1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/spinlock.h>
19 #include <linux/notifier.h>
20
21 /*
22 * All voltages, currents, charges, energies, time and temperatures in uV,
23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
24 * stated. It's driver's job to convert its raw values to units in which
25 * this class operates.
26 */
27
28 /*
29 * For systems where the charger determines the maximum battery capacity
30 * the min and max fields should be used to present these values to user
31 * space. Unused/unknown fields will not appear in sysfs.
32 */
33
34 enum {
35 POWER_SUPPLY_STATUS_UNKNOWN = 0,
36 POWER_SUPPLY_STATUS_CHARGING,
37 POWER_SUPPLY_STATUS_DISCHARGING,
38 POWER_SUPPLY_STATUS_NOT_CHARGING,
39 POWER_SUPPLY_STATUS_FULL,
40 };
41
42 /* What algorithm is the charger using? */
43 enum {
44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45 POWER_SUPPLY_CHARGE_TYPE_NONE,
46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
53 };
54
55 enum {
56 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57 POWER_SUPPLY_HEALTH_GOOD,
58 POWER_SUPPLY_HEALTH_OVERHEAT,
59 POWER_SUPPLY_HEALTH_DEAD,
60 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62 POWER_SUPPLY_HEALTH_COLD,
63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65 POWER_SUPPLY_HEALTH_OVERCURRENT,
66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67 POWER_SUPPLY_HEALTH_WARM,
68 POWER_SUPPLY_HEALTH_COOL,
69 POWER_SUPPLY_HEALTH_HOT,
70 POWER_SUPPLY_HEALTH_NO_BATTERY,
71 };
72
73 enum {
74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75 POWER_SUPPLY_TECHNOLOGY_NiMH,
76 POWER_SUPPLY_TECHNOLOGY_LION,
77 POWER_SUPPLY_TECHNOLOGY_LIPO,
78 POWER_SUPPLY_TECHNOLOGY_LiFe,
79 POWER_SUPPLY_TECHNOLOGY_NiCd,
80 POWER_SUPPLY_TECHNOLOGY_LiMn,
81 };
82
83 enum {
84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90 };
91
92 enum {
93 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94 POWER_SUPPLY_SCOPE_SYSTEM,
95 POWER_SUPPLY_SCOPE_DEVICE,
96 };
97
98 enum power_supply_property {
99 /* Properties of type `int' */
100 POWER_SUPPLY_PROP_STATUS = 0,
101 POWER_SUPPLY_PROP_CHARGE_TYPE,
102 POWER_SUPPLY_PROP_HEALTH,
103 POWER_SUPPLY_PROP_PRESENT,
104 POWER_SUPPLY_PROP_ONLINE,
105 POWER_SUPPLY_PROP_AUTHENTIC,
106 POWER_SUPPLY_PROP_TECHNOLOGY,
107 POWER_SUPPLY_PROP_CYCLE_COUNT,
108 POWER_SUPPLY_PROP_VOLTAGE_MAX,
109 POWER_SUPPLY_PROP_VOLTAGE_MIN,
110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112 POWER_SUPPLY_PROP_VOLTAGE_NOW,
113 POWER_SUPPLY_PROP_VOLTAGE_AVG,
114 POWER_SUPPLY_PROP_VOLTAGE_OCV,
115 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116 POWER_SUPPLY_PROP_CURRENT_MAX,
117 POWER_SUPPLY_PROP_CURRENT_NOW,
118 POWER_SUPPLY_PROP_CURRENT_AVG,
119 POWER_SUPPLY_PROP_CURRENT_BOOT,
120 POWER_SUPPLY_PROP_POWER_NOW,
121 POWER_SUPPLY_PROP_POWER_AVG,
122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124 POWER_SUPPLY_PROP_CHARGE_FULL,
125 POWER_SUPPLY_PROP_CHARGE_EMPTY,
126 POWER_SUPPLY_PROP_CHARGE_NOW,
127 POWER_SUPPLY_PROP_CHARGE_AVG,
128 POWER_SUPPLY_PROP_CHARGE_COUNTER,
129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143 POWER_SUPPLY_PROP_ENERGY_FULL,
144 POWER_SUPPLY_PROP_ENERGY_EMPTY,
145 POWER_SUPPLY_PROP_ENERGY_NOW,
146 POWER_SUPPLY_PROP_ENERGY_AVG,
147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152 POWER_SUPPLY_PROP_TEMP,
153 POWER_SUPPLY_PROP_TEMP_MAX,
154 POWER_SUPPLY_PROP_TEMP_MIN,
155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157 POWER_SUPPLY_PROP_TEMP_AMBIENT,
158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165 POWER_SUPPLY_PROP_USB_TYPE,
166 POWER_SUPPLY_PROP_SCOPE,
167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169 POWER_SUPPLY_PROP_CALIBRATE,
170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173 /* Properties of type `const char *' */
174 POWER_SUPPLY_PROP_MODEL_NAME,
175 POWER_SUPPLY_PROP_MANUFACTURER,
176 POWER_SUPPLY_PROP_SERIAL_NUMBER,
177 };
178
179 enum power_supply_type {
180 POWER_SUPPLY_TYPE_UNKNOWN = 0,
181 POWER_SUPPLY_TYPE_BATTERY,
182 POWER_SUPPLY_TYPE_UPS,
183 POWER_SUPPLY_TYPE_MAINS,
184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
193 };
194
195 enum power_supply_usb_type {
196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
206 };
207
208 enum power_supply_charge_behaviour {
209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212 };
213
214 enum power_supply_notifier_events {
215 PSY_EVENT_PROP_CHANGED,
216 };
217
218 union power_supply_propval {
219 int intval;
220 const char *strval;
221 };
222
223 struct device_node;
224 struct power_supply;
225
226 /* Run-time specific power supply configuration */
227 struct power_supply_config {
228 struct device_node *of_node;
229 struct fwnode_handle *fwnode;
230
231 /* Driver private data */
232 void *drv_data;
233
234 /* Device specific sysfs attributes */
235 const struct attribute_group **attr_grp;
236
237 char **supplied_to;
238 size_t num_supplicants;
239 };
240
241 /* Description of power supply */
242 struct power_supply_desc {
243 const char *name;
244 enum power_supply_type type;
245 u8 charge_behaviours;
246 u32 usb_types;
247 const enum power_supply_property *properties;
248 size_t num_properties;
249
250 /*
251 * Functions for drivers implementing power supply class.
252 * These shouldn't be called directly by other drivers for accessing
253 * this power supply. Instead use power_supply_*() functions (for
254 * example power_supply_get_property()).
255 */
256 int (*get_property)(struct power_supply *psy,
257 enum power_supply_property psp,
258 union power_supply_propval *val);
259 int (*set_property)(struct power_supply *psy,
260 enum power_supply_property psp,
261 const union power_supply_propval *val);
262 /*
263 * property_is_writeable() will be called during registration
264 * of power supply. If this happens during device probe then it must
265 * not access internal data of device (because probe did not end).
266 */
267 int (*property_is_writeable)(struct power_supply *psy,
268 enum power_supply_property psp);
269 void (*external_power_changed)(struct power_supply *psy);
270 void (*set_charged)(struct power_supply *psy);
271
272 /*
273 * Set if thermal zone should not be created for this power supply.
274 * For example for virtual supplies forwarding calls to actual
275 * sensors or other supplies.
276 */
277 bool no_thermal;
278 /* For APM emulation, think legacy userspace. */
279 int use_for_apm;
280 };
281
282 struct power_supply {
283 const struct power_supply_desc *desc;
284
285 char **supplied_to;
286 size_t num_supplicants;
287
288 char **supplied_from;
289 size_t num_supplies;
290 struct device_node *of_node;
291
292 /* Driver private data */
293 void *drv_data;
294
295 /* private */
296 struct device dev;
297 struct work_struct changed_work;
298 struct delayed_work deferred_register_work;
299 spinlock_t changed_lock;
300 bool changed;
301 bool initialized;
302 bool removing;
303 atomic_t use_cnt;
304 struct power_supply_battery_info *battery_info;
305 #ifdef CONFIG_THERMAL
306 struct thermal_zone_device *tzd;
307 struct thermal_cooling_device *tcd;
308 #endif
309
310 #ifdef CONFIG_LEDS_TRIGGERS
311 struct led_trigger *trig;
312 struct led_trigger *charging_trig;
313 struct led_trigger *full_trig;
314 struct led_trigger *charging_blink_full_solid_trig;
315 struct led_trigger *charging_orange_full_green_trig;
316 #endif
317 };
318
319 /*
320 * This is recommended structure to specify static power supply parameters.
321 * Generic one, parametrizable for different power supplies. Power supply
322 * class itself does not use it, but that's what implementing most platform
323 * drivers, should try reuse for consistency.
324 */
325
326 struct power_supply_info {
327 const char *name;
328 int technology;
329 int voltage_max_design;
330 int voltage_min_design;
331 int charge_full_design;
332 int charge_empty_design;
333 int energy_full_design;
334 int energy_empty_design;
335 int use_for_apm;
336 };
337
338 struct power_supply_battery_ocv_table {
339 int ocv; /* microVolts */
340 int capacity; /* percent */
341 };
342
343 struct power_supply_resistance_temp_table {
344 int temp; /* celsius */
345 int resistance; /* internal resistance percent */
346 };
347
348 struct power_supply_vbat_ri_table {
349 int vbat_uv; /* Battery voltage in microvolt */
350 int ri_uohm; /* Internal resistance in microohm */
351 };
352
353 /**
354 * struct power_supply_maintenance_charge_table - setting for maintenace charging
355 * @charge_current_max_ua: maintenance charging current that is used to keep
356 * the charge of the battery full as current is consumed after full charging.
357 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
358 * reach this voltage the maintenance charging current is turned off. It is
359 * turned back on if we fall below this voltage.
360 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
361 * lower than the constant_charge_voltage_max_uv. We can apply this settings
362 * charge_current_max_ua until we get back up to this voltage.
363 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
364 * time in minutes. We will only use maintenance charging in this setting
365 * for a certain amount of time, then we will first move to the next
366 * maintenance charge current and voltage pair in respective array and wait
367 * for the next safety timer timeout, or, if we reached the last maintencance
368 * charging setting, disable charging until we reach
369 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
370 * These timers should be chosen to align with the typical discharge curve
371 * for the battery.
372 *
373 * Ordinary CC/CV charging will stop charging when the charge current goes
374 * below charge_term_current_ua, and then restart it (if the device is still
375 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
376 * consumer products because the power usage while connected to a charger is
377 * not zero, and devices are not manufactured to draw power directly from the
378 * charger: instead they will at all times dissipate the battery a little, like
379 * the power used in standby mode. This will over time give a charge graph
380 * such as this:
381 *
382 * Energy
383 * ^ ... ... ... ... ... ... ...
384 * | . . . . . . . . . . . . .
385 * | .. . .. . .. . .. . .. . .. . ..
386 * |. .. .. .. .. .. ..
387 * +-------------------------------------------------------------------> t
388 *
389 * Practically this means that the Li-ions are wandering back and forth in the
390 * battery and this causes degeneration of the battery anode and cathode.
391 * To prolong the life of the battery, maintenance charging is applied after
392 * reaching charge_term_current_ua to hold up the charge in the battery while
393 * consuming power, thus lowering the wear on the battery:
394 *
395 * Energy
396 * ^ .......................................
397 * | . ......................
398 * | ..
399 * |.
400 * +-------------------------------------------------------------------> t
401 *
402 * Maintenance charging uses the voltages from this table: a table of settings
403 * is traversed using a slightly lower current and voltage than what is used for
404 * CC/CV charging. The maintenance charging will for safety reasons not go on
405 * indefinately: we lower the current and voltage with successive maintenance
406 * settings, then disable charging completely after we reach the last one,
407 * and after that we do not restart charging until we reach
408 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
409 * ordinary CC/CV charging from there.
410 *
411 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
412 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
413 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
414 * After this the charge cycle is restarted waiting for
415 * charge_restart_voltage_uv.
416 *
417 * For most mobile electronics this type of maintenance charging is enough for
418 * the user to disconnect the device and make use of it before both maintenance
419 * charging cycles are complete, if the current and voltage has been chosen
420 * appropriately. These need to be determined from battery discharge curves
421 * and expected standby current.
422 *
423 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
424 * charging, ordinary CC/CV charging is restarted. This can happen if the
425 * device is e.g. actively used during charging, so more current is drawn than
426 * the expected stand-by current. Also overvoltage protection will be applied
427 * as usual.
428 */
429 struct power_supply_maintenance_charge_table {
430 int charge_current_max_ua;
431 int charge_voltage_max_uv;
432 int charge_safety_timer_minutes;
433 };
434
435 #define POWER_SUPPLY_OCV_TEMP_MAX 20
436
437 /**
438 * struct power_supply_battery_info - information about batteries
439 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
440 * @energy_full_design_uwh: energy content when fully charged in microwatt
441 * hours
442 * @charge_full_design_uah: charge content when fully charged in microampere
443 * hours
444 * @voltage_min_design_uv: minimum voltage across the poles when the battery
445 * is at minimum voltage level in microvolts. If the voltage drops below this
446 * level the battery will need precharging when using CC/CV charging.
447 * @voltage_max_design_uv: voltage across the poles when the battery is fully
448 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
449 * printed on the label of the battery.
450 * @tricklecharge_current_ua: the tricklecharge current used when trickle
451 * charging the battery in microamperes. This is the charging phase when the
452 * battery is completely empty and we need to carefully trickle in some
453 * charge until we reach the precharging voltage.
454 * @precharge_current_ua: current to use in the precharge phase in microamperes,
455 * the precharge rate is limited by limiting the current to this value.
456 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
457 * microvolts. When we pass this voltage we will nominally switch over to the
458 * CC (constant current) charging phase defined by constant_charge_current_ua
459 * and constant_charge_voltage_max_uv.
460 * @charge_term_current_ua: when the current in the CV (constant voltage)
461 * charging phase drops below this value in microamperes the charging will
462 * terminate completely and not restart until the voltage over the battery
463 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
464 * @charge_restart_voltage_uv: when the battery has been fully charged by
465 * CC/CV charging and charging has been disabled, and the voltage subsequently
466 * drops below this value in microvolts, the charging will be restarted
467 * (typically using CV charging).
468 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
469 * voltage_max_design_uv and we reach this voltage level, all charging must
470 * stop and emergency procedures take place, such as shutting down the system
471 * in some cases.
472 * @constant_charge_current_max_ua: current in microamperes to use in the CC
473 * (constant current) charging phase. The charging rate is limited
474 * by this current. This is the main charging phase and as the current is
475 * constant into the battery the voltage slowly ascends to
476 * constant_charge_voltage_max_uv.
477 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
478 * the CC (constant current) charging phase and the beginning of the CV
479 * (constant voltage) charging phase.
480 * @maintenance_charge: an array of maintenance charging settings to be used
481 * after the main CC/CV charging phase is complete.
482 * @maintenance_charge_size: the number of maintenance charging settings in
483 * maintenance_charge.
484 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
485 * enters low alert temperature, i.e. if the internal temperature is between
486 * temp_alert_min and temp_min. No matter the charging phase, this
487 * and alert_high_temp_charge_voltage_uv will be applied.
488 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
489 * but for the charging voltage.
490 * @alert_high_temp_charge_current_ua: The charging current to use if the
491 * battery enters high alert temperature, i.e. if the internal temperature is
492 * between temp_alert_max and temp_max. No matter the charging phase, this
493 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
494 * the charging current as an evasive manouver.
495 * @alert_high_temp_charge_voltage_uv: Same as
496 * alert_high_temp_charge_current_ua, but for the charging voltage.
497 * @factory_internal_resistance_uohm: the internal resistance of the battery
498 * at fabrication time, expressed in microohms. This resistance will vary
499 * depending on the lifetime and charge of the battery, so this is just a
500 * nominal ballpark figure. This internal resistance is given for the state
501 * when the battery is discharging.
502 * @factory_internal_resistance_charging_uohm: the internal resistance of the
503 * battery at fabrication time while charging, expressed in microohms.
504 * The charging process will affect the internal resistance of the battery
505 * so this value provides a better resistance under these circumstances.
506 * This resistance will vary depending on the lifetime and charge of the
507 * battery, so this is just a nominal ballpark figure.
508 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
509 * temperature indices. This is an array of temperatures in degrees Celsius
510 * indicating which capacity table to use for a certain temperature, since
511 * the capacity for reasons of chemistry will be different at different
512 * temperatures. Determining capacity is a multivariate problem and the
513 * temperature is the first variable we determine.
514 * @temp_ambient_alert_min: the battery will go outside of operating conditions
515 * when the ambient temperature goes below this temperature in degrees
516 * Celsius.
517 * @temp_ambient_alert_max: the battery will go outside of operating conditions
518 * when the ambient temperature goes above this temperature in degrees
519 * Celsius.
520 * @temp_alert_min: the battery should issue an alert if the internal
521 * temperature goes below this temperature in degrees Celsius.
522 * @temp_alert_max: the battery should issue an alert if the internal
523 * temperature goes above this temperature in degrees Celsius.
524 * @temp_min: the battery will go outside of operating conditions when
525 * the internal temperature goes below this temperature in degrees Celsius.
526 * Normally this means the system should shut down.
527 * @temp_max: the battery will go outside of operating conditions when
528 * the internal temperature goes above this temperature in degrees Celsius.
529 * Normally this means the system should shut down.
530 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
531 * ocv_table and a size for each entry in ocv_table_size. These arrays
532 * determine the capacity in percent in relation to the voltage in microvolts
533 * at the indexed temperature.
534 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
535 * each entry in the array of capacity arrays in ocv_table.
536 * @resist_table: this is a table that correlates a battery temperature to the
537 * expected internal resistance at this temperature. The resistance is given
538 * as a percentage of factory_internal_resistance_uohm. Knowing the
539 * resistance of the battery is usually necessary for calculating the open
540 * circuit voltage (OCV) that is then used with the ocv_table to calculate
541 * the capacity of the battery. The resist_table must be ordered descending
542 * by temperature: highest temperature with lowest resistance first, lowest
543 * temperature with highest resistance last.
544 * @resist_table_size: the number of items in the resist_table.
545 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
546 * to internal resistance (Ri). The resistance is given in microohm for the
547 * corresponding voltage in microvolts. The internal resistance is used to
548 * determine the open circuit voltage so that we can determine the capacity
549 * of the battery. These voltages to resistance tables apply when the battery
550 * is discharging. The table must be ordered descending by voltage: highest
551 * voltage first.
552 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
553 * table.
554 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
555 * when the battery is charging. Being under charge changes the battery's
556 * internal resistance characteristics so a separate table is needed.*
557 * The table must be ordered descending by voltage: highest voltage first.
558 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
559 * table.
560 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
561 * in ohms for this battery, if an identification resistor is mounted
562 * between a third battery terminal and ground. This scheme is used by a lot
563 * of mobile device batteries.
564 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
565 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
566 * tolerance is 10% we will detect a proper battery if the BTI resistance
567 * is between 6300 and 7700 Ohm.
568 *
569 * This is the recommended struct to manage static battery parameters,
570 * populated by power_supply_get_battery_info(). Most platform drivers should
571 * use these for consistency.
572 *
573 * Its field names must correspond to elements in enum power_supply_property.
574 * The default field value is -EINVAL or NULL for pointers.
575 *
576 * CC/CV CHARGING:
577 *
578 * The charging parameters here assume a CC/CV charging scheme. This method
579 * is most common with Lithium Ion batteries (other methods are possible) and
580 * looks as follows:
581 *
582 * ^ Battery voltage
583 * | --- overvoltage_limit_uv
584 * |
585 * | ...................................................
586 * | .. constant_charge_voltage_max_uv
587 * | ..
588 * | .
589 * | .
590 * | .
591 * | .
592 * | .
593 * | .. precharge_voltage_max_uv
594 * | ..
595 * |. (trickle charging)
596 * +------------------------------------------------------------------> time
597 *
598 * ^ Current into the battery
599 * |
600 * | ............. constant_charge_current_max_ua
601 * | . .
602 * | . .
603 * | . .
604 * | . .
605 * | . ..
606 * | . ....
607 * | . .....
608 * | ... precharge_current_ua ....... charge_term_current_ua
609 * | . .
610 * | . .
611 * |.... tricklecharge_current_ua .
612 * | .
613 * +-----------------------------------------------------------------> time
614 *
615 * These diagrams are synchronized on time and the voltage and current
616 * follow each other.
617 *
618 * With CC/CV charging commence over time like this for an empty battery:
619 *
620 * 1. When the battery is completely empty it may need to be charged with
621 * an especially small current so that electrons just "trickle in",
622 * this is the tricklecharge_current_ua.
623 *
624 * 2. Next a small initial pre-charge current (precharge_current_ua)
625 * is applied if the voltage is below precharge_voltage_max_uv until we
626 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
627 * to as "trickle charging" but the use in the Linux kernel is different
628 * see below!
629 *
630 * 3. Then the main charging current is applied, which is called the constant
631 * current (CC) phase. A current regulator is set up to allow
632 * constant_charge_current_max_ua of current to flow into the battery.
633 * The chemical reaction in the battery will make the voltage go up as
634 * charge goes into the battery. This current is applied until we reach
635 * the constant_charge_voltage_max_uv voltage.
636 *
637 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
638 * means we allow current to go into the battery, but we keep the voltage
639 * fixed. This current will continue to charge the battery while keeping
640 * the voltage the same. A chemical reaction in the battery goes on
641 * storing energy without affecting the voltage. Over time the current
642 * will slowly drop and when we reach charge_term_current_ua we will
643 * end the constant voltage phase.
644 *
645 * After this the battery is fully charged, and if we do not support maintenance
646 * charging, the charging will not restart until power dissipation makes the
647 * voltage fall so that we reach charge_restart_voltage_uv and at this point
648 * we restart charging at the appropriate phase, usually this will be inside
649 * the CV phase.
650 *
651 * If we support maintenance charging the voltage is however kept high after
652 * the CV phase with a very low current. This is meant to let the same charge
653 * go in for usage while the charger is still connected, mainly for
654 * dissipation for the power consuming entity while connected to the
655 * charger.
656 *
657 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
658 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
659 * explosions.
660 *
661 * DETERMINING BATTERY CAPACITY:
662 *
663 * Several members of the struct deal with trying to determine the remaining
664 * capacity in the battery, usually as a percentage of charge. In practice
665 * many chargers uses a so-called fuel gauge or coloumb counter that measure
666 * how much charge goes into the battery and how much goes out (+/- leak
667 * consumption). This does not help if we do not know how much capacity the
668 * battery has to begin with, such as when it is first used or was taken out
669 * and charged in a separate charger. Therefore many capacity algorithms use
670 * the open circuit voltage with a look-up table to determine the rough
671 * capacity of the battery. The open circuit voltage can be conceptualized
672 * with an ideal voltage source (V) in series with an internal resistance (Ri)
673 * like this:
674 *
675 * +-------> IBAT >----------------+
676 * | ^ |
677 * [ ] Ri | |
678 * | | VBAT |
679 * o <---------- | |
680 * +| ^ | [ ] Rload
681 * .---. | | |
682 * | V | | OCV | |
683 * '---' | | |
684 * | | | |
685 * GND +-------------------------------+
686 *
687 * If we disconnect the load (here simplified as a fixed resistance Rload)
688 * and measure VBAT with a infinite impedance voltage meter we will get
689 * VBAT = OCV and this assumption is sometimes made even under load, assuming
690 * Rload is insignificant. However this will be of dubious quality because the
691 * load is rarely that small and Ri is strongly nonlinear depending on
692 * temperature and how much capacity is left in the battery due to the
693 * chemistry involved.
694 *
695 * In many practical applications we cannot just disconnect the battery from
696 * the load, so instead we often try to measure the instantaneous IBAT (the
697 * current out from the battery), estimate the Ri and thus calculate the
698 * voltage drop over Ri and compensate like this:
699 *
700 * OCV = VBAT - (IBAT * Ri)
701 *
702 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
703 * (by interpolation) the Ri from the VBAT under load. These curves are highly
704 * nonlinear and may need many datapoints but can be found in datasheets for
705 * some batteries. This gives the compensated open circuit voltage (OCV) for
706 * the battery even under load. Using this method will also compensate for
707 * temperature changes in the environment: this will also make the internal
708 * resistance change, and it will affect the VBAT under load, so correlating
709 * VBAT to Ri takes both remaining capacity and temperature into consideration.
710 *
711 * Alternatively a manufacturer can specify how the capacity of the battery
712 * is dependent on the battery temperature which is the main factor affecting
713 * Ri. As we know all checmical reactions are faster when it is warm and slower
714 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
715 * voltage drops too low for example. This effect is also highly nonlinear and
716 * the purpose of the table resist_table: this will take a temperature and
717 * tell us how big percentage of Ri the specified temperature correlates to.
718 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
719 * Celsius.
720 *
721 * The power supply class itself doesn't use this struct as of now.
722 */
723
724 struct power_supply_battery_info {
725 unsigned int technology;
726 int energy_full_design_uwh;
727 int charge_full_design_uah;
728 int voltage_min_design_uv;
729 int voltage_max_design_uv;
730 int tricklecharge_current_ua;
731 int precharge_current_ua;
732 int precharge_voltage_max_uv;
733 int charge_term_current_ua;
734 int charge_restart_voltage_uv;
735 int overvoltage_limit_uv;
736 int constant_charge_current_max_ua;
737 int constant_charge_voltage_max_uv;
738 const struct power_supply_maintenance_charge_table *maintenance_charge;
739 int maintenance_charge_size;
740 int alert_low_temp_charge_current_ua;
741 int alert_low_temp_charge_voltage_uv;
742 int alert_high_temp_charge_current_ua;
743 int alert_high_temp_charge_voltage_uv;
744 int factory_internal_resistance_uohm;
745 int factory_internal_resistance_charging_uohm;
746 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
747 int temp_ambient_alert_min;
748 int temp_ambient_alert_max;
749 int temp_alert_min;
750 int temp_alert_max;
751 int temp_min;
752 int temp_max;
753 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
754 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
755 struct power_supply_resistance_temp_table *resist_table;
756 int resist_table_size;
757 const struct power_supply_vbat_ri_table *vbat2ri_discharging;
758 int vbat2ri_discharging_size;
759 const struct power_supply_vbat_ri_table *vbat2ri_charging;
760 int vbat2ri_charging_size;
761 int bti_resistance_ohm;
762 int bti_resistance_tolerance;
763 };
764
765 extern int power_supply_reg_notifier(struct notifier_block *nb);
766 extern void power_supply_unreg_notifier(struct notifier_block *nb);
767 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
768 extern struct power_supply *power_supply_get_by_name(const char *name);
769 extern void power_supply_put(struct power_supply *psy);
770 #else
power_supply_put(struct power_supply * psy)771 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)772 static inline struct power_supply *power_supply_get_by_name(const char *name)
773 { return NULL; }
774 #endif
775 #ifdef CONFIG_OF
776 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
777 const char *property);
778 extern struct power_supply *devm_power_supply_get_by_phandle(
779 struct device *dev, const char *property);
780 #else /* !CONFIG_OF */
781 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)782 power_supply_get_by_phandle(struct device_node *np, const char *property)
783 { return NULL; }
784 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)785 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
786 { return NULL; }
787 #endif /* CONFIG_OF */
788
789 extern const enum power_supply_property power_supply_battery_info_properties[];
790 extern const size_t power_supply_battery_info_properties_size;
791 extern int power_supply_get_battery_info(struct power_supply *psy,
792 struct power_supply_battery_info **info_out);
793 extern void power_supply_put_battery_info(struct power_supply *psy,
794 struct power_supply_battery_info *info);
795 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
796 enum power_supply_property psp);
797 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
798 enum power_supply_property psp,
799 union power_supply_propval *val);
800 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
801 int table_len, int ocv);
802 extern struct power_supply_battery_ocv_table *
803 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
804 int temp, int *table_len);
805 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
806 int ocv, int temp);
807 extern int
808 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
809 int table_len, int temp);
810 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
811 int vbat_uv, bool charging);
812 extern const struct power_supply_maintenance_charge_table *
813 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
814 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
815 int resistance);
816 extern void power_supply_changed(struct power_supply *psy);
817 extern int power_supply_am_i_supplied(struct power_supply *psy);
818 int power_supply_get_property_from_supplier(struct power_supply *psy,
819 enum power_supply_property psp,
820 union power_supply_propval *val);
821 extern int power_supply_set_battery_charged(struct power_supply *psy);
822
823 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)824 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
825 {
826 const struct power_supply_maintenance_charge_table *mt;
827
828 mt = power_supply_get_maintenance_charging_setting(info, 0);
829
830 return (mt != NULL);
831 }
832
833 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)834 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
835 {
836 return ((info->vbat2ri_discharging != NULL) &&
837 info->vbat2ri_discharging_size > 0);
838 }
839
840 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)841 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
842 {
843 return ((info->resist_table != NULL) &&
844 info->resist_table_size > 0);
845 }
846
847 #ifdef CONFIG_POWER_SUPPLY
848 extern int power_supply_is_system_supplied(void);
849 #else
power_supply_is_system_supplied(void)850 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
851 #endif
852
853 extern int power_supply_get_property(struct power_supply *psy,
854 enum power_supply_property psp,
855 union power_supply_propval *val);
856 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
857 extern int power_supply_set_property(struct power_supply *psy,
858 enum power_supply_property psp,
859 const union power_supply_propval *val);
860 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)861 static inline int power_supply_set_property(struct power_supply *psy,
862 enum power_supply_property psp,
863 const union power_supply_propval *val)
864 { return 0; }
865 #endif
866 extern int power_supply_property_is_writeable(struct power_supply *psy,
867 enum power_supply_property psp);
868 extern void power_supply_external_power_changed(struct power_supply *psy);
869
870 extern struct power_supply *__must_check
871 power_supply_register(struct device *parent,
872 const struct power_supply_desc *desc,
873 const struct power_supply_config *cfg);
874 extern struct power_supply *__must_check
875 power_supply_register_no_ws(struct device *parent,
876 const struct power_supply_desc *desc,
877 const struct power_supply_config *cfg);
878 extern struct power_supply *__must_check
879 devm_power_supply_register(struct device *parent,
880 const struct power_supply_desc *desc,
881 const struct power_supply_config *cfg);
882 extern struct power_supply *__must_check
883 devm_power_supply_register_no_ws(struct device *parent,
884 const struct power_supply_desc *desc,
885 const struct power_supply_config *cfg);
886 extern void power_supply_unregister(struct power_supply *psy);
887 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
888
889 #define to_power_supply(device) container_of(device, struct power_supply, dev)
890
891 extern void *power_supply_get_drvdata(struct power_supply *psy);
892 extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
893
power_supply_is_amp_property(enum power_supply_property psp)894 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
895 {
896 switch (psp) {
897 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
898 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
899 case POWER_SUPPLY_PROP_CHARGE_FULL:
900 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
901 case POWER_SUPPLY_PROP_CHARGE_NOW:
902 case POWER_SUPPLY_PROP_CHARGE_AVG:
903 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
904 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
905 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
906 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
907 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
908 case POWER_SUPPLY_PROP_CURRENT_MAX:
909 case POWER_SUPPLY_PROP_CURRENT_NOW:
910 case POWER_SUPPLY_PROP_CURRENT_AVG:
911 case POWER_SUPPLY_PROP_CURRENT_BOOT:
912 return true;
913 default:
914 break;
915 }
916
917 return false;
918 }
919
power_supply_is_watt_property(enum power_supply_property psp)920 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
921 {
922 switch (psp) {
923 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
924 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
925 case POWER_SUPPLY_PROP_ENERGY_FULL:
926 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
927 case POWER_SUPPLY_PROP_ENERGY_NOW:
928 case POWER_SUPPLY_PROP_ENERGY_AVG:
929 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
930 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
931 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
932 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
933 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
934 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
935 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
936 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
937 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
939 case POWER_SUPPLY_PROP_POWER_NOW:
940 return true;
941 default:
942 break;
943 }
944
945 return false;
946 }
947
948 #ifdef CONFIG_POWER_SUPPLY_HWMON
949 int power_supply_add_hwmon_sysfs(struct power_supply *psy);
950 void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
951 #else
power_supply_add_hwmon_sysfs(struct power_supply * psy)952 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
953 {
954 return 0;
955 }
956
957 static inline
power_supply_remove_hwmon_sysfs(struct power_supply * psy)958 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
959 #endif
960
961 #ifdef CONFIG_SYSFS
962 ssize_t power_supply_charge_behaviour_show(struct device *dev,
963 unsigned int available_behaviours,
964 enum power_supply_charge_behaviour behaviour,
965 char *buf);
966
967 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
968 #else
969 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)970 ssize_t power_supply_charge_behaviour_show(struct device *dev,
971 unsigned int available_behaviours,
972 enum power_supply_charge_behaviour behaviour,
973 char *buf)
974 {
975 return -EOPNOTSUPP;
976 }
977
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)978 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
979 const char *buf)
980 {
981 return -EOPNOTSUPP;
982 }
983 #endif
984
985 #endif /* __LINUX_POWER_SUPPLY_H__ */
986