_MACHINE_UNKNOWN;
731 }
732
getDebugSection(StringRef secName)733 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
734 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
735 return sec->consumeDebugMagic();
736 return {};
737 }
738
739 // OBJ files systematically store critical information in a .debug$S stream,
740 // even if the TU was compiled with no debug info. At least two records are
741 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
742 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
743 // currently used to initialize the hotPatchable member.
initializeFlags()744 void ObjFile::initializeFlags() {
745 ArrayRef<uint8_t> data = getDebugSection(".debug$S");
746 if (data.empty())
747 return;
748
749 DebugSubsectionArray subsections;
750
751 BinaryStreamReader reader(data, llvm::endianness::little);
752 ExitOnError exitOnErr;
753 exitOnErr(reader.readArray(subsections, data.size()));
754
755 for (const DebugSubsectionRecord &ss : subsections) {
756 if (ss.kind() != DebugSubsectionKind::Symbols)
757 continue;
758
759 unsigned offset = 0;
760
761 // Only parse the first two records. We are only looking for S_OBJNAME
762 // and S_COMPILE3, and they usually appear at the beginning of the
763 // stream.
764 for (unsigned i = 0; i < 2; ++i) {
765 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
766 if (!sym) {
767 consumeError(sym.takeError());
768 return;
769 }
770 if (sym->kind() == SymbolKind::S_COMPILE3) {
771 auto cs =
772 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
773 hotPatchable =
774 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
775 }
776 if (sym->kind() == SymbolKind::S_OBJNAME) {
777 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
778 sym.get()));
779 if (objName.Signature)
780 pchSignature = objName.Signature;
781 }
782 offset += sym->length();
783 }
784 }
785 }
786
787 // Depending on the compilation flags, OBJs can refer to external files,
788 // necessary to merge this OBJ into the final PDB. We currently support two
789 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
790 // And PDB type servers, when compiling with /Zi. This function extracts these
791 // dependencies and makes them available as a TpiSource interface (see
792 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
793 // output even with /Yc and /Yu and with /Zi.
initializeDependencies()794 void ObjFile::initializeDependencies() {
795 if (!ctx.config.debug)
796 return;
797
798 bool isPCH = false;
799
800 ArrayRef<uint8_t> data = getDebugSection(".debug$P");
801 if (!data.empty())
802 isPCH = true;
803 else
804 data = getDebugSection(".debug$T");
805
806 // symbols but no types, make a plain, empty TpiSource anyway, because it
807 // simplifies adding the symbols later.
808 if (data.empty()) {
809 if (!debugChunks.empty())
810 debugTypesObj = makeTpiSource(ctx, this);
811 return;
812 }
813
814 // Get the first type record. It will indicate if this object uses a type
815 // server (/Zi) or a PCH file (/Yu).
816 CVTypeArray types;
817 BinaryStreamReader reader(data, llvm::endianness::little);
818 cantFail(reader.readArray(types, reader.getLength()));
819 CVTypeArray::Iterator firstType = types.begin();
820 if (firstType == types.end())
821 return;
822
823 // Remember the .debug$T or .debug$P section.
824 debugTypes = data;
825
826 // This object file is a PCH file that others will depend on.
827 if (isPCH) {
828 debugTypesObj = makePrecompSource(ctx, this);
829 return;
830 }
831
832 // This object file was compiled with /Zi. Enqueue the PDB dependency.
833 if (firstType->kind() == LF_TYPESERVER2) {
834 TypeServer2Record ts = cantFail(
835 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
836 debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
837 enqueuePdbFile(ts.getName(), this);
838 return;
839 }
840
841 // This object was compiled with /Yu. It uses types from another object file
842 // with a matching signature.
843 if (firstType->kind() == LF_PRECOMP) {
844 PrecompRecord precomp = cantFail(
845 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
846 // We're better off trusting the LF_PRECOMP signature. In some cases the
847 // S_OBJNAME record doesn't contain a valid PCH signature.
848 if (precomp.Signature)
849 pchSignature = precomp.Signature;
850 debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
851 // Drop the LF_PRECOMP record from the input stream.
852 debugTypes = debugTypes.drop_front(firstType->RecordData.size());
853 return;
854 }
855
856 // This is a plain old object file.
857 debugTypesObj = makeTpiSource(ctx, this);
858 }
859
860 // The casing of the PDB path stamped in the OBJ can differ from the actual path
861 // on disk. With this, we ensure to always use lowercase as a key for the
862 // pdbInputFileInstances map, at least on Windows.
normalizePdbPath(StringRef path)863 static std::string normalizePdbPath(StringRef path) {
864 #if defined(_WIN32)
865 return path.lower();
866 #else // LINUX
867 return std::string(path);
868 #endif
869 }
870
871 // If existing, return the actual PDB path on disk.
872 static std::optional<std::string>
findPdbPath(StringRef pdbPath,ObjFile * dependentFile,StringRef outputPath)873 findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) {
874 // Ensure the file exists before anything else. In some cases, if the path
875 // points to a removable device, Driver::enqueuePath() would fail with an
876 // error (EAGAIN, "resource unavailable try again") which we want to skip
877 // silently.
878 if (llvm::sys::fs::exists(pdbPath))
879 return normalizePdbPath(pdbPath);
880
881 StringRef objPath = !dependentFile->parentName.empty()
882 ? dependentFile->parentName
883 : dependentFile->getName();
884
885 // Currently, type server PDBs are only created by MSVC cl, which only runs
886 // on Windows, so we can assume type server paths are Windows style.
887 StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows);
888
889 // Check if the PDB is in the same folder as the OBJ.
890 SmallString<128> path;
891 sys::path::append(path, sys::path::parent_path(objPath), pdbName);
892 if (llvm::sys::fs::exists(path))
893 return normalizePdbPath(path);
894
895 // Check if the PDB is in the output folder.
896 path.clear();
897 sys::path::append(path, sys::path::parent_path(outputPath), pdbName);
898 if (llvm::sys::fs::exists(path))
899 return normalizePdbPath(path);
900
901 return std::nullopt;
902 }
903
PDBInputFile(COFFLinkerContext & ctx,MemoryBufferRef m)904 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
905 : InputFile(ctx, PDBKind, m) {}
906
907 PDBInputFile::~PDBInputFile() = default;
908
findFromRecordPath(const COFFLinkerContext & ctx,StringRef path,ObjFile * fromFile)909 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
910 StringRef path,
911 ObjFile *fromFile) {
912 auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
913 if (!p)
914 return nullptr;
915 auto it = ctx.pdbInputFileInstances.find(*p);
916 if (it != ctx.pdbInputFileInstances.end())
917 return it->second;
918 return nullptr;
919 }
920
parse()921 void PDBInputFile::parse() {
922 ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
923
924 std::unique_ptr<pdb::IPDBSession> thisSession;
925 Error E = pdb::NativeSession::createFromPdb(
926 MemoryBuffer::getMemBuffer(mb, false), thisSession);
927 if (E) {
928 loadErrorStr.emplace(toString(std::move(E)));
929 return; // fail silently at this point - the error will be handled later,
930 // when merging the debug type stream
931 }
932
933 session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
934
935 pdb::PDBFile &pdbFile = session->getPDBFile();
936 auto expectedInfo = pdbFile.getPDBInfoStream();
937 // All PDB Files should have an Info stream.
938 if (!expectedInfo) {
939 loadErrorStr.emplace(toString(expectedInfo.takeError()));
940 return;
941 }
942 debugTypesObj = makeTypeServerSource(ctx, this);
943 }
944
945 // Used only for DWARF debug info, which is not common (except in MinGW
946 // environments). This returns an optional pair of file name and line
947 // number for where the variable was defined.
948 std::optional<std::pair<StringRef, uint32_t>>
getVariableLocation(StringRef var)949 ObjFile::getVariableLocation(StringRef var) {
950 if (!dwarf) {
951 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
952 if (!dwarf)
953 return std::nullopt;
954 }
955 if (ctx.config.machine == I386)
956 var.consume_front("_");
957 std::optional<std::pair<std::string, unsigned>> ret =
958 dwarf->getVariableLoc(var);
959 if (!ret)
960 return std::nullopt;
961 return std::make_pair(saver().save(ret->first), ret->second);
962 }
963
964 // Used only for DWARF debug info, which is not common (except in MinGW
965 // environments).
getDILineInfo(uint32_t offset,uint32_t sectionIndex)966 std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
967 uint32_t sectionIndex) {
968 if (!dwarf) {
969 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
970 if (!dwarf)
971 return std::nullopt;
972 }
973
974 return dwarf->getDILineInfo(offset, sectionIndex);
975 }
976
enqueuePdbFile(StringRef path,ObjFile * fromFile)977 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
978 auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
979 if (!p)
980 return;
981 auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
982 if (!it.second)
983 return; // already scheduled for load
984 ctx.driver.enqueuePDB(*p);
985 }
986
ImportFile(COFFLinkerContext & ctx,MemoryBufferRef m)987 ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
988 : InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {}
989
parse()990 void ImportFile::parse() {
991 const auto *hdr =
992 reinterpret_cast<const coff_import_header *>(mb.getBufferStart());
993
994 // Check if the total size is valid.
995 if (mb.getBufferSize() < sizeof(*hdr) ||
996 mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
997 fatal("broken import library");
998
999 // Read names and create an __imp_ symbol.
1000 StringRef buf = mb.getBuffer().substr(sizeof(*hdr));
1001 StringRef name = saver().save(buf.split('\0').first);
1002 StringRef impName = saver().save("__imp_" + name);
1003 buf = buf.substr(name.size() + 1);
1004 dllName = buf.split('\0').first;
1005 StringRef extName;
1006 switch (hdr->getNameType()) {
1007 case IMPORT_ORDINAL:
1008 extName = "";
1009 break;
1010 case IMPORT_NAME:
1011 extName = name;
1012 break;
1013 case IMPORT_NAME_NOPREFIX:
1014 extName = ltrim1(name, "?@_");
1015 break;
1016 case IMPORT_NAME_UNDECORATE:
1017 extName = ltrim1(name, "?@_");
1018 extName = extName.substr(0, extName.find('@'));
1019 break;
1020 case IMPORT_NAME_EXPORTAS:
1021 extName = buf.substr(dllName.size() + 1).split('\0').first;
1022 break;
1023 }
1024
1025 this->hdr = hdr;
1026 externalName = extName;
1027
1028 impSym = ctx.symtab.addImportData(impName, this);
1029 // If this was a duplicate, we logged an error but may continue;
1030 // in this case, impSym is nullptr.
1031 if (!impSym)
1032 return;
1033
1034 if (hdr->getType() == llvm::COFF::IMPORT_CONST)
1035 static_cast<void>(ctx.symtab.addImportData(name, this));
1036
1037 // If type is function, we need to create a thunk which jump to an
1038 // address pointed by the __imp_ symbol. (This allows you to call
1039 // DLL functions just like regular non-DLL functions.)
1040 if (hdr->getType() == llvm::COFF::IMPORT_CODE)
1041 thunkSym = ctx.symtab.addImportThunk(
1042 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
1043 }
1044
BitcodeFile(COFFLinkerContext & ctx,MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy)1045 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
1046 StringRef archiveName, uint64_t offsetInArchive,
1047 bool lazy)
1048 : InputFile(ctx, BitcodeKind, mb, lazy) {
1049 std::string path = mb.getBufferIdentifier().str();
1050 if (ctx.config.thinLTOIndexOnly)
1051 path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
1052 ctx.config.thinLTOObjectSuffixReplace.first,
1053 ctx.config.thinLTOObjectSuffixReplace.second);
1054
1055 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1056 // name. If two archives define two members with the same name, this
1057 // causes a collision which result in only one of the objects being taken
1058 // into consideration at LTO time (which very likely causes undefined
1059 // symbols later in the link stage). So we append file offset to make
1060 // filename unique.
1061 MemoryBufferRef mbref(mb.getBuffer(),
1062 saver().save(archiveName.empty()
1063 ? path
1064 : archiveName +
1065 sys::path::filename(path) +
1066 utostr(offsetInArchive)));
1067
1068 obj = check(lto::InputFile::create(mbref));
1069 }
1070
1071 BitcodeFile::~BitcodeFile() = default;
1072
parse()1073 void BitcodeFile::parse() {
1074 llvm::StringSaver &saver = lld::saver();
1075
1076 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1077 for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1078 // FIXME: Check nodeduplicate
1079 comdat[i] =
1080 ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1081 for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1082 StringRef symName = saver.save(objSym.getName());
1083 int comdatIndex = objSym.getComdatIndex();
1084 Symbol *sym;
1085 SectionChunk *fakeSC = nullptr;
1086 if (objSym.isExecutable())
1087 fakeSC = &ctx.ltoTextSectionChunk.chunk;
1088 else
1089 fakeSC = &ctx.ltoDataSectionChunk.chunk;
1090 if (objSym.isUndefined()) {
1091 sym = ctx.symtab.addUndefined(symName, this, false);
1092 if (objSym.isWeak())
1093 sym->deferUndefined = true;
1094 // If one LTO object file references (i.e. has an undefined reference to)
1095 // a symbol with an __imp_ prefix, the LTO compilation itself sees it
1096 // as unprefixed but with a dllimport attribute instead, and doesn't
1097 // understand the relation to a concrete IR symbol with the __imp_ prefix.
1098 //
1099 // For such cases, mark the symbol as used in a regular object (i.e. the
1100 // symbol must be retained) so that the linker can associate the
1101 // references in the end. If the symbol is defined in an import library
1102 // or in a regular object file, this has no effect, but if it is defined
1103 // in another LTO object file, this makes sure it is kept, to fulfill
1104 // the reference when linking the output of the LTO compilation.
1105 if (symName.starts_with("__imp_"))
1106 sym->isUsedInRegularObj = true;
1107 } else if (objSym.isCommon()) {
1108 sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1109 } else if (objSym.isWeak() && objSym.isIndirect()) {
1110 // Weak external.
1111 sym = ctx.symtab.addUndefined(symName, this, true);
1112 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1113 Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1114 checkAndSetWeakAlias(ctx, this, sym, alias);
1115 } else if (comdatIndex != -1) {
1116 if (symName == obj->getComdatTable()[comdatIndex].first) {
1117 sym = comdat[comdatIndex].first;
1118 if (cast<DefinedRegular>(sym)->data == nullptr)
1119 cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1120 } else if (comdat[comdatIndex].second) {
1121 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1122 } else {
1123 sym = ctx.symtab.addUndefined(symName, this, false);
1124 }
1125 } else {
1126 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0,
1127 objSym.isWeak());
1128 }
1129 symbols.push_back(sym);
1130 if (objSym.isUsed())
1131 ctx.config.gcroot.push_back(sym);
1132 }
1133 directives = saver.save(obj->getCOFFLinkerOpts());
1134 }
1135
parseLazy()1136 void BitcodeFile::parseLazy() {
1137 for (const lto::InputFile::Symbol &sym : obj->symbols())
1138 if (!sym.isUndefined())
1139 ctx.symtab.addLazyObject(this, sym.getName());
1140 }
1141
getMachineType()1142 MachineTypes BitcodeFile::getMachineType() {
1143 switch (Triple(obj->getTargetTriple()).getArch()) {
1144 case Triple::x86_64:
1145 return AMD64;
1146 case Triple::x86:
1147 return I386;
1148 case Triple::arm:
1149 case Triple::thumb:
1150 return ARMNT;
1151 case Triple::aarch64:
1152 return ARM64;
1153 default:
1154 return IMAGE_FILE_MACHINE_UNKNOWN;
1155 }
1156 }
1157
replaceThinLTOSuffix(StringRef path,StringRef suffix,StringRef repl)1158 std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
1159 StringRef repl) {
1160 if (path.consume_back(suffix))
1161 return (path + repl).str();
1162 return std::string(path);
1163 }
1164
isRVACode(COFFObjectFile * coffObj,uint64_t rva,InputFile * file)1165 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1166 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1167 const coff_section *sec = CHECK(coffObj->getSection(i), file);
1168 if (rva >= sec->VirtualAddress &&
1169 rva <= sec->VirtualAddress + sec->VirtualSize) {
1170 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1171 }
1172 }
1173 return false;
1174 }
1175
parse()1176 void DLLFile::parse() {
1177 // Parse a memory buffer as a PE-COFF executable.
1178 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1179
1180 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1181 bin.release();
1182 coffObj.reset(obj);
1183 } else {
1184 error(toString(this) + " is not a COFF file");
1185 return;
1186 }
1187
1188 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1189 error(toString(this) + " is not a PE-COFF executable");
1190 return;
1191 }
1192
1193 for (const auto &exp : coffObj->export_directories()) {
1194 StringRef dllName, symbolName;
1195 uint32_t exportRVA;
1196 checkError(exp.getDllName(dllName));
1197 checkError(exp.getSymbolName(symbolName));
1198 checkError(exp.getExportRVA(exportRVA));
1199
1200 if (symbolName.empty())
1201 continue;
1202
1203 bool code = isRVACode(coffObj.get(), exportRVA, this);
1204
1205 Symbol *s = make<Symbol>();
1206 s->dllName = dllName;
1207 s->symbolName = symbolName;
1208 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1209 s->nameType = ImportNameType::IMPORT_NAME;
1210
1211 if (coffObj->getMachine() == I386) {
1212 s->symbolName = symbolName = saver().save("_" + symbolName);
1213 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1214 }
1215
1216 StringRef impName = saver().save("__imp_" + symbolName);
1217 ctx.symtab.addLazyDLLSymbol(this, s, impName);
1218 if (code)
1219 ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1220 }
1221 }
1222
getMachineType()1223 MachineTypes DLLFile::getMachineType() {
1224 if (coffObj)
1225 return static_cast<MachineTypes>(coffObj->getMachine());
1226 return IMAGE_FILE_MACHINE_UNKNOWN;
1227 }
1228
makeImport(DLLFile::Symbol * s)1229 void DLLFile::makeImport(DLLFile::Symbol *s) {
1230 if (!seen.insert(s->symbolName).second)
1231 return;
1232
1233 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1234 size_t size = sizeof(coff_import_header) + impSize;
1235 char *buf = bAlloc().Allocate<char>(size);
1236 memset(buf, 0, size);
1237 char *p = buf;
1238 auto *imp = reinterpret_cast<coff_import_header *>(p);
1239 p += sizeof(*imp);
1240 imp->Sig2 = 0xFFFF;
1241 imp->Machine = coffObj->getMachine();
1242 imp->SizeOfData = impSize;
1243 imp->OrdinalHint = 0; // Only linking by name
1244 imp->TypeInfo = (s->nameType << 2) | s->importType;
1245
1246 // Write symbol name and DLL name.
1247 memcpy(p, s->symbolName.data(), s->symbolName.size());
1248 p += s->symbolName.size() + 1;
1249 memcpy(p, s->dllName.data(), s->dllName.size());
1250 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1251 ImportFile *impFile = make<ImportFile>(ctx, mbref);
1252 ctx.symtab.addFile(impFile);
1253 }
1254