xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/DivisionByConstantInfo.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)40 TargetLowering::TargetLowering(const TargetMachine &tm)
41     : TargetLoweringBase(tm) {}
42 
getTargetNodeName(unsigned Opcode) const43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
isPositionIndependent() const47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // First, check if tail calls have been disabled in this function.
58   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
59     return false;
60 
61   // Conservatively require the attributes of the call to match those of
62   // the return. Ignore following attributes because they don't affect the
63   // call sequence.
64   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
65   for (const auto &Attr :
66        {Attribute::Alignment, Attribute::Dereferenceable,
67         Attribute::DereferenceableOrNull, Attribute::NoAlias,
68         Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
69     CallerAttrs.removeAttribute(Attr);
70 
71   if (CallerAttrs.hasAttributes())
72     return false;
73 
74   // It's not safe to eliminate the sign / zero extension of the return value.
75   if (CallerAttrs.contains(Attribute::ZExt) ||
76       CallerAttrs.contains(Attribute::SExt))
77     return false;
78 
79   // Check if the only use is a function return node.
80   return isUsedByReturnOnly(Node, Chain);
81 }
82 
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const83 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
84     const uint32_t *CallerPreservedMask,
85     const SmallVectorImpl<CCValAssign> &ArgLocs,
86     const SmallVectorImpl<SDValue> &OutVals) const {
87   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
88     const CCValAssign &ArgLoc = ArgLocs[I];
89     if (!ArgLoc.isRegLoc())
90       continue;
91     MCRegister Reg = ArgLoc.getLocReg();
92     // Only look at callee saved registers.
93     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
94       continue;
95     // Check that we pass the value used for the caller.
96     // (We look for a CopyFromReg reading a virtual register that is used
97     //  for the function live-in value of register Reg)
98     SDValue Value = OutVals[I];
99     if (Value->getOpcode() == ISD::AssertZext)
100       Value = Value.getOperand(0);
101     if (Value->getOpcode() != ISD::CopyFromReg)
102       return false;
103     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
104     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
105       return false;
106   }
107   return true;
108 }
109 
110 /// Set CallLoweringInfo attribute flags based on a call instruction
111 /// and called function attributes.
setAttributes(const CallBase * Call,unsigned ArgIdx)112 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
113                                                      unsigned ArgIdx) {
114   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
115   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,MakeLibCallOptions CallOptions,const SDLoc & dl,SDValue InChain) const146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163                                                  CallOptions.IsSExt);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS) const291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS,SDValue & Chain,bool IsSignaling) const301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
expandIndirectJTBranch(const SDLoc & dl,SDValue Value,SDValue Addr,int JTI,SelectionDAG & DAG) const477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,TargetLoweringOpt & TLO) const560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & DemandedBits,TargetLoweringOpt & TLO) const574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
602   unsigned DemandedSize = DemandedBits.getActiveBits();
603   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
604        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
605     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
606     if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) {
607       // We found a type with free casts.
608       SDValue X = DAG.getNode(
609           Op.getOpcode(), dl, SmallVT,
610           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
611           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
612       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
613       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
614       return TLO.CombineTo(Op, Z);
615     }
616   }
617   return false;
618 }
619 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,DAGCombinerInfo & DCI) const620 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
621                                           DAGCombinerInfo &DCI) const {
622   SelectionDAG &DAG = DCI.DAG;
623   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
624                         !DCI.isBeforeLegalizeOps());
625   KnownBits Known;
626 
627   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
628   if (Simplified) {
629     DCI.AddToWorklist(Op.getNode());
630     DCI.CommitTargetLoweringOpt(TLO);
631   }
632   return Simplified;
633 }
634 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,DAGCombinerInfo & DCI) const635 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
636                                           const APInt &DemandedElts,
637                                           DAGCombinerInfo &DCI) const {
638   SelectionDAG &DAG = DCI.DAG;
639   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
640                         !DCI.isBeforeLegalizeOps());
641   KnownBits Known;
642 
643   bool Simplified =
644       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
645   if (Simplified) {
646     DCI.AddToWorklist(Op.getNode());
647     DCI.CommitTargetLoweringOpt(TLO);
648   }
649   return Simplified;
650 }
651 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const652 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
653                                           KnownBits &Known,
654                                           TargetLoweringOpt &TLO,
655                                           unsigned Depth,
656                                           bool AssumeSingleUse) const {
657   EVT VT = Op.getValueType();
658 
659   // Since the number of lanes in a scalable vector is unknown at compile time,
660   // we track one bit which is implicitly broadcast to all lanes.  This means
661   // that all lanes in a scalable vector are considered demanded.
662   APInt DemandedElts = VT.isFixedLengthVector()
663                            ? APInt::getAllOnes(VT.getVectorNumElements())
664                            : APInt(1, 1);
665   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
666                               AssumeSingleUse);
667 }
668 
669 // TODO: Under what circumstances can we create nodes? Constant folding?
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const670 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
671     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
672     SelectionDAG &DAG, unsigned Depth) const {
673   EVT VT = Op.getValueType();
674 
675   // Limit search depth.
676   if (Depth >= SelectionDAG::MaxRecursionDepth)
677     return SDValue();
678 
679   // Ignore UNDEFs.
680   if (Op.isUndef())
681     return SDValue();
682 
683   // Not demanding any bits/elts from Op.
684   if (DemandedBits == 0 || DemandedElts == 0)
685     return DAG.getUNDEF(VT);
686 
687   bool IsLE = DAG.getDataLayout().isLittleEndian();
688   unsigned NumElts = DemandedElts.getBitWidth();
689   unsigned BitWidth = DemandedBits.getBitWidth();
690   KnownBits LHSKnown, RHSKnown;
691   switch (Op.getOpcode()) {
692   case ISD::BITCAST: {
693     if (VT.isScalableVector())
694       return SDValue();
695 
696     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
697     EVT SrcVT = Src.getValueType();
698     EVT DstVT = Op.getValueType();
699     if (SrcVT == DstVT)
700       return Src;
701 
702     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
703     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
704     if (NumSrcEltBits == NumDstEltBits)
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708 
709     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
710       unsigned Scale = NumDstEltBits / NumSrcEltBits;
711       unsigned NumSrcElts = SrcVT.getVectorNumElements();
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != Scale; ++i) {
715         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
716         unsigned BitOffset = EltOffset * NumSrcEltBits;
717         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
718         if (!Sub.isZero()) {
719           DemandedSrcBits |= Sub;
720           for (unsigned j = 0; j != NumElts; ++j)
721             if (DemandedElts[j])
722               DemandedSrcElts.setBit((j * Scale) + i);
723         }
724       }
725 
726       if (SDValue V = SimplifyMultipleUseDemandedBits(
727               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
728         return DAG.getBitcast(DstVT, V);
729     }
730 
731     // TODO - bigendian once we have test coverage.
732     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
733       unsigned Scale = NumSrcEltBits / NumDstEltBits;
734       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
735       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
736       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
737       for (unsigned i = 0; i != NumElts; ++i)
738         if (DemandedElts[i]) {
739           unsigned Offset = (i % Scale) * NumDstEltBits;
740           DemandedSrcBits.insertBits(DemandedBits, Offset);
741           DemandedSrcElts.setBit(i / Scale);
742         }
743 
744       if (SDValue V = SimplifyMultipleUseDemandedBits(
745               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
746         return DAG.getBitcast(DstVT, V);
747     }
748 
749     break;
750   }
751   case ISD::FREEZE: {
752     SDValue N0 = Op.getOperand(0);
753     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
754                                              /*PoisonOnly=*/false))
755       return N0;
756     break;
757   }
758   case ISD::AND: {
759     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
760     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
761 
762     // If all of the demanded bits are known 1 on one side, return the other.
763     // These bits cannot contribute to the result of the 'and' in this
764     // context.
765     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
766       return Op.getOperand(0);
767     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
768       return Op.getOperand(1);
769     break;
770   }
771   case ISD::OR: {
772     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
773     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
774 
775     // If all of the demanded bits are known zero on one side, return the
776     // other.  These bits cannot contribute to the result of the 'or' in this
777     // context.
778     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
779       return Op.getOperand(0);
780     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
781       return Op.getOperand(1);
782     break;
783   }
784   case ISD::XOR: {
785     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
786     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
787 
788     // If all of the demanded bits are known zero on one side, return the
789     // other.
790     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
791       return Op.getOperand(0);
792     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
793       return Op.getOperand(1);
794     break;
795   }
796   case ISD::SHL: {
797     // If we are only demanding sign bits then we can use the shift source
798     // directly.
799     if (std::optional<uint64_t> MaxSA =
800             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
801       SDValue Op0 = Op.getOperand(0);
802       unsigned ShAmt = *MaxSA;
803       unsigned NumSignBits =
804           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
805       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
806       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
807         return Op0;
808     }
809     break;
810   }
811   case ISD::SETCC: {
812     SDValue Op0 = Op.getOperand(0);
813     SDValue Op1 = Op.getOperand(1);
814     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815     // If (1) we only need the sign-bit, (2) the setcc operands are the same
816     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
817     // -1, we may be able to bypass the setcc.
818     if (DemandedBits.isSignMask() &&
819         Op0.getScalarValueSizeInBits() == BitWidth &&
820         getBooleanContents(Op0.getValueType()) ==
821             BooleanContent::ZeroOrNegativeOneBooleanContent) {
822       // If we're testing X < 0, then this compare isn't needed - just use X!
823       // FIXME: We're limiting to integer types here, but this should also work
824       // if we don't care about FP signed-zero. The use of SETLT with FP means
825       // that we don't care about NaNs.
826       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
827           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
828         return Op0;
829     }
830     break;
831   }
832   case ISD::SIGN_EXTEND_INREG: {
833     // If none of the extended bits are demanded, eliminate the sextinreg.
834     SDValue Op0 = Op.getOperand(0);
835     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
836     unsigned ExBits = ExVT.getScalarSizeInBits();
837     if (DemandedBits.getActiveBits() <= ExBits &&
838         shouldRemoveRedundantExtend(Op))
839       return Op0;
840     // If the input is already sign extended, just drop the extension.
841     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
842     if (NumSignBits >= (BitWidth - ExBits + 1))
843       return Op0;
844     break;
845   }
846   case ISD::ANY_EXTEND_VECTOR_INREG:
847   case ISD::SIGN_EXTEND_VECTOR_INREG:
848   case ISD::ZERO_EXTEND_VECTOR_INREG: {
849     if (VT.isScalableVector())
850       return SDValue();
851 
852     // If we only want the lowest element and none of extended bits, then we can
853     // return the bitcasted source vector.
854     SDValue Src = Op.getOperand(0);
855     EVT SrcVT = Src.getValueType();
856     EVT DstVT = Op.getValueType();
857     if (IsLE && DemandedElts == 1 &&
858         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
859         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
860       return DAG.getBitcast(DstVT, Src);
861     }
862     break;
863   }
864   case ISD::INSERT_VECTOR_ELT: {
865     if (VT.isScalableVector())
866       return SDValue();
867 
868     // If we don't demand the inserted element, return the base vector.
869     SDValue Vec = Op.getOperand(0);
870     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
871     EVT VecVT = Vec.getValueType();
872     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
873         !DemandedElts[CIdx->getZExtValue()])
874       return Vec;
875     break;
876   }
877   case ISD::INSERT_SUBVECTOR: {
878     if (VT.isScalableVector())
879       return SDValue();
880 
881     SDValue Vec = Op.getOperand(0);
882     SDValue Sub = Op.getOperand(1);
883     uint64_t Idx = Op.getConstantOperandVal(2);
884     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
885     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
886     // If we don't demand the inserted subvector, return the base vector.
887     if (DemandedSubElts == 0)
888       return Vec;
889     break;
890   }
891   case ISD::VECTOR_SHUFFLE: {
892     assert(!VT.isScalableVector());
893     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
894 
895     // If all the demanded elts are from one operand and are inline,
896     // then we can use the operand directly.
897     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
898     for (unsigned i = 0; i != NumElts; ++i) {
899       int M = ShuffleMask[i];
900       if (M < 0 || !DemandedElts[i])
901         continue;
902       AllUndef = false;
903       IdentityLHS &= (M == (int)i);
904       IdentityRHS &= ((M - NumElts) == i);
905     }
906 
907     if (AllUndef)
908       return DAG.getUNDEF(Op.getValueType());
909     if (IdentityLHS)
910       return Op.getOperand(0);
911     if (IdentityRHS)
912       return Op.getOperand(1);
913     break;
914   }
915   default:
916     // TODO: Probably okay to remove after audit; here to reduce change size
917     // in initial enablement patch for scalable vectors
918     if (VT.isScalableVector())
919       return SDValue();
920 
921     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
922       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
923               Op, DemandedBits, DemandedElts, DAG, Depth))
924         return V;
925     break;
926   }
927   return SDValue();
928 }
929 
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,SelectionDAG & DAG,unsigned Depth) const930 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
931     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
932     unsigned Depth) const {
933   EVT VT = Op.getValueType();
934   // Since the number of lanes in a scalable vector is unknown at compile time,
935   // we track one bit which is implicitly broadcast to all lanes.  This means
936   // that all lanes in a scalable vector are considered demanded.
937   APInt DemandedElts = VT.isFixedLengthVector()
938                            ? APInt::getAllOnes(VT.getVectorNumElements())
939                            : APInt(1, 1);
940   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
941                                          Depth);
942 }
943 
SimplifyMultipleUseDemandedVectorElts(SDValue Op,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const944 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
945     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
946     unsigned Depth) const {
947   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
948   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
949                                          Depth);
950 }
951 
952 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
953 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
combineShiftToAVG(SDValue Op,TargetLowering::TargetLoweringOpt & TLO,const TargetLowering & TLI,const APInt & DemandedBits,const APInt & DemandedElts,unsigned Depth)954 static SDValue combineShiftToAVG(SDValue Op,
955                                  TargetLowering::TargetLoweringOpt &TLO,
956                                  const TargetLowering &TLI,
957                                  const APInt &DemandedBits,
958                                  const APInt &DemandedElts, unsigned Depth) {
959   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
960          "SRL or SRA node is required here!");
961   // Is the right shift using an immediate value of 1?
962   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
963   if (!N1C || !N1C->isOne())
964     return SDValue();
965 
966   // We are looking for an avgfloor
967   // add(ext, ext)
968   // or one of these as a avgceil
969   // add(add(ext, ext), 1)
970   // add(add(ext, 1), ext)
971   // add(ext, add(ext, 1))
972   SDValue Add = Op.getOperand(0);
973   if (Add.getOpcode() != ISD::ADD)
974     return SDValue();
975 
976   SDValue ExtOpA = Add.getOperand(0);
977   SDValue ExtOpB = Add.getOperand(1);
978   SDValue Add2;
979   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
980     ConstantSDNode *ConstOp;
981     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
982         ConstOp->isOne()) {
983       ExtOpA = Op1;
984       ExtOpB = Op3;
985       Add2 = A;
986       return true;
987     }
988     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
989         ConstOp->isOne()) {
990       ExtOpA = Op1;
991       ExtOpB = Op2;
992       Add2 = A;
993       return true;
994     }
995     return false;
996   };
997   bool IsCeil =
998       (ExtOpA.getOpcode() == ISD::ADD &&
999        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1000       (ExtOpB.getOpcode() == ISD::ADD &&
1001        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1002 
1003   // If the shift is signed (sra):
1004   //  - Needs >= 2 sign bit for both operands.
1005   //  - Needs >= 2 zero bits.
1006   // If the shift is unsigned (srl):
1007   //  - Needs >= 1 zero bit for both operands.
1008   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1009   SelectionDAG &DAG = TLO.DAG;
1010   unsigned ShiftOpc = Op.getOpcode();
1011   bool IsSigned = false;
1012   unsigned KnownBits;
1013   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1014   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1015   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1016   unsigned NumZeroA =
1017       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1018   unsigned NumZeroB =
1019       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1020   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1021 
1022   switch (ShiftOpc) {
1023   default:
1024     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1025   case ISD::SRA: {
1026     if (NumZero >= 2 && NumSigned < NumZero) {
1027       IsSigned = false;
1028       KnownBits = NumZero;
1029       break;
1030     }
1031     if (NumSigned >= 1) {
1032       IsSigned = true;
1033       KnownBits = NumSigned;
1034       break;
1035     }
1036     return SDValue();
1037   }
1038   case ISD::SRL: {
1039     if (NumZero >= 1 && NumSigned < NumZero) {
1040       IsSigned = false;
1041       KnownBits = NumZero;
1042       break;
1043     }
1044     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1045       IsSigned = true;
1046       KnownBits = NumSigned;
1047       break;
1048     }
1049     return SDValue();
1050   }
1051   }
1052 
1053   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1054                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1055 
1056   // Find the smallest power-2 type that is legal for this vector size and
1057   // operation, given the original type size and the number of known sign/zero
1058   // bits.
1059   EVT VT = Op.getValueType();
1060   unsigned MinWidth =
1061       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1062   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1063   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1064     return SDValue();
1065   if (VT.isVector())
1066     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1067   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1068     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1069     // larger type size to do the transform.
1070     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1071       return SDValue();
1072     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1073                                Add.getOperand(1)) &&
1074         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1075                                          Add2.getOperand(1))))
1076       NVT = VT;
1077     else
1078       return SDValue();
1079   }
1080 
1081   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1082   // this is likely to stop other folds (reassociation, value tracking etc.)
1083   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1084       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1085     return SDValue();
1086 
1087   SDLoc DL(Op);
1088   SDValue ResultAVG =
1089       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1090                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1091   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1092 }
1093 
1094 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1095 /// result of Op are ever used downstream. If we can use this information to
1096 /// simplify Op, create a new simplified DAG node and return true, returning the
1097 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1098 /// return a mask of Known bits for the expression (used to simplify the
1099 /// caller).  The Known bits may only be accurate for those bits in the
1100 /// OriginalDemandedBits and OriginalDemandedElts.
SimplifyDemandedBits(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const1101 bool TargetLowering::SimplifyDemandedBits(
1102     SDValue Op, const APInt &OriginalDemandedBits,
1103     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1104     unsigned Depth, bool AssumeSingleUse) const {
1105   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1106   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1107          "Mask size mismatches value type size!");
1108 
1109   // Don't know anything.
1110   Known = KnownBits(BitWidth);
1111 
1112   EVT VT = Op.getValueType();
1113   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1114   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1115   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1116          "Unexpected vector size");
1117 
1118   APInt DemandedBits = OriginalDemandedBits;
1119   APInt DemandedElts = OriginalDemandedElts;
1120   SDLoc dl(Op);
1121 
1122   // Undef operand.
1123   if (Op.isUndef())
1124     return false;
1125 
1126   // We can't simplify target constants.
1127   if (Op.getOpcode() == ISD::TargetConstant)
1128     return false;
1129 
1130   if (Op.getOpcode() == ISD::Constant) {
1131     // We know all of the bits for a constant!
1132     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1133     return false;
1134   }
1135 
1136   if (Op.getOpcode() == ISD::ConstantFP) {
1137     // We know all of the bits for a floating point constant!
1138     Known = KnownBits::makeConstant(
1139         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1140     return false;
1141   }
1142 
1143   // Other users may use these bits.
1144   bool HasMultiUse = false;
1145   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1146     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1147       // Limit search depth.
1148       return false;
1149     }
1150     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1151     DemandedBits = APInt::getAllOnes(BitWidth);
1152     DemandedElts = APInt::getAllOnes(NumElts);
1153     HasMultiUse = true;
1154   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1155     // Not demanding any bits/elts from Op.
1156     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1157   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1158     // Limit search depth.
1159     return false;
1160   }
1161 
1162   KnownBits Known2;
1163   switch (Op.getOpcode()) {
1164   case ISD::SCALAR_TO_VECTOR: {
1165     if (VT.isScalableVector())
1166       return false;
1167     if (!DemandedElts[0])
1168       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1169 
1170     KnownBits SrcKnown;
1171     SDValue Src = Op.getOperand(0);
1172     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1173     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1174     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1175       return true;
1176 
1177     // Upper elements are undef, so only get the knownbits if we just demand
1178     // the bottom element.
1179     if (DemandedElts == 1)
1180       Known = SrcKnown.anyextOrTrunc(BitWidth);
1181     break;
1182   }
1183   case ISD::BUILD_VECTOR:
1184     // Collect the known bits that are shared by every demanded element.
1185     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1186     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1187     return false; // Don't fall through, will infinitely loop.
1188   case ISD::SPLAT_VECTOR: {
1189     SDValue Scl = Op.getOperand(0);
1190     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1191     KnownBits KnownScl;
1192     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1193       return true;
1194 
1195     // Implicitly truncate the bits to match the official semantics of
1196     // SPLAT_VECTOR.
1197     Known = KnownScl.trunc(BitWidth);
1198     break;
1199   }
1200   case ISD::LOAD: {
1201     auto *LD = cast<LoadSDNode>(Op);
1202     if (getTargetConstantFromLoad(LD)) {
1203       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1204       return false; // Don't fall through, will infinitely loop.
1205     }
1206     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1207       // If this is a ZEXTLoad and we are looking at the loaded value.
1208       EVT MemVT = LD->getMemoryVT();
1209       unsigned MemBits = MemVT.getScalarSizeInBits();
1210       Known.Zero.setBitsFrom(MemBits);
1211       return false; // Don't fall through, will infinitely loop.
1212     }
1213     break;
1214   }
1215   case ISD::INSERT_VECTOR_ELT: {
1216     if (VT.isScalableVector())
1217       return false;
1218     SDValue Vec = Op.getOperand(0);
1219     SDValue Scl = Op.getOperand(1);
1220     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1221     EVT VecVT = Vec.getValueType();
1222 
1223     // If index isn't constant, assume we need all vector elements AND the
1224     // inserted element.
1225     APInt DemandedVecElts(DemandedElts);
1226     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1227       unsigned Idx = CIdx->getZExtValue();
1228       DemandedVecElts.clearBit(Idx);
1229 
1230       // Inserted element is not required.
1231       if (!DemandedElts[Idx])
1232         return TLO.CombineTo(Op, Vec);
1233     }
1234 
1235     KnownBits KnownScl;
1236     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1237     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1238     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1239       return true;
1240 
1241     Known = KnownScl.anyextOrTrunc(BitWidth);
1242 
1243     KnownBits KnownVec;
1244     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1245                              Depth + 1))
1246       return true;
1247 
1248     if (!!DemandedVecElts)
1249       Known = Known.intersectWith(KnownVec);
1250 
1251     return false;
1252   }
1253   case ISD::INSERT_SUBVECTOR: {
1254     if (VT.isScalableVector())
1255       return false;
1256     // Demand any elements from the subvector and the remainder from the src its
1257     // inserted into.
1258     SDValue Src = Op.getOperand(0);
1259     SDValue Sub = Op.getOperand(1);
1260     uint64_t Idx = Op.getConstantOperandVal(2);
1261     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1262     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1263     APInt DemandedSrcElts = DemandedElts;
1264     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1265 
1266     KnownBits KnownSub, KnownSrc;
1267     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1268                              Depth + 1))
1269       return true;
1270     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1271                              Depth + 1))
1272       return true;
1273 
1274     Known.Zero.setAllBits();
1275     Known.One.setAllBits();
1276     if (!!DemandedSubElts)
1277       Known = Known.intersectWith(KnownSub);
1278     if (!!DemandedSrcElts)
1279       Known = Known.intersectWith(KnownSrc);
1280 
1281     // Attempt to avoid multi-use src if we don't need anything from it.
1282     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1283         !DemandedSrcElts.isAllOnes()) {
1284       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1285           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1286       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1287           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1288       if (NewSub || NewSrc) {
1289         NewSub = NewSub ? NewSub : Sub;
1290         NewSrc = NewSrc ? NewSrc : Src;
1291         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1292                                         Op.getOperand(2));
1293         return TLO.CombineTo(Op, NewOp);
1294       }
1295     }
1296     break;
1297   }
1298   case ISD::EXTRACT_SUBVECTOR: {
1299     if (VT.isScalableVector())
1300       return false;
1301     // Offset the demanded elts by the subvector index.
1302     SDValue Src = Op.getOperand(0);
1303     if (Src.getValueType().isScalableVector())
1304       break;
1305     uint64_t Idx = Op.getConstantOperandVal(1);
1306     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1307     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1308 
1309     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1310                              Depth + 1))
1311       return true;
1312 
1313     // Attempt to avoid multi-use src if we don't need anything from it.
1314     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1315       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1316           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1317       if (DemandedSrc) {
1318         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1319                                         Op.getOperand(1));
1320         return TLO.CombineTo(Op, NewOp);
1321       }
1322     }
1323     break;
1324   }
1325   case ISD::CONCAT_VECTORS: {
1326     if (VT.isScalableVector())
1327       return false;
1328     Known.Zero.setAllBits();
1329     Known.One.setAllBits();
1330     EVT SubVT = Op.getOperand(0).getValueType();
1331     unsigned NumSubVecs = Op.getNumOperands();
1332     unsigned NumSubElts = SubVT.getVectorNumElements();
1333     for (unsigned i = 0; i != NumSubVecs; ++i) {
1334       APInt DemandedSubElts =
1335           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1336       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1337                                Known2, TLO, Depth + 1))
1338         return true;
1339       // Known bits are shared by every demanded subvector element.
1340       if (!!DemandedSubElts)
1341         Known = Known.intersectWith(Known2);
1342     }
1343     break;
1344   }
1345   case ISD::VECTOR_SHUFFLE: {
1346     assert(!VT.isScalableVector());
1347     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1348 
1349     // Collect demanded elements from shuffle operands..
1350     APInt DemandedLHS, DemandedRHS;
1351     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1352                                 DemandedRHS))
1353       break;
1354 
1355     if (!!DemandedLHS || !!DemandedRHS) {
1356       SDValue Op0 = Op.getOperand(0);
1357       SDValue Op1 = Op.getOperand(1);
1358 
1359       Known.Zero.setAllBits();
1360       Known.One.setAllBits();
1361       if (!!DemandedLHS) {
1362         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1363                                  Depth + 1))
1364           return true;
1365         Known = Known.intersectWith(Known2);
1366       }
1367       if (!!DemandedRHS) {
1368         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1369                                  Depth + 1))
1370           return true;
1371         Known = Known.intersectWith(Known2);
1372       }
1373 
1374       // Attempt to avoid multi-use ops if we don't need anything from them.
1375       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1376           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1377       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1378           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1379       if (DemandedOp0 || DemandedOp1) {
1380         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1381         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1382         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1383         return TLO.CombineTo(Op, NewOp);
1384       }
1385     }
1386     break;
1387   }
1388   case ISD::AND: {
1389     SDValue Op0 = Op.getOperand(0);
1390     SDValue Op1 = Op.getOperand(1);
1391 
1392     // If the RHS is a constant, check to see if the LHS would be zero without
1393     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1394     // simplify the LHS, here we're using information from the LHS to simplify
1395     // the RHS.
1396     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1397       // Do not increment Depth here; that can cause an infinite loop.
1398       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1399       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1400       if ((LHSKnown.Zero & DemandedBits) ==
1401           (~RHSC->getAPIntValue() & DemandedBits))
1402         return TLO.CombineTo(Op, Op0);
1403 
1404       // If any of the set bits in the RHS are known zero on the LHS, shrink
1405       // the constant.
1406       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1407                                  DemandedElts, TLO))
1408         return true;
1409 
1410       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1411       // constant, but if this 'and' is only clearing bits that were just set by
1412       // the xor, then this 'and' can be eliminated by shrinking the mask of
1413       // the xor. For example, for a 32-bit X:
1414       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1415       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1416           LHSKnown.One == ~RHSC->getAPIntValue()) {
1417         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1418         return TLO.CombineTo(Op, Xor);
1419       }
1420     }
1421 
1422     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1423     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1424     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1425         (Op0.getOperand(0).isUndef() ||
1426          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1427         Op0->hasOneUse()) {
1428       unsigned NumSubElts =
1429           Op0.getOperand(1).getValueType().getVectorNumElements();
1430       unsigned SubIdx = Op0.getConstantOperandVal(2);
1431       APInt DemandedSub =
1432           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1433       KnownBits KnownSubMask =
1434           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1435       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1436         SDValue NewAnd =
1437             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1438         SDValue NewInsert =
1439             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1440                             Op0.getOperand(1), Op0.getOperand(2));
1441         return TLO.CombineTo(Op, NewInsert);
1442       }
1443     }
1444 
1445     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1446                              Depth + 1))
1447       return true;
1448     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1449                              Known2, TLO, Depth + 1))
1450       return true;
1451 
1452     // If all of the demanded bits are known one on one side, return the other.
1453     // These bits cannot contribute to the result of the 'and'.
1454     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1455       return TLO.CombineTo(Op, Op0);
1456     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1457       return TLO.CombineTo(Op, Op1);
1458     // If all of the demanded bits in the inputs are known zeros, return zero.
1459     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1460       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1461     // If the RHS is a constant, see if we can simplify it.
1462     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1463                                TLO))
1464       return true;
1465     // If the operation can be done in a smaller type, do so.
1466     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1467       return true;
1468 
1469     // Attempt to avoid multi-use ops if we don't need anything from them.
1470     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1471       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1472           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1473       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1474           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1475       if (DemandedOp0 || DemandedOp1) {
1476         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1477         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1478         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1479         return TLO.CombineTo(Op, NewOp);
1480       }
1481     }
1482 
1483     Known &= Known2;
1484     break;
1485   }
1486   case ISD::OR: {
1487     SDValue Op0 = Op.getOperand(0);
1488     SDValue Op1 = Op.getOperand(1);
1489     SDNodeFlags Flags = Op.getNode()->getFlags();
1490     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1491                              Depth + 1)) {
1492       if (Flags.hasDisjoint()) {
1493         Flags.setDisjoint(false);
1494         Op->setFlags(Flags);
1495       }
1496       return true;
1497     }
1498 
1499     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1500                              Known2, TLO, Depth + 1)) {
1501       if (Flags.hasDisjoint()) {
1502         Flags.setDisjoint(false);
1503         Op->setFlags(Flags);
1504       }
1505       return true;
1506     }
1507 
1508     // If all of the demanded bits are known zero on one side, return the other.
1509     // These bits cannot contribute to the result of the 'or'.
1510     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1511       return TLO.CombineTo(Op, Op0);
1512     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1513       return TLO.CombineTo(Op, Op1);
1514     // If the RHS is a constant, see if we can simplify it.
1515     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1516       return true;
1517     // If the operation can be done in a smaller type, do so.
1518     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1519       return true;
1520 
1521     // Attempt to avoid multi-use ops if we don't need anything from them.
1522     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1523       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1524           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1525       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1526           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1527       if (DemandedOp0 || DemandedOp1) {
1528         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1529         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1530         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1531         return TLO.CombineTo(Op, NewOp);
1532       }
1533     }
1534 
1535     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1536     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1537     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1538         Op0->hasOneUse() && Op1->hasOneUse()) {
1539       // Attempt to match all commutations - m_c_Or would've been useful!
1540       for (int I = 0; I != 2; ++I) {
1541         SDValue X = Op.getOperand(I).getOperand(0);
1542         SDValue C1 = Op.getOperand(I).getOperand(1);
1543         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1544         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1545         if (Alt.getOpcode() == ISD::OR) {
1546           for (int J = 0; J != 2; ++J) {
1547             if (X == Alt.getOperand(J)) {
1548               SDValue Y = Alt.getOperand(1 - J);
1549               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1550                                                                {C1, C2})) {
1551                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1552                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1553                 return TLO.CombineTo(
1554                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1555               }
1556             }
1557           }
1558         }
1559       }
1560     }
1561 
1562     Known |= Known2;
1563     break;
1564   }
1565   case ISD::XOR: {
1566     SDValue Op0 = Op.getOperand(0);
1567     SDValue Op1 = Op.getOperand(1);
1568 
1569     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1570                              Depth + 1))
1571       return true;
1572     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1573                              Depth + 1))
1574       return true;
1575 
1576     // If all of the demanded bits are known zero on one side, return the other.
1577     // These bits cannot contribute to the result of the 'xor'.
1578     if (DemandedBits.isSubsetOf(Known.Zero))
1579       return TLO.CombineTo(Op, Op0);
1580     if (DemandedBits.isSubsetOf(Known2.Zero))
1581       return TLO.CombineTo(Op, Op1);
1582     // If the operation can be done in a smaller type, do so.
1583     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1584       return true;
1585 
1586     // If all of the unknown bits are known to be zero on one side or the other
1587     // turn this into an *inclusive* or.
1588     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1589     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1590       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1591 
1592     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1593     if (C) {
1594       // If one side is a constant, and all of the set bits in the constant are
1595       // also known set on the other side, turn this into an AND, as we know
1596       // the bits will be cleared.
1597       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1598       // NB: it is okay if more bits are known than are requested
1599       if (C->getAPIntValue() == Known2.One) {
1600         SDValue ANDC =
1601             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1602         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1603       }
1604 
1605       // If the RHS is a constant, see if we can change it. Don't alter a -1
1606       // constant because that's a 'not' op, and that is better for combining
1607       // and codegen.
1608       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1609         // We're flipping all demanded bits. Flip the undemanded bits too.
1610         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1611         return TLO.CombineTo(Op, New);
1612       }
1613 
1614       unsigned Op0Opcode = Op0.getOpcode();
1615       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1616         if (ConstantSDNode *ShiftC =
1617                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1618           // Don't crash on an oversized shift. We can not guarantee that a
1619           // bogus shift has been simplified to undef.
1620           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1621             uint64_t ShiftAmt = ShiftC->getZExtValue();
1622             APInt Ones = APInt::getAllOnes(BitWidth);
1623             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1624                                          : Ones.lshr(ShiftAmt);
1625             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1626             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1627                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1628               // If the xor constant is a demanded mask, do a 'not' before the
1629               // shift:
1630               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1631               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1632               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1633               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1634                                                        Op0.getOperand(1)));
1635             }
1636           }
1637         }
1638       }
1639     }
1640 
1641     // If we can't turn this into a 'not', try to shrink the constant.
1642     if (!C || !C->isAllOnes())
1643       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1644         return true;
1645 
1646     // Attempt to avoid multi-use ops if we don't need anything from them.
1647     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1648       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1649           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1650       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1651           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1652       if (DemandedOp0 || DemandedOp1) {
1653         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1654         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1655         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1656         return TLO.CombineTo(Op, NewOp);
1657       }
1658     }
1659 
1660     Known ^= Known2;
1661     break;
1662   }
1663   case ISD::SELECT:
1664     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1665                              Known, TLO, Depth + 1))
1666       return true;
1667     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1668                              Known2, TLO, Depth + 1))
1669       return true;
1670 
1671     // If the operands are constants, see if we can simplify them.
1672     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1673       return true;
1674 
1675     // Only known if known in both the LHS and RHS.
1676     Known = Known.intersectWith(Known2);
1677     break;
1678   case ISD::VSELECT:
1679     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1680                              Known, TLO, Depth + 1))
1681       return true;
1682     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1683                              Known2, TLO, Depth + 1))
1684       return true;
1685 
1686     // Only known if known in both the LHS and RHS.
1687     Known = Known.intersectWith(Known2);
1688     break;
1689   case ISD::SELECT_CC:
1690     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1691                              Known, TLO, Depth + 1))
1692       return true;
1693     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1694                              Known2, TLO, Depth + 1))
1695       return true;
1696 
1697     // If the operands are constants, see if we can simplify them.
1698     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1699       return true;
1700 
1701     // Only known if known in both the LHS and RHS.
1702     Known = Known.intersectWith(Known2);
1703     break;
1704   case ISD::SETCC: {
1705     SDValue Op0 = Op.getOperand(0);
1706     SDValue Op1 = Op.getOperand(1);
1707     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1708     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1709     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1710     // -1, we may be able to bypass the setcc.
1711     if (DemandedBits.isSignMask() &&
1712         Op0.getScalarValueSizeInBits() == BitWidth &&
1713         getBooleanContents(Op0.getValueType()) ==
1714             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1715       // If we're testing X < 0, then this compare isn't needed - just use X!
1716       // FIXME: We're limiting to integer types here, but this should also work
1717       // if we don't care about FP signed-zero. The use of SETLT with FP means
1718       // that we don't care about NaNs.
1719       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1720           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1721         return TLO.CombineTo(Op, Op0);
1722 
1723       // TODO: Should we check for other forms of sign-bit comparisons?
1724       // Examples: X <= -1, X >= 0
1725     }
1726     if (getBooleanContents(Op0.getValueType()) ==
1727             TargetLowering::ZeroOrOneBooleanContent &&
1728         BitWidth > 1)
1729       Known.Zero.setBitsFrom(1);
1730     break;
1731   }
1732   case ISD::SHL: {
1733     SDValue Op0 = Op.getOperand(0);
1734     SDValue Op1 = Op.getOperand(1);
1735     EVT ShiftVT = Op1.getValueType();
1736 
1737     if (std::optional<uint64_t> KnownSA =
1738             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1739       unsigned ShAmt = *KnownSA;
1740       if (ShAmt == 0)
1741         return TLO.CombineTo(Op, Op0);
1742 
1743       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1744       // single shift.  We can do this if the bottom bits (which are shifted
1745       // out) are never demanded.
1746       // TODO - support non-uniform vector amounts.
1747       if (Op0.getOpcode() == ISD::SRL) {
1748         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1749           if (std::optional<uint64_t> InnerSA =
1750                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1751             unsigned C1 = *InnerSA;
1752             unsigned Opc = ISD::SHL;
1753             int Diff = ShAmt - C1;
1754             if (Diff < 0) {
1755               Diff = -Diff;
1756               Opc = ISD::SRL;
1757             }
1758             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1759             return TLO.CombineTo(
1760                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1761           }
1762         }
1763       }
1764 
1765       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1766       // are not demanded. This will likely allow the anyext to be folded away.
1767       // TODO - support non-uniform vector amounts.
1768       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1769         SDValue InnerOp = Op0.getOperand(0);
1770         EVT InnerVT = InnerOp.getValueType();
1771         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1772         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1773             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1774           SDValue NarrowShl = TLO.DAG.getNode(
1775               ISD::SHL, dl, InnerVT, InnerOp,
1776               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1777           return TLO.CombineTo(
1778               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1779         }
1780 
1781         // Repeat the SHL optimization above in cases where an extension
1782         // intervenes: (shl (anyext (shr x, c1)), c2) to
1783         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1784         // aren't demanded (as above) and that the shifted upper c1 bits of
1785         // x aren't demanded.
1786         // TODO - support non-uniform vector amounts.
1787         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1788             InnerOp.hasOneUse()) {
1789           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1790                   InnerOp, DemandedElts, Depth + 2)) {
1791             unsigned InnerShAmt = *SA2;
1792             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1793                 DemandedBits.getActiveBits() <=
1794                     (InnerBits - InnerShAmt + ShAmt) &&
1795                 DemandedBits.countr_zero() >= ShAmt) {
1796               SDValue NewSA =
1797                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1798               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1799                                                InnerOp.getOperand(0));
1800               return TLO.CombineTo(
1801                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1802             }
1803           }
1804         }
1805       }
1806 
1807       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1808       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1809                                Depth + 1)) {
1810         SDNodeFlags Flags = Op.getNode()->getFlags();
1811         if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1812           // Disable the nsw and nuw flags. We can no longer guarantee that we
1813           // won't wrap after simplification.
1814           Flags.setNoSignedWrap(false);
1815           Flags.setNoUnsignedWrap(false);
1816           Op->setFlags(Flags);
1817         }
1818         return true;
1819       }
1820       Known.Zero <<= ShAmt;
1821       Known.One <<= ShAmt;
1822       // low bits known zero.
1823       Known.Zero.setLowBits(ShAmt);
1824 
1825       // Attempt to avoid multi-use ops if we don't need anything from them.
1826       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1827         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1828             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1829         if (DemandedOp0) {
1830           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1831           return TLO.CombineTo(Op, NewOp);
1832         }
1833       }
1834 
1835       // TODO: Can we merge this fold with the one below?
1836       // Try shrinking the operation as long as the shift amount will still be
1837       // in range.
1838       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1839           Op.getNode()->hasOneUse()) {
1840         // Search for the smallest integer type with free casts to and from
1841         // Op's type. For expedience, just check power-of-2 integer types.
1842         unsigned DemandedSize = DemandedBits.getActiveBits();
1843         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1844              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1845           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1846           if (isNarrowingProfitable(VT, SmallVT) &&
1847               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1848               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1849               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1850             assert(DemandedSize <= SmallVTBits &&
1851                    "Narrowed below demanded bits?");
1852             // We found a type with free casts.
1853             SDValue NarrowShl = TLO.DAG.getNode(
1854                 ISD::SHL, dl, SmallVT,
1855                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1856                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1857             return TLO.CombineTo(
1858                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1859           }
1860         }
1861       }
1862 
1863       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1864       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1865       // Only do this if we demand the upper half so the knownbits are correct.
1866       unsigned HalfWidth = BitWidth / 2;
1867       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1868           DemandedBits.countLeadingOnes() >= HalfWidth) {
1869         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1870         if (isNarrowingProfitable(VT, HalfVT) &&
1871             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1872             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1873             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1874           // If we're demanding the upper bits at all, we must ensure
1875           // that the upper bits of the shift result are known to be zero,
1876           // which is equivalent to the narrow shift being NUW.
1877           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1878             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1879             SDNodeFlags Flags;
1880             Flags.setNoSignedWrap(IsNSW);
1881             Flags.setNoUnsignedWrap(IsNUW);
1882             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1883             SDValue NewShiftAmt =
1884                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1885             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1886                                                NewShiftAmt, Flags);
1887             SDValue NewExt =
1888                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1889             return TLO.CombineTo(Op, NewExt);
1890           }
1891         }
1892       }
1893     } else {
1894       // This is a variable shift, so we can't shift the demand mask by a known
1895       // amount. But if we are not demanding high bits, then we are not
1896       // demanding those bits from the pre-shifted operand either.
1897       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1898         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1899         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1900                                  Depth + 1)) {
1901           SDNodeFlags Flags = Op.getNode()->getFlags();
1902           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1903             // Disable the nsw and nuw flags. We can no longer guarantee that we
1904             // won't wrap after simplification.
1905             Flags.setNoSignedWrap(false);
1906             Flags.setNoUnsignedWrap(false);
1907             Op->setFlags(Flags);
1908           }
1909           return true;
1910         }
1911         Known.resetAll();
1912       }
1913     }
1914 
1915     // If we are only demanding sign bits then we can use the shift source
1916     // directly.
1917     if (std::optional<uint64_t> MaxSA =
1918             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1919       unsigned ShAmt = *MaxSA;
1920       unsigned NumSignBits =
1921           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1922       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1923       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1924         return TLO.CombineTo(Op, Op0);
1925     }
1926     break;
1927   }
1928   case ISD::SRL: {
1929     SDValue Op0 = Op.getOperand(0);
1930     SDValue Op1 = Op.getOperand(1);
1931     EVT ShiftVT = Op1.getValueType();
1932 
1933     if (std::optional<uint64_t> KnownSA =
1934             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1935       unsigned ShAmt = *KnownSA;
1936       if (ShAmt == 0)
1937         return TLO.CombineTo(Op, Op0);
1938 
1939       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1940       // single shift.  We can do this if the top bits (which are shifted out)
1941       // are never demanded.
1942       // TODO - support non-uniform vector amounts.
1943       if (Op0.getOpcode() == ISD::SHL) {
1944         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1945           if (std::optional<uint64_t> InnerSA =
1946                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1947             unsigned C1 = *InnerSA;
1948             unsigned Opc = ISD::SRL;
1949             int Diff = ShAmt - C1;
1950             if (Diff < 0) {
1951               Diff = -Diff;
1952               Opc = ISD::SHL;
1953             }
1954             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1955             return TLO.CombineTo(
1956                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1957           }
1958         }
1959       }
1960 
1961       APInt InDemandedMask = (DemandedBits << ShAmt);
1962 
1963       // If the shift is exact, then it does demand the low bits (and knows that
1964       // they are zero).
1965       if (Op->getFlags().hasExact())
1966         InDemandedMask.setLowBits(ShAmt);
1967 
1968       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1969       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
1970       if ((BitWidth % 2) == 0 && !VT.isVector()) {
1971         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
1972         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
1973         if (isNarrowingProfitable(VT, HalfVT) &&
1974             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
1975             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1976             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
1977             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
1978              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
1979           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1980           SDValue NewShiftAmt =
1981               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1982           SDValue NewShift =
1983               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
1984           return TLO.CombineTo(
1985               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
1986         }
1987       }
1988 
1989       // Compute the new bits that are at the top now.
1990       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1991                                Depth + 1))
1992         return true;
1993       Known.Zero.lshrInPlace(ShAmt);
1994       Known.One.lshrInPlace(ShAmt);
1995       // High bits known zero.
1996       Known.Zero.setHighBits(ShAmt);
1997 
1998       // Attempt to avoid multi-use ops if we don't need anything from them.
1999       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2000         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2001             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2002         if (DemandedOp0) {
2003           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2004           return TLO.CombineTo(Op, NewOp);
2005         }
2006       }
2007     } else {
2008       // Use generic knownbits computation as it has support for non-uniform
2009       // shift amounts.
2010       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2011     }
2012 
2013     // Try to match AVG patterns (after shift simplification).
2014     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2015                                         DemandedElts, Depth + 1))
2016       return TLO.CombineTo(Op, AVG);
2017 
2018     break;
2019   }
2020   case ISD::SRA: {
2021     SDValue Op0 = Op.getOperand(0);
2022     SDValue Op1 = Op.getOperand(1);
2023     EVT ShiftVT = Op1.getValueType();
2024 
2025     // If we only want bits that already match the signbit then we don't need
2026     // to shift.
2027     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2028     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2029         NumHiDemandedBits)
2030       return TLO.CombineTo(Op, Op0);
2031 
2032     // If this is an arithmetic shift right and only the low-bit is set, we can
2033     // always convert this into a logical shr, even if the shift amount is
2034     // variable.  The low bit of the shift cannot be an input sign bit unless
2035     // the shift amount is >= the size of the datatype, which is undefined.
2036     if (DemandedBits.isOne())
2037       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2038 
2039     if (std::optional<uint64_t> KnownSA =
2040             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2041       unsigned ShAmt = *KnownSA;
2042       if (ShAmt == 0)
2043         return TLO.CombineTo(Op, Op0);
2044 
2045       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2046       // supports sext_inreg.
2047       if (Op0.getOpcode() == ISD::SHL) {
2048         if (std::optional<uint64_t> InnerSA =
2049                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2050           unsigned LowBits = BitWidth - ShAmt;
2051           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2052           if (VT.isVector())
2053             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2054                                      VT.getVectorElementCount());
2055 
2056           if (*InnerSA == ShAmt) {
2057             if (!TLO.LegalOperations() ||
2058                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2059               return TLO.CombineTo(
2060                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2061                                       Op0.getOperand(0),
2062                                       TLO.DAG.getValueType(ExtVT)));
2063 
2064             // Even if we can't convert to sext_inreg, we might be able to
2065             // remove this shift pair if the input is already sign extended.
2066             unsigned NumSignBits =
2067                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2068             if (NumSignBits > ShAmt)
2069               return TLO.CombineTo(Op, Op0.getOperand(0));
2070           }
2071         }
2072       }
2073 
2074       APInt InDemandedMask = (DemandedBits << ShAmt);
2075 
2076       // If the shift is exact, then it does demand the low bits (and knows that
2077       // they are zero).
2078       if (Op->getFlags().hasExact())
2079         InDemandedMask.setLowBits(ShAmt);
2080 
2081       // If any of the demanded bits are produced by the sign extension, we also
2082       // demand the input sign bit.
2083       if (DemandedBits.countl_zero() < ShAmt)
2084         InDemandedMask.setSignBit();
2085 
2086       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2087                                Depth + 1))
2088         return true;
2089       Known.Zero.lshrInPlace(ShAmt);
2090       Known.One.lshrInPlace(ShAmt);
2091 
2092       // If the input sign bit is known to be zero, or if none of the top bits
2093       // are demanded, turn this into an unsigned shift right.
2094       if (Known.Zero[BitWidth - ShAmt - 1] ||
2095           DemandedBits.countl_zero() >= ShAmt) {
2096         SDNodeFlags Flags;
2097         Flags.setExact(Op->getFlags().hasExact());
2098         return TLO.CombineTo(
2099             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2100       }
2101 
2102       int Log2 = DemandedBits.exactLogBase2();
2103       if (Log2 >= 0) {
2104         // The bit must come from the sign.
2105         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2106         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2107       }
2108 
2109       if (Known.One[BitWidth - ShAmt - 1])
2110         // New bits are known one.
2111         Known.One.setHighBits(ShAmt);
2112 
2113       // Attempt to avoid multi-use ops if we don't need anything from them.
2114       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2115         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2116             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2117         if (DemandedOp0) {
2118           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2119           return TLO.CombineTo(Op, NewOp);
2120         }
2121       }
2122     }
2123 
2124     // Try to match AVG patterns (after shift simplification).
2125     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2126                                         DemandedElts, Depth + 1))
2127       return TLO.CombineTo(Op, AVG);
2128 
2129     break;
2130   }
2131   case ISD::FSHL:
2132   case ISD::FSHR: {
2133     SDValue Op0 = Op.getOperand(0);
2134     SDValue Op1 = Op.getOperand(1);
2135     SDValue Op2 = Op.getOperand(2);
2136     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2137 
2138     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2139       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2140 
2141       // For fshl, 0-shift returns the 1st arg.
2142       // For fshr, 0-shift returns the 2nd arg.
2143       if (Amt == 0) {
2144         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2145                                  Known, TLO, Depth + 1))
2146           return true;
2147         break;
2148       }
2149 
2150       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2151       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2152       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2153       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2154       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2155                                Depth + 1))
2156         return true;
2157       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2158                                Depth + 1))
2159         return true;
2160 
2161       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2162       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2163       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2164       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2165       Known = Known.unionWith(Known2);
2166 
2167       // Attempt to avoid multi-use ops if we don't need anything from them.
2168       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2169           !DemandedElts.isAllOnes()) {
2170         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2171             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2172         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2173             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2174         if (DemandedOp0 || DemandedOp1) {
2175           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2176           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2177           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2178                                           DemandedOp1, Op2);
2179           return TLO.CombineTo(Op, NewOp);
2180         }
2181       }
2182     }
2183 
2184     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2185     if (isPowerOf2_32(BitWidth)) {
2186       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2187       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2188                                Known2, TLO, Depth + 1))
2189         return true;
2190     }
2191     break;
2192   }
2193   case ISD::ROTL:
2194   case ISD::ROTR: {
2195     SDValue Op0 = Op.getOperand(0);
2196     SDValue Op1 = Op.getOperand(1);
2197     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2198 
2199     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2200     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2201       return TLO.CombineTo(Op, Op0);
2202 
2203     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2204       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2205       unsigned RevAmt = BitWidth - Amt;
2206 
2207       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2208       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2209       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2210       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2211                                Depth + 1))
2212         return true;
2213 
2214       // rot*(x, 0) --> x
2215       if (Amt == 0)
2216         return TLO.CombineTo(Op, Op0);
2217 
2218       // See if we don't demand either half of the rotated bits.
2219       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2220           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2221         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2222         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2223       }
2224       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2225           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2226         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2227         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2228       }
2229     }
2230 
2231     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2232     if (isPowerOf2_32(BitWidth)) {
2233       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2234       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2235                                Depth + 1))
2236         return true;
2237     }
2238     break;
2239   }
2240   case ISD::SMIN:
2241   case ISD::SMAX:
2242   case ISD::UMIN:
2243   case ISD::UMAX: {
2244     unsigned Opc = Op.getOpcode();
2245     SDValue Op0 = Op.getOperand(0);
2246     SDValue Op1 = Op.getOperand(1);
2247 
2248     // If we're only demanding signbits, then we can simplify to OR/AND node.
2249     unsigned BitOp =
2250         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2251     unsigned NumSignBits =
2252         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2253                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2254     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2255     if (NumSignBits >= NumDemandedUpperBits)
2256       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2257 
2258     // Check if one arg is always less/greater than (or equal) to the other arg.
2259     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2260     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2261     switch (Opc) {
2262     case ISD::SMIN:
2263       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2264         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2265       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2266         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2267       Known = KnownBits::smin(Known0, Known1);
2268       break;
2269     case ISD::SMAX:
2270       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2271         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2272       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2273         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2274       Known = KnownBits::smax(Known0, Known1);
2275       break;
2276     case ISD::UMIN:
2277       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2278         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2279       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2280         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2281       Known = KnownBits::umin(Known0, Known1);
2282       break;
2283     case ISD::UMAX:
2284       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2285         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2286       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2287         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2288       Known = KnownBits::umax(Known0, Known1);
2289       break;
2290     }
2291     break;
2292   }
2293   case ISD::BITREVERSE: {
2294     SDValue Src = Op.getOperand(0);
2295     APInt DemandedSrcBits = DemandedBits.reverseBits();
2296     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2297                              Depth + 1))
2298       return true;
2299     Known.One = Known2.One.reverseBits();
2300     Known.Zero = Known2.Zero.reverseBits();
2301     break;
2302   }
2303   case ISD::BSWAP: {
2304     SDValue Src = Op.getOperand(0);
2305 
2306     // If the only bits demanded come from one byte of the bswap result,
2307     // just shift the input byte into position to eliminate the bswap.
2308     unsigned NLZ = DemandedBits.countl_zero();
2309     unsigned NTZ = DemandedBits.countr_zero();
2310 
2311     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2312     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2313     // have 14 leading zeros, round to 8.
2314     NLZ = alignDown(NLZ, 8);
2315     NTZ = alignDown(NTZ, 8);
2316     // If we need exactly one byte, we can do this transformation.
2317     if (BitWidth - NLZ - NTZ == 8) {
2318       // Replace this with either a left or right shift to get the byte into
2319       // the right place.
2320       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2321       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2322         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2323         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2324         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2325         return TLO.CombineTo(Op, NewOp);
2326       }
2327     }
2328 
2329     APInt DemandedSrcBits = DemandedBits.byteSwap();
2330     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2331                              Depth + 1))
2332       return true;
2333     Known.One = Known2.One.byteSwap();
2334     Known.Zero = Known2.Zero.byteSwap();
2335     break;
2336   }
2337   case ISD::CTPOP: {
2338     // If only 1 bit is demanded, replace with PARITY as long as we're before
2339     // op legalization.
2340     // FIXME: Limit to scalars for now.
2341     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2342       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2343                                                Op.getOperand(0)));
2344 
2345     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2346     break;
2347   }
2348   case ISD::SIGN_EXTEND_INREG: {
2349     SDValue Op0 = Op.getOperand(0);
2350     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2351     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2352 
2353     // If we only care about the highest bit, don't bother shifting right.
2354     if (DemandedBits.isSignMask()) {
2355       unsigned MinSignedBits =
2356           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2357       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2358       // However if the input is already sign extended we expect the sign
2359       // extension to be dropped altogether later and do not simplify.
2360       if (!AlreadySignExtended) {
2361         // Compute the correct shift amount type, which must be getShiftAmountTy
2362         // for scalar types after legalization.
2363         SDValue ShiftAmt =
2364             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2365         return TLO.CombineTo(Op,
2366                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2367       }
2368     }
2369 
2370     // If none of the extended bits are demanded, eliminate the sextinreg.
2371     if (DemandedBits.getActiveBits() <= ExVTBits)
2372       return TLO.CombineTo(Op, Op0);
2373 
2374     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2375 
2376     // Since the sign extended bits are demanded, we know that the sign
2377     // bit is demanded.
2378     InputDemandedBits.setBit(ExVTBits - 1);
2379 
2380     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2381                              Depth + 1))
2382       return true;
2383 
2384     // If the sign bit of the input is known set or clear, then we know the
2385     // top bits of the result.
2386 
2387     // If the input sign bit is known zero, convert this into a zero extension.
2388     if (Known.Zero[ExVTBits - 1])
2389       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2390 
2391     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2392     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2393       Known.One.setBitsFrom(ExVTBits);
2394       Known.Zero &= Mask;
2395     } else { // Input sign bit unknown
2396       Known.Zero &= Mask;
2397       Known.One &= Mask;
2398     }
2399     break;
2400   }
2401   case ISD::BUILD_PAIR: {
2402     EVT HalfVT = Op.getOperand(0).getValueType();
2403     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2404 
2405     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2406     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2407 
2408     KnownBits KnownLo, KnownHi;
2409 
2410     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2411       return true;
2412 
2413     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2414       return true;
2415 
2416     Known = KnownHi.concat(KnownLo);
2417     break;
2418   }
2419   case ISD::ZERO_EXTEND_VECTOR_INREG:
2420     if (VT.isScalableVector())
2421       return false;
2422     [[fallthrough]];
2423   case ISD::ZERO_EXTEND: {
2424     SDValue Src = Op.getOperand(0);
2425     EVT SrcVT = Src.getValueType();
2426     unsigned InBits = SrcVT.getScalarSizeInBits();
2427     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2428     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2429 
2430     // If none of the top bits are demanded, convert this into an any_extend.
2431     if (DemandedBits.getActiveBits() <= InBits) {
2432       // If we only need the non-extended bits of the bottom element
2433       // then we can just bitcast to the result.
2434       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2435           VT.getSizeInBits() == SrcVT.getSizeInBits())
2436         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2437 
2438       unsigned Opc =
2439           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2440       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2441         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2442     }
2443 
2444     SDNodeFlags Flags = Op->getFlags();
2445     APInt InDemandedBits = DemandedBits.trunc(InBits);
2446     APInt InDemandedElts = DemandedElts.zext(InElts);
2447     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2448                              Depth + 1)) {
2449       if (Flags.hasNonNeg()) {
2450         Flags.setNonNeg(false);
2451         Op->setFlags(Flags);
2452       }
2453       return true;
2454     }
2455     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2456     Known = Known.zext(BitWidth);
2457 
2458     // Attempt to avoid multi-use ops if we don't need anything from them.
2459     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2460             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2461       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2462     break;
2463   }
2464   case ISD::SIGN_EXTEND_VECTOR_INREG:
2465     if (VT.isScalableVector())
2466       return false;
2467     [[fallthrough]];
2468   case ISD::SIGN_EXTEND: {
2469     SDValue Src = Op.getOperand(0);
2470     EVT SrcVT = Src.getValueType();
2471     unsigned InBits = SrcVT.getScalarSizeInBits();
2472     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2474 
2475     APInt InDemandedElts = DemandedElts.zext(InElts);
2476     APInt InDemandedBits = DemandedBits.trunc(InBits);
2477 
2478     // Since some of the sign extended bits are demanded, we know that the sign
2479     // bit is demanded.
2480     InDemandedBits.setBit(InBits - 1);
2481 
2482     // If none of the top bits are demanded, convert this into an any_extend.
2483     if (DemandedBits.getActiveBits() <= InBits) {
2484       // If we only need the non-extended bits of the bottom element
2485       // then we can just bitcast to the result.
2486       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2487           VT.getSizeInBits() == SrcVT.getSizeInBits())
2488         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2489 
2490       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2491       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2492           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2493               InBits) {
2494         unsigned Opc =
2495             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2496         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2497           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2498       }
2499     }
2500 
2501     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2502                              Depth + 1))
2503       return true;
2504     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2505 
2506     // If the sign bit is known one, the top bits match.
2507     Known = Known.sext(BitWidth);
2508 
2509     // If the sign bit is known zero, convert this to a zero extend.
2510     if (Known.isNonNegative()) {
2511       unsigned Opc =
2512           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2513       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2514         SDNodeFlags Flags;
2515         if (!IsVecInReg)
2516           Flags.setNonNeg(true);
2517         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2518       }
2519     }
2520 
2521     // Attempt to avoid multi-use ops if we don't need anything from them.
2522     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2523             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2524       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2525     break;
2526   }
2527   case ISD::ANY_EXTEND_VECTOR_INREG:
2528     if (VT.isScalableVector())
2529       return false;
2530     [[fallthrough]];
2531   case ISD::ANY_EXTEND: {
2532     SDValue Src = Op.getOperand(0);
2533     EVT SrcVT = Src.getValueType();
2534     unsigned InBits = SrcVT.getScalarSizeInBits();
2535     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2536     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2537 
2538     // If we only need the bottom element then we can just bitcast.
2539     // TODO: Handle ANY_EXTEND?
2540     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2541         VT.getSizeInBits() == SrcVT.getSizeInBits())
2542       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2543 
2544     APInt InDemandedBits = DemandedBits.trunc(InBits);
2545     APInt InDemandedElts = DemandedElts.zext(InElts);
2546     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2547                              Depth + 1))
2548       return true;
2549     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2550     Known = Known.anyext(BitWidth);
2551 
2552     // Attempt to avoid multi-use ops if we don't need anything from them.
2553     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2554             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2555       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2556     break;
2557   }
2558   case ISD::TRUNCATE: {
2559     SDValue Src = Op.getOperand(0);
2560 
2561     // Simplify the input, using demanded bit information, and compute the known
2562     // zero/one bits live out.
2563     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2564     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2565     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2566                              Depth + 1))
2567       return true;
2568     Known = Known.trunc(BitWidth);
2569 
2570     // Attempt to avoid multi-use ops if we don't need anything from them.
2571     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2572             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2573       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2574 
2575     // If the input is only used by this truncate, see if we can shrink it based
2576     // on the known demanded bits.
2577     switch (Src.getOpcode()) {
2578     default:
2579       break;
2580     case ISD::SRL:
2581       // Shrink SRL by a constant if none of the high bits shifted in are
2582       // demanded.
2583       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2584         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2585         // undesirable.
2586         break;
2587 
2588       if (Src.getNode()->hasOneUse()) {
2589         if (isTruncateFree(Src, VT) &&
2590             !isTruncateFree(Src.getValueType(), VT)) {
2591           // If truncate is only free at trunc(srl), do not turn it into
2592           // srl(trunc). The check is done by first check the truncate is free
2593           // at Src's opcode(srl), then check the truncate is not done by
2594           // referencing sub-register. In test, if both trunc(srl) and
2595           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2596           // trunc(srl)'s trunc is free, trunc(srl) is better.
2597           break;
2598         }
2599 
2600         std::optional<uint64_t> ShAmtC =
2601             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2602         if (!ShAmtC || *ShAmtC >= BitWidth)
2603           break;
2604         uint64_t ShVal = *ShAmtC;
2605 
2606         APInt HighBits =
2607             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2608         HighBits.lshrInPlace(ShVal);
2609         HighBits = HighBits.trunc(BitWidth);
2610         if (!(HighBits & DemandedBits)) {
2611           // None of the shifted in bits are needed.  Add a truncate of the
2612           // shift input, then shift it.
2613           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2614           SDValue NewTrunc =
2615               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2616           return TLO.CombineTo(
2617               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2618         }
2619       }
2620       break;
2621     }
2622 
2623     break;
2624   }
2625   case ISD::AssertZext: {
2626     // AssertZext demands all of the high bits, plus any of the low bits
2627     // demanded by its users.
2628     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2629     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2630     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2631                              TLO, Depth + 1))
2632       return true;
2633 
2634     Known.Zero |= ~InMask;
2635     Known.One &= (~Known.Zero);
2636     break;
2637   }
2638   case ISD::EXTRACT_VECTOR_ELT: {
2639     SDValue Src = Op.getOperand(0);
2640     SDValue Idx = Op.getOperand(1);
2641     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2642     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2643 
2644     if (SrcEltCnt.isScalable())
2645       return false;
2646 
2647     // Demand the bits from every vector element without a constant index.
2648     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2649     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2650     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2651       if (CIdx->getAPIntValue().ult(NumSrcElts))
2652         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2653 
2654     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2655     // anything about the extended bits.
2656     APInt DemandedSrcBits = DemandedBits;
2657     if (BitWidth > EltBitWidth)
2658       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2659 
2660     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2661                              Depth + 1))
2662       return true;
2663 
2664     // Attempt to avoid multi-use ops if we don't need anything from them.
2665     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2666       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2667               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2668         SDValue NewOp =
2669             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2670         return TLO.CombineTo(Op, NewOp);
2671       }
2672     }
2673 
2674     Known = Known2;
2675     if (BitWidth > EltBitWidth)
2676       Known = Known.anyext(BitWidth);
2677     break;
2678   }
2679   case ISD::BITCAST: {
2680     if (VT.isScalableVector())
2681       return false;
2682     SDValue Src = Op.getOperand(0);
2683     EVT SrcVT = Src.getValueType();
2684     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2685 
2686     // If this is an FP->Int bitcast and if the sign bit is the only
2687     // thing demanded, turn this into a FGETSIGN.
2688     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2689         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2690         SrcVT.isFloatingPoint()) {
2691       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2692       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2693       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2694           SrcVT != MVT::f128) {
2695         // Cannot eliminate/lower SHL for f128 yet.
2696         EVT Ty = OpVTLegal ? VT : MVT::i32;
2697         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2698         // place.  We expect the SHL to be eliminated by other optimizations.
2699         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2700         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2701         if (!OpVTLegal && OpVTSizeInBits > 32)
2702           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2703         unsigned ShVal = Op.getValueSizeInBits() - 1;
2704         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2705         return TLO.CombineTo(Op,
2706                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2707       }
2708     }
2709 
2710     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2711     // Demand the elt/bit if any of the original elts/bits are demanded.
2712     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2713       unsigned Scale = BitWidth / NumSrcEltBits;
2714       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2715       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2716       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2717       for (unsigned i = 0; i != Scale; ++i) {
2718         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2719         unsigned BitOffset = EltOffset * NumSrcEltBits;
2720         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2721         if (!Sub.isZero()) {
2722           DemandedSrcBits |= Sub;
2723           for (unsigned j = 0; j != NumElts; ++j)
2724             if (DemandedElts[j])
2725               DemandedSrcElts.setBit((j * Scale) + i);
2726         }
2727       }
2728 
2729       APInt KnownSrcUndef, KnownSrcZero;
2730       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2731                                      KnownSrcZero, TLO, Depth + 1))
2732         return true;
2733 
2734       KnownBits KnownSrcBits;
2735       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2736                                KnownSrcBits, TLO, Depth + 1))
2737         return true;
2738     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2739       // TODO - bigendian once we have test coverage.
2740       unsigned Scale = NumSrcEltBits / BitWidth;
2741       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2742       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2743       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2744       for (unsigned i = 0; i != NumElts; ++i)
2745         if (DemandedElts[i]) {
2746           unsigned Offset = (i % Scale) * BitWidth;
2747           DemandedSrcBits.insertBits(DemandedBits, Offset);
2748           DemandedSrcElts.setBit(i / Scale);
2749         }
2750 
2751       if (SrcVT.isVector()) {
2752         APInt KnownSrcUndef, KnownSrcZero;
2753         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2754                                        KnownSrcZero, TLO, Depth + 1))
2755           return true;
2756       }
2757 
2758       KnownBits KnownSrcBits;
2759       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2760                                KnownSrcBits, TLO, Depth + 1))
2761         return true;
2762 
2763       // Attempt to avoid multi-use ops if we don't need anything from them.
2764       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2765         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2766                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2767           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2768           return TLO.CombineTo(Op, NewOp);
2769         }
2770       }
2771     }
2772 
2773     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2774     // recursive call where Known may be useful to the caller.
2775     if (Depth > 0) {
2776       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2777       return false;
2778     }
2779     break;
2780   }
2781   case ISD::MUL:
2782     if (DemandedBits.isPowerOf2()) {
2783       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2784       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2785       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2786       unsigned CTZ = DemandedBits.countr_zero();
2787       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2788       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2789         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2790         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2791         return TLO.CombineTo(Op, Shl);
2792       }
2793     }
2794     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2795     // X * X is odd iff X is odd.
2796     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2797     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2798       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2799       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2800       return TLO.CombineTo(Op, And1);
2801     }
2802     [[fallthrough]];
2803   case ISD::ADD:
2804   case ISD::SUB: {
2805     // Add, Sub, and Mul don't demand any bits in positions beyond that
2806     // of the highest bit demanded of them.
2807     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2808     SDNodeFlags Flags = Op.getNode()->getFlags();
2809     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2810     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2811     KnownBits KnownOp0, KnownOp1;
2812     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2813                                       const KnownBits &KnownRHS) {
2814       if (Op.getOpcode() == ISD::MUL)
2815         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2816       return Demanded;
2817     };
2818     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2819                              Depth + 1) ||
2820         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2821                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2822         // See if the operation should be performed at a smaller bit width.
2823         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2824       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2825         // Disable the nsw and nuw flags. We can no longer guarantee that we
2826         // won't wrap after simplification.
2827         Flags.setNoSignedWrap(false);
2828         Flags.setNoUnsignedWrap(false);
2829         Op->setFlags(Flags);
2830       }
2831       return true;
2832     }
2833 
2834     // neg x with only low bit demanded is simply x.
2835     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2836         isNullConstant(Op0))
2837       return TLO.CombineTo(Op, Op1);
2838 
2839     // Attempt to avoid multi-use ops if we don't need anything from them.
2840     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2841       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2842           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2843       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2844           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2845       if (DemandedOp0 || DemandedOp1) {
2846         Flags.setNoSignedWrap(false);
2847         Flags.setNoUnsignedWrap(false);
2848         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2849         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2850         SDValue NewOp =
2851             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2852         return TLO.CombineTo(Op, NewOp);
2853       }
2854     }
2855 
2856     // If we have a constant operand, we may be able to turn it into -1 if we
2857     // do not demand the high bits. This can make the constant smaller to
2858     // encode, allow more general folding, or match specialized instruction
2859     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2860     // is probably not useful (and could be detrimental).
2861     ConstantSDNode *C = isConstOrConstSplat(Op1);
2862     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2863     if (C && !C->isAllOnes() && !C->isOne() &&
2864         (C->getAPIntValue() | HighMask).isAllOnes()) {
2865       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2866       // Disable the nsw and nuw flags. We can no longer guarantee that we
2867       // won't wrap after simplification.
2868       Flags.setNoSignedWrap(false);
2869       Flags.setNoUnsignedWrap(false);
2870       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2871       return TLO.CombineTo(Op, NewOp);
2872     }
2873 
2874     // Match a multiply with a disguised negated-power-of-2 and convert to a
2875     // an equivalent shift-left amount.
2876     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2877     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2878       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2879         return 0;
2880 
2881       // Don't touch opaque constants. Also, ignore zero and power-of-2
2882       // multiplies. Those will get folded later.
2883       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2884       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2885           !MulC->getAPIntValue().isPowerOf2()) {
2886         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2887         if (UnmaskedC.isNegatedPowerOf2())
2888           return (-UnmaskedC).logBase2();
2889       }
2890       return 0;
2891     };
2892 
2893     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2894                        unsigned ShlAmt) {
2895       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2896       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2897       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2898       return TLO.CombineTo(Op, Res);
2899     };
2900 
2901     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2902       if (Op.getOpcode() == ISD::ADD) {
2903         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2904         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2905           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2906         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2907         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2908           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2909       }
2910       if (Op.getOpcode() == ISD::SUB) {
2911         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2912         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2913           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2914       }
2915     }
2916 
2917     if (Op.getOpcode() == ISD::MUL) {
2918       Known = KnownBits::mul(KnownOp0, KnownOp1);
2919     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2920       Known = KnownBits::computeForAddSub(
2921           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2922           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2923     }
2924     break;
2925   }
2926   default:
2927     // We also ask the target about intrinsics (which could be specific to it).
2928     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2929         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2930       // TODO: Probably okay to remove after audit; here to reduce change size
2931       // in initial enablement patch for scalable vectors
2932       if (Op.getValueType().isScalableVector())
2933         break;
2934       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2935                                             Known, TLO, Depth))
2936         return true;
2937       break;
2938     }
2939 
2940     // Just use computeKnownBits to compute output bits.
2941     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2942     break;
2943   }
2944 
2945   // If we know the value of all of the demanded bits, return this as a
2946   // constant.
2947   if (!isTargetCanonicalConstantNode(Op) &&
2948       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2949     // Avoid folding to a constant if any OpaqueConstant is involved.
2950     const SDNode *N = Op.getNode();
2951     for (SDNode *Op :
2952          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2953       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2954         if (C->isOpaque())
2955           return false;
2956     }
2957     if (VT.isInteger())
2958       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2959     if (VT.isFloatingPoint())
2960       return TLO.CombineTo(
2961           Op,
2962           TLO.DAG.getConstantFP(
2963               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2964   }
2965 
2966   // A multi use 'all demanded elts' simplify failed to find any knownbits.
2967   // Try again just for the original demanded elts.
2968   // Ensure we do this AFTER constant folding above.
2969   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
2970     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
2971 
2972   return false;
2973 }
2974 
SimplifyDemandedVectorElts(SDValue Op,const APInt & DemandedElts,DAGCombinerInfo & DCI) const2975 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2976                                                 const APInt &DemandedElts,
2977                                                 DAGCombinerInfo &DCI) const {
2978   SelectionDAG &DAG = DCI.DAG;
2979   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2980                         !DCI.isBeforeLegalizeOps());
2981 
2982   APInt KnownUndef, KnownZero;
2983   bool Simplified =
2984       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2985   if (Simplified) {
2986     DCI.AddToWorklist(Op.getNode());
2987     DCI.CommitTargetLoweringOpt(TLO);
2988   }
2989 
2990   return Simplified;
2991 }
2992 
2993 /// Given a vector binary operation and known undefined elements for each input
2994 /// operand, compute whether each element of the output is undefined.
getKnownUndefForVectorBinop(SDValue BO,SelectionDAG & DAG,const APInt & UndefOp0,const APInt & UndefOp1)2995 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2996                                          const APInt &UndefOp0,
2997                                          const APInt &UndefOp1) {
2998   EVT VT = BO.getValueType();
2999   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3000          "Vector binop only");
3001 
3002   EVT EltVT = VT.getVectorElementType();
3003   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3004   assert(UndefOp0.getBitWidth() == NumElts &&
3005          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3006 
3007   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3008                                    const APInt &UndefVals) {
3009     if (UndefVals[Index])
3010       return DAG.getUNDEF(EltVT);
3011 
3012     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3013       // Try hard to make sure that the getNode() call is not creating temporary
3014       // nodes. Ignore opaque integers because they do not constant fold.
3015       SDValue Elt = BV->getOperand(Index);
3016       auto *C = dyn_cast<ConstantSDNode>(Elt);
3017       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3018         return Elt;
3019     }
3020 
3021     return SDValue();
3022   };
3023 
3024   APInt KnownUndef = APInt::getZero(NumElts);
3025   for (unsigned i = 0; i != NumElts; ++i) {
3026     // If both inputs for this element are either constant or undef and match
3027     // the element type, compute the constant/undef result for this element of
3028     // the vector.
3029     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3030     // not handle FP constants. The code within getNode() should be refactored
3031     // to avoid the danger of creating a bogus temporary node here.
3032     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3033     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3034     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3035       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3036         KnownUndef.setBit(i);
3037   }
3038   return KnownUndef;
3039 }
3040 
SimplifyDemandedVectorElts(SDValue Op,const APInt & OriginalDemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const3041 bool TargetLowering::SimplifyDemandedVectorElts(
3042     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3043     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3044     bool AssumeSingleUse) const {
3045   EVT VT = Op.getValueType();
3046   unsigned Opcode = Op.getOpcode();
3047   APInt DemandedElts = OriginalDemandedElts;
3048   unsigned NumElts = DemandedElts.getBitWidth();
3049   assert(VT.isVector() && "Expected vector op");
3050 
3051   KnownUndef = KnownZero = APInt::getZero(NumElts);
3052 
3053   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
3054   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
3055     return false;
3056 
3057   // TODO: For now we assume we know nothing about scalable vectors.
3058   if (VT.isScalableVector())
3059     return false;
3060 
3061   assert(VT.getVectorNumElements() == NumElts &&
3062          "Mask size mismatches value type element count!");
3063 
3064   // Undef operand.
3065   if (Op.isUndef()) {
3066     KnownUndef.setAllBits();
3067     return false;
3068   }
3069 
3070   // If Op has other users, assume that all elements are needed.
3071   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3072     DemandedElts.setAllBits();
3073 
3074   // Not demanding any elements from Op.
3075   if (DemandedElts == 0) {
3076     KnownUndef.setAllBits();
3077     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3078   }
3079 
3080   // Limit search depth.
3081   if (Depth >= SelectionDAG::MaxRecursionDepth)
3082     return false;
3083 
3084   SDLoc DL(Op);
3085   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3086   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3087 
3088   // Helper for demanding the specified elements and all the bits of both binary
3089   // operands.
3090   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3091     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3092                                                            TLO.DAG, Depth + 1);
3093     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3094                                                            TLO.DAG, Depth + 1);
3095     if (NewOp0 || NewOp1) {
3096       SDValue NewOp =
3097           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3098                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3099       return TLO.CombineTo(Op, NewOp);
3100     }
3101     return false;
3102   };
3103 
3104   switch (Opcode) {
3105   case ISD::SCALAR_TO_VECTOR: {
3106     if (!DemandedElts[0]) {
3107       KnownUndef.setAllBits();
3108       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3109     }
3110     SDValue ScalarSrc = Op.getOperand(0);
3111     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3112       SDValue Src = ScalarSrc.getOperand(0);
3113       SDValue Idx = ScalarSrc.getOperand(1);
3114       EVT SrcVT = Src.getValueType();
3115 
3116       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3117 
3118       if (SrcEltCnt.isScalable())
3119         return false;
3120 
3121       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3122       if (isNullConstant(Idx)) {
3123         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3124         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3125         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3126         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3127                                        TLO, Depth + 1))
3128           return true;
3129       }
3130     }
3131     KnownUndef.setHighBits(NumElts - 1);
3132     break;
3133   }
3134   case ISD::BITCAST: {
3135     SDValue Src = Op.getOperand(0);
3136     EVT SrcVT = Src.getValueType();
3137 
3138     // We only handle vectors here.
3139     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3140     if (!SrcVT.isVector())
3141       break;
3142 
3143     // Fast handling of 'identity' bitcasts.
3144     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3145     if (NumSrcElts == NumElts)
3146       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3147                                         KnownZero, TLO, Depth + 1);
3148 
3149     APInt SrcDemandedElts, SrcZero, SrcUndef;
3150 
3151     // Bitcast from 'large element' src vector to 'small element' vector, we
3152     // must demand a source element if any DemandedElt maps to it.
3153     if ((NumElts % NumSrcElts) == 0) {
3154       unsigned Scale = NumElts / NumSrcElts;
3155       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3156       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3157                                      TLO, Depth + 1))
3158         return true;
3159 
3160       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3161       // of the large element.
3162       // TODO - bigendian once we have test coverage.
3163       if (IsLE) {
3164         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3165         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3166         for (unsigned i = 0; i != NumElts; ++i)
3167           if (DemandedElts[i]) {
3168             unsigned Ofs = (i % Scale) * EltSizeInBits;
3169             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3170           }
3171 
3172         KnownBits Known;
3173         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3174                                  TLO, Depth + 1))
3175           return true;
3176 
3177         // The bitcast has split each wide element into a number of
3178         // narrow subelements. We have just computed the Known bits
3179         // for wide elements. See if element splitting results in
3180         // some subelements being zero. Only for demanded elements!
3181         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3182           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3183                    .isAllOnes())
3184             continue;
3185           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3186             unsigned Elt = Scale * SrcElt + SubElt;
3187             if (DemandedElts[Elt])
3188               KnownZero.setBit(Elt);
3189           }
3190         }
3191       }
3192 
3193       // If the src element is zero/undef then all the output elements will be -
3194       // only demanded elements are guaranteed to be correct.
3195       for (unsigned i = 0; i != NumSrcElts; ++i) {
3196         if (SrcDemandedElts[i]) {
3197           if (SrcZero[i])
3198             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3199           if (SrcUndef[i])
3200             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3201         }
3202       }
3203     }
3204 
3205     // Bitcast from 'small element' src vector to 'large element' vector, we
3206     // demand all smaller source elements covered by the larger demanded element
3207     // of this vector.
3208     if ((NumSrcElts % NumElts) == 0) {
3209       unsigned Scale = NumSrcElts / NumElts;
3210       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3211       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3212                                      TLO, Depth + 1))
3213         return true;
3214 
3215       // If all the src elements covering an output element are zero/undef, then
3216       // the output element will be as well, assuming it was demanded.
3217       for (unsigned i = 0; i != NumElts; ++i) {
3218         if (DemandedElts[i]) {
3219           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3220             KnownZero.setBit(i);
3221           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3222             KnownUndef.setBit(i);
3223         }
3224       }
3225     }
3226     break;
3227   }
3228   case ISD::FREEZE: {
3229     SDValue N0 = Op.getOperand(0);
3230     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3231                                                  /*PoisonOnly=*/false))
3232       return TLO.CombineTo(Op, N0);
3233 
3234     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3235     // freeze(op(x, ...)) -> op(freeze(x), ...).
3236     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3237       return TLO.CombineTo(
3238           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3239                               TLO.DAG.getFreeze(N0.getOperand(0))));
3240     break;
3241   }
3242   case ISD::BUILD_VECTOR: {
3243     // Check all elements and simplify any unused elements with UNDEF.
3244     if (!DemandedElts.isAllOnes()) {
3245       // Don't simplify BROADCASTS.
3246       if (llvm::any_of(Op->op_values(),
3247                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3248         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
3249         bool Updated = false;
3250         for (unsigned i = 0; i != NumElts; ++i) {
3251           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3252             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3253             KnownUndef.setBit(i);
3254             Updated = true;
3255           }
3256         }
3257         if (Updated)
3258           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3259       }
3260     }
3261     for (unsigned i = 0; i != NumElts; ++i) {
3262       SDValue SrcOp = Op.getOperand(i);
3263       if (SrcOp.isUndef()) {
3264         KnownUndef.setBit(i);
3265       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3266                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3267         KnownZero.setBit(i);
3268       }
3269     }
3270     break;
3271   }
3272   case ISD::CONCAT_VECTORS: {
3273     EVT SubVT = Op.getOperand(0).getValueType();
3274     unsigned NumSubVecs = Op.getNumOperands();
3275     unsigned NumSubElts = SubVT.getVectorNumElements();
3276     for (unsigned i = 0; i != NumSubVecs; ++i) {
3277       SDValue SubOp = Op.getOperand(i);
3278       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3279       APInt SubUndef, SubZero;
3280       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3281                                      Depth + 1))
3282         return true;
3283       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3284       KnownZero.insertBits(SubZero, i * NumSubElts);
3285     }
3286 
3287     // Attempt to avoid multi-use ops if we don't need anything from them.
3288     if (!DemandedElts.isAllOnes()) {
3289       bool FoundNewSub = false;
3290       SmallVector<SDValue, 2> DemandedSubOps;
3291       for (unsigned i = 0; i != NumSubVecs; ++i) {
3292         SDValue SubOp = Op.getOperand(i);
3293         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3294         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3295             SubOp, SubElts, TLO.DAG, Depth + 1);
3296         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3297         FoundNewSub = NewSubOp ? true : FoundNewSub;
3298       }
3299       if (FoundNewSub) {
3300         SDValue NewOp =
3301             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3302         return TLO.CombineTo(Op, NewOp);
3303       }
3304     }
3305     break;
3306   }
3307   case ISD::INSERT_SUBVECTOR: {
3308     // Demand any elements from the subvector and the remainder from the src its
3309     // inserted into.
3310     SDValue Src = Op.getOperand(0);
3311     SDValue Sub = Op.getOperand(1);
3312     uint64_t Idx = Op.getConstantOperandVal(2);
3313     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3314     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3315     APInt DemandedSrcElts = DemandedElts;
3316     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3317 
3318     APInt SubUndef, SubZero;
3319     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3320                                    Depth + 1))
3321       return true;
3322 
3323     // If none of the src operand elements are demanded, replace it with undef.
3324     if (!DemandedSrcElts && !Src.isUndef())
3325       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3326                                                TLO.DAG.getUNDEF(VT), Sub,
3327                                                Op.getOperand(2)));
3328 
3329     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3330                                    TLO, Depth + 1))
3331       return true;
3332     KnownUndef.insertBits(SubUndef, Idx);
3333     KnownZero.insertBits(SubZero, Idx);
3334 
3335     // Attempt to avoid multi-use ops if we don't need anything from them.
3336     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3337       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3338           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3339       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3340           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3341       if (NewSrc || NewSub) {
3342         NewSrc = NewSrc ? NewSrc : Src;
3343         NewSub = NewSub ? NewSub : Sub;
3344         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3345                                         NewSub, Op.getOperand(2));
3346         return TLO.CombineTo(Op, NewOp);
3347       }
3348     }
3349     break;
3350   }
3351   case ISD::EXTRACT_SUBVECTOR: {
3352     // Offset the demanded elts by the subvector index.
3353     SDValue Src = Op.getOperand(0);
3354     if (Src.getValueType().isScalableVector())
3355       break;
3356     uint64_t Idx = Op.getConstantOperandVal(1);
3357     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3358     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3359 
3360     APInt SrcUndef, SrcZero;
3361     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3362                                    Depth + 1))
3363       return true;
3364     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3365     KnownZero = SrcZero.extractBits(NumElts, Idx);
3366 
3367     // Attempt to avoid multi-use ops if we don't need anything from them.
3368     if (!DemandedElts.isAllOnes()) {
3369       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3370           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3371       if (NewSrc) {
3372         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3373                                         Op.getOperand(1));
3374         return TLO.CombineTo(Op, NewOp);
3375       }
3376     }
3377     break;
3378   }
3379   case ISD::INSERT_VECTOR_ELT: {
3380     SDValue Vec = Op.getOperand(0);
3381     SDValue Scl = Op.getOperand(1);
3382     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3383 
3384     // For a legal, constant insertion index, if we don't need this insertion
3385     // then strip it, else remove it from the demanded elts.
3386     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3387       unsigned Idx = CIdx->getZExtValue();
3388       if (!DemandedElts[Idx])
3389         return TLO.CombineTo(Op, Vec);
3390 
3391       APInt DemandedVecElts(DemandedElts);
3392       DemandedVecElts.clearBit(Idx);
3393       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3394                                      KnownZero, TLO, Depth + 1))
3395         return true;
3396 
3397       KnownUndef.setBitVal(Idx, Scl.isUndef());
3398 
3399       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3400       break;
3401     }
3402 
3403     APInt VecUndef, VecZero;
3404     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3405                                    Depth + 1))
3406       return true;
3407     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3408     break;
3409   }
3410   case ISD::VSELECT: {
3411     SDValue Sel = Op.getOperand(0);
3412     SDValue LHS = Op.getOperand(1);
3413     SDValue RHS = Op.getOperand(2);
3414 
3415     // Try to transform the select condition based on the current demanded
3416     // elements.
3417     APInt UndefSel, ZeroSel;
3418     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3419                                    Depth + 1))
3420       return true;
3421 
3422     // See if we can simplify either vselect operand.
3423     APInt DemandedLHS(DemandedElts);
3424     APInt DemandedRHS(DemandedElts);
3425     APInt UndefLHS, ZeroLHS;
3426     APInt UndefRHS, ZeroRHS;
3427     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3428                                    Depth + 1))
3429       return true;
3430     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3431                                    Depth + 1))
3432       return true;
3433 
3434     KnownUndef = UndefLHS & UndefRHS;
3435     KnownZero = ZeroLHS & ZeroRHS;
3436 
3437     // If we know that the selected element is always zero, we don't need the
3438     // select value element.
3439     APInt DemandedSel = DemandedElts & ~KnownZero;
3440     if (DemandedSel != DemandedElts)
3441       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3442                                      Depth + 1))
3443         return true;
3444 
3445     break;
3446   }
3447   case ISD::VECTOR_SHUFFLE: {
3448     SDValue LHS = Op.getOperand(0);
3449     SDValue RHS = Op.getOperand(1);
3450     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3451 
3452     // Collect demanded elements from shuffle operands..
3453     APInt DemandedLHS(NumElts, 0);
3454     APInt DemandedRHS(NumElts, 0);
3455     for (unsigned i = 0; i != NumElts; ++i) {
3456       int M = ShuffleMask[i];
3457       if (M < 0 || !DemandedElts[i])
3458         continue;
3459       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3460       if (M < (int)NumElts)
3461         DemandedLHS.setBit(M);
3462       else
3463         DemandedRHS.setBit(M - NumElts);
3464     }
3465 
3466     // See if we can simplify either shuffle operand.
3467     APInt UndefLHS, ZeroLHS;
3468     APInt UndefRHS, ZeroRHS;
3469     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3470                                    Depth + 1))
3471       return true;
3472     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3473                                    Depth + 1))
3474       return true;
3475 
3476     // Simplify mask using undef elements from LHS/RHS.
3477     bool Updated = false;
3478     bool IdentityLHS = true, IdentityRHS = true;
3479     SmallVector<int, 32> NewMask(ShuffleMask);
3480     for (unsigned i = 0; i != NumElts; ++i) {
3481       int &M = NewMask[i];
3482       if (M < 0)
3483         continue;
3484       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3485           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3486         Updated = true;
3487         M = -1;
3488       }
3489       IdentityLHS &= (M < 0) || (M == (int)i);
3490       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3491     }
3492 
3493     // Update legal shuffle masks based on demanded elements if it won't reduce
3494     // to Identity which can cause premature removal of the shuffle mask.
3495     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3496       SDValue LegalShuffle =
3497           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3498       if (LegalShuffle)
3499         return TLO.CombineTo(Op, LegalShuffle);
3500     }
3501 
3502     // Propagate undef/zero elements from LHS/RHS.
3503     for (unsigned i = 0; i != NumElts; ++i) {
3504       int M = ShuffleMask[i];
3505       if (M < 0) {
3506         KnownUndef.setBit(i);
3507       } else if (M < (int)NumElts) {
3508         if (UndefLHS[M])
3509           KnownUndef.setBit(i);
3510         if (ZeroLHS[M])
3511           KnownZero.setBit(i);
3512       } else {
3513         if (UndefRHS[M - NumElts])
3514           KnownUndef.setBit(i);
3515         if (ZeroRHS[M - NumElts])
3516           KnownZero.setBit(i);
3517       }
3518     }
3519     break;
3520   }
3521   case ISD::ANY_EXTEND_VECTOR_INREG:
3522   case ISD::SIGN_EXTEND_VECTOR_INREG:
3523   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3524     APInt SrcUndef, SrcZero;
3525     SDValue Src = Op.getOperand(0);
3526     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3527     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3528     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3529                                    Depth + 1))
3530       return true;
3531     KnownZero = SrcZero.zextOrTrunc(NumElts);
3532     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3533 
3534     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3535         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3536         DemandedSrcElts == 1) {
3537       // aext - if we just need the bottom element then we can bitcast.
3538       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3539     }
3540 
3541     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3542       // zext(undef) upper bits are guaranteed to be zero.
3543       if (DemandedElts.isSubsetOf(KnownUndef))
3544         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3545       KnownUndef.clearAllBits();
3546 
3547       // zext - if we just need the bottom element then we can mask:
3548       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3549       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3550           Op->isOnlyUserOf(Src.getNode()) &&
3551           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3552         SDLoc DL(Op);
3553         EVT SrcVT = Src.getValueType();
3554         EVT SrcSVT = SrcVT.getScalarType();
3555         SmallVector<SDValue> MaskElts;
3556         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3557         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3558         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3559         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3560                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3561           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3562           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3563         }
3564       }
3565     }
3566     break;
3567   }
3568 
3569   // TODO: There are more binop opcodes that could be handled here - MIN,
3570   // MAX, saturated math, etc.
3571   case ISD::ADD: {
3572     SDValue Op0 = Op.getOperand(0);
3573     SDValue Op1 = Op.getOperand(1);
3574     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3575       APInt UndefLHS, ZeroLHS;
3576       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3577                                      Depth + 1, /*AssumeSingleUse*/ true))
3578         return true;
3579     }
3580     [[fallthrough]];
3581   }
3582   case ISD::AVGCEILS:
3583   case ISD::AVGCEILU:
3584   case ISD::AVGFLOORS:
3585   case ISD::AVGFLOORU:
3586   case ISD::OR:
3587   case ISD::XOR:
3588   case ISD::SUB:
3589   case ISD::FADD:
3590   case ISD::FSUB:
3591   case ISD::FMUL:
3592   case ISD::FDIV:
3593   case ISD::FREM: {
3594     SDValue Op0 = Op.getOperand(0);
3595     SDValue Op1 = Op.getOperand(1);
3596 
3597     APInt UndefRHS, ZeroRHS;
3598     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3599                                    Depth + 1))
3600       return true;
3601     APInt UndefLHS, ZeroLHS;
3602     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3603                                    Depth + 1))
3604       return true;
3605 
3606     KnownZero = ZeroLHS & ZeroRHS;
3607     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3608 
3609     // Attempt to avoid multi-use ops if we don't need anything from them.
3610     // TODO - use KnownUndef to relax the demandedelts?
3611     if (!DemandedElts.isAllOnes())
3612       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3613         return true;
3614     break;
3615   }
3616   case ISD::SHL:
3617   case ISD::SRL:
3618   case ISD::SRA:
3619   case ISD::ROTL:
3620   case ISD::ROTR: {
3621     SDValue Op0 = Op.getOperand(0);
3622     SDValue Op1 = Op.getOperand(1);
3623 
3624     APInt UndefRHS, ZeroRHS;
3625     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3626                                    Depth + 1))
3627       return true;
3628     APInt UndefLHS, ZeroLHS;
3629     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3630                                    Depth + 1))
3631       return true;
3632 
3633     KnownZero = ZeroLHS;
3634     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3635 
3636     // Attempt to avoid multi-use ops if we don't need anything from them.
3637     // TODO - use KnownUndef to relax the demandedelts?
3638     if (!DemandedElts.isAllOnes())
3639       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3640         return true;
3641     break;
3642   }
3643   case ISD::MUL:
3644   case ISD::MULHU:
3645   case ISD::MULHS:
3646   case ISD::AND: {
3647     SDValue Op0 = Op.getOperand(0);
3648     SDValue Op1 = Op.getOperand(1);
3649 
3650     APInt SrcUndef, SrcZero;
3651     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3652                                    Depth + 1))
3653       return true;
3654     // If we know that a demanded element was zero in Op1 we don't need to
3655     // demand it in Op0 - its guaranteed to be zero.
3656     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3657     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3658                                    TLO, Depth + 1))
3659       return true;
3660 
3661     KnownUndef &= DemandedElts0;
3662     KnownZero &= DemandedElts0;
3663 
3664     // If every element pair has a zero/undef then just fold to zero.
3665     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3666     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3667     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3668       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3669 
3670     // If either side has a zero element, then the result element is zero, even
3671     // if the other is an UNDEF.
3672     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3673     // and then handle 'and' nodes with the rest of the binop opcodes.
3674     KnownZero |= SrcZero;
3675     KnownUndef &= SrcUndef;
3676     KnownUndef &= ~KnownZero;
3677 
3678     // Attempt to avoid multi-use ops if we don't need anything from them.
3679     if (!DemandedElts.isAllOnes())
3680       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3681         return true;
3682     break;
3683   }
3684   case ISD::TRUNCATE:
3685   case ISD::SIGN_EXTEND:
3686   case ISD::ZERO_EXTEND:
3687     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3688                                    KnownZero, TLO, Depth + 1))
3689       return true;
3690 
3691     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3692       // zext(undef) upper bits are guaranteed to be zero.
3693       if (DemandedElts.isSubsetOf(KnownUndef))
3694         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3695       KnownUndef.clearAllBits();
3696     }
3697     break;
3698   default: {
3699     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3700       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3701                                                   KnownZero, TLO, Depth))
3702         return true;
3703     } else {
3704       KnownBits Known;
3705       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3706       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3707                                TLO, Depth, AssumeSingleUse))
3708         return true;
3709     }
3710     break;
3711   }
3712   }
3713   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3714 
3715   // Constant fold all undef cases.
3716   // TODO: Handle zero cases as well.
3717   if (DemandedElts.isSubsetOf(KnownUndef))
3718     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3719 
3720   return false;
3721 }
3722 
3723 /// Determine which of the bits specified in Mask are known to be either zero or
3724 /// one and return them in the Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const3725 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3726                                                    KnownBits &Known,
3727                                                    const APInt &DemandedElts,
3728                                                    const SelectionDAG &DAG,
3729                                                    unsigned Depth) const {
3730   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3731           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3732           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3733           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3734          "Should use MaskedValueIsZero if you don't know whether Op"
3735          " is a target node!");
3736   Known.resetAll();
3737 }
3738 
computeKnownBitsForTargetInstr(GISelKnownBits & Analysis,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3739 void TargetLowering::computeKnownBitsForTargetInstr(
3740     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3741     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3742     unsigned Depth) const {
3743   Known.resetAll();
3744 }
3745 
computeKnownBitsForFrameIndex(const int FrameIdx,KnownBits & Known,const MachineFunction & MF) const3746 void TargetLowering::computeKnownBitsForFrameIndex(
3747   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3748   // The low bits are known zero if the pointer is aligned.
3749   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3750 }
3751 
computeKnownAlignForTargetInstr(GISelKnownBits & Analysis,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const3752 Align TargetLowering::computeKnownAlignForTargetInstr(
3753   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3754   unsigned Depth) const {
3755   return Align(1);
3756 }
3757 
3758 /// This method can be implemented by targets that want to expose additional
3759 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt &,const SelectionDAG &,unsigned Depth) const3760 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3761                                                          const APInt &,
3762                                                          const SelectionDAG &,
3763                                                          unsigned Depth) const {
3764   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3765           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3766           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3767           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3768          "Should use ComputeNumSignBits if you don't know whether Op"
3769          " is a target node!");
3770   return 1;
3771 }
3772 
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const3773 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3774   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3775   const MachineRegisterInfo &MRI, unsigned Depth) const {
3776   return 1;
3777 }
3778 
SimplifyDemandedVectorEltsForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth) const3779 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3780     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3781     TargetLoweringOpt &TLO, unsigned Depth) const {
3782   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3783           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3784           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3785           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3786          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3787          " is a target node!");
3788   return false;
3789 }
3790 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const3791 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3792     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3793     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3794   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3795           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3796           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3797           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3798          "Should use SimplifyDemandedBits if you don't know whether Op"
3799          " is a target node!");
3800   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3801   return false;
3802 }
3803 
SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const3804 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3805     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3806     SelectionDAG &DAG, unsigned Depth) const {
3807   assert(
3808       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3809        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3810        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3811        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3812       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3813       " is a target node!");
3814   return SDValue();
3815 }
3816 
3817 SDValue
buildLegalVectorShuffle(EVT VT,const SDLoc & DL,SDValue N0,SDValue N1,MutableArrayRef<int> Mask,SelectionDAG & DAG) const3818 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3819                                         SDValue N1, MutableArrayRef<int> Mask,
3820                                         SelectionDAG &DAG) const {
3821   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3822   if (!LegalMask) {
3823     std::swap(N0, N1);
3824     ShuffleVectorSDNode::commuteMask(Mask);
3825     LegalMask = isShuffleMaskLegal(Mask, VT);
3826   }
3827 
3828   if (!LegalMask)
3829     return SDValue();
3830 
3831   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3832 }
3833 
getTargetConstantFromLoad(LoadSDNode *) const3834 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3835   return nullptr;
3836 }
3837 
isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,unsigned Depth) const3838 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3839     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3840     bool PoisonOnly, unsigned Depth) const {
3841   assert(
3842       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3843        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3844        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3845        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3846       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3847       " is a target node!");
3848 
3849   // If Op can't create undef/poison and none of its operands are undef/poison
3850   // then Op is never undef/poison.
3851   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3852                                               /*ConsiderFlags*/ true, Depth) &&
3853          all_of(Op->ops(), [&](SDValue V) {
3854            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3855                                                        Depth + 1);
3856          });
3857 }
3858 
canCreateUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,bool ConsiderFlags,unsigned Depth) const3859 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3860     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3861     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3862   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3863           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3864           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3865           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3866          "Should use canCreateUndefOrPoison if you don't know whether Op"
3867          " is a target node!");
3868   // Be conservative and return true.
3869   return true;
3870 }
3871 
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const3872 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3873                                                   const SelectionDAG &DAG,
3874                                                   bool SNaN,
3875                                                   unsigned Depth) const {
3876   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3877           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3878           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3879           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3880          "Should use isKnownNeverNaN if you don't know whether Op"
3881          " is a target node!");
3882   return false;
3883 }
3884 
isSplatValueForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & UndefElts,const SelectionDAG & DAG,unsigned Depth) const3885 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3886                                                const APInt &DemandedElts,
3887                                                APInt &UndefElts,
3888                                                const SelectionDAG &DAG,
3889                                                unsigned Depth) const {
3890   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3891           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3892           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3893           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3894          "Should use isSplatValue if you don't know whether Op"
3895          " is a target node!");
3896   return false;
3897 }
3898 
3899 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3900 // work with truncating build vectors and vectors with elements of less than
3901 // 8 bits.
isConstTrueVal(SDValue N) const3902 bool TargetLowering::isConstTrueVal(SDValue N) const {
3903   if (!N)
3904     return false;
3905 
3906   unsigned EltWidth;
3907   APInt CVal;
3908   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3909                                                /*AllowTruncation=*/true)) {
3910     CVal = CN->getAPIntValue();
3911     EltWidth = N.getValueType().getScalarSizeInBits();
3912   } else
3913     return false;
3914 
3915   // If this is a truncating splat, truncate the splat value.
3916   // Otherwise, we may fail to match the expected values below.
3917   if (EltWidth < CVal.getBitWidth())
3918     CVal = CVal.trunc(EltWidth);
3919 
3920   switch (getBooleanContents(N.getValueType())) {
3921   case UndefinedBooleanContent:
3922     return CVal[0];
3923   case ZeroOrOneBooleanContent:
3924     return CVal.isOne();
3925   case ZeroOrNegativeOneBooleanContent:
3926     return CVal.isAllOnes();
3927   }
3928 
3929   llvm_unreachable("Invalid boolean contents");
3930 }
3931 
isConstFalseVal(SDValue N) const3932 bool TargetLowering::isConstFalseVal(SDValue N) const {
3933   if (!N)
3934     return false;
3935 
3936   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3937   if (!CN) {
3938     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3939     if (!BV)
3940       return false;
3941 
3942     // Only interested in constant splats, we don't care about undef
3943     // elements in identifying boolean constants and getConstantSplatNode
3944     // returns NULL if all ops are undef;
3945     CN = BV->getConstantSplatNode();
3946     if (!CN)
3947       return false;
3948   }
3949 
3950   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3951     return !CN->getAPIntValue()[0];
3952 
3953   return CN->isZero();
3954 }
3955 
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const3956 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3957                                        bool SExt) const {
3958   if (VT == MVT::i1)
3959     return N->isOne();
3960 
3961   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3962   switch (Cnt) {
3963   case TargetLowering::ZeroOrOneBooleanContent:
3964     // An extended value of 1 is always true, unless its original type is i1,
3965     // in which case it will be sign extended to -1.
3966     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3967   case TargetLowering::UndefinedBooleanContent:
3968   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3969     return N->isAllOnes() && SExt;
3970   }
3971   llvm_unreachable("Unexpected enumeration.");
3972 }
3973 
3974 /// This helper function of SimplifySetCC tries to optimize the comparison when
3975 /// either operand of the SetCC node is a bitwise-and instruction.
foldSetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3976 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3977                                          ISD::CondCode Cond, const SDLoc &DL,
3978                                          DAGCombinerInfo &DCI) const {
3979   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3980     std::swap(N0, N1);
3981 
3982   SelectionDAG &DAG = DCI.DAG;
3983   EVT OpVT = N0.getValueType();
3984   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3985       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3986     return SDValue();
3987 
3988   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3989   // iff everything but LSB is known zero:
3990   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3991       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3992        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3993     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3994     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3995     if (DAG.MaskedValueIsZero(N0, UpperBits))
3996       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3997   }
3998 
3999   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4000   // test in a narrow type that we can truncate to with no cost. Examples:
4001   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4002   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4003   // TODO: This conservatively checks for type legality on the source and
4004   //       destination types. That may inhibit optimizations, but it also
4005   //       allows setcc->shift transforms that may be more beneficial.
4006   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4007   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4008       isTypeLegal(OpVT) && N0.hasOneUse()) {
4009     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4010                                      AndC->getAPIntValue().getActiveBits());
4011     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4012       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4013       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4014       return DAG.getSetCC(DL, VT, Trunc, Zero,
4015                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4016     }
4017   }
4018 
4019   // Match these patterns in any of their permutations:
4020   // (X & Y) == Y
4021   // (X & Y) != Y
4022   SDValue X, Y;
4023   if (N0.getOperand(0) == N1) {
4024     X = N0.getOperand(1);
4025     Y = N0.getOperand(0);
4026   } else if (N0.getOperand(1) == N1) {
4027     X = N0.getOperand(0);
4028     Y = N0.getOperand(1);
4029   } else {
4030     return SDValue();
4031   }
4032 
4033   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4034   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4035   // its liable to create and infinite loop.
4036   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4037   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4038       DAG.isKnownToBeAPowerOfTwo(Y)) {
4039     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4040     // Note that where Y is variable and is known to have at most one bit set
4041     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4042     // equivalent when Y == 0.
4043     assert(OpVT.isInteger());
4044     Cond = ISD::getSetCCInverse(Cond, OpVT);
4045     if (DCI.isBeforeLegalizeOps() ||
4046         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4047       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4048   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4049     // If the target supports an 'and-not' or 'and-complement' logic operation,
4050     // try to use that to make a comparison operation more efficient.
4051     // But don't do this transform if the mask is a single bit because there are
4052     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4053     // 'rlwinm' on PPC).
4054 
4055     // Bail out if the compare operand that we want to turn into a zero is
4056     // already a zero (otherwise, infinite loop).
4057     if (isNullConstant(Y))
4058       return SDValue();
4059 
4060     // Transform this into: ~X & Y == 0.
4061     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4062     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4063     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4064   }
4065 
4066   return SDValue();
4067 }
4068 
4069 /// There are multiple IR patterns that could be checking whether certain
4070 /// truncation of a signed number would be lossy or not. The pattern which is
4071 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4072 /// We are looking for the following pattern: (KeptBits is a constant)
4073 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4074 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4075 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4076 /// We will unfold it into the natural trunc+sext pattern:
4077 ///   ((%x << C) a>> C) dstcond %x
4078 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const4079 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4080     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4081     const SDLoc &DL) const {
4082   // We must be comparing with a constant.
4083   ConstantSDNode *C1;
4084   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4085     return SDValue();
4086 
4087   // N0 should be:  add %x, (1 << (KeptBits-1))
4088   if (N0->getOpcode() != ISD::ADD)
4089     return SDValue();
4090 
4091   // And we must be 'add'ing a constant.
4092   ConstantSDNode *C01;
4093   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4094     return SDValue();
4095 
4096   SDValue X = N0->getOperand(0);
4097   EVT XVT = X.getValueType();
4098 
4099   // Validate constants ...
4100 
4101   APInt I1 = C1->getAPIntValue();
4102 
4103   ISD::CondCode NewCond;
4104   if (Cond == ISD::CondCode::SETULT) {
4105     NewCond = ISD::CondCode::SETEQ;
4106   } else if (Cond == ISD::CondCode::SETULE) {
4107     NewCond = ISD::CondCode::SETEQ;
4108     // But need to 'canonicalize' the constant.
4109     I1 += 1;
4110   } else if (Cond == ISD::CondCode::SETUGT) {
4111     NewCond = ISD::CondCode::SETNE;
4112     // But need to 'canonicalize' the constant.
4113     I1 += 1;
4114   } else if (Cond == ISD::CondCode::SETUGE) {
4115     NewCond = ISD::CondCode::SETNE;
4116   } else
4117     return SDValue();
4118 
4119   APInt I01 = C01->getAPIntValue();
4120 
4121   auto checkConstants = [&I1, &I01]() -> bool {
4122     // Both of them must be power-of-two, and the constant from setcc is bigger.
4123     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4124   };
4125 
4126   if (checkConstants()) {
4127     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4128   } else {
4129     // What if we invert constants? (and the target predicate)
4130     I1.negate();
4131     I01.negate();
4132     assert(XVT.isInteger());
4133     NewCond = getSetCCInverse(NewCond, XVT);
4134     if (!checkConstants())
4135       return SDValue();
4136     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4137   }
4138 
4139   // They are power-of-two, so which bit is set?
4140   const unsigned KeptBits = I1.logBase2();
4141   const unsigned KeptBitsMinusOne = I01.logBase2();
4142 
4143   // Magic!
4144   if (KeptBits != (KeptBitsMinusOne + 1))
4145     return SDValue();
4146   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4147 
4148   // We don't want to do this in every single case.
4149   SelectionDAG &DAG = DCI.DAG;
4150   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
4151           XVT, KeptBits))
4152     return SDValue();
4153 
4154   // Unfold into:  sext_inreg(%x) cond %x
4155   // Where 'cond' will be either 'eq' or 'ne'.
4156   SDValue SExtInReg = DAG.getNode(
4157       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4158       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4159   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4160 }
4161 
4162 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
optimizeSetCCByHoistingAndByConstFromLogicalShift(EVT SCCVT,SDValue N0,SDValue N1C,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const4163 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4164     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4165     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4166   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4167          "Should be a comparison with 0.");
4168   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4169          "Valid only for [in]equality comparisons.");
4170 
4171   unsigned NewShiftOpcode;
4172   SDValue X, C, Y;
4173 
4174   SelectionDAG &DAG = DCI.DAG;
4175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176 
4177   // Look for '(C l>>/<< Y)'.
4178   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
4179     // The shift should be one-use.
4180     if (!V.hasOneUse())
4181       return false;
4182     unsigned OldShiftOpcode = V.getOpcode();
4183     switch (OldShiftOpcode) {
4184     case ISD::SHL:
4185       NewShiftOpcode = ISD::SRL;
4186       break;
4187     case ISD::SRL:
4188       NewShiftOpcode = ISD::SHL;
4189       break;
4190     default:
4191       return false; // must be a logical shift.
4192     }
4193     // We should be shifting a constant.
4194     // FIXME: best to use isConstantOrConstantVector().
4195     C = V.getOperand(0);
4196     ConstantSDNode *CC =
4197         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4198     if (!CC)
4199       return false;
4200     Y = V.getOperand(1);
4201 
4202     ConstantSDNode *XC =
4203         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4204     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4205         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4206   };
4207 
4208   // LHS of comparison should be an one-use 'and'.
4209   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4210     return SDValue();
4211 
4212   X = N0.getOperand(0);
4213   SDValue Mask = N0.getOperand(1);
4214 
4215   // 'and' is commutative!
4216   if (!Match(Mask)) {
4217     std::swap(X, Mask);
4218     if (!Match(Mask))
4219       return SDValue();
4220   }
4221 
4222   EVT VT = X.getValueType();
4223 
4224   // Produce:
4225   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4226   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4227   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4228   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4229   return T2;
4230 }
4231 
4232 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4233 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4234 /// handle the commuted versions of these patterns.
foldSetCCWithBinOp(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const4235 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4236                                            ISD::CondCode Cond, const SDLoc &DL,
4237                                            DAGCombinerInfo &DCI) const {
4238   unsigned BOpcode = N0.getOpcode();
4239   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4240          "Unexpected binop");
4241   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4242 
4243   // (X + Y) == X --> Y == 0
4244   // (X - Y) == X --> Y == 0
4245   // (X ^ Y) == X --> Y == 0
4246   SelectionDAG &DAG = DCI.DAG;
4247   EVT OpVT = N0.getValueType();
4248   SDValue X = N0.getOperand(0);
4249   SDValue Y = N0.getOperand(1);
4250   if (X == N1)
4251     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4252 
4253   if (Y != N1)
4254     return SDValue();
4255 
4256   // (X + Y) == Y --> X == 0
4257   // (X ^ Y) == Y --> X == 0
4258   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4259     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4260 
4261   // The shift would not be valid if the operands are boolean (i1).
4262   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4263     return SDValue();
4264 
4265   // (X - Y) == Y --> X == Y << 1
4266   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4267   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4268   if (!DCI.isCalledByLegalizer())
4269     DCI.AddToWorklist(YShl1.getNode());
4270   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4271 }
4272 
simplifySetCCWithCTPOP(const TargetLowering & TLI,EVT VT,SDValue N0,const APInt & C1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4273 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4274                                       SDValue N0, const APInt &C1,
4275                                       ISD::CondCode Cond, const SDLoc &dl,
4276                                       SelectionDAG &DAG) {
4277   // Look through truncs that don't change the value of a ctpop.
4278   // FIXME: Add vector support? Need to be careful with setcc result type below.
4279   SDValue CTPOP = N0;
4280   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4281       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4282     CTPOP = N0.getOperand(0);
4283 
4284   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4285     return SDValue();
4286 
4287   EVT CTVT = CTPOP.getValueType();
4288   SDValue CTOp = CTPOP.getOperand(0);
4289 
4290   // Expand a power-of-2-or-zero comparison based on ctpop:
4291   // (ctpop x) u< 2 -> (x & x-1) == 0
4292   // (ctpop x) u> 1 -> (x & x-1) != 0
4293   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4294     // Keep the CTPOP if it is a cheap vector op.
4295     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4296       return SDValue();
4297 
4298     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4299     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4300       return SDValue();
4301     if (C1 == 0 && (Cond == ISD::SETULT))
4302       return SDValue(); // This is handled elsewhere.
4303 
4304     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4305 
4306     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4307     SDValue Result = CTOp;
4308     for (unsigned i = 0; i < Passes; i++) {
4309       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4310       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4311     }
4312     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4313     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4314   }
4315 
4316   // Expand a power-of-2 comparison based on ctpop
4317   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4318     // Keep the CTPOP if it is cheap.
4319     if (TLI.isCtpopFast(CTVT))
4320       return SDValue();
4321 
4322     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4323     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4324     assert(CTVT.isInteger());
4325     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4326 
4327     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4328     // check before emitting a potentially unnecessary op.
4329     if (DAG.isKnownNeverZero(CTOp)) {
4330       // (ctpop x) == 1 --> (x & x-1) == 0
4331       // (ctpop x) != 1 --> (x & x-1) != 0
4332       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4333       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4334       return RHS;
4335     }
4336 
4337     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4338     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4339     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4340     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4341     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4342   }
4343 
4344   return SDValue();
4345 }
4346 
foldSetCCWithRotate(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4347 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4348                                    ISD::CondCode Cond, const SDLoc &dl,
4349                                    SelectionDAG &DAG) {
4350   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4351     return SDValue();
4352 
4353   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4354   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4355     return SDValue();
4356 
4357   auto getRotateSource = [](SDValue X) {
4358     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4359       return X.getOperand(0);
4360     return SDValue();
4361   };
4362 
4363   // Peek through a rotated value compared against 0 or -1:
4364   // (rot X, Y) == 0/-1 --> X == 0/-1
4365   // (rot X, Y) != 0/-1 --> X != 0/-1
4366   if (SDValue R = getRotateSource(N0))
4367     return DAG.getSetCC(dl, VT, R, N1, Cond);
4368 
4369   // Peek through an 'or' of a rotated value compared against 0:
4370   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4371   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4372   //
4373   // TODO: Add the 'and' with -1 sibling.
4374   // TODO: Recurse through a series of 'or' ops to find the rotate.
4375   EVT OpVT = N0.getValueType();
4376   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4377     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4378       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4379       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4380     }
4381     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4382       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4383       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4384     }
4385   }
4386 
4387   return SDValue();
4388 }
4389 
foldSetCCWithFunnelShift(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)4390 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4391                                         ISD::CondCode Cond, const SDLoc &dl,
4392                                         SelectionDAG &DAG) {
4393   // If we are testing for all-bits-clear, we might be able to do that with
4394   // less shifting since bit-order does not matter.
4395   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4396     return SDValue();
4397 
4398   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4399   if (!C1 || !C1->isZero())
4400     return SDValue();
4401 
4402   if (!N0.hasOneUse() ||
4403       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4404     return SDValue();
4405 
4406   unsigned BitWidth = N0.getScalarValueSizeInBits();
4407   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4408   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4409     return SDValue();
4410 
4411   // Canonicalize fshr as fshl to reduce pattern-matching.
4412   unsigned ShAmt = ShAmtC->getZExtValue();
4413   if (N0.getOpcode() == ISD::FSHR)
4414     ShAmt = BitWidth - ShAmt;
4415 
4416   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4417   SDValue X, Y;
4418   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4419     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4420       return false;
4421     if (Or.getOperand(0) == Other) {
4422       X = Or.getOperand(0);
4423       Y = Or.getOperand(1);
4424       return true;
4425     }
4426     if (Or.getOperand(1) == Other) {
4427       X = Or.getOperand(1);
4428       Y = Or.getOperand(0);
4429       return true;
4430     }
4431     return false;
4432   };
4433 
4434   EVT OpVT = N0.getValueType();
4435   EVT ShAmtVT = N0.getOperand(2).getValueType();
4436   SDValue F0 = N0.getOperand(0);
4437   SDValue F1 = N0.getOperand(1);
4438   if (matchOr(F0, F1)) {
4439     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4440     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4441     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4442     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4443     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4444   }
4445   if (matchOr(F1, F0)) {
4446     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4447     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4448     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4449     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4450     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4451   }
4452 
4453   return SDValue();
4454 }
4455 
4456 /// Try to simplify a setcc built with the specified operands and cc. If it is
4457 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const4458 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4459                                       ISD::CondCode Cond, bool foldBooleans,
4460                                       DAGCombinerInfo &DCI,
4461                                       const SDLoc &dl) const {
4462   SelectionDAG &DAG = DCI.DAG;
4463   const DataLayout &Layout = DAG.getDataLayout();
4464   EVT OpVT = N0.getValueType();
4465   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4466 
4467   // Constant fold or commute setcc.
4468   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4469     return Fold;
4470 
4471   bool N0ConstOrSplat =
4472       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4473   bool N1ConstOrSplat =
4474       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4475 
4476   // Canonicalize toward having the constant on the RHS.
4477   // TODO: Handle non-splat vector constants. All undef causes trouble.
4478   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4479   // infinite loop here when we encounter one.
4480   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4481   if (N0ConstOrSplat && !N1ConstOrSplat &&
4482       (DCI.isBeforeLegalizeOps() ||
4483        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4484     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4485 
4486   // If we have a subtract with the same 2 non-constant operands as this setcc
4487   // -- but in reverse order -- then try to commute the operands of this setcc
4488   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4489   // instruction on some targets.
4490   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4491       (DCI.isBeforeLegalizeOps() ||
4492        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4493       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4494       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4495     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4496 
4497   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4498     return V;
4499 
4500   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4501     return V;
4502 
4503   if (auto *N1C = isConstOrConstSplat(N1)) {
4504     const APInt &C1 = N1C->getAPIntValue();
4505 
4506     // Optimize some CTPOP cases.
4507     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4508       return V;
4509 
4510     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4511     // X * Y == 0 --> (X == 0) || (Y == 0)
4512     // X * Y != 0 --> (X != 0) && (Y != 0)
4513     // TODO: This bails out if minsize is set, but if the target doesn't have a
4514     //       single instruction multiply for this type, it would likely be
4515     //       smaller to decompose.
4516     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4517         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4518         (N0->getFlags().hasNoUnsignedWrap() ||
4519          N0->getFlags().hasNoSignedWrap()) &&
4520         !Attr.hasFnAttr(Attribute::MinSize)) {
4521       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4522       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4523       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4524       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4525     }
4526 
4527     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4528     // equality comparison, then we're just comparing whether X itself is
4529     // zero.
4530     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4531         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4532         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4533       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4534         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4535             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4536           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4537             // (srl (ctlz x), 5) == 0  -> X != 0
4538             // (srl (ctlz x), 5) != 1  -> X != 0
4539             Cond = ISD::SETNE;
4540           } else {
4541             // (srl (ctlz x), 5) != 0  -> X == 0
4542             // (srl (ctlz x), 5) == 1  -> X == 0
4543             Cond = ISD::SETEQ;
4544           }
4545           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4546           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4547                               Cond);
4548         }
4549       }
4550     }
4551   }
4552 
4553   // FIXME: Support vectors.
4554   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4555     const APInt &C1 = N1C->getAPIntValue();
4556 
4557     // (zext x) == C --> x == (trunc C)
4558     // (sext x) == C --> x == (trunc C)
4559     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4560         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4561       unsigned MinBits = N0.getValueSizeInBits();
4562       SDValue PreExt;
4563       bool Signed = false;
4564       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4565         // ZExt
4566         MinBits = N0->getOperand(0).getValueSizeInBits();
4567         PreExt = N0->getOperand(0);
4568       } else if (N0->getOpcode() == ISD::AND) {
4569         // DAGCombine turns costly ZExts into ANDs
4570         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4571           if ((C->getAPIntValue()+1).isPowerOf2()) {
4572             MinBits = C->getAPIntValue().countr_one();
4573             PreExt = N0->getOperand(0);
4574           }
4575       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4576         // SExt
4577         MinBits = N0->getOperand(0).getValueSizeInBits();
4578         PreExt = N0->getOperand(0);
4579         Signed = true;
4580       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4581         // ZEXTLOAD / SEXTLOAD
4582         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4583           MinBits = LN0->getMemoryVT().getSizeInBits();
4584           PreExt = N0;
4585         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4586           Signed = true;
4587           MinBits = LN0->getMemoryVT().getSizeInBits();
4588           PreExt = N0;
4589         }
4590       }
4591 
4592       // Figure out how many bits we need to preserve this constant.
4593       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4594 
4595       // Make sure we're not losing bits from the constant.
4596       if (MinBits > 0 &&
4597           MinBits < C1.getBitWidth() &&
4598           MinBits >= ReqdBits) {
4599         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4600         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4601           // Will get folded away.
4602           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4603           if (MinBits == 1 && C1 == 1)
4604             // Invert the condition.
4605             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4606                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4607           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4608           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4609         }
4610 
4611         // If truncating the setcc operands is not desirable, we can still
4612         // simplify the expression in some cases:
4613         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4614         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4615         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4616         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4617         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4618         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4619         SDValue TopSetCC = N0->getOperand(0);
4620         unsigned N0Opc = N0->getOpcode();
4621         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4622         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4623             TopSetCC.getOpcode() == ISD::SETCC &&
4624             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4625             (isConstFalseVal(N1) ||
4626              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4627 
4628           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4629                          (!N1C->isZero() && Cond == ISD::SETNE);
4630 
4631           if (!Inverse)
4632             return TopSetCC;
4633 
4634           ISD::CondCode InvCond = ISD::getSetCCInverse(
4635               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4636               TopSetCC.getOperand(0).getValueType());
4637           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4638                                       TopSetCC.getOperand(1),
4639                                       InvCond);
4640         }
4641       }
4642     }
4643 
4644     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4645     // equality or unsigned, and all 1 bits of the const are in the same
4646     // partial word, see if we can shorten the load.
4647     if (DCI.isBeforeLegalize() &&
4648         !ISD::isSignedIntSetCC(Cond) &&
4649         N0.getOpcode() == ISD::AND && C1 == 0 &&
4650         N0.getNode()->hasOneUse() &&
4651         isa<LoadSDNode>(N0.getOperand(0)) &&
4652         N0.getOperand(0).getNode()->hasOneUse() &&
4653         isa<ConstantSDNode>(N0.getOperand(1))) {
4654       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4655       APInt bestMask;
4656       unsigned bestWidth = 0, bestOffset = 0;
4657       if (Lod->isSimple() && Lod->isUnindexed() &&
4658           (Lod->getMemoryVT().isByteSized() ||
4659            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4660         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4661         unsigned origWidth = N0.getValueSizeInBits();
4662         unsigned maskWidth = origWidth;
4663         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4664         // 8 bits, but have to be careful...
4665         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4666           origWidth = Lod->getMemoryVT().getSizeInBits();
4667         const APInt &Mask = N0.getConstantOperandAPInt(1);
4668         // Only consider power-of-2 widths (and at least one byte) as candiates
4669         // for the narrowed load.
4670         for (unsigned width = 8; width < origWidth; width *= 2) {
4671           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4672           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4673             continue;
4674           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4675           // Avoid accessing any padding here for now (we could use memWidth
4676           // instead of origWidth here otherwise).
4677           unsigned maxOffset = origWidth - width;
4678           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4679             if (Mask.isSubsetOf(newMask)) {
4680               unsigned ptrOffset =
4681                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4682               unsigned IsFast = 0;
4683               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4684               if (allowsMemoryAccess(
4685                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4686                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4687                   IsFast) {
4688                 bestOffset = ptrOffset / 8;
4689                 bestMask = Mask.lshr(offset);
4690                 bestWidth = width;
4691                 break;
4692               }
4693             }
4694             newMask <<= 8;
4695           }
4696           if (bestWidth)
4697             break;
4698         }
4699       }
4700       if (bestWidth) {
4701         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4702         SDValue Ptr = Lod->getBasePtr();
4703         if (bestOffset != 0)
4704           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4705         SDValue NewLoad =
4706             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4707                         Lod->getPointerInfo().getWithOffset(bestOffset),
4708                         Lod->getOriginalAlign());
4709         SDValue And =
4710             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4711                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4712         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4713       }
4714     }
4715 
4716     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4717     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4718       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4719 
4720       // If the comparison constant has bits in the upper part, the
4721       // zero-extended value could never match.
4722       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4723                                               C1.getBitWidth() - InSize))) {
4724         switch (Cond) {
4725         case ISD::SETUGT:
4726         case ISD::SETUGE:
4727         case ISD::SETEQ:
4728           return DAG.getConstant(0, dl, VT);
4729         case ISD::SETULT:
4730         case ISD::SETULE:
4731         case ISD::SETNE:
4732           return DAG.getConstant(1, dl, VT);
4733         case ISD::SETGT:
4734         case ISD::SETGE:
4735           // True if the sign bit of C1 is set.
4736           return DAG.getConstant(C1.isNegative(), dl, VT);
4737         case ISD::SETLT:
4738         case ISD::SETLE:
4739           // True if the sign bit of C1 isn't set.
4740           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4741         default:
4742           break;
4743         }
4744       }
4745 
4746       // Otherwise, we can perform the comparison with the low bits.
4747       switch (Cond) {
4748       case ISD::SETEQ:
4749       case ISD::SETNE:
4750       case ISD::SETUGT:
4751       case ISD::SETUGE:
4752       case ISD::SETULT:
4753       case ISD::SETULE: {
4754         EVT newVT = N0.getOperand(0).getValueType();
4755         if (DCI.isBeforeLegalizeOps() ||
4756             (isOperationLegal(ISD::SETCC, newVT) &&
4757              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4758           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4759           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4760 
4761           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4762                                           NewConst, Cond);
4763           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4764         }
4765         break;
4766       }
4767       default:
4768         break; // todo, be more careful with signed comparisons
4769       }
4770     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4771                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4772                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4773                                       OpVT)) {
4774       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4775       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4776       EVT ExtDstTy = N0.getValueType();
4777       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4778 
4779       // If the constant doesn't fit into the number of bits for the source of
4780       // the sign extension, it is impossible for both sides to be equal.
4781       if (C1.getSignificantBits() > ExtSrcTyBits)
4782         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4783 
4784       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4785              ExtDstTy != ExtSrcTy && "Unexpected types!");
4786       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4787       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4788                                    DAG.getConstant(Imm, dl, ExtDstTy));
4789       if (!DCI.isCalledByLegalizer())
4790         DCI.AddToWorklist(ZextOp.getNode());
4791       // Otherwise, make this a use of a zext.
4792       return DAG.getSetCC(dl, VT, ZextOp,
4793                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4794     } else if ((N1C->isZero() || N1C->isOne()) &&
4795                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4796       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4797       // excluded as they are handled below whilst checking for foldBooleans.
4798       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4799           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4800           (N0.getValueType() == MVT::i1 ||
4801            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4802           DAG.MaskedValueIsZero(
4803               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4804         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4805         if (TrueWhenTrue)
4806           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4807         // Invert the condition.
4808         if (N0.getOpcode() == ISD::SETCC) {
4809           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4810           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4811           if (DCI.isBeforeLegalizeOps() ||
4812               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4813             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4814         }
4815       }
4816 
4817       if ((N0.getOpcode() == ISD::XOR ||
4818            (N0.getOpcode() == ISD::AND &&
4819             N0.getOperand(0).getOpcode() == ISD::XOR &&
4820             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4821           isOneConstant(N0.getOperand(1))) {
4822         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4823         // can only do this if the top bits are known zero.
4824         unsigned BitWidth = N0.getValueSizeInBits();
4825         if (DAG.MaskedValueIsZero(N0,
4826                                   APInt::getHighBitsSet(BitWidth,
4827                                                         BitWidth-1))) {
4828           // Okay, get the un-inverted input value.
4829           SDValue Val;
4830           if (N0.getOpcode() == ISD::XOR) {
4831             Val = N0.getOperand(0);
4832           } else {
4833             assert(N0.getOpcode() == ISD::AND &&
4834                     N0.getOperand(0).getOpcode() == ISD::XOR);
4835             // ((X^1)&1)^1 -> X & 1
4836             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4837                               N0.getOperand(0).getOperand(0),
4838                               N0.getOperand(1));
4839           }
4840 
4841           return DAG.getSetCC(dl, VT, Val, N1,
4842                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4843         }
4844       } else if (N1C->isOne()) {
4845         SDValue Op0 = N0;
4846         if (Op0.getOpcode() == ISD::TRUNCATE)
4847           Op0 = Op0.getOperand(0);
4848 
4849         if ((Op0.getOpcode() == ISD::XOR) &&
4850             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4851             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4852           SDValue XorLHS = Op0.getOperand(0);
4853           SDValue XorRHS = Op0.getOperand(1);
4854           // Ensure that the input setccs return an i1 type or 0/1 value.
4855           if (Op0.getValueType() == MVT::i1 ||
4856               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4857                       ZeroOrOneBooleanContent &&
4858                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4859                         ZeroOrOneBooleanContent)) {
4860             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4861             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4862             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4863           }
4864         }
4865         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4866           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4867           if (Op0.getValueType().bitsGT(VT))
4868             Op0 = DAG.getNode(ISD::AND, dl, VT,
4869                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4870                           DAG.getConstant(1, dl, VT));
4871           else if (Op0.getValueType().bitsLT(VT))
4872             Op0 = DAG.getNode(ISD::AND, dl, VT,
4873                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4874                         DAG.getConstant(1, dl, VT));
4875 
4876           return DAG.getSetCC(dl, VT, Op0,
4877                               DAG.getConstant(0, dl, Op0.getValueType()),
4878                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4879         }
4880         if (Op0.getOpcode() == ISD::AssertZext &&
4881             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4882           return DAG.getSetCC(dl, VT, Op0,
4883                               DAG.getConstant(0, dl, Op0.getValueType()),
4884                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4885       }
4886     }
4887 
4888     // Given:
4889     //   icmp eq/ne (urem %x, %y), 0
4890     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4891     //   icmp eq/ne %x, 0
4892     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4893         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4894       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4895       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4896       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4897         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4898     }
4899 
4900     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4901     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4902     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4903         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4904         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4905         N1C && N1C->isAllOnes()) {
4906       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4907                           DAG.getConstant(0, dl, OpVT),
4908                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4909     }
4910 
4911     if (SDValue V =
4912             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4913       return V;
4914   }
4915 
4916   // These simplifications apply to splat vectors as well.
4917   // TODO: Handle more splat vector cases.
4918   if (auto *N1C = isConstOrConstSplat(N1)) {
4919     const APInt &C1 = N1C->getAPIntValue();
4920 
4921     APInt MinVal, MaxVal;
4922     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4923     if (ISD::isSignedIntSetCC(Cond)) {
4924       MinVal = APInt::getSignedMinValue(OperandBitSize);
4925       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4926     } else {
4927       MinVal = APInt::getMinValue(OperandBitSize);
4928       MaxVal = APInt::getMaxValue(OperandBitSize);
4929     }
4930 
4931     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4932     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4933       // X >= MIN --> true
4934       if (C1 == MinVal)
4935         return DAG.getBoolConstant(true, dl, VT, OpVT);
4936 
4937       if (!VT.isVector()) { // TODO: Support this for vectors.
4938         // X >= C0 --> X > (C0 - 1)
4939         APInt C = C1 - 1;
4940         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4941         if ((DCI.isBeforeLegalizeOps() ||
4942              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4943             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4944                                   isLegalICmpImmediate(C.getSExtValue())))) {
4945           return DAG.getSetCC(dl, VT, N0,
4946                               DAG.getConstant(C, dl, N1.getValueType()),
4947                               NewCC);
4948         }
4949       }
4950     }
4951 
4952     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4953       // X <= MAX --> true
4954       if (C1 == MaxVal)
4955         return DAG.getBoolConstant(true, dl, VT, OpVT);
4956 
4957       // X <= C0 --> X < (C0 + 1)
4958       if (!VT.isVector()) { // TODO: Support this for vectors.
4959         APInt C = C1 + 1;
4960         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4961         if ((DCI.isBeforeLegalizeOps() ||
4962              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4963             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4964                                   isLegalICmpImmediate(C.getSExtValue())))) {
4965           return DAG.getSetCC(dl, VT, N0,
4966                               DAG.getConstant(C, dl, N1.getValueType()),
4967                               NewCC);
4968         }
4969       }
4970     }
4971 
4972     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4973       if (C1 == MinVal)
4974         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4975 
4976       // TODO: Support this for vectors after legalize ops.
4977       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4978         // Canonicalize setlt X, Max --> setne X, Max
4979         if (C1 == MaxVal)
4980           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4981 
4982         // If we have setult X, 1, turn it into seteq X, 0
4983         if (C1 == MinVal+1)
4984           return DAG.getSetCC(dl, VT, N0,
4985                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4986                               ISD::SETEQ);
4987       }
4988     }
4989 
4990     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4991       if (C1 == MaxVal)
4992         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4993 
4994       // TODO: Support this for vectors after legalize ops.
4995       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4996         // Canonicalize setgt X, Min --> setne X, Min
4997         if (C1 == MinVal)
4998           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4999 
5000         // If we have setugt X, Max-1, turn it into seteq X, Max
5001         if (C1 == MaxVal-1)
5002           return DAG.getSetCC(dl, VT, N0,
5003                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5004                               ISD::SETEQ);
5005       }
5006     }
5007 
5008     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5009       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5010       if (C1.isZero())
5011         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5012                 VT, N0, N1, Cond, DCI, dl))
5013           return CC;
5014 
5015       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5016       // For example, when high 32-bits of i64 X are known clear:
5017       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5018       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5019       bool CmpZero = N1C->isZero();
5020       bool CmpNegOne = N1C->isAllOnes();
5021       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5022         // Match or(lo,shl(hi,bw/2)) pattern.
5023         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5024           unsigned EltBits = V.getScalarValueSizeInBits();
5025           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5026             return false;
5027           SDValue LHS = V.getOperand(0);
5028           SDValue RHS = V.getOperand(1);
5029           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5030           // Unshifted element must have zero upperbits.
5031           if (RHS.getOpcode() == ISD::SHL &&
5032               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5033               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5034               DAG.MaskedValueIsZero(LHS, HiBits)) {
5035             Lo = LHS;
5036             Hi = RHS.getOperand(0);
5037             return true;
5038           }
5039           if (LHS.getOpcode() == ISD::SHL &&
5040               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5041               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5042               DAG.MaskedValueIsZero(RHS, HiBits)) {
5043             Lo = RHS;
5044             Hi = LHS.getOperand(0);
5045             return true;
5046           }
5047           return false;
5048         };
5049 
5050         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5051           unsigned EltBits = N0.getScalarValueSizeInBits();
5052           unsigned HalfBits = EltBits / 2;
5053           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5054           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5055           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5056           SDValue NewN0 =
5057               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5058           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5059           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5060         };
5061 
5062         SDValue Lo, Hi;
5063         if (IsConcat(N0, Lo, Hi))
5064           return MergeConcat(Lo, Hi);
5065 
5066         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5067           SDValue Lo0, Lo1, Hi0, Hi1;
5068           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5069               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5070             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5071                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5072           }
5073         }
5074       }
5075     }
5076 
5077     // If we have "setcc X, C0", check to see if we can shrink the immediate
5078     // by changing cc.
5079     // TODO: Support this for vectors after legalize ops.
5080     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5081       // SETUGT X, SINTMAX  -> SETLT X, 0
5082       // SETUGE X, SINTMIN -> SETLT X, 0
5083       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5084           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5085         return DAG.getSetCC(dl, VT, N0,
5086                             DAG.getConstant(0, dl, N1.getValueType()),
5087                             ISD::SETLT);
5088 
5089       // SETULT X, SINTMIN  -> SETGT X, -1
5090       // SETULE X, SINTMAX  -> SETGT X, -1
5091       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5092           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5093         return DAG.getSetCC(dl, VT, N0,
5094                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5095                             ISD::SETGT);
5096     }
5097   }
5098 
5099   // Back to non-vector simplifications.
5100   // TODO: Can we do these for vector splats?
5101   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5102     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5103     const APInt &C1 = N1C->getAPIntValue();
5104     EVT ShValTy = N0.getValueType();
5105 
5106     // Fold bit comparisons when we can. This will result in an
5107     // incorrect value when boolean false is negative one, unless
5108     // the bitsize is 1 in which case the false value is the same
5109     // in practice regardless of the representation.
5110     if ((VT.getSizeInBits() == 1 ||
5111          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5112         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5113         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5114         N0.getOpcode() == ISD::AND) {
5115       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5116         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5117           // Perform the xform if the AND RHS is a single bit.
5118           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5119           if (AndRHS->getAPIntValue().isPowerOf2() &&
5120               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
5121             return DAG.getNode(
5122                 ISD::TRUNCATE, dl, VT,
5123                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5124                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5125           }
5126         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5127           // (X & 8) == 8  -->  (X & 8) >> 3
5128           // Perform the xform if C1 is a single bit.
5129           unsigned ShCt = C1.logBase2();
5130           if (C1.isPowerOf2() &&
5131               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
5132             return DAG.getNode(
5133                 ISD::TRUNCATE, dl, VT,
5134                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5135                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5136           }
5137         }
5138       }
5139     }
5140 
5141     if (C1.getSignificantBits() <= 64 &&
5142         !isLegalICmpImmediate(C1.getSExtValue())) {
5143       // (X & -256) == 256 -> (X >> 8) == 1
5144       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5145           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5146         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5147           const APInt &AndRHSC = AndRHS->getAPIntValue();
5148           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
5149             unsigned ShiftBits = AndRHSC.countr_zero();
5150             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5151               SDValue Shift = DAG.getNode(
5152                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5153                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5154               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5155               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5156             }
5157           }
5158         }
5159       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5160                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5161         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5162         // X <  0x100000000 -> (X >> 32) <  1
5163         // X >= 0x100000000 -> (X >> 32) >= 1
5164         // X <= 0x0ffffffff -> (X >> 32) <  1
5165         // X >  0x0ffffffff -> (X >> 32) >= 1
5166         unsigned ShiftBits;
5167         APInt NewC = C1;
5168         ISD::CondCode NewCond = Cond;
5169         if (AdjOne) {
5170           ShiftBits = C1.countr_one();
5171           NewC = NewC + 1;
5172           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5173         } else {
5174           ShiftBits = C1.countr_zero();
5175         }
5176         NewC.lshrInPlace(ShiftBits);
5177         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5178             isLegalICmpImmediate(NewC.getSExtValue()) &&
5179             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5180           SDValue Shift =
5181               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5182                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5183           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5184           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5185         }
5186       }
5187     }
5188   }
5189 
5190   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5191     auto *CFP = cast<ConstantFPSDNode>(N1);
5192     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5193 
5194     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5195     // constant if knowing that the operand is non-nan is enough.  We prefer to
5196     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5197     // materialize 0.0.
5198     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5199       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5200 
5201     // setcc (fneg x), C -> setcc swap(pred) x, -C
5202     if (N0.getOpcode() == ISD::FNEG) {
5203       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5204       if (DCI.isBeforeLegalizeOps() ||
5205           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5206         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5207         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5208       }
5209     }
5210 
5211     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5212     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5213         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5214       bool IsFabs = N0.getOpcode() == ISD::FABS;
5215       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5216       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5217         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5218                                              : (IsFabs ? fcInf : fcPosInf);
5219         if (Cond == ISD::SETUEQ)
5220           Flag |= fcNan;
5221         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5222                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5223       }
5224     }
5225 
5226     // If the condition is not legal, see if we can find an equivalent one
5227     // which is legal.
5228     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5229       // If the comparison was an awkward floating-point == or != and one of
5230       // the comparison operands is infinity or negative infinity, convert the
5231       // condition to a less-awkward <= or >=.
5232       if (CFP->getValueAPF().isInfinity()) {
5233         bool IsNegInf = CFP->getValueAPF().isNegative();
5234         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5235         switch (Cond) {
5236         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5237         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5238         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5239         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5240         default: break;
5241         }
5242         if (NewCond != ISD::SETCC_INVALID &&
5243             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5244           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5245       }
5246     }
5247   }
5248 
5249   if (N0 == N1) {
5250     // The sext(setcc()) => setcc() optimization relies on the appropriate
5251     // constant being emitted.
5252     assert(!N0.getValueType().isInteger() &&
5253            "Integer types should be handled by FoldSetCC");
5254 
5255     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5256     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5257     if (UOF == 2) // FP operators that are undefined on NaNs.
5258       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5259     if (UOF == unsigned(EqTrue))
5260       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5261     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5262     // if it is not already.
5263     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5264     if (NewCond != Cond &&
5265         (DCI.isBeforeLegalizeOps() ||
5266                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5267       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5268   }
5269 
5270   // ~X > ~Y --> Y > X
5271   // ~X < ~Y --> Y < X
5272   // ~X < C --> X > ~C
5273   // ~X > C --> X < ~C
5274   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5275       N0.getValueType().isInteger()) {
5276     if (isBitwiseNot(N0)) {
5277       if (isBitwiseNot(N1))
5278         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5279 
5280       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5281           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5282         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5283         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5284       }
5285     }
5286   }
5287 
5288   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5289       N0.getValueType().isInteger()) {
5290     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5291         N0.getOpcode() == ISD::XOR) {
5292       // Simplify (X+Y) == (X+Z) -->  Y == Z
5293       if (N0.getOpcode() == N1.getOpcode()) {
5294         if (N0.getOperand(0) == N1.getOperand(0))
5295           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5296         if (N0.getOperand(1) == N1.getOperand(1))
5297           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5298         if (isCommutativeBinOp(N0.getOpcode())) {
5299           // If X op Y == Y op X, try other combinations.
5300           if (N0.getOperand(0) == N1.getOperand(1))
5301             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5302                                 Cond);
5303           if (N0.getOperand(1) == N1.getOperand(0))
5304             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5305                                 Cond);
5306         }
5307       }
5308 
5309       // If RHS is a legal immediate value for a compare instruction, we need
5310       // to be careful about increasing register pressure needlessly.
5311       bool LegalRHSImm = false;
5312 
5313       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5314         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5315           // Turn (X+C1) == C2 --> X == C2-C1
5316           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5317             return DAG.getSetCC(
5318                 dl, VT, N0.getOperand(0),
5319                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5320                                 dl, N0.getValueType()),
5321                 Cond);
5322 
5323           // Turn (X^C1) == C2 --> X == C1^C2
5324           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5325             return DAG.getSetCC(
5326                 dl, VT, N0.getOperand(0),
5327                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5328                                 dl, N0.getValueType()),
5329                 Cond);
5330         }
5331 
5332         // Turn (C1-X) == C2 --> X == C1-C2
5333         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5334           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5335             return DAG.getSetCC(
5336                 dl, VT, N0.getOperand(1),
5337                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5338                                 dl, N0.getValueType()),
5339                 Cond);
5340 
5341         // Could RHSC fold directly into a compare?
5342         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5343           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5344       }
5345 
5346       // (X+Y) == X --> Y == 0 and similar folds.
5347       // Don't do this if X is an immediate that can fold into a cmp
5348       // instruction and X+Y has other uses. It could be an induction variable
5349       // chain, and the transform would increase register pressure.
5350       if (!LegalRHSImm || N0.hasOneUse())
5351         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5352           return V;
5353     }
5354 
5355     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5356         N1.getOpcode() == ISD::XOR)
5357       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5358         return V;
5359 
5360     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5361       return V;
5362   }
5363 
5364   // Fold remainder of division by a constant.
5365   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5366       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5367     // When division is cheap or optimizing for minimum size,
5368     // fall through to DIVREM creation by skipping this fold.
5369     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5370       if (N0.getOpcode() == ISD::UREM) {
5371         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5372           return Folded;
5373       } else if (N0.getOpcode() == ISD::SREM) {
5374         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5375           return Folded;
5376       }
5377     }
5378   }
5379 
5380   // Fold away ALL boolean setcc's.
5381   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5382     SDValue Temp;
5383     switch (Cond) {
5384     default: llvm_unreachable("Unknown integer setcc!");
5385     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5386       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5387       N0 = DAG.getNOT(dl, Temp, OpVT);
5388       if (!DCI.isCalledByLegalizer())
5389         DCI.AddToWorklist(Temp.getNode());
5390       break;
5391     case ISD::SETNE:  // X != Y   -->  (X^Y)
5392       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5393       break;
5394     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5395     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5396       Temp = DAG.getNOT(dl, N0, OpVT);
5397       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5398       if (!DCI.isCalledByLegalizer())
5399         DCI.AddToWorklist(Temp.getNode());
5400       break;
5401     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5402     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5403       Temp = DAG.getNOT(dl, N1, OpVT);
5404       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5405       if (!DCI.isCalledByLegalizer())
5406         DCI.AddToWorklist(Temp.getNode());
5407       break;
5408     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5409     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5410       Temp = DAG.getNOT(dl, N0, OpVT);
5411       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5412       if (!DCI.isCalledByLegalizer())
5413         DCI.AddToWorklist(Temp.getNode());
5414       break;
5415     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5416     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5417       Temp = DAG.getNOT(dl, N1, OpVT);
5418       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5419       break;
5420     }
5421     if (VT.getScalarType() != MVT::i1) {
5422       if (!DCI.isCalledByLegalizer())
5423         DCI.AddToWorklist(N0.getNode());
5424       // FIXME: If running after legalize, we probably can't do this.
5425       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5426       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5427     }
5428     return N0;
5429   }
5430 
5431   // Could not fold it.
5432   return SDValue();
5433 }
5434 
5435 /// Returns true (and the GlobalValue and the offset) if the node is a
5436 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * WN,const GlobalValue * & GA,int64_t & Offset) const5437 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5438                                     int64_t &Offset) const {
5439 
5440   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5441 
5442   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5443     GA = GASD->getGlobal();
5444     Offset += GASD->getOffset();
5445     return true;
5446   }
5447 
5448   if (N->getOpcode() == ISD::ADD) {
5449     SDValue N1 = N->getOperand(0);
5450     SDValue N2 = N->getOperand(1);
5451     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5452       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5453         Offset += V->getSExtValue();
5454         return true;
5455       }
5456     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5457       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5458         Offset += V->getSExtValue();
5459         return true;
5460       }
5461     }
5462   }
5463 
5464   return false;
5465 }
5466 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5467 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5468                                           DAGCombinerInfo &DCI) const {
5469   // Default implementation: no optimization.
5470   return SDValue();
5471 }
5472 
5473 //===----------------------------------------------------------------------===//
5474 //  Inline Assembler Implementation Methods
5475 //===----------------------------------------------------------------------===//
5476 
5477 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5478 TargetLowering::getConstraintType(StringRef Constraint) const {
5479   unsigned S = Constraint.size();
5480 
5481   if (S == 1) {
5482     switch (Constraint[0]) {
5483     default: break;
5484     case 'r':
5485       return C_RegisterClass;
5486     case 'm': // memory
5487     case 'o': // offsetable
5488     case 'V': // not offsetable
5489       return C_Memory;
5490     case 'p': // Address.
5491       return C_Address;
5492     case 'n': // Simple Integer
5493     case 'E': // Floating Point Constant
5494     case 'F': // Floating Point Constant
5495       return C_Immediate;
5496     case 'i': // Simple Integer or Relocatable Constant
5497     case 's': // Relocatable Constant
5498     case 'X': // Allow ANY value.
5499     case 'I': // Target registers.
5500     case 'J':
5501     case 'K':
5502     case 'L':
5503     case 'M':
5504     case 'N':
5505     case 'O':
5506     case 'P':
5507     case '<':
5508     case '>':
5509       return C_Other;
5510     }
5511   }
5512 
5513   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5514     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5515       return C_Memory;
5516     return C_Register;
5517   }
5518   return C_Unknown;
5519 }
5520 
5521 /// Try to replace an X constraint, which matches anything, with another that
5522 /// has more specific requirements based on the type of the corresponding
5523 /// operand.
LowerXConstraint(EVT ConstraintVT) const5524 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5525   if (ConstraintVT.isInteger())
5526     return "r";
5527   if (ConstraintVT.isFloatingPoint())
5528     return "f"; // works for many targets
5529   return nullptr;
5530 }
5531 
LowerAsmOutputForConstraint(SDValue & Chain,SDValue & Glue,const SDLoc & DL,const AsmOperandInfo & OpInfo,SelectionDAG & DAG) const5532 SDValue TargetLowering::LowerAsmOutputForConstraint(
5533     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5534     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5535   return SDValue();
5536 }
5537 
5538 /// Lower the specified operand into the Ops vector.
5539 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5540 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5541                                                   StringRef Constraint,
5542                                                   std::vector<SDValue> &Ops,
5543                                                   SelectionDAG &DAG) const {
5544 
5545   if (Constraint.size() > 1)
5546     return;
5547 
5548   char ConstraintLetter = Constraint[0];
5549   switch (ConstraintLetter) {
5550   default: break;
5551   case 'X':    // Allows any operand
5552   case 'i':    // Simple Integer or Relocatable Constant
5553   case 'n':    // Simple Integer
5554   case 's': {  // Relocatable Constant
5555 
5556     ConstantSDNode *C;
5557     uint64_t Offset = 0;
5558 
5559     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5560     // etc., since getelementpointer is variadic. We can't use
5561     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5562     // while in this case the GA may be furthest from the root node which is
5563     // likely an ISD::ADD.
5564     while (true) {
5565       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5566         // gcc prints these as sign extended.  Sign extend value to 64 bits
5567         // now; without this it would get ZExt'd later in
5568         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5569         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5570         BooleanContent BCont = getBooleanContents(MVT::i64);
5571         ISD::NodeType ExtOpc =
5572             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5573         int64_t ExtVal =
5574             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5575         Ops.push_back(
5576             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5577         return;
5578       }
5579       if (ConstraintLetter != 'n') {
5580         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5581           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5582                                                    GA->getValueType(0),
5583                                                    Offset + GA->getOffset()));
5584           return;
5585         }
5586         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5587           Ops.push_back(DAG.getTargetBlockAddress(
5588               BA->getBlockAddress(), BA->getValueType(0),
5589               Offset + BA->getOffset(), BA->getTargetFlags()));
5590           return;
5591         }
5592         if (isa<BasicBlockSDNode>(Op)) {
5593           Ops.push_back(Op);
5594           return;
5595         }
5596       }
5597       const unsigned OpCode = Op.getOpcode();
5598       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5599         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5600           Op = Op.getOperand(1);
5601         // Subtraction is not commutative.
5602         else if (OpCode == ISD::ADD &&
5603                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5604           Op = Op.getOperand(0);
5605         else
5606           return;
5607         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5608         continue;
5609       }
5610       return;
5611     }
5612     break;
5613   }
5614   }
5615 }
5616 
CollectTargetIntrinsicOperands(const CallInst & I,SmallVectorImpl<SDValue> & Ops,SelectionDAG & DAG) const5617 void TargetLowering::CollectTargetIntrinsicOperands(
5618     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5619 }
5620 
5621 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const5622 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5623                                              StringRef Constraint,
5624                                              MVT VT) const {
5625   if (!Constraint.starts_with("{"))
5626     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5627   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5628 
5629   // Remove the braces from around the name.
5630   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5631 
5632   std::pair<unsigned, const TargetRegisterClass *> R =
5633       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5634 
5635   // Figure out which register class contains this reg.
5636   for (const TargetRegisterClass *RC : RI->regclasses()) {
5637     // If none of the value types for this register class are valid, we
5638     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5639     if (!isLegalRC(*RI, *RC))
5640       continue;
5641 
5642     for (const MCPhysReg &PR : *RC) {
5643       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5644         std::pair<unsigned, const TargetRegisterClass *> S =
5645             std::make_pair(PR, RC);
5646 
5647         // If this register class has the requested value type, return it,
5648         // otherwise keep searching and return the first class found
5649         // if no other is found which explicitly has the requested type.
5650         if (RI->isTypeLegalForClass(*RC, VT))
5651           return S;
5652         if (!R.second)
5653           R = S;
5654       }
5655     }
5656   }
5657 
5658   return R;
5659 }
5660 
5661 //===----------------------------------------------------------------------===//
5662 // Constraint Selection.
5663 
5664 /// Return true of this is an input operand that is a matching constraint like
5665 /// "4".
isMatchingInputConstraint() const5666 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5667   assert(!ConstraintCode.empty() && "No known constraint!");
5668   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5669 }
5670 
5671 /// If this is an input matching constraint, this method returns the output
5672 /// operand it matches.
getMatchedOperand() const5673 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5674   assert(!ConstraintCode.empty() && "No known constraint!");
5675   return atoi(ConstraintCode.c_str());
5676 }
5677 
5678 /// Split up the constraint string from the inline assembly value into the
5679 /// specific constraints and their prefixes, and also tie in the associated
5680 /// operand values.
5681 /// If this returns an empty vector, and if the constraint string itself
5682 /// isn't empty, there was an error parsing.
5683 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,const CallBase & Call) const5684 TargetLowering::ParseConstraints(const DataLayout &DL,
5685                                  const TargetRegisterInfo *TRI,
5686                                  const CallBase &Call) const {
5687   /// Information about all of the constraints.
5688   AsmOperandInfoVector ConstraintOperands;
5689   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5690   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5691 
5692   // Do a prepass over the constraints, canonicalizing them, and building up the
5693   // ConstraintOperands list.
5694   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5695   unsigned ResNo = 0; // ResNo - The result number of the next output.
5696   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5697 
5698   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5699     ConstraintOperands.emplace_back(std::move(CI));
5700     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5701 
5702     // Update multiple alternative constraint count.
5703     if (OpInfo.multipleAlternatives.size() > maCount)
5704       maCount = OpInfo.multipleAlternatives.size();
5705 
5706     OpInfo.ConstraintVT = MVT::Other;
5707 
5708     // Compute the value type for each operand.
5709     switch (OpInfo.Type) {
5710     case InlineAsm::isOutput:
5711       // Indirect outputs just consume an argument.
5712       if (OpInfo.isIndirect) {
5713         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5714         break;
5715       }
5716 
5717       // The return value of the call is this value.  As such, there is no
5718       // corresponding argument.
5719       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5720       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5721         OpInfo.ConstraintVT =
5722             getSimpleValueType(DL, STy->getElementType(ResNo));
5723       } else {
5724         assert(ResNo == 0 && "Asm only has one result!");
5725         OpInfo.ConstraintVT =
5726             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5727       }
5728       ++ResNo;
5729       break;
5730     case InlineAsm::isInput:
5731       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5732       break;
5733     case InlineAsm::isLabel:
5734       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5735       ++LabelNo;
5736       continue;
5737     case InlineAsm::isClobber:
5738       // Nothing to do.
5739       break;
5740     }
5741 
5742     if (OpInfo.CallOperandVal) {
5743       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5744       if (OpInfo.isIndirect) {
5745         OpTy = Call.getParamElementType(ArgNo);
5746         assert(OpTy && "Indirect operand must have elementtype attribute");
5747       }
5748 
5749       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5750       if (StructType *STy = dyn_cast<StructType>(OpTy))
5751         if (STy->getNumElements() == 1)
5752           OpTy = STy->getElementType(0);
5753 
5754       // If OpTy is not a single value, it may be a struct/union that we
5755       // can tile with integers.
5756       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5757         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5758         switch (BitSize) {
5759         default: break;
5760         case 1:
5761         case 8:
5762         case 16:
5763         case 32:
5764         case 64:
5765         case 128:
5766           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5767           break;
5768         }
5769       }
5770 
5771       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5772       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5773       ArgNo++;
5774     }
5775   }
5776 
5777   // If we have multiple alternative constraints, select the best alternative.
5778   if (!ConstraintOperands.empty()) {
5779     if (maCount) {
5780       unsigned bestMAIndex = 0;
5781       int bestWeight = -1;
5782       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5783       int weight = -1;
5784       unsigned maIndex;
5785       // Compute the sums of the weights for each alternative, keeping track
5786       // of the best (highest weight) one so far.
5787       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5788         int weightSum = 0;
5789         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5790              cIndex != eIndex; ++cIndex) {
5791           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5792           if (OpInfo.Type == InlineAsm::isClobber)
5793             continue;
5794 
5795           // If this is an output operand with a matching input operand,
5796           // look up the matching input. If their types mismatch, e.g. one
5797           // is an integer, the other is floating point, or their sizes are
5798           // different, flag it as an maCantMatch.
5799           if (OpInfo.hasMatchingInput()) {
5800             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5801             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5802               if ((OpInfo.ConstraintVT.isInteger() !=
5803                    Input.ConstraintVT.isInteger()) ||
5804                   (OpInfo.ConstraintVT.getSizeInBits() !=
5805                    Input.ConstraintVT.getSizeInBits())) {
5806                 weightSum = -1; // Can't match.
5807                 break;
5808               }
5809             }
5810           }
5811           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5812           if (weight == -1) {
5813             weightSum = -1;
5814             break;
5815           }
5816           weightSum += weight;
5817         }
5818         // Update best.
5819         if (weightSum > bestWeight) {
5820           bestWeight = weightSum;
5821           bestMAIndex = maIndex;
5822         }
5823       }
5824 
5825       // Now select chosen alternative in each constraint.
5826       for (AsmOperandInfo &cInfo : ConstraintOperands)
5827         if (cInfo.Type != InlineAsm::isClobber)
5828           cInfo.selectAlternative(bestMAIndex);
5829     }
5830   }
5831 
5832   // Check and hook up tied operands, choose constraint code to use.
5833   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5834        cIndex != eIndex; ++cIndex) {
5835     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5836 
5837     // If this is an output operand with a matching input operand, look up the
5838     // matching input. If their types mismatch, e.g. one is an integer, the
5839     // other is floating point, or their sizes are different, flag it as an
5840     // error.
5841     if (OpInfo.hasMatchingInput()) {
5842       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5843 
5844       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5845         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5846             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5847                                          OpInfo.ConstraintVT);
5848         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5849             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5850                                          Input.ConstraintVT);
5851         if ((OpInfo.ConstraintVT.isInteger() !=
5852              Input.ConstraintVT.isInteger()) ||
5853             (MatchRC.second != InputRC.second)) {
5854           report_fatal_error("Unsupported asm: input constraint"
5855                              " with a matching output constraint of"
5856                              " incompatible type!");
5857         }
5858       }
5859     }
5860   }
5861 
5862   return ConstraintOperands;
5863 }
5864 
5865 /// Return a number indicating our preference for chosing a type of constraint
5866 /// over another, for the purpose of sorting them. Immediates are almost always
5867 /// preferrable (when they can be emitted). A higher return value means a
5868 /// stronger preference for one constraint type relative to another.
5869 /// FIXME: We should prefer registers over memory but doing so may lead to
5870 /// unrecoverable register exhaustion later.
5871 /// https://github.com/llvm/llvm-project/issues/20571
getConstraintPiority(TargetLowering::ConstraintType CT)5872 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5873   switch (CT) {
5874   case TargetLowering::C_Immediate:
5875   case TargetLowering::C_Other:
5876     return 4;
5877   case TargetLowering::C_Memory:
5878   case TargetLowering::C_Address:
5879     return 3;
5880   case TargetLowering::C_RegisterClass:
5881     return 2;
5882   case TargetLowering::C_Register:
5883     return 1;
5884   case TargetLowering::C_Unknown:
5885     return 0;
5886   }
5887   llvm_unreachable("Invalid constraint type");
5888 }
5889 
5890 /// Examine constraint type and operand type and determine a weight value.
5891 /// This object must already have been set up with the operand type
5892 /// and the current alternative constraint selected.
5893 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const5894   TargetLowering::getMultipleConstraintMatchWeight(
5895     AsmOperandInfo &info, int maIndex) const {
5896   InlineAsm::ConstraintCodeVector *rCodes;
5897   if (maIndex >= (int)info.multipleAlternatives.size())
5898     rCodes = &info.Codes;
5899   else
5900     rCodes = &info.multipleAlternatives[maIndex].Codes;
5901   ConstraintWeight BestWeight = CW_Invalid;
5902 
5903   // Loop over the options, keeping track of the most general one.
5904   for (const std::string &rCode : *rCodes) {
5905     ConstraintWeight weight =
5906         getSingleConstraintMatchWeight(info, rCode.c_str());
5907     if (weight > BestWeight)
5908       BestWeight = weight;
5909   }
5910 
5911   return BestWeight;
5912 }
5913 
5914 /// Examine constraint type and operand type and determine a weight value.
5915 /// This object must already have been set up with the operand type
5916 /// and the current alternative constraint selected.
5917 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5918   TargetLowering::getSingleConstraintMatchWeight(
5919     AsmOperandInfo &info, const char *constraint) const {
5920   ConstraintWeight weight = CW_Invalid;
5921   Value *CallOperandVal = info.CallOperandVal;
5922     // If we don't have a value, we can't do a match,
5923     // but allow it at the lowest weight.
5924   if (!CallOperandVal)
5925     return CW_Default;
5926   // Look at the constraint type.
5927   switch (*constraint) {
5928     case 'i': // immediate integer.
5929     case 'n': // immediate integer with a known value.
5930       if (isa<ConstantInt>(CallOperandVal))
5931         weight = CW_Constant;
5932       break;
5933     case 's': // non-explicit intregal immediate.
5934       if (isa<GlobalValue>(CallOperandVal))
5935         weight = CW_Constant;
5936       break;
5937     case 'E': // immediate float if host format.
5938     case 'F': // immediate float.
5939       if (isa<ConstantFP>(CallOperandVal))
5940         weight = CW_Constant;
5941       break;
5942     case '<': // memory operand with autodecrement.
5943     case '>': // memory operand with autoincrement.
5944     case 'm': // memory operand.
5945     case 'o': // offsettable memory operand
5946     case 'V': // non-offsettable memory operand
5947       weight = CW_Memory;
5948       break;
5949     case 'r': // general register.
5950     case 'g': // general register, memory operand or immediate integer.
5951               // note: Clang converts "g" to "imr".
5952       if (CallOperandVal->getType()->isIntegerTy())
5953         weight = CW_Register;
5954       break;
5955     case 'X': // any operand.
5956   default:
5957     weight = CW_Default;
5958     break;
5959   }
5960   return weight;
5961 }
5962 
5963 /// If there are multiple different constraints that we could pick for this
5964 /// operand (e.g. "imr") try to pick the 'best' one.
5965 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
5966 /// into seven classes:
5967 ///    Register      -> one specific register
5968 ///    RegisterClass -> a group of regs
5969 ///    Memory        -> memory
5970 ///    Address       -> a symbolic memory reference
5971 ///    Immediate     -> immediate values
5972 ///    Other         -> magic values (such as "Flag Output Operands")
5973 ///    Unknown       -> something we don't recognize yet and can't handle
5974 /// Ideally, we would pick the most specific constraint possible: if we have
5975 /// something that fits into a register, we would pick it.  The problem here
5976 /// is that if we have something that could either be in a register or in
5977 /// memory that use of the register could cause selection of *other*
5978 /// operands to fail: they might only succeed if we pick memory.  Because of
5979 /// this the heuristic we use is:
5980 ///
5981 ///  1) If there is an 'other' constraint, and if the operand is valid for
5982 ///     that constraint, use it.  This makes us take advantage of 'i'
5983 ///     constraints when available.
5984 ///  2) Otherwise, pick the most general constraint present.  This prefers
5985 ///     'm' over 'r', for example.
5986 ///
getConstraintPreferences(TargetLowering::AsmOperandInfo & OpInfo) const5987 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
5988     TargetLowering::AsmOperandInfo &OpInfo) const {
5989   ConstraintGroup Ret;
5990 
5991   Ret.reserve(OpInfo.Codes.size());
5992   for (StringRef Code : OpInfo.Codes) {
5993     TargetLowering::ConstraintType CType = getConstraintType(Code);
5994 
5995     // Indirect 'other' or 'immediate' constraints are not allowed.
5996     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5997                                CType == TargetLowering::C_Register ||
5998                                CType == TargetLowering::C_RegisterClass))
5999       continue;
6000 
6001     // Things with matching constraints can only be registers, per gcc
6002     // documentation.  This mainly affects "g" constraints.
6003     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6004       continue;
6005 
6006     Ret.emplace_back(Code, CType);
6007   }
6008 
6009   std::stable_sort(
6010       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6011         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6012       });
6013 
6014   return Ret;
6015 }
6016 
6017 /// If we have an immediate, see if we can lower it. Return true if we can,
6018 /// false otherwise.
lowerImmediateIfPossible(TargetLowering::ConstraintPair & P,SDValue Op,SelectionDAG * DAG,const TargetLowering & TLI)6019 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6020                                      SDValue Op, SelectionDAG *DAG,
6021                                      const TargetLowering &TLI) {
6022 
6023   assert((P.second == TargetLowering::C_Other ||
6024           P.second == TargetLowering::C_Immediate) &&
6025          "need immediate or other");
6026 
6027   if (!Op.getNode())
6028     return false;
6029 
6030   std::vector<SDValue> ResultOps;
6031   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6032   return !ResultOps.empty();
6033 }
6034 
6035 /// Determines the constraint code and constraint type to use for the specific
6036 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const6037 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6038                                             SDValue Op,
6039                                             SelectionDAG *DAG) const {
6040   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6041 
6042   // Single-letter constraints ('r') are very common.
6043   if (OpInfo.Codes.size() == 1) {
6044     OpInfo.ConstraintCode = OpInfo.Codes[0];
6045     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6046   } else {
6047     ConstraintGroup G = getConstraintPreferences(OpInfo);
6048     if (G.empty())
6049       return;
6050 
6051     unsigned BestIdx = 0;
6052     for (const unsigned E = G.size();
6053          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6054                          G[BestIdx].second == TargetLowering::C_Immediate);
6055          ++BestIdx) {
6056       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6057         break;
6058       // If we're out of constraints, just pick the first one.
6059       if (BestIdx + 1 == E) {
6060         BestIdx = 0;
6061         break;
6062       }
6063     }
6064 
6065     OpInfo.ConstraintCode = G[BestIdx].first;
6066     OpInfo.ConstraintType = G[BestIdx].second;
6067   }
6068 
6069   // 'X' matches anything.
6070   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6071     // Constants are handled elsewhere.  For Functions, the type here is the
6072     // type of the result, which is not what we want to look at; leave them
6073     // alone.
6074     Value *v = OpInfo.CallOperandVal;
6075     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6076       return;
6077     }
6078 
6079     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6080       OpInfo.ConstraintCode = "i";
6081       return;
6082     }
6083 
6084     // Otherwise, try to resolve it to something we know about by looking at
6085     // the actual operand type.
6086     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6087       OpInfo.ConstraintCode = Repl;
6088       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6089     }
6090   }
6091 }
6092 
6093 /// Given an exact SDIV by a constant, create a multiplication
6094 /// with the multiplicative inverse of the constant.
6095 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
BuildExactSDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)6096 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6097                               const SDLoc &dl, SelectionDAG &DAG,
6098                               SmallVectorImpl<SDNode *> &Created) {
6099   SDValue Op0 = N->getOperand(0);
6100   SDValue Op1 = N->getOperand(1);
6101   EVT VT = N->getValueType(0);
6102   EVT SVT = VT.getScalarType();
6103   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6104   EVT ShSVT = ShVT.getScalarType();
6105 
6106   bool UseSRA = false;
6107   SmallVector<SDValue, 16> Shifts, Factors;
6108 
6109   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6110     if (C->isZero())
6111       return false;
6112     APInt Divisor = C->getAPIntValue();
6113     unsigned Shift = Divisor.countr_zero();
6114     if (Shift) {
6115       Divisor.ashrInPlace(Shift);
6116       UseSRA = true;
6117     }
6118     APInt Factor = Divisor.multiplicativeInverse();
6119     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6120     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6121     return true;
6122   };
6123 
6124   // Collect all magic values from the build vector.
6125   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6126     return SDValue();
6127 
6128   SDValue Shift, Factor;
6129   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6130     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6131     Factor = DAG.getBuildVector(VT, dl, Factors);
6132   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6133     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6134            "Expected matchUnaryPredicate to return one element for scalable "
6135            "vectors");
6136     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6137     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6138   } else {
6139     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6140     Shift = Shifts[0];
6141     Factor = Factors[0];
6142   }
6143 
6144   SDValue Res = Op0;
6145   if (UseSRA) {
6146     SDNodeFlags Flags;
6147     Flags.setExact(true);
6148     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
6149     Created.push_back(Res.getNode());
6150   }
6151 
6152   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6153 }
6154 
6155 /// Given an exact UDIV by a constant, create a multiplication
6156 /// with the multiplicative inverse of the constant.
6157 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
BuildExactUDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)6158 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6159                               const SDLoc &dl, SelectionDAG &DAG,
6160                               SmallVectorImpl<SDNode *> &Created) {
6161   EVT VT = N->getValueType(0);
6162   EVT SVT = VT.getScalarType();
6163   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6164   EVT ShSVT = ShVT.getScalarType();
6165 
6166   bool UseSRL = false;
6167   SmallVector<SDValue, 16> Shifts, Factors;
6168 
6169   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6170     if (C->isZero())
6171       return false;
6172     APInt Divisor = C->getAPIntValue();
6173     unsigned Shift = Divisor.countr_zero();
6174     if (Shift) {
6175       Divisor.lshrInPlace(Shift);
6176       UseSRL = true;
6177     }
6178     // Calculate the multiplicative inverse modulo BW.
6179     APInt Factor = Divisor.multiplicativeInverse();
6180     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6181     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6182     return true;
6183   };
6184 
6185   SDValue Op1 = N->getOperand(1);
6186 
6187   // Collect all magic values from the build vector.
6188   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6189     return SDValue();
6190 
6191   SDValue Shift, Factor;
6192   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6193     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6194     Factor = DAG.getBuildVector(VT, dl, Factors);
6195   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6196     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6197            "Expected matchUnaryPredicate to return one element for scalable "
6198            "vectors");
6199     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6200     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6201   } else {
6202     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6203     Shift = Shifts[0];
6204     Factor = Factors[0];
6205   }
6206 
6207   SDValue Res = N->getOperand(0);
6208   if (UseSRL) {
6209     SDNodeFlags Flags;
6210     Flags.setExact(true);
6211     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, Flags);
6212     Created.push_back(Res.getNode());
6213   }
6214 
6215   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6216 }
6217 
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6218 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6219                               SelectionDAG &DAG,
6220                               SmallVectorImpl<SDNode *> &Created) const {
6221   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6223   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
6224     return SDValue(N, 0); // Lower SDIV as SDIV
6225   return SDValue();
6226 }
6227 
6228 SDValue
BuildSREMPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6229 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6230                               SelectionDAG &DAG,
6231                               SmallVectorImpl<SDNode *> &Created) const {
6232   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6234   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
6235     return SDValue(N, 0); // Lower SREM as SREM
6236   return SDValue();
6237 }
6238 
6239 /// Build sdiv by power-of-2 with conditional move instructions
6240 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6241 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6242 ///   bgez x, label
6243 ///   add x, x, 2**k-1
6244 /// label:
6245 ///   sra res, x, k
6246 ///   neg res, res (when the divisor is negative)
buildSDIVPow2WithCMov(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const6247 SDValue TargetLowering::buildSDIVPow2WithCMov(
6248     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6249     SmallVectorImpl<SDNode *> &Created) const {
6250   unsigned Lg2 = Divisor.countr_zero();
6251   EVT VT = N->getValueType(0);
6252 
6253   SDLoc DL(N);
6254   SDValue N0 = N->getOperand(0);
6255   SDValue Zero = DAG.getConstant(0, DL, VT);
6256   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6257   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6258 
6259   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6260   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6261   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6262   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6263   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6264 
6265   Created.push_back(Cmp.getNode());
6266   Created.push_back(Add.getNode());
6267   Created.push_back(CMov.getNode());
6268 
6269   // Divide by pow2.
6270   SDValue SRA =
6271       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6272 
6273   // If we're dividing by a positive value, we're done.  Otherwise, we must
6274   // negate the result.
6275   if (Divisor.isNonNegative())
6276     return SRA;
6277 
6278   Created.push_back(SRA.getNode());
6279   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6280 }
6281 
6282 /// Given an ISD::SDIV node expressing a divide by constant,
6283 /// return a DAG expression to select that will generate the same value by
6284 /// multiplying by a magic number.
6285 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const6286 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6287                                   bool IsAfterLegalization,
6288                                   SmallVectorImpl<SDNode *> &Created) const {
6289   SDLoc dl(N);
6290   EVT VT = N->getValueType(0);
6291   EVT SVT = VT.getScalarType();
6292   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6293   EVT ShSVT = ShVT.getScalarType();
6294   unsigned EltBits = VT.getScalarSizeInBits();
6295   EVT MulVT;
6296 
6297   // Check to see if we can do this.
6298   // FIXME: We should be more aggressive here.
6299   if (!isTypeLegal(VT)) {
6300     // Limit this to simple scalars for now.
6301     if (VT.isVector() || !VT.isSimple())
6302       return SDValue();
6303 
6304     // If this type will be promoted to a large enough type with a legal
6305     // multiply operation, we can go ahead and do this transform.
6306     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6307       return SDValue();
6308 
6309     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6310     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6311         !isOperationLegal(ISD::MUL, MulVT))
6312       return SDValue();
6313   }
6314 
6315   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6316   if (N->getFlags().hasExact())
6317     return BuildExactSDIV(*this, N, dl, DAG, Created);
6318 
6319   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6320 
6321   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6322     if (C->isZero())
6323       return false;
6324 
6325     const APInt &Divisor = C->getAPIntValue();
6326     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6327     int NumeratorFactor = 0;
6328     int ShiftMask = -1;
6329 
6330     if (Divisor.isOne() || Divisor.isAllOnes()) {
6331       // If d is +1/-1, we just multiply the numerator by +1/-1.
6332       NumeratorFactor = Divisor.getSExtValue();
6333       magics.Magic = 0;
6334       magics.ShiftAmount = 0;
6335       ShiftMask = 0;
6336     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6337       // If d > 0 and m < 0, add the numerator.
6338       NumeratorFactor = 1;
6339     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6340       // If d < 0 and m > 0, subtract the numerator.
6341       NumeratorFactor = -1;
6342     }
6343 
6344     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6345     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
6346     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6347     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
6348     return true;
6349   };
6350 
6351   SDValue N0 = N->getOperand(0);
6352   SDValue N1 = N->getOperand(1);
6353 
6354   // Collect the shifts / magic values from each element.
6355   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6356     return SDValue();
6357 
6358   SDValue MagicFactor, Factor, Shift, ShiftMask;
6359   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6360     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6361     Factor = DAG.getBuildVector(VT, dl, Factors);
6362     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6363     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6364   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6365     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6366            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6367            "Expected matchUnaryPredicate to return one element for scalable "
6368            "vectors");
6369     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6370     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6371     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6372     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6373   } else {
6374     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6375     MagicFactor = MagicFactors[0];
6376     Factor = Factors[0];
6377     Shift = Shifts[0];
6378     ShiftMask = ShiftMasks[0];
6379   }
6380 
6381   // Multiply the numerator (operand 0) by the magic value.
6382   // FIXME: We should support doing a MUL in a wider type.
6383   auto GetMULHS = [&](SDValue X, SDValue Y) {
6384     // If the type isn't legal, use a wider mul of the type calculated
6385     // earlier.
6386     if (!isTypeLegal(VT)) {
6387       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6388       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6389       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6390       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6391                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6392       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6393     }
6394 
6395     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6396       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6397     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6398       SDValue LoHi =
6399           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6400       return SDValue(LoHi.getNode(), 1);
6401     }
6402     // If type twice as wide legal, widen and use a mul plus a shift.
6403     unsigned Size = VT.getScalarSizeInBits();
6404     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6405     if (VT.isVector())
6406       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6407                                 VT.getVectorElementCount());
6408     if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6409       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6410       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6411       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6412       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6413                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6414       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6415     }
6416     return SDValue();
6417   };
6418 
6419   SDValue Q = GetMULHS(N0, MagicFactor);
6420   if (!Q)
6421     return SDValue();
6422 
6423   Created.push_back(Q.getNode());
6424 
6425   // (Optionally) Add/subtract the numerator using Factor.
6426   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6427   Created.push_back(Factor.getNode());
6428   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6429   Created.push_back(Q.getNode());
6430 
6431   // Shift right algebraic by shift value.
6432   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6433   Created.push_back(Q.getNode());
6434 
6435   // Extract the sign bit, mask it and add it to the quotient.
6436   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6437   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6438   Created.push_back(T.getNode());
6439   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6440   Created.push_back(T.getNode());
6441   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6442 }
6443 
6444 /// Given an ISD::UDIV node expressing a divide by constant,
6445 /// return a DAG expression to select that will generate the same value by
6446 /// multiplying by a magic number.
6447 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const6448 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6449                                   bool IsAfterLegalization,
6450                                   SmallVectorImpl<SDNode *> &Created) const {
6451   SDLoc dl(N);
6452   EVT VT = N->getValueType(0);
6453   EVT SVT = VT.getScalarType();
6454   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6455   EVT ShSVT = ShVT.getScalarType();
6456   unsigned EltBits = VT.getScalarSizeInBits();
6457   EVT MulVT;
6458 
6459   // Check to see if we can do this.
6460   // FIXME: We should be more aggressive here.
6461   if (!isTypeLegal(VT)) {
6462     // Limit this to simple scalars for now.
6463     if (VT.isVector() || !VT.isSimple())
6464       return SDValue();
6465 
6466     // If this type will be promoted to a large enough type with a legal
6467     // multiply operation, we can go ahead and do this transform.
6468     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6469       return SDValue();
6470 
6471     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6472     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6473         !isOperationLegal(ISD::MUL, MulVT))
6474       return SDValue();
6475   }
6476 
6477   // If the udiv has an 'exact' bit we can use a simpler lowering.
6478   if (N->getFlags().hasExact())
6479     return BuildExactUDIV(*this, N, dl, DAG, Created);
6480 
6481   SDValue N0 = N->getOperand(0);
6482   SDValue N1 = N->getOperand(1);
6483 
6484   // Try to use leading zeros of the dividend to reduce the multiplier and
6485   // avoid expensive fixups.
6486   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6487 
6488   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6489   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6490 
6491   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6492     if (C->isZero())
6493       return false;
6494     const APInt& Divisor = C->getAPIntValue();
6495 
6496     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6497 
6498     // Magic algorithm doesn't work for division by 1. We need to emit a select
6499     // at the end.
6500     if (Divisor.isOne()) {
6501       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6502       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6503     } else {
6504       UnsignedDivisionByConstantInfo magics =
6505           UnsignedDivisionByConstantInfo::get(
6506               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6507 
6508       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6509 
6510       assert(magics.PreShift < Divisor.getBitWidth() &&
6511              "We shouldn't generate an undefined shift!");
6512       assert(magics.PostShift < Divisor.getBitWidth() &&
6513              "We shouldn't generate an undefined shift!");
6514       assert((!magics.IsAdd || magics.PreShift == 0) &&
6515              "Unexpected pre-shift");
6516       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6517       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6518       NPQFactor = DAG.getConstant(
6519           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6520                        : APInt::getZero(EltBits),
6521           dl, SVT);
6522       UseNPQ |= magics.IsAdd;
6523       UsePreShift |= magics.PreShift != 0;
6524       UsePostShift |= magics.PostShift != 0;
6525     }
6526 
6527     PreShifts.push_back(PreShift);
6528     MagicFactors.push_back(MagicFactor);
6529     NPQFactors.push_back(NPQFactor);
6530     PostShifts.push_back(PostShift);
6531     return true;
6532   };
6533 
6534   // Collect the shifts/magic values from each element.
6535   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6536     return SDValue();
6537 
6538   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6539   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6540     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6541     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6542     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6543     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6544   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6545     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6546            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6547            "Expected matchUnaryPredicate to return one for scalable vectors");
6548     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6549     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6550     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6551     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6552   } else {
6553     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6554     PreShift = PreShifts[0];
6555     MagicFactor = MagicFactors[0];
6556     PostShift = PostShifts[0];
6557   }
6558 
6559   SDValue Q = N0;
6560   if (UsePreShift) {
6561     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6562     Created.push_back(Q.getNode());
6563   }
6564 
6565   // FIXME: We should support doing a MUL in a wider type.
6566   auto GetMULHU = [&](SDValue X, SDValue Y) {
6567     // If the type isn't legal, use a wider mul of the type calculated
6568     // earlier.
6569     if (!isTypeLegal(VT)) {
6570       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6571       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6572       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6573       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6574                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6575       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6576     }
6577 
6578     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6579       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6580     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6581       SDValue LoHi =
6582           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6583       return SDValue(LoHi.getNode(), 1);
6584     }
6585     // If type twice as wide legal, widen and use a mul plus a shift.
6586     unsigned Size = VT.getScalarSizeInBits();
6587     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6588     if (VT.isVector())
6589       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6590                                 VT.getVectorElementCount());
6591     if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6592       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6593       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6594       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6595       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6596                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6597       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6598     }
6599     return SDValue(); // No mulhu or equivalent
6600   };
6601 
6602   // Multiply the numerator (operand 0) by the magic value.
6603   Q = GetMULHU(Q, MagicFactor);
6604   if (!Q)
6605     return SDValue();
6606 
6607   Created.push_back(Q.getNode());
6608 
6609   if (UseNPQ) {
6610     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6611     Created.push_back(NPQ.getNode());
6612 
6613     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6614     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6615     if (VT.isVector())
6616       NPQ = GetMULHU(NPQ, NPQFactor);
6617     else
6618       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6619 
6620     Created.push_back(NPQ.getNode());
6621 
6622     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6623     Created.push_back(Q.getNode());
6624   }
6625 
6626   if (UsePostShift) {
6627     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6628     Created.push_back(Q.getNode());
6629   }
6630 
6631   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6632 
6633   SDValue One = DAG.getConstant(1, dl, VT);
6634   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6635   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6636 }
6637 
6638 /// If all values in Values that *don't* match the predicate are same 'splat'
6639 /// value, then replace all values with that splat value.
6640 /// Else, if AlternativeReplacement was provided, then replace all values that
6641 /// do match predicate with AlternativeReplacement value.
6642 static void
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,std::function<bool (SDValue)> Predicate,SDValue AlternativeReplacement=SDValue ())6643 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6644                           std::function<bool(SDValue)> Predicate,
6645                           SDValue AlternativeReplacement = SDValue()) {
6646   SDValue Replacement;
6647   // Is there a value for which the Predicate does *NOT* match? What is it?
6648   auto SplatValue = llvm::find_if_not(Values, Predicate);
6649   if (SplatValue != Values.end()) {
6650     // Does Values consist only of SplatValue's and values matching Predicate?
6651     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6652           return Value == *SplatValue || Predicate(Value);
6653         })) // Then we shall replace values matching predicate with SplatValue.
6654       Replacement = *SplatValue;
6655   }
6656   if (!Replacement) {
6657     // Oops, we did not find the "baseline" splat value.
6658     if (!AlternativeReplacement)
6659       return; // Nothing to do.
6660     // Let's replace with provided value then.
6661     Replacement = AlternativeReplacement;
6662   }
6663   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6664 }
6665 
6666 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6667 /// where the divisor is constant and the comparison target is zero,
6668 /// return a DAG expression that will generate the same comparison result
6669 /// using only multiplications, additions and shifts/rotations.
6670 /// Ref: "Hacker's Delight" 10-17.
buildUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6671 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6672                                         SDValue CompTargetNode,
6673                                         ISD::CondCode Cond,
6674                                         DAGCombinerInfo &DCI,
6675                                         const SDLoc &DL) const {
6676   SmallVector<SDNode *, 5> Built;
6677   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6678                                          DCI, DL, Built)) {
6679     for (SDNode *N : Built)
6680       DCI.AddToWorklist(N);
6681     return Folded;
6682   }
6683 
6684   return SDValue();
6685 }
6686 
6687 SDValue
prepareUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6688 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6689                                   SDValue CompTargetNode, ISD::CondCode Cond,
6690                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6691                                   SmallVectorImpl<SDNode *> &Created) const {
6692   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6693   // - D must be constant, with D = D0 * 2^K where D0 is odd
6694   // - P is the multiplicative inverse of D0 modulo 2^W
6695   // - Q = floor(((2^W) - 1) / D)
6696   // where W is the width of the common type of N and D.
6697   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6698          "Only applicable for (in)equality comparisons.");
6699 
6700   SelectionDAG &DAG = DCI.DAG;
6701 
6702   EVT VT = REMNode.getValueType();
6703   EVT SVT = VT.getScalarType();
6704   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6705   EVT ShSVT = ShVT.getScalarType();
6706 
6707   // If MUL is unavailable, we cannot proceed in any case.
6708   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6709     return SDValue();
6710 
6711   bool ComparingWithAllZeros = true;
6712   bool AllComparisonsWithNonZerosAreTautological = true;
6713   bool HadTautologicalLanes = false;
6714   bool AllLanesAreTautological = true;
6715   bool HadEvenDivisor = false;
6716   bool AllDivisorsArePowerOfTwo = true;
6717   bool HadTautologicalInvertedLanes = false;
6718   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6719 
6720   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6721     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6722     if (CDiv->isZero())
6723       return false;
6724 
6725     const APInt &D = CDiv->getAPIntValue();
6726     const APInt &Cmp = CCmp->getAPIntValue();
6727 
6728     ComparingWithAllZeros &= Cmp.isZero();
6729 
6730     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6731     // if C2 is not less than C1, the comparison is always false.
6732     // But we will only be able to produce the comparison that will give the
6733     // opposive tautological answer. So this lane would need to be fixed up.
6734     bool TautologicalInvertedLane = D.ule(Cmp);
6735     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6736 
6737     // If all lanes are tautological (either all divisors are ones, or divisor
6738     // is not greater than the constant we are comparing with),
6739     // we will prefer to avoid the fold.
6740     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6741     HadTautologicalLanes |= TautologicalLane;
6742     AllLanesAreTautological &= TautologicalLane;
6743 
6744     // If we are comparing with non-zero, we need'll need  to subtract said
6745     // comparison value from the LHS. But there is no point in doing that if
6746     // every lane where we are comparing with non-zero is tautological..
6747     if (!Cmp.isZero())
6748       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6749 
6750     // Decompose D into D0 * 2^K
6751     unsigned K = D.countr_zero();
6752     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6753     APInt D0 = D.lshr(K);
6754 
6755     // D is even if it has trailing zeros.
6756     HadEvenDivisor |= (K != 0);
6757     // D is a power-of-two if D0 is one.
6758     // If all divisors are power-of-two, we will prefer to avoid the fold.
6759     AllDivisorsArePowerOfTwo &= D0.isOne();
6760 
6761     // P = inv(D0, 2^W)
6762     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6763     unsigned W = D.getBitWidth();
6764     APInt P = D0.multiplicativeInverse();
6765     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6766 
6767     // Q = floor((2^W - 1) u/ D)
6768     // R = ((2^W - 1) u% D)
6769     APInt Q, R;
6770     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6771 
6772     // If we are comparing with zero, then that comparison constant is okay,
6773     // else it may need to be one less than that.
6774     if (Cmp.ugt(R))
6775       Q -= 1;
6776 
6777     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6778            "We are expecting that K is always less than all-ones for ShSVT");
6779 
6780     // If the lane is tautological the result can be constant-folded.
6781     if (TautologicalLane) {
6782       // Set P and K amount to a bogus values so we can try to splat them.
6783       P = 0;
6784       K = -1;
6785       // And ensure that comparison constant is tautological,
6786       // it will always compare true/false.
6787       Q = -1;
6788     }
6789 
6790     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6791     KAmts.push_back(
6792         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6793     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6794     return true;
6795   };
6796 
6797   SDValue N = REMNode.getOperand(0);
6798   SDValue D = REMNode.getOperand(1);
6799 
6800   // Collect the values from each element.
6801   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6802     return SDValue();
6803 
6804   // If all lanes are tautological, the result can be constant-folded.
6805   if (AllLanesAreTautological)
6806     return SDValue();
6807 
6808   // If this is a urem by a powers-of-two, avoid the fold since it can be
6809   // best implemented as a bit test.
6810   if (AllDivisorsArePowerOfTwo)
6811     return SDValue();
6812 
6813   SDValue PVal, KVal, QVal;
6814   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6815     if (HadTautologicalLanes) {
6816       // Try to turn PAmts into a splat, since we don't care about the values
6817       // that are currently '0'. If we can't, just keep '0'`s.
6818       turnVectorIntoSplatVector(PAmts, isNullConstant);
6819       // Try to turn KAmts into a splat, since we don't care about the values
6820       // that are currently '-1'. If we can't, change them to '0'`s.
6821       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6822                                 DAG.getConstant(0, DL, ShSVT));
6823     }
6824 
6825     PVal = DAG.getBuildVector(VT, DL, PAmts);
6826     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6827     QVal = DAG.getBuildVector(VT, DL, QAmts);
6828   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6829     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6830            "Expected matchBinaryPredicate to return one element for "
6831            "SPLAT_VECTORs");
6832     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6833     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6834     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6835   } else {
6836     PVal = PAmts[0];
6837     KVal = KAmts[0];
6838     QVal = QAmts[0];
6839   }
6840 
6841   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6842     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6843       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6844     assert(CompTargetNode.getValueType() == N.getValueType() &&
6845            "Expecting that the types on LHS and RHS of comparisons match.");
6846     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6847   }
6848 
6849   // (mul N, P)
6850   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6851   Created.push_back(Op0.getNode());
6852 
6853   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6854   // divisors as a performance improvement, since rotating by 0 is a no-op.
6855   if (HadEvenDivisor) {
6856     // We need ROTR to do this.
6857     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6858       return SDValue();
6859     // UREM: (rotr (mul N, P), K)
6860     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6861     Created.push_back(Op0.getNode());
6862   }
6863 
6864   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6865   SDValue NewCC =
6866       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6867                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6868   if (!HadTautologicalInvertedLanes)
6869     return NewCC;
6870 
6871   // If any lanes previously compared always-false, the NewCC will give
6872   // always-true result for them, so we need to fixup those lanes.
6873   // Or the other way around for inequality predicate.
6874   assert(VT.isVector() && "Can/should only get here for vectors.");
6875   Created.push_back(NewCC.getNode());
6876 
6877   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6878   // if C2 is not less than C1, the comparison is always false.
6879   // But we have produced the comparison that will give the
6880   // opposive tautological answer. So these lanes would need to be fixed up.
6881   SDValue TautologicalInvertedChannels =
6882       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6883   Created.push_back(TautologicalInvertedChannels.getNode());
6884 
6885   // NOTE: we avoid letting illegal types through even if we're before legalize
6886   // ops – legalization has a hard time producing good code for this.
6887   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6888     // If we have a vector select, let's replace the comparison results in the
6889     // affected lanes with the correct tautological result.
6890     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6891                                               DL, SETCCVT, SETCCVT);
6892     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6893                        Replacement, NewCC);
6894   }
6895 
6896   // Else, we can just invert the comparison result in the appropriate lanes.
6897   //
6898   // NOTE: see the note above VSELECT above.
6899   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6900     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6901                        TautologicalInvertedChannels);
6902 
6903   return SDValue(); // Don't know how to lower.
6904 }
6905 
6906 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6907 /// where the divisor is constant and the comparison target is zero,
6908 /// return a DAG expression that will generate the same comparison result
6909 /// using only multiplications, additions and shifts/rotations.
6910 /// Ref: "Hacker's Delight" 10-17.
buildSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const6911 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6912                                         SDValue CompTargetNode,
6913                                         ISD::CondCode Cond,
6914                                         DAGCombinerInfo &DCI,
6915                                         const SDLoc &DL) const {
6916   SmallVector<SDNode *, 7> Built;
6917   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6918                                          DCI, DL, Built)) {
6919     assert(Built.size() <= 7 && "Max size prediction failed.");
6920     for (SDNode *N : Built)
6921       DCI.AddToWorklist(N);
6922     return Folded;
6923   }
6924 
6925   return SDValue();
6926 }
6927 
6928 SDValue
prepareSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const6929 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6930                                   SDValue CompTargetNode, ISD::CondCode Cond,
6931                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6932                                   SmallVectorImpl<SDNode *> &Created) const {
6933   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6934   // Fold:
6935   //   (seteq/ne (srem N, D), 0)
6936   // To:
6937   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6938   //
6939   // - D must be constant, with D = D0 * 2^K where D0 is odd
6940   // - P is the multiplicative inverse of D0 modulo 2^W
6941   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6942   // - Q = floor((2 * A) / (2^K))
6943   // where W is the width of the common type of N and D.
6944   //
6945   // When D is a power of two (and thus D0 is 1), the normal
6946   // formula for A and Q don't apply, because the derivation
6947   // depends on D not dividing 2^(W-1), and thus theorem ZRS
6948   // does not apply. This specifically fails when N = INT_MIN.
6949   //
6950   // Instead, for power-of-two D, we use:
6951   // - A = 2^(W-1)
6952   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
6953   // - Q = 2^(W-K) - 1
6954   // |-> Test that the top K bits are zero after rotation
6955   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6956          "Only applicable for (in)equality comparisons.");
6957 
6958   SelectionDAG &DAG = DCI.DAG;
6959 
6960   EVT VT = REMNode.getValueType();
6961   EVT SVT = VT.getScalarType();
6962   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6963   EVT ShSVT = ShVT.getScalarType();
6964 
6965   // If we are after ops legalization, and MUL is unavailable, we can not
6966   // proceed.
6967   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6968     return SDValue();
6969 
6970   // TODO: Could support comparing with non-zero too.
6971   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6972   if (!CompTarget || !CompTarget->isZero())
6973     return SDValue();
6974 
6975   bool HadIntMinDivisor = false;
6976   bool HadOneDivisor = false;
6977   bool AllDivisorsAreOnes = true;
6978   bool HadEvenDivisor = false;
6979   bool NeedToApplyOffset = false;
6980   bool AllDivisorsArePowerOfTwo = true;
6981   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6982 
6983   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6984     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6985     if (C->isZero())
6986       return false;
6987 
6988     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6989 
6990     // WARNING: this fold is only valid for positive divisors!
6991     APInt D = C->getAPIntValue();
6992     if (D.isNegative())
6993       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6994 
6995     HadIntMinDivisor |= D.isMinSignedValue();
6996 
6997     // If all divisors are ones, we will prefer to avoid the fold.
6998     HadOneDivisor |= D.isOne();
6999     AllDivisorsAreOnes &= D.isOne();
7000 
7001     // Decompose D into D0 * 2^K
7002     unsigned K = D.countr_zero();
7003     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7004     APInt D0 = D.lshr(K);
7005 
7006     if (!D.isMinSignedValue()) {
7007       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7008       // we don't care about this lane in this fold, we'll special-handle it.
7009       HadEvenDivisor |= (K != 0);
7010     }
7011 
7012     // D is a power-of-two if D0 is one. This includes INT_MIN.
7013     // If all divisors are power-of-two, we will prefer to avoid the fold.
7014     AllDivisorsArePowerOfTwo &= D0.isOne();
7015 
7016     // P = inv(D0, 2^W)
7017     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7018     unsigned W = D.getBitWidth();
7019     APInt P = D0.multiplicativeInverse();
7020     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7021 
7022     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7023     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7024     A.clearLowBits(K);
7025 
7026     if (!D.isMinSignedValue()) {
7027       // If divisor INT_MIN, then we don't care about this lane in this fold,
7028       // we'll special-handle it.
7029       NeedToApplyOffset |= A != 0;
7030     }
7031 
7032     // Q = floor((2 * A) / (2^K))
7033     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7034 
7035     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7036            "We are expecting that A is always less than all-ones for SVT");
7037     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7038            "We are expecting that K is always less than all-ones for ShSVT");
7039 
7040     // If D was a power of two, apply the alternate constant derivation.
7041     if (D0.isOne()) {
7042       // A = 2^(W-1)
7043       A = APInt::getSignedMinValue(W);
7044       // - Q = 2^(W-K) - 1
7045       Q = APInt::getAllOnes(W - K).zext(W);
7046     }
7047 
7048     // If the divisor is 1 the result can be constant-folded. Likewise, we
7049     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7050     if (D.isOne()) {
7051       // Set P, A and K to a bogus values so we can try to splat them.
7052       P = 0;
7053       A = -1;
7054       K = -1;
7055 
7056       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7057       Q = -1;
7058     }
7059 
7060     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7061     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7062     KAmts.push_back(
7063         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
7064     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7065     return true;
7066   };
7067 
7068   SDValue N = REMNode.getOperand(0);
7069   SDValue D = REMNode.getOperand(1);
7070 
7071   // Collect the values from each element.
7072   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7073     return SDValue();
7074 
7075   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7076   if (AllDivisorsAreOnes)
7077     return SDValue();
7078 
7079   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7080   // since it can be best implemented as a bit test.
7081   if (AllDivisorsArePowerOfTwo)
7082     return SDValue();
7083 
7084   SDValue PVal, AVal, KVal, QVal;
7085   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7086     if (HadOneDivisor) {
7087       // Try to turn PAmts into a splat, since we don't care about the values
7088       // that are currently '0'. If we can't, just keep '0'`s.
7089       turnVectorIntoSplatVector(PAmts, isNullConstant);
7090       // Try to turn AAmts into a splat, since we don't care about the
7091       // values that are currently '-1'. If we can't, change them to '0'`s.
7092       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7093                                 DAG.getConstant(0, DL, SVT));
7094       // Try to turn KAmts into a splat, since we don't care about the values
7095       // that are currently '-1'. If we can't, change them to '0'`s.
7096       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7097                                 DAG.getConstant(0, DL, ShSVT));
7098     }
7099 
7100     PVal = DAG.getBuildVector(VT, DL, PAmts);
7101     AVal = DAG.getBuildVector(VT, DL, AAmts);
7102     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7103     QVal = DAG.getBuildVector(VT, DL, QAmts);
7104   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7105     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7106            QAmts.size() == 1 &&
7107            "Expected matchUnaryPredicate to return one element for scalable "
7108            "vectors");
7109     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7110     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7111     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7112     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7113   } else {
7114     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7115     PVal = PAmts[0];
7116     AVal = AAmts[0];
7117     KVal = KAmts[0];
7118     QVal = QAmts[0];
7119   }
7120 
7121   // (mul N, P)
7122   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7123   Created.push_back(Op0.getNode());
7124 
7125   if (NeedToApplyOffset) {
7126     // We need ADD to do this.
7127     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7128       return SDValue();
7129 
7130     // (add (mul N, P), A)
7131     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7132     Created.push_back(Op0.getNode());
7133   }
7134 
7135   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7136   // divisors as a performance improvement, since rotating by 0 is a no-op.
7137   if (HadEvenDivisor) {
7138     // We need ROTR to do this.
7139     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7140       return SDValue();
7141     // SREM: (rotr (add (mul N, P), A), K)
7142     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7143     Created.push_back(Op0.getNode());
7144   }
7145 
7146   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7147   SDValue Fold =
7148       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7149                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7150 
7151   // If we didn't have lanes with INT_MIN divisor, then we're done.
7152   if (!HadIntMinDivisor)
7153     return Fold;
7154 
7155   // That fold is only valid for positive divisors. Which effectively means,
7156   // it is invalid for INT_MIN divisors. So if we have such a lane,
7157   // we must fix-up results for said lanes.
7158   assert(VT.isVector() && "Can/should only get here for vectors.");
7159 
7160   // NOTE: we avoid letting illegal types through even if we're before legalize
7161   // ops – legalization has a hard time producing good code for the code that
7162   // follows.
7163   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7164       !isOperationLegalOrCustom(ISD::AND, VT) ||
7165       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7166       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7167     return SDValue();
7168 
7169   Created.push_back(Fold.getNode());
7170 
7171   SDValue IntMin = DAG.getConstant(
7172       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7173   SDValue IntMax = DAG.getConstant(
7174       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7175   SDValue Zero =
7176       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7177 
7178   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7179   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7180   Created.push_back(DivisorIsIntMin.getNode());
7181 
7182   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7183   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7184   Created.push_back(Masked.getNode());
7185   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7186   Created.push_back(MaskedIsZero.getNode());
7187 
7188   // To produce final result we need to blend 2 vectors: 'SetCC' and
7189   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7190   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7191   // constant-folded, select can get lowered to a shuffle with constant mask.
7192   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7193                                 MaskedIsZero, Fold);
7194 
7195   return Blended;
7196 }
7197 
7198 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const7199 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7200   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7201     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7202                                 "be a constant integer");
7203     return true;
7204   }
7205 
7206   return false;
7207 }
7208 
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const7209 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7210                                          const DenormalMode &Mode) const {
7211   SDLoc DL(Op);
7212   EVT VT = Op.getValueType();
7213   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7214   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7215 
7216   // This is specifically a check for the handling of denormal inputs, not the
7217   // result.
7218   if (Mode.Input == DenormalMode::PreserveSign ||
7219       Mode.Input == DenormalMode::PositiveZero) {
7220     // Test = X == 0.0
7221     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7222   }
7223 
7224   // Testing it with denormal inputs to avoid wrong estimate.
7225   //
7226   // Test = fabs(X) < SmallestNormal
7227   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
7228   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7229   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7230   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7231   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7232 }
7233 
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const7234 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7235                                              bool LegalOps, bool OptForSize,
7236                                              NegatibleCost &Cost,
7237                                              unsigned Depth) const {
7238   // fneg is removable even if it has multiple uses.
7239   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7240     Cost = NegatibleCost::Cheaper;
7241     return Op.getOperand(0);
7242   }
7243 
7244   // Don't recurse exponentially.
7245   if (Depth > SelectionDAG::MaxRecursionDepth)
7246     return SDValue();
7247 
7248   // Pre-increment recursion depth for use in recursive calls.
7249   ++Depth;
7250   const SDNodeFlags Flags = Op->getFlags();
7251   const TargetOptions &Options = DAG.getTarget().Options;
7252   EVT VT = Op.getValueType();
7253   unsigned Opcode = Op.getOpcode();
7254 
7255   // Don't allow anything with multiple uses unless we know it is free.
7256   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7257     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7258                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7259     if (!IsFreeExtend)
7260       return SDValue();
7261   }
7262 
7263   auto RemoveDeadNode = [&](SDValue N) {
7264     if (N && N.getNode()->use_empty())
7265       DAG.RemoveDeadNode(N.getNode());
7266   };
7267 
7268   SDLoc DL(Op);
7269 
7270   // Because getNegatedExpression can delete nodes we need a handle to keep
7271   // temporary nodes alive in case the recursion manages to create an identical
7272   // node.
7273   std::list<HandleSDNode> Handles;
7274 
7275   switch (Opcode) {
7276   case ISD::ConstantFP: {
7277     // Don't invert constant FP values after legalization unless the target says
7278     // the negated constant is legal.
7279     bool IsOpLegal =
7280         isOperationLegal(ISD::ConstantFP, VT) ||
7281         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7282                      OptForSize);
7283 
7284     if (LegalOps && !IsOpLegal)
7285       break;
7286 
7287     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7288     V.changeSign();
7289     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7290 
7291     // If we already have the use of the negated floating constant, it is free
7292     // to negate it even it has multiple uses.
7293     if (!Op.hasOneUse() && CFP.use_empty())
7294       break;
7295     Cost = NegatibleCost::Neutral;
7296     return CFP;
7297   }
7298   case ISD::BUILD_VECTOR: {
7299     // Only permit BUILD_VECTOR of constants.
7300     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7301           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7302         }))
7303       break;
7304 
7305     bool IsOpLegal =
7306         (isOperationLegal(ISD::ConstantFP, VT) &&
7307          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7308         llvm::all_of(Op->op_values(), [&](SDValue N) {
7309           return N.isUndef() ||
7310                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7311                               OptForSize);
7312         });
7313 
7314     if (LegalOps && !IsOpLegal)
7315       break;
7316 
7317     SmallVector<SDValue, 4> Ops;
7318     for (SDValue C : Op->op_values()) {
7319       if (C.isUndef()) {
7320         Ops.push_back(C);
7321         continue;
7322       }
7323       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7324       V.changeSign();
7325       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7326     }
7327     Cost = NegatibleCost::Neutral;
7328     return DAG.getBuildVector(VT, DL, Ops);
7329   }
7330   case ISD::FADD: {
7331     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7332       break;
7333 
7334     // After operation legalization, it might not be legal to create new FSUBs.
7335     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7336       break;
7337     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7338 
7339     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7340     NegatibleCost CostX = NegatibleCost::Expensive;
7341     SDValue NegX =
7342         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7343     // Prevent this node from being deleted by the next call.
7344     if (NegX)
7345       Handles.emplace_back(NegX);
7346 
7347     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7348     NegatibleCost CostY = NegatibleCost::Expensive;
7349     SDValue NegY =
7350         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7351 
7352     // We're done with the handles.
7353     Handles.clear();
7354 
7355     // Negate the X if its cost is less or equal than Y.
7356     if (NegX && (CostX <= CostY)) {
7357       Cost = CostX;
7358       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7359       if (NegY != N)
7360         RemoveDeadNode(NegY);
7361       return N;
7362     }
7363 
7364     // Negate the Y if it is not expensive.
7365     if (NegY) {
7366       Cost = CostY;
7367       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7368       if (NegX != N)
7369         RemoveDeadNode(NegX);
7370       return N;
7371     }
7372     break;
7373   }
7374   case ISD::FSUB: {
7375     // We can't turn -(A-B) into B-A when we honor signed zeros.
7376     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7377       break;
7378 
7379     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7380     // fold (fneg (fsub 0, Y)) -> Y
7381     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7382       if (C->isZero()) {
7383         Cost = NegatibleCost::Cheaper;
7384         return Y;
7385       }
7386 
7387     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7388     Cost = NegatibleCost::Neutral;
7389     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7390   }
7391   case ISD::FMUL:
7392   case ISD::FDIV: {
7393     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7394 
7395     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7396     NegatibleCost CostX = NegatibleCost::Expensive;
7397     SDValue NegX =
7398         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7399     // Prevent this node from being deleted by the next call.
7400     if (NegX)
7401       Handles.emplace_back(NegX);
7402 
7403     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7404     NegatibleCost CostY = NegatibleCost::Expensive;
7405     SDValue NegY =
7406         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7407 
7408     // We're done with the handles.
7409     Handles.clear();
7410 
7411     // Negate the X if its cost is less or equal than Y.
7412     if (NegX && (CostX <= CostY)) {
7413       Cost = CostX;
7414       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7415       if (NegY != N)
7416         RemoveDeadNode(NegY);
7417       return N;
7418     }
7419 
7420     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7421     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7422       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7423         break;
7424 
7425     // Negate the Y if it is not expensive.
7426     if (NegY) {
7427       Cost = CostY;
7428       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7429       if (NegX != N)
7430         RemoveDeadNode(NegX);
7431       return N;
7432     }
7433     break;
7434   }
7435   case ISD::FMA:
7436   case ISD::FMAD: {
7437     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7438       break;
7439 
7440     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7441     NegatibleCost CostZ = NegatibleCost::Expensive;
7442     SDValue NegZ =
7443         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7444     // Give up if fail to negate the Z.
7445     if (!NegZ)
7446       break;
7447 
7448     // Prevent this node from being deleted by the next two calls.
7449     Handles.emplace_back(NegZ);
7450 
7451     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7452     NegatibleCost CostX = NegatibleCost::Expensive;
7453     SDValue NegX =
7454         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7455     // Prevent this node from being deleted by the next call.
7456     if (NegX)
7457       Handles.emplace_back(NegX);
7458 
7459     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7460     NegatibleCost CostY = NegatibleCost::Expensive;
7461     SDValue NegY =
7462         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7463 
7464     // We're done with the handles.
7465     Handles.clear();
7466 
7467     // Negate the X if its cost is less or equal than Y.
7468     if (NegX && (CostX <= CostY)) {
7469       Cost = std::min(CostX, CostZ);
7470       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7471       if (NegY != N)
7472         RemoveDeadNode(NegY);
7473       return N;
7474     }
7475 
7476     // Negate the Y if it is not expensive.
7477     if (NegY) {
7478       Cost = std::min(CostY, CostZ);
7479       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7480       if (NegX != N)
7481         RemoveDeadNode(NegX);
7482       return N;
7483     }
7484     break;
7485   }
7486 
7487   case ISD::FP_EXTEND:
7488   case ISD::FSIN:
7489     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7490                                             OptForSize, Cost, Depth))
7491       return DAG.getNode(Opcode, DL, VT, NegV);
7492     break;
7493   case ISD::FP_ROUND:
7494     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7495                                             OptForSize, Cost, Depth))
7496       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7497     break;
7498   case ISD::SELECT:
7499   case ISD::VSELECT: {
7500     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7501     // iff at least one cost is cheaper and the other is neutral/cheaper
7502     SDValue LHS = Op.getOperand(1);
7503     NegatibleCost CostLHS = NegatibleCost::Expensive;
7504     SDValue NegLHS =
7505         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7506     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7507       RemoveDeadNode(NegLHS);
7508       break;
7509     }
7510 
7511     // Prevent this node from being deleted by the next call.
7512     Handles.emplace_back(NegLHS);
7513 
7514     SDValue RHS = Op.getOperand(2);
7515     NegatibleCost CostRHS = NegatibleCost::Expensive;
7516     SDValue NegRHS =
7517         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7518 
7519     // We're done with the handles.
7520     Handles.clear();
7521 
7522     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7523         (CostLHS != NegatibleCost::Cheaper &&
7524          CostRHS != NegatibleCost::Cheaper)) {
7525       RemoveDeadNode(NegLHS);
7526       RemoveDeadNode(NegRHS);
7527       break;
7528     }
7529 
7530     Cost = std::min(CostLHS, CostRHS);
7531     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7532   }
7533   }
7534 
7535   return SDValue();
7536 }
7537 
7538 //===----------------------------------------------------------------------===//
7539 // Legalization Utilities
7540 //===----------------------------------------------------------------------===//
7541 
expandMUL_LOHI(unsigned Opcode,EVT VT,const SDLoc & dl,SDValue LHS,SDValue RHS,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const7542 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7543                                     SDValue LHS, SDValue RHS,
7544                                     SmallVectorImpl<SDValue> &Result,
7545                                     EVT HiLoVT, SelectionDAG &DAG,
7546                                     MulExpansionKind Kind, SDValue LL,
7547                                     SDValue LH, SDValue RL, SDValue RH) const {
7548   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7549          Opcode == ISD::SMUL_LOHI);
7550 
7551   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7552                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7553   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7554                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7555   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7556                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7557   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7558                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7559 
7560   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7561     return false;
7562 
7563   unsigned OuterBitSize = VT.getScalarSizeInBits();
7564   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7565 
7566   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7567   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7568          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7569 
7570   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7571   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7572                           bool Signed) -> bool {
7573     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7574       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7575       Hi = SDValue(Lo.getNode(), 1);
7576       return true;
7577     }
7578     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7579       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7580       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7581       return true;
7582     }
7583     return false;
7584   };
7585 
7586   SDValue Lo, Hi;
7587 
7588   if (!LL.getNode() && !RL.getNode() &&
7589       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7590     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7591     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7592   }
7593 
7594   if (!LL.getNode())
7595     return false;
7596 
7597   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7598   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7599       DAG.MaskedValueIsZero(RHS, HighMask)) {
7600     // The inputs are both zero-extended.
7601     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7602       Result.push_back(Lo);
7603       Result.push_back(Hi);
7604       if (Opcode != ISD::MUL) {
7605         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7606         Result.push_back(Zero);
7607         Result.push_back(Zero);
7608       }
7609       return true;
7610     }
7611   }
7612 
7613   if (!VT.isVector() && Opcode == ISD::MUL &&
7614       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7615       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7616     // The input values are both sign-extended.
7617     // TODO non-MUL case?
7618     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7619       Result.push_back(Lo);
7620       Result.push_back(Hi);
7621       return true;
7622     }
7623   }
7624 
7625   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7626   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7627 
7628   if (!LH.getNode() && !RH.getNode() &&
7629       isOperationLegalOrCustom(ISD::SRL, VT) &&
7630       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7631     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7632     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7633     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7634     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7635   }
7636 
7637   if (!LH.getNode())
7638     return false;
7639 
7640   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7641     return false;
7642 
7643   Result.push_back(Lo);
7644 
7645   if (Opcode == ISD::MUL) {
7646     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7647     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7648     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7649     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7650     Result.push_back(Hi);
7651     return true;
7652   }
7653 
7654   // Compute the full width result.
7655   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7656     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7657     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7658     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7659     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7660   };
7661 
7662   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7663   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7664     return false;
7665 
7666   // This is effectively the add part of a multiply-add of half-sized operands,
7667   // so it cannot overflow.
7668   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7669 
7670   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7671     return false;
7672 
7673   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7674   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7675 
7676   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7677                   isOperationLegalOrCustom(ISD::ADDE, VT));
7678   if (UseGlue)
7679     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7680                        Merge(Lo, Hi));
7681   else
7682     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7683                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7684 
7685   SDValue Carry = Next.getValue(1);
7686   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7687   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7688 
7689   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7690     return false;
7691 
7692   if (UseGlue)
7693     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7694                      Carry);
7695   else
7696     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7697                      Zero, Carry);
7698 
7699   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7700 
7701   if (Opcode == ISD::SMUL_LOHI) {
7702     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7703                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7704     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7705 
7706     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7707                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7708     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7709   }
7710 
7711   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7712   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7713   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7714   return true;
7715 }
7716 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const7717 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7718                                SelectionDAG &DAG, MulExpansionKind Kind,
7719                                SDValue LL, SDValue LH, SDValue RL,
7720                                SDValue RH) const {
7721   SmallVector<SDValue, 2> Result;
7722   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7723                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7724                            DAG, Kind, LL, LH, RL, RH);
7725   if (Ok) {
7726     assert(Result.size() == 2);
7727     Lo = Result[0];
7728     Hi = Result[1];
7729   }
7730   return Ok;
7731 }
7732 
7733 // Optimize unsigned division or remainder by constants for types twice as large
7734 // as a legal VT.
7735 //
7736 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7737 // can be computed
7738 // as:
7739 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7740 //   Remainder = Sum % Constant
7741 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7742 //
7743 // For division, we can compute the remainder using the algorithm described
7744 // above, subtract it from the dividend to get an exact multiple of Constant.
7745 // Then multiply that exact multiply by the multiplicative inverse modulo
7746 // (1 << (BitWidth / 2)) to get the quotient.
7747 
7748 // If Constant is even, we can shift right the dividend and the divisor by the
7749 // number of trailing zeros in Constant before applying the remainder algorithm.
7750 // If we're after the quotient, we can subtract this value from the shifted
7751 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7752 // If we want the remainder, we shift the value left by the number of trailing
7753 // zeros and add the bits that were shifted out of the dividend.
expandDIVREMByConstant(SDNode * N,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH) const7754 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7755                                             SmallVectorImpl<SDValue> &Result,
7756                                             EVT HiLoVT, SelectionDAG &DAG,
7757                                             SDValue LL, SDValue LH) const {
7758   unsigned Opcode = N->getOpcode();
7759   EVT VT = N->getValueType(0);
7760 
7761   // TODO: Support signed division/remainder.
7762   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7763     return false;
7764   assert(
7765       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7766       "Unexpected opcode");
7767 
7768   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7769   if (!CN)
7770     return false;
7771 
7772   APInt Divisor = CN->getAPIntValue();
7773   unsigned BitWidth = Divisor.getBitWidth();
7774   unsigned HBitWidth = BitWidth / 2;
7775   assert(VT.getScalarSizeInBits() == BitWidth &&
7776          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7777 
7778   // Divisor needs to less than (1 << HBitWidth).
7779   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7780   if (Divisor.uge(HalfMaxPlus1))
7781     return false;
7782 
7783   // We depend on the UREM by constant optimization in DAGCombiner that requires
7784   // high multiply.
7785   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7786       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7787     return false;
7788 
7789   // Don't expand if optimizing for size.
7790   if (DAG.shouldOptForSize())
7791     return false;
7792 
7793   // Early out for 0 or 1 divisors.
7794   if (Divisor.ule(1))
7795     return false;
7796 
7797   // If the divisor is even, shift it until it becomes odd.
7798   unsigned TrailingZeros = 0;
7799   if (!Divisor[0]) {
7800     TrailingZeros = Divisor.countr_zero();
7801     Divisor.lshrInPlace(TrailingZeros);
7802   }
7803 
7804   SDLoc dl(N);
7805   SDValue Sum;
7806   SDValue PartialRem;
7807 
7808   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7809   // then add in the carry.
7810   // TODO: If we can't split it in half, we might be able to split into 3 or
7811   // more pieces using a smaller bit width.
7812   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7813     assert(!LL == !LH && "Expected both input halves or no input halves!");
7814     if (!LL)
7815       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7816 
7817     // Shift the input by the number of TrailingZeros in the divisor. The
7818     // shifted out bits will be added to the remainder later.
7819     if (TrailingZeros) {
7820       // Save the shifted off bits if we need the remainder.
7821       if (Opcode != ISD::UDIV) {
7822         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7823         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7824                                  DAG.getConstant(Mask, dl, HiLoVT));
7825       }
7826 
7827       LL = DAG.getNode(
7828           ISD::OR, dl, HiLoVT,
7829           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7830                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7831           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7832                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7833                                                  HiLoVT, dl)));
7834       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7835                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7836     }
7837 
7838     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7839     EVT SetCCType =
7840         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7841     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7842       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7843       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7844       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7845                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7846     } else {
7847       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7848       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7849       // If the boolean for the target is 0 or 1, we can add the setcc result
7850       // directly.
7851       if (getBooleanContents(HiLoVT) ==
7852           TargetLoweringBase::ZeroOrOneBooleanContent)
7853         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7854       else
7855         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7856                               DAG.getConstant(0, dl, HiLoVT));
7857       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7858     }
7859   }
7860 
7861   // If we didn't find a sum, we can't do the expansion.
7862   if (!Sum)
7863     return false;
7864 
7865   // Perform a HiLoVT urem on the Sum using truncated divisor.
7866   SDValue RemL =
7867       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7868                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7869   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7870 
7871   if (Opcode != ISD::UREM) {
7872     // Subtract the remainder from the shifted dividend.
7873     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7874     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7875 
7876     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7877 
7878     // Multiply by the multiplicative inverse of the divisor modulo
7879     // (1 << BitWidth).
7880     APInt MulFactor = Divisor.multiplicativeInverse();
7881 
7882     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7883                                    DAG.getConstant(MulFactor, dl, VT));
7884 
7885     // Split the quotient into low and high parts.
7886     SDValue QuotL, QuotH;
7887     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7888     Result.push_back(QuotL);
7889     Result.push_back(QuotH);
7890   }
7891 
7892   if (Opcode != ISD::UDIV) {
7893     // If we shifted the input, shift the remainder left and add the bits we
7894     // shifted off the input.
7895     if (TrailingZeros) {
7896       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7897       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7898                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7899       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7900     }
7901     Result.push_back(RemL);
7902     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7903   }
7904 
7905   return true;
7906 }
7907 
7908 // Check that (every element of) Z is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(SDValue Z,unsigned BW)7909 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7910   return ISD::matchUnaryPredicate(
7911       Z,
7912       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7913       true);
7914 }
7915 
expandVPFunnelShift(SDNode * Node,SelectionDAG & DAG)7916 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7917   EVT VT = Node->getValueType(0);
7918   SDValue ShX, ShY;
7919   SDValue ShAmt, InvShAmt;
7920   SDValue X = Node->getOperand(0);
7921   SDValue Y = Node->getOperand(1);
7922   SDValue Z = Node->getOperand(2);
7923   SDValue Mask = Node->getOperand(3);
7924   SDValue VL = Node->getOperand(4);
7925 
7926   unsigned BW = VT.getScalarSizeInBits();
7927   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7928   SDLoc DL(SDValue(Node, 0));
7929 
7930   EVT ShVT = Z.getValueType();
7931   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7932     // fshl: X << C | Y >> (BW - C)
7933     // fshr: X << (BW - C) | Y >> C
7934     // where C = Z % BW is not zero
7935     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7936     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7937     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7938     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7939                       VL);
7940     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7941                       VL);
7942   } else {
7943     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7944     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7945     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7946     if (isPowerOf2_32(BW)) {
7947       // Z % BW -> Z & (BW - 1)
7948       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7949       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7950       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7951                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7952       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7953     } else {
7954       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7955       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7956       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
7957     }
7958 
7959     SDValue One = DAG.getConstant(1, DL, ShVT);
7960     if (IsFSHL) {
7961       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
7962       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
7963       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
7964     } else {
7965       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
7966       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
7967       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
7968     }
7969   }
7970   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
7971 }
7972 
expandFunnelShift(SDNode * Node,SelectionDAG & DAG) const7973 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7974                                           SelectionDAG &DAG) const {
7975   if (Node->isVPOpcode())
7976     return expandVPFunnelShift(Node, DAG);
7977 
7978   EVT VT = Node->getValueType(0);
7979 
7980   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7981                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7982                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7983                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7984     return SDValue();
7985 
7986   SDValue X = Node->getOperand(0);
7987   SDValue Y = Node->getOperand(1);
7988   SDValue Z = Node->getOperand(2);
7989 
7990   unsigned BW = VT.getScalarSizeInBits();
7991   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7992   SDLoc DL(SDValue(Node, 0));
7993 
7994   EVT ShVT = Z.getValueType();
7995 
7996   // If a funnel shift in the other direction is more supported, use it.
7997   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7998   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7999       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8000     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8001       // fshl X, Y, Z -> fshr X, Y, -Z
8002       // fshr X, Y, Z -> fshl X, Y, -Z
8003       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8004       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8005     } else {
8006       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8007       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8008       SDValue One = DAG.getConstant(1, DL, ShVT);
8009       if (IsFSHL) {
8010         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8011         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8012       } else {
8013         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8014         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8015       }
8016       Z = DAG.getNOT(DL, Z, ShVT);
8017     }
8018     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8019   }
8020 
8021   SDValue ShX, ShY;
8022   SDValue ShAmt, InvShAmt;
8023   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8024     // fshl: X << C | Y >> (BW - C)
8025     // fshr: X << (BW - C) | Y >> C
8026     // where C = Z % BW is not zero
8027     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8028     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8029     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8030     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8031     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8032   } else {
8033     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8034     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8035     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8036     if (isPowerOf2_32(BW)) {
8037       // Z % BW -> Z & (BW - 1)
8038       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8039       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8040       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8041     } else {
8042       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8043       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8044       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8045     }
8046 
8047     SDValue One = DAG.getConstant(1, DL, ShVT);
8048     if (IsFSHL) {
8049       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8050       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8051       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8052     } else {
8053       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8054       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8055       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8056     }
8057   }
8058   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8059 }
8060 
8061 // TODO: Merge with expandFunnelShift.
expandROT(SDNode * Node,bool AllowVectorOps,SelectionDAG & DAG) const8062 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8063                                   SelectionDAG &DAG) const {
8064   EVT VT = Node->getValueType(0);
8065   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8066   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8067   SDValue Op0 = Node->getOperand(0);
8068   SDValue Op1 = Node->getOperand(1);
8069   SDLoc DL(SDValue(Node, 0));
8070 
8071   EVT ShVT = Op1.getValueType();
8072   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8073 
8074   // If a rotate in the other direction is more supported, use it.
8075   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8076   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8077       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8078     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8079     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8080   }
8081 
8082   if (!AllowVectorOps && VT.isVector() &&
8083       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8084        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8085        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8086        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8087        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8088     return SDValue();
8089 
8090   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8091   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8092   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8093   SDValue ShVal;
8094   SDValue HsVal;
8095   if (isPowerOf2_32(EltSizeInBits)) {
8096     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8097     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8098     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8099     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8100     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8101     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8102     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8103   } else {
8104     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8105     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8106     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8107     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8108     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8109     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8110     SDValue One = DAG.getConstant(1, DL, ShVT);
8111     HsVal =
8112         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8113   }
8114   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8115 }
8116 
expandShiftParts(SDNode * Node,SDValue & Lo,SDValue & Hi,SelectionDAG & DAG) const8117 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8118                                       SelectionDAG &DAG) const {
8119   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8120   EVT VT = Node->getValueType(0);
8121   unsigned VTBits = VT.getScalarSizeInBits();
8122   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8123 
8124   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8125   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8126   SDValue ShOpLo = Node->getOperand(0);
8127   SDValue ShOpHi = Node->getOperand(1);
8128   SDValue ShAmt = Node->getOperand(2);
8129   EVT ShAmtVT = ShAmt.getValueType();
8130   EVT ShAmtCCVT =
8131       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8132   SDLoc dl(Node);
8133 
8134   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8135   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8136   // away during isel.
8137   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8138                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8139   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8140                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8141                        : DAG.getConstant(0, dl, VT);
8142 
8143   SDValue Tmp2, Tmp3;
8144   if (IsSHL) {
8145     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8146     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8147   } else {
8148     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8149     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8150   }
8151 
8152   // If the shift amount is larger or equal than the width of a part we don't
8153   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8154   // values for large shift amounts.
8155   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8156                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8157   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8158                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8159 
8160   if (IsSHL) {
8161     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8162     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8163   } else {
8164     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8165     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8166   }
8167 }
8168 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const8169 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8170                                       SelectionDAG &DAG) const {
8171   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8172   SDValue Src = Node->getOperand(OpNo);
8173   EVT SrcVT = Src.getValueType();
8174   EVT DstVT = Node->getValueType(0);
8175   SDLoc dl(SDValue(Node, 0));
8176 
8177   // FIXME: Only f32 to i64 conversions are supported.
8178   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8179     return false;
8180 
8181   if (Node->isStrictFPOpcode())
8182     // When a NaN is converted to an integer a trap is allowed. We can't
8183     // use this expansion here because it would eliminate that trap. Other
8184     // traps are also allowed and cannot be eliminated. See
8185     // IEEE 754-2008 sec 5.8.
8186     return false;
8187 
8188   // Expand f32 -> i64 conversion
8189   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8190   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8191   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8192   EVT IntVT = SrcVT.changeTypeToInteger();
8193   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8194 
8195   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8196   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8197   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8198   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8199   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8200   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8201 
8202   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8203 
8204   SDValue ExponentBits = DAG.getNode(
8205       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8206       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8207   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8208 
8209   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8210                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8211                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8212   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8213 
8214   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8215                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8216                           DAG.getConstant(0x00800000, dl, IntVT));
8217 
8218   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8219 
8220   R = DAG.getSelectCC(
8221       dl, Exponent, ExponentLoBit,
8222       DAG.getNode(ISD::SHL, dl, DstVT, R,
8223                   DAG.getZExtOrTrunc(
8224                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8225                       dl, IntShVT)),
8226       DAG.getNode(ISD::SRL, dl, DstVT, R,
8227                   DAG.getZExtOrTrunc(
8228                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8229                       dl, IntShVT)),
8230       ISD::SETGT);
8231 
8232   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8233                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8234 
8235   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8236                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8237   return true;
8238 }
8239 
expandFP_TO_UINT(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const8240 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8241                                       SDValue &Chain,
8242                                       SelectionDAG &DAG) const {
8243   SDLoc dl(SDValue(Node, 0));
8244   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8245   SDValue Src = Node->getOperand(OpNo);
8246 
8247   EVT SrcVT = Src.getValueType();
8248   EVT DstVT = Node->getValueType(0);
8249   EVT SetCCVT =
8250       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8251   EVT DstSetCCVT =
8252       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8253 
8254   // Only expand vector types if we have the appropriate vector bit operations.
8255   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8256                                                    ISD::FP_TO_SINT;
8257   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8258                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8259     return false;
8260 
8261   // If the maximum float value is smaller then the signed integer range,
8262   // the destination signmask can't be represented by the float, so we can
8263   // just use FP_TO_SINT directly.
8264   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
8265   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8266   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8267   if (APFloat::opOverflow &
8268       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8269     if (Node->isStrictFPOpcode()) {
8270       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8271                            { Node->getOperand(0), Src });
8272       Chain = Result.getValue(1);
8273     } else
8274       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8275     return true;
8276   }
8277 
8278   // Don't expand it if there isn't cheap fsub instruction.
8279   if (!isOperationLegalOrCustom(
8280           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8281     return false;
8282 
8283   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8284   SDValue Sel;
8285 
8286   if (Node->isStrictFPOpcode()) {
8287     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8288                        Node->getOperand(0), /*IsSignaling*/ true);
8289     Chain = Sel.getValue(1);
8290   } else {
8291     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8292   }
8293 
8294   bool Strict = Node->isStrictFPOpcode() ||
8295                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8296 
8297   if (Strict) {
8298     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8299     // signmask then offset (the result of which should be fully representable).
8300     // Sel = Src < 0x8000000000000000
8301     // FltOfs = select Sel, 0, 0x8000000000000000
8302     // IntOfs = select Sel, 0, 0x8000000000000000
8303     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8304 
8305     // TODO: Should any fast-math-flags be set for the FSUB?
8306     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8307                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8308     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8309     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8310                                    DAG.getConstant(0, dl, DstVT),
8311                                    DAG.getConstant(SignMask, dl, DstVT));
8312     SDValue SInt;
8313     if (Node->isStrictFPOpcode()) {
8314       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8315                                 { Chain, Src, FltOfs });
8316       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8317                          { Val.getValue(1), Val });
8318       Chain = SInt.getValue(1);
8319     } else {
8320       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8321       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8322     }
8323     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8324   } else {
8325     // Expand based on maximum range of FP_TO_SINT:
8326     // True = fp_to_sint(Src)
8327     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8328     // Result = select (Src < 0x8000000000000000), True, False
8329 
8330     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8331     // TODO: Should any fast-math-flags be set for the FSUB?
8332     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8333                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8334     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8335                         DAG.getConstant(SignMask, dl, DstVT));
8336     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8337     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8338   }
8339   return true;
8340 }
8341 
expandUINT_TO_FP(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const8342 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8343                                       SDValue &Chain,
8344                                       SelectionDAG &DAG) const {
8345   // This transform is not correct for converting 0 when rounding mode is set
8346   // to round toward negative infinity which will produce -0.0. So disable under
8347   // strictfp.
8348   if (Node->isStrictFPOpcode())
8349     return false;
8350 
8351   SDValue Src = Node->getOperand(0);
8352   EVT SrcVT = Src.getValueType();
8353   EVT DstVT = Node->getValueType(0);
8354 
8355   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8356     return false;
8357 
8358   // Only expand vector types if we have the appropriate vector bit operations.
8359   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8360                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8361                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8362                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8363                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8364     return false;
8365 
8366   SDLoc dl(SDValue(Node, 0));
8367   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8368 
8369   // Implementation of unsigned i64 to f64 following the algorithm in
8370   // __floatundidf in compiler_rt.  This implementation performs rounding
8371   // correctly in all rounding modes with the exception of converting 0
8372   // when rounding toward negative infinity. In that case the fsub will produce
8373   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
8374   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8375   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8376       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8377   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8378   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8379   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8380 
8381   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8382   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8383   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8384   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8385   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8386   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8387   SDValue HiSub =
8388       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8389   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8390   return true;
8391 }
8392 
8393 SDValue
createSelectForFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const8394 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8395                                                SelectionDAG &DAG) const {
8396   unsigned Opcode = Node->getOpcode();
8397   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8398           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8399          "Wrong opcode");
8400 
8401   if (Node->getFlags().hasNoNaNs()) {
8402     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8403     SDValue Op1 = Node->getOperand(0);
8404     SDValue Op2 = Node->getOperand(1);
8405     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8406     // Copy FMF flags, but always set the no-signed-zeros flag
8407     // as this is implied by the FMINNUM/FMAXNUM semantics.
8408     SDNodeFlags Flags = Node->getFlags();
8409     Flags.setNoSignedZeros(true);
8410     SelCC->setFlags(Flags);
8411     return SelCC;
8412   }
8413 
8414   return SDValue();
8415 }
8416 
expandFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const8417 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8418                                               SelectionDAG &DAG) const {
8419   SDLoc dl(Node);
8420   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
8421     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8422   EVT VT = Node->getValueType(0);
8423 
8424   if (VT.isScalableVector())
8425     report_fatal_error(
8426         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8427 
8428   if (isOperationLegalOrCustom(NewOp, VT)) {
8429     SDValue Quiet0 = Node->getOperand(0);
8430     SDValue Quiet1 = Node->getOperand(1);
8431 
8432     if (!Node->getFlags().hasNoNaNs()) {
8433       // Insert canonicalizes if it's possible we need to quiet to get correct
8434       // sNaN behavior.
8435       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8436         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8437                              Node->getFlags());
8438       }
8439       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8440         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8441                              Node->getFlags());
8442       }
8443     }
8444 
8445     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8446   }
8447 
8448   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8449   // instead if there are no NaNs and there can't be an incompatible zero
8450   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8451   if ((Node->getFlags().hasNoNaNs() ||
8452        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8453         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8454       (Node->getFlags().hasNoSignedZeros() ||
8455        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8456        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8457     unsigned IEEE2018Op =
8458         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8459     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8460       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8461                          Node->getOperand(1), Node->getFlags());
8462   }
8463 
8464   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8465     return SelCC;
8466 
8467   return SDValue();
8468 }
8469 
expandFMINIMUM_FMAXIMUM(SDNode * N,SelectionDAG & DAG) const8470 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8471                                                 SelectionDAG &DAG) const {
8472   SDLoc DL(N);
8473   SDValue LHS = N->getOperand(0);
8474   SDValue RHS = N->getOperand(1);
8475   unsigned Opc = N->getOpcode();
8476   EVT VT = N->getValueType(0);
8477   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8478   bool IsMax = Opc == ISD::FMAXIMUM;
8479   SDNodeFlags Flags = N->getFlags();
8480 
8481   // First, implement comparison not propagating NaN. If no native fmin or fmax
8482   // available, use plain select with setcc instead.
8483   SDValue MinMax;
8484   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8485   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8486 
8487   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8488   // signed zero behavior.
8489   bool MinMaxMustRespectOrderedZero = false;
8490 
8491   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8492     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8493     MinMaxMustRespectOrderedZero = true;
8494   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8495     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8496   } else {
8497     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8498       return DAG.UnrollVectorOp(N);
8499 
8500     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8501     SDValue Compare =
8502         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8503     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8504   }
8505 
8506   // Propagate any NaN of both operands
8507   if (!N->getFlags().hasNoNaNs() &&
8508       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8509     ConstantFP *FPNaN = ConstantFP::get(
8510         *DAG.getContext(), APFloat::getNaN(DAG.EVTToAPFloatSemantics(VT)));
8511     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8512                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8513   }
8514 
8515   // fminimum/fmaximum requires -0.0 less than +0.0
8516   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8517       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8518     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8519                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8520     SDValue TestZero =
8521         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8522     SDValue LCmp = DAG.getSelect(
8523         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8524         MinMax, Flags);
8525     SDValue RCmp = DAG.getSelect(
8526         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8527         LCmp, Flags);
8528     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8529   }
8530 
8531   return MinMax;
8532 }
8533 
8534 /// Returns a true value if if this FPClassTest can be performed with an ordered
8535 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8536 /// std::nullopt if it cannot be performed as a compare with 0.
isFCmpEqualZero(FPClassTest Test,const fltSemantics & Semantics,const MachineFunction & MF)8537 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8538                                            const fltSemantics &Semantics,
8539                                            const MachineFunction &MF) {
8540   FPClassTest OrderedMask = Test & ~fcNan;
8541   FPClassTest NanTest = Test & fcNan;
8542   bool IsOrdered = NanTest == fcNone;
8543   bool IsUnordered = NanTest == fcNan;
8544 
8545   // Skip cases that are testing for only a qnan or snan.
8546   if (!IsOrdered && !IsUnordered)
8547     return std::nullopt;
8548 
8549   if (OrderedMask == fcZero &&
8550       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8551     return IsOrdered;
8552   if (OrderedMask == (fcZero | fcSubnormal) &&
8553       MF.getDenormalMode(Semantics).inputsAreZero())
8554     return IsOrdered;
8555   return std::nullopt;
8556 }
8557 
expandIS_FPCLASS(EVT ResultVT,SDValue Op,FPClassTest Test,SDNodeFlags Flags,const SDLoc & DL,SelectionDAG & DAG) const8558 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8559                                          FPClassTest Test, SDNodeFlags Flags,
8560                                          const SDLoc &DL,
8561                                          SelectionDAG &DAG) const {
8562   EVT OperandVT = Op.getValueType();
8563   assert(OperandVT.isFloatingPoint());
8564 
8565   // Degenerated cases.
8566   if (Test == fcNone)
8567     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8568   if ((Test & fcAllFlags) == fcAllFlags)
8569     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8570 
8571   // PPC double double is a pair of doubles, of which the higher part determines
8572   // the value class.
8573   if (OperandVT == MVT::ppcf128) {
8574     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8575                      DAG.getConstant(1, DL, MVT::i32));
8576     OperandVT = MVT::f64;
8577   }
8578 
8579   // Some checks may be represented as inversion of simpler check, for example
8580   // "inf|normal|subnormal|zero" => !"nan".
8581   bool IsInverted = false;
8582   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) {
8583     IsInverted = true;
8584     Test = InvertedCheck;
8585   }
8586 
8587   // Floating-point type properties.
8588   EVT ScalarFloatVT = OperandVT.getScalarType();
8589   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8590   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8591   bool IsF80 = (ScalarFloatVT == MVT::f80);
8592 
8593   // Some checks can be implemented using float comparisons, if floating point
8594   // exceptions are ignored.
8595   if (Flags.hasNoFPExcept() &&
8596       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8597     ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ;
8598     ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ;
8599 
8600     if (std::optional<bool> IsCmp0 =
8601             isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction());
8602         IsCmp0 && (isCondCodeLegalOrCustom(
8603                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8604                       OperandVT.getScalarType().getSimpleVT()))) {
8605 
8606       // If denormals could be implicitly treated as 0, this is not equivalent
8607       // to a compare with 0 since it will also be true for denormals.
8608       return DAG.getSetCC(DL, ResultVT, Op,
8609                           DAG.getConstantFP(0.0, DL, OperandVT),
8610                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8611     }
8612 
8613     if (Test == fcNan &&
8614         isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO,
8615                                 OperandVT.getScalarType().getSimpleVT())) {
8616       return DAG.getSetCC(DL, ResultVT, Op, Op,
8617                           IsInverted ? ISD::SETO : ISD::SETUO);
8618     }
8619 
8620     if (Test == fcInf &&
8621         isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ,
8622                                 OperandVT.getScalarType().getSimpleVT()) &&
8623         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) {
8624       // isinf(x) --> fabs(x) == inf
8625       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8626       SDValue Inf =
8627           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8628       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8629                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
8630     }
8631   }
8632 
8633   // In the general case use integer operations.
8634   unsigned BitSize = OperandVT.getScalarSizeInBits();
8635   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8636   if (OperandVT.isVector())
8637     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8638                              OperandVT.getVectorElementCount());
8639   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8640 
8641   // Various masks.
8642   APInt SignBit = APInt::getSignMask(BitSize);
8643   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8644   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8645   const unsigned ExplicitIntBitInF80 = 63;
8646   APInt ExpMask = Inf;
8647   if (IsF80)
8648     ExpMask.clearBit(ExplicitIntBitInF80);
8649   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8650   APInt QNaNBitMask =
8651       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8652   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8653 
8654   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8655   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8656   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8657   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8658   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8659   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8660 
8661   SDValue Res;
8662   const auto appendResult = [&](SDValue PartialRes) {
8663     if (PartialRes) {
8664       if (Res)
8665         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8666       else
8667         Res = PartialRes;
8668     }
8669   };
8670 
8671   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8672   const auto getIntBitIsSet = [&]() -> SDValue {
8673     if (!IntBitIsSetV) {
8674       APInt IntBitMask(BitSize, 0);
8675       IntBitMask.setBit(ExplicitIntBitInF80);
8676       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8677       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8678       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8679     }
8680     return IntBitIsSetV;
8681   };
8682 
8683   // Split the value into sign bit and absolute value.
8684   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8685   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8686                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
8687 
8688   // Tests that involve more than one class should be processed first.
8689   SDValue PartialRes;
8690 
8691   if (IsF80)
8692     ; // Detect finite numbers of f80 by checking individual classes because
8693       // they have different settings of the explicit integer bit.
8694   else if ((Test & fcFinite) == fcFinite) {
8695     // finite(V) ==> abs(V) < exp_mask
8696     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8697     Test &= ~fcFinite;
8698   } else if ((Test & fcFinite) == fcPosFinite) {
8699     // finite(V) && V > 0 ==> V < exp_mask
8700     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8701     Test &= ~fcPosFinite;
8702   } else if ((Test & fcFinite) == fcNegFinite) {
8703     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8704     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8705     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8706     Test &= ~fcNegFinite;
8707   }
8708   appendResult(PartialRes);
8709 
8710   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8711     // fcZero | fcSubnormal => test all exponent bits are 0
8712     // TODO: Handle sign bit specific cases
8713     if (PartialCheck == (fcZero | fcSubnormal)) {
8714       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8715       SDValue ExpIsZero =
8716           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8717       appendResult(ExpIsZero);
8718       Test &= ~PartialCheck & fcAllFlags;
8719     }
8720   }
8721 
8722   // Check for individual classes.
8723 
8724   if (unsigned PartialCheck = Test & fcZero) {
8725     if (PartialCheck == fcPosZero)
8726       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8727     else if (PartialCheck == fcZero)
8728       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8729     else // ISD::fcNegZero
8730       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8731     appendResult(PartialRes);
8732   }
8733 
8734   if (unsigned PartialCheck = Test & fcSubnormal) {
8735     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8736     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8737     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8738     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8739     SDValue VMinusOneV =
8740         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8741     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8742     if (PartialCheck == fcNegSubnormal)
8743       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8744     appendResult(PartialRes);
8745   }
8746 
8747   if (unsigned PartialCheck = Test & fcInf) {
8748     if (PartialCheck == fcPosInf)
8749       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8750     else if (PartialCheck == fcInf)
8751       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8752     else { // ISD::fcNegInf
8753       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8754       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8755       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8756     }
8757     appendResult(PartialRes);
8758   }
8759 
8760   if (unsigned PartialCheck = Test & fcNan) {
8761     APInt InfWithQnanBit = Inf | QNaNBitMask;
8762     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8763     if (PartialCheck == fcNan) {
8764       // isnan(V) ==> abs(V) > int(inf)
8765       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8766       if (IsF80) {
8767         // Recognize unsupported values as NaNs for compatibility with glibc.
8768         // In them (exp(V)==0) == int_bit.
8769         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
8770         SDValue ExpIsZero =
8771             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8772         SDValue IsPseudo =
8773             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
8774         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
8775       }
8776     } else if (PartialCheck == fcQNan) {
8777       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
8778       PartialRes =
8779           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
8780     } else { // ISD::fcSNan
8781       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
8782       //                    abs(V) < (unsigned(Inf) | quiet_bit)
8783       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8784       SDValue IsNotQnan =
8785           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
8786       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
8787     }
8788     appendResult(PartialRes);
8789   }
8790 
8791   if (unsigned PartialCheck = Test & fcNormal) {
8792     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
8793     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
8794     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
8795     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
8796     APInt ExpLimit = ExpMask - ExpLSB;
8797     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
8798     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
8799     if (PartialCheck == fcNegNormal)
8800       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8801     else if (PartialCheck == fcPosNormal) {
8802       SDValue PosSignV =
8803           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
8804       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
8805     }
8806     if (IsF80)
8807       PartialRes =
8808           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
8809     appendResult(PartialRes);
8810   }
8811 
8812   if (!Res)
8813     return DAG.getConstant(IsInverted, DL, ResultVT);
8814   if (IsInverted)
8815     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
8816   return Res;
8817 }
8818 
8819 // Only expand vector types if we have the appropriate vector bit operations.
canExpandVectorCTPOP(const TargetLowering & TLI,EVT VT)8820 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
8821   assert(VT.isVector() && "Expected vector type");
8822   unsigned Len = VT.getScalarSizeInBits();
8823   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
8824          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
8825          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
8826          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
8827          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
8828 }
8829 
expandCTPOP(SDNode * Node,SelectionDAG & DAG) const8830 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8831   SDLoc dl(Node);
8832   EVT VT = Node->getValueType(0);
8833   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8834   SDValue Op = Node->getOperand(0);
8835   unsigned Len = VT.getScalarSizeInBits();
8836   assert(VT.isInteger() && "CTPOP not implemented for this type.");
8837 
8838   // TODO: Add support for irregular type lengths.
8839   if (!(Len <= 128 && Len % 8 == 0))
8840     return SDValue();
8841 
8842   // Only expand vector types if we have the appropriate vector bit operations.
8843   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
8844     return SDValue();
8845 
8846   // This is the "best" algorithm from
8847   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8848   SDValue Mask55 =
8849       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8850   SDValue Mask33 =
8851       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8852   SDValue Mask0F =
8853       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8854 
8855   // v = v - ((v >> 1) & 0x55555555...)
8856   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
8857                    DAG.getNode(ISD::AND, dl, VT,
8858                                DAG.getNode(ISD::SRL, dl, VT, Op,
8859                                            DAG.getConstant(1, dl, ShVT)),
8860                                Mask55));
8861   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8862   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
8863                    DAG.getNode(ISD::AND, dl, VT,
8864                                DAG.getNode(ISD::SRL, dl, VT, Op,
8865                                            DAG.getConstant(2, dl, ShVT)),
8866                                Mask33));
8867   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8868   Op = DAG.getNode(ISD::AND, dl, VT,
8869                    DAG.getNode(ISD::ADD, dl, VT, Op,
8870                                DAG.getNode(ISD::SRL, dl, VT, Op,
8871                                            DAG.getConstant(4, dl, ShVT))),
8872                    Mask0F);
8873 
8874   if (Len <= 8)
8875     return Op;
8876 
8877   // Avoid the multiply if we only have 2 bytes to add.
8878   // TODO: Only doing this for scalars because vectors weren't as obviously
8879   // improved.
8880   if (Len == 16 && !VT.isVector()) {
8881     // v = (v + (v >> 8)) & 0x00FF;
8882     return DAG.getNode(ISD::AND, dl, VT,
8883                      DAG.getNode(ISD::ADD, dl, VT, Op,
8884                                  DAG.getNode(ISD::SRL, dl, VT, Op,
8885                                              DAG.getConstant(8, dl, ShVT))),
8886                      DAG.getConstant(0xFF, dl, VT));
8887   }
8888 
8889   // v = (v * 0x01010101...) >> (Len - 8)
8890   SDValue V;
8891   if (isOperationLegalOrCustomOrPromote(
8892           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
8893     SDValue Mask01 =
8894         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8895     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
8896   } else {
8897     V = Op;
8898     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
8899       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
8900       V = DAG.getNode(ISD::ADD, dl, VT, V,
8901                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
8902     }
8903   }
8904   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
8905 }
8906 
expandVPCTPOP(SDNode * Node,SelectionDAG & DAG) const8907 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
8908   SDLoc dl(Node);
8909   EVT VT = Node->getValueType(0);
8910   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8911   SDValue Op = Node->getOperand(0);
8912   SDValue Mask = Node->getOperand(1);
8913   SDValue VL = Node->getOperand(2);
8914   unsigned Len = VT.getScalarSizeInBits();
8915   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
8916 
8917   // TODO: Add support for irregular type lengths.
8918   if (!(Len <= 128 && Len % 8 == 0))
8919     return SDValue();
8920 
8921   // This is same algorithm of expandCTPOP from
8922   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
8923   SDValue Mask55 =
8924       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
8925   SDValue Mask33 =
8926       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
8927   SDValue Mask0F =
8928       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
8929 
8930   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
8931 
8932   // v = v - ((v >> 1) & 0x55555555...)
8933   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
8934                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
8935                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
8936                      Mask55, Mask, VL);
8937   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
8938 
8939   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
8940   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
8941   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
8942                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
8943                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
8944                      Mask33, Mask, VL);
8945   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
8946 
8947   // v = (v + (v >> 4)) & 0x0F0F0F0F...
8948   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
8949                      Mask, VL),
8950   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
8951   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
8952 
8953   if (Len <= 8)
8954     return Op;
8955 
8956   // v = (v * 0x01010101...) >> (Len - 8)
8957   SDValue V;
8958   if (isOperationLegalOrCustomOrPromote(
8959           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
8960     SDValue Mask01 =
8961         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
8962     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
8963   } else {
8964     V = Op;
8965     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
8966       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
8967       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
8968                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
8969                       Mask, VL);
8970     }
8971   }
8972   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
8973                      Mask, VL);
8974 }
8975 
expandCTLZ(SDNode * Node,SelectionDAG & DAG) const8976 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
8977   SDLoc dl(Node);
8978   EVT VT = Node->getValueType(0);
8979   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
8980   SDValue Op = Node->getOperand(0);
8981   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
8982 
8983   // If the non-ZERO_UNDEF version is supported we can use that instead.
8984   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
8985       isOperationLegalOrCustom(ISD::CTLZ, VT))
8986     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
8987 
8988   // If the ZERO_UNDEF version is supported use that and handle the zero case.
8989   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
8990     EVT SetCCVT =
8991         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8992     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
8993     SDValue Zero = DAG.getConstant(0, dl, VT);
8994     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
8995     return DAG.getSelect(dl, VT, SrcIsZero,
8996                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
8997   }
8998 
8999   // Only expand vector types if we have the appropriate vector bit operations.
9000   // This includes the operations needed to expand CTPOP if it isn't supported.
9001   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9002                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9003                          !canExpandVectorCTPOP(*this, VT)) ||
9004                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9005                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9006     return SDValue();
9007 
9008   // for now, we do this:
9009   // x = x | (x >> 1);
9010   // x = x | (x >> 2);
9011   // ...
9012   // x = x | (x >>16);
9013   // x = x | (x >>32); // for 64-bit input
9014   // return popcount(~x);
9015   //
9016   // Ref: "Hacker's Delight" by Henry Warren
9017   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9018     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9019     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9020                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9021   }
9022   Op = DAG.getNOT(dl, Op, VT);
9023   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9024 }
9025 
expandVPCTLZ(SDNode * Node,SelectionDAG & DAG) const9026 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9027   SDLoc dl(Node);
9028   EVT VT = Node->getValueType(0);
9029   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9030   SDValue Op = Node->getOperand(0);
9031   SDValue Mask = Node->getOperand(1);
9032   SDValue VL = Node->getOperand(2);
9033   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9034 
9035   // do this:
9036   // x = x | (x >> 1);
9037   // x = x | (x >> 2);
9038   // ...
9039   // x = x | (x >>16);
9040   // x = x | (x >>32); // for 64-bit input
9041   // return popcount(~x);
9042   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9043     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9044     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9045                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9046                      VL);
9047   }
9048   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
9049                    VL);
9050   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9051 }
9052 
CTTZTableLookup(SDNode * Node,SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op,unsigned BitWidth) const9053 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9054                                         const SDLoc &DL, EVT VT, SDValue Op,
9055                                         unsigned BitWidth) const {
9056   if (BitWidth != 32 && BitWidth != 64)
9057     return SDValue();
9058   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9059                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9060   const DataLayout &TD = DAG.getDataLayout();
9061   MachinePointerInfo PtrInfo =
9062       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9063   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9064   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9065   SDValue Lookup = DAG.getNode(
9066       ISD::SRL, DL, VT,
9067       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9068                   DAG.getConstant(DeBruijn, DL, VT)),
9069       DAG.getConstant(ShiftAmt, DL, VT));
9070   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9071 
9072   SmallVector<uint8_t> Table(BitWidth, 0);
9073   for (unsigned i = 0; i < BitWidth; i++) {
9074     APInt Shl = DeBruijn.shl(i);
9075     APInt Lshr = Shl.lshr(ShiftAmt);
9076     Table[Lshr.getZExtValue()] = i;
9077   }
9078 
9079   // Create a ConstantArray in Constant Pool
9080   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9081   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9082                                       TD.getPrefTypeAlign(CA->getType()));
9083   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9084                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9085                                    PtrInfo, MVT::i8);
9086   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9087     return ExtLoad;
9088 
9089   EVT SetCCVT =
9090       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9091   SDValue Zero = DAG.getConstant(0, DL, VT);
9092   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9093   return DAG.getSelect(DL, VT, SrcIsZero,
9094                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9095 }
9096 
expandCTTZ(SDNode * Node,SelectionDAG & DAG) const9097 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9098   SDLoc dl(Node);
9099   EVT VT = Node->getValueType(0);
9100   SDValue Op = Node->getOperand(0);
9101   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9102 
9103   // If the non-ZERO_UNDEF version is supported we can use that instead.
9104   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9105       isOperationLegalOrCustom(ISD::CTTZ, VT))
9106     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9107 
9108   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9109   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9110     EVT SetCCVT =
9111         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9112     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9113     SDValue Zero = DAG.getConstant(0, dl, VT);
9114     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9115     return DAG.getSelect(dl, VT, SrcIsZero,
9116                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9117   }
9118 
9119   // Only expand vector types if we have the appropriate vector bit operations.
9120   // This includes the operations needed to expand CTPOP if it isn't supported.
9121   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9122                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9123                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9124                          !canExpandVectorCTPOP(*this, VT)) ||
9125                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9126                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9127                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9128     return SDValue();
9129 
9130   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9131   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9132       !isOperationLegal(ISD::CTLZ, VT))
9133     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9134       return V;
9135 
9136   // for now, we use: { return popcount(~x & (x - 1)); }
9137   // unless the target has ctlz but not ctpop, in which case we use:
9138   // { return 32 - nlz(~x & (x-1)); }
9139   // Ref: "Hacker's Delight" by Henry Warren
9140   SDValue Tmp = DAG.getNode(
9141       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9142       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9143 
9144   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9145   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9146     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9147                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9148   }
9149 
9150   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9151 }
9152 
expandVPCTTZ(SDNode * Node,SelectionDAG & DAG) const9153 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9154   SDValue Op = Node->getOperand(0);
9155   SDValue Mask = Node->getOperand(1);
9156   SDValue VL = Node->getOperand(2);
9157   SDLoc dl(Node);
9158   EVT VT = Node->getValueType(0);
9159 
9160   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9161   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9162                             DAG.getConstant(-1, dl, VT), Mask, VL);
9163   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9164                                  DAG.getConstant(1, dl, VT), Mask, VL);
9165   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9166   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9167 }
9168 
expandVPCTTZElements(SDNode * N,SelectionDAG & DAG) const9169 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9170                                              SelectionDAG &DAG) const {
9171   // %cond = to_bool_vec %source
9172   // %splat = splat /*val=*/VL
9173   // %tz = step_vector
9174   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9175   // %r = vp.reduce.umin %v
9176   SDLoc DL(N);
9177   SDValue Source = N->getOperand(0);
9178   SDValue Mask = N->getOperand(1);
9179   SDValue EVL = N->getOperand(2);
9180   EVT SrcVT = Source.getValueType();
9181   EVT ResVT = N->getValueType(0);
9182   EVT ResVecVT =
9183       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9184 
9185   // Convert to boolean vector.
9186   if (SrcVT.getScalarType() != MVT::i1) {
9187     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9188     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9189                              SrcVT.getVectorElementCount());
9190     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9191                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9192   }
9193 
9194   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9195   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9196   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9197   SDValue Select =
9198       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9199   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9200 }
9201 
expandABS(SDNode * N,SelectionDAG & DAG,bool IsNegative) const9202 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9203                                   bool IsNegative) const {
9204   SDLoc dl(N);
9205   EVT VT = N->getValueType(0);
9206   SDValue Op = N->getOperand(0);
9207 
9208   // abs(x) -> smax(x,sub(0,x))
9209   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9210       isOperationLegal(ISD::SMAX, VT)) {
9211     SDValue Zero = DAG.getConstant(0, dl, VT);
9212     Op = DAG.getFreeze(Op);
9213     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9214                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9215   }
9216 
9217   // abs(x) -> umin(x,sub(0,x))
9218   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9219       isOperationLegal(ISD::UMIN, VT)) {
9220     SDValue Zero = DAG.getConstant(0, dl, VT);
9221     Op = DAG.getFreeze(Op);
9222     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9223                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9224   }
9225 
9226   // 0 - abs(x) -> smin(x, sub(0,x))
9227   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9228       isOperationLegal(ISD::SMIN, VT)) {
9229     SDValue Zero = DAG.getConstant(0, dl, VT);
9230     Op = DAG.getFreeze(Op);
9231     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9232                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9233   }
9234 
9235   // Only expand vector types if we have the appropriate vector operations.
9236   if (VT.isVector() &&
9237       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9238        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9239        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9240        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9241     return SDValue();
9242 
9243   Op = DAG.getFreeze(Op);
9244   SDValue Shift = DAG.getNode(
9245       ISD::SRA, dl, VT, Op,
9246       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9247   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9248 
9249   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9250   if (!IsNegative)
9251     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9252 
9253   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9254   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9255 }
9256 
expandABD(SDNode * N,SelectionDAG & DAG) const9257 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9258   SDLoc dl(N);
9259   EVT VT = N->getValueType(0);
9260   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9261   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9262   bool IsSigned = N->getOpcode() == ISD::ABDS;
9263 
9264   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9265   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9266   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9267   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9268   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9269     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9270     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9271     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9272   }
9273 
9274   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9275   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9276     return DAG.getNode(ISD::OR, dl, VT,
9277                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9278                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9279 
9280   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9281   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9282   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9283 
9284   // Branchless expansion iff cmp result is allbits:
9285   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9286   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9287   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9288     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9289     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9290     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9291   }
9292 
9293   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9294   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9295   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9296                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9297 }
9298 
expandAVG(SDNode * N,SelectionDAG & DAG) const9299 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9300   SDLoc dl(N);
9301   EVT VT = N->getValueType(0);
9302   SDValue LHS = N->getOperand(0);
9303   SDValue RHS = N->getOperand(1);
9304 
9305   unsigned Opc = N->getOpcode();
9306   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9307   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9308   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9309   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9310   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9311   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9312   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9313           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9314          "Unknown AVG node");
9315 
9316   // If the operands are already extended, we can add+shift.
9317   bool IsExt =
9318       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9319        DAG.ComputeNumSignBits(RHS) >= 2) ||
9320       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9321        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9322   if (IsExt) {
9323     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9324     if (!IsFloor)
9325       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9326     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9327                        DAG.getShiftAmountConstant(1, VT, dl));
9328   }
9329 
9330   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9331   if (VT.isScalarInteger()) {
9332     unsigned BW = VT.getScalarSizeInBits();
9333     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9334     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9335       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9336       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9337       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9338       if (!IsFloor)
9339         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9340                           DAG.getConstant(1, dl, ExtVT));
9341       // Just use SRL as we will be truncating away the extended sign bits.
9342       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9343                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9344       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9345     }
9346   }
9347 
9348   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9349   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9350   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9351   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9352   LHS = DAG.getFreeze(LHS);
9353   RHS = DAG.getFreeze(RHS);
9354   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9355   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9356   SDValue Shift =
9357       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9358   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9359 }
9360 
expandBSWAP(SDNode * N,SelectionDAG & DAG) const9361 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9362   SDLoc dl(N);
9363   EVT VT = N->getValueType(0);
9364   SDValue Op = N->getOperand(0);
9365 
9366   if (!VT.isSimple())
9367     return SDValue();
9368 
9369   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9370   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9371   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9372   default:
9373     return SDValue();
9374   case MVT::i16:
9375     // Use a rotate by 8. This can be further expanded if necessary.
9376     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9377   case MVT::i32:
9378     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9379     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9380                        DAG.getConstant(0xFF00, dl, VT));
9381     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9382     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9383     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9384     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9385     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9386     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9387     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9388   case MVT::i64:
9389     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9390     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9391                        DAG.getConstant(255ULL<<8, dl, VT));
9392     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9393     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9394                        DAG.getConstant(255ULL<<16, dl, VT));
9395     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9396     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9397                        DAG.getConstant(255ULL<<24, dl, VT));
9398     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9399     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9400     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9401                        DAG.getConstant(255ULL<<24, dl, VT));
9402     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9403     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9404                        DAG.getConstant(255ULL<<16, dl, VT));
9405     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9406     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9407                        DAG.getConstant(255ULL<<8, dl, VT));
9408     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9409     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9410     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9411     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9412     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9413     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9414     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9415     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9416   }
9417 }
9418 
expandVPBSWAP(SDNode * N,SelectionDAG & DAG) const9419 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9420   SDLoc dl(N);
9421   EVT VT = N->getValueType(0);
9422   SDValue Op = N->getOperand(0);
9423   SDValue Mask = N->getOperand(1);
9424   SDValue EVL = N->getOperand(2);
9425 
9426   if (!VT.isSimple())
9427     return SDValue();
9428 
9429   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9430   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9431   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9432   default:
9433     return SDValue();
9434   case MVT::i16:
9435     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9436                        Mask, EVL);
9437     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9438                        Mask, EVL);
9439     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9440   case MVT::i32:
9441     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9442                        Mask, EVL);
9443     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9444                        Mask, EVL);
9445     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9446                        Mask, EVL);
9447     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9448                        Mask, EVL);
9449     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9450                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9451     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9452                        Mask, EVL);
9453     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9454     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9455     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9456   case MVT::i64:
9457     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9458                        Mask, EVL);
9459     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9460                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9461     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9462                        Mask, EVL);
9463     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9464                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9465     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9466                        Mask, EVL);
9467     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9468                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9469     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9470                        Mask, EVL);
9471     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9472                        Mask, EVL);
9473     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9474                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9475     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9476                        Mask, EVL);
9477     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9478                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9479     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9480                        Mask, EVL);
9481     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9482                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9483     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9484                        Mask, EVL);
9485     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9486     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9487     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9488     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9489     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9490     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9491     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9492   }
9493 }
9494 
expandBITREVERSE(SDNode * N,SelectionDAG & DAG) const9495 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9496   SDLoc dl(N);
9497   EVT VT = N->getValueType(0);
9498   SDValue Op = N->getOperand(0);
9499   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9500   unsigned Sz = VT.getScalarSizeInBits();
9501 
9502   SDValue Tmp, Tmp2, Tmp3;
9503 
9504   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9505   // and finally the i1 pairs.
9506   // TODO: We can easily support i4/i2 legal types if any target ever does.
9507   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9508     // Create the masks - repeating the pattern every byte.
9509     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9510     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9511     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9512 
9513     // BSWAP if the type is wider than a single byte.
9514     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9515 
9516     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9517     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9518     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9519     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9520     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9521     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9522 
9523     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9524     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9525     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9526     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9527     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9528     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9529 
9530     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9531     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9532     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9533     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9534     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9535     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9536     return Tmp;
9537   }
9538 
9539   Tmp = DAG.getConstant(0, dl, VT);
9540   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9541     if (I < J)
9542       Tmp2 =
9543           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9544     else
9545       Tmp2 =
9546           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9547 
9548     APInt Shift = APInt::getOneBitSet(Sz, J);
9549     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9550     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9551   }
9552 
9553   return Tmp;
9554 }
9555 
expandVPBITREVERSE(SDNode * N,SelectionDAG & DAG) const9556 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9557   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9558 
9559   SDLoc dl(N);
9560   EVT VT = N->getValueType(0);
9561   SDValue Op = N->getOperand(0);
9562   SDValue Mask = N->getOperand(1);
9563   SDValue EVL = N->getOperand(2);
9564   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9565   unsigned Sz = VT.getScalarSizeInBits();
9566 
9567   SDValue Tmp, Tmp2, Tmp3;
9568 
9569   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9570   // and finally the i1 pairs.
9571   // TODO: We can easily support i4/i2 legal types if any target ever does.
9572   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9573     // Create the masks - repeating the pattern every byte.
9574     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9575     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9576     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9577 
9578     // BSWAP if the type is wider than a single byte.
9579     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9580 
9581     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9582     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9583                        Mask, EVL);
9584     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9585                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9586     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9587                        Mask, EVL);
9588     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9589                        Mask, EVL);
9590     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9591 
9592     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9593     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9594                        Mask, EVL);
9595     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9596                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9597     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9598                        Mask, EVL);
9599     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9600                        Mask, EVL);
9601     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9602 
9603     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9604     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9605                        Mask, EVL);
9606     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9607                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9608     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9609                        Mask, EVL);
9610     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9611                        Mask, EVL);
9612     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9613     return Tmp;
9614   }
9615   return SDValue();
9616 }
9617 
9618 std::pair<SDValue, SDValue>
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const9619 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9620                                     SelectionDAG &DAG) const {
9621   SDLoc SL(LD);
9622   SDValue Chain = LD->getChain();
9623   SDValue BasePTR = LD->getBasePtr();
9624   EVT SrcVT = LD->getMemoryVT();
9625   EVT DstVT = LD->getValueType(0);
9626   ISD::LoadExtType ExtType = LD->getExtensionType();
9627 
9628   if (SrcVT.isScalableVector())
9629     report_fatal_error("Cannot scalarize scalable vector loads");
9630 
9631   unsigned NumElem = SrcVT.getVectorNumElements();
9632 
9633   EVT SrcEltVT = SrcVT.getScalarType();
9634   EVT DstEltVT = DstVT.getScalarType();
9635 
9636   // A vector must always be stored in memory as-is, i.e. without any padding
9637   // between the elements, since various code depend on it, e.g. in the
9638   // handling of a bitcast of a vector type to int, which may be done with a
9639   // vector store followed by an integer load. A vector that does not have
9640   // elements that are byte-sized must therefore be stored as an integer
9641   // built out of the extracted vector elements.
9642   if (!SrcEltVT.isByteSized()) {
9643     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9644     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9645 
9646     unsigned NumSrcBits = SrcVT.getSizeInBits();
9647     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9648 
9649     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9650     SDValue SrcEltBitMask = DAG.getConstant(
9651         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9652 
9653     // Load the whole vector and avoid masking off the top bits as it makes
9654     // the codegen worse.
9655     SDValue Load =
9656         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9657                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9658                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9659 
9660     SmallVector<SDValue, 8> Vals;
9661     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9662       unsigned ShiftIntoIdx =
9663           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9664       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9665           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9666       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9667       SDValue Elt =
9668           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9669       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9670 
9671       if (ExtType != ISD::NON_EXTLOAD) {
9672         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9673         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9674       }
9675 
9676       Vals.push_back(Scalar);
9677     }
9678 
9679     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9680     return std::make_pair(Value, Load.getValue(1));
9681   }
9682 
9683   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9684   assert(SrcEltVT.isByteSized());
9685 
9686   SmallVector<SDValue, 8> Vals;
9687   SmallVector<SDValue, 8> LoadChains;
9688 
9689   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9690     SDValue ScalarLoad =
9691         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9692                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9693                        SrcEltVT, LD->getOriginalAlign(),
9694                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9695 
9696     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9697 
9698     Vals.push_back(ScalarLoad.getValue(0));
9699     LoadChains.push_back(ScalarLoad.getValue(1));
9700   }
9701 
9702   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9703   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9704 
9705   return std::make_pair(Value, NewChain);
9706 }
9707 
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const9708 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
9709                                              SelectionDAG &DAG) const {
9710   SDLoc SL(ST);
9711 
9712   SDValue Chain = ST->getChain();
9713   SDValue BasePtr = ST->getBasePtr();
9714   SDValue Value = ST->getValue();
9715   EVT StVT = ST->getMemoryVT();
9716 
9717   if (StVT.isScalableVector())
9718     report_fatal_error("Cannot scalarize scalable vector stores");
9719 
9720   // The type of the data we want to save
9721   EVT RegVT = Value.getValueType();
9722   EVT RegSclVT = RegVT.getScalarType();
9723 
9724   // The type of data as saved in memory.
9725   EVT MemSclVT = StVT.getScalarType();
9726 
9727   unsigned NumElem = StVT.getVectorNumElements();
9728 
9729   // A vector must always be stored in memory as-is, i.e. without any padding
9730   // between the elements, since various code depend on it, e.g. in the
9731   // handling of a bitcast of a vector type to int, which may be done with a
9732   // vector store followed by an integer load. A vector that does not have
9733   // elements that are byte-sized must therefore be stored as an integer
9734   // built out of the extracted vector elements.
9735   if (!MemSclVT.isByteSized()) {
9736     unsigned NumBits = StVT.getSizeInBits();
9737     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
9738 
9739     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
9740 
9741     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9742       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9743                                 DAG.getVectorIdxConstant(Idx, SL));
9744       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
9745       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
9746       unsigned ShiftIntoIdx =
9747           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9748       SDValue ShiftAmount =
9749           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
9750       SDValue ShiftedElt =
9751           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
9752       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
9753     }
9754 
9755     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
9756                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9757                         ST->getAAInfo());
9758   }
9759 
9760   // Store Stride in bytes
9761   unsigned Stride = MemSclVT.getSizeInBits() / 8;
9762   assert(Stride && "Zero stride!");
9763   // Extract each of the elements from the original vector and save them into
9764   // memory individually.
9765   SmallVector<SDValue, 8> Stores;
9766   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9767     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
9768                               DAG.getVectorIdxConstant(Idx, SL));
9769 
9770     SDValue Ptr =
9771         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
9772 
9773     // This scalar TruncStore may be illegal, but we legalize it later.
9774     SDValue Store = DAG.getTruncStore(
9775         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
9776         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
9777         ST->getAAInfo());
9778 
9779     Stores.push_back(Store);
9780   }
9781 
9782   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
9783 }
9784 
9785 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const9786 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
9787   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
9788          "unaligned indexed loads not implemented!");
9789   SDValue Chain = LD->getChain();
9790   SDValue Ptr = LD->getBasePtr();
9791   EVT VT = LD->getValueType(0);
9792   EVT LoadedVT = LD->getMemoryVT();
9793   SDLoc dl(LD);
9794   auto &MF = DAG.getMachineFunction();
9795 
9796   if (VT.isFloatingPoint() || VT.isVector()) {
9797     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
9798     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
9799       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
9800           LoadedVT.isVector()) {
9801         // Scalarize the load and let the individual components be handled.
9802         return scalarizeVectorLoad(LD, DAG);
9803       }
9804 
9805       // Expand to a (misaligned) integer load of the same size,
9806       // then bitconvert to floating point or vector.
9807       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
9808                                     LD->getMemOperand());
9809       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
9810       if (LoadedVT != VT)
9811         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
9812                              ISD::ANY_EXTEND, dl, VT, Result);
9813 
9814       return std::make_pair(Result, newLoad.getValue(1));
9815     }
9816 
9817     // Copy the value to a (aligned) stack slot using (unaligned) integer
9818     // loads and stores, then do a (aligned) load from the stack slot.
9819     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
9820     unsigned LoadedBytes = LoadedVT.getStoreSize();
9821     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9822     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
9823 
9824     // Make sure the stack slot is also aligned for the register type.
9825     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
9826     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
9827     SmallVector<SDValue, 8> Stores;
9828     SDValue StackPtr = StackBase;
9829     unsigned Offset = 0;
9830 
9831     EVT PtrVT = Ptr.getValueType();
9832     EVT StackPtrVT = StackPtr.getValueType();
9833 
9834     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9835     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9836 
9837     // Do all but one copies using the full register width.
9838     for (unsigned i = 1; i < NumRegs; i++) {
9839       // Load one integer register's worth from the original location.
9840       SDValue Load = DAG.getLoad(
9841           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
9842           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9843           LD->getAAInfo());
9844       // Follow the load with a store to the stack slot.  Remember the store.
9845       Stores.push_back(DAG.getStore(
9846           Load.getValue(1), dl, Load, StackPtr,
9847           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
9848       // Increment the pointers.
9849       Offset += RegBytes;
9850 
9851       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
9852       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
9853     }
9854 
9855     // The last copy may be partial.  Do an extending load.
9856     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
9857                                   8 * (LoadedBytes - Offset));
9858     SDValue Load =
9859         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
9860                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
9861                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
9862                        LD->getAAInfo());
9863     // Follow the load with a store to the stack slot.  Remember the store.
9864     // On big-endian machines this requires a truncating store to ensure
9865     // that the bits end up in the right place.
9866     Stores.push_back(DAG.getTruncStore(
9867         Load.getValue(1), dl, Load, StackPtr,
9868         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
9869 
9870     // The order of the stores doesn't matter - say it with a TokenFactor.
9871     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9872 
9873     // Finally, perform the original load only redirected to the stack slot.
9874     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
9875                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
9876                           LoadedVT);
9877 
9878     // Callers expect a MERGE_VALUES node.
9879     return std::make_pair(Load, TF);
9880   }
9881 
9882   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
9883          "Unaligned load of unsupported type.");
9884 
9885   // Compute the new VT that is half the size of the old one.  This is an
9886   // integer MVT.
9887   unsigned NumBits = LoadedVT.getSizeInBits();
9888   EVT NewLoadedVT;
9889   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
9890   NumBits >>= 1;
9891 
9892   Align Alignment = LD->getOriginalAlign();
9893   unsigned IncrementSize = NumBits / 8;
9894   ISD::LoadExtType HiExtType = LD->getExtensionType();
9895 
9896   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
9897   if (HiExtType == ISD::NON_EXTLOAD)
9898     HiExtType = ISD::ZEXTLOAD;
9899 
9900   // Load the value in two parts
9901   SDValue Lo, Hi;
9902   if (DAG.getDataLayout().isLittleEndian()) {
9903     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9904                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9905                         LD->getAAInfo());
9906 
9907     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
9908     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
9909                         LD->getPointerInfo().getWithOffset(IncrementSize),
9910                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9911                         LD->getAAInfo());
9912   } else {
9913     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
9914                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9915                         LD->getAAInfo());
9916 
9917     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
9918     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
9919                         LD->getPointerInfo().getWithOffset(IncrementSize),
9920                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
9921                         LD->getAAInfo());
9922   }
9923 
9924   // aggregate the two parts
9925   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
9926   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
9927   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
9928 
9929   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
9930                              Hi.getValue(1));
9931 
9932   return std::make_pair(Result, TF);
9933 }
9934 
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const9935 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
9936                                              SelectionDAG &DAG) const {
9937   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
9938          "unaligned indexed stores not implemented!");
9939   SDValue Chain = ST->getChain();
9940   SDValue Ptr = ST->getBasePtr();
9941   SDValue Val = ST->getValue();
9942   EVT VT = Val.getValueType();
9943   Align Alignment = ST->getOriginalAlign();
9944   auto &MF = DAG.getMachineFunction();
9945   EVT StoreMemVT = ST->getMemoryVT();
9946 
9947   SDLoc dl(ST);
9948   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
9949     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
9950     if (isTypeLegal(intVT)) {
9951       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
9952           StoreMemVT.isVector()) {
9953         // Scalarize the store and let the individual components be handled.
9954         SDValue Result = scalarizeVectorStore(ST, DAG);
9955         return Result;
9956       }
9957       // Expand to a bitconvert of the value to the integer type of the
9958       // same size, then a (misaligned) int store.
9959       // FIXME: Does not handle truncating floating point stores!
9960       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
9961       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
9962                             Alignment, ST->getMemOperand()->getFlags());
9963       return Result;
9964     }
9965     // Do a (aligned) store to a stack slot, then copy from the stack slot
9966     // to the final destination using (unaligned) integer loads and stores.
9967     MVT RegVT = getRegisterType(
9968         *DAG.getContext(),
9969         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
9970     EVT PtrVT = Ptr.getValueType();
9971     unsigned StoredBytes = StoreMemVT.getStoreSize();
9972     unsigned RegBytes = RegVT.getSizeInBits() / 8;
9973     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
9974 
9975     // Make sure the stack slot is also aligned for the register type.
9976     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
9977     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9978 
9979     // Perform the original store, only redirected to the stack slot.
9980     SDValue Store = DAG.getTruncStore(
9981         Chain, dl, Val, StackPtr,
9982         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
9983 
9984     EVT StackPtrVT = StackPtr.getValueType();
9985 
9986     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
9987     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
9988     SmallVector<SDValue, 8> Stores;
9989     unsigned Offset = 0;
9990 
9991     // Do all but one copies using the full register width.
9992     for (unsigned i = 1; i < NumRegs; i++) {
9993       // Load one integer register's worth from the stack slot.
9994       SDValue Load = DAG.getLoad(
9995           RegVT, dl, Store, StackPtr,
9996           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
9997       // Store it to the final location.  Remember the store.
9998       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
9999                                     ST->getPointerInfo().getWithOffset(Offset),
10000                                     ST->getOriginalAlign(),
10001                                     ST->getMemOperand()->getFlags()));
10002       // Increment the pointers.
10003       Offset += RegBytes;
10004       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10005       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10006     }
10007 
10008     // The last store may be partial.  Do a truncating store.  On big-endian
10009     // machines this requires an extending load from the stack slot to ensure
10010     // that the bits are in the right place.
10011     EVT LoadMemVT =
10012         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10013 
10014     // Load from the stack slot.
10015     SDValue Load = DAG.getExtLoad(
10016         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10017         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10018 
10019     Stores.push_back(
10020         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10021                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10022                           ST->getOriginalAlign(),
10023                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10024     // The order of the stores doesn't matter - say it with a TokenFactor.
10025     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10026     return Result;
10027   }
10028 
10029   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10030          "Unaligned store of unknown type.");
10031   // Get the half-size VT
10032   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10033   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10034   unsigned IncrementSize = NumBits / 8;
10035 
10036   // Divide the stored value in two parts.
10037   SDValue ShiftAmount =
10038       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10039   SDValue Lo = Val;
10040   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10041   // fold and not use the upper bits. A smaller constant may be easier to
10042   // materialize.
10043   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10044     Lo = DAG.getNode(
10045         ISD::AND, dl, VT, Lo,
10046         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10047                         VT));
10048   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10049 
10050   // Store the two parts
10051   SDValue Store1, Store2;
10052   Store1 = DAG.getTruncStore(Chain, dl,
10053                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10054                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10055                              ST->getMemOperand()->getFlags());
10056 
10057   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10058   Store2 = DAG.getTruncStore(
10059       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10060       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10061       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10062 
10063   SDValue Result =
10064       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10065   return Result;
10066 }
10067 
10068 SDValue
IncrementMemoryAddress(SDValue Addr,SDValue Mask,const SDLoc & DL,EVT DataVT,SelectionDAG & DAG,bool IsCompressedMemory) const10069 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10070                                        const SDLoc &DL, EVT DataVT,
10071                                        SelectionDAG &DAG,
10072                                        bool IsCompressedMemory) const {
10073   SDValue Increment;
10074   EVT AddrVT = Addr.getValueType();
10075   EVT MaskVT = Mask.getValueType();
10076   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10077          "Incompatible types of Data and Mask");
10078   if (IsCompressedMemory) {
10079     if (DataVT.isScalableVector())
10080       report_fatal_error(
10081           "Cannot currently handle compressed memory with scalable vectors");
10082     // Incrementing the pointer according to number of '1's in the mask.
10083     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10084     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10085     if (MaskIntVT.getSizeInBits() < 32) {
10086       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10087       MaskIntVT = MVT::i32;
10088     }
10089 
10090     // Count '1's with POPCNT.
10091     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10092     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10093     // Scale is an element size in bytes.
10094     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10095                                     AddrVT);
10096     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10097   } else if (DataVT.isScalableVector()) {
10098     Increment = DAG.getVScale(DL, AddrVT,
10099                               APInt(AddrVT.getFixedSizeInBits(),
10100                                     DataVT.getStoreSize().getKnownMinValue()));
10101   } else
10102     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10103 
10104   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10105 }
10106 
clampDynamicVectorIndex(SelectionDAG & DAG,SDValue Idx,EVT VecVT,const SDLoc & dl,ElementCount SubEC)10107 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10108                                        EVT VecVT, const SDLoc &dl,
10109                                        ElementCount SubEC) {
10110   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10111          "Cannot index a scalable vector within a fixed-width vector");
10112 
10113   unsigned NElts = VecVT.getVectorMinNumElements();
10114   unsigned NumSubElts = SubEC.getKnownMinValue();
10115   EVT IdxVT = Idx.getValueType();
10116 
10117   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10118     // If this is a constant index and we know the value plus the number of the
10119     // elements in the subvector minus one is less than the minimum number of
10120     // elements then it's safe to return Idx.
10121     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10122       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10123         return Idx;
10124     SDValue VS =
10125         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10126     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10127     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10128                               DAG.getConstant(NumSubElts, dl, IdxVT));
10129     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10130   }
10131   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10132     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10133     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10134                        DAG.getConstant(Imm, dl, IdxVT));
10135   }
10136   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10137   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10138                      DAG.getConstant(MaxIndex, dl, IdxVT));
10139 }
10140 
getVectorElementPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,SDValue Index) const10141 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10142                                                 SDValue VecPtr, EVT VecVT,
10143                                                 SDValue Index) const {
10144   return getVectorSubVecPointer(
10145       DAG, VecPtr, VecVT,
10146       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10147       Index);
10148 }
10149 
getVectorSubVecPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,EVT SubVecVT,SDValue Index) const10150 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10151                                                SDValue VecPtr, EVT VecVT,
10152                                                EVT SubVecVT,
10153                                                SDValue Index) const {
10154   SDLoc dl(Index);
10155   // Make sure the index type is big enough to compute in.
10156   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10157 
10158   EVT EltVT = VecVT.getVectorElementType();
10159 
10160   // Calculate the element offset and add it to the pointer.
10161   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10162   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10163          "Converting bits to bytes lost precision");
10164   assert(SubVecVT.getVectorElementType() == EltVT &&
10165          "Sub-vector must be a vector with matching element type");
10166   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10167                                   SubVecVT.getVectorElementCount());
10168 
10169   EVT IdxVT = Index.getValueType();
10170   if (SubVecVT.isScalableVector())
10171     Index =
10172         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10173                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10174 
10175   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10176                       DAG.getConstant(EltSize, dl, IdxVT));
10177   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10178 }
10179 
10180 //===----------------------------------------------------------------------===//
10181 // Implementation of Emulated TLS Model
10182 //===----------------------------------------------------------------------===//
10183 
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const10184 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10185                                                 SelectionDAG &DAG) const {
10186   // Access to address of TLS varialbe xyz is lowered to a function call:
10187   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10188   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10189   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10190   SDLoc dl(GA);
10191 
10192   ArgListTy Args;
10193   ArgListEntry Entry;
10194   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
10195   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
10196   StringRef EmuTlsVarName(NameString);
10197   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
10198   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10199   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10200   Entry.Ty = VoidPtrType;
10201   Args.push_back(Entry);
10202 
10203   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10204 
10205   TargetLowering::CallLoweringInfo CLI(DAG);
10206   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10207   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10208   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10209 
10210   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10211   // At last for X86 targets, maybe good for other targets too?
10212   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10213   MFI.setAdjustsStack(true); // Is this only for X86 target?
10214   MFI.setHasCalls(true);
10215 
10216   assert((GA->getOffset() == 0) &&
10217          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10218   return CallResult.first;
10219 }
10220 
lowerCmpEqZeroToCtlzSrl(SDValue Op,SelectionDAG & DAG) const10221 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10222                                                 SelectionDAG &DAG) const {
10223   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10224   if (!isCtlzFast())
10225     return SDValue();
10226   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10227   SDLoc dl(Op);
10228   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10229     EVT VT = Op.getOperand(0).getValueType();
10230     SDValue Zext = Op.getOperand(0);
10231     if (VT.bitsLT(MVT::i32)) {
10232       VT = MVT::i32;
10233       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10234     }
10235     unsigned Log2b = Log2_32(VT.getSizeInBits());
10236     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10237     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10238                               DAG.getConstant(Log2b, dl, MVT::i32));
10239     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10240   }
10241   return SDValue();
10242 }
10243 
expandIntMINMAX(SDNode * Node,SelectionDAG & DAG) const10244 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10245   SDValue Op0 = Node->getOperand(0);
10246   SDValue Op1 = Node->getOperand(1);
10247   EVT VT = Op0.getValueType();
10248   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10249   unsigned Opcode = Node->getOpcode();
10250   SDLoc DL(Node);
10251 
10252   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10253   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10254       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10255     Op0 = DAG.getFreeze(Op0);
10256     SDValue Zero = DAG.getConstant(0, DL, VT);
10257     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10258                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10259   }
10260 
10261   // umin(x,y) -> sub(x,usubsat(x,y))
10262   // TODO: Missing freeze(Op0)?
10263   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10264       isOperationLegal(ISD::USUBSAT, VT)) {
10265     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10266                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10267   }
10268 
10269   // umax(x,y) -> add(x,usubsat(y,x))
10270   // TODO: Missing freeze(Op0)?
10271   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10272       isOperationLegal(ISD::USUBSAT, VT)) {
10273     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10274                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10275   }
10276 
10277   // FIXME: Should really try to split the vector in case it's legal on a
10278   // subvector.
10279   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10280     return DAG.UnrollVectorOp(Node);
10281 
10282   // Attempt to find an existing SETCC node that we can reuse.
10283   // TODO: Do we need a generic doesSETCCNodeExist?
10284   // TODO: Missing freeze(Op0)/freeze(Op1)?
10285   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10286                          ISD::CondCode PrefCommuteCC,
10287                          ISD::CondCode AltCommuteCC) {
10288     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10289     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10290       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10291                             {Op0, Op1, DAG.getCondCode(CC)})) {
10292         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10293         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10294       }
10295     }
10296     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10297       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10298                             {Op0, Op1, DAG.getCondCode(CC)})) {
10299         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10300         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10301       }
10302     }
10303     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10304     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10305   };
10306 
10307   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10308   //                      -> Y = (A < B) ? B : A
10309   //                      -> Y = (A >= B) ? A : B
10310   //                      -> Y = (A <= B) ? B : A
10311   switch (Opcode) {
10312   case ISD::SMAX:
10313     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10314   case ISD::SMIN:
10315     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10316   case ISD::UMAX:
10317     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10318   case ISD::UMIN:
10319     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10320   }
10321 
10322   llvm_unreachable("How did we get here?");
10323 }
10324 
expandAddSubSat(SDNode * Node,SelectionDAG & DAG) const10325 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10326   unsigned Opcode = Node->getOpcode();
10327   SDValue LHS = Node->getOperand(0);
10328   SDValue RHS = Node->getOperand(1);
10329   EVT VT = LHS.getValueType();
10330   SDLoc dl(Node);
10331 
10332   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10333   assert(VT.isInteger() && "Expected operands to be integers");
10334 
10335   // usub.sat(a, b) -> umax(a, b) - b
10336   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10337     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10338     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10339   }
10340 
10341   // uadd.sat(a, b) -> umin(a, ~b) + b
10342   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10343     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10344     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10345     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10346   }
10347 
10348   unsigned OverflowOp;
10349   switch (Opcode) {
10350   case ISD::SADDSAT:
10351     OverflowOp = ISD::SADDO;
10352     break;
10353   case ISD::UADDSAT:
10354     OverflowOp = ISD::UADDO;
10355     break;
10356   case ISD::SSUBSAT:
10357     OverflowOp = ISD::SSUBO;
10358     break;
10359   case ISD::USUBSAT:
10360     OverflowOp = ISD::USUBO;
10361     break;
10362   default:
10363     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10364                      "addition or subtraction node.");
10365   }
10366 
10367   // FIXME: Should really try to split the vector in case it's legal on a
10368   // subvector.
10369   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10370     return DAG.UnrollVectorOp(Node);
10371 
10372   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10373   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10374   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10375   SDValue SumDiff = Result.getValue(0);
10376   SDValue Overflow = Result.getValue(1);
10377   SDValue Zero = DAG.getConstant(0, dl, VT);
10378   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10379 
10380   if (Opcode == ISD::UADDSAT) {
10381     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10382       // (LHS + RHS) | OverflowMask
10383       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10384       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10385     }
10386     // Overflow ? 0xffff.... : (LHS + RHS)
10387     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10388   }
10389 
10390   if (Opcode == ISD::USUBSAT) {
10391     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10392       // (LHS - RHS) & ~OverflowMask
10393       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10394       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10395       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10396     }
10397     // Overflow ? 0 : (LHS - RHS)
10398     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10399   }
10400 
10401   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10402     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10403     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10404 
10405     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10406     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10407 
10408     // If either of the operand signs are known, then they are guaranteed to
10409     // only saturate in one direction. If non-negative they will saturate
10410     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10411     //
10412     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10413     // sign of 'y' has to be flipped.
10414 
10415     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10416     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10417                                                    : KnownRHS.isNegative();
10418     if (LHSIsNonNegative || RHSIsNonNegative) {
10419       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10420       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10421     }
10422 
10423     bool LHSIsNegative = KnownLHS.isNegative();
10424     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10425                                                 : KnownRHS.isNonNegative();
10426     if (LHSIsNegative || RHSIsNegative) {
10427       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10428       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10429     }
10430   }
10431 
10432   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10433   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10434   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10435   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10436                               DAG.getConstant(BitWidth - 1, dl, VT));
10437   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10438   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10439 }
10440 
expandCMP(SDNode * Node,SelectionDAG & DAG) const10441 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10442   unsigned Opcode = Node->getOpcode();
10443   SDValue LHS = Node->getOperand(0);
10444   SDValue RHS = Node->getOperand(1);
10445   EVT VT = LHS.getValueType();
10446   EVT ResVT = Node->getValueType(0);
10447   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10448   SDLoc dl(Node);
10449 
10450   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10451   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10452   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10453   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10454 
10455   // We can't perform arithmetic on i1 values. Extending them would
10456   // probably result in worse codegen, so let's just use two selects instead.
10457   // Some targets are also just better off using selects rather than subtraction
10458   // because one of the conditions can be merged with one of the selects.
10459   // And finally, if we don't know the contents of high bits of a boolean value
10460   // we can't perform any arithmetic either.
10461   if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 ||
10462       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10463     SDValue SelectZeroOrOne =
10464         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10465                       DAG.getConstant(0, dl, ResVT));
10466     return DAG.getSelect(dl, ResVT, IsLT, DAG.getConstant(-1, dl, ResVT),
10467                          SelectZeroOrOne);
10468   }
10469 
10470   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10471     std::swap(IsGT, IsLT);
10472   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10473                             ResVT);
10474 }
10475 
expandShlSat(SDNode * Node,SelectionDAG & DAG) const10476 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10477   unsigned Opcode = Node->getOpcode();
10478   bool IsSigned = Opcode == ISD::SSHLSAT;
10479   SDValue LHS = Node->getOperand(0);
10480   SDValue RHS = Node->getOperand(1);
10481   EVT VT = LHS.getValueType();
10482   SDLoc dl(Node);
10483 
10484   assert((Node->getOpcode() == ISD::SSHLSAT ||
10485           Node->getOpcode() == ISD::USHLSAT) &&
10486           "Expected a SHLSAT opcode");
10487   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10488   assert(VT.isInteger() && "Expected operands to be integers");
10489 
10490   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10491     return DAG.UnrollVectorOp(Node);
10492 
10493   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10494 
10495   unsigned BW = VT.getScalarSizeInBits();
10496   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10497   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10498   SDValue Orig =
10499       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10500 
10501   SDValue SatVal;
10502   if (IsSigned) {
10503     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10504     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10505     SDValue Cond =
10506         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10507     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10508   } else {
10509     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10510   }
10511   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10512   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10513 }
10514 
forceExpandWideMUL(SelectionDAG & DAG,const SDLoc & dl,bool Signed,EVT WideVT,const SDValue LL,const SDValue LH,const SDValue RL,const SDValue RH,SDValue & Lo,SDValue & Hi) const10515 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10516                                         bool Signed, EVT WideVT,
10517                                         const SDValue LL, const SDValue LH,
10518                                         const SDValue RL, const SDValue RH,
10519                                         SDValue &Lo, SDValue &Hi) const {
10520   // We can fall back to a libcall with an illegal type for the MUL if we
10521   // have a libcall big enough.
10522   // Also, we can fall back to a division in some cases, but that's a big
10523   // performance hit in the general case.
10524   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10525   if (WideVT == MVT::i16)
10526     LC = RTLIB::MUL_I16;
10527   else if (WideVT == MVT::i32)
10528     LC = RTLIB::MUL_I32;
10529   else if (WideVT == MVT::i64)
10530     LC = RTLIB::MUL_I64;
10531   else if (WideVT == MVT::i128)
10532     LC = RTLIB::MUL_I128;
10533 
10534   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10535     // We'll expand the multiplication by brute force because we have no other
10536     // options. This is a trivially-generalized version of the code from
10537     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10538     // 4.3.1).
10539     EVT VT = LL.getValueType();
10540     unsigned Bits = VT.getSizeInBits();
10541     unsigned HalfBits = Bits >> 1;
10542     SDValue Mask =
10543         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10544     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10545     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10546 
10547     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10548     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10549 
10550     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10551     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10552     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10553     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10554 
10555     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10556                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10557     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10558     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10559 
10560     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10561                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10562     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10563 
10564     SDValue W =
10565         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10566                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10567     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10568                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10569 
10570     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10571                      DAG.getNode(ISD::ADD, dl, VT,
10572                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10573                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10574   } else {
10575     // Attempt a libcall.
10576     SDValue Ret;
10577     TargetLowering::MakeLibCallOptions CallOptions;
10578     CallOptions.setSExt(Signed);
10579     CallOptions.setIsPostTypeLegalization(true);
10580     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10581       // Halves of WideVT are packed into registers in different order
10582       // depending on platform endianness. This is usually handled by
10583       // the C calling convention, but we can't defer to it in
10584       // the legalizer.
10585       SDValue Args[] = {LL, LH, RL, RH};
10586       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10587     } else {
10588       SDValue Args[] = {LH, LL, RH, RL};
10589       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10590     }
10591     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10592            "Ret value is a collection of constituent nodes holding result.");
10593     if (DAG.getDataLayout().isLittleEndian()) {
10594       // Same as above.
10595       Lo = Ret.getOperand(0);
10596       Hi = Ret.getOperand(1);
10597     } else {
10598       Lo = Ret.getOperand(1);
10599       Hi = Ret.getOperand(0);
10600     }
10601   }
10602 }
10603 
forceExpandWideMUL(SelectionDAG & DAG,const SDLoc & dl,bool Signed,const SDValue LHS,const SDValue RHS,SDValue & Lo,SDValue & Hi) const10604 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10605                                         bool Signed, const SDValue LHS,
10606                                         const SDValue RHS, SDValue &Lo,
10607                                         SDValue &Hi) const {
10608   EVT VT = LHS.getValueType();
10609   assert(RHS.getValueType() == VT && "Mismatching operand types");
10610 
10611   SDValue HiLHS;
10612   SDValue HiRHS;
10613   if (Signed) {
10614     // The high part is obtained by SRA'ing all but one of the bits of low
10615     // part.
10616     unsigned LoSize = VT.getFixedSizeInBits();
10617     HiLHS = DAG.getNode(
10618         ISD::SRA, dl, VT, LHS,
10619         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10620     HiRHS = DAG.getNode(
10621         ISD::SRA, dl, VT, RHS,
10622         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10623   } else {
10624     HiLHS = DAG.getConstant(0, dl, VT);
10625     HiRHS = DAG.getConstant(0, dl, VT);
10626   }
10627   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10628   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10629 }
10630 
10631 SDValue
expandFixedPointMul(SDNode * Node,SelectionDAG & DAG) const10632 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10633   assert((Node->getOpcode() == ISD::SMULFIX ||
10634           Node->getOpcode() == ISD::UMULFIX ||
10635           Node->getOpcode() == ISD::SMULFIXSAT ||
10636           Node->getOpcode() == ISD::UMULFIXSAT) &&
10637          "Expected a fixed point multiplication opcode");
10638 
10639   SDLoc dl(Node);
10640   SDValue LHS = Node->getOperand(0);
10641   SDValue RHS = Node->getOperand(1);
10642   EVT VT = LHS.getValueType();
10643   unsigned Scale = Node->getConstantOperandVal(2);
10644   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10645                      Node->getOpcode() == ISD::UMULFIXSAT);
10646   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10647                  Node->getOpcode() == ISD::SMULFIXSAT);
10648   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10649   unsigned VTSize = VT.getScalarSizeInBits();
10650 
10651   if (!Scale) {
10652     // [us]mul.fix(a, b, 0) -> mul(a, b)
10653     if (!Saturating) {
10654       if (isOperationLegalOrCustom(ISD::MUL, VT))
10655         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10656     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10657       SDValue Result =
10658           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10659       SDValue Product = Result.getValue(0);
10660       SDValue Overflow = Result.getValue(1);
10661       SDValue Zero = DAG.getConstant(0, dl, VT);
10662 
10663       APInt MinVal = APInt::getSignedMinValue(VTSize);
10664       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10665       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10666       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10667       // Xor the inputs, if resulting sign bit is 0 the product will be
10668       // positive, else negative.
10669       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10670       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10671       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10672       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10673     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10674       SDValue Result =
10675           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10676       SDValue Product = Result.getValue(0);
10677       SDValue Overflow = Result.getValue(1);
10678 
10679       APInt MaxVal = APInt::getMaxValue(VTSize);
10680       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10681       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10682     }
10683   }
10684 
10685   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10686          "Expected scale to be less than the number of bits if signed or at "
10687          "most the number of bits if unsigned.");
10688   assert(LHS.getValueType() == RHS.getValueType() &&
10689          "Expected both operands to be the same type");
10690 
10691   // Get the upper and lower bits of the result.
10692   SDValue Lo, Hi;
10693   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10694   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10695   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10696   if (isOperationLegalOrCustom(LoHiOp, VT)) {
10697     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
10698     Lo = Result.getValue(0);
10699     Hi = Result.getValue(1);
10700   } else if (isOperationLegalOrCustom(HiOp, VT)) {
10701     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10702     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
10703   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
10704     // Try for a multiplication using a wider type.
10705     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10706     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
10707     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
10708     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
10709     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
10710     SDValue Shifted =
10711         DAG.getNode(ISD::SRA, dl, WideVT, Res,
10712                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
10713     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
10714   } else if (VT.isVector()) {
10715     return SDValue();
10716   } else {
10717     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
10718   }
10719 
10720   if (Scale == VTSize)
10721     // Result is just the top half since we'd be shifting by the width of the
10722     // operand. Overflow impossible so this works for both UMULFIX and
10723     // UMULFIXSAT.
10724     return Hi;
10725 
10726   // The result will need to be shifted right by the scale since both operands
10727   // are scaled. The result is given to us in 2 halves, so we only want part of
10728   // both in the result.
10729   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
10730                                DAG.getShiftAmountConstant(Scale, VT, dl));
10731   if (!Saturating)
10732     return Result;
10733 
10734   if (!Signed) {
10735     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
10736     // widened multiplication) aren't all zeroes.
10737 
10738     // Saturate to max if ((Hi >> Scale) != 0),
10739     // which is the same as if (Hi > ((1 << Scale) - 1))
10740     APInt MaxVal = APInt::getMaxValue(VTSize);
10741     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
10742                                       dl, VT);
10743     Result = DAG.getSelectCC(dl, Hi, LowMask,
10744                              DAG.getConstant(MaxVal, dl, VT), Result,
10745                              ISD::SETUGT);
10746 
10747     return Result;
10748   }
10749 
10750   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
10751   // widened multiplication) aren't all ones or all zeroes.
10752 
10753   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
10754   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
10755 
10756   if (Scale == 0) {
10757     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
10758                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
10759     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
10760     // Saturated to SatMin if wide product is negative, and SatMax if wide
10761     // product is positive ...
10762     SDValue Zero = DAG.getConstant(0, dl, VT);
10763     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
10764                                                ISD::SETLT);
10765     // ... but only if we overflowed.
10766     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
10767   }
10768 
10769   //  We handled Scale==0 above so all the bits to examine is in Hi.
10770 
10771   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
10772   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
10773   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
10774                                     dl, VT);
10775   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
10776   // Saturate to min if (Hi >> (Scale - 1)) < -1),
10777   // which is the same as if (HI < (-1 << (Scale - 1))
10778   SDValue HighMask =
10779       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
10780                       dl, VT);
10781   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
10782   return Result;
10783 }
10784 
10785 SDValue
expandFixedPointDiv(unsigned Opcode,const SDLoc & dl,SDValue LHS,SDValue RHS,unsigned Scale,SelectionDAG & DAG) const10786 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
10787                                     SDValue LHS, SDValue RHS,
10788                                     unsigned Scale, SelectionDAG &DAG) const {
10789   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
10790           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
10791          "Expected a fixed point division opcode");
10792 
10793   EVT VT = LHS.getValueType();
10794   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
10795   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
10796   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10797 
10798   // If there is enough room in the type to upscale the LHS or downscale the
10799   // RHS before the division, we can perform it in this type without having to
10800   // resize. For signed operations, the LHS headroom is the number of
10801   // redundant sign bits, and for unsigned ones it is the number of zeroes.
10802   // The headroom for the RHS is the number of trailing zeroes.
10803   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
10804                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
10805   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
10806 
10807   // For signed saturating operations, we need to be able to detect true integer
10808   // division overflow; that is, when you have MIN / -EPS. However, this
10809   // is undefined behavior and if we emit divisions that could take such
10810   // values it may cause undesired behavior (arithmetic exceptions on x86, for
10811   // example).
10812   // Avoid this by requiring an extra bit so that we never get this case.
10813   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
10814   // signed saturating division, we need to emit a whopping 32-bit division.
10815   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
10816     return SDValue();
10817 
10818   unsigned LHSShift = std::min(LHSLead, Scale);
10819   unsigned RHSShift = Scale - LHSShift;
10820 
10821   // At this point, we know that if we shift the LHS up by LHSShift and the
10822   // RHS down by RHSShift, we can emit a regular division with a final scaling
10823   // factor of Scale.
10824 
10825   if (LHSShift)
10826     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
10827                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
10828   if (RHSShift)
10829     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
10830                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
10831 
10832   SDValue Quot;
10833   if (Signed) {
10834     // For signed operations, if the resulting quotient is negative and the
10835     // remainder is nonzero, subtract 1 from the quotient to round towards
10836     // negative infinity.
10837     SDValue Rem;
10838     // FIXME: Ideally we would always produce an SDIVREM here, but if the
10839     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
10840     // we couldn't just form a libcall, but the type legalizer doesn't do it.
10841     if (isTypeLegal(VT) &&
10842         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
10843       Quot = DAG.getNode(ISD::SDIVREM, dl,
10844                          DAG.getVTList(VT, VT),
10845                          LHS, RHS);
10846       Rem = Quot.getValue(1);
10847       Quot = Quot.getValue(0);
10848     } else {
10849       Quot = DAG.getNode(ISD::SDIV, dl, VT,
10850                          LHS, RHS);
10851       Rem = DAG.getNode(ISD::SREM, dl, VT,
10852                         LHS, RHS);
10853     }
10854     SDValue Zero = DAG.getConstant(0, dl, VT);
10855     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
10856     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
10857     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
10858     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
10859     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
10860                                DAG.getConstant(1, dl, VT));
10861     Quot = DAG.getSelect(dl, VT,
10862                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
10863                          Sub1, Quot);
10864   } else
10865     Quot = DAG.getNode(ISD::UDIV, dl, VT,
10866                        LHS, RHS);
10867 
10868   return Quot;
10869 }
10870 
expandUADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10871 void TargetLowering::expandUADDSUBO(
10872     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10873   SDLoc dl(Node);
10874   SDValue LHS = Node->getOperand(0);
10875   SDValue RHS = Node->getOperand(1);
10876   bool IsAdd = Node->getOpcode() == ISD::UADDO;
10877 
10878   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
10879   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
10880   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
10881     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
10882     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
10883                                     { LHS, RHS, CarryIn });
10884     Result = SDValue(NodeCarry.getNode(), 0);
10885     Overflow = SDValue(NodeCarry.getNode(), 1);
10886     return;
10887   }
10888 
10889   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10890                             LHS.getValueType(), LHS, RHS);
10891 
10892   EVT ResultType = Node->getValueType(1);
10893   EVT SetCCType = getSetCCResultType(
10894       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10895   SDValue SetCC;
10896   if (IsAdd && isOneConstant(RHS)) {
10897     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
10898     // the live range of X. We assume comparing with 0 is cheap.
10899     // The general case (X + C) < C is not necessarily beneficial. Although we
10900     // reduce the live range of X, we may introduce the materialization of
10901     // constant C.
10902     SetCC =
10903         DAG.getSetCC(dl, SetCCType, Result,
10904                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
10905   } else if (IsAdd && isAllOnesConstant(RHS)) {
10906     // Special case: uaddo X, -1 overflows if X != 0.
10907     SetCC =
10908         DAG.getSetCC(dl, SetCCType, LHS,
10909                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
10910   } else {
10911     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
10912     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
10913   }
10914   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10915 }
10916 
expandSADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10917 void TargetLowering::expandSADDSUBO(
10918     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
10919   SDLoc dl(Node);
10920   SDValue LHS = Node->getOperand(0);
10921   SDValue RHS = Node->getOperand(1);
10922   bool IsAdd = Node->getOpcode() == ISD::SADDO;
10923 
10924   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
10925                             LHS.getValueType(), LHS, RHS);
10926 
10927   EVT ResultType = Node->getValueType(1);
10928   EVT OType = getSetCCResultType(
10929       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
10930 
10931   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
10932   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
10933   if (isOperationLegal(OpcSat, LHS.getValueType())) {
10934     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
10935     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
10936     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
10937     return;
10938   }
10939 
10940   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
10941 
10942   // For an addition, the result should be less than one of the operands (LHS)
10943   // if and only if the other operand (RHS) is negative, otherwise there will
10944   // be overflow.
10945   // For a subtraction, the result should be less than one of the operands
10946   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
10947   // otherwise there will be overflow.
10948   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
10949   SDValue ConditionRHS =
10950       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
10951 
10952   Overflow = DAG.getBoolExtOrTrunc(
10953       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
10954       ResultType, ResultType);
10955 }
10956 
expandMULO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const10957 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
10958                                 SDValue &Overflow, SelectionDAG &DAG) const {
10959   SDLoc dl(Node);
10960   EVT VT = Node->getValueType(0);
10961   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10962   SDValue LHS = Node->getOperand(0);
10963   SDValue RHS = Node->getOperand(1);
10964   bool isSigned = Node->getOpcode() == ISD::SMULO;
10965 
10966   // For power-of-two multiplications we can use a simpler shift expansion.
10967   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
10968     const APInt &C = RHSC->getAPIntValue();
10969     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
10970     if (C.isPowerOf2()) {
10971       // smulo(x, signed_min) is same as umulo(x, signed_min).
10972       bool UseArithShift = isSigned && !C.isMinSignedValue();
10973       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
10974       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
10975       Overflow = DAG.getSetCC(dl, SetCCVT,
10976           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
10977                       dl, VT, Result, ShiftAmt),
10978           LHS, ISD::SETNE);
10979       return true;
10980     }
10981   }
10982 
10983   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
10984   if (VT.isVector())
10985     WideVT =
10986         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10987 
10988   SDValue BottomHalf;
10989   SDValue TopHalf;
10990   static const unsigned Ops[2][3] =
10991       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
10992         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
10993   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
10994     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10995     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
10996   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
10997     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
10998                              RHS);
10999     TopHalf = BottomHalf.getValue(1);
11000   } else if (isTypeLegal(WideVT)) {
11001     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11002     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11003     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11004     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11005     SDValue ShiftAmt =
11006         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11007     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11008                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11009   } else {
11010     if (VT.isVector())
11011       return false;
11012 
11013     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11014   }
11015 
11016   Result = BottomHalf;
11017   if (isSigned) {
11018     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11019         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11020     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11021     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11022   } else {
11023     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11024                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11025   }
11026 
11027   // Truncate the result if SetCC returns a larger type than needed.
11028   EVT RType = Node->getValueType(1);
11029   if (RType.bitsLT(Overflow.getValueType()))
11030     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11031 
11032   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11033          "Unexpected result type for S/UMULO legalization");
11034   return true;
11035 }
11036 
expandVecReduce(SDNode * Node,SelectionDAG & DAG) const11037 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11038   SDLoc dl(Node);
11039   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11040   SDValue Op = Node->getOperand(0);
11041   EVT VT = Op.getValueType();
11042 
11043   if (VT.isScalableVector())
11044     report_fatal_error(
11045         "Expanding reductions for scalable vectors is undefined.");
11046 
11047   // Try to use a shuffle reduction for power of two vectors.
11048   if (VT.isPow2VectorType()) {
11049     while (VT.getVectorNumElements() > 1) {
11050       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11051       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11052         break;
11053 
11054       SDValue Lo, Hi;
11055       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11056       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11057       VT = HalfVT;
11058     }
11059   }
11060 
11061   EVT EltVT = VT.getVectorElementType();
11062   unsigned NumElts = VT.getVectorNumElements();
11063 
11064   SmallVector<SDValue, 8> Ops;
11065   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11066 
11067   SDValue Res = Ops[0];
11068   for (unsigned i = 1; i < NumElts; i++)
11069     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11070 
11071   // Result type may be wider than element type.
11072   if (EltVT != Node->getValueType(0))
11073     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11074   return Res;
11075 }
11076 
expandVecReduceSeq(SDNode * Node,SelectionDAG & DAG) const11077 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11078   SDLoc dl(Node);
11079   SDValue AccOp = Node->getOperand(0);
11080   SDValue VecOp = Node->getOperand(1);
11081   SDNodeFlags Flags = Node->getFlags();
11082 
11083   EVT VT = VecOp.getValueType();
11084   EVT EltVT = VT.getVectorElementType();
11085 
11086   if (VT.isScalableVector())
11087     report_fatal_error(
11088         "Expanding reductions for scalable vectors is undefined.");
11089 
11090   unsigned NumElts = VT.getVectorNumElements();
11091 
11092   SmallVector<SDValue, 8> Ops;
11093   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11094 
11095   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11096 
11097   SDValue Res = AccOp;
11098   for (unsigned i = 0; i < NumElts; i++)
11099     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11100 
11101   return Res;
11102 }
11103 
expandREM(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const11104 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11105                                SelectionDAG &DAG) const {
11106   EVT VT = Node->getValueType(0);
11107   SDLoc dl(Node);
11108   bool isSigned = Node->getOpcode() == ISD::SREM;
11109   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11110   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11111   SDValue Dividend = Node->getOperand(0);
11112   SDValue Divisor = Node->getOperand(1);
11113   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11114     SDVTList VTs = DAG.getVTList(VT, VT);
11115     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11116     return true;
11117   }
11118   if (isOperationLegalOrCustom(DivOpc, VT)) {
11119     // X % Y -> X-X/Y*Y
11120     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11121     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11122     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11123     return true;
11124   }
11125   return false;
11126 }
11127 
expandFP_TO_INT_SAT(SDNode * Node,SelectionDAG & DAG) const11128 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11129                                             SelectionDAG &DAG) const {
11130   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11131   SDLoc dl(SDValue(Node, 0));
11132   SDValue Src = Node->getOperand(0);
11133 
11134   // DstVT is the result type, while SatVT is the size to which we saturate
11135   EVT SrcVT = Src.getValueType();
11136   EVT DstVT = Node->getValueType(0);
11137 
11138   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11139   unsigned SatWidth = SatVT.getScalarSizeInBits();
11140   unsigned DstWidth = DstVT.getScalarSizeInBits();
11141   assert(SatWidth <= DstWidth &&
11142          "Expected saturation width smaller than result width");
11143 
11144   // Determine minimum and maximum integer values and their corresponding
11145   // floating-point values.
11146   APInt MinInt, MaxInt;
11147   if (IsSigned) {
11148     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11149     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11150   } else {
11151     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11152     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11153   }
11154 
11155   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11156   // libcall emission cannot handle this. Large result types will fail.
11157   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11158     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11159     SrcVT = Src.getValueType();
11160   }
11161 
11162   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
11163   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
11164 
11165   APFloat::opStatus MinStatus =
11166       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11167   APFloat::opStatus MaxStatus =
11168       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11169   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11170                              !(MaxStatus & APFloat::opStatus::opInexact);
11171 
11172   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11173   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11174 
11175   // If the integer bounds are exactly representable as floats and min/max are
11176   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11177   // of comparisons and selects.
11178   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11179                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11180   if (AreExactFloatBounds && MinMaxLegal) {
11181     SDValue Clamped = Src;
11182 
11183     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11184     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11185     // Clamp by MaxFloat from above. NaN cannot occur.
11186     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11187     // Convert clamped value to integer.
11188     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11189                                   dl, DstVT, Clamped);
11190 
11191     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11192     // which will cast to zero.
11193     if (!IsSigned)
11194       return FpToInt;
11195 
11196     // Otherwise, select 0 if Src is NaN.
11197     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11198     EVT SetCCVT =
11199         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11200     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11201     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11202   }
11203 
11204   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11205   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11206 
11207   // Result of direct conversion. The assumption here is that the operation is
11208   // non-trapping and it's fine to apply it to an out-of-range value if we
11209   // select it away later.
11210   SDValue FpToInt =
11211       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11212 
11213   SDValue Select = FpToInt;
11214 
11215   EVT SetCCVT =
11216       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11217 
11218   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11219   // MinInt if Src is NaN.
11220   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11221   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11222   // If Src OGT MaxFloat, select MaxInt.
11223   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11224   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11225 
11226   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11227   // is already zero.
11228   if (!IsSigned)
11229     return Select;
11230 
11231   // Otherwise, select 0 if Src is NaN.
11232   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11233   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11234   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11235 }
11236 
expandRoundInexactToOdd(EVT ResultVT,SDValue Op,const SDLoc & dl,SelectionDAG & DAG) const11237 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11238                                                 const SDLoc &dl,
11239                                                 SelectionDAG &DAG) const {
11240   EVT OperandVT = Op.getValueType();
11241   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11242     return Op;
11243   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11244   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11245   // can induce double-rounding which may alter the results. We can
11246   // correct for this using a trick explained in: Boldo, Sylvie, and
11247   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11248   // World Congress. 2005.
11249   unsigned BitSize = OperandVT.getScalarSizeInBits();
11250   EVT WideIntVT = OperandVT.changeTypeToInteger();
11251   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11252   SDValue SignBit =
11253       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11254                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11255   SDValue AbsWide;
11256   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11257     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11258   } else {
11259     SDValue ClearedSign = DAG.getNode(
11260         ISD::AND, dl, WideIntVT, OpAsInt,
11261         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11262     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11263   }
11264   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11265   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11266 
11267   // We can keep the narrow value as-is if narrowing was exact (no
11268   // rounding error), the wide value was NaN (the narrow value is also
11269   // NaN and should be preserved) or if we rounded to the odd value.
11270   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11271   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11272   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11273   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11274   EVT ResultIntVTCCVT = getSetCCResultType(
11275       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11276   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11277   // The result is already odd so we don't need to do anything.
11278   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11279 
11280   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11281                                        AbsWide.getValueType());
11282   // We keep results which are exact, odd or NaN.
11283   SDValue KeepNarrow =
11284       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11285   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11286   // We morally performed a round-down if AbsNarrow is smaller than
11287   // AbsWide.
11288   SDValue NarrowIsRd =
11289       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11290   // If the narrow value is odd or exact, pick it.
11291   // Otherwise, narrow is even and corresponds to either the rounded-up
11292   // or rounded-down value. If narrow is the rounded-down value, we want
11293   // the rounded-up value as it will be odd.
11294   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11295   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11296   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11297   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11298   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11299   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11300   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11301   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11302   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11303 }
11304 
expandFP_ROUND(SDNode * Node,SelectionDAG & DAG) const11305 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11306   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11307   SDValue Op = Node->getOperand(0);
11308   EVT VT = Node->getValueType(0);
11309   SDLoc dl(Node);
11310   if (VT.getScalarType() == MVT::bf16) {
11311     if (Node->getConstantOperandVal(1) == 1) {
11312       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11313     }
11314     EVT OperandVT = Op.getValueType();
11315     SDValue IsNaN = DAG.getSetCC(
11316         dl,
11317         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11318         Op, Op, ISD::SETUO);
11319 
11320     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11321     // can induce double-rounding which may alter the results. We can
11322     // correct for this using a trick explained in: Boldo, Sylvie, and
11323     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11324     // World Congress. 2005.
11325     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11326     EVT I32 = F32.changeTypeToInteger();
11327     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11328     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11329 
11330     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11331     // turning into infinities.
11332     SDValue NaN =
11333         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11334 
11335     // Factor in the contribution of the low 16 bits.
11336     SDValue One = DAG.getConstant(1, dl, I32);
11337     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11338                               DAG.getShiftAmountConstant(16, I32, dl));
11339     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11340     SDValue RoundingBias =
11341         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11342     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11343 
11344     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11345     // 0x80000000.
11346     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11347 
11348     // Now that we have rounded, shift the bits into position.
11349     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11350                      DAG.getShiftAmountConstant(16, I32, dl));
11351     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11352     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11353     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11354     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11355   }
11356   return SDValue();
11357 }
11358 
expandVectorSplice(SDNode * Node,SelectionDAG & DAG) const11359 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11360                                            SelectionDAG &DAG) const {
11361   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11362   assert(Node->getValueType(0).isScalableVector() &&
11363          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11364 
11365   EVT VT = Node->getValueType(0);
11366   SDValue V1 = Node->getOperand(0);
11367   SDValue V2 = Node->getOperand(1);
11368   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11369   SDLoc DL(Node);
11370 
11371   // Expand through memory thusly:
11372   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11373   //  Store V1, Ptr
11374   //  Store V2, Ptr + sizeof(V1)
11375   //  If (Imm < 0)
11376   //    TrailingElts = -Imm
11377   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11378   //  else
11379   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11380   //  Res = Load Ptr
11381 
11382   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11383 
11384   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11385                                VT.getVectorElementCount() * 2);
11386   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11387   EVT PtrVT = StackPtr.getValueType();
11388   auto &MF = DAG.getMachineFunction();
11389   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11390   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11391 
11392   // Store the lo part of CONCAT_VECTORS(V1, V2)
11393   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11394   // Store the hi part of CONCAT_VECTORS(V1, V2)
11395   SDValue OffsetToV2 = DAG.getVScale(
11396       DL, PtrVT,
11397       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11398   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11399   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11400 
11401   if (Imm >= 0) {
11402     // Load back the required element. getVectorElementPointer takes care of
11403     // clamping the index if it's out-of-bounds.
11404     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11405     // Load the spliced result
11406     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11407                        MachinePointerInfo::getUnknownStack(MF));
11408   }
11409 
11410   uint64_t TrailingElts = -Imm;
11411 
11412   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11413   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11414   SDValue TrailingBytes =
11415       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11416 
11417   if (TrailingElts > VT.getVectorMinNumElements()) {
11418     SDValue VLBytes =
11419         DAG.getVScale(DL, PtrVT,
11420                       APInt(PtrVT.getFixedSizeInBits(),
11421                             VT.getStoreSize().getKnownMinValue()));
11422     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11423   }
11424 
11425   // Calculate the start address of the spliced result.
11426   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11427 
11428   // Load the spliced result
11429   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11430                      MachinePointerInfo::getUnknownStack(MF));
11431 }
11432 
expandVECTOR_COMPRESS(SDNode * Node,SelectionDAG & DAG) const11433 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11434                                               SelectionDAG &DAG) const {
11435   SDLoc DL(Node);
11436   SDValue Vec = Node->getOperand(0);
11437   SDValue Mask = Node->getOperand(1);
11438   SDValue Passthru = Node->getOperand(2);
11439 
11440   EVT VecVT = Vec.getValueType();
11441   EVT ScalarVT = VecVT.getScalarType();
11442   EVT MaskVT = Mask.getValueType();
11443   EVT MaskScalarVT = MaskVT.getScalarType();
11444 
11445   // Needs to be handled by targets that have scalable vector types.
11446   if (VecVT.isScalableVector())
11447     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11448 
11449   SDValue StackPtr = DAG.CreateStackTemporary(
11450       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11451   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11452   MachinePointerInfo PtrInfo =
11453       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11454 
11455   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11456   SDValue Chain = DAG.getEntryNode();
11457   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11458 
11459   bool HasPassthru = !Passthru.isUndef();
11460 
11461   // If we have a passthru vector, store it on the stack, overwrite the matching
11462   // positions and then re-write the last element that was potentially
11463   // overwritten even though mask[i] = false.
11464   if (HasPassthru)
11465     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11466 
11467   SDValue LastWriteVal;
11468   APInt PassthruSplatVal;
11469   bool IsSplatPassthru =
11470       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11471 
11472   if (IsSplatPassthru) {
11473     // As we do not know which position we wrote to last, we cannot simply
11474     // access that index from the passthru vector. So we first check if passthru
11475     // is a splat vector, to use any element ...
11476     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11477   } else if (HasPassthru) {
11478     // ... if it is not a splat vector, we need to get the passthru value at
11479     // position = popcount(mask) and re-load it from the stack before it is
11480     // overwritten in the loop below.
11481     SDValue Popcount = DAG.getNode(
11482         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11483     Popcount = DAG.getNode(ISD::ZERO_EXTEND, DL,
11484                            MaskVT.changeVectorElementType(ScalarVT), Popcount);
11485     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, ScalarVT, Popcount);
11486     SDValue LastElmtPtr =
11487         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11488     LastWriteVal = DAG.getLoad(
11489         ScalarVT, DL, Chain, LastElmtPtr,
11490         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11491     Chain = LastWriteVal.getValue(1);
11492   }
11493 
11494   unsigned NumElms = VecVT.getVectorNumElements();
11495   for (unsigned I = 0; I < NumElms; I++) {
11496     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11497 
11498     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11499     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11500     Chain = DAG.getStore(
11501         Chain, DL, ValI, OutPtr,
11502         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11503 
11504     // Get the mask value and add it to the current output position. This
11505     // either increments by 1 if MaskI is true or adds 0 otherwise.
11506     // Freeze in case we have poison/undef mask entries.
11507     SDValue MaskI = DAG.getFreeze(
11508         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11509     MaskI = DAG.getFreeze(MaskI);
11510     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11511     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11512     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11513 
11514     if (HasPassthru && I == NumElms - 1) {
11515       SDValue EndOfVector =
11516           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11517       SDValue AllLanesSelected =
11518           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11519       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11520       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11521 
11522       // Re-write the last ValI if all lanes were selected. Otherwise,
11523       // overwrite the last write it with the passthru value.
11524       LastWriteVal =
11525           DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, LastWriteVal);
11526       Chain = DAG.getStore(
11527           Chain, DL, LastWriteVal, OutPtr,
11528           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11529     }
11530   }
11531 
11532   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11533 }
11534 
LegalizeSetCCCondCode(SelectionDAG & DAG,EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,SDValue Mask,SDValue EVL,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling) const11535 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11536                                            SDValue &LHS, SDValue &RHS,
11537                                            SDValue &CC, SDValue Mask,
11538                                            SDValue EVL, bool &NeedInvert,
11539                                            const SDLoc &dl, SDValue &Chain,
11540                                            bool IsSignaling) const {
11541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11542   MVT OpVT = LHS.getSimpleValueType();
11543   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11544   NeedInvert = false;
11545   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11546   bool IsNonVP = !EVL;
11547   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
11548   default:
11549     llvm_unreachable("Unknown condition code action!");
11550   case TargetLowering::Legal:
11551     // Nothing to do.
11552     break;
11553   case TargetLowering::Expand: {
11554     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11555     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11556       std::swap(LHS, RHS);
11557       CC = DAG.getCondCode(InvCC);
11558       return true;
11559     }
11560     // Swapping operands didn't work. Try inverting the condition.
11561     bool NeedSwap = false;
11562     InvCC = getSetCCInverse(CCCode, OpVT);
11563     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11564       // If inverting the condition is not enough, try swapping operands
11565       // on top of it.
11566       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11567       NeedSwap = true;
11568     }
11569     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
11570       CC = DAG.getCondCode(InvCC);
11571       NeedInvert = true;
11572       if (NeedSwap)
11573         std::swap(LHS, RHS);
11574       return true;
11575     }
11576 
11577     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11578     unsigned Opc = 0;
11579     switch (CCCode) {
11580     default:
11581       llvm_unreachable("Don't know how to expand this condition!");
11582     case ISD::SETUO:
11583       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
11584         CC1 = ISD::SETUNE;
11585         CC2 = ISD::SETUNE;
11586         Opc = ISD::OR;
11587         break;
11588       }
11589       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11590              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11591       NeedInvert = true;
11592       [[fallthrough]];
11593     case ISD::SETO:
11594       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11595              "If SETO is expanded, SETOEQ must be legal!");
11596       CC1 = ISD::SETOEQ;
11597       CC2 = ISD::SETOEQ;
11598       Opc = ISD::AND;
11599       break;
11600     case ISD::SETONE:
11601     case ISD::SETUEQ:
11602       // If the SETUO or SETO CC isn't legal, we might be able to use
11603       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11604       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11605       // the operands.
11606       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11607       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
11608           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
11609            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
11610         CC1 = ISD::SETOGT;
11611         CC2 = ISD::SETOLT;
11612         Opc = ISD::OR;
11613         NeedInvert = ((unsigned)CCCode & 0x8U);
11614         break;
11615       }
11616       [[fallthrough]];
11617     case ISD::SETOEQ:
11618     case ISD::SETOGT:
11619     case ISD::SETOGE:
11620     case ISD::SETOLT:
11621     case ISD::SETOLE:
11622     case ISD::SETUNE:
11623     case ISD::SETUGT:
11624     case ISD::SETUGE:
11625     case ISD::SETULT:
11626     case ISD::SETULE:
11627       // If we are floating point, assign and break, otherwise fall through.
11628       if (!OpVT.isInteger()) {
11629         // We can use the 4th bit to tell if we are the unordered
11630         // or ordered version of the opcode.
11631         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11632         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11633         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11634         break;
11635       }
11636       // Fallthrough if we are unsigned integer.
11637       [[fallthrough]];
11638     case ISD::SETLE:
11639     case ISD::SETGT:
11640     case ISD::SETGE:
11641     case ISD::SETLT:
11642     case ISD::SETNE:
11643     case ISD::SETEQ:
11644       // If all combinations of inverting the condition and swapping operands
11645       // didn't work then we have no means to expand the condition.
11646       llvm_unreachable("Don't know how to expand this condition!");
11647     }
11648 
11649     SDValue SetCC1, SetCC2;
11650     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11651       // If we aren't the ordered or unorder operation,
11652       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11653       if (IsNonVP) {
11654         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11655         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11656       } else {
11657         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11658         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11659       }
11660     } else {
11661       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11662       if (IsNonVP) {
11663         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11664         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11665       } else {
11666         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11667         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11668       }
11669     }
11670     if (Chain)
11671       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11672                           SetCC2.getValue(1));
11673     if (IsNonVP)
11674       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11675     else {
11676       // Transform the binary opcode to the VP equivalent.
11677       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11678       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11679       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11680     }
11681     RHS = SDValue();
11682     CC = SDValue();
11683     return true;
11684   }
11685   }
11686   return false;
11687 }
11688