xref: /linux/fs/ext4/page-io.c (revision bb8e2019ad613dd023a59bf91d1768018d17e09b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/blk-crypto.h>
11 #include <linux/fs.h>
12 #include <linux/time.h>
13 #include <linux/highuid.h>
14 #include <linux/pagemap.h>
15 #include <linux/quotaops.h>
16 #include <linux/string.h>
17 #include <linux/buffer_head.h>
18 #include <linux/writeback.h>
19 #include <linux/pagevec.h>
20 #include <linux/mpage.h>
21 #include <linux/namei.h>
22 #include <linux/uio.h>
23 #include <linux/bio.h>
24 #include <linux/workqueue.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sched/mm.h>
29 
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 static struct kmem_cache *io_end_cachep;
35 static struct kmem_cache *io_end_vec_cachep;
36 
37 int __init ext4_init_pageio(void)
38 {
39 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
40 	if (io_end_cachep == NULL)
41 		return -ENOMEM;
42 
43 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
44 	if (io_end_vec_cachep == NULL) {
45 		kmem_cache_destroy(io_end_cachep);
46 		return -ENOMEM;
47 	}
48 	return 0;
49 }
50 
51 void ext4_exit_pageio(void)
52 {
53 	kmem_cache_destroy(io_end_cachep);
54 	kmem_cache_destroy(io_end_vec_cachep);
55 }
56 
57 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
58 {
59 	struct ext4_io_end_vec *io_end_vec;
60 
61 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
62 	if (!io_end_vec)
63 		return ERR_PTR(-ENOMEM);
64 	INIT_LIST_HEAD(&io_end_vec->list);
65 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
66 	return io_end_vec;
67 }
68 
69 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
70 {
71 	struct ext4_io_end_vec *io_end_vec, *tmp;
72 
73 	if (list_empty(&io_end->list_vec))
74 		return;
75 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
76 		list_del(&io_end_vec->list);
77 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
78 	}
79 }
80 
81 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
82 {
83 	BUG_ON(list_empty(&io_end->list_vec));
84 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
85 }
86 
87 /*
88  * Print an buffer I/O error compatible with the fs/buffer.c.  This
89  * provides compatibility with dmesg scrapers that look for a specific
90  * buffer I/O error message.  We really need a unified error reporting
91  * structure to userspace ala Digital Unix's uerf system, but it's
92  * probably not going to happen in my lifetime, due to LKML politics...
93  */
94 static void buffer_io_error(struct buffer_head *bh)
95 {
96 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
97 		       bh->b_bdev,
98 			(unsigned long long)bh->b_blocknr);
99 }
100 
101 static void ext4_finish_bio(struct bio *bio)
102 {
103 	struct folio_iter fi;
104 
105 	bio_for_each_folio_all(fi, bio) {
106 		struct folio *folio = fi.folio;
107 		struct folio *io_folio = NULL;
108 		struct buffer_head *bh, *head;
109 		size_t bio_start = fi.offset;
110 		size_t bio_end = bio_start + fi.length;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (fscrypt_is_bounce_folio(folio)) {
115 			io_folio = folio;
116 			folio = fscrypt_pagecache_folio(folio);
117 		}
118 
119 		if (bio->bi_status) {
120 			int err = blk_status_to_errno(bio->bi_status);
121 			mapping_set_error(folio->mapping, err);
122 		}
123 		bh = head = folio_buffers(folio);
124 		/*
125 		 * We check all buffers in the folio under b_uptodate_lock
126 		 * to avoid races with other end io clearing async_write flags
127 		 */
128 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129 		do {
130 			if (bh_offset(bh) < bio_start ||
131 			    bh_offset(bh) + bh->b_size > bio_end) {
132 				if (buffer_async_write(bh))
133 					under_io++;
134 				continue;
135 			}
136 			clear_buffer_async_write(bh);
137 			if (bio->bi_status) {
138 				set_buffer_write_io_error(bh);
139 				buffer_io_error(bh);
140 			}
141 		} while ((bh = bh->b_this_page) != head);
142 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143 		if (!under_io) {
144 			fscrypt_free_bounce_page(&io_folio->page);
145 			folio_end_writeback(folio);
146 		}
147 	}
148 }
149 
150 static void ext4_release_io_end(ext4_io_end_t *io_end)
151 {
152 	struct bio *bio, *next_bio;
153 
154 	BUG_ON(!list_empty(&io_end->list));
155 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156 	WARN_ON(io_end->handle);
157 
158 	for (bio = io_end->bio; bio; bio = next_bio) {
159 		next_bio = bio->bi_private;
160 		ext4_finish_bio(bio);
161 		bio_put(bio);
162 	}
163 	ext4_free_io_end_vec(io_end);
164 	kmem_cache_free(io_end_cachep, io_end);
165 }
166 
167 /*
168  * On successful IO, check a range of space and convert unwritten extents to
169  * written. On IO failure, check if journal abort is needed. Note that
170  * we are protected from truncate touching same part of extent tree by the
171  * fact that truncate code waits for all DIO to finish (thus exclusion from
172  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
173  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
174  * completed (happens from ext4_free_ioend()).
175  */
176 static int ext4_end_io_end(ext4_io_end_t *io_end)
177 {
178 	struct inode *inode = io_end->inode;
179 	handle_t *handle = io_end->handle;
180 	struct super_block *sb = inode->i_sb;
181 	int ret = 0;
182 
183 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
184 		   "list->prev 0x%p\n",
185 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
186 
187 	/*
188 	 * Do not convert the unwritten extents if data writeback fails,
189 	 * or stale data may be exposed.
190 	 */
191 	io_end->handle = NULL;  /* Following call will use up the handle */
192 	if (unlikely(io_end->flag & EXT4_IO_END_FAILED)) {
193 		ret = -EIO;
194 		if (handle)
195 			jbd2_journal_free_reserved(handle);
196 
197 		if (test_opt(sb, DATA_ERR_ABORT))
198 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, ret);
199 	} else {
200 		ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
201 	}
202 	if (ret < 0 && !ext4_emergency_state(sb) &&
203 	    io_end->flag & EXT4_IO_END_UNWRITTEN) {
204 		ext4_msg(sb, KERN_EMERG,
205 			 "failed to convert unwritten extents to written "
206 			 "extents -- potential data loss!  "
207 			 "(inode %lu, error %d)", inode->i_ino, ret);
208 	}
209 
210 	ext4_clear_io_unwritten_flag(io_end);
211 	ext4_release_io_end(io_end);
212 	return ret;
213 }
214 
215 static void dump_completed_IO(struct inode *inode, struct list_head *head)
216 {
217 #ifdef	EXT4FS_DEBUG
218 	struct list_head *cur, *before, *after;
219 	ext4_io_end_t *io_end, *io_end0, *io_end1;
220 
221 	if (list_empty(head))
222 		return;
223 
224 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
225 	list_for_each_entry(io_end, head, list) {
226 		cur = &io_end->list;
227 		before = cur->prev;
228 		io_end0 = container_of(before, ext4_io_end_t, list);
229 		after = cur->next;
230 		io_end1 = container_of(after, ext4_io_end_t, list);
231 
232 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
233 			    io_end, inode->i_ino, io_end0, io_end1);
234 	}
235 #endif
236 }
237 
238 static bool ext4_io_end_defer_completion(ext4_io_end_t *io_end)
239 {
240 	if (io_end->flag & EXT4_IO_END_UNWRITTEN &&
241 	    !list_empty(&io_end->list_vec))
242 		return true;
243 	if (test_opt(io_end->inode->i_sb, DATA_ERR_ABORT) &&
244 	    io_end->flag & EXT4_IO_END_FAILED &&
245 	    !ext4_emergency_state(io_end->inode->i_sb))
246 		return true;
247 	return false;
248 }
249 
250 /* Add the io_end to per-inode completed end_io list. */
251 static void ext4_add_complete_io(ext4_io_end_t *io_end)
252 {
253 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
254 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
255 	struct workqueue_struct *wq;
256 	unsigned long flags;
257 
258 	/* Only reserved conversions or pending IO errors will enter here. */
259 	WARN_ON(!(io_end->flag & EXT4_IO_END_DEFER_COMPLETION));
260 	WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN &&
261 		!io_end->handle && sbi->s_journal);
262 	WARN_ON(!io_end->bio);
263 
264 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
265 	wq = sbi->rsv_conversion_wq;
266 	if (list_empty(&ei->i_rsv_conversion_list))
267 		queue_work(wq, &ei->i_rsv_conversion_work);
268 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
269 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
270 }
271 
272 static int ext4_do_flush_completed_IO(struct inode *inode,
273 				      struct list_head *head)
274 {
275 	ext4_io_end_t *io_end;
276 	struct list_head unwritten;
277 	unsigned long flags;
278 	struct ext4_inode_info *ei = EXT4_I(inode);
279 	int err, ret = 0;
280 
281 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
282 	dump_completed_IO(inode, head);
283 	list_replace_init(head, &unwritten);
284 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
285 
286 	while (!list_empty(&unwritten)) {
287 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
288 		BUG_ON(!(io_end->flag & EXT4_IO_END_DEFER_COMPLETION));
289 		list_del_init(&io_end->list);
290 
291 		err = ext4_end_io_end(io_end);
292 		if (unlikely(!ret && err))
293 			ret = err;
294 	}
295 	return ret;
296 }
297 
298 /*
299  * Used to convert unwritten extents to written extents upon IO completion,
300  * or used to abort the journal upon IO errors.
301  */
302 void ext4_end_io_rsv_work(struct work_struct *work)
303 {
304 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
305 						  i_rsv_conversion_work);
306 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
307 }
308 
309 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
310 {
311 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
312 
313 	if (io_end) {
314 		io_end->inode = inode;
315 		INIT_LIST_HEAD(&io_end->list);
316 		INIT_LIST_HEAD(&io_end->list_vec);
317 		refcount_set(&io_end->count, 1);
318 	}
319 	return io_end;
320 }
321 
322 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
323 {
324 	if (refcount_dec_and_test(&io_end->count)) {
325 		if (ext4_io_end_defer_completion(io_end))
326 			return ext4_add_complete_io(io_end);
327 
328 		ext4_release_io_end(io_end);
329 	}
330 }
331 
332 int ext4_put_io_end(ext4_io_end_t *io_end)
333 {
334 	if (refcount_dec_and_test(&io_end->count)) {
335 		if (ext4_io_end_defer_completion(io_end))
336 			return ext4_end_io_end(io_end);
337 
338 		ext4_release_io_end(io_end);
339 	}
340 	return 0;
341 }
342 
343 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
344 {
345 	refcount_inc(&io_end->count);
346 	return io_end;
347 }
348 
349 /* BIO completion function for page writeback */
350 static void ext4_end_bio(struct bio *bio)
351 {
352 	ext4_io_end_t *io_end = bio->bi_private;
353 	sector_t bi_sector = bio->bi_iter.bi_sector;
354 
355 	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
356 		      bio->bi_bdev,
357 		      (long long) bio->bi_iter.bi_sector,
358 		      (unsigned) bio_sectors(bio),
359 		      bio->bi_status)) {
360 		ext4_finish_bio(bio);
361 		bio_put(bio);
362 		return;
363 	}
364 	bio->bi_end_io = NULL;
365 
366 	if (bio->bi_status) {
367 		struct inode *inode = io_end->inode;
368 
369 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
370 			     "starting block %llu)",
371 			     bio->bi_status, inode->i_ino,
372 			     (unsigned long long)
373 			     bi_sector >> (inode->i_blkbits - 9));
374 		io_end->flag |= EXT4_IO_END_FAILED;
375 		mapping_set_error(inode->i_mapping,
376 				blk_status_to_errno(bio->bi_status));
377 	}
378 
379 	if (ext4_io_end_defer_completion(io_end)) {
380 		/*
381 		 * Link bio into list hanging from io_end. We have to do it
382 		 * atomically as bio completions can be racing against each
383 		 * other.
384 		 */
385 		bio->bi_private = xchg(&io_end->bio, bio);
386 		ext4_put_io_end_defer(io_end);
387 	} else {
388 		/*
389 		 * Drop io_end reference early. Inode can get freed once
390 		 * we finish the bio.
391 		 */
392 		ext4_put_io_end_defer(io_end);
393 		ext4_finish_bio(bio);
394 		bio_put(bio);
395 	}
396 }
397 
398 void ext4_io_submit(struct ext4_io_submit *io)
399 {
400 	struct bio *bio = io->io_bio;
401 
402 	if (bio) {
403 		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
404 			io->io_bio->bi_opf |= REQ_SYNC;
405 		blk_crypto_submit_bio(io->io_bio);
406 	}
407 	io->io_bio = NULL;
408 }
409 
410 void ext4_io_submit_init(struct ext4_io_submit *io,
411 			 struct writeback_control *wbc)
412 {
413 	io->io_wbc = wbc;
414 	io->io_bio = NULL;
415 	io->io_end = NULL;
416 }
417 
418 static void io_submit_init_bio(struct ext4_io_submit *io,
419 			       struct buffer_head *bh)
420 {
421 	struct bio *bio;
422 
423 	/*
424 	 * bio_alloc will _always_ be able to allocate a bio if
425 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
426 	 */
427 	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
428 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
429 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
430 	bio->bi_end_io = ext4_end_bio;
431 	bio->bi_private = ext4_get_io_end(io->io_end);
432 	io->io_bio = bio;
433 	io->io_next_block = bh->b_blocknr;
434 	wbc_init_bio(io->io_wbc, bio);
435 }
436 
437 static void io_submit_add_bh(struct ext4_io_submit *io,
438 			     struct inode *inode,
439 			     struct folio *folio,
440 			     struct folio *io_folio,
441 			     struct buffer_head *bh)
442 {
443 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
444 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
445 submit_and_retry:
446 		ext4_io_submit(io);
447 	}
448 	if (io->io_bio == NULL) {
449 		io_submit_init_bio(io, bh);
450 		io->io_bio->bi_write_hint = inode->i_write_hint;
451 	}
452 	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
453 		goto submit_and_retry;
454 	wbc_account_cgroup_owner(io->io_wbc, folio, bh->b_size);
455 	io->io_next_block++;
456 }
457 
458 int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
459 		size_t len)
460 {
461 	struct folio *io_folio = folio;
462 	struct inode *inode = folio->mapping->host;
463 	unsigned block_start;
464 	struct buffer_head *bh, *head;
465 	int ret = 0;
466 	int nr_to_submit = 0;
467 	struct writeback_control *wbc = io->io_wbc;
468 	bool keep_towrite = false;
469 
470 	BUG_ON(!folio_test_locked(folio));
471 	BUG_ON(folio_test_writeback(folio));
472 
473 	/*
474 	 * Comments copied from block_write_full_folio:
475 	 *
476 	 * The folio straddles i_size.  It must be zeroed out on each and every
477 	 * writepage invocation because it may be mmapped.  "A file is mapped
478 	 * in multiples of the page size.  For a file that is not a multiple of
479 	 * the page size, the remaining memory is zeroed when mapped, and
480 	 * writes to that region are not written out to the file."
481 	 */
482 	if (len < folio_size(folio))
483 		folio_zero_segment(folio, len, folio_size(folio));
484 	/*
485 	 * In the first loop we prepare and mark buffers to submit. We have to
486 	 * mark all buffers in the folio before submitting so that
487 	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
488 	 * on the first buffer finishes and we are still working on submitting
489 	 * the second buffer.
490 	 */
491 	bh = head = folio_buffers(folio);
492 	do {
493 		block_start = bh_offset(bh);
494 		if (block_start >= len) {
495 			clear_buffer_dirty(bh);
496 			set_buffer_uptodate(bh);
497 			continue;
498 		}
499 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
500 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
501 			/* A hole? We can safely clear the dirty bit */
502 			if (!buffer_mapped(bh))
503 				clear_buffer_dirty(bh);
504 			/*
505 			 * Keeping dirty some buffer we cannot write? Make sure
506 			 * to redirty the folio and keep TOWRITE tag so that
507 			 * racing WB_SYNC_ALL writeback does not skip the folio.
508 			 * This happens e.g. when doing writeout for
509 			 * transaction commit or when journalled data is not
510 			 * yet committed.
511 			 */
512 			if (buffer_dirty(bh) ||
513 			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
514 				if (!folio_test_dirty(folio))
515 					folio_redirty_for_writepage(wbc, folio);
516 				keep_towrite = true;
517 			}
518 			continue;
519 		}
520 		if (buffer_new(bh))
521 			clear_buffer_new(bh);
522 		set_buffer_async_write(bh);
523 		clear_buffer_dirty(bh);
524 		nr_to_submit++;
525 	} while ((bh = bh->b_this_page) != head);
526 
527 	/* Nothing to submit? Just unlock the folio... */
528 	if (!nr_to_submit)
529 		return 0;
530 
531 	bh = head = folio_buffers(folio);
532 
533 	/*
534 	 * If any blocks are being written to an encrypted file, encrypt them
535 	 * into a bounce page.  For simplicity, just encrypt until the last
536 	 * block which might be needed.  This may cause some unneeded blocks
537 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
538 	 * can't happen in the common case of blocksize == PAGE_SIZE.
539 	 */
540 	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
541 		gfp_t gfp_flags = GFP_NOFS;
542 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
543 		struct page *bounce_page;
544 
545 		/*
546 		 * Since bounce page allocation uses a mempool, we can only use
547 		 * a waiting mask (i.e. request guaranteed allocation) on the
548 		 * first page of the bio.  Otherwise it can deadlock.
549 		 */
550 		if (io->io_bio)
551 			gfp_flags = GFP_NOWAIT;
552 	retry_encrypt:
553 		bounce_page = fscrypt_encrypt_pagecache_blocks(folio,
554 					enc_bytes, 0, gfp_flags);
555 		if (IS_ERR(bounce_page)) {
556 			ret = PTR_ERR(bounce_page);
557 			if (ret == -ENOMEM &&
558 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
559 				gfp_t new_gfp_flags = GFP_NOFS;
560 				if (io->io_bio)
561 					ext4_io_submit(io);
562 				else
563 					new_gfp_flags |= __GFP_NOFAIL;
564 				memalloc_retry_wait(gfp_flags);
565 				gfp_flags = new_gfp_flags;
566 				goto retry_encrypt;
567 			}
568 
569 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
570 			folio_redirty_for_writepage(wbc, folio);
571 			do {
572 				if (buffer_async_write(bh)) {
573 					clear_buffer_async_write(bh);
574 					set_buffer_dirty(bh);
575 				}
576 				bh = bh->b_this_page;
577 			} while (bh != head);
578 
579 			return ret;
580 		}
581 		io_folio = page_folio(bounce_page);
582 	}
583 
584 	__folio_start_writeback(folio, keep_towrite);
585 
586 	/* Now submit buffers to write */
587 	do {
588 		if (!buffer_async_write(bh))
589 			continue;
590 		io_submit_add_bh(io, inode, folio, io_folio, bh);
591 	} while ((bh = bh->b_this_page) != head);
592 
593 	return 0;
594 }
595