1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/DivisionByConstantInfo.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38
39 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)40 TargetLowering::TargetLowering(const TargetMachine &tm)
41 : TargetLoweringBase(tm) {}
42
getTargetNodeName(unsigned Opcode) const43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44 return nullptr;
45 }
46
isPositionIndependent() const47 bool TargetLowering::isPositionIndependent() const {
48 return getTargetMachine().isPositionIndependent();
49 }
50
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54 SDValue &Chain) const {
55 const Function &F = DAG.getMachineFunction().getFunction();
56
57 // First, check if tail calls have been disabled in this function.
58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
59 return false;
60
61 // Conservatively require the attributes of the call to match those of
62 // the return. Ignore following attributes because they don't affect the
63 // call sequence.
64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
65 for (const auto &Attr :
66 {Attribute::Alignment, Attribute::Dereferenceable,
67 Attribute::DereferenceableOrNull, Attribute::NoAlias,
68 Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
69 CallerAttrs.removeAttribute(Attr);
70
71 if (CallerAttrs.hasAttributes())
72 return false;
73
74 // It's not safe to eliminate the sign / zero extension of the return value.
75 if (CallerAttrs.contains(Attribute::ZExt) ||
76 CallerAttrs.contains(Attribute::SExt))
77 return false;
78
79 // Check if the only use is a function return node.
80 return isUsedByReturnOnly(Node, Chain);
81 }
82
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const83 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
84 const uint32_t *CallerPreservedMask,
85 const SmallVectorImpl<CCValAssign> &ArgLocs,
86 const SmallVectorImpl<SDValue> &OutVals) const {
87 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
88 const CCValAssign &ArgLoc = ArgLocs[I];
89 if (!ArgLoc.isRegLoc())
90 continue;
91 MCRegister Reg = ArgLoc.getLocReg();
92 // Only look at callee saved registers.
93 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
94 continue;
95 // Check that we pass the value used for the caller.
96 // (We look for a CopyFromReg reading a virtual register that is used
97 // for the function live-in value of register Reg)
98 SDValue Value = OutVals[I];
99 if (Value->getOpcode() == ISD::AssertZext)
100 Value = Value.getOperand(0);
101 if (Value->getOpcode() != ISD::CopyFromReg)
102 return false;
103 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
104 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
105 return false;
106 }
107 return true;
108 }
109
110 /// Set CallLoweringInfo attribute flags based on a call instruction
111 /// and called function attributes.
setAttributes(const CallBase * Call,unsigned ArgIdx)112 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
113 unsigned ArgIdx) {
114 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
115 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126 Alignment = Call->getParamStackAlign(ArgIdx);
127 IndirectType = nullptr;
128 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129 "multiple ABI attributes?");
130 if (IsByVal) {
131 IndirectType = Call->getParamByValType(ArgIdx);
132 if (!Alignment)
133 Alignment = Call->getParamAlign(ArgIdx);
134 }
135 if (IsPreallocated)
136 IndirectType = Call->getParamPreallocatedType(ArgIdx);
137 if (IsInAlloca)
138 IndirectType = Call->getParamInAllocaType(ArgIdx);
139 if (IsSRet)
140 IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,MakeLibCallOptions CallOptions,const SDLoc & dl,SDValue InChain) const146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147 ArrayRef<SDValue> Ops,
148 MakeLibCallOptions CallOptions,
149 const SDLoc &dl,
150 SDValue InChain) const {
151 if (!InChain)
152 InChain = DAG.getEntryNode();
153
154 TargetLowering::ArgListTy Args;
155 Args.reserve(Ops.size());
156
157 TargetLowering::ArgListEntry Entry;
158 for (unsigned i = 0; i < Ops.size(); ++i) {
159 SDValue NewOp = Ops[i];
160 Entry.Node = NewOp;
161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163 CallOptions.IsSExt);
164 Entry.IsZExt = !Entry.IsSExt;
165
166 if (CallOptions.IsSoften &&
167 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168 Entry.IsSExt = Entry.IsZExt = false;
169 }
170 Args.push_back(Entry);
171 }
172
173 if (LC == RTLIB::UNKNOWN_LIBCALL)
174 report_fatal_error("Unsupported library call operation!");
175 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176 getPointerTy(DAG.getDataLayout()));
177
178 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179 TargetLowering::CallLoweringInfo CLI(DAG);
180 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
181 bool zeroExtend = !signExtend;
182
183 if (CallOptions.IsSoften &&
184 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185 signExtend = zeroExtend = false;
186 }
187
188 CLI.setDebugLoc(dl)
189 .setChain(InChain)
190 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191 .setNoReturn(CallOptions.DoesNotReturn)
192 .setDiscardResult(!CallOptions.IsReturnValueUsed)
193 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194 .setSExtResult(signExtend)
195 .setZExtResult(zeroExtend);
196 return LowerCallTo(CLI);
197 }
198
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const199 bool TargetLowering::findOptimalMemOpLowering(
200 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201 unsigned SrcAS, const AttributeList &FuncAttributes) const {
202 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203 Op.getSrcAlign() < Op.getDstAlign())
204 return false;
205
206 EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207
208 if (VT == MVT::Other) {
209 // Use the largest integer type whose alignment constraints are satisfied.
210 // We only need to check DstAlign here as SrcAlign is always greater or
211 // equal to DstAlign (or zero).
212 VT = MVT::LAST_INTEGER_VALUETYPE;
213 if (Op.isFixedDstAlign())
214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217 assert(VT.isInteger());
218
219 // Find the largest legal integer type.
220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221 while (!isTypeLegal(LVT))
222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223 assert(LVT.isInteger());
224
225 // If the type we've chosen is larger than the largest legal integer type
226 // then use that instead.
227 if (VT.bitsGT(LVT))
228 VT = LVT;
229 }
230
231 unsigned NumMemOps = 0;
232 uint64_t Size = Op.size();
233 while (Size) {
234 unsigned VTSize = VT.getSizeInBits() / 8;
235 while (VTSize > Size) {
236 // For now, only use non-vector load / store's for the left-over pieces.
237 EVT NewVT = VT;
238 unsigned NewVTSize;
239
240 bool Found = false;
241 if (VT.isVector() || VT.isFloatingPoint()) {
242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244 isSafeMemOpType(NewVT.getSimpleVT()))
245 Found = true;
246 else if (NewVT == MVT::i64 &&
247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248 isSafeMemOpType(MVT::f64)) {
249 // i64 is usually not legal on 32-bit targets, but f64 may be.
250 NewVT = MVT::f64;
251 Found = true;
252 }
253 }
254
255 if (!Found) {
256 do {
257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258 if (NewVT == MVT::i8)
259 break;
260 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261 }
262 NewVTSize = NewVT.getSizeInBits() / 8;
263
264 // If the new VT cannot cover all of the remaining bits, then consider
265 // issuing a (or a pair of) unaligned and overlapping load / store.
266 unsigned Fast;
267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268 allowsMisalignedMemoryAccesses(
269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270 MachineMemOperand::MONone, &Fast) &&
271 Fast)
272 VTSize = Size;
273 else {
274 VT = NewVT;
275 VTSize = NewVTSize;
276 }
277 }
278
279 if (++NumMemOps > Limit)
280 return false;
281
282 MemOps.push_back(VT);
283 Size -= VTSize;
284 }
285
286 return true;
287 }
288
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS) const291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292 SDValue &NewLHS, SDValue &NewRHS,
293 ISD::CondCode &CCCode,
294 const SDLoc &dl, const SDValue OldLHS,
295 const SDValue OldRHS) const {
296 SDValue Chain;
297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298 OldRHS, Chain);
299 }
300
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS,SDValue & Chain,bool IsSignaling) const301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302 SDValue &NewLHS, SDValue &NewRHS,
303 ISD::CondCode &CCCode,
304 const SDLoc &dl, const SDValue OldLHS,
305 const SDValue OldRHS,
306 SDValue &Chain,
307 bool IsSignaling) const {
308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309 // not supporting it. We can update this code when libgcc provides such
310 // functions.
311
312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313 && "Unsupported setcc type!");
314
315 // Expand into one or more soft-fp libcall(s).
316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317 bool ShouldInvertCC = false;
318 switch (CCCode) {
319 case ISD::SETEQ:
320 case ISD::SETOEQ:
321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324 break;
325 case ISD::SETNE:
326 case ISD::SETUNE:
327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328 (VT == MVT::f64) ? RTLIB::UNE_F64 :
329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330 break;
331 case ISD::SETGE:
332 case ISD::SETOGE:
333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334 (VT == MVT::f64) ? RTLIB::OGE_F64 :
335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336 break;
337 case ISD::SETLT:
338 case ISD::SETOLT:
339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340 (VT == MVT::f64) ? RTLIB::OLT_F64 :
341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342 break;
343 case ISD::SETLE:
344 case ISD::SETOLE:
345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346 (VT == MVT::f64) ? RTLIB::OLE_F64 :
347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348 break;
349 case ISD::SETGT:
350 case ISD::SETOGT:
351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352 (VT == MVT::f64) ? RTLIB::OGT_F64 :
353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354 break;
355 case ISD::SETO:
356 ShouldInvertCC = true;
357 [[fallthrough]];
358 case ISD::SETUO:
359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360 (VT == MVT::f64) ? RTLIB::UO_F64 :
361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362 break;
363 case ISD::SETONE:
364 // SETONE = O && UNE
365 ShouldInvertCC = true;
366 [[fallthrough]];
367 case ISD::SETUEQ:
368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369 (VT == MVT::f64) ? RTLIB::UO_F64 :
370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374 break;
375 default:
376 // Invert CC for unordered comparisons
377 ShouldInvertCC = true;
378 switch (CCCode) {
379 case ISD::SETULT:
380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381 (VT == MVT::f64) ? RTLIB::OGE_F64 :
382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383 break;
384 case ISD::SETULE:
385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386 (VT == MVT::f64) ? RTLIB::OGT_F64 :
387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388 break;
389 case ISD::SETUGT:
390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391 (VT == MVT::f64) ? RTLIB::OLE_F64 :
392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393 break;
394 case ISD::SETUGE:
395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396 (VT == MVT::f64) ? RTLIB::OLT_F64 :
397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398 break;
399 default: llvm_unreachable("Do not know how to soften this setcc!");
400 }
401 }
402
403 // Use the target specific return value for comparison lib calls.
404 EVT RetVT = getCmpLibcallReturnType();
405 SDValue Ops[2] = {NewLHS, NewRHS};
406 TargetLowering::MakeLibCallOptions CallOptions;
407 EVT OpsVT[2] = { OldLHS.getValueType(),
408 OldRHS.getValueType() };
409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411 NewLHS = Call.first;
412 NewRHS = DAG.getConstant(0, dl, RetVT);
413
414 CCCode = getCmpLibcallCC(LC1);
415 if (ShouldInvertCC) {
416 assert(RetVT.isInteger());
417 CCCode = getSetCCInverse(CCCode, RetVT);
418 }
419
420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421 // Update Chain.
422 Chain = Call.second;
423 } else {
424 EVT SetCCVT =
425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428 CCCode = getCmpLibcallCC(LC2);
429 if (ShouldInvertCC)
430 CCCode = getSetCCInverse(CCCode, RetVT);
431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432 if (Chain)
433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434 Call2.second);
435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436 Tmp.getValueType(), Tmp, NewLHS);
437 NewRHS = SDValue();
438 }
439 }
440
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const443 unsigned TargetLowering::getJumpTableEncoding() const {
444 // In non-pic modes, just use the address of a block.
445 if (!isPositionIndependent())
446 return MachineJumpTableInfo::EK_BlockAddress;
447
448 // In PIC mode, if the target supports a GPRel32 directive, use it.
449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451
452 // Otherwise, use a label difference.
453 return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457 SelectionDAG &DAG) const {
458 // If our PIC model is GP relative, use the global offset table as the base.
459 unsigned JTEncoding = getJumpTableEncoding();
460
461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464
465 return Table;
466 }
467
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472 unsigned JTI,MCContext &Ctx) const{
473 // The normal PIC reloc base is the label at the start of the jump table.
474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476
expandIndirectJTBranch(const SDLoc & dl,SDValue Value,SDValue Addr,int JTI,SelectionDAG & DAG) const477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478 SDValue Addr, int JTI,
479 SelectionDAG &DAG) const {
480 SDValue Chain = Value;
481 // Jump table debug info is only needed if CodeView is enabled.
482 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484 }
485 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487
488 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490 const TargetMachine &TM = getTargetMachine();
491 const GlobalValue *GV = GA->getGlobal();
492
493 // If the address is not even local to this DSO we will have to load it from
494 // a got and then add the offset.
495 if (!TM.shouldAssumeDSOLocal(GV))
496 return false;
497
498 // If the code is position independent we will have to add a base register.
499 if (isPositionIndependent())
500 return false;
501
502 // Otherwise we can do it.
503 return true;
504 }
505
506 //===----------------------------------------------------------------------===//
507 // Optimization Methods
508 //===----------------------------------------------------------------------===//
509
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514 const APInt &DemandedBits,
515 const APInt &DemandedElts,
516 TargetLoweringOpt &TLO) const {
517 SDLoc DL(Op);
518 unsigned Opcode = Op.getOpcode();
519
520 // Early-out if we've ended up calling an undemanded node, leave this to
521 // constant folding.
522 if (DemandedBits.isZero() || DemandedElts.isZero())
523 return false;
524
525 // Do target-specific constant optimization.
526 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527 return TLO.New.getNode();
528
529 // FIXME: ISD::SELECT, ISD::SELECT_CC
530 switch (Opcode) {
531 default:
532 break;
533 case ISD::XOR:
534 case ISD::AND:
535 case ISD::OR: {
536 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537 if (!Op1C || Op1C->isOpaque())
538 return false;
539
540 // If this is a 'not' op, don't touch it because that's a canonical form.
541 const APInt &C = Op1C->getAPIntValue();
542 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543 return false;
544
545 if (!C.isSubsetOf(DemandedBits)) {
546 EVT VT = Op.getValueType();
547 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549 Op->getFlags());
550 return TLO.CombineTo(Op, NewOp);
551 }
552
553 break;
554 }
555 }
556
557 return false;
558 }
559
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,TargetLoweringOpt & TLO) const560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561 const APInt &DemandedBits,
562 TargetLoweringOpt &TLO) const {
563 EVT VT = Op.getValueType();
564 APInt DemandedElts = VT.isVector()
565 ? APInt::getAllOnes(VT.getVectorNumElements())
566 : APInt(1, 1);
567 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & DemandedBits,TargetLoweringOpt & TLO) const574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575 const APInt &DemandedBits,
576 TargetLoweringOpt &TLO) const {
577 assert(Op.getNumOperands() == 2 &&
578 "ShrinkDemandedOp only supports binary operators!");
579 assert(Op.getNode()->getNumValues() == 1 &&
580 "ShrinkDemandedOp only supports nodes with one result!");
581
582 EVT VT = Op.getValueType();
583 SelectionDAG &DAG = TLO.DAG;
584 SDLoc dl(Op);
585
586 // Early return, as this function cannot handle vector types.
587 if (VT.isVector())
588 return false;
589
590 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592 "ShrinkDemandedOp only supports operands that have the same size!");
593
594 // Don't do this if the node has another user, which may require the
595 // full value.
596 if (!Op.getNode()->hasOneUse())
597 return false;
598
599 // Search for the smallest integer type with free casts to and from
600 // Op's type. For expedience, just check power-of-2 integer types.
601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
602 unsigned DemandedSize = DemandedBits.getActiveBits();
603 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
604 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
605 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
606 if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) {
607 // We found a type with free casts.
608 SDValue X = DAG.getNode(
609 Op.getOpcode(), dl, SmallVT,
610 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
611 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
612 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
613 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
614 return TLO.CombineTo(Op, Z);
615 }
616 }
617 return false;
618 }
619
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,DAGCombinerInfo & DCI) const620 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
621 DAGCombinerInfo &DCI) const {
622 SelectionDAG &DAG = DCI.DAG;
623 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
624 !DCI.isBeforeLegalizeOps());
625 KnownBits Known;
626
627 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
628 if (Simplified) {
629 DCI.AddToWorklist(Op.getNode());
630 DCI.CommitTargetLoweringOpt(TLO);
631 }
632 return Simplified;
633 }
634
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,DAGCombinerInfo & DCI) const635 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
636 const APInt &DemandedElts,
637 DAGCombinerInfo &DCI) const {
638 SelectionDAG &DAG = DCI.DAG;
639 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
640 !DCI.isBeforeLegalizeOps());
641 KnownBits Known;
642
643 bool Simplified =
644 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
645 if (Simplified) {
646 DCI.AddToWorklist(Op.getNode());
647 DCI.CommitTargetLoweringOpt(TLO);
648 }
649 return Simplified;
650 }
651
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const652 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
653 KnownBits &Known,
654 TargetLoweringOpt &TLO,
655 unsigned Depth,
656 bool AssumeSingleUse) const {
657 EVT VT = Op.getValueType();
658
659 // Since the number of lanes in a scalable vector is unknown at compile time,
660 // we track one bit which is implicitly broadcast to all lanes. This means
661 // that all lanes in a scalable vector are considered demanded.
662 APInt DemandedElts = VT.isFixedLengthVector()
663 ? APInt::getAllOnes(VT.getVectorNumElements())
664 : APInt(1, 1);
665 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
666 AssumeSingleUse);
667 }
668
669 // TODO: Under what circumstances can we create nodes? Constant folding?
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const670 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
671 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
672 SelectionDAG &DAG, unsigned Depth) const {
673 EVT VT = Op.getValueType();
674
675 // Limit search depth.
676 if (Depth >= SelectionDAG::MaxRecursionDepth)
677 return SDValue();
678
679 // Ignore UNDEFs.
680 if (Op.isUndef())
681 return SDValue();
682
683 // Not demanding any bits/elts from Op.
684 if (DemandedBits == 0 || DemandedElts == 0)
685 return DAG.getUNDEF(VT);
686
687 bool IsLE = DAG.getDataLayout().isLittleEndian();
688 unsigned NumElts = DemandedElts.getBitWidth();
689 unsigned BitWidth = DemandedBits.getBitWidth();
690 KnownBits LHSKnown, RHSKnown;
691 switch (Op.getOpcode()) {
692 case ISD::BITCAST: {
693 if (VT.isScalableVector())
694 return SDValue();
695
696 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
697 EVT SrcVT = Src.getValueType();
698 EVT DstVT = Op.getValueType();
699 if (SrcVT == DstVT)
700 return Src;
701
702 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
703 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
704 if (NumSrcEltBits == NumDstEltBits)
705 if (SDValue V = SimplifyMultipleUseDemandedBits(
706 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
707 return DAG.getBitcast(DstVT, V);
708
709 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
710 unsigned Scale = NumDstEltBits / NumSrcEltBits;
711 unsigned NumSrcElts = SrcVT.getVectorNumElements();
712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714 for (unsigned i = 0; i != Scale; ++i) {
715 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
716 unsigned BitOffset = EltOffset * NumSrcEltBits;
717 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
718 if (!Sub.isZero()) {
719 DemandedSrcBits |= Sub;
720 for (unsigned j = 0; j != NumElts; ++j)
721 if (DemandedElts[j])
722 DemandedSrcElts.setBit((j * Scale) + i);
723 }
724 }
725
726 if (SDValue V = SimplifyMultipleUseDemandedBits(
727 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
728 return DAG.getBitcast(DstVT, V);
729 }
730
731 // TODO - bigendian once we have test coverage.
732 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
733 unsigned Scale = NumSrcEltBits / NumDstEltBits;
734 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
735 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
736 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
737 for (unsigned i = 0; i != NumElts; ++i)
738 if (DemandedElts[i]) {
739 unsigned Offset = (i % Scale) * NumDstEltBits;
740 DemandedSrcBits.insertBits(DemandedBits, Offset);
741 DemandedSrcElts.setBit(i / Scale);
742 }
743
744 if (SDValue V = SimplifyMultipleUseDemandedBits(
745 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
746 return DAG.getBitcast(DstVT, V);
747 }
748
749 break;
750 }
751 case ISD::FREEZE: {
752 SDValue N0 = Op.getOperand(0);
753 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
754 /*PoisonOnly=*/false))
755 return N0;
756 break;
757 }
758 case ISD::AND: {
759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
761
762 // If all of the demanded bits are known 1 on one side, return the other.
763 // These bits cannot contribute to the result of the 'and' in this
764 // context.
765 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
766 return Op.getOperand(0);
767 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
768 return Op.getOperand(1);
769 break;
770 }
771 case ISD::OR: {
772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
774
775 // If all of the demanded bits are known zero on one side, return the
776 // other. These bits cannot contribute to the result of the 'or' in this
777 // context.
778 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
779 return Op.getOperand(0);
780 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
781 return Op.getOperand(1);
782 break;
783 }
784 case ISD::XOR: {
785 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
786 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
787
788 // If all of the demanded bits are known zero on one side, return the
789 // other.
790 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
791 return Op.getOperand(0);
792 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
793 return Op.getOperand(1);
794 break;
795 }
796 case ISD::SHL: {
797 // If we are only demanding sign bits then we can use the shift source
798 // directly.
799 if (std::optional<uint64_t> MaxSA =
800 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
801 SDValue Op0 = Op.getOperand(0);
802 unsigned ShAmt = *MaxSA;
803 unsigned NumSignBits =
804 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
805 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
806 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
807 return Op0;
808 }
809 break;
810 }
811 case ISD::SETCC: {
812 SDValue Op0 = Op.getOperand(0);
813 SDValue Op1 = Op.getOperand(1);
814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815 // If (1) we only need the sign-bit, (2) the setcc operands are the same
816 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
817 // -1, we may be able to bypass the setcc.
818 if (DemandedBits.isSignMask() &&
819 Op0.getScalarValueSizeInBits() == BitWidth &&
820 getBooleanContents(Op0.getValueType()) ==
821 BooleanContent::ZeroOrNegativeOneBooleanContent) {
822 // If we're testing X < 0, then this compare isn't needed - just use X!
823 // FIXME: We're limiting to integer types here, but this should also work
824 // if we don't care about FP signed-zero. The use of SETLT with FP means
825 // that we don't care about NaNs.
826 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
827 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
828 return Op0;
829 }
830 break;
831 }
832 case ISD::SIGN_EXTEND_INREG: {
833 // If none of the extended bits are demanded, eliminate the sextinreg.
834 SDValue Op0 = Op.getOperand(0);
835 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
836 unsigned ExBits = ExVT.getScalarSizeInBits();
837 if (DemandedBits.getActiveBits() <= ExBits &&
838 shouldRemoveRedundantExtend(Op))
839 return Op0;
840 // If the input is already sign extended, just drop the extension.
841 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
842 if (NumSignBits >= (BitWidth - ExBits + 1))
843 return Op0;
844 break;
845 }
846 case ISD::ANY_EXTEND_VECTOR_INREG:
847 case ISD::SIGN_EXTEND_VECTOR_INREG:
848 case ISD::ZERO_EXTEND_VECTOR_INREG: {
849 if (VT.isScalableVector())
850 return SDValue();
851
852 // If we only want the lowest element and none of extended bits, then we can
853 // return the bitcasted source vector.
854 SDValue Src = Op.getOperand(0);
855 EVT SrcVT = Src.getValueType();
856 EVT DstVT = Op.getValueType();
857 if (IsLE && DemandedElts == 1 &&
858 DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
859 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
860 return DAG.getBitcast(DstVT, Src);
861 }
862 break;
863 }
864 case ISD::INSERT_VECTOR_ELT: {
865 if (VT.isScalableVector())
866 return SDValue();
867
868 // If we don't demand the inserted element, return the base vector.
869 SDValue Vec = Op.getOperand(0);
870 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
871 EVT VecVT = Vec.getValueType();
872 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
873 !DemandedElts[CIdx->getZExtValue()])
874 return Vec;
875 break;
876 }
877 case ISD::INSERT_SUBVECTOR: {
878 if (VT.isScalableVector())
879 return SDValue();
880
881 SDValue Vec = Op.getOperand(0);
882 SDValue Sub = Op.getOperand(1);
883 uint64_t Idx = Op.getConstantOperandVal(2);
884 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
885 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
886 // If we don't demand the inserted subvector, return the base vector.
887 if (DemandedSubElts == 0)
888 return Vec;
889 break;
890 }
891 case ISD::VECTOR_SHUFFLE: {
892 assert(!VT.isScalableVector());
893 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
894
895 // If all the demanded elts are from one operand and are inline,
896 // then we can use the operand directly.
897 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
898 for (unsigned i = 0; i != NumElts; ++i) {
899 int M = ShuffleMask[i];
900 if (M < 0 || !DemandedElts[i])
901 continue;
902 AllUndef = false;
903 IdentityLHS &= (M == (int)i);
904 IdentityRHS &= ((M - NumElts) == i);
905 }
906
907 if (AllUndef)
908 return DAG.getUNDEF(Op.getValueType());
909 if (IdentityLHS)
910 return Op.getOperand(0);
911 if (IdentityRHS)
912 return Op.getOperand(1);
913 break;
914 }
915 default:
916 // TODO: Probably okay to remove after audit; here to reduce change size
917 // in initial enablement patch for scalable vectors
918 if (VT.isScalableVector())
919 return SDValue();
920
921 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
922 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
923 Op, DemandedBits, DemandedElts, DAG, Depth))
924 return V;
925 break;
926 }
927 return SDValue();
928 }
929
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,SelectionDAG & DAG,unsigned Depth) const930 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
931 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
932 unsigned Depth) const {
933 EVT VT = Op.getValueType();
934 // Since the number of lanes in a scalable vector is unknown at compile time,
935 // we track one bit which is implicitly broadcast to all lanes. This means
936 // that all lanes in a scalable vector are considered demanded.
937 APInt DemandedElts = VT.isFixedLengthVector()
938 ? APInt::getAllOnes(VT.getVectorNumElements())
939 : APInt(1, 1);
940 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
941 Depth);
942 }
943
SimplifyMultipleUseDemandedVectorElts(SDValue Op,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const944 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
945 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
946 unsigned Depth) const {
947 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
948 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
949 Depth);
950 }
951
952 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
953 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
combineShiftToAVG(SDValue Op,TargetLowering::TargetLoweringOpt & TLO,const TargetLowering & TLI,const APInt & DemandedBits,const APInt & DemandedElts,unsigned Depth)954 static SDValue combineShiftToAVG(SDValue Op,
955 TargetLowering::TargetLoweringOpt &TLO,
956 const TargetLowering &TLI,
957 const APInt &DemandedBits,
958 const APInt &DemandedElts, unsigned Depth) {
959 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
960 "SRL or SRA node is required here!");
961 // Is the right shift using an immediate value of 1?
962 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
963 if (!N1C || !N1C->isOne())
964 return SDValue();
965
966 // We are looking for an avgfloor
967 // add(ext, ext)
968 // or one of these as a avgceil
969 // add(add(ext, ext), 1)
970 // add(add(ext, 1), ext)
971 // add(ext, add(ext, 1))
972 SDValue Add = Op.getOperand(0);
973 if (Add.getOpcode() != ISD::ADD)
974 return SDValue();
975
976 SDValue ExtOpA = Add.getOperand(0);
977 SDValue ExtOpB = Add.getOperand(1);
978 SDValue Add2;
979 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
980 ConstantSDNode *ConstOp;
981 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
982 ConstOp->isOne()) {
983 ExtOpA = Op1;
984 ExtOpB = Op3;
985 Add2 = A;
986 return true;
987 }
988 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
989 ConstOp->isOne()) {
990 ExtOpA = Op1;
991 ExtOpB = Op2;
992 Add2 = A;
993 return true;
994 }
995 return false;
996 };
997 bool IsCeil =
998 (ExtOpA.getOpcode() == ISD::ADD &&
999 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1000 (ExtOpB.getOpcode() == ISD::ADD &&
1001 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1002
1003 // If the shift is signed (sra):
1004 // - Needs >= 2 sign bit for both operands.
1005 // - Needs >= 2 zero bits.
1006 // If the shift is unsigned (srl):
1007 // - Needs >= 1 zero bit for both operands.
1008 // - Needs 1 demanded bit zero and >= 2 sign bits.
1009 SelectionDAG &DAG = TLO.DAG;
1010 unsigned ShiftOpc = Op.getOpcode();
1011 bool IsSigned = false;
1012 unsigned KnownBits;
1013 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1014 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1015 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1016 unsigned NumZeroA =
1017 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1018 unsigned NumZeroB =
1019 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1020 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1021
1022 switch (ShiftOpc) {
1023 default:
1024 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1025 case ISD::SRA: {
1026 if (NumZero >= 2 && NumSigned < NumZero) {
1027 IsSigned = false;
1028 KnownBits = NumZero;
1029 break;
1030 }
1031 if (NumSigned >= 1) {
1032 IsSigned = true;
1033 KnownBits = NumSigned;
1034 break;
1035 }
1036 return SDValue();
1037 }
1038 case ISD::SRL: {
1039 if (NumZero >= 1 && NumSigned < NumZero) {
1040 IsSigned = false;
1041 KnownBits = NumZero;
1042 break;
1043 }
1044 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1045 IsSigned = true;
1046 KnownBits = NumSigned;
1047 break;
1048 }
1049 return SDValue();
1050 }
1051 }
1052
1053 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1054 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1055
1056 // Find the smallest power-2 type that is legal for this vector size and
1057 // operation, given the original type size and the number of known sign/zero
1058 // bits.
1059 EVT VT = Op.getValueType();
1060 unsigned MinWidth =
1061 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1062 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1063 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1064 return SDValue();
1065 if (VT.isVector())
1066 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1067 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1068 // If we could not transform, and (both) adds are nuw/nsw, we can use the
1069 // larger type size to do the transform.
1070 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1071 return SDValue();
1072 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1073 Add.getOperand(1)) &&
1074 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1075 Add2.getOperand(1))))
1076 NVT = VT;
1077 else
1078 return SDValue();
1079 }
1080
1081 // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1082 // this is likely to stop other folds (reassociation, value tracking etc.)
1083 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1084 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1085 return SDValue();
1086
1087 SDLoc DL(Op);
1088 SDValue ResultAVG =
1089 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1090 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1091 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1092 }
1093
1094 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1095 /// result of Op are ever used downstream. If we can use this information to
1096 /// simplify Op, create a new simplified DAG node and return true, returning the
1097 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1098 /// return a mask of Known bits for the expression (used to simplify the
1099 /// caller). The Known bits may only be accurate for those bits in the
1100 /// OriginalDemandedBits and OriginalDemandedElts.
SimplifyDemandedBits(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const1101 bool TargetLowering::SimplifyDemandedBits(
1102 SDValue Op, const APInt &OriginalDemandedBits,
1103 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1104 unsigned Depth, bool AssumeSingleUse) const {
1105 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1106 assert(Op.getScalarValueSizeInBits() == BitWidth &&
1107 "Mask size mismatches value type size!");
1108
1109 // Don't know anything.
1110 Known = KnownBits(BitWidth);
1111
1112 EVT VT = Op.getValueType();
1113 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1114 unsigned NumElts = OriginalDemandedElts.getBitWidth();
1115 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1116 "Unexpected vector size");
1117
1118 APInt DemandedBits = OriginalDemandedBits;
1119 APInt DemandedElts = OriginalDemandedElts;
1120 SDLoc dl(Op);
1121
1122 // Undef operand.
1123 if (Op.isUndef())
1124 return false;
1125
1126 // We can't simplify target constants.
1127 if (Op.getOpcode() == ISD::TargetConstant)
1128 return false;
1129
1130 if (Op.getOpcode() == ISD::Constant) {
1131 // We know all of the bits for a constant!
1132 Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1133 return false;
1134 }
1135
1136 if (Op.getOpcode() == ISD::ConstantFP) {
1137 // We know all of the bits for a floating point constant!
1138 Known = KnownBits::makeConstant(
1139 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1140 return false;
1141 }
1142
1143 // Other users may use these bits.
1144 bool HasMultiUse = false;
1145 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1146 if (Depth >= SelectionDAG::MaxRecursionDepth) {
1147 // Limit search depth.
1148 return false;
1149 }
1150 // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1151 DemandedBits = APInt::getAllOnes(BitWidth);
1152 DemandedElts = APInt::getAllOnes(NumElts);
1153 HasMultiUse = true;
1154 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1155 // Not demanding any bits/elts from Op.
1156 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1157 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1158 // Limit search depth.
1159 return false;
1160 }
1161
1162 KnownBits Known2;
1163 switch (Op.getOpcode()) {
1164 case ISD::SCALAR_TO_VECTOR: {
1165 if (VT.isScalableVector())
1166 return false;
1167 if (!DemandedElts[0])
1168 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1169
1170 KnownBits SrcKnown;
1171 SDValue Src = Op.getOperand(0);
1172 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1173 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1174 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1175 return true;
1176
1177 // Upper elements are undef, so only get the knownbits if we just demand
1178 // the bottom element.
1179 if (DemandedElts == 1)
1180 Known = SrcKnown.anyextOrTrunc(BitWidth);
1181 break;
1182 }
1183 case ISD::BUILD_VECTOR:
1184 // Collect the known bits that are shared by every demanded element.
1185 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1186 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1187 return false; // Don't fall through, will infinitely loop.
1188 case ISD::SPLAT_VECTOR: {
1189 SDValue Scl = Op.getOperand(0);
1190 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1191 KnownBits KnownScl;
1192 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1193 return true;
1194
1195 // Implicitly truncate the bits to match the official semantics of
1196 // SPLAT_VECTOR.
1197 Known = KnownScl.trunc(BitWidth);
1198 break;
1199 }
1200 case ISD::LOAD: {
1201 auto *LD = cast<LoadSDNode>(Op);
1202 if (getTargetConstantFromLoad(LD)) {
1203 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1204 return false; // Don't fall through, will infinitely loop.
1205 }
1206 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1207 // If this is a ZEXTLoad and we are looking at the loaded value.
1208 EVT MemVT = LD->getMemoryVT();
1209 unsigned MemBits = MemVT.getScalarSizeInBits();
1210 Known.Zero.setBitsFrom(MemBits);
1211 return false; // Don't fall through, will infinitely loop.
1212 }
1213 break;
1214 }
1215 case ISD::INSERT_VECTOR_ELT: {
1216 if (VT.isScalableVector())
1217 return false;
1218 SDValue Vec = Op.getOperand(0);
1219 SDValue Scl = Op.getOperand(1);
1220 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1221 EVT VecVT = Vec.getValueType();
1222
1223 // If index isn't constant, assume we need all vector elements AND the
1224 // inserted element.
1225 APInt DemandedVecElts(DemandedElts);
1226 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1227 unsigned Idx = CIdx->getZExtValue();
1228 DemandedVecElts.clearBit(Idx);
1229
1230 // Inserted element is not required.
1231 if (!DemandedElts[Idx])
1232 return TLO.CombineTo(Op, Vec);
1233 }
1234
1235 KnownBits KnownScl;
1236 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1237 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1238 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1239 return true;
1240
1241 Known = KnownScl.anyextOrTrunc(BitWidth);
1242
1243 KnownBits KnownVec;
1244 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1245 Depth + 1))
1246 return true;
1247
1248 if (!!DemandedVecElts)
1249 Known = Known.intersectWith(KnownVec);
1250
1251 return false;
1252 }
1253 case ISD::INSERT_SUBVECTOR: {
1254 if (VT.isScalableVector())
1255 return false;
1256 // Demand any elements from the subvector and the remainder from the src its
1257 // inserted into.
1258 SDValue Src = Op.getOperand(0);
1259 SDValue Sub = Op.getOperand(1);
1260 uint64_t Idx = Op.getConstantOperandVal(2);
1261 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1262 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1263 APInt DemandedSrcElts = DemandedElts;
1264 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1265
1266 KnownBits KnownSub, KnownSrc;
1267 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1268 Depth + 1))
1269 return true;
1270 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1271 Depth + 1))
1272 return true;
1273
1274 Known.Zero.setAllBits();
1275 Known.One.setAllBits();
1276 if (!!DemandedSubElts)
1277 Known = Known.intersectWith(KnownSub);
1278 if (!!DemandedSrcElts)
1279 Known = Known.intersectWith(KnownSrc);
1280
1281 // Attempt to avoid multi-use src if we don't need anything from it.
1282 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1283 !DemandedSrcElts.isAllOnes()) {
1284 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1285 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1286 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1287 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1288 if (NewSub || NewSrc) {
1289 NewSub = NewSub ? NewSub : Sub;
1290 NewSrc = NewSrc ? NewSrc : Src;
1291 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1292 Op.getOperand(2));
1293 return TLO.CombineTo(Op, NewOp);
1294 }
1295 }
1296 break;
1297 }
1298 case ISD::EXTRACT_SUBVECTOR: {
1299 if (VT.isScalableVector())
1300 return false;
1301 // Offset the demanded elts by the subvector index.
1302 SDValue Src = Op.getOperand(0);
1303 if (Src.getValueType().isScalableVector())
1304 break;
1305 uint64_t Idx = Op.getConstantOperandVal(1);
1306 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1307 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1308
1309 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1310 Depth + 1))
1311 return true;
1312
1313 // Attempt to avoid multi-use src if we don't need anything from it.
1314 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1315 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1316 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1317 if (DemandedSrc) {
1318 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1319 Op.getOperand(1));
1320 return TLO.CombineTo(Op, NewOp);
1321 }
1322 }
1323 break;
1324 }
1325 case ISD::CONCAT_VECTORS: {
1326 if (VT.isScalableVector())
1327 return false;
1328 Known.Zero.setAllBits();
1329 Known.One.setAllBits();
1330 EVT SubVT = Op.getOperand(0).getValueType();
1331 unsigned NumSubVecs = Op.getNumOperands();
1332 unsigned NumSubElts = SubVT.getVectorNumElements();
1333 for (unsigned i = 0; i != NumSubVecs; ++i) {
1334 APInt DemandedSubElts =
1335 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1336 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1337 Known2, TLO, Depth + 1))
1338 return true;
1339 // Known bits are shared by every demanded subvector element.
1340 if (!!DemandedSubElts)
1341 Known = Known.intersectWith(Known2);
1342 }
1343 break;
1344 }
1345 case ISD::VECTOR_SHUFFLE: {
1346 assert(!VT.isScalableVector());
1347 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1348
1349 // Collect demanded elements from shuffle operands..
1350 APInt DemandedLHS, DemandedRHS;
1351 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1352 DemandedRHS))
1353 break;
1354
1355 if (!!DemandedLHS || !!DemandedRHS) {
1356 SDValue Op0 = Op.getOperand(0);
1357 SDValue Op1 = Op.getOperand(1);
1358
1359 Known.Zero.setAllBits();
1360 Known.One.setAllBits();
1361 if (!!DemandedLHS) {
1362 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1363 Depth + 1))
1364 return true;
1365 Known = Known.intersectWith(Known2);
1366 }
1367 if (!!DemandedRHS) {
1368 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1369 Depth + 1))
1370 return true;
1371 Known = Known.intersectWith(Known2);
1372 }
1373
1374 // Attempt to avoid multi-use ops if we don't need anything from them.
1375 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1376 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1377 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1378 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1379 if (DemandedOp0 || DemandedOp1) {
1380 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1381 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1382 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1383 return TLO.CombineTo(Op, NewOp);
1384 }
1385 }
1386 break;
1387 }
1388 case ISD::AND: {
1389 SDValue Op0 = Op.getOperand(0);
1390 SDValue Op1 = Op.getOperand(1);
1391
1392 // If the RHS is a constant, check to see if the LHS would be zero without
1393 // using the bits from the RHS. Below, we use knowledge about the RHS to
1394 // simplify the LHS, here we're using information from the LHS to simplify
1395 // the RHS.
1396 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1397 // Do not increment Depth here; that can cause an infinite loop.
1398 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1399 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1400 if ((LHSKnown.Zero & DemandedBits) ==
1401 (~RHSC->getAPIntValue() & DemandedBits))
1402 return TLO.CombineTo(Op, Op0);
1403
1404 // If any of the set bits in the RHS are known zero on the LHS, shrink
1405 // the constant.
1406 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1407 DemandedElts, TLO))
1408 return true;
1409
1410 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1411 // constant, but if this 'and' is only clearing bits that were just set by
1412 // the xor, then this 'and' can be eliminated by shrinking the mask of
1413 // the xor. For example, for a 32-bit X:
1414 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1415 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1416 LHSKnown.One == ~RHSC->getAPIntValue()) {
1417 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1418 return TLO.CombineTo(Op, Xor);
1419 }
1420 }
1421
1422 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1423 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1424 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1425 (Op0.getOperand(0).isUndef() ||
1426 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1427 Op0->hasOneUse()) {
1428 unsigned NumSubElts =
1429 Op0.getOperand(1).getValueType().getVectorNumElements();
1430 unsigned SubIdx = Op0.getConstantOperandVal(2);
1431 APInt DemandedSub =
1432 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1433 KnownBits KnownSubMask =
1434 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1435 if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1436 SDValue NewAnd =
1437 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1438 SDValue NewInsert =
1439 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1440 Op0.getOperand(1), Op0.getOperand(2));
1441 return TLO.CombineTo(Op, NewInsert);
1442 }
1443 }
1444
1445 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1446 Depth + 1))
1447 return true;
1448 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1449 Known2, TLO, Depth + 1))
1450 return true;
1451
1452 // If all of the demanded bits are known one on one side, return the other.
1453 // These bits cannot contribute to the result of the 'and'.
1454 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1455 return TLO.CombineTo(Op, Op0);
1456 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1457 return TLO.CombineTo(Op, Op1);
1458 // If all of the demanded bits in the inputs are known zeros, return zero.
1459 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1460 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1461 // If the RHS is a constant, see if we can simplify it.
1462 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1463 TLO))
1464 return true;
1465 // If the operation can be done in a smaller type, do so.
1466 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1467 return true;
1468
1469 // Attempt to avoid multi-use ops if we don't need anything from them.
1470 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1471 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1472 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1473 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1474 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1475 if (DemandedOp0 || DemandedOp1) {
1476 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1477 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1478 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1479 return TLO.CombineTo(Op, NewOp);
1480 }
1481 }
1482
1483 Known &= Known2;
1484 break;
1485 }
1486 case ISD::OR: {
1487 SDValue Op0 = Op.getOperand(0);
1488 SDValue Op1 = Op.getOperand(1);
1489 SDNodeFlags Flags = Op.getNode()->getFlags();
1490 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1491 Depth + 1)) {
1492 if (Flags.hasDisjoint()) {
1493 Flags.setDisjoint(false);
1494 Op->setFlags(Flags);
1495 }
1496 return true;
1497 }
1498
1499 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1500 Known2, TLO, Depth + 1)) {
1501 if (Flags.hasDisjoint()) {
1502 Flags.setDisjoint(false);
1503 Op->setFlags(Flags);
1504 }
1505 return true;
1506 }
1507
1508 // If all of the demanded bits are known zero on one side, return the other.
1509 // These bits cannot contribute to the result of the 'or'.
1510 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1511 return TLO.CombineTo(Op, Op0);
1512 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1513 return TLO.CombineTo(Op, Op1);
1514 // If the RHS is a constant, see if we can simplify it.
1515 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1516 return true;
1517 // If the operation can be done in a smaller type, do so.
1518 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1519 return true;
1520
1521 // Attempt to avoid multi-use ops if we don't need anything from them.
1522 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1523 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1524 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1525 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1526 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1527 if (DemandedOp0 || DemandedOp1) {
1528 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1529 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1530 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1531 return TLO.CombineTo(Op, NewOp);
1532 }
1533 }
1534
1535 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1536 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1537 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1538 Op0->hasOneUse() && Op1->hasOneUse()) {
1539 // Attempt to match all commutations - m_c_Or would've been useful!
1540 for (int I = 0; I != 2; ++I) {
1541 SDValue X = Op.getOperand(I).getOperand(0);
1542 SDValue C1 = Op.getOperand(I).getOperand(1);
1543 SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1544 SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1545 if (Alt.getOpcode() == ISD::OR) {
1546 for (int J = 0; J != 2; ++J) {
1547 if (X == Alt.getOperand(J)) {
1548 SDValue Y = Alt.getOperand(1 - J);
1549 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1550 {C1, C2})) {
1551 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1552 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1553 return TLO.CombineTo(
1554 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1555 }
1556 }
1557 }
1558 }
1559 }
1560 }
1561
1562 Known |= Known2;
1563 break;
1564 }
1565 case ISD::XOR: {
1566 SDValue Op0 = Op.getOperand(0);
1567 SDValue Op1 = Op.getOperand(1);
1568
1569 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1570 Depth + 1))
1571 return true;
1572 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1573 Depth + 1))
1574 return true;
1575
1576 // If all of the demanded bits are known zero on one side, return the other.
1577 // These bits cannot contribute to the result of the 'xor'.
1578 if (DemandedBits.isSubsetOf(Known.Zero))
1579 return TLO.CombineTo(Op, Op0);
1580 if (DemandedBits.isSubsetOf(Known2.Zero))
1581 return TLO.CombineTo(Op, Op1);
1582 // If the operation can be done in a smaller type, do so.
1583 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1584 return true;
1585
1586 // If all of the unknown bits are known to be zero on one side or the other
1587 // turn this into an *inclusive* or.
1588 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1589 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1590 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1591
1592 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1593 if (C) {
1594 // If one side is a constant, and all of the set bits in the constant are
1595 // also known set on the other side, turn this into an AND, as we know
1596 // the bits will be cleared.
1597 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1598 // NB: it is okay if more bits are known than are requested
1599 if (C->getAPIntValue() == Known2.One) {
1600 SDValue ANDC =
1601 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1602 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1603 }
1604
1605 // If the RHS is a constant, see if we can change it. Don't alter a -1
1606 // constant because that's a 'not' op, and that is better for combining
1607 // and codegen.
1608 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1609 // We're flipping all demanded bits. Flip the undemanded bits too.
1610 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1611 return TLO.CombineTo(Op, New);
1612 }
1613
1614 unsigned Op0Opcode = Op0.getOpcode();
1615 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1616 if (ConstantSDNode *ShiftC =
1617 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1618 // Don't crash on an oversized shift. We can not guarantee that a
1619 // bogus shift has been simplified to undef.
1620 if (ShiftC->getAPIntValue().ult(BitWidth)) {
1621 uint64_t ShiftAmt = ShiftC->getZExtValue();
1622 APInt Ones = APInt::getAllOnes(BitWidth);
1623 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1624 : Ones.lshr(ShiftAmt);
1625 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1626 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1627 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1628 // If the xor constant is a demanded mask, do a 'not' before the
1629 // shift:
1630 // xor (X << ShiftC), XorC --> (not X) << ShiftC
1631 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1632 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1633 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1634 Op0.getOperand(1)));
1635 }
1636 }
1637 }
1638 }
1639 }
1640
1641 // If we can't turn this into a 'not', try to shrink the constant.
1642 if (!C || !C->isAllOnes())
1643 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1644 return true;
1645
1646 // Attempt to avoid multi-use ops if we don't need anything from them.
1647 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1648 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1649 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1650 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1651 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1652 if (DemandedOp0 || DemandedOp1) {
1653 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1654 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1655 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1656 return TLO.CombineTo(Op, NewOp);
1657 }
1658 }
1659
1660 Known ^= Known2;
1661 break;
1662 }
1663 case ISD::SELECT:
1664 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1665 Known, TLO, Depth + 1))
1666 return true;
1667 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1668 Known2, TLO, Depth + 1))
1669 return true;
1670
1671 // If the operands are constants, see if we can simplify them.
1672 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1673 return true;
1674
1675 // Only known if known in both the LHS and RHS.
1676 Known = Known.intersectWith(Known2);
1677 break;
1678 case ISD::VSELECT:
1679 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1680 Known, TLO, Depth + 1))
1681 return true;
1682 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1683 Known2, TLO, Depth + 1))
1684 return true;
1685
1686 // Only known if known in both the LHS and RHS.
1687 Known = Known.intersectWith(Known2);
1688 break;
1689 case ISD::SELECT_CC:
1690 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1691 Known, TLO, Depth + 1))
1692 return true;
1693 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1694 Known2, TLO, Depth + 1))
1695 return true;
1696
1697 // If the operands are constants, see if we can simplify them.
1698 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1699 return true;
1700
1701 // Only known if known in both the LHS and RHS.
1702 Known = Known.intersectWith(Known2);
1703 break;
1704 case ISD::SETCC: {
1705 SDValue Op0 = Op.getOperand(0);
1706 SDValue Op1 = Op.getOperand(1);
1707 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1708 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1709 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1710 // -1, we may be able to bypass the setcc.
1711 if (DemandedBits.isSignMask() &&
1712 Op0.getScalarValueSizeInBits() == BitWidth &&
1713 getBooleanContents(Op0.getValueType()) ==
1714 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1715 // If we're testing X < 0, then this compare isn't needed - just use X!
1716 // FIXME: We're limiting to integer types here, but this should also work
1717 // if we don't care about FP signed-zero. The use of SETLT with FP means
1718 // that we don't care about NaNs.
1719 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1720 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1721 return TLO.CombineTo(Op, Op0);
1722
1723 // TODO: Should we check for other forms of sign-bit comparisons?
1724 // Examples: X <= -1, X >= 0
1725 }
1726 if (getBooleanContents(Op0.getValueType()) ==
1727 TargetLowering::ZeroOrOneBooleanContent &&
1728 BitWidth > 1)
1729 Known.Zero.setBitsFrom(1);
1730 break;
1731 }
1732 case ISD::SHL: {
1733 SDValue Op0 = Op.getOperand(0);
1734 SDValue Op1 = Op.getOperand(1);
1735 EVT ShiftVT = Op1.getValueType();
1736
1737 if (std::optional<uint64_t> KnownSA =
1738 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1739 unsigned ShAmt = *KnownSA;
1740 if (ShAmt == 0)
1741 return TLO.CombineTo(Op, Op0);
1742
1743 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1744 // single shift. We can do this if the bottom bits (which are shifted
1745 // out) are never demanded.
1746 // TODO - support non-uniform vector amounts.
1747 if (Op0.getOpcode() == ISD::SRL) {
1748 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1749 if (std::optional<uint64_t> InnerSA =
1750 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1751 unsigned C1 = *InnerSA;
1752 unsigned Opc = ISD::SHL;
1753 int Diff = ShAmt - C1;
1754 if (Diff < 0) {
1755 Diff = -Diff;
1756 Opc = ISD::SRL;
1757 }
1758 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1759 return TLO.CombineTo(
1760 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1761 }
1762 }
1763 }
1764
1765 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1766 // are not demanded. This will likely allow the anyext to be folded away.
1767 // TODO - support non-uniform vector amounts.
1768 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1769 SDValue InnerOp = Op0.getOperand(0);
1770 EVT InnerVT = InnerOp.getValueType();
1771 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1772 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1773 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1774 SDValue NarrowShl = TLO.DAG.getNode(
1775 ISD::SHL, dl, InnerVT, InnerOp,
1776 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1777 return TLO.CombineTo(
1778 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1779 }
1780
1781 // Repeat the SHL optimization above in cases where an extension
1782 // intervenes: (shl (anyext (shr x, c1)), c2) to
1783 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1784 // aren't demanded (as above) and that the shifted upper c1 bits of
1785 // x aren't demanded.
1786 // TODO - support non-uniform vector amounts.
1787 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1788 InnerOp.hasOneUse()) {
1789 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1790 InnerOp, DemandedElts, Depth + 2)) {
1791 unsigned InnerShAmt = *SA2;
1792 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1793 DemandedBits.getActiveBits() <=
1794 (InnerBits - InnerShAmt + ShAmt) &&
1795 DemandedBits.countr_zero() >= ShAmt) {
1796 SDValue NewSA =
1797 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1798 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1799 InnerOp.getOperand(0));
1800 return TLO.CombineTo(
1801 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1802 }
1803 }
1804 }
1805 }
1806
1807 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1808 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1809 Depth + 1)) {
1810 SDNodeFlags Flags = Op.getNode()->getFlags();
1811 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1812 // Disable the nsw and nuw flags. We can no longer guarantee that we
1813 // won't wrap after simplification.
1814 Flags.setNoSignedWrap(false);
1815 Flags.setNoUnsignedWrap(false);
1816 Op->setFlags(Flags);
1817 }
1818 return true;
1819 }
1820 Known.Zero <<= ShAmt;
1821 Known.One <<= ShAmt;
1822 // low bits known zero.
1823 Known.Zero.setLowBits(ShAmt);
1824
1825 // Attempt to avoid multi-use ops if we don't need anything from them.
1826 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1827 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1828 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1829 if (DemandedOp0) {
1830 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1831 return TLO.CombineTo(Op, NewOp);
1832 }
1833 }
1834
1835 // TODO: Can we merge this fold with the one below?
1836 // Try shrinking the operation as long as the shift amount will still be
1837 // in range.
1838 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1839 Op.getNode()->hasOneUse()) {
1840 // Search for the smallest integer type with free casts to and from
1841 // Op's type. For expedience, just check power-of-2 integer types.
1842 unsigned DemandedSize = DemandedBits.getActiveBits();
1843 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1844 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1845 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1846 if (isNarrowingProfitable(VT, SmallVT) &&
1847 isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1848 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1849 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1850 assert(DemandedSize <= SmallVTBits &&
1851 "Narrowed below demanded bits?");
1852 // We found a type with free casts.
1853 SDValue NarrowShl = TLO.DAG.getNode(
1854 ISD::SHL, dl, SmallVT,
1855 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1856 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1857 return TLO.CombineTo(
1858 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1859 }
1860 }
1861 }
1862
1863 // Narrow shift to lower half - similar to ShrinkDemandedOp.
1864 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1865 // Only do this if we demand the upper half so the knownbits are correct.
1866 unsigned HalfWidth = BitWidth / 2;
1867 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1868 DemandedBits.countLeadingOnes() >= HalfWidth) {
1869 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1870 if (isNarrowingProfitable(VT, HalfVT) &&
1871 isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1872 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1873 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1874 // If we're demanding the upper bits at all, we must ensure
1875 // that the upper bits of the shift result are known to be zero,
1876 // which is equivalent to the narrow shift being NUW.
1877 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1878 bool IsNSW = Known.countMinSignBits() > HalfWidth;
1879 SDNodeFlags Flags;
1880 Flags.setNoSignedWrap(IsNSW);
1881 Flags.setNoUnsignedWrap(IsNUW);
1882 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1883 SDValue NewShiftAmt =
1884 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1885 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1886 NewShiftAmt, Flags);
1887 SDValue NewExt =
1888 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1889 return TLO.CombineTo(Op, NewExt);
1890 }
1891 }
1892 }
1893 } else {
1894 // This is a variable shift, so we can't shift the demand mask by a known
1895 // amount. But if we are not demanding high bits, then we are not
1896 // demanding those bits from the pre-shifted operand either.
1897 if (unsigned CTLZ = DemandedBits.countl_zero()) {
1898 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1899 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1900 Depth + 1)) {
1901 SDNodeFlags Flags = Op.getNode()->getFlags();
1902 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1903 // Disable the nsw and nuw flags. We can no longer guarantee that we
1904 // won't wrap after simplification.
1905 Flags.setNoSignedWrap(false);
1906 Flags.setNoUnsignedWrap(false);
1907 Op->setFlags(Flags);
1908 }
1909 return true;
1910 }
1911 Known.resetAll();
1912 }
1913 }
1914
1915 // If we are only demanding sign bits then we can use the shift source
1916 // directly.
1917 if (std::optional<uint64_t> MaxSA =
1918 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1919 unsigned ShAmt = *MaxSA;
1920 unsigned NumSignBits =
1921 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1922 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1923 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1924 return TLO.CombineTo(Op, Op0);
1925 }
1926 break;
1927 }
1928 case ISD::SRL: {
1929 SDValue Op0 = Op.getOperand(0);
1930 SDValue Op1 = Op.getOperand(1);
1931 EVT ShiftVT = Op1.getValueType();
1932
1933 if (std::optional<uint64_t> KnownSA =
1934 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1935 unsigned ShAmt = *KnownSA;
1936 if (ShAmt == 0)
1937 return TLO.CombineTo(Op, Op0);
1938
1939 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1940 // single shift. We can do this if the top bits (which are shifted out)
1941 // are never demanded.
1942 // TODO - support non-uniform vector amounts.
1943 if (Op0.getOpcode() == ISD::SHL) {
1944 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1945 if (std::optional<uint64_t> InnerSA =
1946 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1947 unsigned C1 = *InnerSA;
1948 unsigned Opc = ISD::SRL;
1949 int Diff = ShAmt - C1;
1950 if (Diff < 0) {
1951 Diff = -Diff;
1952 Opc = ISD::SHL;
1953 }
1954 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1955 return TLO.CombineTo(
1956 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1957 }
1958 }
1959 }
1960
1961 APInt InDemandedMask = (DemandedBits << ShAmt);
1962
1963 // If the shift is exact, then it does demand the low bits (and knows that
1964 // they are zero).
1965 if (Op->getFlags().hasExact())
1966 InDemandedMask.setLowBits(ShAmt);
1967
1968 // Narrow shift to lower half - similar to ShrinkDemandedOp.
1969 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
1970 if ((BitWidth % 2) == 0 && !VT.isVector()) {
1971 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
1972 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
1973 if (isNarrowingProfitable(VT, HalfVT) &&
1974 isTypeDesirableForOp(ISD::SRL, HalfVT) &&
1975 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1976 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
1977 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
1978 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
1979 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1980 SDValue NewShiftAmt =
1981 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1982 SDValue NewShift =
1983 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
1984 return TLO.CombineTo(
1985 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
1986 }
1987 }
1988
1989 // Compute the new bits that are at the top now.
1990 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1991 Depth + 1))
1992 return true;
1993 Known.Zero.lshrInPlace(ShAmt);
1994 Known.One.lshrInPlace(ShAmt);
1995 // High bits known zero.
1996 Known.Zero.setHighBits(ShAmt);
1997
1998 // Attempt to avoid multi-use ops if we don't need anything from them.
1999 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2000 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2001 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2002 if (DemandedOp0) {
2003 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2004 return TLO.CombineTo(Op, NewOp);
2005 }
2006 }
2007 } else {
2008 // Use generic knownbits computation as it has support for non-uniform
2009 // shift amounts.
2010 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2011 }
2012
2013 // Try to match AVG patterns (after shift simplification).
2014 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2015 DemandedElts, Depth + 1))
2016 return TLO.CombineTo(Op, AVG);
2017
2018 break;
2019 }
2020 case ISD::SRA: {
2021 SDValue Op0 = Op.getOperand(0);
2022 SDValue Op1 = Op.getOperand(1);
2023 EVT ShiftVT = Op1.getValueType();
2024
2025 // If we only want bits that already match the signbit then we don't need
2026 // to shift.
2027 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2028 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2029 NumHiDemandedBits)
2030 return TLO.CombineTo(Op, Op0);
2031
2032 // If this is an arithmetic shift right and only the low-bit is set, we can
2033 // always convert this into a logical shr, even if the shift amount is
2034 // variable. The low bit of the shift cannot be an input sign bit unless
2035 // the shift amount is >= the size of the datatype, which is undefined.
2036 if (DemandedBits.isOne())
2037 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2038
2039 if (std::optional<uint64_t> KnownSA =
2040 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2041 unsigned ShAmt = *KnownSA;
2042 if (ShAmt == 0)
2043 return TLO.CombineTo(Op, Op0);
2044
2045 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2046 // supports sext_inreg.
2047 if (Op0.getOpcode() == ISD::SHL) {
2048 if (std::optional<uint64_t> InnerSA =
2049 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2050 unsigned LowBits = BitWidth - ShAmt;
2051 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2052 if (VT.isVector())
2053 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2054 VT.getVectorElementCount());
2055
2056 if (*InnerSA == ShAmt) {
2057 if (!TLO.LegalOperations() ||
2058 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2059 return TLO.CombineTo(
2060 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2061 Op0.getOperand(0),
2062 TLO.DAG.getValueType(ExtVT)));
2063
2064 // Even if we can't convert to sext_inreg, we might be able to
2065 // remove this shift pair if the input is already sign extended.
2066 unsigned NumSignBits =
2067 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2068 if (NumSignBits > ShAmt)
2069 return TLO.CombineTo(Op, Op0.getOperand(0));
2070 }
2071 }
2072 }
2073
2074 APInt InDemandedMask = (DemandedBits << ShAmt);
2075
2076 // If the shift is exact, then it does demand the low bits (and knows that
2077 // they are zero).
2078 if (Op->getFlags().hasExact())
2079 InDemandedMask.setLowBits(ShAmt);
2080
2081 // If any of the demanded bits are produced by the sign extension, we also
2082 // demand the input sign bit.
2083 if (DemandedBits.countl_zero() < ShAmt)
2084 InDemandedMask.setSignBit();
2085
2086 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2087 Depth + 1))
2088 return true;
2089 Known.Zero.lshrInPlace(ShAmt);
2090 Known.One.lshrInPlace(ShAmt);
2091
2092 // If the input sign bit is known to be zero, or if none of the top bits
2093 // are demanded, turn this into an unsigned shift right.
2094 if (Known.Zero[BitWidth - ShAmt - 1] ||
2095 DemandedBits.countl_zero() >= ShAmt) {
2096 SDNodeFlags Flags;
2097 Flags.setExact(Op->getFlags().hasExact());
2098 return TLO.CombineTo(
2099 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2100 }
2101
2102 int Log2 = DemandedBits.exactLogBase2();
2103 if (Log2 >= 0) {
2104 // The bit must come from the sign.
2105 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2106 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2107 }
2108
2109 if (Known.One[BitWidth - ShAmt - 1])
2110 // New bits are known one.
2111 Known.One.setHighBits(ShAmt);
2112
2113 // Attempt to avoid multi-use ops if we don't need anything from them.
2114 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2115 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2116 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2117 if (DemandedOp0) {
2118 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2119 return TLO.CombineTo(Op, NewOp);
2120 }
2121 }
2122 }
2123
2124 // Try to match AVG patterns (after shift simplification).
2125 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2126 DemandedElts, Depth + 1))
2127 return TLO.CombineTo(Op, AVG);
2128
2129 break;
2130 }
2131 case ISD::FSHL:
2132 case ISD::FSHR: {
2133 SDValue Op0 = Op.getOperand(0);
2134 SDValue Op1 = Op.getOperand(1);
2135 SDValue Op2 = Op.getOperand(2);
2136 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2137
2138 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2139 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2140
2141 // For fshl, 0-shift returns the 1st arg.
2142 // For fshr, 0-shift returns the 2nd arg.
2143 if (Amt == 0) {
2144 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2145 Known, TLO, Depth + 1))
2146 return true;
2147 break;
2148 }
2149
2150 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2151 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2152 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2153 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2154 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2155 Depth + 1))
2156 return true;
2157 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2158 Depth + 1))
2159 return true;
2160
2161 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2162 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2163 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2164 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2165 Known = Known.unionWith(Known2);
2166
2167 // Attempt to avoid multi-use ops if we don't need anything from them.
2168 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2169 !DemandedElts.isAllOnes()) {
2170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2171 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2173 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2174 if (DemandedOp0 || DemandedOp1) {
2175 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2176 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2177 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2178 DemandedOp1, Op2);
2179 return TLO.CombineTo(Op, NewOp);
2180 }
2181 }
2182 }
2183
2184 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2185 if (isPowerOf2_32(BitWidth)) {
2186 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2187 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2188 Known2, TLO, Depth + 1))
2189 return true;
2190 }
2191 break;
2192 }
2193 case ISD::ROTL:
2194 case ISD::ROTR: {
2195 SDValue Op0 = Op.getOperand(0);
2196 SDValue Op1 = Op.getOperand(1);
2197 bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2198
2199 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2200 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2201 return TLO.CombineTo(Op, Op0);
2202
2203 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2204 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2205 unsigned RevAmt = BitWidth - Amt;
2206
2207 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2208 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2209 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2210 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2211 Depth + 1))
2212 return true;
2213
2214 // rot*(x, 0) --> x
2215 if (Amt == 0)
2216 return TLO.CombineTo(Op, Op0);
2217
2218 // See if we don't demand either half of the rotated bits.
2219 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2220 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2221 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2222 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2223 }
2224 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2225 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2226 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2227 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2228 }
2229 }
2230
2231 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2232 if (isPowerOf2_32(BitWidth)) {
2233 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2234 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2235 Depth + 1))
2236 return true;
2237 }
2238 break;
2239 }
2240 case ISD::SMIN:
2241 case ISD::SMAX:
2242 case ISD::UMIN:
2243 case ISD::UMAX: {
2244 unsigned Opc = Op.getOpcode();
2245 SDValue Op0 = Op.getOperand(0);
2246 SDValue Op1 = Op.getOperand(1);
2247
2248 // If we're only demanding signbits, then we can simplify to OR/AND node.
2249 unsigned BitOp =
2250 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2251 unsigned NumSignBits =
2252 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2253 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2254 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2255 if (NumSignBits >= NumDemandedUpperBits)
2256 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2257
2258 // Check if one arg is always less/greater than (or equal) to the other arg.
2259 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2260 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2261 switch (Opc) {
2262 case ISD::SMIN:
2263 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2264 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2265 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2266 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2267 Known = KnownBits::smin(Known0, Known1);
2268 break;
2269 case ISD::SMAX:
2270 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2271 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2272 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2273 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2274 Known = KnownBits::smax(Known0, Known1);
2275 break;
2276 case ISD::UMIN:
2277 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2278 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2279 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2280 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2281 Known = KnownBits::umin(Known0, Known1);
2282 break;
2283 case ISD::UMAX:
2284 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2285 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2286 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2287 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2288 Known = KnownBits::umax(Known0, Known1);
2289 break;
2290 }
2291 break;
2292 }
2293 case ISD::BITREVERSE: {
2294 SDValue Src = Op.getOperand(0);
2295 APInt DemandedSrcBits = DemandedBits.reverseBits();
2296 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2297 Depth + 1))
2298 return true;
2299 Known.One = Known2.One.reverseBits();
2300 Known.Zero = Known2.Zero.reverseBits();
2301 break;
2302 }
2303 case ISD::BSWAP: {
2304 SDValue Src = Op.getOperand(0);
2305
2306 // If the only bits demanded come from one byte of the bswap result,
2307 // just shift the input byte into position to eliminate the bswap.
2308 unsigned NLZ = DemandedBits.countl_zero();
2309 unsigned NTZ = DemandedBits.countr_zero();
2310
2311 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
2312 // we need all the bits down to bit 8. Likewise, round NLZ. If we
2313 // have 14 leading zeros, round to 8.
2314 NLZ = alignDown(NLZ, 8);
2315 NTZ = alignDown(NTZ, 8);
2316 // If we need exactly one byte, we can do this transformation.
2317 if (BitWidth - NLZ - NTZ == 8) {
2318 // Replace this with either a left or right shift to get the byte into
2319 // the right place.
2320 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2321 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2322 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2323 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2324 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2325 return TLO.CombineTo(Op, NewOp);
2326 }
2327 }
2328
2329 APInt DemandedSrcBits = DemandedBits.byteSwap();
2330 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2331 Depth + 1))
2332 return true;
2333 Known.One = Known2.One.byteSwap();
2334 Known.Zero = Known2.Zero.byteSwap();
2335 break;
2336 }
2337 case ISD::CTPOP: {
2338 // If only 1 bit is demanded, replace with PARITY as long as we're before
2339 // op legalization.
2340 // FIXME: Limit to scalars for now.
2341 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2342 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2343 Op.getOperand(0)));
2344
2345 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2346 break;
2347 }
2348 case ISD::SIGN_EXTEND_INREG: {
2349 SDValue Op0 = Op.getOperand(0);
2350 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2351 unsigned ExVTBits = ExVT.getScalarSizeInBits();
2352
2353 // If we only care about the highest bit, don't bother shifting right.
2354 if (DemandedBits.isSignMask()) {
2355 unsigned MinSignedBits =
2356 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2357 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2358 // However if the input is already sign extended we expect the sign
2359 // extension to be dropped altogether later and do not simplify.
2360 if (!AlreadySignExtended) {
2361 // Compute the correct shift amount type, which must be getShiftAmountTy
2362 // for scalar types after legalization.
2363 SDValue ShiftAmt =
2364 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2365 return TLO.CombineTo(Op,
2366 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2367 }
2368 }
2369
2370 // If none of the extended bits are demanded, eliminate the sextinreg.
2371 if (DemandedBits.getActiveBits() <= ExVTBits)
2372 return TLO.CombineTo(Op, Op0);
2373
2374 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2375
2376 // Since the sign extended bits are demanded, we know that the sign
2377 // bit is demanded.
2378 InputDemandedBits.setBit(ExVTBits - 1);
2379
2380 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2381 Depth + 1))
2382 return true;
2383
2384 // If the sign bit of the input is known set or clear, then we know the
2385 // top bits of the result.
2386
2387 // If the input sign bit is known zero, convert this into a zero extension.
2388 if (Known.Zero[ExVTBits - 1])
2389 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2390
2391 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2392 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2393 Known.One.setBitsFrom(ExVTBits);
2394 Known.Zero &= Mask;
2395 } else { // Input sign bit unknown
2396 Known.Zero &= Mask;
2397 Known.One &= Mask;
2398 }
2399 break;
2400 }
2401 case ISD::BUILD_PAIR: {
2402 EVT HalfVT = Op.getOperand(0).getValueType();
2403 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2404
2405 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2406 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2407
2408 KnownBits KnownLo, KnownHi;
2409
2410 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2411 return true;
2412
2413 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2414 return true;
2415
2416 Known = KnownHi.concat(KnownLo);
2417 break;
2418 }
2419 case ISD::ZERO_EXTEND_VECTOR_INREG:
2420 if (VT.isScalableVector())
2421 return false;
2422 [[fallthrough]];
2423 case ISD::ZERO_EXTEND: {
2424 SDValue Src = Op.getOperand(0);
2425 EVT SrcVT = Src.getValueType();
2426 unsigned InBits = SrcVT.getScalarSizeInBits();
2427 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2428 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2429
2430 // If none of the top bits are demanded, convert this into an any_extend.
2431 if (DemandedBits.getActiveBits() <= InBits) {
2432 // If we only need the non-extended bits of the bottom element
2433 // then we can just bitcast to the result.
2434 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2435 VT.getSizeInBits() == SrcVT.getSizeInBits())
2436 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2437
2438 unsigned Opc =
2439 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2440 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2441 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2442 }
2443
2444 SDNodeFlags Flags = Op->getFlags();
2445 APInt InDemandedBits = DemandedBits.trunc(InBits);
2446 APInt InDemandedElts = DemandedElts.zext(InElts);
2447 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2448 Depth + 1)) {
2449 if (Flags.hasNonNeg()) {
2450 Flags.setNonNeg(false);
2451 Op->setFlags(Flags);
2452 }
2453 return true;
2454 }
2455 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2456 Known = Known.zext(BitWidth);
2457
2458 // Attempt to avoid multi-use ops if we don't need anything from them.
2459 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2460 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2461 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2462 break;
2463 }
2464 case ISD::SIGN_EXTEND_VECTOR_INREG:
2465 if (VT.isScalableVector())
2466 return false;
2467 [[fallthrough]];
2468 case ISD::SIGN_EXTEND: {
2469 SDValue Src = Op.getOperand(0);
2470 EVT SrcVT = Src.getValueType();
2471 unsigned InBits = SrcVT.getScalarSizeInBits();
2472 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2474
2475 APInt InDemandedElts = DemandedElts.zext(InElts);
2476 APInt InDemandedBits = DemandedBits.trunc(InBits);
2477
2478 // Since some of the sign extended bits are demanded, we know that the sign
2479 // bit is demanded.
2480 InDemandedBits.setBit(InBits - 1);
2481
2482 // If none of the top bits are demanded, convert this into an any_extend.
2483 if (DemandedBits.getActiveBits() <= InBits) {
2484 // If we only need the non-extended bits of the bottom element
2485 // then we can just bitcast to the result.
2486 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2487 VT.getSizeInBits() == SrcVT.getSizeInBits())
2488 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2489
2490 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2491 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2492 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2493 InBits) {
2494 unsigned Opc =
2495 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2496 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2497 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2498 }
2499 }
2500
2501 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2502 Depth + 1))
2503 return true;
2504 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2505
2506 // If the sign bit is known one, the top bits match.
2507 Known = Known.sext(BitWidth);
2508
2509 // If the sign bit is known zero, convert this to a zero extend.
2510 if (Known.isNonNegative()) {
2511 unsigned Opc =
2512 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2513 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2514 SDNodeFlags Flags;
2515 if (!IsVecInReg)
2516 Flags.setNonNeg(true);
2517 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2518 }
2519 }
2520
2521 // Attempt to avoid multi-use ops if we don't need anything from them.
2522 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2523 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2524 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2525 break;
2526 }
2527 case ISD::ANY_EXTEND_VECTOR_INREG:
2528 if (VT.isScalableVector())
2529 return false;
2530 [[fallthrough]];
2531 case ISD::ANY_EXTEND: {
2532 SDValue Src = Op.getOperand(0);
2533 EVT SrcVT = Src.getValueType();
2534 unsigned InBits = SrcVT.getScalarSizeInBits();
2535 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2536 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2537
2538 // If we only need the bottom element then we can just bitcast.
2539 // TODO: Handle ANY_EXTEND?
2540 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2541 VT.getSizeInBits() == SrcVT.getSizeInBits())
2542 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2543
2544 APInt InDemandedBits = DemandedBits.trunc(InBits);
2545 APInt InDemandedElts = DemandedElts.zext(InElts);
2546 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2547 Depth + 1))
2548 return true;
2549 assert(Known.getBitWidth() == InBits && "Src width has changed?");
2550 Known = Known.anyext(BitWidth);
2551
2552 // Attempt to avoid multi-use ops if we don't need anything from them.
2553 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2554 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2555 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2556 break;
2557 }
2558 case ISD::TRUNCATE: {
2559 SDValue Src = Op.getOperand(0);
2560
2561 // Simplify the input, using demanded bit information, and compute the known
2562 // zero/one bits live out.
2563 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2564 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2565 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2566 Depth + 1))
2567 return true;
2568 Known = Known.trunc(BitWidth);
2569
2570 // Attempt to avoid multi-use ops if we don't need anything from them.
2571 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2572 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2573 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2574
2575 // If the input is only used by this truncate, see if we can shrink it based
2576 // on the known demanded bits.
2577 switch (Src.getOpcode()) {
2578 default:
2579 break;
2580 case ISD::SRL:
2581 // Shrink SRL by a constant if none of the high bits shifted in are
2582 // demanded.
2583 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2584 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2585 // undesirable.
2586 break;
2587
2588 if (Src.getNode()->hasOneUse()) {
2589 if (isTruncateFree(Src, VT) &&
2590 !isTruncateFree(Src.getValueType(), VT)) {
2591 // If truncate is only free at trunc(srl), do not turn it into
2592 // srl(trunc). The check is done by first check the truncate is free
2593 // at Src's opcode(srl), then check the truncate is not done by
2594 // referencing sub-register. In test, if both trunc(srl) and
2595 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2596 // trunc(srl)'s trunc is free, trunc(srl) is better.
2597 break;
2598 }
2599
2600 std::optional<uint64_t> ShAmtC =
2601 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2602 if (!ShAmtC || *ShAmtC >= BitWidth)
2603 break;
2604 uint64_t ShVal = *ShAmtC;
2605
2606 APInt HighBits =
2607 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2608 HighBits.lshrInPlace(ShVal);
2609 HighBits = HighBits.trunc(BitWidth);
2610 if (!(HighBits & DemandedBits)) {
2611 // None of the shifted in bits are needed. Add a truncate of the
2612 // shift input, then shift it.
2613 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2614 SDValue NewTrunc =
2615 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2616 return TLO.CombineTo(
2617 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2618 }
2619 }
2620 break;
2621 }
2622
2623 break;
2624 }
2625 case ISD::AssertZext: {
2626 // AssertZext demands all of the high bits, plus any of the low bits
2627 // demanded by its users.
2628 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2629 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2630 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2631 TLO, Depth + 1))
2632 return true;
2633
2634 Known.Zero |= ~InMask;
2635 Known.One &= (~Known.Zero);
2636 break;
2637 }
2638 case ISD::EXTRACT_VECTOR_ELT: {
2639 SDValue Src = Op.getOperand(0);
2640 SDValue Idx = Op.getOperand(1);
2641 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2642 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2643
2644 if (SrcEltCnt.isScalable())
2645 return false;
2646
2647 // Demand the bits from every vector element without a constant index.
2648 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2649 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2650 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2651 if (CIdx->getAPIntValue().ult(NumSrcElts))
2652 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2653
2654 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2655 // anything about the extended bits.
2656 APInt DemandedSrcBits = DemandedBits;
2657 if (BitWidth > EltBitWidth)
2658 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2659
2660 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2661 Depth + 1))
2662 return true;
2663
2664 // Attempt to avoid multi-use ops if we don't need anything from them.
2665 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2666 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2667 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2668 SDValue NewOp =
2669 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2670 return TLO.CombineTo(Op, NewOp);
2671 }
2672 }
2673
2674 Known = Known2;
2675 if (BitWidth > EltBitWidth)
2676 Known = Known.anyext(BitWidth);
2677 break;
2678 }
2679 case ISD::BITCAST: {
2680 if (VT.isScalableVector())
2681 return false;
2682 SDValue Src = Op.getOperand(0);
2683 EVT SrcVT = Src.getValueType();
2684 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2685
2686 // If this is an FP->Int bitcast and if the sign bit is the only
2687 // thing demanded, turn this into a FGETSIGN.
2688 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2689 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2690 SrcVT.isFloatingPoint()) {
2691 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2692 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2693 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2694 SrcVT != MVT::f128) {
2695 // Cannot eliminate/lower SHL for f128 yet.
2696 EVT Ty = OpVTLegal ? VT : MVT::i32;
2697 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2698 // place. We expect the SHL to be eliminated by other optimizations.
2699 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2700 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2701 if (!OpVTLegal && OpVTSizeInBits > 32)
2702 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2703 unsigned ShVal = Op.getValueSizeInBits() - 1;
2704 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2705 return TLO.CombineTo(Op,
2706 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2707 }
2708 }
2709
2710 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2711 // Demand the elt/bit if any of the original elts/bits are demanded.
2712 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2713 unsigned Scale = BitWidth / NumSrcEltBits;
2714 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2715 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2716 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2717 for (unsigned i = 0; i != Scale; ++i) {
2718 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2719 unsigned BitOffset = EltOffset * NumSrcEltBits;
2720 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2721 if (!Sub.isZero()) {
2722 DemandedSrcBits |= Sub;
2723 for (unsigned j = 0; j != NumElts; ++j)
2724 if (DemandedElts[j])
2725 DemandedSrcElts.setBit((j * Scale) + i);
2726 }
2727 }
2728
2729 APInt KnownSrcUndef, KnownSrcZero;
2730 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2731 KnownSrcZero, TLO, Depth + 1))
2732 return true;
2733
2734 KnownBits KnownSrcBits;
2735 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2736 KnownSrcBits, TLO, Depth + 1))
2737 return true;
2738 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2739 // TODO - bigendian once we have test coverage.
2740 unsigned Scale = NumSrcEltBits / BitWidth;
2741 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2742 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2743 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2744 for (unsigned i = 0; i != NumElts; ++i)
2745 if (DemandedElts[i]) {
2746 unsigned Offset = (i % Scale) * BitWidth;
2747 DemandedSrcBits.insertBits(DemandedBits, Offset);
2748 DemandedSrcElts.setBit(i / Scale);
2749 }
2750
2751 if (SrcVT.isVector()) {
2752 APInt KnownSrcUndef, KnownSrcZero;
2753 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2754 KnownSrcZero, TLO, Depth + 1))
2755 return true;
2756 }
2757
2758 KnownBits KnownSrcBits;
2759 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2760 KnownSrcBits, TLO, Depth + 1))
2761 return true;
2762
2763 // Attempt to avoid multi-use ops if we don't need anything from them.
2764 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2765 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2766 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2767 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2768 return TLO.CombineTo(Op, NewOp);
2769 }
2770 }
2771 }
2772
2773 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2774 // recursive call where Known may be useful to the caller.
2775 if (Depth > 0) {
2776 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2777 return false;
2778 }
2779 break;
2780 }
2781 case ISD::MUL:
2782 if (DemandedBits.isPowerOf2()) {
2783 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2784 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2785 // odd (has LSB set), then the left-shifted low bit of X is the answer.
2786 unsigned CTZ = DemandedBits.countr_zero();
2787 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2788 if (C && C->getAPIntValue().countr_zero() == CTZ) {
2789 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2790 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2791 return TLO.CombineTo(Op, Shl);
2792 }
2793 }
2794 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2795 // X * X is odd iff X is odd.
2796 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2797 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2798 SDValue One = TLO.DAG.getConstant(1, dl, VT);
2799 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2800 return TLO.CombineTo(Op, And1);
2801 }
2802 [[fallthrough]];
2803 case ISD::ADD:
2804 case ISD::SUB: {
2805 // Add, Sub, and Mul don't demand any bits in positions beyond that
2806 // of the highest bit demanded of them.
2807 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2808 SDNodeFlags Flags = Op.getNode()->getFlags();
2809 unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2810 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2811 KnownBits KnownOp0, KnownOp1;
2812 auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2813 const KnownBits &KnownRHS) {
2814 if (Op.getOpcode() == ISD::MUL)
2815 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2816 return Demanded;
2817 };
2818 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2819 Depth + 1) ||
2820 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2821 DemandedElts, KnownOp0, TLO, Depth + 1) ||
2822 // See if the operation should be performed at a smaller bit width.
2823 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2824 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2825 // Disable the nsw and nuw flags. We can no longer guarantee that we
2826 // won't wrap after simplification.
2827 Flags.setNoSignedWrap(false);
2828 Flags.setNoUnsignedWrap(false);
2829 Op->setFlags(Flags);
2830 }
2831 return true;
2832 }
2833
2834 // neg x with only low bit demanded is simply x.
2835 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2836 isNullConstant(Op0))
2837 return TLO.CombineTo(Op, Op1);
2838
2839 // Attempt to avoid multi-use ops if we don't need anything from them.
2840 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2841 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2842 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2843 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2844 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2845 if (DemandedOp0 || DemandedOp1) {
2846 Flags.setNoSignedWrap(false);
2847 Flags.setNoUnsignedWrap(false);
2848 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2849 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2850 SDValue NewOp =
2851 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2852 return TLO.CombineTo(Op, NewOp);
2853 }
2854 }
2855
2856 // If we have a constant operand, we may be able to turn it into -1 if we
2857 // do not demand the high bits. This can make the constant smaller to
2858 // encode, allow more general folding, or match specialized instruction
2859 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2860 // is probably not useful (and could be detrimental).
2861 ConstantSDNode *C = isConstOrConstSplat(Op1);
2862 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2863 if (C && !C->isAllOnes() && !C->isOne() &&
2864 (C->getAPIntValue() | HighMask).isAllOnes()) {
2865 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2866 // Disable the nsw and nuw flags. We can no longer guarantee that we
2867 // won't wrap after simplification.
2868 Flags.setNoSignedWrap(false);
2869 Flags.setNoUnsignedWrap(false);
2870 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2871 return TLO.CombineTo(Op, NewOp);
2872 }
2873
2874 // Match a multiply with a disguised negated-power-of-2 and convert to a
2875 // an equivalent shift-left amount.
2876 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2877 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2878 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2879 return 0;
2880
2881 // Don't touch opaque constants. Also, ignore zero and power-of-2
2882 // multiplies. Those will get folded later.
2883 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2884 if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2885 !MulC->getAPIntValue().isPowerOf2()) {
2886 APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2887 if (UnmaskedC.isNegatedPowerOf2())
2888 return (-UnmaskedC).logBase2();
2889 }
2890 return 0;
2891 };
2892
2893 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2894 unsigned ShlAmt) {
2895 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2896 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2897 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2898 return TLO.CombineTo(Op, Res);
2899 };
2900
2901 if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2902 if (Op.getOpcode() == ISD::ADD) {
2903 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2904 if (unsigned ShAmt = getShiftLeftAmt(Op0))
2905 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2906 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2907 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2908 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2909 }
2910 if (Op.getOpcode() == ISD::SUB) {
2911 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2912 if (unsigned ShAmt = getShiftLeftAmt(Op1))
2913 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2914 }
2915 }
2916
2917 if (Op.getOpcode() == ISD::MUL) {
2918 Known = KnownBits::mul(KnownOp0, KnownOp1);
2919 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2920 Known = KnownBits::computeForAddSub(
2921 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2922 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2923 }
2924 break;
2925 }
2926 default:
2927 // We also ask the target about intrinsics (which could be specific to it).
2928 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2929 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2930 // TODO: Probably okay to remove after audit; here to reduce change size
2931 // in initial enablement patch for scalable vectors
2932 if (Op.getValueType().isScalableVector())
2933 break;
2934 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2935 Known, TLO, Depth))
2936 return true;
2937 break;
2938 }
2939
2940 // Just use computeKnownBits to compute output bits.
2941 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2942 break;
2943 }
2944
2945 // If we know the value of all of the demanded bits, return this as a
2946 // constant.
2947 if (!isTargetCanonicalConstantNode(Op) &&
2948 DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2949 // Avoid folding to a constant if any OpaqueConstant is involved.
2950 const SDNode *N = Op.getNode();
2951 for (SDNode *Op :
2952 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2953 if (auto *C = dyn_cast<ConstantSDNode>(Op))
2954 if (C->isOpaque())
2955 return false;
2956 }
2957 if (VT.isInteger())
2958 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2959 if (VT.isFloatingPoint())
2960 return TLO.CombineTo(
2961 Op,
2962 TLO.DAG.getConstantFP(
2963 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2964 }
2965
2966 // A multi use 'all demanded elts' simplify failed to find any knownbits.
2967 // Try again just for the original demanded elts.
2968 // Ensure we do this AFTER constant folding above.
2969 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
2970 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
2971
2972 return false;
2973 }
2974
SimplifyDemandedVectorElts(SDValue Op,const APInt & DemandedElts,DAGCombinerInfo & DCI) const2975 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2976 const APInt &DemandedElts,
2977 DAGCombinerInfo &DCI) const {
2978 SelectionDAG &DAG = DCI.DAG;
2979 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2980 !DCI.isBeforeLegalizeOps());
2981
2982 APInt KnownUndef, KnownZero;
2983 bool Simplified =
2984 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2985 if (Simplified) {
2986 DCI.AddToWorklist(Op.getNode());
2987 DCI.CommitTargetLoweringOpt(TLO);
2988 }
2989
2990 return Simplified;
2991 }
2992
2993 /// Given a vector binary operation and known undefined elements for each input
2994 /// operand, compute whether each element of the output is undefined.
getKnownUndefForVectorBinop(SDValue BO,SelectionDAG & DAG,const APInt & UndefOp0,const APInt & UndefOp1)2995 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2996 const APInt &UndefOp0,
2997 const APInt &UndefOp1) {
2998 EVT VT = BO.getValueType();
2999 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3000 "Vector binop only");
3001
3002 EVT EltVT = VT.getVectorElementType();
3003 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3004 assert(UndefOp0.getBitWidth() == NumElts &&
3005 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3006
3007 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3008 const APInt &UndefVals) {
3009 if (UndefVals[Index])
3010 return DAG.getUNDEF(EltVT);
3011
3012 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3013 // Try hard to make sure that the getNode() call is not creating temporary
3014 // nodes. Ignore opaque integers because they do not constant fold.
3015 SDValue Elt = BV->getOperand(Index);
3016 auto *C = dyn_cast<ConstantSDNode>(Elt);
3017 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3018 return Elt;
3019 }
3020
3021 return SDValue();
3022 };
3023
3024 APInt KnownUndef = APInt::getZero(NumElts);
3025 for (unsigned i = 0; i != NumElts; ++i) {
3026 // If both inputs for this element are either constant or undef and match
3027 // the element type, compute the constant/undef result for this element of
3028 // the vector.
3029 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3030 // not handle FP constants. The code within getNode() should be refactored
3031 // to avoid the danger of creating a bogus temporary node here.
3032 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3033 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3034 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3035 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3036 KnownUndef.setBit(i);
3037 }
3038 return KnownUndef;
3039 }
3040
SimplifyDemandedVectorElts(SDValue Op,const APInt & OriginalDemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const3041 bool TargetLowering::SimplifyDemandedVectorElts(
3042 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3043 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3044 bool AssumeSingleUse) const {
3045 EVT VT = Op.getValueType();
3046 unsigned Opcode = Op.getOpcode();
3047 APInt DemandedElts = OriginalDemandedElts;
3048 unsigned NumElts = DemandedElts.getBitWidth();
3049 assert(VT.isVector() && "Expected vector op");
3050
3051 KnownUndef = KnownZero = APInt::getZero(NumElts);
3052
3053 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
3054 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
3055 return false;
3056
3057 // TODO: For now we assume we know nothing about scalable vectors.
3058 if (VT.isScalableVector())
3059 return false;
3060
3061 assert(VT.getVectorNumElements() == NumElts &&
3062 "Mask size mismatches value type element count!");
3063
3064 // Undef operand.
3065 if (Op.isUndef()) {
3066 KnownUndef.setAllBits();
3067 return false;
3068 }
3069
3070 // If Op has other users, assume that all elements are needed.
3071 if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3072 DemandedElts.setAllBits();
3073
3074 // Not demanding any elements from Op.
3075 if (DemandedElts == 0) {
3076 KnownUndef.setAllBits();
3077 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3078 }
3079
3080 // Limit search depth.
3081 if (Depth >= SelectionDAG::MaxRecursionDepth)
3082 return false;
3083
3084 SDLoc DL(Op);
3085 unsigned EltSizeInBits = VT.getScalarSizeInBits();
3086 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3087
3088 // Helper for demanding the specified elements and all the bits of both binary
3089 // operands.
3090 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3091 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3092 TLO.DAG, Depth + 1);
3093 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3094 TLO.DAG, Depth + 1);
3095 if (NewOp0 || NewOp1) {
3096 SDValue NewOp =
3097 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3098 NewOp1 ? NewOp1 : Op1, Op->getFlags());
3099 return TLO.CombineTo(Op, NewOp);
3100 }
3101 return false;
3102 };
3103
3104 switch (Opcode) {
3105 case ISD::SCALAR_TO_VECTOR: {
3106 if (!DemandedElts[0]) {
3107 KnownUndef.setAllBits();
3108 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3109 }
3110 SDValue ScalarSrc = Op.getOperand(0);
3111 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3112 SDValue Src = ScalarSrc.getOperand(0);
3113 SDValue Idx = ScalarSrc.getOperand(1);
3114 EVT SrcVT = Src.getValueType();
3115
3116 ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3117
3118 if (SrcEltCnt.isScalable())
3119 return false;
3120
3121 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3122 if (isNullConstant(Idx)) {
3123 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3124 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3125 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3126 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3127 TLO, Depth + 1))
3128 return true;
3129 }
3130 }
3131 KnownUndef.setHighBits(NumElts - 1);
3132 break;
3133 }
3134 case ISD::BITCAST: {
3135 SDValue Src = Op.getOperand(0);
3136 EVT SrcVT = Src.getValueType();
3137
3138 // We only handle vectors here.
3139 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3140 if (!SrcVT.isVector())
3141 break;
3142
3143 // Fast handling of 'identity' bitcasts.
3144 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3145 if (NumSrcElts == NumElts)
3146 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3147 KnownZero, TLO, Depth + 1);
3148
3149 APInt SrcDemandedElts, SrcZero, SrcUndef;
3150
3151 // Bitcast from 'large element' src vector to 'small element' vector, we
3152 // must demand a source element if any DemandedElt maps to it.
3153 if ((NumElts % NumSrcElts) == 0) {
3154 unsigned Scale = NumElts / NumSrcElts;
3155 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3156 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3157 TLO, Depth + 1))
3158 return true;
3159
3160 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3161 // of the large element.
3162 // TODO - bigendian once we have test coverage.
3163 if (IsLE) {
3164 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3165 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3166 for (unsigned i = 0; i != NumElts; ++i)
3167 if (DemandedElts[i]) {
3168 unsigned Ofs = (i % Scale) * EltSizeInBits;
3169 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3170 }
3171
3172 KnownBits Known;
3173 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3174 TLO, Depth + 1))
3175 return true;
3176
3177 // The bitcast has split each wide element into a number of
3178 // narrow subelements. We have just computed the Known bits
3179 // for wide elements. See if element splitting results in
3180 // some subelements being zero. Only for demanded elements!
3181 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3182 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3183 .isAllOnes())
3184 continue;
3185 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3186 unsigned Elt = Scale * SrcElt + SubElt;
3187 if (DemandedElts[Elt])
3188 KnownZero.setBit(Elt);
3189 }
3190 }
3191 }
3192
3193 // If the src element is zero/undef then all the output elements will be -
3194 // only demanded elements are guaranteed to be correct.
3195 for (unsigned i = 0; i != NumSrcElts; ++i) {
3196 if (SrcDemandedElts[i]) {
3197 if (SrcZero[i])
3198 KnownZero.setBits(i * Scale, (i + 1) * Scale);
3199 if (SrcUndef[i])
3200 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3201 }
3202 }
3203 }
3204
3205 // Bitcast from 'small element' src vector to 'large element' vector, we
3206 // demand all smaller source elements covered by the larger demanded element
3207 // of this vector.
3208 if ((NumSrcElts % NumElts) == 0) {
3209 unsigned Scale = NumSrcElts / NumElts;
3210 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3211 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3212 TLO, Depth + 1))
3213 return true;
3214
3215 // If all the src elements covering an output element are zero/undef, then
3216 // the output element will be as well, assuming it was demanded.
3217 for (unsigned i = 0; i != NumElts; ++i) {
3218 if (DemandedElts[i]) {
3219 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3220 KnownZero.setBit(i);
3221 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3222 KnownUndef.setBit(i);
3223 }
3224 }
3225 }
3226 break;
3227 }
3228 case ISD::FREEZE: {
3229 SDValue N0 = Op.getOperand(0);
3230 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3231 /*PoisonOnly=*/false))
3232 return TLO.CombineTo(Op, N0);
3233
3234 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3235 // freeze(op(x, ...)) -> op(freeze(x), ...).
3236 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3237 return TLO.CombineTo(
3238 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3239 TLO.DAG.getFreeze(N0.getOperand(0))));
3240 break;
3241 }
3242 case ISD::BUILD_VECTOR: {
3243 // Check all elements and simplify any unused elements with UNDEF.
3244 if (!DemandedElts.isAllOnes()) {
3245 // Don't simplify BROADCASTS.
3246 if (llvm::any_of(Op->op_values(),
3247 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3248 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
3249 bool Updated = false;
3250 for (unsigned i = 0; i != NumElts; ++i) {
3251 if (!DemandedElts[i] && !Ops[i].isUndef()) {
3252 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3253 KnownUndef.setBit(i);
3254 Updated = true;
3255 }
3256 }
3257 if (Updated)
3258 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3259 }
3260 }
3261 for (unsigned i = 0; i != NumElts; ++i) {
3262 SDValue SrcOp = Op.getOperand(i);
3263 if (SrcOp.isUndef()) {
3264 KnownUndef.setBit(i);
3265 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3266 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3267 KnownZero.setBit(i);
3268 }
3269 }
3270 break;
3271 }
3272 case ISD::CONCAT_VECTORS: {
3273 EVT SubVT = Op.getOperand(0).getValueType();
3274 unsigned NumSubVecs = Op.getNumOperands();
3275 unsigned NumSubElts = SubVT.getVectorNumElements();
3276 for (unsigned i = 0; i != NumSubVecs; ++i) {
3277 SDValue SubOp = Op.getOperand(i);
3278 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3279 APInt SubUndef, SubZero;
3280 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3281 Depth + 1))
3282 return true;
3283 KnownUndef.insertBits(SubUndef, i * NumSubElts);
3284 KnownZero.insertBits(SubZero, i * NumSubElts);
3285 }
3286
3287 // Attempt to avoid multi-use ops if we don't need anything from them.
3288 if (!DemandedElts.isAllOnes()) {
3289 bool FoundNewSub = false;
3290 SmallVector<SDValue, 2> DemandedSubOps;
3291 for (unsigned i = 0; i != NumSubVecs; ++i) {
3292 SDValue SubOp = Op.getOperand(i);
3293 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3294 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3295 SubOp, SubElts, TLO.DAG, Depth + 1);
3296 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3297 FoundNewSub = NewSubOp ? true : FoundNewSub;
3298 }
3299 if (FoundNewSub) {
3300 SDValue NewOp =
3301 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3302 return TLO.CombineTo(Op, NewOp);
3303 }
3304 }
3305 break;
3306 }
3307 case ISD::INSERT_SUBVECTOR: {
3308 // Demand any elements from the subvector and the remainder from the src its
3309 // inserted into.
3310 SDValue Src = Op.getOperand(0);
3311 SDValue Sub = Op.getOperand(1);
3312 uint64_t Idx = Op.getConstantOperandVal(2);
3313 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3314 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3315 APInt DemandedSrcElts = DemandedElts;
3316 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3317
3318 APInt SubUndef, SubZero;
3319 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3320 Depth + 1))
3321 return true;
3322
3323 // If none of the src operand elements are demanded, replace it with undef.
3324 if (!DemandedSrcElts && !Src.isUndef())
3325 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3326 TLO.DAG.getUNDEF(VT), Sub,
3327 Op.getOperand(2)));
3328
3329 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3330 TLO, Depth + 1))
3331 return true;
3332 KnownUndef.insertBits(SubUndef, Idx);
3333 KnownZero.insertBits(SubZero, Idx);
3334
3335 // Attempt to avoid multi-use ops if we don't need anything from them.
3336 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3337 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3338 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3339 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3340 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3341 if (NewSrc || NewSub) {
3342 NewSrc = NewSrc ? NewSrc : Src;
3343 NewSub = NewSub ? NewSub : Sub;
3344 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3345 NewSub, Op.getOperand(2));
3346 return TLO.CombineTo(Op, NewOp);
3347 }
3348 }
3349 break;
3350 }
3351 case ISD::EXTRACT_SUBVECTOR: {
3352 // Offset the demanded elts by the subvector index.
3353 SDValue Src = Op.getOperand(0);
3354 if (Src.getValueType().isScalableVector())
3355 break;
3356 uint64_t Idx = Op.getConstantOperandVal(1);
3357 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3358 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3359
3360 APInt SrcUndef, SrcZero;
3361 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3362 Depth + 1))
3363 return true;
3364 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3365 KnownZero = SrcZero.extractBits(NumElts, Idx);
3366
3367 // Attempt to avoid multi-use ops if we don't need anything from them.
3368 if (!DemandedElts.isAllOnes()) {
3369 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3370 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3371 if (NewSrc) {
3372 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3373 Op.getOperand(1));
3374 return TLO.CombineTo(Op, NewOp);
3375 }
3376 }
3377 break;
3378 }
3379 case ISD::INSERT_VECTOR_ELT: {
3380 SDValue Vec = Op.getOperand(0);
3381 SDValue Scl = Op.getOperand(1);
3382 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3383
3384 // For a legal, constant insertion index, if we don't need this insertion
3385 // then strip it, else remove it from the demanded elts.
3386 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3387 unsigned Idx = CIdx->getZExtValue();
3388 if (!DemandedElts[Idx])
3389 return TLO.CombineTo(Op, Vec);
3390
3391 APInt DemandedVecElts(DemandedElts);
3392 DemandedVecElts.clearBit(Idx);
3393 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3394 KnownZero, TLO, Depth + 1))
3395 return true;
3396
3397 KnownUndef.setBitVal(Idx, Scl.isUndef());
3398
3399 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3400 break;
3401 }
3402
3403 APInt VecUndef, VecZero;
3404 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3405 Depth + 1))
3406 return true;
3407 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3408 break;
3409 }
3410 case ISD::VSELECT: {
3411 SDValue Sel = Op.getOperand(0);
3412 SDValue LHS = Op.getOperand(1);
3413 SDValue RHS = Op.getOperand(2);
3414
3415 // Try to transform the select condition based on the current demanded
3416 // elements.
3417 APInt UndefSel, ZeroSel;
3418 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3419 Depth + 1))
3420 return true;
3421
3422 // See if we can simplify either vselect operand.
3423 APInt DemandedLHS(DemandedElts);
3424 APInt DemandedRHS(DemandedElts);
3425 APInt UndefLHS, ZeroLHS;
3426 APInt UndefRHS, ZeroRHS;
3427 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3428 Depth + 1))
3429 return true;
3430 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3431 Depth + 1))
3432 return true;
3433
3434 KnownUndef = UndefLHS & UndefRHS;
3435 KnownZero = ZeroLHS & ZeroRHS;
3436
3437 // If we know that the selected element is always zero, we don't need the
3438 // select value element.
3439 APInt DemandedSel = DemandedElts & ~KnownZero;
3440 if (DemandedSel != DemandedElts)
3441 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3442 Depth + 1))
3443 return true;
3444
3445 break;
3446 }
3447 case ISD::VECTOR_SHUFFLE: {
3448 SDValue LHS = Op.getOperand(0);
3449 SDValue RHS = Op.getOperand(1);
3450 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3451
3452 // Collect demanded elements from shuffle operands..
3453 APInt DemandedLHS(NumElts, 0);
3454 APInt DemandedRHS(NumElts, 0);
3455 for (unsigned i = 0; i != NumElts; ++i) {
3456 int M = ShuffleMask[i];
3457 if (M < 0 || !DemandedElts[i])
3458 continue;
3459 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3460 if (M < (int)NumElts)
3461 DemandedLHS.setBit(M);
3462 else
3463 DemandedRHS.setBit(M - NumElts);
3464 }
3465
3466 // See if we can simplify either shuffle operand.
3467 APInt UndefLHS, ZeroLHS;
3468 APInt UndefRHS, ZeroRHS;
3469 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3470 Depth + 1))
3471 return true;
3472 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3473 Depth + 1))
3474 return true;
3475
3476 // Simplify mask using undef elements from LHS/RHS.
3477 bool Updated = false;
3478 bool IdentityLHS = true, IdentityRHS = true;
3479 SmallVector<int, 32> NewMask(ShuffleMask);
3480 for (unsigned i = 0; i != NumElts; ++i) {
3481 int &M = NewMask[i];
3482 if (M < 0)
3483 continue;
3484 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3485 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3486 Updated = true;
3487 M = -1;
3488 }
3489 IdentityLHS &= (M < 0) || (M == (int)i);
3490 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3491 }
3492
3493 // Update legal shuffle masks based on demanded elements if it won't reduce
3494 // to Identity which can cause premature removal of the shuffle mask.
3495 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3496 SDValue LegalShuffle =
3497 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3498 if (LegalShuffle)
3499 return TLO.CombineTo(Op, LegalShuffle);
3500 }
3501
3502 // Propagate undef/zero elements from LHS/RHS.
3503 for (unsigned i = 0; i != NumElts; ++i) {
3504 int M = ShuffleMask[i];
3505 if (M < 0) {
3506 KnownUndef.setBit(i);
3507 } else if (M < (int)NumElts) {
3508 if (UndefLHS[M])
3509 KnownUndef.setBit(i);
3510 if (ZeroLHS[M])
3511 KnownZero.setBit(i);
3512 } else {
3513 if (UndefRHS[M - NumElts])
3514 KnownUndef.setBit(i);
3515 if (ZeroRHS[M - NumElts])
3516 KnownZero.setBit(i);
3517 }
3518 }
3519 break;
3520 }
3521 case ISD::ANY_EXTEND_VECTOR_INREG:
3522 case ISD::SIGN_EXTEND_VECTOR_INREG:
3523 case ISD::ZERO_EXTEND_VECTOR_INREG: {
3524 APInt SrcUndef, SrcZero;
3525 SDValue Src = Op.getOperand(0);
3526 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3527 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3528 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3529 Depth + 1))
3530 return true;
3531 KnownZero = SrcZero.zextOrTrunc(NumElts);
3532 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3533
3534 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3535 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3536 DemandedSrcElts == 1) {
3537 // aext - if we just need the bottom element then we can bitcast.
3538 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3539 }
3540
3541 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3542 // zext(undef) upper bits are guaranteed to be zero.
3543 if (DemandedElts.isSubsetOf(KnownUndef))
3544 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3545 KnownUndef.clearAllBits();
3546
3547 // zext - if we just need the bottom element then we can mask:
3548 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3549 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3550 Op->isOnlyUserOf(Src.getNode()) &&
3551 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3552 SDLoc DL(Op);
3553 EVT SrcVT = Src.getValueType();
3554 EVT SrcSVT = SrcVT.getScalarType();
3555 SmallVector<SDValue> MaskElts;
3556 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3557 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3558 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3559 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3560 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3561 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3562 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3563 }
3564 }
3565 }
3566 break;
3567 }
3568
3569 // TODO: There are more binop opcodes that could be handled here - MIN,
3570 // MAX, saturated math, etc.
3571 case ISD::ADD: {
3572 SDValue Op0 = Op.getOperand(0);
3573 SDValue Op1 = Op.getOperand(1);
3574 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3575 APInt UndefLHS, ZeroLHS;
3576 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3577 Depth + 1, /*AssumeSingleUse*/ true))
3578 return true;
3579 }
3580 [[fallthrough]];
3581 }
3582 case ISD::AVGCEILS:
3583 case ISD::AVGCEILU:
3584 case ISD::AVGFLOORS:
3585 case ISD::AVGFLOORU:
3586 case ISD::OR:
3587 case ISD::XOR:
3588 case ISD::SUB:
3589 case ISD::FADD:
3590 case ISD::FSUB:
3591 case ISD::FMUL:
3592 case ISD::FDIV:
3593 case ISD::FREM: {
3594 SDValue Op0 = Op.getOperand(0);
3595 SDValue Op1 = Op.getOperand(1);
3596
3597 APInt UndefRHS, ZeroRHS;
3598 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3599 Depth + 1))
3600 return true;
3601 APInt UndefLHS, ZeroLHS;
3602 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3603 Depth + 1))
3604 return true;
3605
3606 KnownZero = ZeroLHS & ZeroRHS;
3607 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3608
3609 // Attempt to avoid multi-use ops if we don't need anything from them.
3610 // TODO - use KnownUndef to relax the demandedelts?
3611 if (!DemandedElts.isAllOnes())
3612 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3613 return true;
3614 break;
3615 }
3616 case ISD::SHL:
3617 case ISD::SRL:
3618 case ISD::SRA:
3619 case ISD::ROTL:
3620 case ISD::ROTR: {
3621 SDValue Op0 = Op.getOperand(0);
3622 SDValue Op1 = Op.getOperand(1);
3623
3624 APInt UndefRHS, ZeroRHS;
3625 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3626 Depth + 1))
3627 return true;
3628 APInt UndefLHS, ZeroLHS;
3629 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3630 Depth + 1))
3631 return true;
3632
3633 KnownZero = ZeroLHS;
3634 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3635
3636 // Attempt to avoid multi-use ops if we don't need anything from them.
3637 // TODO - use KnownUndef to relax the demandedelts?
3638 if (!DemandedElts.isAllOnes())
3639 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3640 return true;
3641 break;
3642 }
3643 case ISD::MUL:
3644 case ISD::MULHU:
3645 case ISD::MULHS:
3646 case ISD::AND: {
3647 SDValue Op0 = Op.getOperand(0);
3648 SDValue Op1 = Op.getOperand(1);
3649
3650 APInt SrcUndef, SrcZero;
3651 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3652 Depth + 1))
3653 return true;
3654 // If we know that a demanded element was zero in Op1 we don't need to
3655 // demand it in Op0 - its guaranteed to be zero.
3656 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3657 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3658 TLO, Depth + 1))
3659 return true;
3660
3661 KnownUndef &= DemandedElts0;
3662 KnownZero &= DemandedElts0;
3663
3664 // If every element pair has a zero/undef then just fold to zero.
3665 // fold (and x, undef) -> 0 / (and x, 0) -> 0
3666 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
3667 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3668 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3669
3670 // If either side has a zero element, then the result element is zero, even
3671 // if the other is an UNDEF.
3672 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3673 // and then handle 'and' nodes with the rest of the binop opcodes.
3674 KnownZero |= SrcZero;
3675 KnownUndef &= SrcUndef;
3676 KnownUndef &= ~KnownZero;
3677
3678 // Attempt to avoid multi-use ops if we don't need anything from them.
3679 if (!DemandedElts.isAllOnes())
3680 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3681 return true;
3682 break;
3683 }
3684 case ISD::TRUNCATE:
3685 case ISD::SIGN_EXTEND:
3686 case ISD::ZERO_EXTEND:
3687 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3688 KnownZero, TLO, Depth + 1))
3689 return true;
3690
3691 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3692 // zext(undef) upper bits are guaranteed to be zero.
3693 if (DemandedElts.isSubsetOf(KnownUndef))
3694 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3695 KnownUndef.clearAllBits();
3696 }
3697 break;
3698 default: {
3699 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3700 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3701 KnownZero, TLO, Depth))
3702 return true;
3703 } else {
3704 KnownBits Known;
3705 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3706 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3707 TLO, Depth, AssumeSingleUse))
3708 return true;
3709 }
3710 break;
3711 }
3712 }
3713 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3714
3715 // Constant fold all undef cases.
3716 // TODO: Handle zero cases as well.
3717 if (DemandedElts.isSubsetOf(KnownUndef))
3718 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3719
3720 return false;
3721 }
3722
3723 /// Determine which of the bits specified in Mask are known to be either zero or
3724 /// one and return them in the Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const3725 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3726 KnownBits &Known,
3727 const APInt &DemandedElts,
3728 const SelectionDAG &DAG,
3729 unsigned Depth) const {
3730 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3731 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3732 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3733 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3734 "Should use MaskedValueIsZero if you don't know whether Op"
3735 " is a target node!");
3736 Known.resetAll();
3737 }
3738
computeKnownBitsForTargetInstr(GISelKnownBits & Analysis,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3739 void TargetLowering::computeKnownBitsForTargetInstr(
3740 GISelKnownBits &Analysis, Register R, KnownBits &Known,
3741 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3742 unsigned Depth) const {
3743 Known.resetAll();
3744 }
3745
computeKnownBitsForFrameIndex(const int FrameIdx,KnownBits & Known,const MachineFunction & MF) const3746 void TargetLowering::computeKnownBitsForFrameIndex(
3747 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3748 // The low bits are known zero if the pointer is aligned.
3749 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3750 }
3751
computeKnownAlignForTargetInstr(GISelKnownBits & Analysis,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const3752 Align TargetLowering::computeKnownAlignForTargetInstr(
3753 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3754 unsigned Depth) const {
3755 return Align(1);
3756 }
3757
3758 /// This method can be implemented by targets that want to expose additional
3759 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt &,const SelectionDAG &,unsigned Depth) const3760 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3761 const APInt &,
3762 const SelectionDAG &,
3763 unsigned Depth) const {
3764 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3765 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3766 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3767 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3768 "Should use ComputeNumSignBits if you don't know whether Op"
3769 " is a target node!");
3770 return 1;
3771 }
3772
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3773 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3774 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3775 const MachineRegisterInfo &MRI, unsigned Depth) const {
3776 return 1;
3777 }
3778
SimplifyDemandedVectorEltsForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth) const3779 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3780 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3781 TargetLoweringOpt &TLO, unsigned Depth) const {
3782 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3783 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3784 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3785 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3786 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3787 " is a target node!");
3788 return false;
3789 }
3790
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const3791 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3792 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3793 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3794 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3795 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3796 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3797 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3798 "Should use SimplifyDemandedBits if you don't know whether Op"
3799 " is a target node!");
3800 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3801 return false;
3802 }
3803
SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const3804 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3805 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3806 SelectionDAG &DAG, unsigned Depth) const {
3807 assert(
3808 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3809 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3810 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3811 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3812 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3813 " is a target node!");
3814 return SDValue();
3815 }
3816
3817 SDValue
buildLegalVectorShuffle(EVT VT,const SDLoc & DL,SDValue N0,SDValue N1,MutableArrayRef<int> Mask,SelectionDAG & DAG) const3818 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3819 SDValue N1, MutableArrayRef<int> Mask,
3820 SelectionDAG &DAG) const {
3821 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3822 if (!LegalMask) {
3823 std::swap(N0, N1);
3824 ShuffleVectorSDNode::commuteMask(Mask);
3825 LegalMask = isShuffleMaskLegal(Mask, VT);
3826 }
3827
3828 if (!LegalMask)
3829 return SDValue();
3830
3831 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3832 }
3833
getTargetConstantFromLoad(LoadSDNode *) const3834 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3835 return nullptr;
3836 }
3837
isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,unsigned Depth) const3838 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3839 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3840 bool PoisonOnly, unsigned Depth) const {
3841 assert(
3842 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3843 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3844 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3845 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3846 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3847 " is a target node!");
3848
3849 // If Op can't create undef/poison and none of its operands are undef/poison
3850 // then Op is never undef/poison.
3851 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3852 /*ConsiderFlags*/ true, Depth) &&
3853 all_of(Op->ops(), [&](SDValue V) {
3854 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3855 Depth + 1);
3856 });
3857 }
3858
canCreateUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,bool ConsiderFlags,unsigned Depth) const3859 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3860 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3861 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3862 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3863 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3864 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3865 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3866 "Should use canCreateUndefOrPoison if you don't know whether Op"
3867 " is a target node!");
3868 // Be conservative and return true.
3869 return true;
3870 }
3871
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const3872 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3873 const SelectionDAG &DAG,
3874 bool SNaN,
3875 unsigned Depth) const {
3876 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3877 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3878 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3879 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3880 "Should use isKnownNeverNaN if you don't know whether Op"
3881 " is a target node!");
3882 return false;
3883 }
3884
isSplatValueForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & UndefElts,const SelectionDAG & DAG,unsigned Depth) const3885 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3886 const APInt &DemandedElts,
3887 APInt &UndefElts,
3888 const SelectionDAG &DAG,
3889 unsigned Depth) const {
3890 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3891 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3892 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3893 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3894 "Should use isSplatValue if you don't know whether Op"
3895 " is a target node!");
3896 return false;
3897 }
3898
3899 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3900 // work with truncating build vectors and vectors with elements of less than
3901 // 8 bits.
isConstTrueVal(SDValue N) const3902 bool TargetLowering::isConstTrueVal(SDValue N) const {
3903 if (!N)
3904 return false;
3905
3906 unsigned EltWidth;
3907 APInt CVal;
3908 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3909 /*AllowTruncation=*/true)) {
3910 CVal = CN->getAPIntValue();
3911 EltWidth = N.getValueType().getScalarSizeInBits();
3912 } else
3913 return false;
3914
3915 // If this is a truncating splat, truncate the splat value.
3916 // Otherwise, we may fail to match the expected values below.
3917 if (EltWidth < CVal.getBitWidth())
3918 CVal = CVal.trunc(EltWidth);
3919
3920 switch (getBooleanContents(N.getValueType())) {
3921 case UndefinedBooleanContent:
3922 return CVal[0];
3923 case ZeroOrOneBooleanContent:
3924 return CVal.isOne();
3925 case ZeroOrNegativeOneBooleanContent:
3926 return CVal.isAllOnes();
3927 }
3928
3929 llvm_unreachable("Invalid boolean contents");
3930 }
3931
isConstFalseVal(SDValue N) const3932 bool TargetLowering::isConstFalseVal(SDValue N) const {
3933 if (!N)
3934 return false;
3935
3936 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3937 if (!CN) {
3938 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3939 if (!BV)
3940 return false;
3941
3942 // Only interested in constant splats, we don't care about undef
3943 // elements in identifying boolean constants and getConstantSplatNode
3944 // returns NULL if all ops are undef;
3945 CN = BV->getConstantSplatNode();
3946 if (!CN)
3947 return false;
3948 }
3949
3950 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3951 return !CN->getAPIntValue()[0];
3952
3953 return CN->isZero();
3954 }
3955
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const3956 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3957 bool SExt) const {
3958 if (VT == MVT::i1)
3959 return N->isOne();
3960
3961 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3962 switch (Cnt) {
3963 case TargetLowering::ZeroOrOneBooleanContent:
3964 // An extended value of 1 is always true, unless its original type is i1,
3965 // in which case it will be sign extended to -1.
3966 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3967 case TargetLowering::UndefinedBooleanContent:
3968 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3969 return N->isAllOnes() && SExt;
3970 }
3971 llvm_unreachable("Unexpected enumeration.");
3972 }
3973
3974 /// This helper function of SimplifySetCC tries to optimize the comparison when
3975 /// either operand of the SetCC node is a bitwise-and instruction.
foldSetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3976 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3977 ISD::CondCode Cond, const SDLoc &DL,
3978 DAGCombinerInfo &DCI) const {
3979 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3980 std::swap(N0, N1);
3981
3982 SelectionDAG &DAG = DCI.DAG;
3983 EVT OpVT = N0.getValueType();
3984 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3985 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3986 return SDValue();
3987
3988 // (X & Y) != 0 --> zextOrTrunc(X & Y)
3989 // iff everything but LSB is known zero:
3990 if (Cond == ISD::SETNE && isNullConstant(N1) &&
3991 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3992 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3993 unsigned NumEltBits = OpVT.getScalarSizeInBits();
3994 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3995 if (DAG.MaskedValueIsZero(N0, UpperBits))
3996 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3997 }
3998
3999 // Try to eliminate a power-of-2 mask constant by converting to a signbit
4000 // test in a narrow type that we can truncate to with no cost. Examples:
4001 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4002 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4003 // TODO: This conservatively checks for type legality on the source and
4004 // destination types. That may inhibit optimizations, but it also
4005 // allows setcc->shift transforms that may be more beneficial.
4006 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4007 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4008 isTypeLegal(OpVT) && N0.hasOneUse()) {
4009 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4010 AndC->getAPIntValue().getActiveBits());
4011 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4012 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4013 SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4014 return DAG.getSetCC(DL, VT, Trunc, Zero,
4015 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4016 }
4017 }
4018
4019 // Match these patterns in any of their permutations:
4020 // (X & Y) == Y
4021 // (X & Y) != Y
4022 SDValue X, Y;
4023 if (N0.getOperand(0) == N1) {
4024 X = N0.getOperand(1);
4025 Y = N0.getOperand(0);
4026 } else if (N0.getOperand(1) == N1) {
4027 X = N0.getOperand(0);
4028 Y = N0.getOperand(1);
4029 } else {
4030 return SDValue();
4031 }
4032
4033 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4034 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4035 // its liable to create and infinite loop.
4036 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4037 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4038 DAG.isKnownToBeAPowerOfTwo(Y)) {
4039 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4040 // Note that where Y is variable and is known to have at most one bit set
4041 // (for example, if it is Z & 1) we cannot do this; the expressions are not
4042 // equivalent when Y == 0.
4043 assert(OpVT.isInteger());
4044 Cond = ISD::getSetCCInverse(Cond, OpVT);
4045 if (DCI.isBeforeLegalizeOps() ||
4046 isCondCodeLegal(Cond, N0.getSimpleValueType()))
4047 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4048 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4049 // If the target supports an 'and-not' or 'and-complement' logic operation,
4050 // try to use that to make a comparison operation more efficient.
4051 // But don't do this transform if the mask is a single bit because there are
4052 // more efficient ways to deal with that case (for example, 'bt' on x86 or
4053 // 'rlwinm' on PPC).
4054
4055 // Bail out if the compare operand that we want to turn into a zero is
4056 // already a zero (otherwise, infinite loop).
4057 if (isNullConstant(Y))
4058 return SDValue();
4059
4060 // Transform this into: ~X & Y == 0.
4061 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4062 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4063 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4064 }
4065
4066 return SDValue();
4067 }
4068
4069 /// There are multiple IR patterns that could be checking whether certain
4070 /// truncation of a signed number would be lossy or not. The pattern which is
4071 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4072 /// We are looking for the following pattern: (KeptBits is a constant)
4073 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4074 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4075 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
4076 /// We will unfold it into the natural trunc+sext pattern:
4077 /// ((%x << C) a>> C) dstcond %x
4078 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const4079 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4080 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4081 const SDLoc &DL) const {
4082 // We must be comparing with a constant.
4083 ConstantSDNode *C1;
4084 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4085 return SDValue();
4086
4087 // N0 should be: add %x, (1 << (KeptBits-1))
4088 if (N0->getOpcode() != ISD::ADD)
4089 return SDValue();
4090
4091 // And we must be 'add'ing a constant.
4092 ConstantSDNode *C01;
4093 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4094 return SDValue();
4095
4096 SDValue X = N0->getOperand(0);
4097 EVT XVT = X.getValueType();
4098
4099 // Validate constants ...
4100
4101 APInt I1 = C1->getAPIntValue();
4102
4103 ISD::CondCode NewCond;
4104 if (Cond == ISD::CondCode::SETULT) {
4105 NewCond = ISD::CondCode::SETEQ;
4106 } else if (Cond == ISD::CondCode::SETULE) {
4107 NewCond = ISD::CondCode::SETEQ;
4108 // But need to 'canonicalize' the constant.
4109 I1 += 1;
4110 } else if (Cond == ISD::CondCode::SETUGT) {
4111 NewCond = ISD::CondCode::SETNE;
4112 // But need to 'canonicalize' the constant.
4113 I1 += 1;
4114 } else if (Cond == ISD::CondCode::SETUGE) {
4115 NewCond = ISD::CondCode::SETNE;
4116 } else
4117 return SDValue();
4118
4119 APInt I01 = C01->getAPIntValue();
4120
4121 auto checkConstants = [&I1, &I01]() -> bool {
4122 // Both of them must be power-of-two, and the constant from setcc is bigger.
4123 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4124 };
4125
4126 if (checkConstants()) {
4127 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
4128 } else {
4129 // What if we invert constants? (and the target predicate)
4130 I1.negate();
4131 I01.negate();
4132 assert(XVT.isInteger());
4133 NewCond = getSetCCInverse(NewCond, XVT);
4134 if (!checkConstants())
4135 return SDValue();
4136 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
4137 }
4138
4139 // They are power-of-two, so which bit is set?
4140 const unsigned KeptBits = I1.logBase2();
4141 const unsigned KeptBitsMinusOne = I01.logBase2();
4142
4143 // Magic!
4144 if (KeptBits != (KeptBitsMinusOne + 1))
4145 return SDValue();
4146 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4147
4148 // We don't want to do this in every single case.
4149 SelectionDAG &DAG = DCI.DAG;
4150 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
4151 XVT, KeptBits))
4152 return SDValue();
4153
4154 // Unfold into: sext_inreg(%x) cond %x
4155 // Where 'cond' will be either 'eq' or 'ne'.
4156 SDValue SExtInReg = DAG.getNode(
4157 ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4158 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4159 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4160 }
4161
4162 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
optimizeSetCCByHoistingAndByConstFromLogicalShift(EVT SCCVT,SDValue N0,SDValue N1C,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const4163 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4164 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4165 DAGCombinerInfo &DCI, const SDLoc &DL) const {
4166 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4167 "Should be a comparison with 0.");
4168 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4169 "Valid only for [in]equality comparisons.");
4170
4171 unsigned NewShiftOpcode;
4172 SDValue X, C, Y;
4173
4174 SelectionDAG &DAG = DCI.DAG;
4175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176
4177 // Look for '(C l>>/<< Y)'.
4178 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
4179 // The shift should be one-use.
4180 if (!V.hasOneUse())
4181 return false;
4182 unsigned OldShiftOpcode = V.getOpcode();
4183 switch (OldShiftOpcode) {
4184 case ISD::SHL:
4185 NewShiftOpcode = ISD::SRL;
4186 break;
4187 case ISD::SRL:
4188 NewShiftOpcode = ISD::SHL;
4189 break;
4190 default:
4191 return false; // must be a logical shift.
4192 }
4193 // We should be shifting a constant.
4194 // FIXME: best to use isConstantOrConstantVector().
4195 C = V.getOperand(0);
4196 ConstantSDNode *CC =
4197 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4198 if (!CC)
4199 return false;
4200 Y = V.getOperand(1);
4201
4202 ConstantSDNode *XC =
4203 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4204 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4205 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4206 };
4207
4208 // LHS of comparison should be an one-use 'and'.
4209 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4210 return SDValue();
4211
4212 X = N0.getOperand(0);
4213 SDValue Mask = N0.getOperand(1);
4214
4215 // 'and' is commutative!
4216 if (!Match(Mask)) {
4217 std::swap(X, Mask);
4218 if (!Match(Mask))
4219 return SDValue();
4220 }
4221
4222 EVT VT = X.getValueType();
4223
4224 // Produce:
4225 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4226 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4227 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4228 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4229 return T2;
4230 }
4231
4232 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4233 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4234 /// handle the commuted versions of these patterns.
foldSetCCWithBinOp(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const4235 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4236 ISD::CondCode Cond, const SDLoc &DL,
4237 DAGCombinerInfo &DCI) const {
4238 unsigned BOpcode = N0.getOpcode();
4239 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4240 "Unexpected binop");
4241 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4242
4243 // (X + Y) == X --> Y == 0
4244 // (X - Y) == X --> Y == 0
4245 // (X ^ Y) == X --> Y == 0
4246 SelectionDAG &DAG = DCI.DAG;
4247 EVT OpVT = N0.getValueType();
4248 SDValue X = N0.getOperand(0);
4249 SDValue Y = N0.getOperand(1);
4250 if (X == N1)
4251 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4252
4253 if (Y != N1)
4254 return SDValue();
4255
4256 // (X + Y) == Y --> X == 0
4257 // (X ^ Y) == Y --> X == 0
4258 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4259 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4260
4261 // The shift would not be valid if the operands are boolean (i1).
4262 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4263 return SDValue();
4264
4265 // (X - Y) == Y --> X == Y << 1
4266 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4267 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4268 if (!DCI.isCalledByLegalizer())
4269 DCI.AddToWorklist(YShl1.getNode());
4270 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4271 }
4272
simplifySetCCWithCTPOP(const TargetLowering & TLI,EVT VT,SDValue N0,const APInt & C1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4273 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4274 SDValue N0, const APInt &C1,
4275 ISD::CondCode Cond, const SDLoc &dl,
4276 SelectionDAG &DAG) {
4277 // Look through truncs that don't change the value of a ctpop.
4278 // FIXME: Add vector support? Need to be careful with setcc result type below.
4279 SDValue CTPOP = N0;
4280 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4281 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4282 CTPOP = N0.getOperand(0);
4283
4284 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4285 return SDValue();
4286
4287 EVT CTVT = CTPOP.getValueType();
4288 SDValue CTOp = CTPOP.getOperand(0);
4289
4290 // Expand a power-of-2-or-zero comparison based on ctpop:
4291 // (ctpop x) u< 2 -> (x & x-1) == 0
4292 // (ctpop x) u> 1 -> (x & x-1) != 0
4293 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4294 // Keep the CTPOP if it is a cheap vector op.
4295 if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4296 return SDValue();
4297
4298 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4299 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4300 return SDValue();
4301 if (C1 == 0 && (Cond == ISD::SETULT))
4302 return SDValue(); // This is handled elsewhere.
4303
4304 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4305
4306 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4307 SDValue Result = CTOp;
4308 for (unsigned i = 0; i < Passes; i++) {
4309 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4310 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4311 }
4312 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4313 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4314 }
4315
4316 // Expand a power-of-2 comparison based on ctpop
4317 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4318 // Keep the CTPOP if it is cheap.
4319 if (TLI.isCtpopFast(CTVT))
4320 return SDValue();
4321
4322 SDValue Zero = DAG.getConstant(0, dl, CTVT);
4323 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4324 assert(CTVT.isInteger());
4325 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4326
4327 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4328 // check before emitting a potentially unnecessary op.
4329 if (DAG.isKnownNeverZero(CTOp)) {
4330 // (ctpop x) == 1 --> (x & x-1) == 0
4331 // (ctpop x) != 1 --> (x & x-1) != 0
4332 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4333 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4334 return RHS;
4335 }
4336
4337 // (ctpop x) == 1 --> (x ^ x-1) > x-1
4338 // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4339 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4340 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4341 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4342 }
4343
4344 return SDValue();
4345 }
4346
foldSetCCWithRotate(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4347 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4348 ISD::CondCode Cond, const SDLoc &dl,
4349 SelectionDAG &DAG) {
4350 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4351 return SDValue();
4352
4353 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4354 if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4355 return SDValue();
4356
4357 auto getRotateSource = [](SDValue X) {
4358 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4359 return X.getOperand(0);
4360 return SDValue();
4361 };
4362
4363 // Peek through a rotated value compared against 0 or -1:
4364 // (rot X, Y) == 0/-1 --> X == 0/-1
4365 // (rot X, Y) != 0/-1 --> X != 0/-1
4366 if (SDValue R = getRotateSource(N0))
4367 return DAG.getSetCC(dl, VT, R, N1, Cond);
4368
4369 // Peek through an 'or' of a rotated value compared against 0:
4370 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4371 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4372 //
4373 // TODO: Add the 'and' with -1 sibling.
4374 // TODO: Recurse through a series of 'or' ops to find the rotate.
4375 EVT OpVT = N0.getValueType();
4376 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4377 if (SDValue R = getRotateSource(N0.getOperand(0))) {
4378 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4379 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4380 }
4381 if (SDValue R = getRotateSource(N0.getOperand(1))) {
4382 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4383 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4384 }
4385 }
4386
4387 return SDValue();
4388 }
4389
foldSetCCWithFunnelShift(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4390 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4391 ISD::CondCode Cond, const SDLoc &dl,
4392 SelectionDAG &DAG) {
4393 // If we are testing for all-bits-clear, we might be able to do that with
4394 // less shifting since bit-order does not matter.
4395 if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4396 return SDValue();
4397
4398 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4399 if (!C1 || !C1->isZero())
4400 return SDValue();
4401
4402 if (!N0.hasOneUse() ||
4403 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4404 return SDValue();
4405
4406 unsigned BitWidth = N0.getScalarValueSizeInBits();
4407 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4408 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4409 return SDValue();
4410
4411 // Canonicalize fshr as fshl to reduce pattern-matching.
4412 unsigned ShAmt = ShAmtC->getZExtValue();
4413 if (N0.getOpcode() == ISD::FSHR)
4414 ShAmt = BitWidth - ShAmt;
4415
4416 // Match an 'or' with a specific operand 'Other' in either commuted variant.
4417 SDValue X, Y;
4418 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4419 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4420 return false;
4421 if (Or.getOperand(0) == Other) {
4422 X = Or.getOperand(0);
4423 Y = Or.getOperand(1);
4424 return true;
4425 }
4426 if (Or.getOperand(1) == Other) {
4427 X = Or.getOperand(1);
4428 Y = Or.getOperand(0);
4429 return true;
4430 }
4431 return false;
4432 };
4433
4434 EVT OpVT = N0.getValueType();
4435 EVT ShAmtVT = N0.getOperand(2).getValueType();
4436 SDValue F0 = N0.getOperand(0);
4437 SDValue F1 = N0.getOperand(1);
4438 if (matchOr(F0, F1)) {
4439 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4440 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4441 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4442 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4443 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4444 }
4445 if (matchOr(F1, F0)) {
4446 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4447 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4448 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4449 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4450 return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4451 }
4452
4453 return SDValue();
4454 }
4455
4456 /// Try to simplify a setcc built with the specified operands and cc. If it is
4457 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const4458 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4459 ISD::CondCode Cond, bool foldBooleans,
4460 DAGCombinerInfo &DCI,
4461 const SDLoc &dl) const {
4462 SelectionDAG &DAG = DCI.DAG;
4463 const DataLayout &Layout = DAG.getDataLayout();
4464 EVT OpVT = N0.getValueType();
4465 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4466
4467 // Constant fold or commute setcc.
4468 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4469 return Fold;
4470
4471 bool N0ConstOrSplat =
4472 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4473 bool N1ConstOrSplat =
4474 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4475
4476 // Canonicalize toward having the constant on the RHS.
4477 // TODO: Handle non-splat vector constants. All undef causes trouble.
4478 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4479 // infinite loop here when we encounter one.
4480 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4481 if (N0ConstOrSplat && !N1ConstOrSplat &&
4482 (DCI.isBeforeLegalizeOps() ||
4483 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4484 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4485
4486 // If we have a subtract with the same 2 non-constant operands as this setcc
4487 // -- but in reverse order -- then try to commute the operands of this setcc
4488 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4489 // instruction on some targets.
4490 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4491 (DCI.isBeforeLegalizeOps() ||
4492 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4493 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4494 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4495 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4496
4497 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4498 return V;
4499
4500 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4501 return V;
4502
4503 if (auto *N1C = isConstOrConstSplat(N1)) {
4504 const APInt &C1 = N1C->getAPIntValue();
4505
4506 // Optimize some CTPOP cases.
4507 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4508 return V;
4509
4510 // For equality to 0 of a no-wrap multiply, decompose and test each op:
4511 // X * Y == 0 --> (X == 0) || (Y == 0)
4512 // X * Y != 0 --> (X != 0) && (Y != 0)
4513 // TODO: This bails out if minsize is set, but if the target doesn't have a
4514 // single instruction multiply for this type, it would likely be
4515 // smaller to decompose.
4516 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4517 N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4518 (N0->getFlags().hasNoUnsignedWrap() ||
4519 N0->getFlags().hasNoSignedWrap()) &&
4520 !Attr.hasFnAttr(Attribute::MinSize)) {
4521 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4522 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4523 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4524 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4525 }
4526
4527 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4528 // equality comparison, then we're just comparing whether X itself is
4529 // zero.
4530 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4531 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4532 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4533 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4534 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4535 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4536 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4537 // (srl (ctlz x), 5) == 0 -> X != 0
4538 // (srl (ctlz x), 5) != 1 -> X != 0
4539 Cond = ISD::SETNE;
4540 } else {
4541 // (srl (ctlz x), 5) != 0 -> X == 0
4542 // (srl (ctlz x), 5) == 1 -> X == 0
4543 Cond = ISD::SETEQ;
4544 }
4545 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4546 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4547 Cond);
4548 }
4549 }
4550 }
4551 }
4552
4553 // FIXME: Support vectors.
4554 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4555 const APInt &C1 = N1C->getAPIntValue();
4556
4557 // (zext x) == C --> x == (trunc C)
4558 // (sext x) == C --> x == (trunc C)
4559 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4560 DCI.isBeforeLegalize() && N0->hasOneUse()) {
4561 unsigned MinBits = N0.getValueSizeInBits();
4562 SDValue PreExt;
4563 bool Signed = false;
4564 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4565 // ZExt
4566 MinBits = N0->getOperand(0).getValueSizeInBits();
4567 PreExt = N0->getOperand(0);
4568 } else if (N0->getOpcode() == ISD::AND) {
4569 // DAGCombine turns costly ZExts into ANDs
4570 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4571 if ((C->getAPIntValue()+1).isPowerOf2()) {
4572 MinBits = C->getAPIntValue().countr_one();
4573 PreExt = N0->getOperand(0);
4574 }
4575 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4576 // SExt
4577 MinBits = N0->getOperand(0).getValueSizeInBits();
4578 PreExt = N0->getOperand(0);
4579 Signed = true;
4580 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4581 // ZEXTLOAD / SEXTLOAD
4582 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4583 MinBits = LN0->getMemoryVT().getSizeInBits();
4584 PreExt = N0;
4585 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4586 Signed = true;
4587 MinBits = LN0->getMemoryVT().getSizeInBits();
4588 PreExt = N0;
4589 }
4590 }
4591
4592 // Figure out how many bits we need to preserve this constant.
4593 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4594
4595 // Make sure we're not losing bits from the constant.
4596 if (MinBits > 0 &&
4597 MinBits < C1.getBitWidth() &&
4598 MinBits >= ReqdBits) {
4599 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4600 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4601 // Will get folded away.
4602 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4603 if (MinBits == 1 && C1 == 1)
4604 // Invert the condition.
4605 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4606 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4607 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4608 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4609 }
4610
4611 // If truncating the setcc operands is not desirable, we can still
4612 // simplify the expression in some cases:
4613 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4614 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4615 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4616 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4617 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4618 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4619 SDValue TopSetCC = N0->getOperand(0);
4620 unsigned N0Opc = N0->getOpcode();
4621 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4622 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4623 TopSetCC.getOpcode() == ISD::SETCC &&
4624 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4625 (isConstFalseVal(N1) ||
4626 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4627
4628 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4629 (!N1C->isZero() && Cond == ISD::SETNE);
4630
4631 if (!Inverse)
4632 return TopSetCC;
4633
4634 ISD::CondCode InvCond = ISD::getSetCCInverse(
4635 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4636 TopSetCC.getOperand(0).getValueType());
4637 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4638 TopSetCC.getOperand(1),
4639 InvCond);
4640 }
4641 }
4642 }
4643
4644 // If the LHS is '(and load, const)', the RHS is 0, the test is for
4645 // equality or unsigned, and all 1 bits of the const are in the same
4646 // partial word, see if we can shorten the load.
4647 if (DCI.isBeforeLegalize() &&
4648 !ISD::isSignedIntSetCC(Cond) &&
4649 N0.getOpcode() == ISD::AND && C1 == 0 &&
4650 N0.getNode()->hasOneUse() &&
4651 isa<LoadSDNode>(N0.getOperand(0)) &&
4652 N0.getOperand(0).getNode()->hasOneUse() &&
4653 isa<ConstantSDNode>(N0.getOperand(1))) {
4654 auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4655 APInt bestMask;
4656 unsigned bestWidth = 0, bestOffset = 0;
4657 if (Lod->isSimple() && Lod->isUnindexed() &&
4658 (Lod->getMemoryVT().isByteSized() ||
4659 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4660 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4661 unsigned origWidth = N0.getValueSizeInBits();
4662 unsigned maskWidth = origWidth;
4663 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4664 // 8 bits, but have to be careful...
4665 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4666 origWidth = Lod->getMemoryVT().getSizeInBits();
4667 const APInt &Mask = N0.getConstantOperandAPInt(1);
4668 // Only consider power-of-2 widths (and at least one byte) as candiates
4669 // for the narrowed load.
4670 for (unsigned width = 8; width < origWidth; width *= 2) {
4671 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4672 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4673 continue;
4674 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4675 // Avoid accessing any padding here for now (we could use memWidth
4676 // instead of origWidth here otherwise).
4677 unsigned maxOffset = origWidth - width;
4678 for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4679 if (Mask.isSubsetOf(newMask)) {
4680 unsigned ptrOffset =
4681 Layout.isLittleEndian() ? offset : memWidth - width - offset;
4682 unsigned IsFast = 0;
4683 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4684 if (allowsMemoryAccess(
4685 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4686 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4687 IsFast) {
4688 bestOffset = ptrOffset / 8;
4689 bestMask = Mask.lshr(offset);
4690 bestWidth = width;
4691 break;
4692 }
4693 }
4694 newMask <<= 8;
4695 }
4696 if (bestWidth)
4697 break;
4698 }
4699 }
4700 if (bestWidth) {
4701 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4702 SDValue Ptr = Lod->getBasePtr();
4703 if (bestOffset != 0)
4704 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4705 SDValue NewLoad =
4706 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4707 Lod->getPointerInfo().getWithOffset(bestOffset),
4708 Lod->getOriginalAlign());
4709 SDValue And =
4710 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4711 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4712 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4713 }
4714 }
4715
4716 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4717 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4718 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4719
4720 // If the comparison constant has bits in the upper part, the
4721 // zero-extended value could never match.
4722 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4723 C1.getBitWidth() - InSize))) {
4724 switch (Cond) {
4725 case ISD::SETUGT:
4726 case ISD::SETUGE:
4727 case ISD::SETEQ:
4728 return DAG.getConstant(0, dl, VT);
4729 case ISD::SETULT:
4730 case ISD::SETULE:
4731 case ISD::SETNE:
4732 return DAG.getConstant(1, dl, VT);
4733 case ISD::SETGT:
4734 case ISD::SETGE:
4735 // True if the sign bit of C1 is set.
4736 return DAG.getConstant(C1.isNegative(), dl, VT);
4737 case ISD::SETLT:
4738 case ISD::SETLE:
4739 // True if the sign bit of C1 isn't set.
4740 return DAG.getConstant(C1.isNonNegative(), dl, VT);
4741 default:
4742 break;
4743 }
4744 }
4745
4746 // Otherwise, we can perform the comparison with the low bits.
4747 switch (Cond) {
4748 case ISD::SETEQ:
4749 case ISD::SETNE:
4750 case ISD::SETUGT:
4751 case ISD::SETUGE:
4752 case ISD::SETULT:
4753 case ISD::SETULE: {
4754 EVT newVT = N0.getOperand(0).getValueType();
4755 if (DCI.isBeforeLegalizeOps() ||
4756 (isOperationLegal(ISD::SETCC, newVT) &&
4757 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4758 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4759 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4760
4761 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4762 NewConst, Cond);
4763 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4764 }
4765 break;
4766 }
4767 default:
4768 break; // todo, be more careful with signed comparisons
4769 }
4770 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4771 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4772 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4773 OpVT)) {
4774 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4775 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4776 EVT ExtDstTy = N0.getValueType();
4777 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4778
4779 // If the constant doesn't fit into the number of bits for the source of
4780 // the sign extension, it is impossible for both sides to be equal.
4781 if (C1.getSignificantBits() > ExtSrcTyBits)
4782 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4783
4784 assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4785 ExtDstTy != ExtSrcTy && "Unexpected types!");
4786 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4787 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4788 DAG.getConstant(Imm, dl, ExtDstTy));
4789 if (!DCI.isCalledByLegalizer())
4790 DCI.AddToWorklist(ZextOp.getNode());
4791 // Otherwise, make this a use of a zext.
4792 return DAG.getSetCC(dl, VT, ZextOp,
4793 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4794 } else if ((N1C->isZero() || N1C->isOne()) &&
4795 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4796 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are
4797 // excluded as they are handled below whilst checking for foldBooleans.
4798 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4799 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4800 (N0.getValueType() == MVT::i1 ||
4801 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4802 DAG.MaskedValueIsZero(
4803 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4804 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4805 if (TrueWhenTrue)
4806 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4807 // Invert the condition.
4808 if (N0.getOpcode() == ISD::SETCC) {
4809 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4810 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4811 if (DCI.isBeforeLegalizeOps() ||
4812 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4813 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4814 }
4815 }
4816
4817 if ((N0.getOpcode() == ISD::XOR ||
4818 (N0.getOpcode() == ISD::AND &&
4819 N0.getOperand(0).getOpcode() == ISD::XOR &&
4820 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4821 isOneConstant(N0.getOperand(1))) {
4822 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
4823 // can only do this if the top bits are known zero.
4824 unsigned BitWidth = N0.getValueSizeInBits();
4825 if (DAG.MaskedValueIsZero(N0,
4826 APInt::getHighBitsSet(BitWidth,
4827 BitWidth-1))) {
4828 // Okay, get the un-inverted input value.
4829 SDValue Val;
4830 if (N0.getOpcode() == ISD::XOR) {
4831 Val = N0.getOperand(0);
4832 } else {
4833 assert(N0.getOpcode() == ISD::AND &&
4834 N0.getOperand(0).getOpcode() == ISD::XOR);
4835 // ((X^1)&1)^1 -> X & 1
4836 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4837 N0.getOperand(0).getOperand(0),
4838 N0.getOperand(1));
4839 }
4840
4841 return DAG.getSetCC(dl, VT, Val, N1,
4842 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4843 }
4844 } else if (N1C->isOne()) {
4845 SDValue Op0 = N0;
4846 if (Op0.getOpcode() == ISD::TRUNCATE)
4847 Op0 = Op0.getOperand(0);
4848
4849 if ((Op0.getOpcode() == ISD::XOR) &&
4850 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4851 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4852 SDValue XorLHS = Op0.getOperand(0);
4853 SDValue XorRHS = Op0.getOperand(1);
4854 // Ensure that the input setccs return an i1 type or 0/1 value.
4855 if (Op0.getValueType() == MVT::i1 ||
4856 (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4857 ZeroOrOneBooleanContent &&
4858 getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4859 ZeroOrOneBooleanContent)) {
4860 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4861 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4862 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4863 }
4864 }
4865 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4866 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4867 if (Op0.getValueType().bitsGT(VT))
4868 Op0 = DAG.getNode(ISD::AND, dl, VT,
4869 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4870 DAG.getConstant(1, dl, VT));
4871 else if (Op0.getValueType().bitsLT(VT))
4872 Op0 = DAG.getNode(ISD::AND, dl, VT,
4873 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4874 DAG.getConstant(1, dl, VT));
4875
4876 return DAG.getSetCC(dl, VT, Op0,
4877 DAG.getConstant(0, dl, Op0.getValueType()),
4878 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4879 }
4880 if (Op0.getOpcode() == ISD::AssertZext &&
4881 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4882 return DAG.getSetCC(dl, VT, Op0,
4883 DAG.getConstant(0, dl, Op0.getValueType()),
4884 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4885 }
4886 }
4887
4888 // Given:
4889 // icmp eq/ne (urem %x, %y), 0
4890 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4891 // icmp eq/ne %x, 0
4892 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4893 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4894 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4895 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4896 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4897 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4898 }
4899
4900 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4901 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4902 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4903 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4904 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4905 N1C && N1C->isAllOnes()) {
4906 return DAG.getSetCC(dl, VT, N0.getOperand(0),
4907 DAG.getConstant(0, dl, OpVT),
4908 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4909 }
4910
4911 if (SDValue V =
4912 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4913 return V;
4914 }
4915
4916 // These simplifications apply to splat vectors as well.
4917 // TODO: Handle more splat vector cases.
4918 if (auto *N1C = isConstOrConstSplat(N1)) {
4919 const APInt &C1 = N1C->getAPIntValue();
4920
4921 APInt MinVal, MaxVal;
4922 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4923 if (ISD::isSignedIntSetCC(Cond)) {
4924 MinVal = APInt::getSignedMinValue(OperandBitSize);
4925 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4926 } else {
4927 MinVal = APInt::getMinValue(OperandBitSize);
4928 MaxVal = APInt::getMaxValue(OperandBitSize);
4929 }
4930
4931 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4932 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4933 // X >= MIN --> true
4934 if (C1 == MinVal)
4935 return DAG.getBoolConstant(true, dl, VT, OpVT);
4936
4937 if (!VT.isVector()) { // TODO: Support this for vectors.
4938 // X >= C0 --> X > (C0 - 1)
4939 APInt C = C1 - 1;
4940 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4941 if ((DCI.isBeforeLegalizeOps() ||
4942 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4943 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4944 isLegalICmpImmediate(C.getSExtValue())))) {
4945 return DAG.getSetCC(dl, VT, N0,
4946 DAG.getConstant(C, dl, N1.getValueType()),
4947 NewCC);
4948 }
4949 }
4950 }
4951
4952 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4953 // X <= MAX --> true
4954 if (C1 == MaxVal)
4955 return DAG.getBoolConstant(true, dl, VT, OpVT);
4956
4957 // X <= C0 --> X < (C0 + 1)
4958 if (!VT.isVector()) { // TODO: Support this for vectors.
4959 APInt C = C1 + 1;
4960 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4961 if ((DCI.isBeforeLegalizeOps() ||
4962 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4963 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4964 isLegalICmpImmediate(C.getSExtValue())))) {
4965 return DAG.getSetCC(dl, VT, N0,
4966 DAG.getConstant(C, dl, N1.getValueType()),
4967 NewCC);
4968 }
4969 }
4970 }
4971
4972 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4973 if (C1 == MinVal)
4974 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4975
4976 // TODO: Support this for vectors after legalize ops.
4977 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4978 // Canonicalize setlt X, Max --> setne X, Max
4979 if (C1 == MaxVal)
4980 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4981
4982 // If we have setult X, 1, turn it into seteq X, 0
4983 if (C1 == MinVal+1)
4984 return DAG.getSetCC(dl, VT, N0,
4985 DAG.getConstant(MinVal, dl, N0.getValueType()),
4986 ISD::SETEQ);
4987 }
4988 }
4989
4990 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4991 if (C1 == MaxVal)
4992 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4993
4994 // TODO: Support this for vectors after legalize ops.
4995 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4996 // Canonicalize setgt X, Min --> setne X, Min
4997 if (C1 == MinVal)
4998 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4999
5000 // If we have setugt X, Max-1, turn it into seteq X, Max
5001 if (C1 == MaxVal-1)
5002 return DAG.getSetCC(dl, VT, N0,
5003 DAG.getConstant(MaxVal, dl, N0.getValueType()),
5004 ISD::SETEQ);
5005 }
5006 }
5007
5008 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5009 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5010 if (C1.isZero())
5011 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5012 VT, N0, N1, Cond, DCI, dl))
5013 return CC;
5014
5015 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5016 // For example, when high 32-bits of i64 X are known clear:
5017 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
5018 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
5019 bool CmpZero = N1C->isZero();
5020 bool CmpNegOne = N1C->isAllOnes();
5021 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5022 // Match or(lo,shl(hi,bw/2)) pattern.
5023 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5024 unsigned EltBits = V.getScalarValueSizeInBits();
5025 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5026 return false;
5027 SDValue LHS = V.getOperand(0);
5028 SDValue RHS = V.getOperand(1);
5029 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5030 // Unshifted element must have zero upperbits.
5031 if (RHS.getOpcode() == ISD::SHL &&
5032 isa<ConstantSDNode>(RHS.getOperand(1)) &&
5033 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5034 DAG.MaskedValueIsZero(LHS, HiBits)) {
5035 Lo = LHS;
5036 Hi = RHS.getOperand(0);
5037 return true;
5038 }
5039 if (LHS.getOpcode() == ISD::SHL &&
5040 isa<ConstantSDNode>(LHS.getOperand(1)) &&
5041 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5042 DAG.MaskedValueIsZero(RHS, HiBits)) {
5043 Lo = RHS;
5044 Hi = LHS.getOperand(0);
5045 return true;
5046 }
5047 return false;
5048 };
5049
5050 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5051 unsigned EltBits = N0.getScalarValueSizeInBits();
5052 unsigned HalfBits = EltBits / 2;
5053 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5054 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5055 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5056 SDValue NewN0 =
5057 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5058 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5059 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5060 };
5061
5062 SDValue Lo, Hi;
5063 if (IsConcat(N0, Lo, Hi))
5064 return MergeConcat(Lo, Hi);
5065
5066 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5067 SDValue Lo0, Lo1, Hi0, Hi1;
5068 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5069 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5070 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5071 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5072 }
5073 }
5074 }
5075 }
5076
5077 // If we have "setcc X, C0", check to see if we can shrink the immediate
5078 // by changing cc.
5079 // TODO: Support this for vectors after legalize ops.
5080 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5081 // SETUGT X, SINTMAX -> SETLT X, 0
5082 // SETUGE X, SINTMIN -> SETLT X, 0
5083 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5084 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5085 return DAG.getSetCC(dl, VT, N0,
5086 DAG.getConstant(0, dl, N1.getValueType()),
5087 ISD::SETLT);
5088
5089 // SETULT X, SINTMIN -> SETGT X, -1
5090 // SETULE X, SINTMAX -> SETGT X, -1
5091 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5092 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5093 return DAG.getSetCC(dl, VT, N0,
5094 DAG.getAllOnesConstant(dl, N1.getValueType()),
5095 ISD::SETGT);
5096 }
5097 }
5098
5099 // Back to non-vector simplifications.
5100 // TODO: Can we do these for vector splats?
5101 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5102 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5103 const APInt &C1 = N1C->getAPIntValue();
5104 EVT ShValTy = N0.getValueType();
5105
5106 // Fold bit comparisons when we can. This will result in an
5107 // incorrect value when boolean false is negative one, unless
5108 // the bitsize is 1 in which case the false value is the same
5109 // in practice regardless of the representation.
5110 if ((VT.getSizeInBits() == 1 ||
5111 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5112 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5113 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5114 N0.getOpcode() == ISD::AND) {
5115 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5116 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
5117 // Perform the xform if the AND RHS is a single bit.
5118 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5119 if (AndRHS->getAPIntValue().isPowerOf2() &&
5120 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
5121 return DAG.getNode(
5122 ISD::TRUNCATE, dl, VT,
5123 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5124 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5125 }
5126 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5127 // (X & 8) == 8 --> (X & 8) >> 3
5128 // Perform the xform if C1 is a single bit.
5129 unsigned ShCt = C1.logBase2();
5130 if (C1.isPowerOf2() &&
5131 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
5132 return DAG.getNode(
5133 ISD::TRUNCATE, dl, VT,
5134 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5135 DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5136 }
5137 }
5138 }
5139 }
5140
5141 if (C1.getSignificantBits() <= 64 &&
5142 !isLegalICmpImmediate(C1.getSExtValue())) {
5143 // (X & -256) == 256 -> (X >> 8) == 1
5144 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5145 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5146 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5147 const APInt &AndRHSC = AndRHS->getAPIntValue();
5148 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
5149 unsigned ShiftBits = AndRHSC.countr_zero();
5150 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5151 SDValue Shift = DAG.getNode(
5152 ISD::SRL, dl, ShValTy, N0.getOperand(0),
5153 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5154 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5155 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5156 }
5157 }
5158 }
5159 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5160 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5161 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5162 // X < 0x100000000 -> (X >> 32) < 1
5163 // X >= 0x100000000 -> (X >> 32) >= 1
5164 // X <= 0x0ffffffff -> (X >> 32) < 1
5165 // X > 0x0ffffffff -> (X >> 32) >= 1
5166 unsigned ShiftBits;
5167 APInt NewC = C1;
5168 ISD::CondCode NewCond = Cond;
5169 if (AdjOne) {
5170 ShiftBits = C1.countr_one();
5171 NewC = NewC + 1;
5172 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5173 } else {
5174 ShiftBits = C1.countr_zero();
5175 }
5176 NewC.lshrInPlace(ShiftBits);
5177 if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5178 isLegalICmpImmediate(NewC.getSExtValue()) &&
5179 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5180 SDValue Shift =
5181 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5182 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5183 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5184 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5185 }
5186 }
5187 }
5188 }
5189
5190 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5191 auto *CFP = cast<ConstantFPSDNode>(N1);
5192 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5193
5194 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
5195 // constant if knowing that the operand is non-nan is enough. We prefer to
5196 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5197 // materialize 0.0.
5198 if (Cond == ISD::SETO || Cond == ISD::SETUO)
5199 return DAG.getSetCC(dl, VT, N0, N0, Cond);
5200
5201 // setcc (fneg x), C -> setcc swap(pred) x, -C
5202 if (N0.getOpcode() == ISD::FNEG) {
5203 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5204 if (DCI.isBeforeLegalizeOps() ||
5205 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5206 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5207 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5208 }
5209 }
5210
5211 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5212 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5213 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5214 bool IsFabs = N0.getOpcode() == ISD::FABS;
5215 SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5216 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5217 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5218 : (IsFabs ? fcInf : fcPosInf);
5219 if (Cond == ISD::SETUEQ)
5220 Flag |= fcNan;
5221 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5222 DAG.getTargetConstant(Flag, dl, MVT::i32));
5223 }
5224 }
5225
5226 // If the condition is not legal, see if we can find an equivalent one
5227 // which is legal.
5228 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5229 // If the comparison was an awkward floating-point == or != and one of
5230 // the comparison operands is infinity or negative infinity, convert the
5231 // condition to a less-awkward <= or >=.
5232 if (CFP->getValueAPF().isInfinity()) {
5233 bool IsNegInf = CFP->getValueAPF().isNegative();
5234 ISD::CondCode NewCond = ISD::SETCC_INVALID;
5235 switch (Cond) {
5236 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5237 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5238 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5239 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5240 default: break;
5241 }
5242 if (NewCond != ISD::SETCC_INVALID &&
5243 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5244 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5245 }
5246 }
5247 }
5248
5249 if (N0 == N1) {
5250 // The sext(setcc()) => setcc() optimization relies on the appropriate
5251 // constant being emitted.
5252 assert(!N0.getValueType().isInteger() &&
5253 "Integer types should be handled by FoldSetCC");
5254
5255 bool EqTrue = ISD::isTrueWhenEqual(Cond);
5256 unsigned UOF = ISD::getUnorderedFlavor(Cond);
5257 if (UOF == 2) // FP operators that are undefined on NaNs.
5258 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5259 if (UOF == unsigned(EqTrue))
5260 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5261 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
5262 // if it is not already.
5263 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5264 if (NewCond != Cond &&
5265 (DCI.isBeforeLegalizeOps() ||
5266 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5267 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5268 }
5269
5270 // ~X > ~Y --> Y > X
5271 // ~X < ~Y --> Y < X
5272 // ~X < C --> X > ~C
5273 // ~X > C --> X < ~C
5274 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5275 N0.getValueType().isInteger()) {
5276 if (isBitwiseNot(N0)) {
5277 if (isBitwiseNot(N1))
5278 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5279
5280 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5281 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5282 SDValue Not = DAG.getNOT(dl, N1, OpVT);
5283 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5284 }
5285 }
5286 }
5287
5288 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5289 N0.getValueType().isInteger()) {
5290 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5291 N0.getOpcode() == ISD::XOR) {
5292 // Simplify (X+Y) == (X+Z) --> Y == Z
5293 if (N0.getOpcode() == N1.getOpcode()) {
5294 if (N0.getOperand(0) == N1.getOperand(0))
5295 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5296 if (N0.getOperand(1) == N1.getOperand(1))
5297 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5298 if (isCommutativeBinOp(N0.getOpcode())) {
5299 // If X op Y == Y op X, try other combinations.
5300 if (N0.getOperand(0) == N1.getOperand(1))
5301 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5302 Cond);
5303 if (N0.getOperand(1) == N1.getOperand(0))
5304 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5305 Cond);
5306 }
5307 }
5308
5309 // If RHS is a legal immediate value for a compare instruction, we need
5310 // to be careful about increasing register pressure needlessly.
5311 bool LegalRHSImm = false;
5312
5313 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5314 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5315 // Turn (X+C1) == C2 --> X == C2-C1
5316 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5317 return DAG.getSetCC(
5318 dl, VT, N0.getOperand(0),
5319 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5320 dl, N0.getValueType()),
5321 Cond);
5322
5323 // Turn (X^C1) == C2 --> X == C1^C2
5324 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5325 return DAG.getSetCC(
5326 dl, VT, N0.getOperand(0),
5327 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5328 dl, N0.getValueType()),
5329 Cond);
5330 }
5331
5332 // Turn (C1-X) == C2 --> X == C1-C2
5333 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5334 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5335 return DAG.getSetCC(
5336 dl, VT, N0.getOperand(1),
5337 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5338 dl, N0.getValueType()),
5339 Cond);
5340
5341 // Could RHSC fold directly into a compare?
5342 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5343 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5344 }
5345
5346 // (X+Y) == X --> Y == 0 and similar folds.
5347 // Don't do this if X is an immediate that can fold into a cmp
5348 // instruction and X+Y has other uses. It could be an induction variable
5349 // chain, and the transform would increase register pressure.
5350 if (!LegalRHSImm || N0.hasOneUse())
5351 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5352 return V;
5353 }
5354
5355 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5356 N1.getOpcode() == ISD::XOR)
5357 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5358 return V;
5359
5360 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5361 return V;
5362 }
5363
5364 // Fold remainder of division by a constant.
5365 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5366 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5367 // When division is cheap or optimizing for minimum size,
5368 // fall through to DIVREM creation by skipping this fold.
5369 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5370 if (N0.getOpcode() == ISD::UREM) {
5371 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5372 return Folded;
5373 } else if (N0.getOpcode() == ISD::SREM) {
5374 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5375 return Folded;
5376 }
5377 }
5378 }
5379
5380 // Fold away ALL boolean setcc's.
5381 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5382 SDValue Temp;
5383 switch (Cond) {
5384 default: llvm_unreachable("Unknown integer setcc!");
5385 case ISD::SETEQ: // X == Y -> ~(X^Y)
5386 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5387 N0 = DAG.getNOT(dl, Temp, OpVT);
5388 if (!DCI.isCalledByLegalizer())
5389 DCI.AddToWorklist(Temp.getNode());
5390 break;
5391 case ISD::SETNE: // X != Y --> (X^Y)
5392 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5393 break;
5394 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
5395 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
5396 Temp = DAG.getNOT(dl, N0, OpVT);
5397 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5398 if (!DCI.isCalledByLegalizer())
5399 DCI.AddToWorklist(Temp.getNode());
5400 break;
5401 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
5402 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
5403 Temp = DAG.getNOT(dl, N1, OpVT);
5404 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5405 if (!DCI.isCalledByLegalizer())
5406 DCI.AddToWorklist(Temp.getNode());
5407 break;
5408 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
5409 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
5410 Temp = DAG.getNOT(dl, N0, OpVT);
5411 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5412 if (!DCI.isCalledByLegalizer())
5413 DCI.AddToWorklist(Temp.getNode());
5414 break;
5415 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
5416 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
5417 Temp = DAG.getNOT(dl, N1, OpVT);
5418 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5419 break;
5420 }
5421 if (VT.getScalarType() != MVT::i1) {
5422 if (!DCI.isCalledByLegalizer())
5423 DCI.AddToWorklist(N0.getNode());
5424 // FIXME: If running after legalize, we probably can't do this.
5425 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5426 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5427 }
5428 return N0;
5429 }
5430
5431 // Could not fold it.
5432 return SDValue();
5433 }
5434
5435 /// Returns true (and the GlobalValue and the offset) if the node is a
5436 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * WN,const GlobalValue * & GA,int64_t & Offset) const5437 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5438 int64_t &Offset) const {
5439
5440 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5441
5442 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5443 GA = GASD->getGlobal();
5444 Offset += GASD->getOffset();
5445 return true;
5446 }
5447
5448 if (N->getOpcode() == ISD::ADD) {
5449 SDValue N1 = N->getOperand(0);
5450 SDValue N2 = N->getOperand(1);
5451 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5452 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5453 Offset += V->getSExtValue();
5454 return true;
5455 }
5456 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5457 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5458 Offset += V->getSExtValue();
5459 return true;
5460 }
5461 }
5462 }
5463
5464 return false;
5465 }
5466
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5467 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5468 DAGCombinerInfo &DCI) const {
5469 // Default implementation: no optimization.
5470 return SDValue();
5471 }
5472
5473 //===----------------------------------------------------------------------===//
5474 // Inline Assembler Implementation Methods
5475 //===----------------------------------------------------------------------===//
5476
5477 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5478 TargetLowering::getConstraintType(StringRef Constraint) const {
5479 unsigned S = Constraint.size();
5480
5481 if (S == 1) {
5482 switch (Constraint[0]) {
5483 default: break;
5484 case 'r':
5485 return C_RegisterClass;
5486 case 'm': // memory
5487 case 'o': // offsetable
5488 case 'V': // not offsetable
5489 return C_Memory;
5490 case 'p': // Address.
5491 return C_Address;
5492 case 'n': // Simple Integer
5493 case 'E': // Floating Point Constant
5494 case 'F': // Floating Point Constant
5495 return C_Immediate;
5496 case 'i': // Simple Integer or Relocatable Constant
5497 case 's': // Relocatable Constant
5498 case 'X': // Allow ANY value.
5499 case 'I': // Target registers.
5500 case 'J':
5501 case 'K':
5502 case 'L':
5503 case 'M':
5504 case 'N':
5505 case 'O':
5506 case 'P':
5507 case '<':
5508 case '>':
5509 return C_Other;
5510 }
5511 }
5512
5513 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5514 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5515 return C_Memory;
5516 return C_Register;
5517 }
5518 return C_Unknown;
5519 }
5520
5521 /// Try to replace an X constraint, which matches anything, with another that
5522 /// has more specific requirements based on the type of the corresponding
5523 /// operand.
LowerXConstraint(EVT ConstraintVT) const5524 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5525 if (ConstraintVT.isInteger())
5526 return "r";
5527 if (ConstraintVT.isFloatingPoint())
5528 return "f"; // works for many targets
5529 return nullptr;
5530 }
5531
LowerAsmOutputForConstraint(SDValue & Chain,SDValue & Glue,const SDLoc & DL,const AsmOperandInfo & OpInfo,SelectionDAG & DAG) const5532 SDValue TargetLowering::LowerAsmOutputForConstraint(
5533 SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5534 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5535 return SDValue();
5536 }
5537
5538 /// Lower the specified operand into the Ops vector.
5539 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5540 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5541 StringRef Constraint,
5542 std::vector<SDValue> &Ops,
5543 SelectionDAG &DAG) const {
5544
5545 if (Constraint.size() > 1)
5546 return;
5547
5548 char ConstraintLetter = Constraint[0];
5549 switch (ConstraintLetter) {
5550 default: break;
5551 case 'X': // Allows any operand
5552 case 'i': // Simple Integer or Relocatable Constant
5553 case 'n': // Simple Integer
5554 case 's': { // Relocatable Constant
5555
5556 ConstantSDNode *C;
5557 uint64_t Offset = 0;
5558
5559 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5560 // etc., since getelementpointer is variadic. We can't use
5561 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5562 // while in this case the GA may be furthest from the root node which is
5563 // likely an ISD::ADD.
5564 while (true) {
5565 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5566 // gcc prints these as sign extended. Sign extend value to 64 bits
5567 // now; without this it would get ZExt'd later in
5568 // ScheduleDAGSDNodes::EmitNode, which is very generic.
5569 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5570 BooleanContent BCont = getBooleanContents(MVT::i64);
5571 ISD::NodeType ExtOpc =
5572 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5573 int64_t ExtVal =
5574 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5575 Ops.push_back(
5576 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5577 return;
5578 }
5579 if (ConstraintLetter != 'n') {
5580 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5581 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5582 GA->getValueType(0),
5583 Offset + GA->getOffset()));
5584 return;
5585 }
5586 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5587 Ops.push_back(DAG.getTargetBlockAddress(
5588 BA->getBlockAddress(), BA->getValueType(0),
5589 Offset + BA->getOffset(), BA->getTargetFlags()));
5590 return;
5591 }
5592 if (isa<BasicBlockSDNode>(Op)) {
5593 Ops.push_back(Op);
5594 return;
5595 }
5596 }
5597 const unsigned OpCode = Op.getOpcode();
5598 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5599 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5600 Op = Op.getOperand(1);
5601 // Subtraction is not commutative.
5602 else if (OpCode == ISD::ADD &&
5603 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5604 Op = Op.getOperand(0);
5605 else
5606 return;
5607 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5608 continue;
5609 }
5610 return;
5611 }
5612 break;
5613 }
5614 }
5615 }
5616
CollectTargetIntrinsicOperands(const CallInst & I,SmallVectorImpl<SDValue> & Ops,SelectionDAG & DAG) const5617 void TargetLowering::CollectTargetIntrinsicOperands(
5618 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5619 }
5620
5621 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const5622 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5623 StringRef Constraint,
5624 MVT VT) const {
5625 if (!Constraint.starts_with("{"))
5626 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5627 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5628
5629 // Remove the braces from around the name.
5630 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5631
5632 std::pair<unsigned, const TargetRegisterClass *> R =
5633 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5634
5635 // Figure out which register class contains this reg.
5636 for (const TargetRegisterClass *RC : RI->regclasses()) {
5637 // If none of the value types for this register class are valid, we
5638 // can't use it. For example, 64-bit reg classes on 32-bit targets.
5639 if (!isLegalRC(*RI, *RC))
5640 continue;
5641
5642 for (const MCPhysReg &PR : *RC) {
5643 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5644 std::pair<unsigned, const TargetRegisterClass *> S =
5645 std::make_pair(PR, RC);
5646
5647 // If this register class has the requested value type, return it,
5648 // otherwise keep searching and return the first class found
5649 // if no other is found which explicitly has the requested type.
5650 if (RI->isTypeLegalForClass(*RC, VT))
5651 return S;
5652 if (!R.second)
5653 R = S;
5654 }
5655 }
5656 }
5657
5658 return R;
5659 }
5660
5661 //===----------------------------------------------------------------------===//
5662 // Constraint Selection.
5663
5664 /// Return true of this is an input operand that is a matching constraint like
5665 /// "4".
isMatchingInputConstraint() const5666 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5667 assert(!ConstraintCode.empty() && "No known constraint!");
5668 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5669 }
5670
5671 /// If this is an input matching constraint, this method returns the output
5672 /// operand it matches.
getMatchedOperand() const5673 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5674 assert(!ConstraintCode.empty() && "No known constraint!");
5675 return atoi(ConstraintCode.c_str());
5676 }
5677
5678 /// Split up the constraint string from the inline assembly value into the
5679 /// specific constraints and their prefixes, and also tie in the associated
5680 /// operand values.
5681 /// If this returns an empty vector, and if the constraint string itself
5682 /// isn't empty, there was an error parsing.
5683 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,const CallBase & Call) const5684 TargetLowering::ParseConstraints(const DataLayout &DL,
5685 const TargetRegisterInfo *TRI,
5686 const CallBase &Call) const {
5687 /// Information about all of the constraints.
5688 AsmOperandInfoVector ConstraintOperands;
5689 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5690 unsigned maCount = 0; // Largest number of multiple alternative constraints.
5691
5692 // Do a prepass over the constraints, canonicalizing them, and building up the
5693 // ConstraintOperands list.
5694 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5695 unsigned ResNo = 0; // ResNo - The result number of the next output.
5696 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5697
5698 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5699 ConstraintOperands.emplace_back(std::move(CI));
5700 AsmOperandInfo &OpInfo = ConstraintOperands.back();
5701
5702 // Update multiple alternative constraint count.
5703 if (OpInfo.multipleAlternatives.size() > maCount)
5704 maCount = OpInfo.multipleAlternatives.size();
5705
5706 OpInfo.ConstraintVT = MVT::Other;
5707
5708 // Compute the value type for each operand.
5709 switch (OpInfo.Type) {
5710 case InlineAsm::isOutput:
5711 // Indirect outputs just consume an argument.
5712 if (OpInfo.isIndirect) {
5713 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5714 break;
5715 }
5716
5717 // The return value of the call is this value. As such, there is no
5718 // corresponding argument.
5719 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5720 if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5721 OpInfo.ConstraintVT =
5722 getSimpleValueType(DL, STy->getElementType(ResNo));
5723 } else {
5724 assert(ResNo == 0 && "Asm only has one result!");
5725 OpInfo.ConstraintVT =
5726 getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5727 }
5728 ++ResNo;
5729 break;
5730 case InlineAsm::isInput:
5731 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5732 break;
5733 case InlineAsm::isLabel:
5734 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5735 ++LabelNo;
5736 continue;
5737 case InlineAsm::isClobber:
5738 // Nothing to do.
5739 break;
5740 }
5741
5742 if (OpInfo.CallOperandVal) {
5743 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5744 if (OpInfo.isIndirect) {
5745 OpTy = Call.getParamElementType(ArgNo);
5746 assert(OpTy && "Indirect operand must have elementtype attribute");
5747 }
5748
5749 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5750 if (StructType *STy = dyn_cast<StructType>(OpTy))
5751 if (STy->getNumElements() == 1)
5752 OpTy = STy->getElementType(0);
5753
5754 // If OpTy is not a single value, it may be a struct/union that we
5755 // can tile with integers.
5756 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5757 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5758 switch (BitSize) {
5759 default: break;
5760 case 1:
5761 case 8:
5762 case 16:
5763 case 32:
5764 case 64:
5765 case 128:
5766 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5767 break;
5768 }
5769 }
5770
5771 EVT VT = getAsmOperandValueType(DL, OpTy, true);
5772 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5773 ArgNo++;
5774 }
5775 }
5776
5777 // If we have multiple alternative constraints, select the best alternative.
5778 if (!ConstraintOperands.empty()) {
5779 if (maCount) {
5780 unsigned bestMAIndex = 0;
5781 int bestWeight = -1;
5782 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
5783 int weight = -1;
5784 unsigned maIndex;
5785 // Compute the sums of the weights for each alternative, keeping track
5786 // of the best (highest weight) one so far.
5787 for (maIndex = 0; maIndex < maCount; ++maIndex) {
5788 int weightSum = 0;
5789 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5790 cIndex != eIndex; ++cIndex) {
5791 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5792 if (OpInfo.Type == InlineAsm::isClobber)
5793 continue;
5794
5795 // If this is an output operand with a matching input operand,
5796 // look up the matching input. If their types mismatch, e.g. one
5797 // is an integer, the other is floating point, or their sizes are
5798 // different, flag it as an maCantMatch.
5799 if (OpInfo.hasMatchingInput()) {
5800 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5801 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5802 if ((OpInfo.ConstraintVT.isInteger() !=
5803 Input.ConstraintVT.isInteger()) ||
5804 (OpInfo.ConstraintVT.getSizeInBits() !=
5805 Input.ConstraintVT.getSizeInBits())) {
5806 weightSum = -1; // Can't match.
5807 break;
5808 }
5809 }
5810 }
5811 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5812 if (weight == -1) {
5813 weightSum = -1;
5814 break;
5815 }
5816 weightSum += weight;
5817 }
5818 // Update best.
5819 if (weightSum > bestWeight) {
5820 bestWeight = weightSum;
5821 bestMAIndex = maIndex;
5822 }
5823 }
5824
5825 // Now select chosen alternative in each constraint.
5826 for (AsmOperandInfo &cInfo : ConstraintOperands)
5827 if (cInfo.Type != InlineAsm::isClobber)
5828 cInfo.selectAlternative(bestMAIndex);
5829 }
5830 }
5831
5832 // Check and hook up tied operands, choose constraint code to use.
5833 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5834 cIndex != eIndex; ++cIndex) {
5835 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5836
5837 // If this is an output operand with a matching input operand, look up the
5838 // matching input. If their types mismatch, e.g. one is an integer, the
5839 // other is floating point, or their sizes are different, flag it as an
5840 // error.
5841 if (OpInfo.hasMatchingInput()) {
5842 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5843
5844 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5845 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5846 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5847 OpInfo.ConstraintVT);
5848 std::pair<unsigned, const TargetRegisterClass *> InputRC =
5849 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5850 Input.ConstraintVT);
5851 if ((OpInfo.ConstraintVT.isInteger() !=
5852 Input.ConstraintVT.isInteger()) ||
5853 (MatchRC.second != InputRC.second)) {
5854 report_fatal_error("Unsupported asm: input constraint"
5855 " with a matching output constraint of"
5856 " incompatible type!");
5857 }
5858 }
5859 }
5860 }
5861
5862 return ConstraintOperands;
5863 }
5864
5865 /// Return a number indicating our preference for chosing a type of constraint
5866 /// over another, for the purpose of sorting them. Immediates are almost always
5867 /// preferrable (when they can be emitted). A higher return value means a
5868 /// stronger preference for one constraint type relative to another.
5869 /// FIXME: We should prefer registers over memory but doing so may lead to
5870 /// unrecoverable register exhaustion later.
5871 /// https://github.com/llvm/llvm-project/issues/20571
getConstraintPiority(TargetLowering::ConstraintType CT)5872 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5873 switch (CT) {
5874 case TargetLowering::C_Immediate:
5875 case TargetLowering::C_Other:
5876 return 4;
5877 case TargetLowering::C_Memory:
5878 case TargetLowering::C_Address:
5879 return 3;
5880 case TargetLowering::C_RegisterClass:
5881 return 2;
5882 case TargetLowering::C_Register:
5883 return 1;
5884 case TargetLowering::C_Unknown:
5885 return 0;
5886 }
5887 llvm_unreachable("Invalid constraint type");
5888 }
5889
5890 /// Examine constraint type and operand type and determine a weight value.
5891 /// This object must already have been set up with the operand type
5892 /// and the current alternative constraint selected.
5893 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const5894 TargetLowering::getMultipleConstraintMatchWeight(
5895 AsmOperandInfo &info, int maIndex) const {
5896 InlineAsm::ConstraintCodeVector *rCodes;
5897 if (maIndex >= (int)info.multipleAlternatives.size())
5898 rCodes = &info.Codes;
5899 else
5900 rCodes = &info.multipleAlternatives[maIndex].Codes;
5901 ConstraintWeight BestWeight = CW_Invalid;
5902
5903 // Loop over the options, keeping track of the most general one.
5904 for (const std::string &rCode : *rCodes) {
5905 ConstraintWeight weight =
5906 getSingleConstraintMatchWeight(info, rCode.c_str());
5907 if (weight > BestWeight)
5908 BestWeight = weight;
5909 }
5910
5911 return BestWeight;
5912 }
5913
5914 /// Examine constraint type and operand type and determine a weight value.
5915 /// This object must already have been set up with the operand type
5916 /// and the current alternative constraint selected.
5917 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5918 TargetLowering::getSingleConstraintMatchWeight(
5919 AsmOperandInfo &info, const char *constraint) const {
5920 ConstraintWeight weight = CW_Invalid;
5921 Value *CallOperandVal = info.CallOperandVal;
5922 // If we don't have a value, we can't do a match,
5923 // but allow it at the lowest weight.
5924 if (!CallOperandVal)
5925 return CW_Default;
5926 // Look at the constraint type.
5927 switch (*constraint) {
5928 case 'i': // immediate integer.
5929 case 'n': // immediate integer with a known value.
5930 if (isa<ConstantInt>(CallOperandVal))
5931 weight = CW_Constant;
5932 break;
5933 case 's': // non-explicit intregal immediate.
5934 if (isa<GlobalValue>(CallOperandVal))
5935 weight = CW_Constant;
5936 break;
5937 case 'E': // immediate float if host format.
5938 case 'F': // immediate float.
5939 if (isa<ConstantFP>(CallOperandVal))
5940 weight = CW_Constant;
5941 break;
5942 case '<': // memory operand with autodecrement.
5943 case '>': // memory operand with autoincrement.
5944 case 'm': // memory operand.
5945 case 'o': // offsettable memory operand
5946 case 'V': // non-offsettable memory operand
5947 weight = CW_Memory;
5948 break;
5949 case 'r': // general register.
5950 case 'g': // general register, memory operand or immediate integer.
5951 // note: Clang converts "g" to "imr".
5952 if (CallOperandVal->getType()->isIntegerTy())
5953 weight = CW_Register;
5954 break;
5955 case 'X': // any operand.
5956 default:
5957 weight = CW_Default;
5958 break;
5959 }
5960 return weight;
5961 }
5962
5963 /// If there are multiple different constraints that we could pick for this
5964 /// operand (e.g. "imr") try to pick the 'best' one.
5965 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
5966 /// into seven classes:
5967 /// Register -> one specific register
5968 /// RegisterClass -> a group of regs
5969 /// Memory -> memory
5970 /// Address -> a symbolic memory reference
5971 /// Immediate -> immediate values
5972 /// Other -> magic values (such as "Flag Output Operands")
5973 /// Unknown -> something we don't recognize yet and can't handle
5974 /// Ideally, we would pick the most specific constraint possible: if we have
5975 /// something that fits into a register, we would pick it. The problem here
5976 /// is that if we have something that could either be in a register or in
5977 /// memory that use of the register could cause selection of *other*
5978 /// operands to fail: they might only succeed if we pick memory. Because of
5979 /// this the heuristic we use is:
5980 ///
5981 /// 1) If there is an 'other' constraint, and if the operand is valid for
5982 /// that constraint, use it. This makes us take advantage of 'i'
5983 /// constraints when available.
5984 /// 2) Otherwise, pick the most general constraint present. This prefers
5985 /// 'm' over 'r', for example.
5986 ///
getConstraintPreferences(TargetLowering::AsmOperandInfo & OpInfo) const5987 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
5988 TargetLowering::AsmOperandInfo &OpInfo) const {
5989 ConstraintGroup Ret;
5990
5991 Ret.reserve(OpInfo.Codes.size());
5992 for (StringRef Code : OpInfo.Codes) {
5993 TargetLowering::ConstraintType CType = getConstraintType(Code);
5994
5995 // Indirect 'other' or 'immediate' constraints are not allowed.
5996 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5997 CType == TargetLowering::C_Register ||
5998 CType == TargetLowering::C_RegisterClass))
5999 continue;
6000
6001 // Things with matching constraints can only be registers, per gcc
6002 // documentation. This mainly affects "g" constraints.
6003 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6004 continue;
6005
6006 Ret.emplace_back(Code, CType);
6007 }
6008
6009 std::stable_sort(
6010 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6011 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6012 });
6013
6014 return Ret;
6015 }
6016
6017 /// If we have an immediate, see if we can lower it. Return true if we can,
6018 /// false otherwise.
lowerImmediateIfPossible(TargetLowering::ConstraintPair & P,SDValue Op,SelectionDAG * DAG,const TargetLowering & TLI)6019 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6020 SDValue Op, SelectionDAG *DAG,
6021 const TargetLowering &TLI) {
6022
6023 assert((P.second == TargetLowering::C_Other ||
6024 P.second == TargetLowering::C_Immediate) &&
6025 "need immediate or other");
6026
6027 if (!Op.getNode())
6028 return false;
6029
6030 std::vector<SDValue> ResultOps;
6031 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6032 return !ResultOps.empty();
6033 }
6034
6035 /// Determines the constraint code and constraint type to use for the specific
6036 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const6037 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6038 SDValue Op,
6039 SelectionDAG *DAG) const {
6040 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6041
6042 // Single-letter constraints ('r') are very common.
6043 if (OpInfo.Codes.size() == 1) {
6044 OpInfo.ConstraintCode = OpInfo.Codes[0];
6045 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6046 } else {
6047 ConstraintGroup G = getConstraintPreferences(OpInfo);
6048 if (G.empty())
6049 return;
6050
6051 unsigned BestIdx = 0;
6052 for (const unsigned E = G.size();
6053 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6054 G[BestIdx].second == TargetLowering::C_Immediate);
6055 ++BestIdx) {
6056 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6057 break;
6058 // If we're out of constraints, just pick the first one.
6059 if (BestIdx + 1 == E) {
6060 BestIdx = 0;
6061 break;
6062 }
6063 }
6064
6065 OpInfo.ConstraintCode = G[BestIdx].first;
6066 OpInfo.ConstraintType = G[BestIdx].second;
6067 }
6068
6069 // 'X' matches anything.
6070 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6071 // Constants are handled elsewhere. For Functions, the type here is the
6072 // type of the result, which is not what we want to look at; leave them
6073 // alone.
6074 Value *v = OpInfo.CallOperandVal;
6075 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6076 return;
6077 }
6078
6079 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6080 OpInfo.ConstraintCode = "i";
6081 return;
6082 }
6083
6084 // Otherwise, try to resolve it to something we know about by looking at
6085 // the actual operand type.
6086 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6087 OpInfo.ConstraintCode = Repl;
6088 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6089 }
6090 }
6091 }
6092
6093 /// Given an exact SDIV by a constant, create a multiplication
6094 /// with the multiplicative inverse of the constant.
6095 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
BuildExactSDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)6096 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6097 const SDLoc &dl, SelectionDAG &DAG,
6098 SmallVectorImpl<SDNode *> &Created) {
6099 SDValue Op0 = N->getOperand(0);
6100 SDValue Op1 = N->getOperand(1);
6101 EVT VT = N->getValueType(0);
6102 EVT SVT = VT.getScalarType();
6103 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6104 EVT ShSVT = ShVT.getScalarType();
6105
6106 bool UseSRA = false;
6107 SmallVector<SDValue, 16> Shifts, Factors;
6108
6109 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6110 if (C->isZero())
6111 return false;
6112 APInt Divisor = C->getAPIntValue();
6113 unsigned Shift = Divisor.countr_zero();
6114 if (Shift) {
6115 Divisor.ashrInPlace(Shift);
6116 UseSRA = true;
6117 }
6118 APInt Factor = Divisor.multiplicativeInverse();
6119 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6120 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6121 return true;
6122 };
6123
6124 // Collect all magic values from the build vector.
6125 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6126 return SDValue();
6127
6128 SDValue Shift, Factor;
6129 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6130 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6131 Factor = DAG.getBuildVector(VT, dl, Factors);
6132 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6133 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6134 "Expected matchUnaryPredicate to return one element for scalable "
6135 "vectors");
6136 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6137 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6138 } else {
6139 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6140 Shift = Shifts[0];
6141 Factor = Factors[0];
6142 }
6143
6144 SDValue Res = Op0;
6145 if (UseSRA) {
6146 SDNodeFlags Flags;
6147 Flags.setExact(true);
6148 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
6149 Created.push_back(Res.getNode());
6150 }
6151
6152 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6153 }
6154
6155 /// Given an exact UDIV by a constant, create a multiplication
6156 /// with the multiplicative inverse of the constant.
6157 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
BuildExactUDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)6158 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6159 const SDLoc &dl, SelectionDAG &DAG,
6160 SmallVectorImpl<SDNode *> &Created) {
6161 EVT VT = N->getValueType(0);
6162 EVT SVT = VT.getScalarType();
6163 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6164 EVT ShSVT = ShVT.getScalarType();
6165
6166 bool UseSRL = false;
6167 SmallVector<SDValue, 16> Shifts, Factors;
6168
6169 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6170 if (C->isZero())
6171 return false;
6172 APInt Divisor = C->getAPIntValue();
6173 unsigned Shift = Divisor.countr_zero();
6174 if (Shift) {
6175 Divisor.lshrInPlace(Shift);
6176 UseSRL = true;
6177 }
6178 // Calculate the multiplicative inverse modulo BW.
6179 APInt Factor = Divisor.multiplicativeInverse();
6180 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6181 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6182 return true;
6183 };
6184
6185 SDValue Op1 = N->getOperand(1);
6186
6187 // Collect all magic values from the build vector.
6188 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6189 return SDValue();
6190
6191 SDValue Shift, Factor;
6192 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6193 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6194 Factor = DAG.getBuildVector(VT, dl, Factors);
6195 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6196 assert(Shifts.size() == 1 && Factors.size() == 1 &&
6197 "Expected matchUnaryPredicate to return one element for scalable "
6198 "vectors");
6199 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6200 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6201 } else {
6202 assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6203 Shift = Shifts[0];
6204 Factor = Factors[0];
6205 }
6206
6207 SDValue Res = N->getOperand(0);
6208 if (UseSRL) {
6209 SDNodeFlags Flags;
6210 Flags.setExact(true);
6211 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, Flags);
6212 Created.push_back(Res.getNode());
6213 }
6214
6215 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6216 }
6217
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6218 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6219 SelectionDAG &DAG,
6220 SmallVectorImpl<SDNode *> &Created) const {
6221 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6222 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6223 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
6224 return SDValue(N, 0); // Lower SDIV as SDIV
6225 return SDValue();
6226 }
6227
6228 SDValue
BuildSREMPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6229 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6230 SelectionDAG &DAG,
6231 SmallVectorImpl<SDNode *> &Created) const {
6232 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6233 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6234 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
6235 return SDValue(N, 0); // Lower SREM as SREM
6236 return SDValue();
6237 }
6238
6239 /// Build sdiv by power-of-2 with conditional move instructions
6240 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6241 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6242 /// bgez x, label
6243 /// add x, x, 2**k-1
6244 /// label:
6245 /// sra res, x, k
6246 /// neg res, res (when the divisor is negative)
buildSDIVPow2WithCMov(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6247 SDValue TargetLowering::buildSDIVPow2WithCMov(
6248 SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6249 SmallVectorImpl<SDNode *> &Created) const {
6250 unsigned Lg2 = Divisor.countr_zero();
6251 EVT VT = N->getValueType(0);
6252
6253 SDLoc DL(N);
6254 SDValue N0 = N->getOperand(0);
6255 SDValue Zero = DAG.getConstant(0, DL, VT);
6256 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6257 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6258
6259 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6260 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6261 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6262 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6263 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6264
6265 Created.push_back(Cmp.getNode());
6266 Created.push_back(Add.getNode());
6267 Created.push_back(CMov.getNode());
6268
6269 // Divide by pow2.
6270 SDValue SRA =
6271 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6272
6273 // If we're dividing by a positive value, we're done. Otherwise, we must
6274 // negate the result.
6275 if (Divisor.isNonNegative())
6276 return SRA;
6277
6278 Created.push_back(SRA.getNode());
6279 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6280 }
6281
6282 /// Given an ISD::SDIV node expressing a divide by constant,
6283 /// return a DAG expression to select that will generate the same value by
6284 /// multiplying by a magic number.
6285 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const6286 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6287 bool IsAfterLegalization,
6288 SmallVectorImpl<SDNode *> &Created) const {
6289 SDLoc dl(N);
6290 EVT VT = N->getValueType(0);
6291 EVT SVT = VT.getScalarType();
6292 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6293 EVT ShSVT = ShVT.getScalarType();
6294 unsigned EltBits = VT.getScalarSizeInBits();
6295 EVT MulVT;
6296
6297 // Check to see if we can do this.
6298 // FIXME: We should be more aggressive here.
6299 if (!isTypeLegal(VT)) {
6300 // Limit this to simple scalars for now.
6301 if (VT.isVector() || !VT.isSimple())
6302 return SDValue();
6303
6304 // If this type will be promoted to a large enough type with a legal
6305 // multiply operation, we can go ahead and do this transform.
6306 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6307 return SDValue();
6308
6309 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6310 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6311 !isOperationLegal(ISD::MUL, MulVT))
6312 return SDValue();
6313 }
6314
6315 // If the sdiv has an 'exact' bit we can use a simpler lowering.
6316 if (N->getFlags().hasExact())
6317 return BuildExactSDIV(*this, N, dl, DAG, Created);
6318
6319 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6320
6321 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6322 if (C->isZero())
6323 return false;
6324
6325 const APInt &Divisor = C->getAPIntValue();
6326 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6327 int NumeratorFactor = 0;
6328 int ShiftMask = -1;
6329
6330 if (Divisor.isOne() || Divisor.isAllOnes()) {
6331 // If d is +1/-1, we just multiply the numerator by +1/-1.
6332 NumeratorFactor = Divisor.getSExtValue();
6333 magics.Magic = 0;
6334 magics.ShiftAmount = 0;
6335 ShiftMask = 0;
6336 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6337 // If d > 0 and m < 0, add the numerator.
6338 NumeratorFactor = 1;
6339 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6340 // If d < 0 and m > 0, subtract the numerator.
6341 NumeratorFactor = -1;
6342 }
6343
6344 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6345 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
6346 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6347 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
6348 return true;
6349 };
6350
6351 SDValue N0 = N->getOperand(0);
6352 SDValue N1 = N->getOperand(1);
6353
6354 // Collect the shifts / magic values from each element.
6355 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6356 return SDValue();
6357
6358 SDValue MagicFactor, Factor, Shift, ShiftMask;
6359 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6360 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6361 Factor = DAG.getBuildVector(VT, dl, Factors);
6362 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6363 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6364 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6365 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6366 Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6367 "Expected matchUnaryPredicate to return one element for scalable "
6368 "vectors");
6369 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6370 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6371 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6372 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6373 } else {
6374 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6375 MagicFactor = MagicFactors[0];
6376 Factor = Factors[0];
6377 Shift = Shifts[0];
6378 ShiftMask = ShiftMasks[0];
6379 }
6380
6381 // Multiply the numerator (operand 0) by the magic value.
6382 // FIXME: We should support doing a MUL in a wider type.
6383 auto GetMULHS = [&](SDValue X, SDValue Y) {
6384 // If the type isn't legal, use a wider mul of the type calculated
6385 // earlier.
6386 if (!isTypeLegal(VT)) {
6387 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6388 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6389 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6390 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6391 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6392 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6393 }
6394
6395 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6396 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6397 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6398 SDValue LoHi =
6399 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6400 return SDValue(LoHi.getNode(), 1);
6401 }
6402 // If type twice as wide legal, widen and use a mul plus a shift.
6403 unsigned Size = VT.getScalarSizeInBits();
6404 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6405 if (VT.isVector())
6406 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6407 VT.getVectorElementCount());
6408 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6409 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6410 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6411 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6412 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6413 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6414 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6415 }
6416 return SDValue();
6417 };
6418
6419 SDValue Q = GetMULHS(N0, MagicFactor);
6420 if (!Q)
6421 return SDValue();
6422
6423 Created.push_back(Q.getNode());
6424
6425 // (Optionally) Add/subtract the numerator using Factor.
6426 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6427 Created.push_back(Factor.getNode());
6428 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6429 Created.push_back(Q.getNode());
6430
6431 // Shift right algebraic by shift value.
6432 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6433 Created.push_back(Q.getNode());
6434
6435 // Extract the sign bit, mask it and add it to the quotient.
6436 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6437 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6438 Created.push_back(T.getNode());
6439 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6440 Created.push_back(T.getNode());
6441 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6442 }
6443
6444 /// Given an ISD::UDIV node expressing a divide by constant,
6445 /// return a DAG expression to select that will generate the same value by
6446 /// multiplying by a magic number.
6447 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const6448 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6449 bool IsAfterLegalization,
6450 SmallVectorImpl<SDNode *> &Created) const {
6451 SDLoc dl(N);
6452 EVT VT = N->getValueType(0);
6453 EVT SVT = VT.getScalarType();
6454 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6455 EVT ShSVT = ShVT.getScalarType();
6456 unsigned EltBits = VT.getScalarSizeInBits();
6457 EVT MulVT;
6458
6459 // Check to see if we can do this.
6460 // FIXME: We should be more aggressive here.
6461 if (!isTypeLegal(VT)) {
6462 // Limit this to simple scalars for now.
6463 if (VT.isVector() || !VT.isSimple())
6464 return SDValue();
6465
6466 // If this type will be promoted to a large enough type with a legal
6467 // multiply operation, we can go ahead and do this transform.
6468 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6469 return SDValue();
6470
6471 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6472 if (MulVT.getSizeInBits() < (2 * EltBits) ||
6473 !isOperationLegal(ISD::MUL, MulVT))
6474 return SDValue();
6475 }
6476
6477 // If the udiv has an 'exact' bit we can use a simpler lowering.
6478 if (N->getFlags().hasExact())
6479 return BuildExactUDIV(*this, N, dl, DAG, Created);
6480
6481 SDValue N0 = N->getOperand(0);
6482 SDValue N1 = N->getOperand(1);
6483
6484 // Try to use leading zeros of the dividend to reduce the multiplier and
6485 // avoid expensive fixups.
6486 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6487
6488 bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6489 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6490
6491 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6492 if (C->isZero())
6493 return false;
6494 const APInt& Divisor = C->getAPIntValue();
6495
6496 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6497
6498 // Magic algorithm doesn't work for division by 1. We need to emit a select
6499 // at the end.
6500 if (Divisor.isOne()) {
6501 PreShift = PostShift = DAG.getUNDEF(ShSVT);
6502 MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6503 } else {
6504 UnsignedDivisionByConstantInfo magics =
6505 UnsignedDivisionByConstantInfo::get(
6506 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6507
6508 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6509
6510 assert(magics.PreShift < Divisor.getBitWidth() &&
6511 "We shouldn't generate an undefined shift!");
6512 assert(magics.PostShift < Divisor.getBitWidth() &&
6513 "We shouldn't generate an undefined shift!");
6514 assert((!magics.IsAdd || magics.PreShift == 0) &&
6515 "Unexpected pre-shift");
6516 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6517 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6518 NPQFactor = DAG.getConstant(
6519 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6520 : APInt::getZero(EltBits),
6521 dl, SVT);
6522 UseNPQ |= magics.IsAdd;
6523 UsePreShift |= magics.PreShift != 0;
6524 UsePostShift |= magics.PostShift != 0;
6525 }
6526
6527 PreShifts.push_back(PreShift);
6528 MagicFactors.push_back(MagicFactor);
6529 NPQFactors.push_back(NPQFactor);
6530 PostShifts.push_back(PostShift);
6531 return true;
6532 };
6533
6534 // Collect the shifts/magic values from each element.
6535 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6536 return SDValue();
6537
6538 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6539 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6540 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6541 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6542 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6543 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6544 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6545 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6546 NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6547 "Expected matchUnaryPredicate to return one for scalable vectors");
6548 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6549 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6550 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6551 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6552 } else {
6553 assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6554 PreShift = PreShifts[0];
6555 MagicFactor = MagicFactors[0];
6556 PostShift = PostShifts[0];
6557 }
6558
6559 SDValue Q = N0;
6560 if (UsePreShift) {
6561 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6562 Created.push_back(Q.getNode());
6563 }
6564
6565 // FIXME: We should support doing a MUL in a wider type.
6566 auto GetMULHU = [&](SDValue X, SDValue Y) {
6567 // If the type isn't legal, use a wider mul of the type calculated
6568 // earlier.
6569 if (!isTypeLegal(VT)) {
6570 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6571 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6572 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6573 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6574 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6575 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6576 }
6577
6578 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6579 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6580 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6581 SDValue LoHi =
6582 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6583 return SDValue(LoHi.getNode(), 1);
6584 }
6585 // If type twice as wide legal, widen and use a mul plus a shift.
6586 unsigned Size = VT.getScalarSizeInBits();
6587 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6588 if (VT.isVector())
6589 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6590 VT.getVectorElementCount());
6591 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6592 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6593 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6594 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6595 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6596 DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6597 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6598 }
6599 return SDValue(); // No mulhu or equivalent
6600 };
6601
6602 // Multiply the numerator (operand 0) by the magic value.
6603 Q = GetMULHU(Q, MagicFactor);
6604 if (!Q)
6605 return SDValue();
6606
6607 Created.push_back(Q.getNode());
6608
6609 if (UseNPQ) {
6610 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6611 Created.push_back(NPQ.getNode());
6612
6613 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6614 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6615 if (VT.isVector())
6616 NPQ = GetMULHU(NPQ, NPQFactor);
6617 else
6618 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6619
6620 Created.push_back(NPQ.getNode());
6621
6622 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6623 Created.push_back(Q.getNode());
6624 }
6625
6626 if (UsePostShift) {
6627 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6628 Created.push_back(Q.getNode());
6629 }
6630
6631 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6632
6633 SDValue One = DAG.getConstant(1, dl, VT);
6634 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6635 return DAG.getSelect(dl, VT, IsOne, N0, Q);
6636 }
6637
6638 /// If all values in Values that *don't* match the predicate are same 'splat'
6639 /// value, then replace all values with that splat value.
6640 /// Else, if AlternativeReplacement was provided, then replace all values that
6641 /// do match predicate with AlternativeReplacement value.
6642 static void
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,std::function<bool (SDValue)> Predicate,SDValue AlternativeReplacement=SDValue ())6643 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6644 std::function<bool(SDValue)> Predicate,
6645 SDValue AlternativeReplacement = SDValue()) {
6646 SDValue Replacement;
6647 // Is there a value for which the Predicate does *NOT* match? What is it?
6648 auto SplatValue = llvm::find_if_not(Values, Predicate);
6649 if (SplatValue != Values.end()) {
6650 // Does Values consist only of SplatValue's and values matching Predicate?
6651 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6652 return Value == *SplatValue || Predicate(Value);
6653 })) // Then we shall replace values matching predicate with SplatValue.
6654 Replacement = *SplatValue;
6655 }
6656 if (!Replacement) {
6657 // Oops, we did not find the "baseline" splat value.
6658 if (!AlternativeReplacement)
6659 return; // Nothing to do.
6660 // Let's replace with provided value then.
6661 Replacement = AlternativeReplacement;
6662 }
6663 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6664 }
6665
6666 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6667 /// where the divisor is constant and the comparison target is zero,
6668 /// return a DAG expression that will generate the same comparison result
6669 /// using only multiplications, additions and shifts/rotations.
6670 /// Ref: "Hacker's Delight" 10-17.
buildUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6671 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6672 SDValue CompTargetNode,
6673 ISD::CondCode Cond,
6674 DAGCombinerInfo &DCI,
6675 const SDLoc &DL) const {
6676 SmallVector<SDNode *, 5> Built;
6677 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6678 DCI, DL, Built)) {
6679 for (SDNode *N : Built)
6680 DCI.AddToWorklist(N);
6681 return Folded;
6682 }
6683
6684 return SDValue();
6685 }
6686
6687 SDValue
prepareUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6688 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6689 SDValue CompTargetNode, ISD::CondCode Cond,
6690 DAGCombinerInfo &DCI, const SDLoc &DL,
6691 SmallVectorImpl<SDNode *> &Created) const {
6692 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6693 // - D must be constant, with D = D0 * 2^K where D0 is odd
6694 // - P is the multiplicative inverse of D0 modulo 2^W
6695 // - Q = floor(((2^W) - 1) / D)
6696 // where W is the width of the common type of N and D.
6697 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6698 "Only applicable for (in)equality comparisons.");
6699
6700 SelectionDAG &DAG = DCI.DAG;
6701
6702 EVT VT = REMNode.getValueType();
6703 EVT SVT = VT.getScalarType();
6704 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6705 EVT ShSVT = ShVT.getScalarType();
6706
6707 // If MUL is unavailable, we cannot proceed in any case.
6708 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6709 return SDValue();
6710
6711 bool ComparingWithAllZeros = true;
6712 bool AllComparisonsWithNonZerosAreTautological = true;
6713 bool HadTautologicalLanes = false;
6714 bool AllLanesAreTautological = true;
6715 bool HadEvenDivisor = false;
6716 bool AllDivisorsArePowerOfTwo = true;
6717 bool HadTautologicalInvertedLanes = false;
6718 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6719
6720 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6721 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6722 if (CDiv->isZero())
6723 return false;
6724
6725 const APInt &D = CDiv->getAPIntValue();
6726 const APInt &Cmp = CCmp->getAPIntValue();
6727
6728 ComparingWithAllZeros &= Cmp.isZero();
6729
6730 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6731 // if C2 is not less than C1, the comparison is always false.
6732 // But we will only be able to produce the comparison that will give the
6733 // opposive tautological answer. So this lane would need to be fixed up.
6734 bool TautologicalInvertedLane = D.ule(Cmp);
6735 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6736
6737 // If all lanes are tautological (either all divisors are ones, or divisor
6738 // is not greater than the constant we are comparing with),
6739 // we will prefer to avoid the fold.
6740 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6741 HadTautologicalLanes |= TautologicalLane;
6742 AllLanesAreTautological &= TautologicalLane;
6743
6744 // If we are comparing with non-zero, we need'll need to subtract said
6745 // comparison value from the LHS. But there is no point in doing that if
6746 // every lane where we are comparing with non-zero is tautological..
6747 if (!Cmp.isZero())
6748 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6749
6750 // Decompose D into D0 * 2^K
6751 unsigned K = D.countr_zero();
6752 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6753 APInt D0 = D.lshr(K);
6754
6755 // D is even if it has trailing zeros.
6756 HadEvenDivisor |= (K != 0);
6757 // D is a power-of-two if D0 is one.
6758 // If all divisors are power-of-two, we will prefer to avoid the fold.
6759 AllDivisorsArePowerOfTwo &= D0.isOne();
6760
6761 // P = inv(D0, 2^W)
6762 // 2^W requires W + 1 bits, so we have to extend and then truncate.
6763 unsigned W = D.getBitWidth();
6764 APInt P = D0.multiplicativeInverse();
6765 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6766
6767 // Q = floor((2^W - 1) u/ D)
6768 // R = ((2^W - 1) u% D)
6769 APInt Q, R;
6770 APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6771
6772 // If we are comparing with zero, then that comparison constant is okay,
6773 // else it may need to be one less than that.
6774 if (Cmp.ugt(R))
6775 Q -= 1;
6776
6777 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6778 "We are expecting that K is always less than all-ones for ShSVT");
6779
6780 // If the lane is tautological the result can be constant-folded.
6781 if (TautologicalLane) {
6782 // Set P and K amount to a bogus values so we can try to splat them.
6783 P = 0;
6784 K = -1;
6785 // And ensure that comparison constant is tautological,
6786 // it will always compare true/false.
6787 Q = -1;
6788 }
6789
6790 PAmts.push_back(DAG.getConstant(P, DL, SVT));
6791 KAmts.push_back(
6792 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6793 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6794 return true;
6795 };
6796
6797 SDValue N = REMNode.getOperand(0);
6798 SDValue D = REMNode.getOperand(1);
6799
6800 // Collect the values from each element.
6801 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6802 return SDValue();
6803
6804 // If all lanes are tautological, the result can be constant-folded.
6805 if (AllLanesAreTautological)
6806 return SDValue();
6807
6808 // If this is a urem by a powers-of-two, avoid the fold since it can be
6809 // best implemented as a bit test.
6810 if (AllDivisorsArePowerOfTwo)
6811 return SDValue();
6812
6813 SDValue PVal, KVal, QVal;
6814 if (D.getOpcode() == ISD::BUILD_VECTOR) {
6815 if (HadTautologicalLanes) {
6816 // Try to turn PAmts into a splat, since we don't care about the values
6817 // that are currently '0'. If we can't, just keep '0'`s.
6818 turnVectorIntoSplatVector(PAmts, isNullConstant);
6819 // Try to turn KAmts into a splat, since we don't care about the values
6820 // that are currently '-1'. If we can't, change them to '0'`s.
6821 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6822 DAG.getConstant(0, DL, ShSVT));
6823 }
6824
6825 PVal = DAG.getBuildVector(VT, DL, PAmts);
6826 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6827 QVal = DAG.getBuildVector(VT, DL, QAmts);
6828 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6829 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6830 "Expected matchBinaryPredicate to return one element for "
6831 "SPLAT_VECTORs");
6832 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6833 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6834 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6835 } else {
6836 PVal = PAmts[0];
6837 KVal = KAmts[0];
6838 QVal = QAmts[0];
6839 }
6840
6841 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6842 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6843 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6844 assert(CompTargetNode.getValueType() == N.getValueType() &&
6845 "Expecting that the types on LHS and RHS of comparisons match.");
6846 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6847 }
6848
6849 // (mul N, P)
6850 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6851 Created.push_back(Op0.getNode());
6852
6853 // Rotate right only if any divisor was even. We avoid rotates for all-odd
6854 // divisors as a performance improvement, since rotating by 0 is a no-op.
6855 if (HadEvenDivisor) {
6856 // We need ROTR to do this.
6857 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6858 return SDValue();
6859 // UREM: (rotr (mul N, P), K)
6860 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6861 Created.push_back(Op0.getNode());
6862 }
6863
6864 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6865 SDValue NewCC =
6866 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6867 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6868 if (!HadTautologicalInvertedLanes)
6869 return NewCC;
6870
6871 // If any lanes previously compared always-false, the NewCC will give
6872 // always-true result for them, so we need to fixup those lanes.
6873 // Or the other way around for inequality predicate.
6874 assert(VT.isVector() && "Can/should only get here for vectors.");
6875 Created.push_back(NewCC.getNode());
6876
6877 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6878 // if C2 is not less than C1, the comparison is always false.
6879 // But we have produced the comparison that will give the
6880 // opposive tautological answer. So these lanes would need to be fixed up.
6881 SDValue TautologicalInvertedChannels =
6882 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6883 Created.push_back(TautologicalInvertedChannels.getNode());
6884
6885 // NOTE: we avoid letting illegal types through even if we're before legalize
6886 // ops – legalization has a hard time producing good code for this.
6887 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6888 // If we have a vector select, let's replace the comparison results in the
6889 // affected lanes with the correct tautological result.
6890 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6891 DL, SETCCVT, SETCCVT);
6892 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6893 Replacement, NewCC);
6894 }
6895
6896 // Else, we can just invert the comparison result in the appropriate lanes.
6897 //
6898 // NOTE: see the note above VSELECT above.
6899 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6900 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6901 TautologicalInvertedChannels);
6902
6903 return SDValue(); // Don't know how to lower.
6904 }
6905
6906 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6907 /// where the divisor is constant and the comparison target is zero,
6908 /// return a DAG expression that will generate the same comparison result
6909 /// using only multiplications, additions and shifts/rotations.
6910 /// Ref: "Hacker's Delight" 10-17.
buildSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6911 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6912 SDValue CompTargetNode,
6913 ISD::CondCode Cond,
6914 DAGCombinerInfo &DCI,
6915 const SDLoc &DL) const {
6916 SmallVector<SDNode *, 7> Built;
6917 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6918 DCI, DL, Built)) {
6919 assert(Built.size() <= 7 && "Max size prediction failed.");
6920 for (SDNode *N : Built)
6921 DCI.AddToWorklist(N);
6922 return Folded;
6923 }
6924
6925 return SDValue();
6926 }
6927
6928 SDValue
prepareSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6929 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6930 SDValue CompTargetNode, ISD::CondCode Cond,
6931 DAGCombinerInfo &DCI, const SDLoc &DL,
6932 SmallVectorImpl<SDNode *> &Created) const {
6933 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6934 // Fold:
6935 // (seteq/ne (srem N, D), 0)
6936 // To:
6937 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
6938 //
6939 // - D must be constant, with D = D0 * 2^K where D0 is odd
6940 // - P is the multiplicative inverse of D0 modulo 2^W
6941 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6942 // - Q = floor((2 * A) / (2^K))
6943 // where W is the width of the common type of N and D.
6944 //
6945 // When D is a power of two (and thus D0 is 1), the normal
6946 // formula for A and Q don't apply, because the derivation
6947 // depends on D not dividing 2^(W-1), and thus theorem ZRS
6948 // does not apply. This specifically fails when N = INT_MIN.
6949 //
6950 // Instead, for power-of-two D, we use:
6951 // - A = 2^(W-1)
6952 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
6953 // - Q = 2^(W-K) - 1
6954 // |-> Test that the top K bits are zero after rotation
6955 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6956 "Only applicable for (in)equality comparisons.");
6957
6958 SelectionDAG &DAG = DCI.DAG;
6959
6960 EVT VT = REMNode.getValueType();
6961 EVT SVT = VT.getScalarType();
6962 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6963 EVT ShSVT = ShVT.getScalarType();
6964
6965 // If we are after ops legalization, and MUL is unavailable, we can not
6966 // proceed.
6967 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6968 return SDValue();
6969
6970 // TODO: Could support comparing with non-zero too.
6971 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6972 if (!CompTarget || !CompTarget->isZero())
6973 return SDValue();
6974
6975 bool HadIntMinDivisor = false;
6976 bool HadOneDivisor = false;
6977 bool AllDivisorsAreOnes = true;
6978 bool HadEvenDivisor = false;
6979 bool NeedToApplyOffset = false;
6980 bool AllDivisorsArePowerOfTwo = true;
6981 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6982
6983 auto BuildSREMPattern = [&](ConstantSDNode *C) {
6984 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6985 if (C->isZero())
6986 return false;
6987
6988 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6989
6990 // WARNING: this fold is only valid for positive divisors!
6991 APInt D = C->getAPIntValue();
6992 if (D.isNegative())
6993 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
6994
6995 HadIntMinDivisor |= D.isMinSignedValue();
6996
6997 // If all divisors are ones, we will prefer to avoid the fold.
6998 HadOneDivisor |= D.isOne();
6999 AllDivisorsAreOnes &= D.isOne();
7000
7001 // Decompose D into D0 * 2^K
7002 unsigned K = D.countr_zero();
7003 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7004 APInt D0 = D.lshr(K);
7005
7006 if (!D.isMinSignedValue()) {
7007 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7008 // we don't care about this lane in this fold, we'll special-handle it.
7009 HadEvenDivisor |= (K != 0);
7010 }
7011
7012 // D is a power-of-two if D0 is one. This includes INT_MIN.
7013 // If all divisors are power-of-two, we will prefer to avoid the fold.
7014 AllDivisorsArePowerOfTwo &= D0.isOne();
7015
7016 // P = inv(D0, 2^W)
7017 // 2^W requires W + 1 bits, so we have to extend and then truncate.
7018 unsigned W = D.getBitWidth();
7019 APInt P = D0.multiplicativeInverse();
7020 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7021
7022 // A = floor((2^(W - 1) - 1) / D0) & -2^K
7023 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7024 A.clearLowBits(K);
7025
7026 if (!D.isMinSignedValue()) {
7027 // If divisor INT_MIN, then we don't care about this lane in this fold,
7028 // we'll special-handle it.
7029 NeedToApplyOffset |= A != 0;
7030 }
7031
7032 // Q = floor((2 * A) / (2^K))
7033 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7034
7035 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7036 "We are expecting that A is always less than all-ones for SVT");
7037 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7038 "We are expecting that K is always less than all-ones for ShSVT");
7039
7040 // If D was a power of two, apply the alternate constant derivation.
7041 if (D0.isOne()) {
7042 // A = 2^(W-1)
7043 A = APInt::getSignedMinValue(W);
7044 // - Q = 2^(W-K) - 1
7045 Q = APInt::getAllOnes(W - K).zext(W);
7046 }
7047
7048 // If the divisor is 1 the result can be constant-folded. Likewise, we
7049 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7050 if (D.isOne()) {
7051 // Set P, A and K to a bogus values so we can try to splat them.
7052 P = 0;
7053 A = -1;
7054 K = -1;
7055
7056 // x ?% 1 == 0 <--> true <--> x u<= -1
7057 Q = -1;
7058 }
7059
7060 PAmts.push_back(DAG.getConstant(P, DL, SVT));
7061 AAmts.push_back(DAG.getConstant(A, DL, SVT));
7062 KAmts.push_back(
7063 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
7064 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7065 return true;
7066 };
7067
7068 SDValue N = REMNode.getOperand(0);
7069 SDValue D = REMNode.getOperand(1);
7070
7071 // Collect the values from each element.
7072 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7073 return SDValue();
7074
7075 // If this is a srem by a one, avoid the fold since it can be constant-folded.
7076 if (AllDivisorsAreOnes)
7077 return SDValue();
7078
7079 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7080 // since it can be best implemented as a bit test.
7081 if (AllDivisorsArePowerOfTwo)
7082 return SDValue();
7083
7084 SDValue PVal, AVal, KVal, QVal;
7085 if (D.getOpcode() == ISD::BUILD_VECTOR) {
7086 if (HadOneDivisor) {
7087 // Try to turn PAmts into a splat, since we don't care about the values
7088 // that are currently '0'. If we can't, just keep '0'`s.
7089 turnVectorIntoSplatVector(PAmts, isNullConstant);
7090 // Try to turn AAmts into a splat, since we don't care about the
7091 // values that are currently '-1'. If we can't, change them to '0'`s.
7092 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7093 DAG.getConstant(0, DL, SVT));
7094 // Try to turn KAmts into a splat, since we don't care about the values
7095 // that are currently '-1'. If we can't, change them to '0'`s.
7096 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7097 DAG.getConstant(0, DL, ShSVT));
7098 }
7099
7100 PVal = DAG.getBuildVector(VT, DL, PAmts);
7101 AVal = DAG.getBuildVector(VT, DL, AAmts);
7102 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7103 QVal = DAG.getBuildVector(VT, DL, QAmts);
7104 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7105 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7106 QAmts.size() == 1 &&
7107 "Expected matchUnaryPredicate to return one element for scalable "
7108 "vectors");
7109 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7110 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7111 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7112 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7113 } else {
7114 assert(isa<ConstantSDNode>(D) && "Expected a constant");
7115 PVal = PAmts[0];
7116 AVal = AAmts[0];
7117 KVal = KAmts[0];
7118 QVal = QAmts[0];
7119 }
7120
7121 // (mul N, P)
7122 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7123 Created.push_back(Op0.getNode());
7124
7125 if (NeedToApplyOffset) {
7126 // We need ADD to do this.
7127 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7128 return SDValue();
7129
7130 // (add (mul N, P), A)
7131 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7132 Created.push_back(Op0.getNode());
7133 }
7134
7135 // Rotate right only if any divisor was even. We avoid rotates for all-odd
7136 // divisors as a performance improvement, since rotating by 0 is a no-op.
7137 if (HadEvenDivisor) {
7138 // We need ROTR to do this.
7139 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7140 return SDValue();
7141 // SREM: (rotr (add (mul N, P), A), K)
7142 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7143 Created.push_back(Op0.getNode());
7144 }
7145
7146 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7147 SDValue Fold =
7148 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7149 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7150
7151 // If we didn't have lanes with INT_MIN divisor, then we're done.
7152 if (!HadIntMinDivisor)
7153 return Fold;
7154
7155 // That fold is only valid for positive divisors. Which effectively means,
7156 // it is invalid for INT_MIN divisors. So if we have such a lane,
7157 // we must fix-up results for said lanes.
7158 assert(VT.isVector() && "Can/should only get here for vectors.");
7159
7160 // NOTE: we avoid letting illegal types through even if we're before legalize
7161 // ops – legalization has a hard time producing good code for the code that
7162 // follows.
7163 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7164 !isOperationLegalOrCustom(ISD::AND, VT) ||
7165 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7166 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7167 return SDValue();
7168
7169 Created.push_back(Fold.getNode());
7170
7171 SDValue IntMin = DAG.getConstant(
7172 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7173 SDValue IntMax = DAG.getConstant(
7174 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7175 SDValue Zero =
7176 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7177
7178 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7179 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7180 Created.push_back(DivisorIsIntMin.getNode());
7181
7182 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
7183 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7184 Created.push_back(Masked.getNode());
7185 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7186 Created.push_back(MaskedIsZero.getNode());
7187
7188 // To produce final result we need to blend 2 vectors: 'SetCC' and
7189 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7190 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7191 // constant-folded, select can get lowered to a shuffle with constant mask.
7192 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7193 MaskedIsZero, Fold);
7194
7195 return Blended;
7196 }
7197
7198 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const7199 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7200 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7201 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7202 "be a constant integer");
7203 return true;
7204 }
7205
7206 return false;
7207 }
7208
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const7209 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7210 const DenormalMode &Mode) const {
7211 SDLoc DL(Op);
7212 EVT VT = Op.getValueType();
7213 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7214 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7215
7216 // This is specifically a check for the handling of denormal inputs, not the
7217 // result.
7218 if (Mode.Input == DenormalMode::PreserveSign ||
7219 Mode.Input == DenormalMode::PositiveZero) {
7220 // Test = X == 0.0
7221 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7222 }
7223
7224 // Testing it with denormal inputs to avoid wrong estimate.
7225 //
7226 // Test = fabs(X) < SmallestNormal
7227 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
7228 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7229 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7230 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7231 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7232 }
7233
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const7234 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7235 bool LegalOps, bool OptForSize,
7236 NegatibleCost &Cost,
7237 unsigned Depth) const {
7238 // fneg is removable even if it has multiple uses.
7239 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7240 Cost = NegatibleCost::Cheaper;
7241 return Op.getOperand(0);
7242 }
7243
7244 // Don't recurse exponentially.
7245 if (Depth > SelectionDAG::MaxRecursionDepth)
7246 return SDValue();
7247
7248 // Pre-increment recursion depth for use in recursive calls.
7249 ++Depth;
7250 const SDNodeFlags Flags = Op->getFlags();
7251 const TargetOptions &Options = DAG.getTarget().Options;
7252 EVT VT = Op.getValueType();
7253 unsigned Opcode = Op.getOpcode();
7254
7255 // Don't allow anything with multiple uses unless we know it is free.
7256 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7257 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7258 isFPExtFree(VT, Op.getOperand(0).getValueType());
7259 if (!IsFreeExtend)
7260 return SDValue();
7261 }
7262
7263 auto RemoveDeadNode = [&](SDValue N) {
7264 if (N && N.getNode()->use_empty())
7265 DAG.RemoveDeadNode(N.getNode());
7266 };
7267
7268 SDLoc DL(Op);
7269
7270 // Because getNegatedExpression can delete nodes we need a handle to keep
7271 // temporary nodes alive in case the recursion manages to create an identical
7272 // node.
7273 std::list<HandleSDNode> Handles;
7274
7275 switch (Opcode) {
7276 case ISD::ConstantFP: {
7277 // Don't invert constant FP values after legalization unless the target says
7278 // the negated constant is legal.
7279 bool IsOpLegal =
7280 isOperationLegal(ISD::ConstantFP, VT) ||
7281 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7282 OptForSize);
7283
7284 if (LegalOps && !IsOpLegal)
7285 break;
7286
7287 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7288 V.changeSign();
7289 SDValue CFP = DAG.getConstantFP(V, DL, VT);
7290
7291 // If we already have the use of the negated floating constant, it is free
7292 // to negate it even it has multiple uses.
7293 if (!Op.hasOneUse() && CFP.use_empty())
7294 break;
7295 Cost = NegatibleCost::Neutral;
7296 return CFP;
7297 }
7298 case ISD::BUILD_VECTOR: {
7299 // Only permit BUILD_VECTOR of constants.
7300 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7301 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7302 }))
7303 break;
7304
7305 bool IsOpLegal =
7306 (isOperationLegal(ISD::ConstantFP, VT) &&
7307 isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7308 llvm::all_of(Op->op_values(), [&](SDValue N) {
7309 return N.isUndef() ||
7310 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7311 OptForSize);
7312 });
7313
7314 if (LegalOps && !IsOpLegal)
7315 break;
7316
7317 SmallVector<SDValue, 4> Ops;
7318 for (SDValue C : Op->op_values()) {
7319 if (C.isUndef()) {
7320 Ops.push_back(C);
7321 continue;
7322 }
7323 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7324 V.changeSign();
7325 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7326 }
7327 Cost = NegatibleCost::Neutral;
7328 return DAG.getBuildVector(VT, DL, Ops);
7329 }
7330 case ISD::FADD: {
7331 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7332 break;
7333
7334 // After operation legalization, it might not be legal to create new FSUBs.
7335 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7336 break;
7337 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7338
7339 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7340 NegatibleCost CostX = NegatibleCost::Expensive;
7341 SDValue NegX =
7342 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7343 // Prevent this node from being deleted by the next call.
7344 if (NegX)
7345 Handles.emplace_back(NegX);
7346
7347 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7348 NegatibleCost CostY = NegatibleCost::Expensive;
7349 SDValue NegY =
7350 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7351
7352 // We're done with the handles.
7353 Handles.clear();
7354
7355 // Negate the X if its cost is less or equal than Y.
7356 if (NegX && (CostX <= CostY)) {
7357 Cost = CostX;
7358 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7359 if (NegY != N)
7360 RemoveDeadNode(NegY);
7361 return N;
7362 }
7363
7364 // Negate the Y if it is not expensive.
7365 if (NegY) {
7366 Cost = CostY;
7367 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7368 if (NegX != N)
7369 RemoveDeadNode(NegX);
7370 return N;
7371 }
7372 break;
7373 }
7374 case ISD::FSUB: {
7375 // We can't turn -(A-B) into B-A when we honor signed zeros.
7376 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7377 break;
7378
7379 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7380 // fold (fneg (fsub 0, Y)) -> Y
7381 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7382 if (C->isZero()) {
7383 Cost = NegatibleCost::Cheaper;
7384 return Y;
7385 }
7386
7387 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7388 Cost = NegatibleCost::Neutral;
7389 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7390 }
7391 case ISD::FMUL:
7392 case ISD::FDIV: {
7393 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7394
7395 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7396 NegatibleCost CostX = NegatibleCost::Expensive;
7397 SDValue NegX =
7398 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7399 // Prevent this node from being deleted by the next call.
7400 if (NegX)
7401 Handles.emplace_back(NegX);
7402
7403 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7404 NegatibleCost CostY = NegatibleCost::Expensive;
7405 SDValue NegY =
7406 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7407
7408 // We're done with the handles.
7409 Handles.clear();
7410
7411 // Negate the X if its cost is less or equal than Y.
7412 if (NegX && (CostX <= CostY)) {
7413 Cost = CostX;
7414 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7415 if (NegY != N)
7416 RemoveDeadNode(NegY);
7417 return N;
7418 }
7419
7420 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7421 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7422 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7423 break;
7424
7425 // Negate the Y if it is not expensive.
7426 if (NegY) {
7427 Cost = CostY;
7428 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7429 if (NegX != N)
7430 RemoveDeadNode(NegX);
7431 return N;
7432 }
7433 break;
7434 }
7435 case ISD::FMA:
7436 case ISD::FMAD: {
7437 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7438 break;
7439
7440 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7441 NegatibleCost CostZ = NegatibleCost::Expensive;
7442 SDValue NegZ =
7443 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7444 // Give up if fail to negate the Z.
7445 if (!NegZ)
7446 break;
7447
7448 // Prevent this node from being deleted by the next two calls.
7449 Handles.emplace_back(NegZ);
7450
7451 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7452 NegatibleCost CostX = NegatibleCost::Expensive;
7453 SDValue NegX =
7454 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7455 // Prevent this node from being deleted by the next call.
7456 if (NegX)
7457 Handles.emplace_back(NegX);
7458
7459 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7460 NegatibleCost CostY = NegatibleCost::Expensive;
7461 SDValue NegY =
7462 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7463
7464 // We're done with the handles.
7465 Handles.clear();
7466
7467 // Negate the X if its cost is less or equal than Y.
7468 if (NegX && (CostX <= CostY)) {
7469 Cost = std::min(CostX, CostZ);
7470 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7471 if (NegY != N)
7472 RemoveDeadNode(NegY);
7473 return N;
7474 }
7475
7476 // Negate the Y if it is not expensive.
7477 if (NegY) {
7478 Cost = std::min(CostY, CostZ);
7479 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7480 if (NegX != N)
7481 RemoveDeadNode(NegX);
7482 return N;
7483 }
7484 break;
7485 }
7486
7487 case ISD::FP_EXTEND:
7488 case ISD::FSIN:
7489 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7490 OptForSize, Cost, Depth))
7491 return DAG.getNode(Opcode, DL, VT, NegV);
7492 break;
7493 case ISD::FP_ROUND:
7494 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7495 OptForSize, Cost, Depth))
7496 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7497 break;
7498 case ISD::SELECT:
7499 case ISD::VSELECT: {
7500 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7501 // iff at least one cost is cheaper and the other is neutral/cheaper
7502 SDValue LHS = Op.getOperand(1);
7503 NegatibleCost CostLHS = NegatibleCost::Expensive;
7504 SDValue NegLHS =
7505 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7506 if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7507 RemoveDeadNode(NegLHS);
7508 break;
7509 }
7510
7511 // Prevent this node from being deleted by the next call.
7512 Handles.emplace_back(NegLHS);
7513
7514 SDValue RHS = Op.getOperand(2);
7515 NegatibleCost CostRHS = NegatibleCost::Expensive;
7516 SDValue NegRHS =
7517 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7518
7519 // We're done with the handles.
7520 Handles.clear();
7521
7522 if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7523 (CostLHS != NegatibleCost::Cheaper &&
7524 CostRHS != NegatibleCost::Cheaper)) {
7525 RemoveDeadNode(NegLHS);
7526 RemoveDeadNode(NegRHS);
7527 break;
7528 }
7529
7530 Cost = std::min(CostLHS, CostRHS);
7531 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7532 }
7533 }
7534
7535 return SDValue();
7536 }
7537
7538 //===----------------------------------------------------------------------===//
7539 // Legalization Utilities
7540 //===----------------------------------------------------------------------===//
7541
expandMUL_LOHI(unsigned Opcode,EVT VT,const SDLoc & dl,SDValue LHS,SDValue RHS,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const7542 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7543 SDValue LHS, SDValue RHS,
7544 SmallVectorImpl<SDValue> &Result,
7545 EVT HiLoVT, SelectionDAG &DAG,
7546 MulExpansionKind Kind, SDValue LL,
7547 SDValue LH, SDValue RL, SDValue RH) const {
7548 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7549 Opcode == ISD::SMUL_LOHI);
7550
7551 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7552 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7553 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7554 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7555 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7556 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7557 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7558 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7559
7560 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7561 return false;
7562
7563 unsigned OuterBitSize = VT.getScalarSizeInBits();
7564 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7565
7566 // LL, LH, RL, and RH must be either all NULL or all set to a value.
7567 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7568 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7569
7570 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7571 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7572 bool Signed) -> bool {
7573 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7574 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7575 Hi = SDValue(Lo.getNode(), 1);
7576 return true;
7577 }
7578 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7579 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7580 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7581 return true;
7582 }
7583 return false;
7584 };
7585
7586 SDValue Lo, Hi;
7587
7588 if (!LL.getNode() && !RL.getNode() &&
7589 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7590 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7591 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7592 }
7593
7594 if (!LL.getNode())
7595 return false;
7596
7597 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7598 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7599 DAG.MaskedValueIsZero(RHS, HighMask)) {
7600 // The inputs are both zero-extended.
7601 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7602 Result.push_back(Lo);
7603 Result.push_back(Hi);
7604 if (Opcode != ISD::MUL) {
7605 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7606 Result.push_back(Zero);
7607 Result.push_back(Zero);
7608 }
7609 return true;
7610 }
7611 }
7612
7613 if (!VT.isVector() && Opcode == ISD::MUL &&
7614 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7615 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7616 // The input values are both sign-extended.
7617 // TODO non-MUL case?
7618 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7619 Result.push_back(Lo);
7620 Result.push_back(Hi);
7621 return true;
7622 }
7623 }
7624
7625 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7626 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7627
7628 if (!LH.getNode() && !RH.getNode() &&
7629 isOperationLegalOrCustom(ISD::SRL, VT) &&
7630 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7631 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7632 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7633 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7634 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7635 }
7636
7637 if (!LH.getNode())
7638 return false;
7639
7640 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7641 return false;
7642
7643 Result.push_back(Lo);
7644
7645 if (Opcode == ISD::MUL) {
7646 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7647 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7648 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7649 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7650 Result.push_back(Hi);
7651 return true;
7652 }
7653
7654 // Compute the full width result.
7655 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7656 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7657 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7658 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7659 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7660 };
7661
7662 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7663 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7664 return false;
7665
7666 // This is effectively the add part of a multiply-add of half-sized operands,
7667 // so it cannot overflow.
7668 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7669
7670 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7671 return false;
7672
7673 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7674 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7675
7676 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7677 isOperationLegalOrCustom(ISD::ADDE, VT));
7678 if (UseGlue)
7679 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7680 Merge(Lo, Hi));
7681 else
7682 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7683 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7684
7685 SDValue Carry = Next.getValue(1);
7686 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7687 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7688
7689 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7690 return false;
7691
7692 if (UseGlue)
7693 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7694 Carry);
7695 else
7696 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7697 Zero, Carry);
7698
7699 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7700
7701 if (Opcode == ISD::SMUL_LOHI) {
7702 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7703 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7704 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7705
7706 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7707 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7708 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7709 }
7710
7711 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7712 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7713 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7714 return true;
7715 }
7716
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const7717 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7718 SelectionDAG &DAG, MulExpansionKind Kind,
7719 SDValue LL, SDValue LH, SDValue RL,
7720 SDValue RH) const {
7721 SmallVector<SDValue, 2> Result;
7722 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7723 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7724 DAG, Kind, LL, LH, RL, RH);
7725 if (Ok) {
7726 assert(Result.size() == 2);
7727 Lo = Result[0];
7728 Hi = Result[1];
7729 }
7730 return Ok;
7731 }
7732
7733 // Optimize unsigned division or remainder by constants for types twice as large
7734 // as a legal VT.
7735 //
7736 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7737 // can be computed
7738 // as:
7739 // Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7740 // Remainder = Sum % Constant
7741 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7742 //
7743 // For division, we can compute the remainder using the algorithm described
7744 // above, subtract it from the dividend to get an exact multiple of Constant.
7745 // Then multiply that exact multiply by the multiplicative inverse modulo
7746 // (1 << (BitWidth / 2)) to get the quotient.
7747
7748 // If Constant is even, we can shift right the dividend and the divisor by the
7749 // number of trailing zeros in Constant before applying the remainder algorithm.
7750 // If we're after the quotient, we can subtract this value from the shifted
7751 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7752 // If we want the remainder, we shift the value left by the number of trailing
7753 // zeros and add the bits that were shifted out of the dividend.
expandDIVREMByConstant(SDNode * N,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH) const7754 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7755 SmallVectorImpl<SDValue> &Result,
7756 EVT HiLoVT, SelectionDAG &DAG,
7757 SDValue LL, SDValue LH) const {
7758 unsigned Opcode = N->getOpcode();
7759 EVT VT = N->getValueType(0);
7760
7761 // TODO: Support signed division/remainder.
7762 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7763 return false;
7764 assert(
7765 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7766 "Unexpected opcode");
7767
7768 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7769 if (!CN)
7770 return false;
7771
7772 APInt Divisor = CN->getAPIntValue();
7773 unsigned BitWidth = Divisor.getBitWidth();
7774 unsigned HBitWidth = BitWidth / 2;
7775 assert(VT.getScalarSizeInBits() == BitWidth &&
7776 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7777
7778 // Divisor needs to less than (1 << HBitWidth).
7779 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7780 if (Divisor.uge(HalfMaxPlus1))
7781 return false;
7782
7783 // We depend on the UREM by constant optimization in DAGCombiner that requires
7784 // high multiply.
7785 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7786 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7787 return false;
7788
7789 // Don't expand if optimizing for size.
7790 if (DAG.shouldOptForSize())
7791 return false;
7792
7793 // Early out for 0 or 1 divisors.
7794 if (Divisor.ule(1))
7795 return false;
7796
7797 // If the divisor is even, shift it until it becomes odd.
7798 unsigned TrailingZeros = 0;
7799 if (!Divisor[0]) {
7800 TrailingZeros = Divisor.countr_zero();
7801 Divisor.lshrInPlace(TrailingZeros);
7802 }
7803
7804 SDLoc dl(N);
7805 SDValue Sum;
7806 SDValue PartialRem;
7807
7808 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7809 // then add in the carry.
7810 // TODO: If we can't split it in half, we might be able to split into 3 or
7811 // more pieces using a smaller bit width.
7812 if (HalfMaxPlus1.urem(Divisor).isOne()) {
7813 assert(!LL == !LH && "Expected both input halves or no input halves!");
7814 if (!LL)
7815 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7816
7817 // Shift the input by the number of TrailingZeros in the divisor. The
7818 // shifted out bits will be added to the remainder later.
7819 if (TrailingZeros) {
7820 // Save the shifted off bits if we need the remainder.
7821 if (Opcode != ISD::UDIV) {
7822 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7823 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7824 DAG.getConstant(Mask, dl, HiLoVT));
7825 }
7826
7827 LL = DAG.getNode(
7828 ISD::OR, dl, HiLoVT,
7829 DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7830 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7831 DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7832 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7833 HiLoVT, dl)));
7834 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7835 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7836 }
7837
7838 // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7839 EVT SetCCType =
7840 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7841 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7842 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7843 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7844 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7845 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7846 } else {
7847 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7848 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7849 // If the boolean for the target is 0 or 1, we can add the setcc result
7850 // directly.
7851 if (getBooleanContents(HiLoVT) ==
7852 TargetLoweringBase::ZeroOrOneBooleanContent)
7853 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7854 else
7855 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7856 DAG.getConstant(0, dl, HiLoVT));
7857 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7858 }
7859 }
7860
7861 // If we didn't find a sum, we can't do the expansion.
7862 if (!Sum)
7863 return false;
7864
7865 // Perform a HiLoVT urem on the Sum using truncated divisor.
7866 SDValue RemL =
7867 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7868 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7869 SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7870
7871 if (Opcode != ISD::UREM) {
7872 // Subtract the remainder from the shifted dividend.
7873 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7874 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7875
7876 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7877
7878 // Multiply by the multiplicative inverse of the divisor modulo
7879 // (1 << BitWidth).
7880 APInt MulFactor = Divisor.multiplicativeInverse();
7881
7882 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7883 DAG.getConstant(MulFactor, dl, VT));
7884
7885 // Split the quotient into low and high parts.
7886 SDValue QuotL, QuotH;
7887 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7888 Result.push_back(QuotL);
7889 Result.push_back(QuotH);
7890 }
7891
7892 if (Opcode != ISD::UDIV) {
7893 // If we shifted the input, shift the remainder left and add the bits we
7894 // shifted off the input.
7895 if (TrailingZeros) {
7896 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7897 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7898 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7899 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7900 }
7901 Result.push_back(RemL);
7902 Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7903 }
7904
7905 return true;
7906 }
7907
7908 // Check that (every element of) Z is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(SDValue Z,unsigned BW)7909 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7910 return ISD::matchUnaryPredicate(
7911 Z,
7912 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7913 true);
7914 }
7915
expandVPFunnelShift(SDNode * Node,SelectionDAG & DAG)7916 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7917 EVT VT = Node->getValueType(0);
7918 SDValue ShX, ShY;
7919 SDValue ShAmt, InvShAmt;
7920 SDValue X = Node->getOperand(0);
7921 SDValue Y = Node->getOperand(1);
7922 SDValue Z = Node->getOperand(2);
7923 SDValue Mask = Node->getOperand(3);
7924 SDValue VL = Node->getOperand(4);
7925
7926 unsigned BW = VT.getScalarSizeInBits();
7927 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7928 SDLoc DL(SDValue(Node, 0));
7929
7930 EVT ShVT = Z.getValueType();
7931 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7932 // fshl: X << C | Y >> (BW - C)
7933 // fshr: X << (BW - C) | Y >> C
7934 // where C = Z % BW is not zero
7935 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7936 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7937 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7938 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7939 VL);
7940 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7941 VL);
7942 } else {
7943 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7944 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7945 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7946 if (isPowerOf2_32(BW)) {
7947 // Z % BW -> Z & (BW - 1)
7948 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7949 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7950 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7951 DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7952 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7953 } else {
7954 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7955 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7956 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
7957 }
7958
7959 SDValue One = DAG.getConstant(1, DL, ShVT);
7960 if (IsFSHL) {
7961 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
7962 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
7963 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
7964 } else {
7965 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
7966 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
7967 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
7968 }
7969 }
7970 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
7971 }
7972
expandFunnelShift(SDNode * Node,SelectionDAG & DAG) const7973 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7974 SelectionDAG &DAG) const {
7975 if (Node->isVPOpcode())
7976 return expandVPFunnelShift(Node, DAG);
7977
7978 EVT VT = Node->getValueType(0);
7979
7980 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7981 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7982 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7983 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7984 return SDValue();
7985
7986 SDValue X = Node->getOperand(0);
7987 SDValue Y = Node->getOperand(1);
7988 SDValue Z = Node->getOperand(2);
7989
7990 unsigned BW = VT.getScalarSizeInBits();
7991 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7992 SDLoc DL(SDValue(Node, 0));
7993
7994 EVT ShVT = Z.getValueType();
7995
7996 // If a funnel shift in the other direction is more supported, use it.
7997 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7998 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7999 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8000 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8001 // fshl X, Y, Z -> fshr X, Y, -Z
8002 // fshr X, Y, Z -> fshl X, Y, -Z
8003 SDValue Zero = DAG.getConstant(0, DL, ShVT);
8004 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8005 } else {
8006 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8007 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8008 SDValue One = DAG.getConstant(1, DL, ShVT);
8009 if (IsFSHL) {
8010 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8011 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8012 } else {
8013 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8014 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8015 }
8016 Z = DAG.getNOT(DL, Z, ShVT);
8017 }
8018 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8019 }
8020
8021 SDValue ShX, ShY;
8022 SDValue ShAmt, InvShAmt;
8023 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8024 // fshl: X << C | Y >> (BW - C)
8025 // fshr: X << (BW - C) | Y >> C
8026 // where C = Z % BW is not zero
8027 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8028 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8029 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8030 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8031 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8032 } else {
8033 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8034 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8035 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8036 if (isPowerOf2_32(BW)) {
8037 // Z % BW -> Z & (BW - 1)
8038 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8039 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8040 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8041 } else {
8042 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8043 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8044 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8045 }
8046
8047 SDValue One = DAG.getConstant(1, DL, ShVT);
8048 if (IsFSHL) {
8049 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8050 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8051 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8052 } else {
8053 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8054 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8055 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8056 }
8057 }
8058 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8059 }
8060
8061 // TODO: Merge with expandFunnelShift.
expandROT(SDNode * Node,bool AllowVectorOps,SelectionDAG & DAG) const8062 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8063 SelectionDAG &DAG) const {
8064 EVT VT = Node->getValueType(0);
8065 unsigned EltSizeInBits = VT.getScalarSizeInBits();
8066 bool IsLeft = Node->getOpcode() == ISD::ROTL;
8067 SDValue Op0 = Node->getOperand(0);
8068 SDValue Op1 = Node->getOperand(1);
8069 SDLoc DL(SDValue(Node, 0));
8070
8071 EVT ShVT = Op1.getValueType();
8072 SDValue Zero = DAG.getConstant(0, DL, ShVT);
8073
8074 // If a rotate in the other direction is more supported, use it.
8075 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8076 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8077 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8078 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8079 return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8080 }
8081
8082 if (!AllowVectorOps && VT.isVector() &&
8083 (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8084 !isOperationLegalOrCustom(ISD::SRL, VT) ||
8085 !isOperationLegalOrCustom(ISD::SUB, VT) ||
8086 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8087 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8088 return SDValue();
8089
8090 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8091 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8092 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8093 SDValue ShVal;
8094 SDValue HsVal;
8095 if (isPowerOf2_32(EltSizeInBits)) {
8096 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8097 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8098 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8099 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8100 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8101 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8102 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8103 } else {
8104 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8105 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8106 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8107 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8108 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8109 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8110 SDValue One = DAG.getConstant(1, DL, ShVT);
8111 HsVal =
8112 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8113 }
8114 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8115 }
8116
expandShiftParts(SDNode * Node,SDValue & Lo,SDValue & Hi,SelectionDAG & DAG) const8117 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8118 SelectionDAG &DAG) const {
8119 assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8120 EVT VT = Node->getValueType(0);
8121 unsigned VTBits = VT.getScalarSizeInBits();
8122 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8123
8124 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8125 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8126 SDValue ShOpLo = Node->getOperand(0);
8127 SDValue ShOpHi = Node->getOperand(1);
8128 SDValue ShAmt = Node->getOperand(2);
8129 EVT ShAmtVT = ShAmt.getValueType();
8130 EVT ShAmtCCVT =
8131 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8132 SDLoc dl(Node);
8133
8134 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8135 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8136 // away during isel.
8137 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8138 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8139 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8140 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8141 : DAG.getConstant(0, dl, VT);
8142
8143 SDValue Tmp2, Tmp3;
8144 if (IsSHL) {
8145 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8146 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8147 } else {
8148 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8149 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8150 }
8151
8152 // If the shift amount is larger or equal than the width of a part we don't
8153 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8154 // values for large shift amounts.
8155 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8156 DAG.getConstant(VTBits, dl, ShAmtVT));
8157 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8158 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8159
8160 if (IsSHL) {
8161 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8162 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8163 } else {
8164 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8165 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8166 }
8167 }
8168
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const8169 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8170 SelectionDAG &DAG) const {
8171 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8172 SDValue Src = Node->getOperand(OpNo);
8173 EVT SrcVT = Src.getValueType();
8174 EVT DstVT = Node->getValueType(0);
8175 SDLoc dl(SDValue(Node, 0));
8176
8177 // FIXME: Only f32 to i64 conversions are supported.
8178 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8179 return false;
8180
8181 if (Node->isStrictFPOpcode())
8182 // When a NaN is converted to an integer a trap is allowed. We can't
8183 // use this expansion here because it would eliminate that trap. Other
8184 // traps are also allowed and cannot be eliminated. See
8185 // IEEE 754-2008 sec 5.8.
8186 return false;
8187
8188 // Expand f32 -> i64 conversion
8189 // This algorithm comes from compiler-rt's implementation of fixsfdi:
8190 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8191 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8192 EVT IntVT = SrcVT.changeTypeToInteger();
8193 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8194
8195 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8196 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8197 SDValue Bias = DAG.getConstant(127, dl, IntVT);
8198 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8199 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8200 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8201
8202 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8203
8204 SDValue ExponentBits = DAG.getNode(
8205 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8206 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8207 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8208
8209 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8210 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8211 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8212 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8213
8214 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8215 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8216 DAG.getConstant(0x00800000, dl, IntVT));
8217
8218 R = DAG.getZExtOrTrunc(R, dl, DstVT);
8219
8220 R = DAG.getSelectCC(
8221 dl, Exponent, ExponentLoBit,
8222 DAG.getNode(ISD::SHL, dl, DstVT, R,
8223 DAG.getZExtOrTrunc(
8224 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8225 dl, IntShVT)),
8226 DAG.getNode(ISD::SRL, dl, DstVT, R,
8227 DAG.getZExtOrTrunc(
8228 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8229 dl, IntShVT)),
8230 ISD::SETGT);
8231
8232 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8233 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8234
8235 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8236 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8237 return true;
8238 }
8239
expandFP_TO_UINT(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const8240 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8241 SDValue &Chain,
8242 SelectionDAG &DAG) const {
8243 SDLoc dl(SDValue(Node, 0));
8244 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8245 SDValue Src = Node->getOperand(OpNo);
8246
8247 EVT SrcVT = Src.getValueType();
8248 EVT DstVT = Node->getValueType(0);
8249 EVT SetCCVT =
8250 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8251 EVT DstSetCCVT =
8252 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8253
8254 // Only expand vector types if we have the appropriate vector bit operations.
8255 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8256 ISD::FP_TO_SINT;
8257 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8258 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8259 return false;
8260
8261 // If the maximum float value is smaller then the signed integer range,
8262 // the destination signmask can't be represented by the float, so we can
8263 // just use FP_TO_SINT directly.
8264 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
8265 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8266 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8267 if (APFloat::opOverflow &
8268 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8269 if (Node->isStrictFPOpcode()) {
8270 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8271 { Node->getOperand(0), Src });
8272 Chain = Result.getValue(1);
8273 } else
8274 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8275 return true;
8276 }
8277
8278 // Don't expand it if there isn't cheap fsub instruction.
8279 if (!isOperationLegalOrCustom(
8280 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8281 return false;
8282
8283 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8284 SDValue Sel;
8285
8286 if (Node->isStrictFPOpcode()) {
8287 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8288 Node->getOperand(0), /*IsSignaling*/ true);
8289 Chain = Sel.getValue(1);
8290 } else {
8291 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8292 }
8293
8294 bool Strict = Node->isStrictFPOpcode() ||
8295 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8296
8297 if (Strict) {
8298 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8299 // signmask then offset (the result of which should be fully representable).
8300 // Sel = Src < 0x8000000000000000
8301 // FltOfs = select Sel, 0, 0x8000000000000000
8302 // IntOfs = select Sel, 0, 0x8000000000000000
8303 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8304
8305 // TODO: Should any fast-math-flags be set for the FSUB?
8306 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8307 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8308 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8309 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8310 DAG.getConstant(0, dl, DstVT),
8311 DAG.getConstant(SignMask, dl, DstVT));
8312 SDValue SInt;
8313 if (Node->isStrictFPOpcode()) {
8314 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8315 { Chain, Src, FltOfs });
8316 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8317 { Val.getValue(1), Val });
8318 Chain = SInt.getValue(1);
8319 } else {
8320 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8321 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8322 }
8323 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8324 } else {
8325 // Expand based on maximum range of FP_TO_SINT:
8326 // True = fp_to_sint(Src)
8327 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8328 // Result = select (Src < 0x8000000000000000), True, False
8329
8330 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8331 // TODO: Should any fast-math-flags be set for the FSUB?
8332 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8333 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8334 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8335 DAG.getConstant(SignMask, dl, DstVT));
8336 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8337 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8338 }
8339 return true;
8340 }
8341
expandUINT_TO_FP(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const8342 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8343 SDValue &Chain,
8344 SelectionDAG &DAG) const {
8345 // This transform is not correct for converting 0 when rounding mode is set
8346 // to round toward negative infinity which will produce -0.0. So disable under
8347 // strictfp.
8348 if (Node->isStrictFPOpcode())
8349 return false;
8350
8351 SDValue Src = Node->getOperand(0);
8352 EVT SrcVT = Src.getValueType();
8353 EVT DstVT = Node->getValueType(0);
8354
8355 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8356 return false;
8357
8358 // Only expand vector types if we have the appropriate vector bit operations.
8359 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8360 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8361 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8362 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8363 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8364 return false;
8365
8366 SDLoc dl(SDValue(Node, 0));
8367 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8368
8369 // Implementation of unsigned i64 to f64 following the algorithm in
8370 // __floatundidf in compiler_rt. This implementation performs rounding
8371 // correctly in all rounding modes with the exception of converting 0
8372 // when rounding toward negative infinity. In that case the fsub will produce
8373 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
8374 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8375 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8376 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8377 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8378 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8379 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8380
8381 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8382 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8383 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8384 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8385 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8386 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8387 SDValue HiSub =
8388 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8389 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8390 return true;
8391 }
8392
8393 SDValue
createSelectForFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const8394 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8395 SelectionDAG &DAG) const {
8396 unsigned Opcode = Node->getOpcode();
8397 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8398 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8399 "Wrong opcode");
8400
8401 if (Node->getFlags().hasNoNaNs()) {
8402 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8403 SDValue Op1 = Node->getOperand(0);
8404 SDValue Op2 = Node->getOperand(1);
8405 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8406 // Copy FMF flags, but always set the no-signed-zeros flag
8407 // as this is implied by the FMINNUM/FMAXNUM semantics.
8408 SDNodeFlags Flags = Node->getFlags();
8409 Flags.setNoSignedZeros(true);
8410 SelCC->setFlags(Flags);
8411 return SelCC;
8412 }
8413
8414 return SDValue();
8415 }
8416
expandFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const8417 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8418 SelectionDAG &DAG) const {
8419 SDLoc dl(Node);
8420 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
8421 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8422 EVT VT = Node->getValueType(0);
8423
8424 if (VT.isScalableVector())
8425 report_fatal_error(
8426 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8427
8428 if (isOperationLegalOrCustom(NewOp, VT)) {
8429 SDValue Quiet0 = Node->getOperand(0);
8430 SDValue Quiet1 = Node->getOperand(1);
8431
8432 if (!Node->getFlags().hasNoNaNs()) {
8433 // Insert canonicalizes if it's possible we need to quiet to get correct
8434 // sNaN behavior.
8435 if (!DAG.isKnownNeverSNaN(Quiet0)) {
8436 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8437 Node->getFlags());
8438 }
8439 if (!DAG.isKnownNeverSNaN(Quiet1)) {
8440 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8441 Node->getFlags());
8442 }
8443 }
8444
8445 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8446 }
8447
8448 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8449 // instead if there are no NaNs and there can't be an incompatible zero
8450 // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8451 if ((Node->getFlags().hasNoNaNs() ||
8452 (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8453 DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8454 (Node->getFlags().hasNoSignedZeros() ||
8455 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8456 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8457 unsigned IEEE2018Op =
8458 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8459 if (isOperationLegalOrCustom(IEEE2018Op, VT))
8460 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8461 Node->getOperand(1), Node->getFlags());
8462 }
8463
8464 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8465 return SelCC;
8466
8467 return SDValue();
8468 }
8469
expandFMINIMUM_FMAXIMUM(SDNode * N,SelectionDAG & DAG) const8470 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8471 SelectionDAG &DAG) const {
8472 SDLoc DL(N);
8473 SDValue LHS = N->getOperand(0);
8474 SDValue RHS = N->getOperand(1);
8475 unsigned Opc = N->getOpcode();
8476 EVT VT = N->getValueType(0);
8477 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8478 bool IsMax = Opc == ISD::FMAXIMUM;
8479 SDNodeFlags Flags = N->getFlags();
8480
8481 // First, implement comparison not propagating NaN. If no native fmin or fmax
8482 // available, use plain select with setcc instead.
8483 SDValue MinMax;
8484 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8485 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8486
8487 // FIXME: We should probably define fminnum/fmaxnum variants with correct
8488 // signed zero behavior.
8489 bool MinMaxMustRespectOrderedZero = false;
8490
8491 if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8492 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8493 MinMaxMustRespectOrderedZero = true;
8494 } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8495 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8496 } else {
8497 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8498 return DAG.UnrollVectorOp(N);
8499
8500 // NaN (if exists) will be propagated later, so orderness doesn't matter.
8501 SDValue Compare =
8502 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8503 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8504 }
8505
8506 // Propagate any NaN of both operands
8507 if (!N->getFlags().hasNoNaNs() &&
8508 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8509 ConstantFP *FPNaN = ConstantFP::get(
8510 *DAG.getContext(), APFloat::getNaN(DAG.EVTToAPFloatSemantics(VT)));
8511 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8512 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8513 }
8514
8515 // fminimum/fmaximum requires -0.0 less than +0.0
8516 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8517 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8518 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8519 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8520 SDValue TestZero =
8521 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8522 SDValue LCmp = DAG.getSelect(
8523 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8524 MinMax, Flags);
8525 SDValue RCmp = DAG.getSelect(
8526 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8527 LCmp, Flags);
8528 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8529 }
8530
8531 return MinMax;
8532 }
8533
8534 /// Returns a true value if if this FPClassTest can be performed with an ordered
8535 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8536 /// std::nullopt if it cannot be performed as a compare with 0.
isFCmpEqualZero(FPClassTest Test,const fltSemantics & Semantics,const MachineFunction & MF)8537 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8538 const fltSemantics &Semantics,
8539 const MachineFunction &MF) {
8540 FPClassTest OrderedMask = Test & ~fcNan;
8541 FPClassTest NanTest = Test & fcNan;
8542 bool IsOrdered = NanTest == fcNone;
8543 bool IsUnordered = NanTest == fcNan;
8544
8545 // Skip cases that are testing for only a qnan or snan.
8546 if (!IsOrdered && !IsUnordered)
8547 return std::nullopt;
8548
8549 if (OrderedMask == fcZero &&
8550 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8551 return IsOrdered;
8552 if (OrderedMask == (fcZero | fcSubnormal) &&
8553 MF.getDenormalMode(Semantics).inputsAreZero())
8554 return IsOrdered;
8555 return std::nullopt;
8556 }
8557
expandIS_FPCLASS(EVT ResultVT,SDValue Op,FPClassTest Test,SDNodeFlags Flags,const SDLoc & DL,SelectionDAG & DAG) const8558 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8559 FPClassTest Test, SDNodeFlags Flags,
8560 const SDLoc &DL,
8561 SelectionDAG &DAG) const {
8562 EVT OperandVT = Op.getValueType();
8563 assert(OperandVT.isFloatingPoint());
8564
8565 // Degenerated cases.
8566 if (Test == fcNone)
8567 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8568 if ((Test & fcAllFlags) == fcAllFlags)
8569 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8570
8571 // PPC double double is a pair of doubles, of which the higher part determines
8572 // the value class.
8573 if (OperandVT == MVT::ppcf128) {
8574 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8575 DAG.getConstant(1, DL, MVT::i32));
8576 OperandVT = MVT::f64;
8577 }
8578
8579 // Some checks may be represented as inversion of simpler check, for example
8580 // "inf|normal|subnormal|zero" => !"nan".
8581 bool IsInverted = false;
8582 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) {
8583 IsInverted = true;
8584 Test = InvertedCheck;
8585 }
8586
8587 // Floating-point type properties.
8588 EVT ScalarFloatVT = OperandVT.getScalarType();
8589 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8590 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8591 bool IsF80 = (ScalarFloatVT == MVT::f80);
8592
8593 // Some checks can be implemented using float comparisons, if floating point
8594 // exceptions are ignored.
8595 if (Flags.hasNoFPExcept() &&
8596 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8597 ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ;
8598 ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ;
8599
8600 if (std::optional<bool> IsCmp0 =
8601 isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction());
8602 IsCmp0 && (isCondCodeLegalOrCustom(
8603 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8604 OperandVT.getScalarType().getSimpleVT()))) {
8605
8606 // If denormals could be implicitly treated as 0, this is not equivalent
8607 // to a compare with 0 since it will also be true for denormals.
8608 return DAG.getSetCC(DL, ResultVT, Op,
8609 DAG.getConstantFP(0.0, DL, OperandVT),
8610 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8611 }
8612
8613 if (Test == fcNan &&
8614 isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO,
8615 OperandVT.getScalarType().getSimpleVT())) {
8616 return DAG.getSetCC(DL, ResultVT, Op, Op,
8617 IsInverted ? ISD::SETO : ISD::SETUO);
8618 }
8619
8620 if (Test == fcInf &&
8621 isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ,
8622 OperandVT.getScalarType().getSimpleVT()) &&
8623 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) {
8624 // isinf(x) --> fabs(x) == inf
8625 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8626 SDValue Inf =
8627 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8628 return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8629 IsInverted ? ISD::SETUNE : ISD::SETOEQ);
8630 }
8631 }
8632
8633 // In the general case use integer operations.
8634 unsigned BitSize = OperandVT.getScalarSizeInBits();
8635 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8636 if (OperandVT.isVector())
8637 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8638 OperandVT.getVectorElementCount());
8639 SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8640
8641 // Various masks.
8642 APInt SignBit = APInt::getSignMask(BitSize);
8643 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
8644 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8645 const unsigned ExplicitIntBitInF80 = 63;
8646 APInt ExpMask = Inf;
8647 if (IsF80)
8648 ExpMask.clearBit(ExplicitIntBitInF80);
8649 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8650 APInt QNaNBitMask =
8651 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8652 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8653
8654 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8655 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8656 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8657 SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8658 SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8659 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8660
8661 SDValue Res;
8662 const auto appendResult = [&](SDValue PartialRes) {
8663 if (PartialRes) {
8664 if (Res)
8665 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8666 else
8667 Res = PartialRes;
8668 }
8669 };
8670
8671 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8672 const auto getIntBitIsSet = [&]() -> SDValue {
8673 if (!IntBitIsSetV) {
8674 APInt IntBitMask(BitSize, 0);
8675 IntBitMask.setBit(ExplicitIntBitInF80);
8676 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8677 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8678 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8679 }
8680 return IntBitIsSetV;
8681 };
8682
8683 // Split the value into sign bit and absolute value.
8684 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8685 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8686 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
8687
8688 // Tests that involve more than one class should be processed first.
8689 SDValue PartialRes;
8690
8691 if (IsF80)
8692 ; // Detect finite numbers of f80 by checking individual classes because
8693 // they have different settings of the explicit integer bit.
8694 else if ((Test & fcFinite) == fcFinite) {
8695 // finite(V) ==> abs(V) < exp_mask
8696 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8697 Test &= ~fcFinite;
8698 } else if ((Test & fcFinite) == fcPosFinite) {
8699 // finite(V) && V > 0 ==> V < exp_mask
8700 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8701 Test &= ~fcPosFinite;
8702 } else if ((Test & fcFinite) == fcNegFinite) {
8703 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8704 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8705 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8706 Test &= ~fcNegFinite;
8707 }
8708 appendResult(PartialRes);
8709
8710 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8711 // fcZero | fcSubnormal => test all exponent bits are 0
8712 // TODO: Handle sign bit specific cases
8713 if (PartialCheck == (fcZero | fcSubnormal)) {
8714 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8715 SDValue ExpIsZero =
8716 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8717 appendResult(ExpIsZero);
8718 Test &= ~PartialCheck & fcAllFlags;
8719 }
8720 }
8721
8722 // Check for individual classes.
8723
8724 if (unsigned PartialCheck = Test & fcZero) {
8725 if (PartialCheck == fcPosZero)
8726 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8727 else if (PartialCheck == fcZero)
8728 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8729 else // ISD::fcNegZero
8730 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8731 appendResult(PartialRes);
8732 }
8733
8734 if (unsigned PartialCheck = Test & fcSubnormal) {
8735 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8736 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8737 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8738 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8739 SDValue VMinusOneV =
8740 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8741 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8742 if (PartialCheck == fcNegSubnormal)
8743 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8744 appendResult(PartialRes);
8745 }
8746
8747 if (unsigned PartialCheck = Test & fcInf) {
8748 if (PartialCheck == fcPosInf)
8749 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8750 else if (PartialCheck == fcInf)
8751 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8752 else { // ISD::fcNegInf
8753 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8754 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8755 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8756 }
8757 appendResult(PartialRes);
8758 }
8759
8760 if (unsigned PartialCheck = Test & fcNan) {
8761 APInt InfWithQnanBit = Inf | QNaNBitMask;
8762 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8763 if (PartialCheck == fcNan) {
8764 // isnan(V) ==> abs(V) > int(inf)
8765 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8766 if (IsF80) {
8767 // Recognize unsupported values as NaNs for compatibility with glibc.
8768 // In them (exp(V)==0) == int_bit.
8769 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
8770 SDValue ExpIsZero =
8771 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8772 SDValue IsPseudo =
8773 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
8774 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
8775 }
8776 } else if (PartialCheck == fcQNan) {
8777 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
8778 PartialRes =
8779 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
8780 } else { // ISD::fcSNan
8781 // issignaling(V) ==> abs(V) > unsigned(Inf) &&
8782 // abs(V) < (unsigned(Inf) | quiet_bit)
8783 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8784 SDValue IsNotQnan =
8785 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
8786 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
8787 }
8788 appendResult(PartialRes);
8789 }
8790
8791 if (unsigned PartialCheck = Test & fcNormal) {
8792 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
8793 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
8794 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
8795 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
8796 APInt ExpLimit = ExpMask - ExpLSB;
8797 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
8798 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
8799 if (PartialCheck == fcNegNormal)
8800 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8801 else if (PartialCheck == fcPosNormal) {
8802 SDValue PosSignV =
8803 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
8804 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
8805 }
8806 if (IsF80)
8807 PartialRes =
8808 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
8809 appendResult(PartialRes);
8810 }
8811
8812 if (!Res)
8813 return DAG.getConstant(IsInverted, DL, ResultVT);
8814 if (IsInverted)
8815 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
8816 return Res;
8817 }
8818
8819 // Only expand vector types if we have the appropriate vector bit operations.
canExpandVectorCTPOP(const TargetLowering & TLI,EVT VT)8820 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
8821 assert(VT.isVector() && "Expected vector type");
8822 unsigned Len = VT.getScalarSizeInBits();
8823 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
8824 TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
8825 TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
8826 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
8827 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
8828 }
8829
expandCTPOP(SDNode * Node,SelectionDAG & DAG) const8830 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8831 SDLoc dl(Node);
8832 EVT VT = Node->getValueType(0);
8833 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8834 SDValue Op = Node->getOperand(0);
8835 unsigned Len = VT.getScalarSizeInBits();
8836 assert(VT.isInteger() && "CTPOP not implemented for this type.");
8837
8838 // TODO: Add support for irregular type lengths.
8839 if (!(Len <= 128 && Len % 8 == 0))
8840 return SDValue();
8841
8842 // Only expand vector types if we have the appropriate vector bit operations.
8843 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
8844 return SDValue();
8845
8846 // This is the "best" algorithm from
8847 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8848 SDValue Mask55 =
8849 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8850 SDValue Mask33 =
8851 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8852 SDValue Mask0F =
8853 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8854
8855 // v = v - ((v >> 1) & 0x55555555...)
8856 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
8857 DAG.getNode(ISD::AND, dl, VT,
8858 DAG.getNode(ISD::SRL, dl, VT, Op,
8859 DAG.getConstant(1, dl, ShVT)),
8860 Mask55));
8861 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8862 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
8863 DAG.getNode(ISD::AND, dl, VT,
8864 DAG.getNode(ISD::SRL, dl, VT, Op,
8865 DAG.getConstant(2, dl, ShVT)),
8866 Mask33));
8867 // v = (v + (v >> 4)) & 0x0F0F0F0F...
8868 Op = DAG.getNode(ISD::AND, dl, VT,
8869 DAG.getNode(ISD::ADD, dl, VT, Op,
8870 DAG.getNode(ISD::SRL, dl, VT, Op,
8871 DAG.getConstant(4, dl, ShVT))),
8872 Mask0F);
8873
8874 if (Len <= 8)
8875 return Op;
8876
8877 // Avoid the multiply if we only have 2 bytes to add.
8878 // TODO: Only doing this for scalars because vectors weren't as obviously
8879 // improved.
8880 if (Len == 16 && !VT.isVector()) {
8881 // v = (v + (v >> 8)) & 0x00FF;
8882 return DAG.getNode(ISD::AND, dl, VT,
8883 DAG.getNode(ISD::ADD, dl, VT, Op,
8884 DAG.getNode(ISD::SRL, dl, VT, Op,
8885 DAG.getConstant(8, dl, ShVT))),
8886 DAG.getConstant(0xFF, dl, VT));
8887 }
8888
8889 // v = (v * 0x01010101...) >> (Len - 8)
8890 SDValue V;
8891 if (isOperationLegalOrCustomOrPromote(
8892 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
8893 SDValue Mask01 =
8894 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8895 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
8896 } else {
8897 V = Op;
8898 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
8899 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
8900 V = DAG.getNode(ISD::ADD, dl, VT, V,
8901 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
8902 }
8903 }
8904 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
8905 }
8906
expandVPCTPOP(SDNode * Node,SelectionDAG & DAG) const8907 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8908 SDLoc dl(Node);
8909 EVT VT = Node->getValueType(0);
8910 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8911 SDValue Op = Node->getOperand(0);
8912 SDValue Mask = Node->getOperand(1);
8913 SDValue VL = Node->getOperand(2);
8914 unsigned Len = VT.getScalarSizeInBits();
8915 assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
8916
8917 // TODO: Add support for irregular type lengths.
8918 if (!(Len <= 128 && Len % 8 == 0))
8919 return SDValue();
8920
8921 // This is same algorithm of expandCTPOP from
8922 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8923 SDValue Mask55 =
8924 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8925 SDValue Mask33 =
8926 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8927 SDValue Mask0F =
8928 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8929
8930 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
8931
8932 // v = v - ((v >> 1) & 0x55555555...)
8933 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
8934 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
8935 DAG.getConstant(1, dl, ShVT), Mask, VL),
8936 Mask55, Mask, VL);
8937 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
8938
8939 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8940 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
8941 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
8942 DAG.getNode(ISD::VP_SRL, dl, VT, Op,
8943 DAG.getConstant(2, dl, ShVT), Mask, VL),
8944 Mask33, Mask, VL);
8945 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
8946
8947 // v = (v + (v >> 4)) & 0x0F0F0F0F...
8948 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
8949 Mask, VL),
8950 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
8951 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
8952
8953 if (Len <= 8)
8954 return Op;
8955
8956 // v = (v * 0x01010101...) >> (Len - 8)
8957 SDValue V;
8958 if (isOperationLegalOrCustomOrPromote(
8959 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
8960 SDValue Mask01 =
8961 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8962 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
8963 } else {
8964 V = Op;
8965 for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
8966 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
8967 V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
8968 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
8969 Mask, VL);
8970 }
8971 }
8972 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
8973 Mask, VL);
8974 }
8975
expandCTLZ(SDNode * Node,SelectionDAG & DAG) const8976 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8977 SDLoc dl(Node);
8978 EVT VT = Node->getValueType(0);
8979 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8980 SDValue Op = Node->getOperand(0);
8981 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8982
8983 // If the non-ZERO_UNDEF version is supported we can use that instead.
8984 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
8985 isOperationLegalOrCustom(ISD::CTLZ, VT))
8986 return DAG.getNode(ISD::CTLZ, dl, VT, Op);
8987
8988 // If the ZERO_UNDEF version is supported use that and handle the zero case.
8989 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
8990 EVT SetCCVT =
8991 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8992 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
8993 SDValue Zero = DAG.getConstant(0, dl, VT);
8994 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8995 return DAG.getSelect(dl, VT, SrcIsZero,
8996 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
8997 }
8998
8999 // Only expand vector types if we have the appropriate vector bit operations.
9000 // This includes the operations needed to expand CTPOP if it isn't supported.
9001 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9002 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9003 !canExpandVectorCTPOP(*this, VT)) ||
9004 !isOperationLegalOrCustom(ISD::SRL, VT) ||
9005 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9006 return SDValue();
9007
9008 // for now, we do this:
9009 // x = x | (x >> 1);
9010 // x = x | (x >> 2);
9011 // ...
9012 // x = x | (x >>16);
9013 // x = x | (x >>32); // for 64-bit input
9014 // return popcount(~x);
9015 //
9016 // Ref: "Hacker's Delight" by Henry Warren
9017 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9018 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9019 Op = DAG.getNode(ISD::OR, dl, VT, Op,
9020 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9021 }
9022 Op = DAG.getNOT(dl, Op, VT);
9023 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9024 }
9025
expandVPCTLZ(SDNode * Node,SelectionDAG & DAG) const9026 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9027 SDLoc dl(Node);
9028 EVT VT = Node->getValueType(0);
9029 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9030 SDValue Op = Node->getOperand(0);
9031 SDValue Mask = Node->getOperand(1);
9032 SDValue VL = Node->getOperand(2);
9033 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9034
9035 // do this:
9036 // x = x | (x >> 1);
9037 // x = x | (x >> 2);
9038 // ...
9039 // x = x | (x >>16);
9040 // x = x | (x >>32); // for 64-bit input
9041 // return popcount(~x);
9042 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9043 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9044 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9045 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9046 VL);
9047 }
9048 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
9049 VL);
9050 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9051 }
9052
CTTZTableLookup(SDNode * Node,SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op,unsigned BitWidth) const9053 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9054 const SDLoc &DL, EVT VT, SDValue Op,
9055 unsigned BitWidth) const {
9056 if (BitWidth != 32 && BitWidth != 64)
9057 return SDValue();
9058 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9059 : APInt(64, 0x0218A392CD3D5DBFULL);
9060 const DataLayout &TD = DAG.getDataLayout();
9061 MachinePointerInfo PtrInfo =
9062 MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9063 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9064 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9065 SDValue Lookup = DAG.getNode(
9066 ISD::SRL, DL, VT,
9067 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9068 DAG.getConstant(DeBruijn, DL, VT)),
9069 DAG.getConstant(ShiftAmt, DL, VT));
9070 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9071
9072 SmallVector<uint8_t> Table(BitWidth, 0);
9073 for (unsigned i = 0; i < BitWidth; i++) {
9074 APInt Shl = DeBruijn.shl(i);
9075 APInt Lshr = Shl.lshr(ShiftAmt);
9076 Table[Lshr.getZExtValue()] = i;
9077 }
9078
9079 // Create a ConstantArray in Constant Pool
9080 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9081 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9082 TD.getPrefTypeAlign(CA->getType()));
9083 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9084 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9085 PtrInfo, MVT::i8);
9086 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9087 return ExtLoad;
9088
9089 EVT SetCCVT =
9090 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9091 SDValue Zero = DAG.getConstant(0, DL, VT);
9092 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9093 return DAG.getSelect(DL, VT, SrcIsZero,
9094 DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9095 }
9096
expandCTTZ(SDNode * Node,SelectionDAG & DAG) const9097 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9098 SDLoc dl(Node);
9099 EVT VT = Node->getValueType(0);
9100 SDValue Op = Node->getOperand(0);
9101 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9102
9103 // If the non-ZERO_UNDEF version is supported we can use that instead.
9104 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9105 isOperationLegalOrCustom(ISD::CTTZ, VT))
9106 return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9107
9108 // If the ZERO_UNDEF version is supported use that and handle the zero case.
9109 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9110 EVT SetCCVT =
9111 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9112 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9113 SDValue Zero = DAG.getConstant(0, dl, VT);
9114 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9115 return DAG.getSelect(dl, VT, SrcIsZero,
9116 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9117 }
9118
9119 // Only expand vector types if we have the appropriate vector bit operations.
9120 // This includes the operations needed to expand CTPOP if it isn't supported.
9121 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9122 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9123 !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9124 !canExpandVectorCTPOP(*this, VT)) ||
9125 !isOperationLegalOrCustom(ISD::SUB, VT) ||
9126 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9127 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9128 return SDValue();
9129
9130 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9131 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9132 !isOperationLegal(ISD::CTLZ, VT))
9133 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9134 return V;
9135
9136 // for now, we use: { return popcount(~x & (x - 1)); }
9137 // unless the target has ctlz but not ctpop, in which case we use:
9138 // { return 32 - nlz(~x & (x-1)); }
9139 // Ref: "Hacker's Delight" by Henry Warren
9140 SDValue Tmp = DAG.getNode(
9141 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9142 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9143
9144 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9145 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9146 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9147 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9148 }
9149
9150 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9151 }
9152
expandVPCTTZ(SDNode * Node,SelectionDAG & DAG) const9153 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9154 SDValue Op = Node->getOperand(0);
9155 SDValue Mask = Node->getOperand(1);
9156 SDValue VL = Node->getOperand(2);
9157 SDLoc dl(Node);
9158 EVT VT = Node->getValueType(0);
9159
9160 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9161 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9162 DAG.getConstant(-1, dl, VT), Mask, VL);
9163 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9164 DAG.getConstant(1, dl, VT), Mask, VL);
9165 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9166 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9167 }
9168
expandVPCTTZElements(SDNode * N,SelectionDAG & DAG) const9169 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9170 SelectionDAG &DAG) const {
9171 // %cond = to_bool_vec %source
9172 // %splat = splat /*val=*/VL
9173 // %tz = step_vector
9174 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9175 // %r = vp.reduce.umin %v
9176 SDLoc DL(N);
9177 SDValue Source = N->getOperand(0);
9178 SDValue Mask = N->getOperand(1);
9179 SDValue EVL = N->getOperand(2);
9180 EVT SrcVT = Source.getValueType();
9181 EVT ResVT = N->getValueType(0);
9182 EVT ResVecVT =
9183 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9184
9185 // Convert to boolean vector.
9186 if (SrcVT.getScalarType() != MVT::i1) {
9187 SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9188 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9189 SrcVT.getVectorElementCount());
9190 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9191 DAG.getCondCode(ISD::SETNE), Mask, EVL);
9192 }
9193
9194 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9195 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9196 SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9197 SDValue Select =
9198 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9199 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9200 }
9201
expandABS(SDNode * N,SelectionDAG & DAG,bool IsNegative) const9202 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9203 bool IsNegative) const {
9204 SDLoc dl(N);
9205 EVT VT = N->getValueType(0);
9206 SDValue Op = N->getOperand(0);
9207
9208 // abs(x) -> smax(x,sub(0,x))
9209 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9210 isOperationLegal(ISD::SMAX, VT)) {
9211 SDValue Zero = DAG.getConstant(0, dl, VT);
9212 Op = DAG.getFreeze(Op);
9213 return DAG.getNode(ISD::SMAX, dl, VT, Op,
9214 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9215 }
9216
9217 // abs(x) -> umin(x,sub(0,x))
9218 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9219 isOperationLegal(ISD::UMIN, VT)) {
9220 SDValue Zero = DAG.getConstant(0, dl, VT);
9221 Op = DAG.getFreeze(Op);
9222 return DAG.getNode(ISD::UMIN, dl, VT, Op,
9223 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9224 }
9225
9226 // 0 - abs(x) -> smin(x, sub(0,x))
9227 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9228 isOperationLegal(ISD::SMIN, VT)) {
9229 SDValue Zero = DAG.getConstant(0, dl, VT);
9230 Op = DAG.getFreeze(Op);
9231 return DAG.getNode(ISD::SMIN, dl, VT, Op,
9232 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9233 }
9234
9235 // Only expand vector types if we have the appropriate vector operations.
9236 if (VT.isVector() &&
9237 (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9238 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9239 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9240 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9241 return SDValue();
9242
9243 Op = DAG.getFreeze(Op);
9244 SDValue Shift = DAG.getNode(
9245 ISD::SRA, dl, VT, Op,
9246 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9247 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9248
9249 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9250 if (!IsNegative)
9251 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9252
9253 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9254 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9255 }
9256
expandABD(SDNode * N,SelectionDAG & DAG) const9257 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9258 SDLoc dl(N);
9259 EVT VT = N->getValueType(0);
9260 SDValue LHS = DAG.getFreeze(N->getOperand(0));
9261 SDValue RHS = DAG.getFreeze(N->getOperand(1));
9262 bool IsSigned = N->getOpcode() == ISD::ABDS;
9263
9264 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9265 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9266 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9267 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9268 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9269 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9270 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9271 return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9272 }
9273
9274 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9275 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9276 return DAG.getNode(ISD::OR, dl, VT,
9277 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9278 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9279
9280 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9281 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9282 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9283
9284 // Branchless expansion iff cmp result is allbits:
9285 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9286 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9287 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9288 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9289 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9290 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9291 }
9292
9293 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9294 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9295 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9296 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9297 }
9298
expandAVG(SDNode * N,SelectionDAG & DAG) const9299 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9300 SDLoc dl(N);
9301 EVT VT = N->getValueType(0);
9302 SDValue LHS = N->getOperand(0);
9303 SDValue RHS = N->getOperand(1);
9304
9305 unsigned Opc = N->getOpcode();
9306 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9307 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9308 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9309 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9310 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9311 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9312 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9313 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9314 "Unknown AVG node");
9315
9316 // If the operands are already extended, we can add+shift.
9317 bool IsExt =
9318 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9319 DAG.ComputeNumSignBits(RHS) >= 2) ||
9320 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9321 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9322 if (IsExt) {
9323 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9324 if (!IsFloor)
9325 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9326 return DAG.getNode(ShiftOpc, dl, VT, Sum,
9327 DAG.getShiftAmountConstant(1, VT, dl));
9328 }
9329
9330 // For scalars, see if we can efficiently extend/truncate to use add+shift.
9331 if (VT.isScalarInteger()) {
9332 unsigned BW = VT.getScalarSizeInBits();
9333 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9334 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9335 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9336 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9337 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9338 if (!IsFloor)
9339 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9340 DAG.getConstant(1, dl, ExtVT));
9341 // Just use SRL as we will be truncating away the extended sign bits.
9342 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9343 DAG.getShiftAmountConstant(1, ExtVT, dl));
9344 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9345 }
9346 }
9347
9348 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9349 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9350 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9351 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9352 LHS = DAG.getFreeze(LHS);
9353 RHS = DAG.getFreeze(RHS);
9354 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9355 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9356 SDValue Shift =
9357 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9358 return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9359 }
9360
expandBSWAP(SDNode * N,SelectionDAG & DAG) const9361 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9362 SDLoc dl(N);
9363 EVT VT = N->getValueType(0);
9364 SDValue Op = N->getOperand(0);
9365
9366 if (!VT.isSimple())
9367 return SDValue();
9368
9369 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9370 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9371 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9372 default:
9373 return SDValue();
9374 case MVT::i16:
9375 // Use a rotate by 8. This can be further expanded if necessary.
9376 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9377 case MVT::i32:
9378 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9379 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9380 DAG.getConstant(0xFF00, dl, VT));
9381 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9382 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9383 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9384 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9385 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9386 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9387 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9388 case MVT::i64:
9389 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9390 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9391 DAG.getConstant(255ULL<<8, dl, VT));
9392 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9393 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9394 DAG.getConstant(255ULL<<16, dl, VT));
9395 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9396 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9397 DAG.getConstant(255ULL<<24, dl, VT));
9398 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9399 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9400 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9401 DAG.getConstant(255ULL<<24, dl, VT));
9402 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9403 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9404 DAG.getConstant(255ULL<<16, dl, VT));
9405 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9406 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9407 DAG.getConstant(255ULL<<8, dl, VT));
9408 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9409 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9410 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9411 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9412 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9413 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9414 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9415 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9416 }
9417 }
9418
expandVPBSWAP(SDNode * N,SelectionDAG & DAG) const9419 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9420 SDLoc dl(N);
9421 EVT VT = N->getValueType(0);
9422 SDValue Op = N->getOperand(0);
9423 SDValue Mask = N->getOperand(1);
9424 SDValue EVL = N->getOperand(2);
9425
9426 if (!VT.isSimple())
9427 return SDValue();
9428
9429 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9430 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9431 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9432 default:
9433 return SDValue();
9434 case MVT::i16:
9435 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9436 Mask, EVL);
9437 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9438 Mask, EVL);
9439 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9440 case MVT::i32:
9441 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9442 Mask, EVL);
9443 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9444 Mask, EVL);
9445 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9446 Mask, EVL);
9447 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9448 Mask, EVL);
9449 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9450 DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9451 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9452 Mask, EVL);
9453 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9454 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9455 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9456 case MVT::i64:
9457 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9458 Mask, EVL);
9459 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9460 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9461 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9462 Mask, EVL);
9463 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9464 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9465 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9466 Mask, EVL);
9467 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9468 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9469 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9470 Mask, EVL);
9471 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9472 Mask, EVL);
9473 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9474 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9475 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9476 Mask, EVL);
9477 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9478 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9479 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9480 Mask, EVL);
9481 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9482 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9483 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9484 Mask, EVL);
9485 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9486 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9487 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9488 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9489 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9490 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9491 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9492 }
9493 }
9494
expandBITREVERSE(SDNode * N,SelectionDAG & DAG) const9495 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9496 SDLoc dl(N);
9497 EVT VT = N->getValueType(0);
9498 SDValue Op = N->getOperand(0);
9499 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9500 unsigned Sz = VT.getScalarSizeInBits();
9501
9502 SDValue Tmp, Tmp2, Tmp3;
9503
9504 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9505 // and finally the i1 pairs.
9506 // TODO: We can easily support i4/i2 legal types if any target ever does.
9507 if (Sz >= 8 && isPowerOf2_32(Sz)) {
9508 // Create the masks - repeating the pattern every byte.
9509 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9510 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9511 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9512
9513 // BSWAP if the type is wider than a single byte.
9514 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9515
9516 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9517 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9518 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9519 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9520 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9521 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9522
9523 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9524 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9525 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9526 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9527 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9528 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9529
9530 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9531 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9532 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9533 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9534 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9535 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9536 return Tmp;
9537 }
9538
9539 Tmp = DAG.getConstant(0, dl, VT);
9540 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9541 if (I < J)
9542 Tmp2 =
9543 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9544 else
9545 Tmp2 =
9546 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9547
9548 APInt Shift = APInt::getOneBitSet(Sz, J);
9549 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9550 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9551 }
9552
9553 return Tmp;
9554 }
9555
expandVPBITREVERSE(SDNode * N,SelectionDAG & DAG) const9556 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9557 assert(N->getOpcode() == ISD::VP_BITREVERSE);
9558
9559 SDLoc dl(N);
9560 EVT VT = N->getValueType(0);
9561 SDValue Op = N->getOperand(0);
9562 SDValue Mask = N->getOperand(1);
9563 SDValue EVL = N->getOperand(2);
9564 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9565 unsigned Sz = VT.getScalarSizeInBits();
9566
9567 SDValue Tmp, Tmp2, Tmp3;
9568
9569 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9570 // and finally the i1 pairs.
9571 // TODO: We can easily support i4/i2 legal types if any target ever does.
9572 if (Sz >= 8 && isPowerOf2_32(Sz)) {
9573 // Create the masks - repeating the pattern every byte.
9574 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9575 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9576 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9577
9578 // BSWAP if the type is wider than a single byte.
9579 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9580
9581 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9582 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9583 Mask, EVL);
9584 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9585 DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9586 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9587 Mask, EVL);
9588 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9589 Mask, EVL);
9590 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9591
9592 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9593 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9594 Mask, EVL);
9595 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9596 DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9597 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9598 Mask, EVL);
9599 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9600 Mask, EVL);
9601 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9602
9603 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9604 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9605 Mask, EVL);
9606 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9607 DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9608 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9609 Mask, EVL);
9610 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9611 Mask, EVL);
9612 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9613 return Tmp;
9614 }
9615 return SDValue();
9616 }
9617
9618 std::pair<SDValue, SDValue>
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const9619 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9620 SelectionDAG &DAG) const {
9621 SDLoc SL(LD);
9622 SDValue Chain = LD->getChain();
9623 SDValue BasePTR = LD->getBasePtr();
9624 EVT SrcVT = LD->getMemoryVT();
9625 EVT DstVT = LD->getValueType(0);
9626 ISD::LoadExtType ExtType = LD->getExtensionType();
9627
9628 if (SrcVT.isScalableVector())
9629 report_fatal_error("Cannot scalarize scalable vector loads");
9630
9631 unsigned NumElem = SrcVT.getVectorNumElements();
9632
9633 EVT SrcEltVT = SrcVT.getScalarType();
9634 EVT DstEltVT = DstVT.getScalarType();
9635
9636 // A vector must always be stored in memory as-is, i.e. without any padding
9637 // between the elements, since various code depend on it, e.g. in the
9638 // handling of a bitcast of a vector type to int, which may be done with a
9639 // vector store followed by an integer load. A vector that does not have
9640 // elements that are byte-sized must therefore be stored as an integer
9641 // built out of the extracted vector elements.
9642 if (!SrcEltVT.isByteSized()) {
9643 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9644 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9645
9646 unsigned NumSrcBits = SrcVT.getSizeInBits();
9647 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9648
9649 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9650 SDValue SrcEltBitMask = DAG.getConstant(
9651 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9652
9653 // Load the whole vector and avoid masking off the top bits as it makes
9654 // the codegen worse.
9655 SDValue Load =
9656 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9657 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9658 LD->getMemOperand()->getFlags(), LD->getAAInfo());
9659
9660 SmallVector<SDValue, 8> Vals;
9661 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9662 unsigned ShiftIntoIdx =
9663 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9664 SDValue ShiftAmount = DAG.getShiftAmountConstant(
9665 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9666 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9667 SDValue Elt =
9668 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9669 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9670
9671 if (ExtType != ISD::NON_EXTLOAD) {
9672 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9673 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9674 }
9675
9676 Vals.push_back(Scalar);
9677 }
9678
9679 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9680 return std::make_pair(Value, Load.getValue(1));
9681 }
9682
9683 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9684 assert(SrcEltVT.isByteSized());
9685
9686 SmallVector<SDValue, 8> Vals;
9687 SmallVector<SDValue, 8> LoadChains;
9688
9689 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9690 SDValue ScalarLoad =
9691 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9692 LD->getPointerInfo().getWithOffset(Idx * Stride),
9693 SrcEltVT, LD->getOriginalAlign(),
9694 LD->getMemOperand()->getFlags(), LD->getAAInfo());
9695
9696 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9697
9698 Vals.push_back(ScalarLoad.getValue(0));
9699 LoadChains.push_back(ScalarLoad.getValue(1));
9700 }
9701
9702 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9703 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9704
9705 return std::make_pair(Value, NewChain);
9706 }
9707
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const9708 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
9709 SelectionDAG &DAG) const {
9710 SDLoc SL(ST);
9711
9712 SDValue Chain = ST->getChain();
9713 SDValue BasePtr = ST->getBasePtr();
9714 SDValue Value = ST->getValue();
9715 EVT StVT = ST->getMemoryVT();
9716
9717 if (StVT.isScalableVector())
9718 report_fatal_error("Cannot scalarize scalable vector stores");
9719
9720 // The type of the data we want to save
9721 EVT RegVT = Value.getValueType();
9722 EVT RegSclVT = RegVT.getScalarType();
9723
9724 // The type of data as saved in memory.
9725 EVT MemSclVT = StVT.getScalarType();
9726
9727 unsigned NumElem = StVT.getVectorNumElements();
9728
9729 // A vector must always be stored in memory as-is, i.e. without any padding
9730 // between the elements, since various code depend on it, e.g. in the
9731 // handling of a bitcast of a vector type to int, which may be done with a
9732 // vector store followed by an integer load. A vector that does not have
9733 // elements that are byte-sized must therefore be stored as an integer
9734 // built out of the extracted vector elements.
9735 if (!MemSclVT.isByteSized()) {
9736 unsigned NumBits = StVT.getSizeInBits();
9737 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
9738
9739 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
9740
9741 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9742 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9743 DAG.getVectorIdxConstant(Idx, SL));
9744 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
9745 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
9746 unsigned ShiftIntoIdx =
9747 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9748 SDValue ShiftAmount =
9749 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
9750 SDValue ShiftedElt =
9751 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
9752 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
9753 }
9754
9755 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
9756 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9757 ST->getAAInfo());
9758 }
9759
9760 // Store Stride in bytes
9761 unsigned Stride = MemSclVT.getSizeInBits() / 8;
9762 assert(Stride && "Zero stride!");
9763 // Extract each of the elements from the original vector and save them into
9764 // memory individually.
9765 SmallVector<SDValue, 8> Stores;
9766 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9767 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9768 DAG.getVectorIdxConstant(Idx, SL));
9769
9770 SDValue Ptr =
9771 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
9772
9773 // This scalar TruncStore may be illegal, but we legalize it later.
9774 SDValue Store = DAG.getTruncStore(
9775 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
9776 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9777 ST->getAAInfo());
9778
9779 Stores.push_back(Store);
9780 }
9781
9782 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
9783 }
9784
9785 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const9786 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
9787 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
9788 "unaligned indexed loads not implemented!");
9789 SDValue Chain = LD->getChain();
9790 SDValue Ptr = LD->getBasePtr();
9791 EVT VT = LD->getValueType(0);
9792 EVT LoadedVT = LD->getMemoryVT();
9793 SDLoc dl(LD);
9794 auto &MF = DAG.getMachineFunction();
9795
9796 if (VT.isFloatingPoint() || VT.isVector()) {
9797 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
9798 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
9799 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
9800 LoadedVT.isVector()) {
9801 // Scalarize the load and let the individual components be handled.
9802 return scalarizeVectorLoad(LD, DAG);
9803 }
9804
9805 // Expand to a (misaligned) integer load of the same size,
9806 // then bitconvert to floating point or vector.
9807 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
9808 LD->getMemOperand());
9809 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
9810 if (LoadedVT != VT)
9811 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
9812 ISD::ANY_EXTEND, dl, VT, Result);
9813
9814 return std::make_pair(Result, newLoad.getValue(1));
9815 }
9816
9817 // Copy the value to a (aligned) stack slot using (unaligned) integer
9818 // loads and stores, then do a (aligned) load from the stack slot.
9819 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
9820 unsigned LoadedBytes = LoadedVT.getStoreSize();
9821 unsigned RegBytes = RegVT.getSizeInBits() / 8;
9822 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
9823
9824 // Make sure the stack slot is also aligned for the register type.
9825 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
9826 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
9827 SmallVector<SDValue, 8> Stores;
9828 SDValue StackPtr = StackBase;
9829 unsigned Offset = 0;
9830
9831 EVT PtrVT = Ptr.getValueType();
9832 EVT StackPtrVT = StackPtr.getValueType();
9833
9834 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9835 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9836
9837 // Do all but one copies using the full register width.
9838 for (unsigned i = 1; i < NumRegs; i++) {
9839 // Load one integer register's worth from the original location.
9840 SDValue Load = DAG.getLoad(
9841 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
9842 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9843 LD->getAAInfo());
9844 // Follow the load with a store to the stack slot. Remember the store.
9845 Stores.push_back(DAG.getStore(
9846 Load.getValue(1), dl, Load, StackPtr,
9847 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
9848 // Increment the pointers.
9849 Offset += RegBytes;
9850
9851 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9852 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9853 }
9854
9855 // The last copy may be partial. Do an extending load.
9856 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
9857 8 * (LoadedBytes - Offset));
9858 SDValue Load =
9859 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
9860 LD->getPointerInfo().getWithOffset(Offset), MemVT,
9861 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9862 LD->getAAInfo());
9863 // Follow the load with a store to the stack slot. Remember the store.
9864 // On big-endian machines this requires a truncating store to ensure
9865 // that the bits end up in the right place.
9866 Stores.push_back(DAG.getTruncStore(
9867 Load.getValue(1), dl, Load, StackPtr,
9868 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
9869
9870 // The order of the stores doesn't matter - say it with a TokenFactor.
9871 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9872
9873 // Finally, perform the original load only redirected to the stack slot.
9874 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
9875 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
9876 LoadedVT);
9877
9878 // Callers expect a MERGE_VALUES node.
9879 return std::make_pair(Load, TF);
9880 }
9881
9882 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
9883 "Unaligned load of unsupported type.");
9884
9885 // Compute the new VT that is half the size of the old one. This is an
9886 // integer MVT.
9887 unsigned NumBits = LoadedVT.getSizeInBits();
9888 EVT NewLoadedVT;
9889 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
9890 NumBits >>= 1;
9891
9892 Align Alignment = LD->getOriginalAlign();
9893 unsigned IncrementSize = NumBits / 8;
9894 ISD::LoadExtType HiExtType = LD->getExtensionType();
9895
9896 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
9897 if (HiExtType == ISD::NON_EXTLOAD)
9898 HiExtType = ISD::ZEXTLOAD;
9899
9900 // Load the value in two parts
9901 SDValue Lo, Hi;
9902 if (DAG.getDataLayout().isLittleEndian()) {
9903 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9904 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9905 LD->getAAInfo());
9906
9907 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
9908 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
9909 LD->getPointerInfo().getWithOffset(IncrementSize),
9910 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9911 LD->getAAInfo());
9912 } else {
9913 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9914 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9915 LD->getAAInfo());
9916
9917 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
9918 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
9919 LD->getPointerInfo().getWithOffset(IncrementSize),
9920 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9921 LD->getAAInfo());
9922 }
9923
9924 // aggregate the two parts
9925 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
9926 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
9927 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
9928
9929 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
9930 Hi.getValue(1));
9931
9932 return std::make_pair(Result, TF);
9933 }
9934
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const9935 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
9936 SelectionDAG &DAG) const {
9937 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
9938 "unaligned indexed stores not implemented!");
9939 SDValue Chain = ST->getChain();
9940 SDValue Ptr = ST->getBasePtr();
9941 SDValue Val = ST->getValue();
9942 EVT VT = Val.getValueType();
9943 Align Alignment = ST->getOriginalAlign();
9944 auto &MF = DAG.getMachineFunction();
9945 EVT StoreMemVT = ST->getMemoryVT();
9946
9947 SDLoc dl(ST);
9948 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
9949 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
9950 if (isTypeLegal(intVT)) {
9951 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
9952 StoreMemVT.isVector()) {
9953 // Scalarize the store and let the individual components be handled.
9954 SDValue Result = scalarizeVectorStore(ST, DAG);
9955 return Result;
9956 }
9957 // Expand to a bitconvert of the value to the integer type of the
9958 // same size, then a (misaligned) int store.
9959 // FIXME: Does not handle truncating floating point stores!
9960 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
9961 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
9962 Alignment, ST->getMemOperand()->getFlags());
9963 return Result;
9964 }
9965 // Do a (aligned) store to a stack slot, then copy from the stack slot
9966 // to the final destination using (unaligned) integer loads and stores.
9967 MVT RegVT = getRegisterType(
9968 *DAG.getContext(),
9969 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
9970 EVT PtrVT = Ptr.getValueType();
9971 unsigned StoredBytes = StoreMemVT.getStoreSize();
9972 unsigned RegBytes = RegVT.getSizeInBits() / 8;
9973 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
9974
9975 // Make sure the stack slot is also aligned for the register type.
9976 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
9977 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9978
9979 // Perform the original store, only redirected to the stack slot.
9980 SDValue Store = DAG.getTruncStore(
9981 Chain, dl, Val, StackPtr,
9982 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
9983
9984 EVT StackPtrVT = StackPtr.getValueType();
9985
9986 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9987 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9988 SmallVector<SDValue, 8> Stores;
9989 unsigned Offset = 0;
9990
9991 // Do all but one copies using the full register width.
9992 for (unsigned i = 1; i < NumRegs; i++) {
9993 // Load one integer register's worth from the stack slot.
9994 SDValue Load = DAG.getLoad(
9995 RegVT, dl, Store, StackPtr,
9996 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
9997 // Store it to the final location. Remember the store.
9998 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
9999 ST->getPointerInfo().getWithOffset(Offset),
10000 ST->getOriginalAlign(),
10001 ST->getMemOperand()->getFlags()));
10002 // Increment the pointers.
10003 Offset += RegBytes;
10004 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10005 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10006 }
10007
10008 // The last store may be partial. Do a truncating store. On big-endian
10009 // machines this requires an extending load from the stack slot to ensure
10010 // that the bits are in the right place.
10011 EVT LoadMemVT =
10012 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10013
10014 // Load from the stack slot.
10015 SDValue Load = DAG.getExtLoad(
10016 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10017 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10018
10019 Stores.push_back(
10020 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10021 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10022 ST->getOriginalAlign(),
10023 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10024 // The order of the stores doesn't matter - say it with a TokenFactor.
10025 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10026 return Result;
10027 }
10028
10029 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10030 "Unaligned store of unknown type.");
10031 // Get the half-size VT
10032 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10033 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10034 unsigned IncrementSize = NumBits / 8;
10035
10036 // Divide the stored value in two parts.
10037 SDValue ShiftAmount =
10038 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10039 SDValue Lo = Val;
10040 // If Val is a constant, replace the upper bits with 0. The SRL will constant
10041 // fold and not use the upper bits. A smaller constant may be easier to
10042 // materialize.
10043 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10044 Lo = DAG.getNode(
10045 ISD::AND, dl, VT, Lo,
10046 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10047 VT));
10048 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10049
10050 // Store the two parts
10051 SDValue Store1, Store2;
10052 Store1 = DAG.getTruncStore(Chain, dl,
10053 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10054 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10055 ST->getMemOperand()->getFlags());
10056
10057 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10058 Store2 = DAG.getTruncStore(
10059 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10060 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10061 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10062
10063 SDValue Result =
10064 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10065 return Result;
10066 }
10067
10068 SDValue
IncrementMemoryAddress(SDValue Addr,SDValue Mask,const SDLoc & DL,EVT DataVT,SelectionDAG & DAG,bool IsCompressedMemory) const10069 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10070 const SDLoc &DL, EVT DataVT,
10071 SelectionDAG &DAG,
10072 bool IsCompressedMemory) const {
10073 SDValue Increment;
10074 EVT AddrVT = Addr.getValueType();
10075 EVT MaskVT = Mask.getValueType();
10076 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10077 "Incompatible types of Data and Mask");
10078 if (IsCompressedMemory) {
10079 if (DataVT.isScalableVector())
10080 report_fatal_error(
10081 "Cannot currently handle compressed memory with scalable vectors");
10082 // Incrementing the pointer according to number of '1's in the mask.
10083 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10084 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10085 if (MaskIntVT.getSizeInBits() < 32) {
10086 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10087 MaskIntVT = MVT::i32;
10088 }
10089
10090 // Count '1's with POPCNT.
10091 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10092 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10093 // Scale is an element size in bytes.
10094 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10095 AddrVT);
10096 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10097 } else if (DataVT.isScalableVector()) {
10098 Increment = DAG.getVScale(DL, AddrVT,
10099 APInt(AddrVT.getFixedSizeInBits(),
10100 DataVT.getStoreSize().getKnownMinValue()));
10101 } else
10102 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10103
10104 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10105 }
10106
clampDynamicVectorIndex(SelectionDAG & DAG,SDValue Idx,EVT VecVT,const SDLoc & dl,ElementCount SubEC)10107 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10108 EVT VecVT, const SDLoc &dl,
10109 ElementCount SubEC) {
10110 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10111 "Cannot index a scalable vector within a fixed-width vector");
10112
10113 unsigned NElts = VecVT.getVectorMinNumElements();
10114 unsigned NumSubElts = SubEC.getKnownMinValue();
10115 EVT IdxVT = Idx.getValueType();
10116
10117 if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10118 // If this is a constant index and we know the value plus the number of the
10119 // elements in the subvector minus one is less than the minimum number of
10120 // elements then it's safe to return Idx.
10121 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10122 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10123 return Idx;
10124 SDValue VS =
10125 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10126 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10127 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10128 DAG.getConstant(NumSubElts, dl, IdxVT));
10129 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10130 }
10131 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10132 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10133 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10134 DAG.getConstant(Imm, dl, IdxVT));
10135 }
10136 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10137 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10138 DAG.getConstant(MaxIndex, dl, IdxVT));
10139 }
10140
getVectorElementPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,SDValue Index) const10141 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10142 SDValue VecPtr, EVT VecVT,
10143 SDValue Index) const {
10144 return getVectorSubVecPointer(
10145 DAG, VecPtr, VecVT,
10146 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10147 Index);
10148 }
10149
getVectorSubVecPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,EVT SubVecVT,SDValue Index) const10150 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10151 SDValue VecPtr, EVT VecVT,
10152 EVT SubVecVT,
10153 SDValue Index) const {
10154 SDLoc dl(Index);
10155 // Make sure the index type is big enough to compute in.
10156 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10157
10158 EVT EltVT = VecVT.getVectorElementType();
10159
10160 // Calculate the element offset and add it to the pointer.
10161 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10162 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10163 "Converting bits to bytes lost precision");
10164 assert(SubVecVT.getVectorElementType() == EltVT &&
10165 "Sub-vector must be a vector with matching element type");
10166 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10167 SubVecVT.getVectorElementCount());
10168
10169 EVT IdxVT = Index.getValueType();
10170 if (SubVecVT.isScalableVector())
10171 Index =
10172 DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10173 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10174
10175 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10176 DAG.getConstant(EltSize, dl, IdxVT));
10177 return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10178 }
10179
10180 //===----------------------------------------------------------------------===//
10181 // Implementation of Emulated TLS Model
10182 //===----------------------------------------------------------------------===//
10183
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const10184 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10185 SelectionDAG &DAG) const {
10186 // Access to address of TLS varialbe xyz is lowered to a function call:
10187 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10188 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10189 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10190 SDLoc dl(GA);
10191
10192 ArgListTy Args;
10193 ArgListEntry Entry;
10194 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
10195 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
10196 StringRef EmuTlsVarName(NameString);
10197 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
10198 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10199 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10200 Entry.Ty = VoidPtrType;
10201 Args.push_back(Entry);
10202
10203 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10204
10205 TargetLowering::CallLoweringInfo CLI(DAG);
10206 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10207 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10208 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10209
10210 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10211 // At last for X86 targets, maybe good for other targets too?
10212 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10213 MFI.setAdjustsStack(true); // Is this only for X86 target?
10214 MFI.setHasCalls(true);
10215
10216 assert((GA->getOffset() == 0) &&
10217 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10218 return CallResult.first;
10219 }
10220
lowerCmpEqZeroToCtlzSrl(SDValue Op,SelectionDAG & DAG) const10221 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10222 SelectionDAG &DAG) const {
10223 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10224 if (!isCtlzFast())
10225 return SDValue();
10226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10227 SDLoc dl(Op);
10228 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10229 EVT VT = Op.getOperand(0).getValueType();
10230 SDValue Zext = Op.getOperand(0);
10231 if (VT.bitsLT(MVT::i32)) {
10232 VT = MVT::i32;
10233 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10234 }
10235 unsigned Log2b = Log2_32(VT.getSizeInBits());
10236 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10237 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10238 DAG.getConstant(Log2b, dl, MVT::i32));
10239 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10240 }
10241 return SDValue();
10242 }
10243
expandIntMINMAX(SDNode * Node,SelectionDAG & DAG) const10244 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10245 SDValue Op0 = Node->getOperand(0);
10246 SDValue Op1 = Node->getOperand(1);
10247 EVT VT = Op0.getValueType();
10248 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10249 unsigned Opcode = Node->getOpcode();
10250 SDLoc DL(Node);
10251
10252 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10253 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10254 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10255 Op0 = DAG.getFreeze(Op0);
10256 SDValue Zero = DAG.getConstant(0, DL, VT);
10257 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10258 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10259 }
10260
10261 // umin(x,y) -> sub(x,usubsat(x,y))
10262 // TODO: Missing freeze(Op0)?
10263 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10264 isOperationLegal(ISD::USUBSAT, VT)) {
10265 return DAG.getNode(ISD::SUB, DL, VT, Op0,
10266 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10267 }
10268
10269 // umax(x,y) -> add(x,usubsat(y,x))
10270 // TODO: Missing freeze(Op0)?
10271 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10272 isOperationLegal(ISD::USUBSAT, VT)) {
10273 return DAG.getNode(ISD::ADD, DL, VT, Op0,
10274 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10275 }
10276
10277 // FIXME: Should really try to split the vector in case it's legal on a
10278 // subvector.
10279 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10280 return DAG.UnrollVectorOp(Node);
10281
10282 // Attempt to find an existing SETCC node that we can reuse.
10283 // TODO: Do we need a generic doesSETCCNodeExist?
10284 // TODO: Missing freeze(Op0)/freeze(Op1)?
10285 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10286 ISD::CondCode PrefCommuteCC,
10287 ISD::CondCode AltCommuteCC) {
10288 SDVTList BoolVTList = DAG.getVTList(BoolVT);
10289 for (ISD::CondCode CC : {PrefCC, AltCC}) {
10290 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10291 {Op0, Op1, DAG.getCondCode(CC)})) {
10292 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10293 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10294 }
10295 }
10296 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10297 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10298 {Op0, Op1, DAG.getCondCode(CC)})) {
10299 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10300 return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10301 }
10302 }
10303 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10304 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10305 };
10306
10307 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10308 // -> Y = (A < B) ? B : A
10309 // -> Y = (A >= B) ? A : B
10310 // -> Y = (A <= B) ? B : A
10311 switch (Opcode) {
10312 case ISD::SMAX:
10313 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10314 case ISD::SMIN:
10315 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10316 case ISD::UMAX:
10317 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10318 case ISD::UMIN:
10319 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10320 }
10321
10322 llvm_unreachable("How did we get here?");
10323 }
10324
expandAddSubSat(SDNode * Node,SelectionDAG & DAG) const10325 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10326 unsigned Opcode = Node->getOpcode();
10327 SDValue LHS = Node->getOperand(0);
10328 SDValue RHS = Node->getOperand(1);
10329 EVT VT = LHS.getValueType();
10330 SDLoc dl(Node);
10331
10332 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10333 assert(VT.isInteger() && "Expected operands to be integers");
10334
10335 // usub.sat(a, b) -> umax(a, b) - b
10336 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10337 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10338 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10339 }
10340
10341 // uadd.sat(a, b) -> umin(a, ~b) + b
10342 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10343 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10344 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10345 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10346 }
10347
10348 unsigned OverflowOp;
10349 switch (Opcode) {
10350 case ISD::SADDSAT:
10351 OverflowOp = ISD::SADDO;
10352 break;
10353 case ISD::UADDSAT:
10354 OverflowOp = ISD::UADDO;
10355 break;
10356 case ISD::SSUBSAT:
10357 OverflowOp = ISD::SSUBO;
10358 break;
10359 case ISD::USUBSAT:
10360 OverflowOp = ISD::USUBO;
10361 break;
10362 default:
10363 llvm_unreachable("Expected method to receive signed or unsigned saturation "
10364 "addition or subtraction node.");
10365 }
10366
10367 // FIXME: Should really try to split the vector in case it's legal on a
10368 // subvector.
10369 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10370 return DAG.UnrollVectorOp(Node);
10371
10372 unsigned BitWidth = LHS.getScalarValueSizeInBits();
10373 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10374 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10375 SDValue SumDiff = Result.getValue(0);
10376 SDValue Overflow = Result.getValue(1);
10377 SDValue Zero = DAG.getConstant(0, dl, VT);
10378 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10379
10380 if (Opcode == ISD::UADDSAT) {
10381 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10382 // (LHS + RHS) | OverflowMask
10383 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10384 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10385 }
10386 // Overflow ? 0xffff.... : (LHS + RHS)
10387 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10388 }
10389
10390 if (Opcode == ISD::USUBSAT) {
10391 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10392 // (LHS - RHS) & ~OverflowMask
10393 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10394 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10395 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10396 }
10397 // Overflow ? 0 : (LHS - RHS)
10398 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10399 }
10400
10401 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10402 APInt MinVal = APInt::getSignedMinValue(BitWidth);
10403 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10404
10405 KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10406 KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10407
10408 // If either of the operand signs are known, then they are guaranteed to
10409 // only saturate in one direction. If non-negative they will saturate
10410 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10411 //
10412 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10413 // sign of 'y' has to be flipped.
10414
10415 bool LHSIsNonNegative = KnownLHS.isNonNegative();
10416 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10417 : KnownRHS.isNegative();
10418 if (LHSIsNonNegative || RHSIsNonNegative) {
10419 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10420 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10421 }
10422
10423 bool LHSIsNegative = KnownLHS.isNegative();
10424 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10425 : KnownRHS.isNonNegative();
10426 if (LHSIsNegative || RHSIsNegative) {
10427 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10428 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10429 }
10430 }
10431
10432 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10433 APInt MinVal = APInt::getSignedMinValue(BitWidth);
10434 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10435 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10436 DAG.getConstant(BitWidth - 1, dl, VT));
10437 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10438 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10439 }
10440
expandCMP(SDNode * Node,SelectionDAG & DAG) const10441 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10442 unsigned Opcode = Node->getOpcode();
10443 SDValue LHS = Node->getOperand(0);
10444 SDValue RHS = Node->getOperand(1);
10445 EVT VT = LHS.getValueType();
10446 EVT ResVT = Node->getValueType(0);
10447 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10448 SDLoc dl(Node);
10449
10450 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10451 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10452 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10453 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10454
10455 // We can't perform arithmetic on i1 values. Extending them would
10456 // probably result in worse codegen, so let's just use two selects instead.
10457 // Some targets are also just better off using selects rather than subtraction
10458 // because one of the conditions can be merged with one of the selects.
10459 // And finally, if we don't know the contents of high bits of a boolean value
10460 // we can't perform any arithmetic either.
10461 if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 ||
10462 getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10463 SDValue SelectZeroOrOne =
10464 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10465 DAG.getConstant(0, dl, ResVT));
10466 return DAG.getSelect(dl, ResVT, IsLT, DAG.getConstant(-1, dl, ResVT),
10467 SelectZeroOrOne);
10468 }
10469
10470 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10471 std::swap(IsGT, IsLT);
10472 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10473 ResVT);
10474 }
10475
expandShlSat(SDNode * Node,SelectionDAG & DAG) const10476 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10477 unsigned Opcode = Node->getOpcode();
10478 bool IsSigned = Opcode == ISD::SSHLSAT;
10479 SDValue LHS = Node->getOperand(0);
10480 SDValue RHS = Node->getOperand(1);
10481 EVT VT = LHS.getValueType();
10482 SDLoc dl(Node);
10483
10484 assert((Node->getOpcode() == ISD::SSHLSAT ||
10485 Node->getOpcode() == ISD::USHLSAT) &&
10486 "Expected a SHLSAT opcode");
10487 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10488 assert(VT.isInteger() && "Expected operands to be integers");
10489
10490 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10491 return DAG.UnrollVectorOp(Node);
10492
10493 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10494
10495 unsigned BW = VT.getScalarSizeInBits();
10496 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10497 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10498 SDValue Orig =
10499 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10500
10501 SDValue SatVal;
10502 if (IsSigned) {
10503 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10504 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10505 SDValue Cond =
10506 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10507 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10508 } else {
10509 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10510 }
10511 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10512 return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10513 }
10514
forceExpandWideMUL(SelectionDAG & DAG,const SDLoc & dl,bool Signed,EVT WideVT,const SDValue LL,const SDValue LH,const SDValue RL,const SDValue RH,SDValue & Lo,SDValue & Hi) const10515 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10516 bool Signed, EVT WideVT,
10517 const SDValue LL, const SDValue LH,
10518 const SDValue RL, const SDValue RH,
10519 SDValue &Lo, SDValue &Hi) const {
10520 // We can fall back to a libcall with an illegal type for the MUL if we
10521 // have a libcall big enough.
10522 // Also, we can fall back to a division in some cases, but that's a big
10523 // performance hit in the general case.
10524 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10525 if (WideVT == MVT::i16)
10526 LC = RTLIB::MUL_I16;
10527 else if (WideVT == MVT::i32)
10528 LC = RTLIB::MUL_I32;
10529 else if (WideVT == MVT::i64)
10530 LC = RTLIB::MUL_I64;
10531 else if (WideVT == MVT::i128)
10532 LC = RTLIB::MUL_I128;
10533
10534 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10535 // We'll expand the multiplication by brute force because we have no other
10536 // options. This is a trivially-generalized version of the code from
10537 // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10538 // 4.3.1).
10539 EVT VT = LL.getValueType();
10540 unsigned Bits = VT.getSizeInBits();
10541 unsigned HalfBits = Bits >> 1;
10542 SDValue Mask =
10543 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10544 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10545 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10546
10547 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10548 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10549
10550 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10551 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10552 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10553 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10554
10555 SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10556 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10557 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10558 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10559
10560 SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10561 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10562 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10563
10564 SDValue W =
10565 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10566 DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10567 Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10568 DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10569
10570 Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10571 DAG.getNode(ISD::ADD, dl, VT,
10572 DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10573 DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10574 } else {
10575 // Attempt a libcall.
10576 SDValue Ret;
10577 TargetLowering::MakeLibCallOptions CallOptions;
10578 CallOptions.setSExt(Signed);
10579 CallOptions.setIsPostTypeLegalization(true);
10580 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10581 // Halves of WideVT are packed into registers in different order
10582 // depending on platform endianness. This is usually handled by
10583 // the C calling convention, but we can't defer to it in
10584 // the legalizer.
10585 SDValue Args[] = {LL, LH, RL, RH};
10586 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10587 } else {
10588 SDValue Args[] = {LH, LL, RH, RL};
10589 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10590 }
10591 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10592 "Ret value is a collection of constituent nodes holding result.");
10593 if (DAG.getDataLayout().isLittleEndian()) {
10594 // Same as above.
10595 Lo = Ret.getOperand(0);
10596 Hi = Ret.getOperand(1);
10597 } else {
10598 Lo = Ret.getOperand(1);
10599 Hi = Ret.getOperand(0);
10600 }
10601 }
10602 }
10603
forceExpandWideMUL(SelectionDAG & DAG,const SDLoc & dl,bool Signed,const SDValue LHS,const SDValue RHS,SDValue & Lo,SDValue & Hi) const10604 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10605 bool Signed, const SDValue LHS,
10606 const SDValue RHS, SDValue &Lo,
10607 SDValue &Hi) const {
10608 EVT VT = LHS.getValueType();
10609 assert(RHS.getValueType() == VT && "Mismatching operand types");
10610
10611 SDValue HiLHS;
10612 SDValue HiRHS;
10613 if (Signed) {
10614 // The high part is obtained by SRA'ing all but one of the bits of low
10615 // part.
10616 unsigned LoSize = VT.getFixedSizeInBits();
10617 HiLHS = DAG.getNode(
10618 ISD::SRA, dl, VT, LHS,
10619 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10620 HiRHS = DAG.getNode(
10621 ISD::SRA, dl, VT, RHS,
10622 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10623 } else {
10624 HiLHS = DAG.getConstant(0, dl, VT);
10625 HiRHS = DAG.getConstant(0, dl, VT);
10626 }
10627 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10628 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10629 }
10630
10631 SDValue
expandFixedPointMul(SDNode * Node,SelectionDAG & DAG) const10632 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10633 assert((Node->getOpcode() == ISD::SMULFIX ||
10634 Node->getOpcode() == ISD::UMULFIX ||
10635 Node->getOpcode() == ISD::SMULFIXSAT ||
10636 Node->getOpcode() == ISD::UMULFIXSAT) &&
10637 "Expected a fixed point multiplication opcode");
10638
10639 SDLoc dl(Node);
10640 SDValue LHS = Node->getOperand(0);
10641 SDValue RHS = Node->getOperand(1);
10642 EVT VT = LHS.getValueType();
10643 unsigned Scale = Node->getConstantOperandVal(2);
10644 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10645 Node->getOpcode() == ISD::UMULFIXSAT);
10646 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10647 Node->getOpcode() == ISD::SMULFIXSAT);
10648 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10649 unsigned VTSize = VT.getScalarSizeInBits();
10650
10651 if (!Scale) {
10652 // [us]mul.fix(a, b, 0) -> mul(a, b)
10653 if (!Saturating) {
10654 if (isOperationLegalOrCustom(ISD::MUL, VT))
10655 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10656 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10657 SDValue Result =
10658 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10659 SDValue Product = Result.getValue(0);
10660 SDValue Overflow = Result.getValue(1);
10661 SDValue Zero = DAG.getConstant(0, dl, VT);
10662
10663 APInt MinVal = APInt::getSignedMinValue(VTSize);
10664 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10665 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10666 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10667 // Xor the inputs, if resulting sign bit is 0 the product will be
10668 // positive, else negative.
10669 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10670 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10671 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10672 return DAG.getSelect(dl, VT, Overflow, Result, Product);
10673 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10674 SDValue Result =
10675 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10676 SDValue Product = Result.getValue(0);
10677 SDValue Overflow = Result.getValue(1);
10678
10679 APInt MaxVal = APInt::getMaxValue(VTSize);
10680 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10681 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10682 }
10683 }
10684
10685 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10686 "Expected scale to be less than the number of bits if signed or at "
10687 "most the number of bits if unsigned.");
10688 assert(LHS.getValueType() == RHS.getValueType() &&
10689 "Expected both operands to be the same type");
10690
10691 // Get the upper and lower bits of the result.
10692 SDValue Lo, Hi;
10693 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10694 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10695 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10696 if (isOperationLegalOrCustom(LoHiOp, VT)) {
10697 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
10698 Lo = Result.getValue(0);
10699 Hi = Result.getValue(1);
10700 } else if (isOperationLegalOrCustom(HiOp, VT)) {
10701 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10702 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
10703 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
10704 // Try for a multiplication using a wider type.
10705 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10706 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
10707 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
10708 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
10709 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
10710 SDValue Shifted =
10711 DAG.getNode(ISD::SRA, dl, WideVT, Res,
10712 DAG.getShiftAmountConstant(VTSize, WideVT, dl));
10713 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
10714 } else if (VT.isVector()) {
10715 return SDValue();
10716 } else {
10717 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
10718 }
10719
10720 if (Scale == VTSize)
10721 // Result is just the top half since we'd be shifting by the width of the
10722 // operand. Overflow impossible so this works for both UMULFIX and
10723 // UMULFIXSAT.
10724 return Hi;
10725
10726 // The result will need to be shifted right by the scale since both operands
10727 // are scaled. The result is given to us in 2 halves, so we only want part of
10728 // both in the result.
10729 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
10730 DAG.getShiftAmountConstant(Scale, VT, dl));
10731 if (!Saturating)
10732 return Result;
10733
10734 if (!Signed) {
10735 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
10736 // widened multiplication) aren't all zeroes.
10737
10738 // Saturate to max if ((Hi >> Scale) != 0),
10739 // which is the same as if (Hi > ((1 << Scale) - 1))
10740 APInt MaxVal = APInt::getMaxValue(VTSize);
10741 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
10742 dl, VT);
10743 Result = DAG.getSelectCC(dl, Hi, LowMask,
10744 DAG.getConstant(MaxVal, dl, VT), Result,
10745 ISD::SETUGT);
10746
10747 return Result;
10748 }
10749
10750 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
10751 // widened multiplication) aren't all ones or all zeroes.
10752
10753 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
10754 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
10755
10756 if (Scale == 0) {
10757 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
10758 DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
10759 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
10760 // Saturated to SatMin if wide product is negative, and SatMax if wide
10761 // product is positive ...
10762 SDValue Zero = DAG.getConstant(0, dl, VT);
10763 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
10764 ISD::SETLT);
10765 // ... but only if we overflowed.
10766 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
10767 }
10768
10769 // We handled Scale==0 above so all the bits to examine is in Hi.
10770
10771 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
10772 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
10773 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
10774 dl, VT);
10775 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
10776 // Saturate to min if (Hi >> (Scale - 1)) < -1),
10777 // which is the same as if (HI < (-1 << (Scale - 1))
10778 SDValue HighMask =
10779 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
10780 dl, VT);
10781 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
10782 return Result;
10783 }
10784
10785 SDValue
expandFixedPointDiv(unsigned Opcode,const SDLoc & dl,SDValue LHS,SDValue RHS,unsigned Scale,SelectionDAG & DAG) const10786 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
10787 SDValue LHS, SDValue RHS,
10788 unsigned Scale, SelectionDAG &DAG) const {
10789 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
10790 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
10791 "Expected a fixed point division opcode");
10792
10793 EVT VT = LHS.getValueType();
10794 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
10795 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
10796 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10797
10798 // If there is enough room in the type to upscale the LHS or downscale the
10799 // RHS before the division, we can perform it in this type without having to
10800 // resize. For signed operations, the LHS headroom is the number of
10801 // redundant sign bits, and for unsigned ones it is the number of zeroes.
10802 // The headroom for the RHS is the number of trailing zeroes.
10803 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
10804 : DAG.computeKnownBits(LHS).countMinLeadingZeros();
10805 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
10806
10807 // For signed saturating operations, we need to be able to detect true integer
10808 // division overflow; that is, when you have MIN / -EPS. However, this
10809 // is undefined behavior and if we emit divisions that could take such
10810 // values it may cause undesired behavior (arithmetic exceptions on x86, for
10811 // example).
10812 // Avoid this by requiring an extra bit so that we never get this case.
10813 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
10814 // signed saturating division, we need to emit a whopping 32-bit division.
10815 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
10816 return SDValue();
10817
10818 unsigned LHSShift = std::min(LHSLead, Scale);
10819 unsigned RHSShift = Scale - LHSShift;
10820
10821 // At this point, we know that if we shift the LHS up by LHSShift and the
10822 // RHS down by RHSShift, we can emit a regular division with a final scaling
10823 // factor of Scale.
10824
10825 if (LHSShift)
10826 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
10827 DAG.getShiftAmountConstant(LHSShift, VT, dl));
10828 if (RHSShift)
10829 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
10830 DAG.getShiftAmountConstant(RHSShift, VT, dl));
10831
10832 SDValue Quot;
10833 if (Signed) {
10834 // For signed operations, if the resulting quotient is negative and the
10835 // remainder is nonzero, subtract 1 from the quotient to round towards
10836 // negative infinity.
10837 SDValue Rem;
10838 // FIXME: Ideally we would always produce an SDIVREM here, but if the
10839 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
10840 // we couldn't just form a libcall, but the type legalizer doesn't do it.
10841 if (isTypeLegal(VT) &&
10842 isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
10843 Quot = DAG.getNode(ISD::SDIVREM, dl,
10844 DAG.getVTList(VT, VT),
10845 LHS, RHS);
10846 Rem = Quot.getValue(1);
10847 Quot = Quot.getValue(0);
10848 } else {
10849 Quot = DAG.getNode(ISD::SDIV, dl, VT,
10850 LHS, RHS);
10851 Rem = DAG.getNode(ISD::SREM, dl, VT,
10852 LHS, RHS);
10853 }
10854 SDValue Zero = DAG.getConstant(0, dl, VT);
10855 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
10856 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
10857 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
10858 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
10859 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
10860 DAG.getConstant(1, dl, VT));
10861 Quot = DAG.getSelect(dl, VT,
10862 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
10863 Sub1, Quot);
10864 } else
10865 Quot = DAG.getNode(ISD::UDIV, dl, VT,
10866 LHS, RHS);
10867
10868 return Quot;
10869 }
10870
expandUADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10871 void TargetLowering::expandUADDSUBO(
10872 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10873 SDLoc dl(Node);
10874 SDValue LHS = Node->getOperand(0);
10875 SDValue RHS = Node->getOperand(1);
10876 bool IsAdd = Node->getOpcode() == ISD::UADDO;
10877
10878 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
10879 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
10880 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
10881 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
10882 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
10883 { LHS, RHS, CarryIn });
10884 Result = SDValue(NodeCarry.getNode(), 0);
10885 Overflow = SDValue(NodeCarry.getNode(), 1);
10886 return;
10887 }
10888
10889 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10890 LHS.getValueType(), LHS, RHS);
10891
10892 EVT ResultType = Node->getValueType(1);
10893 EVT SetCCType = getSetCCResultType(
10894 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10895 SDValue SetCC;
10896 if (IsAdd && isOneConstant(RHS)) {
10897 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
10898 // the live range of X. We assume comparing with 0 is cheap.
10899 // The general case (X + C) < C is not necessarily beneficial. Although we
10900 // reduce the live range of X, we may introduce the materialization of
10901 // constant C.
10902 SetCC =
10903 DAG.getSetCC(dl, SetCCType, Result,
10904 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
10905 } else if (IsAdd && isAllOnesConstant(RHS)) {
10906 // Special case: uaddo X, -1 overflows if X != 0.
10907 SetCC =
10908 DAG.getSetCC(dl, SetCCType, LHS,
10909 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
10910 } else {
10911 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
10912 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
10913 }
10914 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10915 }
10916
expandSADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10917 void TargetLowering::expandSADDSUBO(
10918 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10919 SDLoc dl(Node);
10920 SDValue LHS = Node->getOperand(0);
10921 SDValue RHS = Node->getOperand(1);
10922 bool IsAdd = Node->getOpcode() == ISD::SADDO;
10923
10924 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10925 LHS.getValueType(), LHS, RHS);
10926
10927 EVT ResultType = Node->getValueType(1);
10928 EVT OType = getSetCCResultType(
10929 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10930
10931 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
10932 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
10933 if (isOperationLegal(OpcSat, LHS.getValueType())) {
10934 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
10935 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
10936 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10937 return;
10938 }
10939
10940 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
10941
10942 // For an addition, the result should be less than one of the operands (LHS)
10943 // if and only if the other operand (RHS) is negative, otherwise there will
10944 // be overflow.
10945 // For a subtraction, the result should be less than one of the operands
10946 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
10947 // otherwise there will be overflow.
10948 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
10949 SDValue ConditionRHS =
10950 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
10951
10952 Overflow = DAG.getBoolExtOrTrunc(
10953 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
10954 ResultType, ResultType);
10955 }
10956
expandMULO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10957 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
10958 SDValue &Overflow, SelectionDAG &DAG) const {
10959 SDLoc dl(Node);
10960 EVT VT = Node->getValueType(0);
10961 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10962 SDValue LHS = Node->getOperand(0);
10963 SDValue RHS = Node->getOperand(1);
10964 bool isSigned = Node->getOpcode() == ISD::SMULO;
10965
10966 // For power-of-two multiplications we can use a simpler shift expansion.
10967 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
10968 const APInt &C = RHSC->getAPIntValue();
10969 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
10970 if (C.isPowerOf2()) {
10971 // smulo(x, signed_min) is same as umulo(x, signed_min).
10972 bool UseArithShift = isSigned && !C.isMinSignedValue();
10973 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
10974 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
10975 Overflow = DAG.getSetCC(dl, SetCCVT,
10976 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
10977 dl, VT, Result, ShiftAmt),
10978 LHS, ISD::SETNE);
10979 return true;
10980 }
10981 }
10982
10983 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
10984 if (VT.isVector())
10985 WideVT =
10986 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10987
10988 SDValue BottomHalf;
10989 SDValue TopHalf;
10990 static const unsigned Ops[2][3] =
10991 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
10992 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
10993 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
10994 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10995 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
10996 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
10997 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
10998 RHS);
10999 TopHalf = BottomHalf.getValue(1);
11000 } else if (isTypeLegal(WideVT)) {
11001 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11002 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11003 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11004 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11005 SDValue ShiftAmt =
11006 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11007 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11008 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11009 } else {
11010 if (VT.isVector())
11011 return false;
11012
11013 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11014 }
11015
11016 Result = BottomHalf;
11017 if (isSigned) {
11018 SDValue ShiftAmt = DAG.getShiftAmountConstant(
11019 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11020 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11021 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11022 } else {
11023 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11024 DAG.getConstant(0, dl, VT), ISD::SETNE);
11025 }
11026
11027 // Truncate the result if SetCC returns a larger type than needed.
11028 EVT RType = Node->getValueType(1);
11029 if (RType.bitsLT(Overflow.getValueType()))
11030 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11031
11032 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11033 "Unexpected result type for S/UMULO legalization");
11034 return true;
11035 }
11036
expandVecReduce(SDNode * Node,SelectionDAG & DAG) const11037 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11038 SDLoc dl(Node);
11039 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11040 SDValue Op = Node->getOperand(0);
11041 EVT VT = Op.getValueType();
11042
11043 if (VT.isScalableVector())
11044 report_fatal_error(
11045 "Expanding reductions for scalable vectors is undefined.");
11046
11047 // Try to use a shuffle reduction for power of two vectors.
11048 if (VT.isPow2VectorType()) {
11049 while (VT.getVectorNumElements() > 1) {
11050 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11051 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11052 break;
11053
11054 SDValue Lo, Hi;
11055 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11056 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11057 VT = HalfVT;
11058 }
11059 }
11060
11061 EVT EltVT = VT.getVectorElementType();
11062 unsigned NumElts = VT.getVectorNumElements();
11063
11064 SmallVector<SDValue, 8> Ops;
11065 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11066
11067 SDValue Res = Ops[0];
11068 for (unsigned i = 1; i < NumElts; i++)
11069 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11070
11071 // Result type may be wider than element type.
11072 if (EltVT != Node->getValueType(0))
11073 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11074 return Res;
11075 }
11076
expandVecReduceSeq(SDNode * Node,SelectionDAG & DAG) const11077 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11078 SDLoc dl(Node);
11079 SDValue AccOp = Node->getOperand(0);
11080 SDValue VecOp = Node->getOperand(1);
11081 SDNodeFlags Flags = Node->getFlags();
11082
11083 EVT VT = VecOp.getValueType();
11084 EVT EltVT = VT.getVectorElementType();
11085
11086 if (VT.isScalableVector())
11087 report_fatal_error(
11088 "Expanding reductions for scalable vectors is undefined.");
11089
11090 unsigned NumElts = VT.getVectorNumElements();
11091
11092 SmallVector<SDValue, 8> Ops;
11093 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11094
11095 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11096
11097 SDValue Res = AccOp;
11098 for (unsigned i = 0; i < NumElts; i++)
11099 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11100
11101 return Res;
11102 }
11103
expandREM(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const11104 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11105 SelectionDAG &DAG) const {
11106 EVT VT = Node->getValueType(0);
11107 SDLoc dl(Node);
11108 bool isSigned = Node->getOpcode() == ISD::SREM;
11109 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11110 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11111 SDValue Dividend = Node->getOperand(0);
11112 SDValue Divisor = Node->getOperand(1);
11113 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11114 SDVTList VTs = DAG.getVTList(VT, VT);
11115 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11116 return true;
11117 }
11118 if (isOperationLegalOrCustom(DivOpc, VT)) {
11119 // X % Y -> X-X/Y*Y
11120 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11121 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11122 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11123 return true;
11124 }
11125 return false;
11126 }
11127
expandFP_TO_INT_SAT(SDNode * Node,SelectionDAG & DAG) const11128 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11129 SelectionDAG &DAG) const {
11130 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11131 SDLoc dl(SDValue(Node, 0));
11132 SDValue Src = Node->getOperand(0);
11133
11134 // DstVT is the result type, while SatVT is the size to which we saturate
11135 EVT SrcVT = Src.getValueType();
11136 EVT DstVT = Node->getValueType(0);
11137
11138 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11139 unsigned SatWidth = SatVT.getScalarSizeInBits();
11140 unsigned DstWidth = DstVT.getScalarSizeInBits();
11141 assert(SatWidth <= DstWidth &&
11142 "Expected saturation width smaller than result width");
11143
11144 // Determine minimum and maximum integer values and their corresponding
11145 // floating-point values.
11146 APInt MinInt, MaxInt;
11147 if (IsSigned) {
11148 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11149 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11150 } else {
11151 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11152 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11153 }
11154
11155 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11156 // libcall emission cannot handle this. Large result types will fail.
11157 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11158 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11159 SrcVT = Src.getValueType();
11160 }
11161
11162 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
11163 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
11164
11165 APFloat::opStatus MinStatus =
11166 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11167 APFloat::opStatus MaxStatus =
11168 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11169 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11170 !(MaxStatus & APFloat::opStatus::opInexact);
11171
11172 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11173 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11174
11175 // If the integer bounds are exactly representable as floats and min/max are
11176 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11177 // of comparisons and selects.
11178 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11179 isOperationLegal(ISD::FMAXNUM, SrcVT);
11180 if (AreExactFloatBounds && MinMaxLegal) {
11181 SDValue Clamped = Src;
11182
11183 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11184 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11185 // Clamp by MaxFloat from above. NaN cannot occur.
11186 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11187 // Convert clamped value to integer.
11188 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11189 dl, DstVT, Clamped);
11190
11191 // In the unsigned case we're done, because we mapped NaN to MinFloat,
11192 // which will cast to zero.
11193 if (!IsSigned)
11194 return FpToInt;
11195
11196 // Otherwise, select 0 if Src is NaN.
11197 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11198 EVT SetCCVT =
11199 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11200 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11201 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11202 }
11203
11204 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11205 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11206
11207 // Result of direct conversion. The assumption here is that the operation is
11208 // non-trapping and it's fine to apply it to an out-of-range value if we
11209 // select it away later.
11210 SDValue FpToInt =
11211 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11212
11213 SDValue Select = FpToInt;
11214
11215 EVT SetCCVT =
11216 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11217
11218 // If Src ULT MinFloat, select MinInt. In particular, this also selects
11219 // MinInt if Src is NaN.
11220 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11221 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11222 // If Src OGT MaxFloat, select MaxInt.
11223 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11224 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11225
11226 // In the unsigned case we are done, because we mapped NaN to MinInt, which
11227 // is already zero.
11228 if (!IsSigned)
11229 return Select;
11230
11231 // Otherwise, select 0 if Src is NaN.
11232 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11233 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11234 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11235 }
11236
expandRoundInexactToOdd(EVT ResultVT,SDValue Op,const SDLoc & dl,SelectionDAG & DAG) const11237 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11238 const SDLoc &dl,
11239 SelectionDAG &DAG) const {
11240 EVT OperandVT = Op.getValueType();
11241 if (OperandVT.getScalarType() == ResultVT.getScalarType())
11242 return Op;
11243 EVT ResultIntVT = ResultVT.changeTypeToInteger();
11244 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11245 // can induce double-rounding which may alter the results. We can
11246 // correct for this using a trick explained in: Boldo, Sylvie, and
11247 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11248 // World Congress. 2005.
11249 unsigned BitSize = OperandVT.getScalarSizeInBits();
11250 EVT WideIntVT = OperandVT.changeTypeToInteger();
11251 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11252 SDValue SignBit =
11253 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11254 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11255 SDValue AbsWide;
11256 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11257 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11258 } else {
11259 SDValue ClearedSign = DAG.getNode(
11260 ISD::AND, dl, WideIntVT, OpAsInt,
11261 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11262 AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11263 }
11264 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11265 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11266
11267 // We can keep the narrow value as-is if narrowing was exact (no
11268 // rounding error), the wide value was NaN (the narrow value is also
11269 // NaN and should be preserved) or if we rounded to the odd value.
11270 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11271 SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11272 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11273 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11274 EVT ResultIntVTCCVT = getSetCCResultType(
11275 DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11276 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11277 // The result is already odd so we don't need to do anything.
11278 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11279
11280 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11281 AbsWide.getValueType());
11282 // We keep results which are exact, odd or NaN.
11283 SDValue KeepNarrow =
11284 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11285 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11286 // We morally performed a round-down if AbsNarrow is smaller than
11287 // AbsWide.
11288 SDValue NarrowIsRd =
11289 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11290 // If the narrow value is odd or exact, pick it.
11291 // Otherwise, narrow is even and corresponds to either the rounded-up
11292 // or rounded-down value. If narrow is the rounded-down value, we want
11293 // the rounded-up value as it will be odd.
11294 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11295 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11296 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11297 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11298 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11299 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11300 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11301 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11302 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11303 }
11304
expandFP_ROUND(SDNode * Node,SelectionDAG & DAG) const11305 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11306 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11307 SDValue Op = Node->getOperand(0);
11308 EVT VT = Node->getValueType(0);
11309 SDLoc dl(Node);
11310 if (VT.getScalarType() == MVT::bf16) {
11311 if (Node->getConstantOperandVal(1) == 1) {
11312 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11313 }
11314 EVT OperandVT = Op.getValueType();
11315 SDValue IsNaN = DAG.getSetCC(
11316 dl,
11317 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11318 Op, Op, ISD::SETUO);
11319
11320 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11321 // can induce double-rounding which may alter the results. We can
11322 // correct for this using a trick explained in: Boldo, Sylvie, and
11323 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11324 // World Congress. 2005.
11325 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11326 EVT I32 = F32.changeTypeToInteger();
11327 Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11328 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11329
11330 // Conversions should set NaN's quiet bit. This also prevents NaNs from
11331 // turning into infinities.
11332 SDValue NaN =
11333 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11334
11335 // Factor in the contribution of the low 16 bits.
11336 SDValue One = DAG.getConstant(1, dl, I32);
11337 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11338 DAG.getShiftAmountConstant(16, I32, dl));
11339 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11340 SDValue RoundingBias =
11341 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11342 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11343
11344 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11345 // 0x80000000.
11346 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11347
11348 // Now that we have rounded, shift the bits into position.
11349 Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11350 DAG.getShiftAmountConstant(16, I32, dl));
11351 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11352 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11353 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11354 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11355 }
11356 return SDValue();
11357 }
11358
expandVectorSplice(SDNode * Node,SelectionDAG & DAG) const11359 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11360 SelectionDAG &DAG) const {
11361 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11362 assert(Node->getValueType(0).isScalableVector() &&
11363 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11364
11365 EVT VT = Node->getValueType(0);
11366 SDValue V1 = Node->getOperand(0);
11367 SDValue V2 = Node->getOperand(1);
11368 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11369 SDLoc DL(Node);
11370
11371 // Expand through memory thusly:
11372 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11373 // Store V1, Ptr
11374 // Store V2, Ptr + sizeof(V1)
11375 // If (Imm < 0)
11376 // TrailingElts = -Imm
11377 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11378 // else
11379 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
11380 // Res = Load Ptr
11381
11382 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11383
11384 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11385 VT.getVectorElementCount() * 2);
11386 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11387 EVT PtrVT = StackPtr.getValueType();
11388 auto &MF = DAG.getMachineFunction();
11389 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11390 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11391
11392 // Store the lo part of CONCAT_VECTORS(V1, V2)
11393 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11394 // Store the hi part of CONCAT_VECTORS(V1, V2)
11395 SDValue OffsetToV2 = DAG.getVScale(
11396 DL, PtrVT,
11397 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11398 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11399 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11400
11401 if (Imm >= 0) {
11402 // Load back the required element. getVectorElementPointer takes care of
11403 // clamping the index if it's out-of-bounds.
11404 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11405 // Load the spliced result
11406 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11407 MachinePointerInfo::getUnknownStack(MF));
11408 }
11409
11410 uint64_t TrailingElts = -Imm;
11411
11412 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11413 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11414 SDValue TrailingBytes =
11415 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11416
11417 if (TrailingElts > VT.getVectorMinNumElements()) {
11418 SDValue VLBytes =
11419 DAG.getVScale(DL, PtrVT,
11420 APInt(PtrVT.getFixedSizeInBits(),
11421 VT.getStoreSize().getKnownMinValue()));
11422 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11423 }
11424
11425 // Calculate the start address of the spliced result.
11426 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11427
11428 // Load the spliced result
11429 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11430 MachinePointerInfo::getUnknownStack(MF));
11431 }
11432
expandVECTOR_COMPRESS(SDNode * Node,SelectionDAG & DAG) const11433 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11434 SelectionDAG &DAG) const {
11435 SDLoc DL(Node);
11436 SDValue Vec = Node->getOperand(0);
11437 SDValue Mask = Node->getOperand(1);
11438 SDValue Passthru = Node->getOperand(2);
11439
11440 EVT VecVT = Vec.getValueType();
11441 EVT ScalarVT = VecVT.getScalarType();
11442 EVT MaskVT = Mask.getValueType();
11443 EVT MaskScalarVT = MaskVT.getScalarType();
11444
11445 // Needs to be handled by targets that have scalable vector types.
11446 if (VecVT.isScalableVector())
11447 report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11448
11449 SDValue StackPtr = DAG.CreateStackTemporary(
11450 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11451 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11452 MachinePointerInfo PtrInfo =
11453 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11454
11455 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11456 SDValue Chain = DAG.getEntryNode();
11457 SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11458
11459 bool HasPassthru = !Passthru.isUndef();
11460
11461 // If we have a passthru vector, store it on the stack, overwrite the matching
11462 // positions and then re-write the last element that was potentially
11463 // overwritten even though mask[i] = false.
11464 if (HasPassthru)
11465 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11466
11467 SDValue LastWriteVal;
11468 APInt PassthruSplatVal;
11469 bool IsSplatPassthru =
11470 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11471
11472 if (IsSplatPassthru) {
11473 // As we do not know which position we wrote to last, we cannot simply
11474 // access that index from the passthru vector. So we first check if passthru
11475 // is a splat vector, to use any element ...
11476 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11477 } else if (HasPassthru) {
11478 // ... if it is not a splat vector, we need to get the passthru value at
11479 // position = popcount(mask) and re-load it from the stack before it is
11480 // overwritten in the loop below.
11481 SDValue Popcount = DAG.getNode(
11482 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11483 Popcount = DAG.getNode(ISD::ZERO_EXTEND, DL,
11484 MaskVT.changeVectorElementType(ScalarVT), Popcount);
11485 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, ScalarVT, Popcount);
11486 SDValue LastElmtPtr =
11487 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11488 LastWriteVal = DAG.getLoad(
11489 ScalarVT, DL, Chain, LastElmtPtr,
11490 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11491 Chain = LastWriteVal.getValue(1);
11492 }
11493
11494 unsigned NumElms = VecVT.getVectorNumElements();
11495 for (unsigned I = 0; I < NumElms; I++) {
11496 SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11497
11498 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11499 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11500 Chain = DAG.getStore(
11501 Chain, DL, ValI, OutPtr,
11502 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11503
11504 // Get the mask value and add it to the current output position. This
11505 // either increments by 1 if MaskI is true or adds 0 otherwise.
11506 // Freeze in case we have poison/undef mask entries.
11507 SDValue MaskI = DAG.getFreeze(
11508 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11509 MaskI = DAG.getFreeze(MaskI);
11510 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11511 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11512 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11513
11514 if (HasPassthru && I == NumElms - 1) {
11515 SDValue EndOfVector =
11516 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11517 SDValue AllLanesSelected =
11518 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11519 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11520 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11521
11522 // Re-write the last ValI if all lanes were selected. Otherwise,
11523 // overwrite the last write it with the passthru value.
11524 LastWriteVal =
11525 DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, LastWriteVal);
11526 Chain = DAG.getStore(
11527 Chain, DL, LastWriteVal, OutPtr,
11528 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11529 }
11530 }
11531
11532 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11533 }
11534
LegalizeSetCCCondCode(SelectionDAG & DAG,EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,SDValue Mask,SDValue EVL,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling) const11535 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11536 SDValue &LHS, SDValue &RHS,
11537 SDValue &CC, SDValue Mask,
11538 SDValue EVL, bool &NeedInvert,
11539 const SDLoc &dl, SDValue &Chain,
11540 bool IsSignaling) const {
11541 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11542 MVT OpVT = LHS.getSimpleValueType();
11543 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11544 NeedInvert = false;
11545 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11546 bool IsNonVP = !EVL;
11547 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
11548 default:
11549 llvm_unreachable("Unknown condition code action!");
11550 case TargetLowering::Legal:
11551 // Nothing to do.
11552 break;
11553 case TargetLowering::Expand: {
11554 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11555 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11556 std::swap(LHS, RHS);
11557 CC = DAG.getCondCode(InvCC);
11558 return true;
11559 }
11560 // Swapping operands didn't work. Try inverting the condition.
11561 bool NeedSwap = false;
11562 InvCC = getSetCCInverse(CCCode, OpVT);
11563 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11564 // If inverting the condition is not enough, try swapping operands
11565 // on top of it.
11566 InvCC = ISD::getSetCCSwappedOperands(InvCC);
11567 NeedSwap = true;
11568 }
11569 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11570 CC = DAG.getCondCode(InvCC);
11571 NeedInvert = true;
11572 if (NeedSwap)
11573 std::swap(LHS, RHS);
11574 return true;
11575 }
11576
11577 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11578 unsigned Opc = 0;
11579 switch (CCCode) {
11580 default:
11581 llvm_unreachable("Don't know how to expand this condition!");
11582 case ISD::SETUO:
11583 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
11584 CC1 = ISD::SETUNE;
11585 CC2 = ISD::SETUNE;
11586 Opc = ISD::OR;
11587 break;
11588 }
11589 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11590 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11591 NeedInvert = true;
11592 [[fallthrough]];
11593 case ISD::SETO:
11594 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11595 "If SETO is expanded, SETOEQ must be legal!");
11596 CC1 = ISD::SETOEQ;
11597 CC2 = ISD::SETOEQ;
11598 Opc = ISD::AND;
11599 break;
11600 case ISD::SETONE:
11601 case ISD::SETUEQ:
11602 // If the SETUO or SETO CC isn't legal, we might be able to use
11603 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11604 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11605 // the operands.
11606 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11607 if (!TLI.isCondCodeLegal(CC2, OpVT) &&
11608 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
11609 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
11610 CC1 = ISD::SETOGT;
11611 CC2 = ISD::SETOLT;
11612 Opc = ISD::OR;
11613 NeedInvert = ((unsigned)CCCode & 0x8U);
11614 break;
11615 }
11616 [[fallthrough]];
11617 case ISD::SETOEQ:
11618 case ISD::SETOGT:
11619 case ISD::SETOGE:
11620 case ISD::SETOLT:
11621 case ISD::SETOLE:
11622 case ISD::SETUNE:
11623 case ISD::SETUGT:
11624 case ISD::SETUGE:
11625 case ISD::SETULT:
11626 case ISD::SETULE:
11627 // If we are floating point, assign and break, otherwise fall through.
11628 if (!OpVT.isInteger()) {
11629 // We can use the 4th bit to tell if we are the unordered
11630 // or ordered version of the opcode.
11631 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11632 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11633 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11634 break;
11635 }
11636 // Fallthrough if we are unsigned integer.
11637 [[fallthrough]];
11638 case ISD::SETLE:
11639 case ISD::SETGT:
11640 case ISD::SETGE:
11641 case ISD::SETLT:
11642 case ISD::SETNE:
11643 case ISD::SETEQ:
11644 // If all combinations of inverting the condition and swapping operands
11645 // didn't work then we have no means to expand the condition.
11646 llvm_unreachable("Don't know how to expand this condition!");
11647 }
11648
11649 SDValue SetCC1, SetCC2;
11650 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11651 // If we aren't the ordered or unorder operation,
11652 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11653 if (IsNonVP) {
11654 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11655 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11656 } else {
11657 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11658 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11659 }
11660 } else {
11661 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11662 if (IsNonVP) {
11663 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11664 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11665 } else {
11666 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11667 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11668 }
11669 }
11670 if (Chain)
11671 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11672 SetCC2.getValue(1));
11673 if (IsNonVP)
11674 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11675 else {
11676 // Transform the binary opcode to the VP equivalent.
11677 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11678 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11679 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11680 }
11681 RHS = SDValue();
11682 CC = SDValue();
11683 return true;
11684 }
11685 }
11686 return false;
11687 }
11688