xref: /linux/drivers/gpu/drm/xe/xe_guc_submit.c (revision 42bb9b630c4c6c0964cddca98d9d30aa992826de)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_submit.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "regs/xe_lrc_layout.h"
21 #include "xe_assert.h"
22 #include "xe_devcoredump.h"
23 #include "xe_device.h"
24 #include "xe_exec_queue.h"
25 #include "xe_force_wake.h"
26 #include "xe_gpu_scheduler.h"
27 #include "xe_gt.h"
28 #include "xe_gt_clock.h"
29 #include "xe_gt_printk.h"
30 #include "xe_guc.h"
31 #include "xe_guc_capture.h"
32 #include "xe_guc_ct.h"
33 #include "xe_guc_exec_queue_types.h"
34 #include "xe_guc_id_mgr.h"
35 #include "xe_guc_submit_types.h"
36 #include "xe_hw_engine.h"
37 #include "xe_hw_fence.h"
38 #include "xe_lrc.h"
39 #include "xe_macros.h"
40 #include "xe_map.h"
41 #include "xe_mocs.h"
42 #include "xe_pm.h"
43 #include "xe_ring_ops_types.h"
44 #include "xe_sched_job.h"
45 #include "xe_trace.h"
46 #include "xe_vm.h"
47 
48 static struct xe_guc *
exec_queue_to_guc(struct xe_exec_queue * q)49 exec_queue_to_guc(struct xe_exec_queue *q)
50 {
51 	return &q->gt->uc.guc;
52 }
53 
54 /*
55  * Helpers for engine state, using an atomic as some of the bits can transition
56  * as the same time (e.g. a suspend can be happning at the same time as schedule
57  * engine done being processed).
58  */
59 #define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
60 #define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
61 #define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
62 #define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
63 #define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
64 #define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
65 #define EXEC_QUEUE_STATE_RESET			(1 << 6)
66 #define EXEC_QUEUE_STATE_KILLED			(1 << 7)
67 #define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
68 #define EXEC_QUEUE_STATE_BANNED			(1 << 9)
69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
70 #define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
71 
exec_queue_registered(struct xe_exec_queue * q)72 static bool exec_queue_registered(struct xe_exec_queue *q)
73 {
74 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
75 }
76 
set_exec_queue_registered(struct xe_exec_queue * q)77 static void set_exec_queue_registered(struct xe_exec_queue *q)
78 {
79 	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
80 }
81 
clear_exec_queue_registered(struct xe_exec_queue * q)82 static void clear_exec_queue_registered(struct xe_exec_queue *q)
83 {
84 	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
85 }
86 
exec_queue_enabled(struct xe_exec_queue * q)87 static bool exec_queue_enabled(struct xe_exec_queue *q)
88 {
89 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
90 }
91 
set_exec_queue_enabled(struct xe_exec_queue * q)92 static void set_exec_queue_enabled(struct xe_exec_queue *q)
93 {
94 	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
95 }
96 
clear_exec_queue_enabled(struct xe_exec_queue * q)97 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
98 {
99 	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
100 }
101 
exec_queue_pending_enable(struct xe_exec_queue * q)102 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
103 {
104 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
105 }
106 
set_exec_queue_pending_enable(struct xe_exec_queue * q)107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
108 {
109 	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
110 }
111 
clear_exec_queue_pending_enable(struct xe_exec_queue * q)112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
113 {
114 	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
115 }
116 
exec_queue_pending_disable(struct xe_exec_queue * q)117 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
118 {
119 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
120 }
121 
set_exec_queue_pending_disable(struct xe_exec_queue * q)122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
123 {
124 	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
125 }
126 
clear_exec_queue_pending_disable(struct xe_exec_queue * q)127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
128 {
129 	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
130 }
131 
exec_queue_destroyed(struct xe_exec_queue * q)132 static bool exec_queue_destroyed(struct xe_exec_queue *q)
133 {
134 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
135 }
136 
set_exec_queue_destroyed(struct xe_exec_queue * q)137 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
138 {
139 	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
140 }
141 
exec_queue_banned(struct xe_exec_queue * q)142 static bool exec_queue_banned(struct xe_exec_queue *q)
143 {
144 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
145 }
146 
set_exec_queue_banned(struct xe_exec_queue * q)147 static void set_exec_queue_banned(struct xe_exec_queue *q)
148 {
149 	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
150 }
151 
exec_queue_suspended(struct xe_exec_queue * q)152 static bool exec_queue_suspended(struct xe_exec_queue *q)
153 {
154 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
155 }
156 
set_exec_queue_suspended(struct xe_exec_queue * q)157 static void set_exec_queue_suspended(struct xe_exec_queue *q)
158 {
159 	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
160 }
161 
clear_exec_queue_suspended(struct xe_exec_queue * q)162 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
163 {
164 	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
165 }
166 
exec_queue_reset(struct xe_exec_queue * q)167 static bool exec_queue_reset(struct xe_exec_queue *q)
168 {
169 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
170 }
171 
set_exec_queue_reset(struct xe_exec_queue * q)172 static void set_exec_queue_reset(struct xe_exec_queue *q)
173 {
174 	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
175 }
176 
exec_queue_killed(struct xe_exec_queue * q)177 static bool exec_queue_killed(struct xe_exec_queue *q)
178 {
179 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
180 }
181 
set_exec_queue_killed(struct xe_exec_queue * q)182 static void set_exec_queue_killed(struct xe_exec_queue *q)
183 {
184 	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
185 }
186 
exec_queue_wedged(struct xe_exec_queue * q)187 static bool exec_queue_wedged(struct xe_exec_queue *q)
188 {
189 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
190 }
191 
set_exec_queue_wedged(struct xe_exec_queue * q)192 static void set_exec_queue_wedged(struct xe_exec_queue *q)
193 {
194 	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
195 }
196 
exec_queue_check_timeout(struct xe_exec_queue * q)197 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
198 {
199 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
200 }
201 
set_exec_queue_check_timeout(struct xe_exec_queue * q)202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
203 {
204 	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
205 }
206 
clear_exec_queue_check_timeout(struct xe_exec_queue * q)207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
208 {
209 	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
210 }
211 
exec_queue_extra_ref(struct xe_exec_queue * q)212 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
213 {
214 	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
215 }
216 
set_exec_queue_extra_ref(struct xe_exec_queue * q)217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
218 {
219 	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
220 }
221 
exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue * q)222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
223 {
224 	return (atomic_read(&q->guc->state) &
225 		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
226 		 EXEC_QUEUE_STATE_BANNED));
227 }
228 
guc_submit_fini(struct drm_device * drm,void * arg)229 static void guc_submit_fini(struct drm_device *drm, void *arg)
230 {
231 	struct xe_guc *guc = arg;
232 	struct xe_device *xe = guc_to_xe(guc);
233 	struct xe_gt *gt = guc_to_gt(guc);
234 	int ret;
235 
236 	ret = wait_event_timeout(guc->submission_state.fini_wq,
237 				 xa_empty(&guc->submission_state.exec_queue_lookup),
238 				 HZ * 5);
239 
240 	drain_workqueue(xe->destroy_wq);
241 
242 	xe_gt_assert(gt, ret);
243 
244 	xa_destroy(&guc->submission_state.exec_queue_lookup);
245 }
246 
guc_submit_wedged_fini(void * arg)247 static void guc_submit_wedged_fini(void *arg)
248 {
249 	struct xe_guc *guc = arg;
250 	struct xe_exec_queue *q;
251 	unsigned long index;
252 
253 	mutex_lock(&guc->submission_state.lock);
254 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
255 		if (exec_queue_wedged(q)) {
256 			mutex_unlock(&guc->submission_state.lock);
257 			xe_exec_queue_put(q);
258 			mutex_lock(&guc->submission_state.lock);
259 		}
260 	}
261 	mutex_unlock(&guc->submission_state.lock);
262 }
263 
264 static const struct xe_exec_queue_ops guc_exec_queue_ops;
265 
primelockdep(struct xe_guc * guc)266 static void primelockdep(struct xe_guc *guc)
267 {
268 	if (!IS_ENABLED(CONFIG_LOCKDEP))
269 		return;
270 
271 	fs_reclaim_acquire(GFP_KERNEL);
272 
273 	mutex_lock(&guc->submission_state.lock);
274 	mutex_unlock(&guc->submission_state.lock);
275 
276 	fs_reclaim_release(GFP_KERNEL);
277 }
278 
279 /**
280  * xe_guc_submit_init() - Initialize GuC submission.
281  * @guc: the &xe_guc to initialize
282  * @num_ids: number of GuC context IDs to use
283  *
284  * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
285  * GuC context IDs supported by the GuC firmware should be used for submission.
286  *
287  * Only VF drivers will have to provide explicit number of GuC context IDs
288  * that they can use for submission.
289  *
290  * Return: 0 on success or a negative error code on failure.
291  */
xe_guc_submit_init(struct xe_guc * guc,unsigned int num_ids)292 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
293 {
294 	struct xe_device *xe = guc_to_xe(guc);
295 	struct xe_gt *gt = guc_to_gt(guc);
296 	int err;
297 
298 	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
299 	if (err)
300 		return err;
301 
302 	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
303 	if (err)
304 		return err;
305 
306 	gt->exec_queue_ops = &guc_exec_queue_ops;
307 
308 	xa_init(&guc->submission_state.exec_queue_lookup);
309 
310 	init_waitqueue_head(&guc->submission_state.fini_wq);
311 
312 	primelockdep(guc);
313 
314 	guc->submission_state.initialized = true;
315 
316 	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
317 }
318 
__release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q,u32 xa_count)319 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
320 {
321 	int i;
322 
323 	lockdep_assert_held(&guc->submission_state.lock);
324 
325 	for (i = 0; i < xa_count; ++i)
326 		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
327 
328 	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
329 				     q->guc->id, q->width);
330 
331 	if (xa_empty(&guc->submission_state.exec_queue_lookup))
332 		wake_up(&guc->submission_state.fini_wq);
333 }
334 
alloc_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)335 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
336 {
337 	int ret;
338 	int i;
339 
340 	/*
341 	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
342 	 * worse case user gets -ENOMEM on engine create and has to try again.
343 	 *
344 	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
345 	 * failure.
346 	 */
347 	lockdep_assert_held(&guc->submission_state.lock);
348 
349 	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
350 					   q->width);
351 	if (ret < 0)
352 		return ret;
353 
354 	q->guc->id = ret;
355 
356 	for (i = 0; i < q->width; ++i) {
357 		ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
358 				      q->guc->id + i, q, GFP_NOWAIT));
359 		if (ret)
360 			goto err_release;
361 	}
362 
363 	return 0;
364 
365 err_release:
366 	__release_guc_id(guc, q, i);
367 
368 	return ret;
369 }
370 
release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)371 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
372 {
373 	mutex_lock(&guc->submission_state.lock);
374 	__release_guc_id(guc, q, q->width);
375 	mutex_unlock(&guc->submission_state.lock);
376 }
377 
378 struct exec_queue_policy {
379 	u32 count;
380 	struct guc_update_exec_queue_policy h2g;
381 };
382 
__guc_exec_queue_policy_action_size(struct exec_queue_policy * policy)383 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
384 {
385 	size_t bytes = sizeof(policy->h2g.header) +
386 		       (sizeof(policy->h2g.klv[0]) * policy->count);
387 
388 	return bytes / sizeof(u32);
389 }
390 
__guc_exec_queue_policy_start_klv(struct exec_queue_policy * policy,u16 guc_id)391 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
392 					      u16 guc_id)
393 {
394 	policy->h2g.header.action =
395 		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
396 	policy->h2g.header.guc_id = guc_id;
397 	policy->count = 0;
398 }
399 
400 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
401 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
402 					   u32 data) \
403 { \
404 	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
405 \
406 	policy->h2g.klv[policy->count].kl = \
407 		FIELD_PREP(GUC_KLV_0_KEY, \
408 			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
409 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
410 	policy->h2g.klv[policy->count].value = data; \
411 	policy->count++; \
412 }
413 
414 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
415 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
416 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
417 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY)
418 #undef MAKE_EXEC_QUEUE_POLICY_ADD
419 
420 static const int xe_exec_queue_prio_to_guc[] = {
421 	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
422 	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
423 	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
424 	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
425 };
426 
init_policies(struct xe_guc * guc,struct xe_exec_queue * q)427 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
428 {
429 	struct exec_queue_policy policy;
430 	enum xe_exec_queue_priority prio = q->sched_props.priority;
431 	u32 timeslice_us = q->sched_props.timeslice_us;
432 	u32 slpc_exec_queue_freq_req = 0;
433 	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
434 
435 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
436 
437 	if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY)
438 		slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
439 
440 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
441 	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
442 	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
443 	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
444 	__guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy,
445 							     slpc_exec_queue_freq_req);
446 
447 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
448 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
449 }
450 
set_min_preemption_timeout(struct xe_guc * guc,struct xe_exec_queue * q)451 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
452 {
453 	struct exec_queue_policy policy;
454 
455 	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
456 	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
457 
458 	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
459 		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
460 }
461 
462 #define parallel_read(xe_, map_, field_) \
463 	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
464 			field_)
465 #define parallel_write(xe_, map_, field_, val_) \
466 	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
467 			field_, val_)
468 
__register_mlrc_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q,struct guc_ctxt_registration_info * info)469 static void __register_mlrc_exec_queue(struct xe_guc *guc,
470 				       struct xe_exec_queue *q,
471 				       struct guc_ctxt_registration_info *info)
472 {
473 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
474 	u32 action[MAX_MLRC_REG_SIZE];
475 	int len = 0;
476 	int i;
477 
478 	xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q));
479 
480 	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
481 	action[len++] = info->flags;
482 	action[len++] = info->context_idx;
483 	action[len++] = info->engine_class;
484 	action[len++] = info->engine_submit_mask;
485 	action[len++] = info->wq_desc_lo;
486 	action[len++] = info->wq_desc_hi;
487 	action[len++] = info->wq_base_lo;
488 	action[len++] = info->wq_base_hi;
489 	action[len++] = info->wq_size;
490 	action[len++] = q->width;
491 	action[len++] = info->hwlrca_lo;
492 	action[len++] = info->hwlrca_hi;
493 
494 	for (i = 1; i < q->width; ++i) {
495 		struct xe_lrc *lrc = q->lrc[i];
496 
497 		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
498 		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
499 	}
500 
501 	xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE);
502 #undef MAX_MLRC_REG_SIZE
503 
504 	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
505 }
506 
__register_exec_queue(struct xe_guc * guc,struct guc_ctxt_registration_info * info)507 static void __register_exec_queue(struct xe_guc *guc,
508 				  struct guc_ctxt_registration_info *info)
509 {
510 	u32 action[] = {
511 		XE_GUC_ACTION_REGISTER_CONTEXT,
512 		info->flags,
513 		info->context_idx,
514 		info->engine_class,
515 		info->engine_submit_mask,
516 		info->wq_desc_lo,
517 		info->wq_desc_hi,
518 		info->wq_base_lo,
519 		info->wq_base_hi,
520 		info->wq_size,
521 		info->hwlrca_lo,
522 		info->hwlrca_hi,
523 	};
524 
525 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
526 }
527 
register_exec_queue(struct xe_exec_queue * q)528 static void register_exec_queue(struct xe_exec_queue *q)
529 {
530 	struct xe_guc *guc = exec_queue_to_guc(q);
531 	struct xe_device *xe = guc_to_xe(guc);
532 	struct xe_lrc *lrc = q->lrc[0];
533 	struct guc_ctxt_registration_info info;
534 
535 	xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q));
536 
537 	memset(&info, 0, sizeof(info));
538 	info.context_idx = q->guc->id;
539 	info.engine_class = xe_engine_class_to_guc_class(q->class);
540 	info.engine_submit_mask = q->logical_mask;
541 	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
542 	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
543 	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
544 
545 	if (xe_exec_queue_is_parallel(q)) {
546 		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
547 		struct iosys_map map = xe_lrc_parallel_map(lrc);
548 
549 		info.wq_desc_lo = lower_32_bits(ggtt_addr +
550 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
551 		info.wq_desc_hi = upper_32_bits(ggtt_addr +
552 			offsetof(struct guc_submit_parallel_scratch, wq_desc));
553 		info.wq_base_lo = lower_32_bits(ggtt_addr +
554 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
555 		info.wq_base_hi = upper_32_bits(ggtt_addr +
556 			offsetof(struct guc_submit_parallel_scratch, wq[0]));
557 		info.wq_size = WQ_SIZE;
558 
559 		q->guc->wqi_head = 0;
560 		q->guc->wqi_tail = 0;
561 		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
562 		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
563 	}
564 
565 	/*
566 	 * We must keep a reference for LR engines if engine is registered with
567 	 * the GuC as jobs signal immediately and can't destroy an engine if the
568 	 * GuC has a reference to it.
569 	 */
570 	if (xe_exec_queue_is_lr(q))
571 		xe_exec_queue_get(q);
572 
573 	set_exec_queue_registered(q);
574 	trace_xe_exec_queue_register(q);
575 	if (xe_exec_queue_is_parallel(q))
576 		__register_mlrc_exec_queue(guc, q, &info);
577 	else
578 		__register_exec_queue(guc, &info);
579 	init_policies(guc, q);
580 }
581 
wq_space_until_wrap(struct xe_exec_queue * q)582 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
583 {
584 	return (WQ_SIZE - q->guc->wqi_tail);
585 }
586 
wq_wait_for_space(struct xe_exec_queue * q,u32 wqi_size)587 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
588 {
589 	struct xe_guc *guc = exec_queue_to_guc(q);
590 	struct xe_device *xe = guc_to_xe(guc);
591 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
592 	unsigned int sleep_period_ms = 1;
593 
594 #define AVAILABLE_SPACE \
595 	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
596 	if (wqi_size > AVAILABLE_SPACE) {
597 try_again:
598 		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
599 		if (wqi_size > AVAILABLE_SPACE) {
600 			if (sleep_period_ms == 1024) {
601 				xe_gt_reset_async(q->gt);
602 				return -ENODEV;
603 			}
604 
605 			msleep(sleep_period_ms);
606 			sleep_period_ms <<= 1;
607 			goto try_again;
608 		}
609 	}
610 #undef AVAILABLE_SPACE
611 
612 	return 0;
613 }
614 
wq_noop_append(struct xe_exec_queue * q)615 static int wq_noop_append(struct xe_exec_queue *q)
616 {
617 	struct xe_guc *guc = exec_queue_to_guc(q);
618 	struct xe_device *xe = guc_to_xe(guc);
619 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
620 	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
621 
622 	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
623 		return -ENODEV;
624 
625 	xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw));
626 
627 	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
628 		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
629 		       FIELD_PREP(WQ_LEN_MASK, len_dw));
630 	q->guc->wqi_tail = 0;
631 
632 	return 0;
633 }
634 
wq_item_append(struct xe_exec_queue * q)635 static void wq_item_append(struct xe_exec_queue *q)
636 {
637 	struct xe_guc *guc = exec_queue_to_guc(q);
638 	struct xe_device *xe = guc_to_xe(guc);
639 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
640 #define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
641 	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
642 	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
643 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
644 	int i = 0, j;
645 
646 	if (wqi_size > wq_space_until_wrap(q)) {
647 		if (wq_noop_append(q))
648 			return;
649 	}
650 	if (wq_wait_for_space(q, wqi_size))
651 		return;
652 
653 	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
654 		FIELD_PREP(WQ_LEN_MASK, len_dw);
655 	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
656 	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
657 		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
658 	wqi[i++] = 0;
659 	for (j = 1; j < q->width; ++j) {
660 		struct xe_lrc *lrc = q->lrc[j];
661 
662 		wqi[i++] = lrc->ring.tail / sizeof(u64);
663 	}
664 
665 	xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32));
666 
667 	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
668 				      wq[q->guc->wqi_tail / sizeof(u32)]));
669 	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
670 	q->guc->wqi_tail += wqi_size;
671 	xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE);
672 
673 	xe_device_wmb(xe);
674 
675 	map = xe_lrc_parallel_map(q->lrc[0]);
676 	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
677 }
678 
679 #define RESUME_PENDING	~0x0ull
submit_exec_queue(struct xe_exec_queue * q)680 static void submit_exec_queue(struct xe_exec_queue *q)
681 {
682 	struct xe_guc *guc = exec_queue_to_guc(q);
683 	struct xe_lrc *lrc = q->lrc[0];
684 	u32 action[3];
685 	u32 g2h_len = 0;
686 	u32 num_g2h = 0;
687 	int len = 0;
688 	bool extra_submit = false;
689 
690 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
691 
692 	if (xe_exec_queue_is_parallel(q))
693 		wq_item_append(q);
694 	else
695 		xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
696 
697 	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
698 		return;
699 
700 	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
701 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
702 		action[len++] = q->guc->id;
703 		action[len++] = GUC_CONTEXT_ENABLE;
704 		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
705 		num_g2h = 1;
706 		if (xe_exec_queue_is_parallel(q))
707 			extra_submit = true;
708 
709 		q->guc->resume_time = RESUME_PENDING;
710 		set_exec_queue_pending_enable(q);
711 		set_exec_queue_enabled(q);
712 		trace_xe_exec_queue_scheduling_enable(q);
713 	} else {
714 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
715 		action[len++] = q->guc->id;
716 		trace_xe_exec_queue_submit(q);
717 	}
718 
719 	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
720 
721 	if (extra_submit) {
722 		len = 0;
723 		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
724 		action[len++] = q->guc->id;
725 		trace_xe_exec_queue_submit(q);
726 
727 		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
728 	}
729 }
730 
731 static struct dma_fence *
guc_exec_queue_run_job(struct drm_sched_job * drm_job)732 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
733 {
734 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
735 	struct xe_exec_queue *q = job->q;
736 	struct xe_guc *guc = exec_queue_to_guc(q);
737 	struct dma_fence *fence = NULL;
738 	bool lr = xe_exec_queue_is_lr(q);
739 
740 	xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
741 		     exec_queue_banned(q) || exec_queue_suspended(q));
742 
743 	trace_xe_sched_job_run(job);
744 
745 	if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
746 		if (!exec_queue_registered(q))
747 			register_exec_queue(q);
748 		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
749 			q->ring_ops->emit_job(job);
750 		submit_exec_queue(q);
751 	}
752 
753 	if (lr) {
754 		xe_sched_job_set_error(job, -EOPNOTSUPP);
755 		dma_fence_put(job->fence);	/* Drop ref from xe_sched_job_arm */
756 	} else {
757 		fence = job->fence;
758 	}
759 
760 	return fence;
761 }
762 
guc_exec_queue_free_job(struct drm_sched_job * drm_job)763 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
764 {
765 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
766 
767 	trace_xe_sched_job_free(job);
768 	xe_sched_job_put(job);
769 }
770 
xe_guc_read_stopped(struct xe_guc * guc)771 int xe_guc_read_stopped(struct xe_guc *guc)
772 {
773 	return atomic_read(&guc->submission_state.stopped);
774 }
775 
776 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
777 	u32 action[] = {						\
778 		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
779 		q->guc->id,						\
780 		GUC_CONTEXT_##enable_disable,				\
781 	}
782 
disable_scheduling_deregister(struct xe_guc * guc,struct xe_exec_queue * q)783 static void disable_scheduling_deregister(struct xe_guc *guc,
784 					  struct xe_exec_queue *q)
785 {
786 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
787 	int ret;
788 
789 	set_min_preemption_timeout(guc, q);
790 	smp_rmb();
791 	ret = wait_event_timeout(guc->ct.wq,
792 				 (!exec_queue_pending_enable(q) &&
793 				  !exec_queue_pending_disable(q)) ||
794 					 xe_guc_read_stopped(guc),
795 				 HZ * 5);
796 	if (!ret) {
797 		struct xe_gpu_scheduler *sched = &q->guc->sched;
798 
799 		xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
800 		xe_sched_submission_start(sched);
801 		xe_gt_reset_async(q->gt);
802 		xe_sched_tdr_queue_imm(sched);
803 		return;
804 	}
805 
806 	clear_exec_queue_enabled(q);
807 	set_exec_queue_pending_disable(q);
808 	set_exec_queue_destroyed(q);
809 	trace_xe_exec_queue_scheduling_disable(q);
810 
811 	/*
812 	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
813 	 * handler and we are not allowed to reserved G2H space in handlers.
814 	 */
815 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
816 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
817 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
818 }
819 
xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue * q)820 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
821 {
822 	struct xe_guc *guc = exec_queue_to_guc(q);
823 	struct xe_device *xe = guc_to_xe(guc);
824 
825 	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
826 	wake_up_all(&xe->ufence_wq);
827 
828 	if (xe_exec_queue_is_lr(q))
829 		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
830 	else
831 		xe_sched_tdr_queue_imm(&q->guc->sched);
832 }
833 
834 /**
835  * xe_guc_submit_wedge() - Wedge GuC submission
836  * @guc: the GuC object
837  *
838  * Save exec queue's registered with GuC state by taking a ref to each queue.
839  * Register a DRMM handler to drop refs upon driver unload.
840  */
xe_guc_submit_wedge(struct xe_guc * guc)841 void xe_guc_submit_wedge(struct xe_guc *guc)
842 {
843 	struct xe_gt *gt = guc_to_gt(guc);
844 	struct xe_exec_queue *q;
845 	unsigned long index;
846 	int err;
847 
848 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
849 
850 	/*
851 	 * If device is being wedged even before submission_state is
852 	 * initialized, there's nothing to do here.
853 	 */
854 	if (!guc->submission_state.initialized)
855 		return;
856 
857 	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
858 				       guc_submit_wedged_fini, guc);
859 	if (err) {
860 		xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; "
861 			  "Although device is wedged.\n");
862 		return;
863 	}
864 
865 	mutex_lock(&guc->submission_state.lock);
866 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
867 		if (xe_exec_queue_get_unless_zero(q))
868 			set_exec_queue_wedged(q);
869 	mutex_unlock(&guc->submission_state.lock);
870 }
871 
guc_submit_hint_wedged(struct xe_guc * guc)872 static bool guc_submit_hint_wedged(struct xe_guc *guc)
873 {
874 	struct xe_device *xe = guc_to_xe(guc);
875 
876 	if (xe->wedged.mode != 2)
877 		return false;
878 
879 	if (xe_device_wedged(xe))
880 		return true;
881 
882 	xe_device_declare_wedged(xe);
883 
884 	return true;
885 }
886 
xe_guc_exec_queue_lr_cleanup(struct work_struct * w)887 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
888 {
889 	struct xe_guc_exec_queue *ge =
890 		container_of(w, struct xe_guc_exec_queue, lr_tdr);
891 	struct xe_exec_queue *q = ge->q;
892 	struct xe_guc *guc = exec_queue_to_guc(q);
893 	struct xe_gpu_scheduler *sched = &ge->sched;
894 	bool wedged = false;
895 
896 	xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q));
897 	trace_xe_exec_queue_lr_cleanup(q);
898 
899 	if (!exec_queue_killed(q))
900 		wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
901 
902 	/* Kill the run_job / process_msg entry points */
903 	xe_sched_submission_stop(sched);
904 
905 	/*
906 	 * Engine state now mostly stable, disable scheduling / deregister if
907 	 * needed. This cleanup routine might be called multiple times, where
908 	 * the actual async engine deregister drops the final engine ref.
909 	 * Calling disable_scheduling_deregister will mark the engine as
910 	 * destroyed and fire off the CT requests to disable scheduling /
911 	 * deregister, which we only want to do once. We also don't want to mark
912 	 * the engine as pending_disable again as this may race with the
913 	 * xe_guc_deregister_done_handler() which treats it as an unexpected
914 	 * state.
915 	 */
916 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
917 		struct xe_guc *guc = exec_queue_to_guc(q);
918 		int ret;
919 
920 		set_exec_queue_banned(q);
921 		disable_scheduling_deregister(guc, q);
922 
923 		/*
924 		 * Must wait for scheduling to be disabled before signalling
925 		 * any fences, if GT broken the GT reset code should signal us.
926 		 */
927 		ret = wait_event_timeout(guc->ct.wq,
928 					 !exec_queue_pending_disable(q) ||
929 					 xe_guc_read_stopped(guc), HZ * 5);
930 		if (!ret) {
931 			xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n",
932 				   q->guc->id);
933 			xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n",
934 				       q->guc->id);
935 			xe_sched_submission_start(sched);
936 			xe_gt_reset_async(q->gt);
937 			return;
938 		}
939 	}
940 
941 	if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0]))
942 		xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id);
943 
944 	xe_sched_submission_start(sched);
945 }
946 
947 #define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
948 
check_timeout(struct xe_exec_queue * q,struct xe_sched_job * job)949 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
950 {
951 	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
952 	u32 ctx_timestamp, ctx_job_timestamp;
953 	u32 timeout_ms = q->sched_props.job_timeout_ms;
954 	u32 diff;
955 	u64 running_time_ms;
956 
957 	if (!xe_sched_job_started(job)) {
958 		xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
959 			   xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
960 			   q->guc->id);
961 
962 		return xe_sched_invalidate_job(job, 2);
963 	}
964 
965 	ctx_timestamp = lower_32_bits(xe_lrc_ctx_timestamp(q->lrc[0]));
966 	ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
967 
968 	/*
969 	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
970 	 * possible overflows with a high timeout.
971 	 */
972 	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
973 
974 	if (ctx_timestamp < ctx_job_timestamp)
975 		diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
976 	else
977 		diff = ctx_timestamp - ctx_job_timestamp;
978 
979 	/*
980 	 * Ensure timeout is within 5% to account for an GuC scheduling latency
981 	 */
982 	running_time_ms =
983 		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
984 
985 	xe_gt_dbg(gt,
986 		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
987 		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
988 		  q->guc->id, running_time_ms, timeout_ms, diff);
989 
990 	return running_time_ms >= timeout_ms;
991 }
992 
enable_scheduling(struct xe_exec_queue * q)993 static void enable_scheduling(struct xe_exec_queue *q)
994 {
995 	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
996 	struct xe_guc *guc = exec_queue_to_guc(q);
997 	int ret;
998 
999 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1000 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1001 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1002 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1003 
1004 	set_exec_queue_pending_enable(q);
1005 	set_exec_queue_enabled(q);
1006 	trace_xe_exec_queue_scheduling_enable(q);
1007 
1008 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1009 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1010 
1011 	ret = wait_event_timeout(guc->ct.wq,
1012 				 !exec_queue_pending_enable(q) ||
1013 				 xe_guc_read_stopped(guc), HZ * 5);
1014 	if (!ret || xe_guc_read_stopped(guc)) {
1015 		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
1016 		set_exec_queue_banned(q);
1017 		xe_gt_reset_async(q->gt);
1018 		xe_sched_tdr_queue_imm(&q->guc->sched);
1019 	}
1020 }
1021 
disable_scheduling(struct xe_exec_queue * q,bool immediate)1022 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1023 {
1024 	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1025 	struct xe_guc *guc = exec_queue_to_guc(q);
1026 
1027 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1028 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1029 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1030 
1031 	if (immediate)
1032 		set_min_preemption_timeout(guc, q);
1033 	clear_exec_queue_enabled(q);
1034 	set_exec_queue_pending_disable(q);
1035 	trace_xe_exec_queue_scheduling_disable(q);
1036 
1037 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1038 		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1039 }
1040 
__deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1041 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1042 {
1043 	u32 action[] = {
1044 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1045 		q->guc->id,
1046 	};
1047 
1048 	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1049 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1050 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1051 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1052 
1053 	set_exec_queue_destroyed(q);
1054 	trace_xe_exec_queue_deregister(q);
1055 
1056 	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1057 		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1058 }
1059 
1060 static enum drm_gpu_sched_stat
guc_exec_queue_timedout_job(struct drm_sched_job * drm_job)1061 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1062 {
1063 	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1064 	struct xe_sched_job *tmp_job;
1065 	struct xe_exec_queue *q = job->q;
1066 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1067 	struct xe_guc *guc = exec_queue_to_guc(q);
1068 	const char *process_name = "no process";
1069 	struct xe_device *xe = guc_to_xe(guc);
1070 	unsigned int fw_ref;
1071 	int err = -ETIME;
1072 	pid_t pid = -1;
1073 	int i = 0;
1074 	bool wedged = false, skip_timeout_check;
1075 
1076 	/*
1077 	 * TDR has fired before free job worker. Common if exec queue
1078 	 * immediately closed after last fence signaled. Add back to pending
1079 	 * list so job can be freed and kick scheduler ensuring free job is not
1080 	 * lost.
1081 	 */
1082 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1083 		xe_sched_add_pending_job(sched, job);
1084 		xe_sched_submission_start(sched);
1085 
1086 		return DRM_GPU_SCHED_STAT_NOMINAL;
1087 	}
1088 
1089 	/* Kill the run_job entry point */
1090 	xe_sched_submission_stop(sched);
1091 
1092 	/* Must check all state after stopping scheduler */
1093 	skip_timeout_check = exec_queue_reset(q) ||
1094 		exec_queue_killed_or_banned_or_wedged(q) ||
1095 		exec_queue_destroyed(q);
1096 
1097 	/*
1098 	 * If devcoredump not captured and GuC capture for the job is not ready
1099 	 * do manual capture first and decide later if we need to use it
1100 	 */
1101 	if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1102 	    !xe_guc_capture_get_matching_and_lock(q)) {
1103 		/* take force wake before engine register manual capture */
1104 		fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1105 		if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1106 			xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1107 
1108 		xe_engine_snapshot_capture_for_queue(q);
1109 
1110 		xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1111 	}
1112 
1113 	/*
1114 	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1115 	 * modify scheduling state to read timestamp. We could read the
1116 	 * timestamp from a register to accumulate current running time but this
1117 	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1118 	 * genuine timeouts.
1119 	 */
1120 	if (!exec_queue_killed(q))
1121 		wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1122 
1123 	/* Engine state now stable, disable scheduling to check timestamp */
1124 	if (!wedged && exec_queue_registered(q)) {
1125 		int ret;
1126 
1127 		if (exec_queue_reset(q))
1128 			err = -EIO;
1129 
1130 		if (!exec_queue_destroyed(q)) {
1131 			/*
1132 			 * Wait for any pending G2H to flush out before
1133 			 * modifying state
1134 			 */
1135 			ret = wait_event_timeout(guc->ct.wq,
1136 						 (!exec_queue_pending_enable(q) &&
1137 						  !exec_queue_pending_disable(q)) ||
1138 						 xe_guc_read_stopped(guc), HZ * 5);
1139 			if (!ret || xe_guc_read_stopped(guc))
1140 				goto trigger_reset;
1141 
1142 			/*
1143 			 * Flag communicates to G2H handler that schedule
1144 			 * disable originated from a timeout check. The G2H then
1145 			 * avoid triggering cleanup or deregistering the exec
1146 			 * queue.
1147 			 */
1148 			set_exec_queue_check_timeout(q);
1149 			disable_scheduling(q, skip_timeout_check);
1150 		}
1151 
1152 		/*
1153 		 * Must wait for scheduling to be disabled before signalling
1154 		 * any fences, if GT broken the GT reset code should signal us.
1155 		 *
1156 		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1157 		 * error) messages which can cause the schedule disable to get
1158 		 * lost. If this occurs, trigger a GT reset to recover.
1159 		 */
1160 		smp_rmb();
1161 		ret = wait_event_timeout(guc->ct.wq,
1162 					 !exec_queue_pending_disable(q) ||
1163 					 xe_guc_read_stopped(guc), HZ * 5);
1164 		if (!ret || xe_guc_read_stopped(guc)) {
1165 trigger_reset:
1166 			if (!ret)
1167 				xe_gt_warn(guc_to_gt(guc),
1168 					   "Schedule disable failed to respond, guc_id=%d",
1169 					   q->guc->id);
1170 			xe_devcoredump(q, job,
1171 				       "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d",
1172 				       q->guc->id, ret, xe_guc_read_stopped(guc));
1173 			set_exec_queue_extra_ref(q);
1174 			xe_exec_queue_get(q);	/* GT reset owns this */
1175 			set_exec_queue_banned(q);
1176 			xe_gt_reset_async(q->gt);
1177 			xe_sched_tdr_queue_imm(sched);
1178 			goto rearm;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Check if job is actually timed out, if so restart job execution and TDR
1184 	 */
1185 	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1186 	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1187 		clear_exec_queue_check_timeout(q);
1188 		goto sched_enable;
1189 	}
1190 
1191 	if (q->vm && q->vm->xef) {
1192 		process_name = q->vm->xef->process_name;
1193 		pid = q->vm->xef->pid;
1194 	}
1195 
1196 	if (!exec_queue_killed(q))
1197 		xe_gt_notice(guc_to_gt(guc),
1198 			     "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1199 			     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1200 			     q->guc->id, q->flags, process_name, pid);
1201 
1202 	trace_xe_sched_job_timedout(job);
1203 
1204 	if (!exec_queue_killed(q))
1205 		xe_devcoredump(q, job,
1206 			       "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx",
1207 			       xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1208 			       q->guc->id, q->flags);
1209 
1210 	/*
1211 	 * Kernel jobs should never fail, nor should VM jobs if they do
1212 	 * somethings has gone wrong and the GT needs a reset
1213 	 */
1214 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1215 		   "Kernel-submitted job timed out\n");
1216 	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1217 		   "VM job timed out on non-killed execqueue\n");
1218 	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1219 			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1220 		if (!xe_sched_invalidate_job(job, 2)) {
1221 			clear_exec_queue_check_timeout(q);
1222 			xe_gt_reset_async(q->gt);
1223 			goto rearm;
1224 		}
1225 	}
1226 
1227 	/* Finish cleaning up exec queue via deregister */
1228 	set_exec_queue_banned(q);
1229 	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1230 		set_exec_queue_extra_ref(q);
1231 		xe_exec_queue_get(q);
1232 		__deregister_exec_queue(guc, q);
1233 	}
1234 
1235 	/* Stop fence signaling */
1236 	xe_hw_fence_irq_stop(q->fence_irq);
1237 
1238 	/*
1239 	 * Fence state now stable, stop / start scheduler which cleans up any
1240 	 * fences that are complete
1241 	 */
1242 	xe_sched_add_pending_job(sched, job);
1243 	xe_sched_submission_start(sched);
1244 
1245 	xe_guc_exec_queue_trigger_cleanup(q);
1246 
1247 	/* Mark all outstanding jobs as bad, thus completing them */
1248 	spin_lock(&sched->base.job_list_lock);
1249 	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1250 		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1251 	spin_unlock(&sched->base.job_list_lock);
1252 
1253 	/* Start fence signaling */
1254 	xe_hw_fence_irq_start(q->fence_irq);
1255 
1256 	return DRM_GPU_SCHED_STAT_NOMINAL;
1257 
1258 sched_enable:
1259 	enable_scheduling(q);
1260 rearm:
1261 	/*
1262 	 * XXX: Ideally want to adjust timeout based on current execution time
1263 	 * but there is not currently an easy way to do in DRM scheduler. With
1264 	 * some thought, do this in a follow up.
1265 	 */
1266 	xe_sched_add_pending_job(sched, job);
1267 	xe_sched_submission_start(sched);
1268 
1269 	return DRM_GPU_SCHED_STAT_NOMINAL;
1270 }
1271 
__guc_exec_queue_fini_async(struct work_struct * w)1272 static void __guc_exec_queue_fini_async(struct work_struct *w)
1273 {
1274 	struct xe_guc_exec_queue *ge =
1275 		container_of(w, struct xe_guc_exec_queue, fini_async);
1276 	struct xe_exec_queue *q = ge->q;
1277 	struct xe_guc *guc = exec_queue_to_guc(q);
1278 
1279 	xe_pm_runtime_get(guc_to_xe(guc));
1280 	trace_xe_exec_queue_destroy(q);
1281 
1282 	release_guc_id(guc, q);
1283 	if (xe_exec_queue_is_lr(q))
1284 		cancel_work_sync(&ge->lr_tdr);
1285 	/* Confirm no work left behind accessing device structures */
1286 	cancel_delayed_work_sync(&ge->sched.base.work_tdr);
1287 	xe_sched_entity_fini(&ge->entity);
1288 	xe_sched_fini(&ge->sched);
1289 
1290 	kfree(ge);
1291 	xe_exec_queue_fini(q);
1292 	xe_pm_runtime_put(guc_to_xe(guc));
1293 }
1294 
guc_exec_queue_fini_async(struct xe_exec_queue * q)1295 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1296 {
1297 	struct xe_guc *guc = exec_queue_to_guc(q);
1298 	struct xe_device *xe = guc_to_xe(guc);
1299 
1300 	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1301 
1302 	/* We must block on kernel engines so slabs are empty on driver unload */
1303 	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1304 		__guc_exec_queue_fini_async(&q->guc->fini_async);
1305 	else
1306 		queue_work(xe->destroy_wq, &q->guc->fini_async);
1307 }
1308 
__guc_exec_queue_fini(struct xe_guc * guc,struct xe_exec_queue * q)1309 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1310 {
1311 	/*
1312 	 * Might be done from within the GPU scheduler, need to do async as we
1313 	 * fini the scheduler when the engine is fini'd, the scheduler can't
1314 	 * complete fini within itself (circular dependency). Async resolves
1315 	 * this we and don't really care when everything is fini'd, just that it
1316 	 * is.
1317 	 */
1318 	guc_exec_queue_fini_async(q);
1319 }
1320 
__guc_exec_queue_process_msg_cleanup(struct xe_sched_msg * msg)1321 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1322 {
1323 	struct xe_exec_queue *q = msg->private_data;
1324 	struct xe_guc *guc = exec_queue_to_guc(q);
1325 
1326 	xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1327 	trace_xe_exec_queue_cleanup_entity(q);
1328 
1329 	if (exec_queue_registered(q))
1330 		disable_scheduling_deregister(guc, q);
1331 	else
1332 		__guc_exec_queue_fini(guc, q);
1333 }
1334 
guc_exec_queue_allowed_to_change_state(struct xe_exec_queue * q)1335 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1336 {
1337 	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1338 }
1339 
__guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg * msg)1340 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1341 {
1342 	struct xe_exec_queue *q = msg->private_data;
1343 	struct xe_guc *guc = exec_queue_to_guc(q);
1344 
1345 	if (guc_exec_queue_allowed_to_change_state(q))
1346 		init_policies(guc, q);
1347 	kfree(msg);
1348 }
1349 
__suspend_fence_signal(struct xe_exec_queue * q)1350 static void __suspend_fence_signal(struct xe_exec_queue *q)
1351 {
1352 	if (!q->guc->suspend_pending)
1353 		return;
1354 
1355 	WRITE_ONCE(q->guc->suspend_pending, false);
1356 	wake_up(&q->guc->suspend_wait);
1357 }
1358 
suspend_fence_signal(struct xe_exec_queue * q)1359 static void suspend_fence_signal(struct xe_exec_queue *q)
1360 {
1361 	struct xe_guc *guc = exec_queue_to_guc(q);
1362 
1363 	xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) ||
1364 		     xe_guc_read_stopped(guc));
1365 	xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending);
1366 
1367 	__suspend_fence_signal(q);
1368 }
1369 
__guc_exec_queue_process_msg_suspend(struct xe_sched_msg * msg)1370 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1371 {
1372 	struct xe_exec_queue *q = msg->private_data;
1373 	struct xe_guc *guc = exec_queue_to_guc(q);
1374 
1375 	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1376 	    exec_queue_enabled(q)) {
1377 		wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1378 			   xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1379 
1380 		if (!xe_guc_read_stopped(guc)) {
1381 			s64 since_resume_ms =
1382 				ktime_ms_delta(ktime_get(),
1383 					       q->guc->resume_time);
1384 			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1385 				since_resume_ms;
1386 
1387 			if (wait_ms > 0 && q->guc->resume_time)
1388 				msleep(wait_ms);
1389 
1390 			set_exec_queue_suspended(q);
1391 			disable_scheduling(q, false);
1392 		}
1393 	} else if (q->guc->suspend_pending) {
1394 		set_exec_queue_suspended(q);
1395 		suspend_fence_signal(q);
1396 	}
1397 }
1398 
__guc_exec_queue_process_msg_resume(struct xe_sched_msg * msg)1399 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1400 {
1401 	struct xe_exec_queue *q = msg->private_data;
1402 
1403 	if (guc_exec_queue_allowed_to_change_state(q)) {
1404 		clear_exec_queue_suspended(q);
1405 		if (!exec_queue_enabled(q)) {
1406 			q->guc->resume_time = RESUME_PENDING;
1407 			enable_scheduling(q);
1408 		}
1409 	} else {
1410 		clear_exec_queue_suspended(q);
1411 	}
1412 }
1413 
1414 #define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1415 #define SET_SCHED_PROPS	2
1416 #define SUSPEND		3
1417 #define RESUME		4
1418 #define OPCODE_MASK	0xf
1419 #define MSG_LOCKED	BIT(8)
1420 
guc_exec_queue_process_msg(struct xe_sched_msg * msg)1421 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1422 {
1423 	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1424 
1425 	trace_xe_sched_msg_recv(msg);
1426 
1427 	switch (msg->opcode) {
1428 	case CLEANUP:
1429 		__guc_exec_queue_process_msg_cleanup(msg);
1430 		break;
1431 	case SET_SCHED_PROPS:
1432 		__guc_exec_queue_process_msg_set_sched_props(msg);
1433 		break;
1434 	case SUSPEND:
1435 		__guc_exec_queue_process_msg_suspend(msg);
1436 		break;
1437 	case RESUME:
1438 		__guc_exec_queue_process_msg_resume(msg);
1439 		break;
1440 	default:
1441 		XE_WARN_ON("Unknown message type");
1442 	}
1443 
1444 	xe_pm_runtime_put(xe);
1445 }
1446 
1447 static const struct drm_sched_backend_ops drm_sched_ops = {
1448 	.run_job = guc_exec_queue_run_job,
1449 	.free_job = guc_exec_queue_free_job,
1450 	.timedout_job = guc_exec_queue_timedout_job,
1451 };
1452 
1453 static const struct xe_sched_backend_ops xe_sched_ops = {
1454 	.process_msg = guc_exec_queue_process_msg,
1455 };
1456 
guc_exec_queue_init(struct xe_exec_queue * q)1457 static int guc_exec_queue_init(struct xe_exec_queue *q)
1458 {
1459 	struct xe_gpu_scheduler *sched;
1460 	struct xe_guc *guc = exec_queue_to_guc(q);
1461 	struct xe_guc_exec_queue *ge;
1462 	long timeout;
1463 	int err, i;
1464 
1465 	xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc)));
1466 
1467 	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1468 	if (!ge)
1469 		return -ENOMEM;
1470 
1471 	q->guc = ge;
1472 	ge->q = q;
1473 	init_waitqueue_head(&ge->suspend_wait);
1474 
1475 	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1476 		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1477 
1478 	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1479 		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1480 	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1481 			    NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1482 			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1483 			    q->name, gt_to_xe(q->gt)->drm.dev);
1484 	if (err)
1485 		goto err_free;
1486 
1487 	sched = &ge->sched;
1488 	err = xe_sched_entity_init(&ge->entity, sched);
1489 	if (err)
1490 		goto err_sched;
1491 
1492 	if (xe_exec_queue_is_lr(q))
1493 		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1494 
1495 	mutex_lock(&guc->submission_state.lock);
1496 
1497 	err = alloc_guc_id(guc, q);
1498 	if (err)
1499 		goto err_entity;
1500 
1501 	q->entity = &ge->entity;
1502 
1503 	if (xe_guc_read_stopped(guc))
1504 		xe_sched_stop(sched);
1505 
1506 	mutex_unlock(&guc->submission_state.lock);
1507 
1508 	xe_exec_queue_assign_name(q, q->guc->id);
1509 
1510 	trace_xe_exec_queue_create(q);
1511 
1512 	return 0;
1513 
1514 err_entity:
1515 	mutex_unlock(&guc->submission_state.lock);
1516 	xe_sched_entity_fini(&ge->entity);
1517 err_sched:
1518 	xe_sched_fini(&ge->sched);
1519 err_free:
1520 	kfree(ge);
1521 
1522 	return err;
1523 }
1524 
guc_exec_queue_kill(struct xe_exec_queue * q)1525 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1526 {
1527 	trace_xe_exec_queue_kill(q);
1528 	set_exec_queue_killed(q);
1529 	__suspend_fence_signal(q);
1530 	xe_guc_exec_queue_trigger_cleanup(q);
1531 }
1532 
guc_exec_queue_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1533 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1534 				   u32 opcode)
1535 {
1536 	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1537 
1538 	INIT_LIST_HEAD(&msg->link);
1539 	msg->opcode = opcode & OPCODE_MASK;
1540 	msg->private_data = q;
1541 
1542 	trace_xe_sched_msg_add(msg);
1543 	if (opcode & MSG_LOCKED)
1544 		xe_sched_add_msg_locked(&q->guc->sched, msg);
1545 	else
1546 		xe_sched_add_msg(&q->guc->sched, msg);
1547 }
1548 
guc_exec_queue_try_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1549 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1550 				       struct xe_sched_msg *msg,
1551 				       u32 opcode)
1552 {
1553 	if (!list_empty(&msg->link))
1554 		return false;
1555 
1556 	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1557 
1558 	return true;
1559 }
1560 
1561 #define STATIC_MSG_CLEANUP	0
1562 #define STATIC_MSG_SUSPEND	1
1563 #define STATIC_MSG_RESUME	2
guc_exec_queue_fini(struct xe_exec_queue * q)1564 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1565 {
1566 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1567 
1568 	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1569 		guc_exec_queue_add_msg(q, msg, CLEANUP);
1570 	else
1571 		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1572 }
1573 
guc_exec_queue_set_priority(struct xe_exec_queue * q,enum xe_exec_queue_priority priority)1574 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1575 				       enum xe_exec_queue_priority priority)
1576 {
1577 	struct xe_sched_msg *msg;
1578 
1579 	if (q->sched_props.priority == priority ||
1580 	    exec_queue_killed_or_banned_or_wedged(q))
1581 		return 0;
1582 
1583 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1584 	if (!msg)
1585 		return -ENOMEM;
1586 
1587 	q->sched_props.priority = priority;
1588 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1589 
1590 	return 0;
1591 }
1592 
guc_exec_queue_set_timeslice(struct xe_exec_queue * q,u32 timeslice_us)1593 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1594 {
1595 	struct xe_sched_msg *msg;
1596 
1597 	if (q->sched_props.timeslice_us == timeslice_us ||
1598 	    exec_queue_killed_or_banned_or_wedged(q))
1599 		return 0;
1600 
1601 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1602 	if (!msg)
1603 		return -ENOMEM;
1604 
1605 	q->sched_props.timeslice_us = timeslice_us;
1606 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1607 
1608 	return 0;
1609 }
1610 
guc_exec_queue_set_preempt_timeout(struct xe_exec_queue * q,u32 preempt_timeout_us)1611 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1612 					      u32 preempt_timeout_us)
1613 {
1614 	struct xe_sched_msg *msg;
1615 
1616 	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1617 	    exec_queue_killed_or_banned_or_wedged(q))
1618 		return 0;
1619 
1620 	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1621 	if (!msg)
1622 		return -ENOMEM;
1623 
1624 	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1625 	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1626 
1627 	return 0;
1628 }
1629 
guc_exec_queue_suspend(struct xe_exec_queue * q)1630 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1631 {
1632 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1633 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1634 
1635 	if (exec_queue_killed_or_banned_or_wedged(q))
1636 		return -EINVAL;
1637 
1638 	xe_sched_msg_lock(sched);
1639 	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1640 		q->guc->suspend_pending = true;
1641 	xe_sched_msg_unlock(sched);
1642 
1643 	return 0;
1644 }
1645 
guc_exec_queue_suspend_wait(struct xe_exec_queue * q)1646 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1647 {
1648 	struct xe_guc *guc = exec_queue_to_guc(q);
1649 	int ret;
1650 
1651 	/*
1652 	 * Likely don't need to check exec_queue_killed() as we clear
1653 	 * suspend_pending upon kill but to be paranoid but races in which
1654 	 * suspend_pending is set after kill also check kill here.
1655 	 */
1656 	ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1657 					       !READ_ONCE(q->guc->suspend_pending) ||
1658 					       exec_queue_killed(q) ||
1659 					       xe_guc_read_stopped(guc),
1660 					       HZ * 5);
1661 
1662 	if (!ret) {
1663 		xe_gt_warn(guc_to_gt(guc),
1664 			   "Suspend fence, guc_id=%d, failed to respond",
1665 			   q->guc->id);
1666 		/* XXX: Trigger GT reset? */
1667 		return -ETIME;
1668 	}
1669 
1670 	return ret < 0 ? ret : 0;
1671 }
1672 
guc_exec_queue_resume(struct xe_exec_queue * q)1673 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1674 {
1675 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1676 	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1677 	struct xe_guc *guc = exec_queue_to_guc(q);
1678 
1679 	xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending);
1680 
1681 	xe_sched_msg_lock(sched);
1682 	guc_exec_queue_try_add_msg(q, msg, RESUME);
1683 	xe_sched_msg_unlock(sched);
1684 }
1685 
guc_exec_queue_reset_status(struct xe_exec_queue * q)1686 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1687 {
1688 	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1689 }
1690 
1691 /*
1692  * All of these functions are an abstraction layer which other parts of XE can
1693  * use to trap into the GuC backend. All of these functions, aside from init,
1694  * really shouldn't do much other than trap into the DRM scheduler which
1695  * synchronizes these operations.
1696  */
1697 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1698 	.init = guc_exec_queue_init,
1699 	.kill = guc_exec_queue_kill,
1700 	.fini = guc_exec_queue_fini,
1701 	.set_priority = guc_exec_queue_set_priority,
1702 	.set_timeslice = guc_exec_queue_set_timeslice,
1703 	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1704 	.suspend = guc_exec_queue_suspend,
1705 	.suspend_wait = guc_exec_queue_suspend_wait,
1706 	.resume = guc_exec_queue_resume,
1707 	.reset_status = guc_exec_queue_reset_status,
1708 };
1709 
guc_exec_queue_stop(struct xe_guc * guc,struct xe_exec_queue * q)1710 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1711 {
1712 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1713 
1714 	/* Stop scheduling + flush any DRM scheduler operations */
1715 	xe_sched_submission_stop(sched);
1716 
1717 	/* Clean up lost G2H + reset engine state */
1718 	if (exec_queue_registered(q)) {
1719 		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1720 			xe_exec_queue_put(q);
1721 		else if (exec_queue_destroyed(q))
1722 			__guc_exec_queue_fini(guc, q);
1723 	}
1724 	if (q->guc->suspend_pending) {
1725 		set_exec_queue_suspended(q);
1726 		suspend_fence_signal(q);
1727 	}
1728 	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1729 		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1730 		   EXEC_QUEUE_STATE_SUSPENDED,
1731 		   &q->guc->state);
1732 	q->guc->resume_time = 0;
1733 	trace_xe_exec_queue_stop(q);
1734 
1735 	/*
1736 	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1737 	 * started but not complete job or if a job has gone through a GT reset
1738 	 * more than twice.
1739 	 */
1740 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1741 		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1742 		bool ban = false;
1743 
1744 		if (job) {
1745 			if ((xe_sched_job_started(job) &&
1746 			    !xe_sched_job_completed(job)) ||
1747 			    xe_sched_invalidate_job(job, 2)) {
1748 				trace_xe_sched_job_ban(job);
1749 				ban = true;
1750 			}
1751 		} else if (xe_exec_queue_is_lr(q) &&
1752 			   !xe_lrc_ring_is_idle(q->lrc[0])) {
1753 			ban = true;
1754 		}
1755 
1756 		if (ban) {
1757 			set_exec_queue_banned(q);
1758 			xe_guc_exec_queue_trigger_cleanup(q);
1759 		}
1760 	}
1761 }
1762 
xe_guc_submit_reset_prepare(struct xe_guc * guc)1763 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1764 {
1765 	int ret;
1766 
1767 	if (!guc->submission_state.initialized)
1768 		return 0;
1769 
1770 	/*
1771 	 * Using an atomic here rather than submission_state.lock as this
1772 	 * function can be called while holding the CT lock (engine reset
1773 	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1774 	 * Atomic is not ideal, but it works to prevent against concurrent reset
1775 	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1776 	 */
1777 	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1778 	smp_wmb();
1779 	wake_up_all(&guc->ct.wq);
1780 
1781 	return ret;
1782 }
1783 
xe_guc_submit_reset_wait(struct xe_guc * guc)1784 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1785 {
1786 	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1787 		   !xe_guc_read_stopped(guc));
1788 }
1789 
xe_guc_submit_stop(struct xe_guc * guc)1790 void xe_guc_submit_stop(struct xe_guc *guc)
1791 {
1792 	struct xe_exec_queue *q;
1793 	unsigned long index;
1794 
1795 	xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1796 
1797 	mutex_lock(&guc->submission_state.lock);
1798 
1799 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1800 		/* Prevent redundant attempts to stop parallel queues */
1801 		if (q->guc->id != index)
1802 			continue;
1803 
1804 		guc_exec_queue_stop(guc, q);
1805 	}
1806 
1807 	mutex_unlock(&guc->submission_state.lock);
1808 
1809 	/*
1810 	 * No one can enter the backend at this point, aside from new engine
1811 	 * creation which is protected by guc->submission_state.lock.
1812 	 */
1813 
1814 }
1815 
guc_exec_queue_start(struct xe_exec_queue * q)1816 static void guc_exec_queue_start(struct xe_exec_queue *q)
1817 {
1818 	struct xe_gpu_scheduler *sched = &q->guc->sched;
1819 
1820 	if (!exec_queue_killed_or_banned_or_wedged(q)) {
1821 		int i;
1822 
1823 		trace_xe_exec_queue_resubmit(q);
1824 		for (i = 0; i < q->width; ++i)
1825 			xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1826 		xe_sched_resubmit_jobs(sched);
1827 	}
1828 
1829 	xe_sched_submission_start(sched);
1830 	xe_sched_submission_resume_tdr(sched);
1831 }
1832 
xe_guc_submit_start(struct xe_guc * guc)1833 int xe_guc_submit_start(struct xe_guc *guc)
1834 {
1835 	struct xe_exec_queue *q;
1836 	unsigned long index;
1837 
1838 	xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1839 
1840 	mutex_lock(&guc->submission_state.lock);
1841 	atomic_dec(&guc->submission_state.stopped);
1842 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1843 		/* Prevent redundant attempts to start parallel queues */
1844 		if (q->guc->id != index)
1845 			continue;
1846 
1847 		guc_exec_queue_start(q);
1848 	}
1849 	mutex_unlock(&guc->submission_state.lock);
1850 
1851 	wake_up_all(&guc->ct.wq);
1852 
1853 	return 0;
1854 }
1855 
1856 static struct xe_exec_queue *
g2h_exec_queue_lookup(struct xe_guc * guc,u32 guc_id)1857 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1858 {
1859 	struct xe_gt *gt = guc_to_gt(guc);
1860 	struct xe_exec_queue *q;
1861 
1862 	if (unlikely(guc_id >= GUC_ID_MAX)) {
1863 		xe_gt_err(gt, "Invalid guc_id %u\n", guc_id);
1864 		return NULL;
1865 	}
1866 
1867 	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1868 	if (unlikely(!q)) {
1869 		xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id);
1870 		return NULL;
1871 	}
1872 
1873 	xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id);
1874 	xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width));
1875 
1876 	return q;
1877 }
1878 
deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1879 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1880 {
1881 	u32 action[] = {
1882 		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1883 		q->guc->id,
1884 	};
1885 
1886 	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1887 	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1888 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1889 	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1890 
1891 	trace_xe_exec_queue_deregister(q);
1892 
1893 	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1894 }
1895 
handle_sched_done(struct xe_guc * guc,struct xe_exec_queue * q,u32 runnable_state)1896 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1897 			      u32 runnable_state)
1898 {
1899 	trace_xe_exec_queue_scheduling_done(q);
1900 
1901 	if (runnable_state == 1) {
1902 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1903 
1904 		q->guc->resume_time = ktime_get();
1905 		clear_exec_queue_pending_enable(q);
1906 		smp_wmb();
1907 		wake_up_all(&guc->ct.wq);
1908 	} else {
1909 		bool check_timeout = exec_queue_check_timeout(q);
1910 
1911 		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1912 		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1913 
1914 		if (q->guc->suspend_pending) {
1915 			suspend_fence_signal(q);
1916 			clear_exec_queue_pending_disable(q);
1917 		} else {
1918 			if (exec_queue_banned(q) || check_timeout) {
1919 				smp_wmb();
1920 				wake_up_all(&guc->ct.wq);
1921 			}
1922 			if (!check_timeout && exec_queue_destroyed(q)) {
1923 				/*
1924 				 * Make sure to clear the pending_disable only
1925 				 * after sampling the destroyed state. We want
1926 				 * to ensure we don't trigger the unregister too
1927 				 * early with something intending to only
1928 				 * disable scheduling. The caller doing the
1929 				 * destroy must wait for an ongoing
1930 				 * pending_disable before marking as destroyed.
1931 				 */
1932 				clear_exec_queue_pending_disable(q);
1933 				deregister_exec_queue(guc, q);
1934 			} else {
1935 				clear_exec_queue_pending_disable(q);
1936 			}
1937 		}
1938 	}
1939 }
1940 
xe_guc_sched_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1941 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1942 {
1943 	struct xe_exec_queue *q;
1944 	u32 guc_id, runnable_state;
1945 
1946 	if (unlikely(len < 2))
1947 		return -EPROTO;
1948 
1949 	guc_id = msg[0];
1950 	runnable_state = msg[1];
1951 
1952 	q = g2h_exec_queue_lookup(guc, guc_id);
1953 	if (unlikely(!q))
1954 		return -EPROTO;
1955 
1956 	if (unlikely(!exec_queue_pending_enable(q) &&
1957 		     !exec_queue_pending_disable(q))) {
1958 		xe_gt_err(guc_to_gt(guc),
1959 			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1960 			  atomic_read(&q->guc->state), q->guc->id,
1961 			  runnable_state);
1962 		return -EPROTO;
1963 	}
1964 
1965 	handle_sched_done(guc, q, runnable_state);
1966 
1967 	return 0;
1968 }
1969 
handle_deregister_done(struct xe_guc * guc,struct xe_exec_queue * q)1970 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1971 {
1972 	trace_xe_exec_queue_deregister_done(q);
1973 
1974 	clear_exec_queue_registered(q);
1975 
1976 	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1977 		xe_exec_queue_put(q);
1978 	else
1979 		__guc_exec_queue_fini(guc, q);
1980 }
1981 
xe_guc_deregister_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1982 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1983 {
1984 	struct xe_exec_queue *q;
1985 	u32 guc_id;
1986 
1987 	if (unlikely(len < 1))
1988 		return -EPROTO;
1989 
1990 	guc_id = msg[0];
1991 
1992 	q = g2h_exec_queue_lookup(guc, guc_id);
1993 	if (unlikely(!q))
1994 		return -EPROTO;
1995 
1996 	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1997 	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1998 		xe_gt_err(guc_to_gt(guc),
1999 			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
2000 			  atomic_read(&q->guc->state), q->guc->id);
2001 		return -EPROTO;
2002 	}
2003 
2004 	handle_deregister_done(guc, q);
2005 
2006 	return 0;
2007 }
2008 
xe_guc_exec_queue_reset_handler(struct xe_guc * guc,u32 * msg,u32 len)2009 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
2010 {
2011 	struct xe_gt *gt = guc_to_gt(guc);
2012 	struct xe_exec_queue *q;
2013 	u32 guc_id;
2014 
2015 	if (unlikely(len < 1))
2016 		return -EPROTO;
2017 
2018 	guc_id = msg[0];
2019 
2020 	q = g2h_exec_queue_lookup(guc, guc_id);
2021 	if (unlikely(!q))
2022 		return -EPROTO;
2023 
2024 	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2025 		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2026 
2027 	trace_xe_exec_queue_reset(q);
2028 
2029 	/*
2030 	 * A banned engine is a NOP at this point (came from
2031 	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
2032 	 * jobs by setting timeout of the job to the minimum value kicking
2033 	 * guc_exec_queue_timedout_job.
2034 	 */
2035 	set_exec_queue_reset(q);
2036 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2037 		xe_guc_exec_queue_trigger_cleanup(q);
2038 
2039 	return 0;
2040 }
2041 
2042 /*
2043  * xe_guc_error_capture_handler - Handler of GuC captured message
2044  * @guc: The GuC object
2045  * @msg: Point to the message
2046  * @len: The message length
2047  *
2048  * When GuC captured data is ready, GuC will send message
2049  * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2050  * called 1st to check status before process the data comes with the message.
2051  *
2052  * Returns: error code. 0 if success
2053  */
xe_guc_error_capture_handler(struct xe_guc * guc,u32 * msg,u32 len)2054 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2055 {
2056 	u32 status;
2057 
2058 	if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN))
2059 		return -EPROTO;
2060 
2061 	status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2062 	if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2063 		xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2064 
2065 	xe_guc_capture_process(guc);
2066 
2067 	return 0;
2068 }
2069 
xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc * guc,u32 * msg,u32 len)2070 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2071 					       u32 len)
2072 {
2073 	struct xe_gt *gt = guc_to_gt(guc);
2074 	struct xe_exec_queue *q;
2075 	u32 guc_id;
2076 
2077 	if (unlikely(len < 1))
2078 		return -EPROTO;
2079 
2080 	guc_id = msg[0];
2081 
2082 	if (guc_id == GUC_ID_UNKNOWN) {
2083 		/*
2084 		 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF
2085 		 * context. In such case only PF will be notified about that fault.
2086 		 */
2087 		xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n");
2088 		return 0;
2089 	}
2090 
2091 	q = g2h_exec_queue_lookup(guc, guc_id);
2092 	if (unlikely(!q))
2093 		return -EPROTO;
2094 
2095 	xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2096 		  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2097 
2098 	trace_xe_exec_queue_memory_cat_error(q);
2099 
2100 	/* Treat the same as engine reset */
2101 	set_exec_queue_reset(q);
2102 	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2103 		xe_guc_exec_queue_trigger_cleanup(q);
2104 
2105 	return 0;
2106 }
2107 
xe_guc_exec_queue_reset_failure_handler(struct xe_guc * guc,u32 * msg,u32 len)2108 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2109 {
2110 	struct xe_gt *gt = guc_to_gt(guc);
2111 	u8 guc_class, instance;
2112 	u32 reason;
2113 
2114 	if (unlikely(len != 3))
2115 		return -EPROTO;
2116 
2117 	guc_class = msg[0];
2118 	instance = msg[1];
2119 	reason = msg[2];
2120 
2121 	/* Unexpected failure of a hardware feature, log an actual error */
2122 	xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X",
2123 		  guc_class, instance, reason);
2124 
2125 	xe_gt_reset_async(gt);
2126 
2127 	return 0;
2128 }
2129 
2130 static void
guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue * q,struct xe_guc_submit_exec_queue_snapshot * snapshot)2131 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2132 				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2133 {
2134 	struct xe_guc *guc = exec_queue_to_guc(q);
2135 	struct xe_device *xe = guc_to_xe(guc);
2136 	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2137 	int i;
2138 
2139 	snapshot->guc.wqi_head = q->guc->wqi_head;
2140 	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2141 	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2142 	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2143 	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2144 							  wq_desc.wq_status);
2145 
2146 	if (snapshot->parallel.wq_desc.head !=
2147 	    snapshot->parallel.wq_desc.tail) {
2148 		for (i = snapshot->parallel.wq_desc.head;
2149 		     i != snapshot->parallel.wq_desc.tail;
2150 		     i = (i + sizeof(u32)) % WQ_SIZE)
2151 			snapshot->parallel.wq[i / sizeof(u32)] =
2152 				parallel_read(xe, map, wq[i / sizeof(u32)]);
2153 	}
2154 }
2155 
2156 static void
guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2157 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2158 				 struct drm_printer *p)
2159 {
2160 	int i;
2161 
2162 	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2163 		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2164 	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2165 		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2166 	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2167 
2168 	if (snapshot->parallel.wq_desc.head !=
2169 	    snapshot->parallel.wq_desc.tail) {
2170 		for (i = snapshot->parallel.wq_desc.head;
2171 		     i != snapshot->parallel.wq_desc.tail;
2172 		     i = (i + sizeof(u32)) % WQ_SIZE)
2173 			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2174 				   snapshot->parallel.wq[i / sizeof(u32)]);
2175 	}
2176 }
2177 
2178 /**
2179  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2180  * @q: faulty exec queue
2181  *
2182  * This can be printed out in a later stage like during dev_coredump
2183  * analysis.
2184  *
2185  * Returns: a GuC Submit Engine snapshot object that must be freed by the
2186  * caller, using `xe_guc_exec_queue_snapshot_free`.
2187  */
2188 struct xe_guc_submit_exec_queue_snapshot *
xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue * q)2189 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2190 {
2191 	struct xe_gpu_scheduler *sched = &q->guc->sched;
2192 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2193 	int i;
2194 
2195 	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2196 
2197 	if (!snapshot)
2198 		return NULL;
2199 
2200 	snapshot->guc.id = q->guc->id;
2201 	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2202 	snapshot->class = q->class;
2203 	snapshot->logical_mask = q->logical_mask;
2204 	snapshot->width = q->width;
2205 	snapshot->refcount = kref_read(&q->refcount);
2206 	snapshot->sched_timeout = sched->base.timeout;
2207 	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2208 	snapshot->sched_props.preempt_timeout_us =
2209 		q->sched_props.preempt_timeout_us;
2210 
2211 	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2212 				      GFP_ATOMIC);
2213 
2214 	if (snapshot->lrc) {
2215 		for (i = 0; i < q->width; ++i) {
2216 			struct xe_lrc *lrc = q->lrc[i];
2217 
2218 			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2219 		}
2220 	}
2221 
2222 	snapshot->schedule_state = atomic_read(&q->guc->state);
2223 	snapshot->exec_queue_flags = q->flags;
2224 
2225 	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2226 	if (snapshot->parallel_execution)
2227 		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2228 
2229 	spin_lock(&sched->base.job_list_lock);
2230 	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2231 	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2232 					       sizeof(struct pending_list_snapshot),
2233 					       GFP_ATOMIC);
2234 
2235 	if (snapshot->pending_list) {
2236 		struct xe_sched_job *job_iter;
2237 
2238 		i = 0;
2239 		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2240 			snapshot->pending_list[i].seqno =
2241 				xe_sched_job_seqno(job_iter);
2242 			snapshot->pending_list[i].fence =
2243 				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2244 			snapshot->pending_list[i].finished =
2245 				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2246 				? 1 : 0;
2247 			i++;
2248 		}
2249 	}
2250 
2251 	spin_unlock(&sched->base.job_list_lock);
2252 
2253 	return snapshot;
2254 }
2255 
2256 /**
2257  * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2258  * @snapshot: Previously captured snapshot of job.
2259  *
2260  * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2261  */
2262 void
xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot * snapshot)2263 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2264 {
2265 	int i;
2266 
2267 	if (!snapshot || !snapshot->lrc)
2268 		return;
2269 
2270 	for (i = 0; i < snapshot->width; ++i)
2271 		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2272 }
2273 
2274 /**
2275  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2276  * @snapshot: GuC Submit Engine snapshot object.
2277  * @p: drm_printer where it will be printed out.
2278  *
2279  * This function prints out a given GuC Submit Engine snapshot object.
2280  */
2281 void
xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2282 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2283 				 struct drm_printer *p)
2284 {
2285 	int i;
2286 
2287 	if (!snapshot)
2288 		return;
2289 
2290 	drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2291 	drm_printf(p, "\tName: %s\n", snapshot->name);
2292 	drm_printf(p, "\tClass: %d\n", snapshot->class);
2293 	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2294 	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2295 	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2296 	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2297 	drm_printf(p, "\tTimeslice: %u (us)\n",
2298 		   snapshot->sched_props.timeslice_us);
2299 	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2300 		   snapshot->sched_props.preempt_timeout_us);
2301 
2302 	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2303 		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2304 
2305 	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2306 	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2307 
2308 	if (snapshot->parallel_execution)
2309 		guc_exec_queue_wq_snapshot_print(snapshot, p);
2310 
2311 	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2312 	     i++)
2313 		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2314 			   snapshot->pending_list[i].seqno,
2315 			   snapshot->pending_list[i].fence,
2316 			   snapshot->pending_list[i].finished);
2317 }
2318 
2319 /**
2320  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2321  * snapshot.
2322  * @snapshot: GuC Submit Engine snapshot object.
2323  *
2324  * This function free all the memory that needed to be allocated at capture
2325  * time.
2326  */
xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot * snapshot)2327 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2328 {
2329 	int i;
2330 
2331 	if (!snapshot)
2332 		return;
2333 
2334 	if (snapshot->lrc) {
2335 		for (i = 0; i < snapshot->width; i++)
2336 			xe_lrc_snapshot_free(snapshot->lrc[i]);
2337 		kfree(snapshot->lrc);
2338 	}
2339 	kfree(snapshot->pending_list);
2340 	kfree(snapshot);
2341 }
2342 
guc_exec_queue_print(struct xe_exec_queue * q,struct drm_printer * p)2343 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2344 {
2345 	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2346 
2347 	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2348 	xe_guc_exec_queue_snapshot_print(snapshot, p);
2349 	xe_guc_exec_queue_snapshot_free(snapshot);
2350 }
2351 
2352 /**
2353  * xe_guc_submit_print - GuC Submit Print.
2354  * @guc: GuC.
2355  * @p: drm_printer where it will be printed out.
2356  *
2357  * This function capture and prints snapshots of **all** GuC Engines.
2358  */
xe_guc_submit_print(struct xe_guc * guc,struct drm_printer * p)2359 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2360 {
2361 	struct xe_exec_queue *q;
2362 	unsigned long index;
2363 
2364 	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2365 		return;
2366 
2367 	mutex_lock(&guc->submission_state.lock);
2368 	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2369 		guc_exec_queue_print(q, p);
2370 	mutex_unlock(&guc->submission_state.lock);
2371 }
2372