xref: /linux/kernel/time/posix-timers.c (revision b1456f6dc167f7f101746e495bede2bac3d0e19f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * 2002-10-15  Posix Clocks & timers
4  *                           by George Anzinger george@mvista.com
5  *			     Copyright (C) 2002 2003 by MontaVista Software.
6  *
7  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8  *			     Copyright (C) 2004 Boris Hu
9  *
10  * These are all the functions necessary to implement POSIX clocks & timers
11  */
12 #include <linux/compat.h>
13 #include <linux/compiler.h>
14 #include <linux/init.h>
15 #include <linux/jhash.h>
16 #include <linux/interrupt.h>
17 #include <linux/list.h>
18 #include <linux/memblock.h>
19 #include <linux/nospec.h>
20 #include <linux/posix-clock.h>
21 #include <linux/posix-timers.h>
22 #include <linux/prctl.h>
23 #include <linux/sched/task.h>
24 #include <linux/slab.h>
25 #include <linux/syscalls.h>
26 #include <linux/time.h>
27 #include <linux/time_namespace.h>
28 #include <linux/uaccess.h>
29 
30 #include "timekeeping.h"
31 #include "posix-timers.h"
32 
33 /*
34  * Timers are managed in a hash table for lockless lookup. The hash key is
35  * constructed from current::signal and the timer ID and the timer is
36  * matched against current::signal and the timer ID when walking the hash
37  * bucket list.
38  *
39  * This allows checkpoint/restore to reconstruct the exact timer IDs for
40  * a process.
41  */
42 struct timer_hash_bucket {
43 	spinlock_t		lock;
44 	struct hlist_head	head;
45 };
46 
47 static struct {
48 	struct timer_hash_bucket	*buckets;
49 	unsigned long			mask;
50 	struct kmem_cache		*cache;
51 } __timer_data __ro_after_init __aligned(4*sizeof(long));
52 
53 #define timer_buckets		(__timer_data.buckets)
54 #define timer_hashmask		(__timer_data.mask)
55 #define posix_timers_cache	(__timer_data.cache)
56 
57 static const struct k_clock * const posix_clocks[];
58 static const struct k_clock *clockid_to_kclock(const clockid_t id);
59 static const struct k_clock clock_realtime, clock_monotonic;
60 
61 #define TIMER_ANY_ID		INT_MIN
62 
63 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
64 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
65 			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
66 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
67 #endif
68 
69 static struct k_itimer *__lock_timer(timer_t timer_id);
70 
71 #define lock_timer(tid)							\
72 ({	struct k_itimer *__timr;					\
73 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid));	\
74 	__timr;								\
75 })
76 
unlock_timer(struct k_itimer * timr)77 static inline void unlock_timer(struct k_itimer *timr)
78 {
79 	if (likely((timr)))
80 		spin_unlock_irq(&timr->it_lock);
81 }
82 
83 #define scoped_timer_get_or_fail(_id)					\
84 	scoped_cond_guard(lock_timer, return -EINVAL, _id)
85 
86 #define scoped_timer				(scope)
87 
88 DEFINE_CLASS(lock_timer, struct k_itimer *, unlock_timer(_T), __lock_timer(id), timer_t id);
89 DEFINE_CLASS_IS_COND_GUARD(lock_timer);
90 
hash_bucket(struct signal_struct * sig,unsigned int nr)91 static struct timer_hash_bucket *hash_bucket(struct signal_struct *sig, unsigned int nr)
92 {
93 	return &timer_buckets[jhash2((u32 *)&sig, sizeof(sig) / sizeof(u32), nr) & timer_hashmask];
94 }
95 
posix_timer_by_id(timer_t id)96 static struct k_itimer *posix_timer_by_id(timer_t id)
97 {
98 	struct signal_struct *sig = current->signal;
99 	struct timer_hash_bucket *bucket = hash_bucket(sig, id);
100 	struct k_itimer *timer;
101 
102 	hlist_for_each_entry_rcu(timer, &bucket->head, t_hash) {
103 		/* timer->it_signal can be set concurrently */
104 		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
105 			return timer;
106 	}
107 	return NULL;
108 }
109 
posix_sig_owner(const struct k_itimer * timer)110 static inline struct signal_struct *posix_sig_owner(const struct k_itimer *timer)
111 {
112 	unsigned long val = (unsigned long)timer->it_signal;
113 
114 	/*
115 	 * Mask out bit 0, which acts as invalid marker to prevent
116 	 * posix_timer_by_id() detecting it as valid.
117 	 */
118 	return (struct signal_struct *)(val & ~1UL);
119 }
120 
posix_timer_hashed(struct timer_hash_bucket * bucket,struct signal_struct * sig,timer_t id)121 static bool posix_timer_hashed(struct timer_hash_bucket *bucket, struct signal_struct *sig,
122 			       timer_t id)
123 {
124 	struct hlist_head *head = &bucket->head;
125 	struct k_itimer *timer;
126 
127 	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&bucket->lock)) {
128 		if ((posix_sig_owner(timer) == sig) && (timer->it_id == id))
129 			return true;
130 	}
131 	return false;
132 }
133 
posix_timer_add_at(struct k_itimer * timer,struct signal_struct * sig,unsigned int id)134 static bool posix_timer_add_at(struct k_itimer *timer, struct signal_struct *sig, unsigned int id)
135 {
136 	struct timer_hash_bucket *bucket = hash_bucket(sig, id);
137 
138 	scoped_guard (spinlock, &bucket->lock) {
139 		/*
140 		 * Validate under the lock as this could have raced against
141 		 * another thread ending up with the same ID, which is
142 		 * highly unlikely, but possible.
143 		 */
144 		if (!posix_timer_hashed(bucket, sig, id)) {
145 			/*
146 			 * Set the timer ID and the signal pointer to make
147 			 * it identifiable in the hash table. The signal
148 			 * pointer has bit 0 set to indicate that it is not
149 			 * yet fully initialized. posix_timer_hashed()
150 			 * masks this bit out, but the syscall lookup fails
151 			 * to match due to it being set. This guarantees
152 			 * that there can't be duplicate timer IDs handed
153 			 * out.
154 			 */
155 			timer->it_id = (timer_t)id;
156 			timer->it_signal = (struct signal_struct *)((unsigned long)sig | 1UL);
157 			hlist_add_head_rcu(&timer->t_hash, &bucket->head);
158 			return true;
159 		}
160 	}
161 	return false;
162 }
163 
posix_timer_add(struct k_itimer * timer,int req_id)164 static int posix_timer_add(struct k_itimer *timer, int req_id)
165 {
166 	struct signal_struct *sig = current->signal;
167 
168 	if (unlikely(req_id != TIMER_ANY_ID)) {
169 		if (!posix_timer_add_at(timer, sig, req_id))
170 			return -EBUSY;
171 
172 		/*
173 		 * Move the ID counter past the requested ID, so that after
174 		 * switching back to normal mode the IDs are outside of the
175 		 * exact allocated region. That avoids ID collisions on the
176 		 * next regular timer_create() invocations.
177 		 */
178 		atomic_set(&sig->next_posix_timer_id, req_id + 1);
179 		return req_id;
180 	}
181 
182 	for (unsigned int cnt = 0; cnt <= INT_MAX; cnt++) {
183 		/* Get the next timer ID and clamp it to positive space */
184 		unsigned int id = atomic_fetch_inc(&sig->next_posix_timer_id) & INT_MAX;
185 
186 		if (posix_timer_add_at(timer, sig, id))
187 			return id;
188 		cond_resched();
189 	}
190 	/* POSIX return code when no timer ID could be allocated */
191 	return -EAGAIN;
192 }
193 
posix_get_realtime_timespec(clockid_t which_clock,struct timespec64 * tp)194 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
195 {
196 	ktime_get_real_ts64(tp);
197 	return 0;
198 }
199 
posix_get_realtime_ktime(clockid_t which_clock)200 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
201 {
202 	return ktime_get_real();
203 }
204 
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 				    const struct timespec64 *tp)
207 {
208 	return do_sys_settimeofday64(tp, NULL);
209 }
210 
posix_clock_realtime_adj(const clockid_t which_clock,struct __kernel_timex * t)211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 				    struct __kernel_timex *t)
213 {
214 	return do_adjtimex(t);
215 }
216 
posix_get_monotonic_timespec(clockid_t which_clock,struct timespec64 * tp)217 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
218 {
219 	ktime_get_ts64(tp);
220 	timens_add_monotonic(tp);
221 	return 0;
222 }
223 
posix_get_monotonic_ktime(clockid_t which_clock)224 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
225 {
226 	return ktime_get();
227 }
228 
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 	ktime_get_raw_ts64(tp);
232 	timens_add_monotonic(tp);
233 	return 0;
234 }
235 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 	ktime_get_coarse_real_ts64(tp);
239 	return 0;
240 }
241 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 						struct timespec64 *tp)
244 {
245 	ktime_get_coarse_ts64(tp);
246 	timens_add_monotonic(tp);
247 	return 0;
248 }
249 
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)250 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
251 {
252 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
253 	return 0;
254 }
255 
posix_get_boottime_timespec(const clockid_t which_clock,struct timespec64 * tp)256 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
257 {
258 	ktime_get_boottime_ts64(tp);
259 	timens_add_boottime(tp);
260 	return 0;
261 }
262 
posix_get_boottime_ktime(const clockid_t which_clock)263 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
264 {
265 	return ktime_get_boottime();
266 }
267 
posix_get_tai_timespec(clockid_t which_clock,struct timespec64 * tp)268 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
269 {
270 	ktime_get_clocktai_ts64(tp);
271 	return 0;
272 }
273 
posix_get_tai_ktime(clockid_t which_clock)274 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
275 {
276 	return ktime_get_clocktai();
277 }
278 
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)279 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
280 {
281 	tp->tv_sec = 0;
282 	tp->tv_nsec = hrtimer_resolution;
283 	return 0;
284 }
285 
286 /*
287  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288  * are of type int. Clamp the overrun value to INT_MAX
289  */
timer_overrun_to_int(struct k_itimer * timr)290 static inline int timer_overrun_to_int(struct k_itimer *timr)
291 {
292 	if (timr->it_overrun_last > (s64)INT_MAX)
293 		return INT_MAX;
294 
295 	return (int)timr->it_overrun_last;
296 }
297 
common_hrtimer_rearm(struct k_itimer * timr)298 static void common_hrtimer_rearm(struct k_itimer *timr)
299 {
300 	struct hrtimer *timer = &timr->it.real.timer;
301 
302 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
303 					    timr->it_interval);
304 	hrtimer_restart(timer);
305 }
306 
__posixtimer_deliver_signal(struct kernel_siginfo * info,struct k_itimer * timr)307 static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
308 {
309 	guard(spinlock)(&timr->it_lock);
310 
311 	/*
312 	 * Check if the timer is still alive or whether it got modified
313 	 * since the signal was queued. In either case, don't rearm and
314 	 * drop the signal.
315 	 */
316 	if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!posixtimer_valid(timr)))
317 		return false;
318 
319 	if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
320 		return true;
321 
322 	timr->kclock->timer_rearm(timr);
323 	timr->it_status = POSIX_TIMER_ARMED;
324 	timr->it_overrun_last = timr->it_overrun;
325 	timr->it_overrun = -1LL;
326 	++timr->it_signal_seq;
327 	info->si_overrun = timer_overrun_to_int(timr);
328 	return true;
329 }
330 
331 /*
332  * This function is called from the signal delivery code. It decides
333  * whether the signal should be dropped and rearms interval timers.  The
334  * timer can be unconditionally accessed as there is a reference held on
335  * it.
336  */
posixtimer_deliver_signal(struct kernel_siginfo * info,struct sigqueue * timer_sigq)337 bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
338 {
339 	struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
340 	bool ret;
341 
342 	/*
343 	 * Release siglock to ensure proper locking order versus
344 	 * timr::it_lock. Keep interrupts disabled.
345 	 */
346 	spin_unlock(&current->sighand->siglock);
347 
348 	ret = __posixtimer_deliver_signal(info, timr);
349 
350 	/* Drop the reference which was acquired when the signal was queued */
351 	posixtimer_putref(timr);
352 
353 	spin_lock(&current->sighand->siglock);
354 	return ret;
355 }
356 
posix_timer_queue_signal(struct k_itimer * timr)357 void posix_timer_queue_signal(struct k_itimer *timr)
358 {
359 	lockdep_assert_held(&timr->it_lock);
360 
361 	if (!posixtimer_valid(timr))
362 		return;
363 
364 	timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
365 	posixtimer_send_sigqueue(timr);
366 }
367 
368 /*
369  * This function gets called when a POSIX.1b interval timer expires from
370  * the HRTIMER interrupt (soft interrupt on RT kernels).
371  *
372  * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
373  * based timers.
374  */
posix_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 	struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
378 
379 	guard(spinlock_irqsave)(&timr->it_lock);
380 	posix_timer_queue_signal(timr);
381 	return HRTIMER_NORESTART;
382 }
383 
posixtimer_create_prctl(unsigned long ctrl)384 long posixtimer_create_prctl(unsigned long ctrl)
385 {
386 	switch (ctrl) {
387 	case PR_TIMER_CREATE_RESTORE_IDS_OFF:
388 		current->signal->timer_create_restore_ids = 0;
389 		return 0;
390 	case PR_TIMER_CREATE_RESTORE_IDS_ON:
391 		current->signal->timer_create_restore_ids = 1;
392 		return 0;
393 	case PR_TIMER_CREATE_RESTORE_IDS_GET:
394 		return current->signal->timer_create_restore_ids;
395 	}
396 	return -EINVAL;
397 }
398 
good_sigevent(sigevent_t * event)399 static struct pid *good_sigevent(sigevent_t * event)
400 {
401 	struct pid *pid = task_tgid(current);
402 	struct task_struct *rtn;
403 
404 	switch (event->sigev_notify) {
405 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
406 		pid = find_vpid(event->sigev_notify_thread_id);
407 		rtn = pid_task(pid, PIDTYPE_PID);
408 		if (!rtn || !same_thread_group(rtn, current))
409 			return NULL;
410 		fallthrough;
411 	case SIGEV_SIGNAL:
412 	case SIGEV_THREAD:
413 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
414 			return NULL;
415 		fallthrough;
416 	case SIGEV_NONE:
417 		return pid;
418 	default:
419 		return NULL;
420 	}
421 }
422 
alloc_posix_timer(void)423 static struct k_itimer *alloc_posix_timer(void)
424 {
425 	struct k_itimer *tmr;
426 
427 	if (unlikely(!posix_timers_cache))
428 		return NULL;
429 
430 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
431 	if (!tmr)
432 		return tmr;
433 
434 	if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
435 		kmem_cache_free(posix_timers_cache, tmr);
436 		return NULL;
437 	}
438 	rcuref_init(&tmr->rcuref, 1);
439 	return tmr;
440 }
441 
posixtimer_free_timer(struct k_itimer * tmr)442 void posixtimer_free_timer(struct k_itimer *tmr)
443 {
444 	put_pid(tmr->it_pid);
445 	if (tmr->sigq.ucounts)
446 		dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
447 	kfree_rcu(tmr, rcu);
448 }
449 
posix_timer_unhash_and_free(struct k_itimer * tmr)450 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
451 {
452 	struct timer_hash_bucket *bucket = hash_bucket(posix_sig_owner(tmr), tmr->it_id);
453 
454 	scoped_guard (spinlock, &bucket->lock)
455 		hlist_del_rcu(&tmr->t_hash);
456 	posixtimer_putref(tmr);
457 }
458 
common_timer_create(struct k_itimer * new_timer)459 static int common_timer_create(struct k_itimer *new_timer)
460 {
461 	hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0);
462 	return 0;
463 }
464 
465 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)466 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
467 			   timer_t __user *created_timer_id)
468 {
469 	const struct k_clock *kc = clockid_to_kclock(which_clock);
470 	timer_t req_id = TIMER_ANY_ID;
471 	struct k_itimer *new_timer;
472 	int error, new_timer_id;
473 
474 	if (!kc)
475 		return -EINVAL;
476 	if (!kc->timer_create)
477 		return -EOPNOTSUPP;
478 
479 	new_timer = alloc_posix_timer();
480 	if (unlikely(!new_timer))
481 		return -EAGAIN;
482 
483 	spin_lock_init(&new_timer->it_lock);
484 
485 	/* Special case for CRIU to restore timers with a given timer ID. */
486 	if (unlikely(current->signal->timer_create_restore_ids)) {
487 		if (copy_from_user(&req_id, created_timer_id, sizeof(req_id)))
488 			return -EFAULT;
489 		/* Valid IDs are 0..INT_MAX */
490 		if ((unsigned int)req_id > INT_MAX)
491 			return -EINVAL;
492 	}
493 
494 	/*
495 	 * Add the timer to the hash table. The timer is not yet valid
496 	 * after insertion, but has a unique ID allocated.
497 	 */
498 	new_timer_id = posix_timer_add(new_timer, req_id);
499 	if (new_timer_id < 0) {
500 		posixtimer_free_timer(new_timer);
501 		return new_timer_id;
502 	}
503 
504 	new_timer->it_clock = which_clock;
505 	new_timer->kclock = kc;
506 	new_timer->it_overrun = -1LL;
507 
508 	if (event) {
509 		scoped_guard (rcu)
510 			new_timer->it_pid = get_pid(good_sigevent(event));
511 		if (!new_timer->it_pid) {
512 			error = -EINVAL;
513 			goto out;
514 		}
515 		new_timer->it_sigev_notify     = event->sigev_notify;
516 		new_timer->sigq.info.si_signo = event->sigev_signo;
517 		new_timer->sigq.info.si_value = event->sigev_value;
518 	} else {
519 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
520 		new_timer->sigq.info.si_signo = SIGALRM;
521 		new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
522 		new_timer->it_pid = get_pid(task_tgid(current));
523 	}
524 
525 	if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
526 		new_timer->it_pid_type = PIDTYPE_PID;
527 	else
528 		new_timer->it_pid_type = PIDTYPE_TGID;
529 
530 	new_timer->sigq.info.si_tid = new_timer->it_id;
531 	new_timer->sigq.info.si_code = SI_TIMER;
532 
533 	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
534 		error = -EFAULT;
535 		goto out;
536 	}
537 	/*
538 	 * After succesful copy out, the timer ID is visible to user space
539 	 * now but not yet valid because new_timer::signal low order bit is 1.
540 	 *
541 	 * Complete the initialization with the clock specific create
542 	 * callback.
543 	 */
544 	error = kc->timer_create(new_timer);
545 	if (error)
546 		goto out;
547 
548 	/*
549 	 * timer::it_lock ensures that __lock_timer() observes a fully
550 	 * initialized timer when it observes a valid timer::it_signal.
551 	 *
552 	 * sighand::siglock is required to protect signal::posix_timers.
553 	 */
554 	scoped_guard (spinlock_irq, &new_timer->it_lock) {
555 		guard(spinlock)(&current->sighand->siglock);
556 		/*
557 		 * new_timer::it_signal contains the signal pointer with
558 		 * bit 0 set, which makes it invalid for syscall operations.
559 		 * Store the unmodified signal pointer to make it valid.
560 		 */
561 		WRITE_ONCE(new_timer->it_signal, current->signal);
562 		hlist_add_head_rcu(&new_timer->list, &current->signal->posix_timers);
563 	}
564 	/*
565 	 * After unlocking @new_timer is subject to concurrent removal and
566 	 * cannot be touched anymore
567 	 */
568 	return 0;
569 out:
570 	posix_timer_unhash_and_free(new_timer);
571 	return error;
572 }
573 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)574 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
575 		struct sigevent __user *, timer_event_spec,
576 		timer_t __user *, created_timer_id)
577 {
578 	if (timer_event_spec) {
579 		sigevent_t event;
580 
581 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
582 			return -EFAULT;
583 		return do_timer_create(which_clock, &event, created_timer_id);
584 	}
585 	return do_timer_create(which_clock, NULL, created_timer_id);
586 }
587 
588 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)589 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
590 		       struct compat_sigevent __user *, timer_event_spec,
591 		       timer_t __user *, created_timer_id)
592 {
593 	if (timer_event_spec) {
594 		sigevent_t event;
595 
596 		if (get_compat_sigevent(&event, timer_event_spec))
597 			return -EFAULT;
598 		return do_timer_create(which_clock, &event, created_timer_id);
599 	}
600 	return do_timer_create(which_clock, NULL, created_timer_id);
601 }
602 #endif
603 
__lock_timer(timer_t timer_id)604 static struct k_itimer *__lock_timer(timer_t timer_id)
605 {
606 	struct k_itimer *timr;
607 
608 	/*
609 	 * timer_t could be any type >= int and we want to make sure any
610 	 * @timer_id outside positive int range fails lookup.
611 	 */
612 	if ((unsigned long long)timer_id > INT_MAX)
613 		return NULL;
614 
615 	/*
616 	 * The hash lookup and the timers are RCU protected.
617 	 *
618 	 * Timers are added to the hash in invalid state where
619 	 * timr::it_signal is marked invalid. timer::it_signal is only set
620 	 * after the rest of the initialization succeeded.
621 	 *
622 	 * Timer destruction happens in steps:
623 	 *  1) Set timr::it_signal marked invalid with timr::it_lock held
624 	 *  2) Release timr::it_lock
625 	 *  3) Remove from the hash under hash_lock
626 	 *  4) Put the reference count.
627 	 *
628 	 * The reference count might not drop to zero if timr::sigq is
629 	 * queued. In that case the signal delivery or flush will put the
630 	 * last reference count.
631 	 *
632 	 * When the reference count reaches zero, the timer is scheduled
633 	 * for RCU removal after the grace period.
634 	 *
635 	 * Holding rcu_read_lock() across the lookup ensures that
636 	 * the timer cannot be freed.
637 	 *
638 	 * The lookup validates locklessly that timr::it_signal ==
639 	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
640 	 * can't change, but timr::it_signal can become invalid during
641 	 * destruction, which makes the locked check fail.
642 	 */
643 	guard(rcu)();
644 	timr = posix_timer_by_id(timer_id);
645 	if (timr) {
646 		spin_lock_irq(&timr->it_lock);
647 		/*
648 		 * Validate under timr::it_lock that timr::it_signal is
649 		 * still valid. Pairs with #1 above.
650 		 */
651 		if (timr->it_signal == current->signal)
652 			return timr;
653 		spin_unlock_irq(&timr->it_lock);
654 	}
655 	return NULL;
656 }
657 
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)658 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
659 {
660 	struct hrtimer *timer = &timr->it.real.timer;
661 
662 	return __hrtimer_expires_remaining_adjusted(timer, now);
663 }
664 
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)665 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
666 {
667 	struct hrtimer *timer = &timr->it.real.timer;
668 
669 	return hrtimer_forward(timer, now, timr->it_interval);
670 }
671 
672 /*
673  * Get the time remaining on a POSIX.1b interval timer.
674  *
675  * Two issues to handle here:
676  *
677  *  1) The timer has a requeue pending. The return value must appear as
678  *     if the timer has been requeued right now.
679  *
680  *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
681  *     into the hrtimer queue and therefore never expired. Emulate expiry
682  *     here taking #1 into account.
683  */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)684 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
685 {
686 	const struct k_clock *kc = timr->kclock;
687 	ktime_t now, remaining, iv;
688 	bool sig_none;
689 
690 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
691 	iv = timr->it_interval;
692 
693 	/* interval timer ? */
694 	if (iv) {
695 		cur_setting->it_interval = ktime_to_timespec64(iv);
696 	} else if (timr->it_status == POSIX_TIMER_DISARMED) {
697 		/*
698 		 * SIGEV_NONE oneshot timers are never queued and therefore
699 		 * timr->it_status is always DISARMED. The check below
700 		 * vs. remaining time will handle this case.
701 		 *
702 		 * For all other timers there is nothing to update here, so
703 		 * return.
704 		 */
705 		if (!sig_none)
706 			return;
707 	}
708 
709 	now = kc->clock_get_ktime(timr->it_clock);
710 
711 	/*
712 	 * If this is an interval timer and either has requeue pending or
713 	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
714 	 * so expiry is > now.
715 	 */
716 	if (iv && timr->it_status != POSIX_TIMER_ARMED)
717 		timr->it_overrun += kc->timer_forward(timr, now);
718 
719 	remaining = kc->timer_remaining(timr, now);
720 	/*
721 	 * As @now is retrieved before a possible timer_forward() and
722 	 * cannot be reevaluated by the compiler @remaining is based on the
723 	 * same @now value. Therefore @remaining is consistent vs. @now.
724 	 *
725 	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
726 	 * remaining time <= 0 because timer_forward() guarantees to move
727 	 * them forward so that the next timer expiry is > @now.
728 	 */
729 	if (remaining <= 0) {
730 		/*
731 		 * A single shot SIGEV_NONE timer must return 0, when it is
732 		 * expired! Timers which have a real signal delivery mode
733 		 * must return a remaining time greater than 0 because the
734 		 * signal has not yet been delivered.
735 		 */
736 		if (!sig_none)
737 			cur_setting->it_value.tv_nsec = 1;
738 	} else {
739 		cur_setting->it_value = ktime_to_timespec64(remaining);
740 	}
741 }
742 
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)743 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
744 {
745 	memset(setting, 0, sizeof(*setting));
746 	scoped_timer_get_or_fail(timer_id)
747 		scoped_timer->kclock->timer_get(scoped_timer, setting);
748 	return 0;
749 }
750 
751 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)752 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
753 		struct __kernel_itimerspec __user *, setting)
754 {
755 	struct itimerspec64 cur_setting;
756 
757 	int ret = do_timer_gettime(timer_id, &cur_setting);
758 	if (!ret) {
759 		if (put_itimerspec64(&cur_setting, setting))
760 			ret = -EFAULT;
761 	}
762 	return ret;
763 }
764 
765 #ifdef CONFIG_COMPAT_32BIT_TIME
766 
SYSCALL_DEFINE2(timer_gettime32,timer_t,timer_id,struct old_itimerspec32 __user *,setting)767 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
768 		struct old_itimerspec32 __user *, setting)
769 {
770 	struct itimerspec64 cur_setting;
771 
772 	int ret = do_timer_gettime(timer_id, &cur_setting);
773 	if (!ret) {
774 		if (put_old_itimerspec32(&cur_setting, setting))
775 			ret = -EFAULT;
776 	}
777 	return ret;
778 }
779 
780 #endif
781 
782 /**
783  * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
784  * @timer_id:	The timer ID which identifies the timer
785  *
786  * The "overrun count" of a timer is one plus the number of expiration
787  * intervals which have elapsed between the first expiry, which queues the
788  * signal and the actual signal delivery. On signal delivery the "overrun
789  * count" is calculated and cached, so it can be returned directly here.
790  *
791  * As this is relative to the last queued signal the returned overrun count
792  * is meaningless outside of the signal delivery path and even there it
793  * does not accurately reflect the current state when user space evaluates
794  * it.
795  *
796  * Returns:
797  *	-EINVAL		@timer_id is invalid
798  *	1..INT_MAX	The number of overruns related to the last delivered signal
799  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)800 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
801 {
802 	scoped_timer_get_or_fail(timer_id)
803 		return timer_overrun_to_int(scoped_timer);
804 }
805 
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)806 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
807 			       bool absolute, bool sigev_none)
808 {
809 	struct hrtimer *timer = &timr->it.real.timer;
810 	enum hrtimer_mode mode;
811 
812 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
813 	/*
814 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
815 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
816 	 * hood. See hrtimer_setup(). Update timr->kclock, so the generic
817 	 * functions which use timr->kclock->clock_get_*() work.
818 	 *
819 	 * Note: it_clock stays unmodified, because the next timer_set() might
820 	 * use ABSTIME, so it needs to switch back.
821 	 */
822 	if (timr->it_clock == CLOCK_REALTIME)
823 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
824 
825 	hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode);
826 
827 	if (!absolute)
828 		expires = ktime_add_safe(expires, timer->base->get_time());
829 	hrtimer_set_expires(timer, expires);
830 
831 	if (!sigev_none)
832 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
833 }
834 
common_hrtimer_try_to_cancel(struct k_itimer * timr)835 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
836 {
837 	return hrtimer_try_to_cancel(&timr->it.real.timer);
838 }
839 
common_timer_wait_running(struct k_itimer * timer)840 static void common_timer_wait_running(struct k_itimer *timer)
841 {
842 	hrtimer_cancel_wait_running(&timer->it.real.timer);
843 }
844 
845 /*
846  * On PREEMPT_RT this prevents priority inversion and a potential livelock
847  * against the ksoftirqd thread in case that ksoftirqd gets preempted while
848  * executing a hrtimer callback.
849  *
850  * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
851  * just results in a cpu_relax().
852  *
853  * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
854  * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
855  * prevents spinning on an eventually scheduled out task and a livelock
856  * when the task which tries to delete or disarm the timer has preempted
857  * the task which runs the expiry in task work context.
858  */
timer_wait_running(struct k_itimer * timer)859 static void timer_wait_running(struct k_itimer *timer)
860 {
861 	/*
862 	 * kc->timer_wait_running() might drop RCU lock. So @timer
863 	 * cannot be touched anymore after the function returns!
864 	 */
865 	timer->kclock->timer_wait_running(timer);
866 }
867 
868 /*
869  * Set up the new interval and reset the signal delivery data
870  */
posix_timer_set_common(struct k_itimer * timer,struct itimerspec64 * new_setting)871 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
872 {
873 	if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
874 		timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
875 	else
876 		timer->it_interval = 0;
877 
878 	/* Reset overrun accounting */
879 	timer->it_overrun_last = 0;
880 	timer->it_overrun = -1LL;
881 }
882 
883 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)884 int common_timer_set(struct k_itimer *timr, int flags,
885 		     struct itimerspec64 *new_setting,
886 		     struct itimerspec64 *old_setting)
887 {
888 	const struct k_clock *kc = timr->kclock;
889 	bool sigev_none;
890 	ktime_t expires;
891 
892 	if (old_setting)
893 		common_timer_get(timr, old_setting);
894 
895 	/*
896 	 * Careful here. On SMP systems the timer expiry function could be
897 	 * active and spinning on timr->it_lock.
898 	 */
899 	if (kc->timer_try_to_cancel(timr) < 0)
900 		return TIMER_RETRY;
901 
902 	timr->it_status = POSIX_TIMER_DISARMED;
903 	posix_timer_set_common(timr, new_setting);
904 
905 	/* Keep timer disarmed when it_value is zero */
906 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
907 		return 0;
908 
909 	expires = timespec64_to_ktime(new_setting->it_value);
910 	if (flags & TIMER_ABSTIME)
911 		expires = timens_ktime_to_host(timr->it_clock, expires);
912 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
913 
914 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
915 	if (!sigev_none)
916 		timr->it_status = POSIX_TIMER_ARMED;
917 	return 0;
918 }
919 
do_timer_settime(timer_t timer_id,int tmr_flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)920 static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64,
921 			    struct itimerspec64 *old_spec64)
922 {
923 	if (!timespec64_valid(&new_spec64->it_interval) ||
924 	    !timespec64_valid(&new_spec64->it_value))
925 		return -EINVAL;
926 
927 	if (old_spec64)
928 		memset(old_spec64, 0, sizeof(*old_spec64));
929 
930 	for (; ; old_spec64 = NULL) {
931 		struct k_itimer *timr;
932 
933 		scoped_timer_get_or_fail(timer_id) {
934 			timr = scoped_timer;
935 
936 			if (old_spec64)
937 				old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
938 
939 			/* Prevent signal delivery and rearming. */
940 			timr->it_signal_seq++;
941 
942 			int ret = timr->kclock->timer_set(timr, tmr_flags, new_spec64, old_spec64);
943 			if (ret != TIMER_RETRY)
944 				return ret;
945 
946 			/* Protect the timer from being freed when leaving the lock scope */
947 			rcu_read_lock();
948 		}
949 		timer_wait_running(timr);
950 		rcu_read_unlock();
951 	}
952 }
953 
954 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)955 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
956 		const struct __kernel_itimerspec __user *, new_setting,
957 		struct __kernel_itimerspec __user *, old_setting)
958 {
959 	struct itimerspec64 new_spec, old_spec, *rtn;
960 	int error = 0;
961 
962 	if (!new_setting)
963 		return -EINVAL;
964 
965 	if (get_itimerspec64(&new_spec, new_setting))
966 		return -EFAULT;
967 
968 	rtn = old_setting ? &old_spec : NULL;
969 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
970 	if (!error && old_setting) {
971 		if (put_itimerspec64(&old_spec, old_setting))
972 			error = -EFAULT;
973 	}
974 	return error;
975 }
976 
977 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32,timer_t,timer_id,int,flags,struct old_itimerspec32 __user *,new,struct old_itimerspec32 __user *,old)978 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
979 		struct old_itimerspec32 __user *, new,
980 		struct old_itimerspec32 __user *, old)
981 {
982 	struct itimerspec64 new_spec, old_spec;
983 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
984 	int error = 0;
985 
986 	if (!new)
987 		return -EINVAL;
988 	if (get_old_itimerspec32(&new_spec, new))
989 		return -EFAULT;
990 
991 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
992 	if (!error && old) {
993 		if (put_old_itimerspec32(&old_spec, old))
994 			error = -EFAULT;
995 	}
996 	return error;
997 }
998 #endif
999 
common_timer_del(struct k_itimer * timer)1000 int common_timer_del(struct k_itimer *timer)
1001 {
1002 	const struct k_clock *kc = timer->kclock;
1003 
1004 	if (kc->timer_try_to_cancel(timer) < 0)
1005 		return TIMER_RETRY;
1006 	timer->it_status = POSIX_TIMER_DISARMED;
1007 	return 0;
1008 }
1009 
1010 /*
1011  * If the deleted timer is on the ignored list, remove it and
1012  * drop the associated reference.
1013  */
posix_timer_cleanup_ignored(struct k_itimer * tmr)1014 static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
1015 {
1016 	if (!hlist_unhashed(&tmr->ignored_list)) {
1017 		hlist_del_init(&tmr->ignored_list);
1018 		posixtimer_putref(tmr);
1019 	}
1020 }
1021 
posix_timer_delete(struct k_itimer * timer)1022 static void posix_timer_delete(struct k_itimer *timer)
1023 {
1024 	/*
1025 	 * Invalidate the timer, remove it from the linked list and remove
1026 	 * it from the ignored list if pending.
1027 	 *
1028 	 * The invalidation must be written with siglock held so that the
1029 	 * signal code observes the invalidated timer::it_signal in
1030 	 * do_sigaction(), which prevents it from moving a pending signal
1031 	 * of a deleted timer to the ignore list.
1032 	 *
1033 	 * The invalidation also prevents signal queueing, signal delivery
1034 	 * and therefore rearming from the signal delivery path.
1035 	 *
1036 	 * A concurrent lookup can still find the timer in the hash, but it
1037 	 * will check timer::it_signal with timer::it_lock held and observe
1038 	 * bit 0 set, which invalidates it. That also prevents the timer ID
1039 	 * from being handed out before this timer is completely gone.
1040 	 */
1041 	timer->it_signal_seq++;
1042 
1043 	scoped_guard (spinlock, &current->sighand->siglock) {
1044 		unsigned long sig = (unsigned long)timer->it_signal | 1UL;
1045 
1046 		WRITE_ONCE(timer->it_signal, (struct signal_struct *)sig);
1047 		hlist_del_rcu(&timer->list);
1048 		posix_timer_cleanup_ignored(timer);
1049 	}
1050 
1051 	while (timer->kclock->timer_del(timer) == TIMER_RETRY) {
1052 		guard(rcu)();
1053 		spin_unlock_irq(&timer->it_lock);
1054 		timer_wait_running(timer);
1055 		spin_lock_irq(&timer->it_lock);
1056 	}
1057 }
1058 
1059 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)1060 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1061 {
1062 	struct k_itimer *timer;
1063 
1064 	scoped_timer_get_or_fail(timer_id) {
1065 		timer = scoped_timer;
1066 		posix_timer_delete(timer);
1067 	}
1068 	/* Remove it from the hash, which frees up the timer ID */
1069 	posix_timer_unhash_and_free(timer);
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Invoked from do_exit() when the last thread of a thread group exits.
1075  * At that point no other task can access the timers of the dying
1076  * task anymore.
1077  */
exit_itimers(struct task_struct * tsk)1078 void exit_itimers(struct task_struct *tsk)
1079 {
1080 	struct hlist_head timers;
1081 	struct hlist_node *next;
1082 	struct k_itimer *timer;
1083 
1084 	/* Clear restore mode for exec() */
1085 	tsk->signal->timer_create_restore_ids = 0;
1086 
1087 	if (hlist_empty(&tsk->signal->posix_timers))
1088 		return;
1089 
1090 	/* Protect against concurrent read via /proc/$PID/timers */
1091 	scoped_guard (spinlock_irq, &tsk->sighand->siglock)
1092 		hlist_move_list(&tsk->signal->posix_timers, &timers);
1093 
1094 	/* The timers are not longer accessible via tsk::signal */
1095 	hlist_for_each_entry_safe(timer, next, &timers, list) {
1096 		scoped_guard (spinlock_irq, &timer->it_lock)
1097 			posix_timer_delete(timer);
1098 		posix_timer_unhash_and_free(timer);
1099 		cond_resched();
1100 	}
1101 
1102 	/*
1103 	 * There should be no timers on the ignored list. itimer_delete() has
1104 	 * mopped them up.
1105 	 */
1106 	if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
1107 		return;
1108 
1109 	hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
1110 	while (!hlist_empty(&timers)) {
1111 		posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
1112 							ignored_list));
1113 	}
1114 }
1115 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1116 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1117 		const struct __kernel_timespec __user *, tp)
1118 {
1119 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1120 	struct timespec64 new_tp;
1121 
1122 	if (!kc || !kc->clock_set)
1123 		return -EINVAL;
1124 
1125 	if (get_timespec64(&new_tp, tp))
1126 		return -EFAULT;
1127 
1128 	/*
1129 	 * Permission checks have to be done inside the clock specific
1130 	 * setter callback.
1131 	 */
1132 	return kc->clock_set(which_clock, &new_tp);
1133 }
1134 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1135 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1136 		struct __kernel_timespec __user *, tp)
1137 {
1138 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1139 	struct timespec64 kernel_tp;
1140 	int error;
1141 
1142 	if (!kc)
1143 		return -EINVAL;
1144 
1145 	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1146 
1147 	if (!error && put_timespec64(&kernel_tp, tp))
1148 		error = -EFAULT;
1149 
1150 	return error;
1151 }
1152 
do_clock_adjtime(const clockid_t which_clock,struct __kernel_timex * ktx)1153 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1154 {
1155 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1156 
1157 	if (!kc)
1158 		return -EINVAL;
1159 	if (!kc->clock_adj)
1160 		return -EOPNOTSUPP;
1161 
1162 	return kc->clock_adj(which_clock, ktx);
1163 }
1164 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct __kernel_timex __user *,utx)1165 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1166 		struct __kernel_timex __user *, utx)
1167 {
1168 	struct __kernel_timex ktx;
1169 	int err;
1170 
1171 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1172 		return -EFAULT;
1173 
1174 	err = do_clock_adjtime(which_clock, &ktx);
1175 
1176 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1177 		return -EFAULT;
1178 
1179 	return err;
1180 }
1181 
1182 /**
1183  * sys_clock_getres - Get the resolution of a clock
1184  * @which_clock:	The clock to get the resolution for
1185  * @tp:			Pointer to a a user space timespec64 for storage
1186  *
1187  * POSIX defines:
1188  *
1189  * "The clock_getres() function shall return the resolution of any
1190  * clock. Clock resolutions are implementation-defined and cannot be set by
1191  * a process. If the argument res is not NULL, the resolution of the
1192  * specified clock shall be stored in the location pointed to by res. If
1193  * res is NULL, the clock resolution is not returned. If the time argument
1194  * of clock_settime() is not a multiple of res, then the value is truncated
1195  * to a multiple of res."
1196  *
1197  * Due to the various hardware constraints the real resolution can vary
1198  * wildly and even change during runtime when the underlying devices are
1199  * replaced. The kernel also can use hardware devices with different
1200  * resolutions for reading the time and for arming timers.
1201  *
1202  * The kernel therefore deviates from the POSIX spec in various aspects:
1203  *
1204  * 1) The resolution returned to user space
1205  *
1206  *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1207  *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1208  *    the kernel differentiates only two cases:
1209  *
1210  *    I)  Low resolution mode:
1211  *
1212  *	  When high resolution timers are disabled at compile or runtime
1213  *	  the resolution returned is nanoseconds per tick, which represents
1214  *	  the precision at which timers expire.
1215  *
1216  *    II) High resolution mode:
1217  *
1218  *	  When high resolution timers are enabled the resolution returned
1219  *	  is always one nanosecond independent of the actual resolution of
1220  *	  the underlying hardware devices.
1221  *
1222  *	  For CLOCK_*_ALARM the actual resolution depends on system
1223  *	  state. When system is running the resolution is the same as the
1224  *	  resolution of the other clocks. During suspend the actual
1225  *	  resolution is the resolution of the underlying RTC device which
1226  *	  might be way less precise than the clockevent device used during
1227  *	  running state.
1228  *
1229  *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1230  *   returned is always nanoseconds per tick.
1231  *
1232  *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1233  *   returned is always one nanosecond under the assumption that the
1234  *   underlying scheduler clock has a better resolution than nanoseconds
1235  *   per tick.
1236  *
1237  *   For dynamic POSIX clocks (PTP devices) the resolution returned is
1238  *   always one nanosecond.
1239  *
1240  * 2) Affect on sys_clock_settime()
1241  *
1242  *    The kernel does not truncate the time which is handed in to
1243  *    sys_clock_settime(). The kernel internal timekeeping is always using
1244  *    nanoseconds precision independent of the clocksource device which is
1245  *    used to read the time from. The resolution of that device only
1246  *    affects the presicion of the time returned by sys_clock_gettime().
1247  *
1248  * Returns:
1249  *	0		Success. @tp contains the resolution
1250  *	-EINVAL		@which_clock is not a valid clock ID
1251  *	-EFAULT		Copying the resolution to @tp faulted
1252  *	-ENODEV		Dynamic POSIX clock is not backed by a device
1253  *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
1254  */
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1255 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1256 		struct __kernel_timespec __user *, tp)
1257 {
1258 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1259 	struct timespec64 rtn_tp;
1260 	int error;
1261 
1262 	if (!kc)
1263 		return -EINVAL;
1264 
1265 	error = kc->clock_getres(which_clock, &rtn_tp);
1266 
1267 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1268 		error = -EFAULT;
1269 
1270 	return error;
1271 }
1272 
1273 #ifdef CONFIG_COMPAT_32BIT_TIME
1274 
SYSCALL_DEFINE2(clock_settime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1275 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1276 		struct old_timespec32 __user *, tp)
1277 {
1278 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1279 	struct timespec64 ts;
1280 
1281 	if (!kc || !kc->clock_set)
1282 		return -EINVAL;
1283 
1284 	if (get_old_timespec32(&ts, tp))
1285 		return -EFAULT;
1286 
1287 	return kc->clock_set(which_clock, &ts);
1288 }
1289 
SYSCALL_DEFINE2(clock_gettime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1290 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1291 		struct old_timespec32 __user *, tp)
1292 {
1293 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1294 	struct timespec64 ts;
1295 	int err;
1296 
1297 	if (!kc)
1298 		return -EINVAL;
1299 
1300 	err = kc->clock_get_timespec(which_clock, &ts);
1301 
1302 	if (!err && put_old_timespec32(&ts, tp))
1303 		err = -EFAULT;
1304 
1305 	return err;
1306 }
1307 
SYSCALL_DEFINE2(clock_adjtime32,clockid_t,which_clock,struct old_timex32 __user *,utp)1308 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1309 		struct old_timex32 __user *, utp)
1310 {
1311 	struct __kernel_timex ktx;
1312 	int err;
1313 
1314 	err = get_old_timex32(&ktx, utp);
1315 	if (err)
1316 		return err;
1317 
1318 	err = do_clock_adjtime(which_clock, &ktx);
1319 
1320 	if (err >= 0 && put_old_timex32(utp, &ktx))
1321 		return -EFAULT;
1322 
1323 	return err;
1324 }
1325 
SYSCALL_DEFINE2(clock_getres_time32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1326 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1327 		struct old_timespec32 __user *, tp)
1328 {
1329 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1330 	struct timespec64 ts;
1331 	int err;
1332 
1333 	if (!kc)
1334 		return -EINVAL;
1335 
1336 	err = kc->clock_getres(which_clock, &ts);
1337 	if (!err && tp && put_old_timespec32(&ts, tp))
1338 		return -EFAULT;
1339 
1340 	return err;
1341 }
1342 
1343 #endif
1344 
1345 /*
1346  * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1347  */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1348 static int common_nsleep(const clockid_t which_clock, int flags,
1349 			 const struct timespec64 *rqtp)
1350 {
1351 	ktime_t texp = timespec64_to_ktime(*rqtp);
1352 
1353 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1354 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1355 				 which_clock);
1356 }
1357 
1358 /*
1359  * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1360  *
1361  * Absolute nanosleeps for these clocks are time-namespace adjusted.
1362  */
common_nsleep_timens(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1363 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1364 				const struct timespec64 *rqtp)
1365 {
1366 	ktime_t texp = timespec64_to_ktime(*rqtp);
1367 
1368 	if (flags & TIMER_ABSTIME)
1369 		texp = timens_ktime_to_host(which_clock, texp);
1370 
1371 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1372 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1373 				 which_clock);
1374 }
1375 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1376 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1377 		const struct __kernel_timespec __user *, rqtp,
1378 		struct __kernel_timespec __user *, rmtp)
1379 {
1380 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1381 	struct timespec64 t;
1382 
1383 	if (!kc)
1384 		return -EINVAL;
1385 	if (!kc->nsleep)
1386 		return -EOPNOTSUPP;
1387 
1388 	if (get_timespec64(&t, rqtp))
1389 		return -EFAULT;
1390 
1391 	if (!timespec64_valid(&t))
1392 		return -EINVAL;
1393 	if (flags & TIMER_ABSTIME)
1394 		rmtp = NULL;
1395 	current->restart_block.fn = do_no_restart_syscall;
1396 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1397 	current->restart_block.nanosleep.rmtp = rmtp;
1398 
1399 	return kc->nsleep(which_clock, flags, &t);
1400 }
1401 
1402 #ifdef CONFIG_COMPAT_32BIT_TIME
1403 
SYSCALL_DEFINE4(clock_nanosleep_time32,clockid_t,which_clock,int,flags,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)1404 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1405 		struct old_timespec32 __user *, rqtp,
1406 		struct old_timespec32 __user *, rmtp)
1407 {
1408 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1409 	struct timespec64 t;
1410 
1411 	if (!kc)
1412 		return -EINVAL;
1413 	if (!kc->nsleep)
1414 		return -EOPNOTSUPP;
1415 
1416 	if (get_old_timespec32(&t, rqtp))
1417 		return -EFAULT;
1418 
1419 	if (!timespec64_valid(&t))
1420 		return -EINVAL;
1421 	if (flags & TIMER_ABSTIME)
1422 		rmtp = NULL;
1423 	current->restart_block.fn = do_no_restart_syscall;
1424 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1425 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1426 
1427 	return kc->nsleep(which_clock, flags, &t);
1428 }
1429 
1430 #endif
1431 
1432 static const struct k_clock clock_realtime = {
1433 	.clock_getres		= posix_get_hrtimer_res,
1434 	.clock_get_timespec	= posix_get_realtime_timespec,
1435 	.clock_get_ktime	= posix_get_realtime_ktime,
1436 	.clock_set		= posix_clock_realtime_set,
1437 	.clock_adj		= posix_clock_realtime_adj,
1438 	.nsleep			= common_nsleep,
1439 	.timer_create		= common_timer_create,
1440 	.timer_set		= common_timer_set,
1441 	.timer_get		= common_timer_get,
1442 	.timer_del		= common_timer_del,
1443 	.timer_rearm		= common_hrtimer_rearm,
1444 	.timer_forward		= common_hrtimer_forward,
1445 	.timer_remaining	= common_hrtimer_remaining,
1446 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1447 	.timer_wait_running	= common_timer_wait_running,
1448 	.timer_arm		= common_hrtimer_arm,
1449 };
1450 
1451 static const struct k_clock clock_monotonic = {
1452 	.clock_getres		= posix_get_hrtimer_res,
1453 	.clock_get_timespec	= posix_get_monotonic_timespec,
1454 	.clock_get_ktime	= posix_get_monotonic_ktime,
1455 	.nsleep			= common_nsleep_timens,
1456 	.timer_create		= common_timer_create,
1457 	.timer_set		= common_timer_set,
1458 	.timer_get		= common_timer_get,
1459 	.timer_del		= common_timer_del,
1460 	.timer_rearm		= common_hrtimer_rearm,
1461 	.timer_forward		= common_hrtimer_forward,
1462 	.timer_remaining	= common_hrtimer_remaining,
1463 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1464 	.timer_wait_running	= common_timer_wait_running,
1465 	.timer_arm		= common_hrtimer_arm,
1466 };
1467 
1468 static const struct k_clock clock_monotonic_raw = {
1469 	.clock_getres		= posix_get_hrtimer_res,
1470 	.clock_get_timespec	= posix_get_monotonic_raw,
1471 };
1472 
1473 static const struct k_clock clock_realtime_coarse = {
1474 	.clock_getres		= posix_get_coarse_res,
1475 	.clock_get_timespec	= posix_get_realtime_coarse,
1476 };
1477 
1478 static const struct k_clock clock_monotonic_coarse = {
1479 	.clock_getres		= posix_get_coarse_res,
1480 	.clock_get_timespec	= posix_get_monotonic_coarse,
1481 };
1482 
1483 static const struct k_clock clock_tai = {
1484 	.clock_getres		= posix_get_hrtimer_res,
1485 	.clock_get_ktime	= posix_get_tai_ktime,
1486 	.clock_get_timespec	= posix_get_tai_timespec,
1487 	.nsleep			= common_nsleep,
1488 	.timer_create		= common_timer_create,
1489 	.timer_set		= common_timer_set,
1490 	.timer_get		= common_timer_get,
1491 	.timer_del		= common_timer_del,
1492 	.timer_rearm		= common_hrtimer_rearm,
1493 	.timer_forward		= common_hrtimer_forward,
1494 	.timer_remaining	= common_hrtimer_remaining,
1495 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1496 	.timer_wait_running	= common_timer_wait_running,
1497 	.timer_arm		= common_hrtimer_arm,
1498 };
1499 
1500 static const struct k_clock clock_boottime = {
1501 	.clock_getres		= posix_get_hrtimer_res,
1502 	.clock_get_ktime	= posix_get_boottime_ktime,
1503 	.clock_get_timespec	= posix_get_boottime_timespec,
1504 	.nsleep			= common_nsleep_timens,
1505 	.timer_create		= common_timer_create,
1506 	.timer_set		= common_timer_set,
1507 	.timer_get		= common_timer_get,
1508 	.timer_del		= common_timer_del,
1509 	.timer_rearm		= common_hrtimer_rearm,
1510 	.timer_forward		= common_hrtimer_forward,
1511 	.timer_remaining	= common_hrtimer_remaining,
1512 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1513 	.timer_wait_running	= common_timer_wait_running,
1514 	.timer_arm		= common_hrtimer_arm,
1515 };
1516 
1517 static const struct k_clock * const posix_clocks[] = {
1518 	[CLOCK_REALTIME]		= &clock_realtime,
1519 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1520 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1521 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1522 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1523 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1524 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1525 	[CLOCK_BOOTTIME]		= &clock_boottime,
1526 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1527 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1528 	[CLOCK_TAI]			= &clock_tai,
1529 };
1530 
clockid_to_kclock(const clockid_t id)1531 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1532 {
1533 	clockid_t idx = id;
1534 
1535 	if (id < 0) {
1536 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1537 			&clock_posix_dynamic : &clock_posix_cpu;
1538 	}
1539 
1540 	if (id >= ARRAY_SIZE(posix_clocks))
1541 		return NULL;
1542 
1543 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1544 }
1545 
posixtimer_init(void)1546 static int __init posixtimer_init(void)
1547 {
1548 	unsigned long i, size;
1549 	unsigned int shift;
1550 
1551 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
1552 					       sizeof(struct k_itimer),
1553 					       __alignof__(struct k_itimer),
1554 					       SLAB_ACCOUNT, NULL);
1555 
1556 	if (IS_ENABLED(CONFIG_BASE_SMALL))
1557 		size = 512;
1558 	else
1559 		size = roundup_pow_of_two(512 * num_possible_cpus());
1560 
1561 	timer_buckets = alloc_large_system_hash("posixtimers", sizeof(*timer_buckets),
1562 						size, 0, 0, &shift, NULL, size, size);
1563 	size = 1UL << shift;
1564 	timer_hashmask = size - 1;
1565 
1566 	for (i = 0; i < size; i++) {
1567 		spin_lock_init(&timer_buckets[i].lock);
1568 		INIT_HLIST_HEAD(&timer_buckets[i].head);
1569 	}
1570 	return 0;
1571 }
1572 core_initcall(posixtimer_init);
1573