1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/kmem.h> 34 #include <sys/pathname.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/dsl_deleg.h> 50 #include <sys/spa.h> 51 #include <sys/zap.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/varargs.h> 55 #include <sys/policy.h> 56 #include <sys/atomic.h> 57 #include <sys/mkdev.h> 58 #include <sys/modctl.h> 59 #include <sys/refstr.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_ctldir.h> 62 #include <sys/zfs_fuid.h> 63 #include <sys/bootconf.h> 64 #include <sys/sunddi.h> 65 #include <sys/dnlc.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_events.h> 69 #include "zfs_comutil.h" 70 71 int zfsfstype; 72 vfsops_t *zfs_vfsops = NULL; 73 static major_t zfs_major; 74 static minor_t zfs_minor; 75 static kmutex_t zfs_dev_mtx; 76 77 extern int sys_shutdown; 78 79 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 80 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 81 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 82 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 83 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 84 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 85 static void zfs_freevfs(vfs_t *vfsp); 86 87 static const fs_operation_def_t zfs_vfsops_template[] = { 88 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 89 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 90 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 91 VFSNAME_ROOT, { .vfs_root = zfs_root }, 92 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 93 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 94 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 95 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 96 NULL, NULL 97 }; 98 99 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 100 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 101 NULL, NULL 102 }; 103 104 /* 105 * We need to keep a count of active fs's. 106 * This is necessary to prevent our module 107 * from being unloaded after a umount -f 108 */ 109 static uint32_t zfs_active_fs_count = 0; 110 111 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 112 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 113 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 114 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 115 116 /* 117 * MO_DEFAULT is not used since the default value is determined 118 * by the equivalent property. 119 */ 120 static mntopt_t mntopts[] = { 121 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 123 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 124 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 125 }; 126 127 static mntopts_t zfs_mntopts = { 128 sizeof (mntopts) / sizeof (mntopt_t), 129 mntopts 130 }; 131 132 /*ARGSUSED*/ 133 int 134 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 135 { 136 /* 137 * Data integrity is job one. We don't want a compromised kernel 138 * writing to the storage pool, so we never sync during panic. 139 */ 140 if (panicstr) 141 return (0); 142 143 /* 144 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 145 * to sync metadata, which they would otherwise cache indefinitely. 146 * Semantically, the only requirement is that the sync be initiated. 147 * The DMU syncs out txgs frequently, so there's nothing to do. 148 */ 149 if (flag & SYNC_ATTR) 150 return (0); 151 152 if (vfsp != NULL) { 153 /* 154 * Sync a specific filesystem. 155 */ 156 zfsvfs_t *zfsvfs = vfsp->vfs_data; 157 dsl_pool_t *dp; 158 159 ZFS_ENTER(zfsvfs); 160 dp = dmu_objset_pool(zfsvfs->z_os); 161 162 /* 163 * If the system is shutting down, then skip any 164 * filesystems which may exist on a suspended pool. 165 */ 166 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 167 ZFS_EXIT(zfsvfs); 168 return (0); 169 } 170 171 if (zfsvfs->z_log != NULL) 172 zil_commit(zfsvfs->z_log, 0); 173 174 ZFS_EXIT(zfsvfs); 175 } else { 176 /* 177 * Sync all ZFS filesystems. This is what happens when you 178 * run sync(1M). Unlike other filesystems, ZFS honors the 179 * request by waiting for all pools to commit all dirty data. 180 */ 181 spa_sync_allpools(); 182 } 183 184 return (0); 185 } 186 187 static int 188 zfs_create_unique_device(dev_t *dev) 189 { 190 major_t new_major; 191 192 do { 193 ASSERT3U(zfs_minor, <=, MAXMIN32); 194 minor_t start = zfs_minor; 195 do { 196 mutex_enter(&zfs_dev_mtx); 197 if (zfs_minor >= MAXMIN32) { 198 /* 199 * If we're still using the real major 200 * keep out of /dev/zfs and /dev/zvol minor 201 * number space. If we're using a getudev()'ed 202 * major number, we can use all of its minors. 203 */ 204 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 205 zfs_minor = ZFS_MIN_MINOR; 206 else 207 zfs_minor = 0; 208 } else { 209 zfs_minor++; 210 } 211 *dev = makedevice(zfs_major, zfs_minor); 212 mutex_exit(&zfs_dev_mtx); 213 } while (vfs_devismounted(*dev) && zfs_minor != start); 214 if (zfs_minor == start) { 215 /* 216 * We are using all ~262,000 minor numbers for the 217 * current major number. Create a new major number. 218 */ 219 if ((new_major = getudev()) == (major_t)-1) { 220 cmn_err(CE_WARN, 221 "zfs_mount: Can't get unique major " 222 "device number."); 223 return (-1); 224 } 225 mutex_enter(&zfs_dev_mtx); 226 zfs_major = new_major; 227 zfs_minor = 0; 228 229 mutex_exit(&zfs_dev_mtx); 230 } else { 231 break; 232 } 233 /* CONSTANTCONDITION */ 234 } while (1); 235 236 return (0); 237 } 238 239 static void 240 atime_changed_cb(void *arg, uint64_t newval) 241 { 242 zfsvfs_t *zfsvfs = arg; 243 244 if (newval == TRUE) { 245 zfsvfs->z_atime = TRUE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 248 } else { 249 zfsvfs->z_atime = FALSE; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 252 } 253 } 254 255 static void 256 xattr_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval == TRUE) { 261 /* XXX locking on vfs_flag? */ 262 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 263 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 264 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 265 } else { 266 /* XXX locking on vfs_flag? */ 267 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 268 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 269 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 270 } 271 } 272 273 static void 274 blksz_changed_cb(void *arg, uint64_t newval) 275 { 276 zfsvfs_t *zfsvfs = arg; 277 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 278 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 279 ASSERT(ISP2(newval)); 280 281 zfsvfs->z_max_blksz = newval; 282 zfsvfs->z_vfs->vfs_bsize = newval; 283 } 284 285 static void 286 readonly_changed_cb(void *arg, uint64_t newval) 287 { 288 zfsvfs_t *zfsvfs = arg; 289 290 if (newval) { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 295 } else { 296 /* XXX locking on vfs_flag? */ 297 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 298 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 299 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 300 } 301 } 302 303 static void 304 devices_changed_cb(void *arg, uint64_t newval) 305 { 306 zfsvfs_t *zfsvfs = arg; 307 308 if (newval == FALSE) { 309 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 312 } else { 313 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 314 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 315 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 316 } 317 } 318 319 static void 320 setuid_changed_cb(void *arg, uint64_t newval) 321 { 322 zfsvfs_t *zfsvfs = arg; 323 324 if (newval == FALSE) { 325 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 328 } else { 329 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 330 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 331 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 332 } 333 } 334 335 static void 336 exec_changed_cb(void *arg, uint64_t newval) 337 { 338 zfsvfs_t *zfsvfs = arg; 339 340 if (newval == FALSE) { 341 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 342 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 343 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 344 } else { 345 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 346 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 347 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 348 } 349 } 350 351 static void 352 follow_changed_cb(void *arg, uint64_t newval) 353 { 354 zfsvfs_t *zfsvfs = arg; 355 356 if (newval == FALSE) { 357 zfsvfs->z_vfs->vfs_flag |= VFS_NOFOLLOW; 358 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_FOLLOW); 359 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOFOLLOW, NULL, 0); 360 } else { 361 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOFOLLOW; 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOFOLLOW); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_FOLLOW, NULL, 0); 364 } 365 } 366 367 /* 368 * The nbmand mount option can be changed at mount time. 369 * We can't allow it to be toggled on live file systems or incorrect 370 * behavior may be seen from cifs clients 371 * 372 * This property isn't registered via dsl_prop_register(), but this callback 373 * will be called when a file system is first mounted 374 */ 375 static void 376 nbmand_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 if (newval == FALSE) { 380 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 381 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 382 } else { 383 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 384 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 385 } 386 } 387 388 static void 389 snapdir_changed_cb(void *arg, uint64_t newval) 390 { 391 zfsvfs_t *zfsvfs = arg; 392 393 zfsvfs->z_show_ctldir = newval; 394 } 395 396 static void 397 vscan_changed_cb(void *arg, uint64_t newval) 398 { 399 zfsvfs_t *zfsvfs = arg; 400 401 zfsvfs->z_vscan = newval; 402 } 403 404 static void 405 acl_mode_changed_cb(void *arg, uint64_t newval) 406 { 407 zfsvfs_t *zfsvfs = arg; 408 409 zfsvfs->z_acl_mode = newval; 410 } 411 412 static void 413 acl_inherit_changed_cb(void *arg, uint64_t newval) 414 { 415 zfsvfs_t *zfsvfs = arg; 416 417 zfsvfs->z_acl_inherit = newval; 418 } 419 420 static int 421 zfs_register_callbacks(vfs_t *vfsp) 422 { 423 struct dsl_dataset *ds = NULL; 424 objset_t *os = NULL; 425 zfsvfs_t *zfsvfs = NULL; 426 uint64_t nbmand; 427 boolean_t readonly = B_FALSE; 428 boolean_t do_readonly = B_FALSE; 429 boolean_t setuid = B_FALSE; 430 boolean_t do_setuid = B_FALSE; 431 boolean_t exec = B_FALSE; 432 boolean_t do_exec = B_FALSE; 433 boolean_t follow = B_FALSE; 434 boolean_t do_follow = B_FALSE; 435 boolean_t devices = B_FALSE; 436 boolean_t do_devices = B_FALSE; 437 boolean_t xattr = B_FALSE; 438 boolean_t do_xattr = B_FALSE; 439 boolean_t atime = B_FALSE; 440 boolean_t do_atime = B_FALSE; 441 int error = 0; 442 443 ASSERT(vfsp); 444 zfsvfs = vfsp->vfs_data; 445 ASSERT(zfsvfs); 446 os = zfsvfs->z_os; 447 448 /* 449 * The act of registering our callbacks will destroy any mount 450 * options we may have. In order to enable temporary overrides 451 * of mount options, we stash away the current values and 452 * restore them after we register the callbacks. 453 */ 454 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 455 !spa_writeable(dmu_objset_spa(os))) { 456 readonly = B_TRUE; 457 do_readonly = B_TRUE; 458 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 459 readonly = B_FALSE; 460 do_readonly = B_TRUE; 461 } 462 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 463 devices = B_FALSE; 464 setuid = B_FALSE; 465 do_devices = B_TRUE; 466 do_setuid = B_TRUE; 467 } else { 468 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 469 devices = B_FALSE; 470 do_devices = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 472 devices = B_TRUE; 473 do_devices = B_TRUE; 474 } 475 476 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 477 setuid = B_FALSE; 478 do_setuid = B_TRUE; 479 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 480 setuid = B_TRUE; 481 do_setuid = B_TRUE; 482 } 483 } 484 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 485 exec = B_FALSE; 486 do_exec = B_TRUE; 487 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 488 exec = B_TRUE; 489 do_exec = B_TRUE; 490 } 491 if (vfs_optionisset(vfsp, MNTOPT_NOFOLLOW, NULL)) { 492 follow = B_FALSE; 493 do_follow = B_TRUE; 494 } else if (vfs_optionisset(vfsp, MNTOPT_FOLLOW, NULL)) { 495 follow = B_TRUE; 496 do_follow = B_TRUE; 497 } 498 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 499 xattr = B_FALSE; 500 do_xattr = B_TRUE; 501 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 502 xattr = B_TRUE; 503 do_xattr = B_TRUE; 504 } 505 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 506 atime = B_FALSE; 507 do_atime = B_TRUE; 508 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 509 atime = B_TRUE; 510 do_atime = B_TRUE; 511 } 512 513 /* 514 * nbmand is a special property. It can only be changed at 515 * mount time. 516 * 517 * This is weird, but it is documented to only be changeable 518 * at mount time. 519 */ 520 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 521 nbmand = B_FALSE; 522 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 523 nbmand = B_TRUE; 524 } else { 525 char osname[ZFS_MAX_DATASET_NAME_LEN]; 526 527 dmu_objset_name(os, osname); 528 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 529 NULL)) { 530 return (error); 531 } 532 } 533 534 /* 535 * Register property callbacks. 536 * 537 * It would probably be fine to just check for i/o error from 538 * the first prop_register(), but I guess I like to go 539 * overboard... 540 */ 541 ds = dmu_objset_ds(os); 542 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 543 error = dsl_prop_register(ds, 544 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 545 error = error ? error : dsl_prop_register(ds, 546 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 547 error = error ? error : dsl_prop_register(ds, 548 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 549 error = error ? error : dsl_prop_register(ds, 550 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 551 error = error ? error : dsl_prop_register(ds, 552 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 553 error = error ? error : dsl_prop_register(ds, 554 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 555 error = error ? error : dsl_prop_register(ds, 556 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 557 error = error ? error : dsl_prop_register(ds, 558 zfs_prop_to_name(ZFS_PROP_FOLLOW), follow_changed_cb, zfsvfs); 559 error = error ? error : dsl_prop_register(ds, 560 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 561 error = error ? error : dsl_prop_register(ds, 562 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 563 error = error ? error : dsl_prop_register(ds, 564 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 565 zfsvfs); 566 error = error ? error : dsl_prop_register(ds, 567 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 568 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 569 if (error) 570 goto unregister; 571 572 /* 573 * Invoke our callbacks to restore temporary mount options. 574 */ 575 if (do_readonly) 576 readonly_changed_cb(zfsvfs, readonly); 577 if (do_setuid) 578 setuid_changed_cb(zfsvfs, setuid); 579 if (do_exec) 580 exec_changed_cb(zfsvfs, exec); 581 if (do_follow) 582 follow_changed_cb(zfsvfs, follow); 583 if (do_devices) 584 devices_changed_cb(zfsvfs, devices); 585 if (do_xattr) 586 xattr_changed_cb(zfsvfs, xattr); 587 if (do_atime) 588 atime_changed_cb(zfsvfs, atime); 589 590 nbmand_changed_cb(zfsvfs, nbmand); 591 592 return (0); 593 594 unregister: 595 dsl_prop_unregister_all(ds, zfsvfs); 596 return (error); 597 } 598 599 static int 600 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 601 uint64_t *userp, uint64_t *groupp) 602 { 603 /* 604 * Is it a valid type of object to track? 605 */ 606 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 607 return (SET_ERROR(ENOENT)); 608 609 /* 610 * If we have a NULL data pointer 611 * then assume the id's aren't changing and 612 * return EEXIST to the dmu to let it know to 613 * use the same ids 614 */ 615 if (data == NULL) 616 return (SET_ERROR(EEXIST)); 617 618 if (bonustype == DMU_OT_ZNODE) { 619 znode_phys_t *znp = data; 620 *userp = znp->zp_uid; 621 *groupp = znp->zp_gid; 622 } else { 623 int hdrsize; 624 sa_hdr_phys_t *sap = data; 625 sa_hdr_phys_t sa = *sap; 626 boolean_t swap = B_FALSE; 627 628 ASSERT(bonustype == DMU_OT_SA); 629 630 if (sa.sa_magic == 0) { 631 /* 632 * This should only happen for newly created 633 * files that haven't had the znode data filled 634 * in yet. 635 */ 636 *userp = 0; 637 *groupp = 0; 638 return (0); 639 } 640 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 641 sa.sa_magic = SA_MAGIC; 642 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 643 swap = B_TRUE; 644 } else { 645 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 646 } 647 648 hdrsize = sa_hdrsize(&sa); 649 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 650 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 651 SA_UID_OFFSET)); 652 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 653 SA_GID_OFFSET)); 654 if (swap) { 655 *userp = BSWAP_64(*userp); 656 *groupp = BSWAP_64(*groupp); 657 } 658 } 659 return (0); 660 } 661 662 static void 663 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 664 char *domainbuf, int buflen, uid_t *ridp) 665 { 666 uint64_t fuid; 667 const char *domain; 668 669 fuid = strtonum(fuidstr, NULL); 670 671 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 672 if (domain) 673 (void) strlcpy(domainbuf, domain, buflen); 674 else 675 domainbuf[0] = '\0'; 676 *ridp = FUID_RID(fuid); 677 } 678 679 static uint64_t 680 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 681 { 682 switch (type) { 683 case ZFS_PROP_USERUSED: 684 return (DMU_USERUSED_OBJECT); 685 case ZFS_PROP_GROUPUSED: 686 return (DMU_GROUPUSED_OBJECT); 687 case ZFS_PROP_USERQUOTA: 688 return (zfsvfs->z_userquota_obj); 689 case ZFS_PROP_GROUPQUOTA: 690 return (zfsvfs->z_groupquota_obj); 691 } 692 return (0); 693 } 694 695 int 696 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 697 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 698 { 699 int error; 700 zap_cursor_t zc; 701 zap_attribute_t za; 702 zfs_useracct_t *buf = vbuf; 703 uint64_t obj; 704 705 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 706 return (SET_ERROR(ENOTSUP)); 707 708 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 709 if (obj == 0) { 710 *bufsizep = 0; 711 return (0); 712 } 713 714 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 715 (error = zap_cursor_retrieve(&zc, &za)) == 0; 716 zap_cursor_advance(&zc)) { 717 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 718 *bufsizep) 719 break; 720 721 fuidstr_to_sid(zfsvfs, za.za_name, 722 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 723 724 buf->zu_space = za.za_first_integer; 725 buf++; 726 } 727 if (error == ENOENT) 728 error = 0; 729 730 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 731 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 732 *cookiep = zap_cursor_serialize(&zc); 733 zap_cursor_fini(&zc); 734 return (error); 735 } 736 737 /* 738 * buf must be big enough (eg, 32 bytes) 739 */ 740 static int 741 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 742 char *buf, boolean_t addok) 743 { 744 uint64_t fuid; 745 int domainid = 0; 746 747 if (domain && domain[0]) { 748 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 749 if (domainid == -1) 750 return (SET_ERROR(ENOENT)); 751 } 752 fuid = FUID_ENCODE(domainid, rid); 753 (void) sprintf(buf, "%llx", (longlong_t)fuid); 754 return (0); 755 } 756 757 int 758 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 759 const char *domain, uint64_t rid, uint64_t *valp) 760 { 761 char buf[32]; 762 int err; 763 uint64_t obj; 764 765 *valp = 0; 766 767 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 768 return (SET_ERROR(ENOTSUP)); 769 770 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 771 if (obj == 0) 772 return (0); 773 774 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 775 if (err) 776 return (err); 777 778 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 779 if (err == ENOENT) 780 err = 0; 781 return (err); 782 } 783 784 int 785 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 786 const char *domain, uint64_t rid, uint64_t quota) 787 { 788 char buf[32]; 789 int err; 790 dmu_tx_t *tx; 791 uint64_t *objp; 792 boolean_t fuid_dirtied; 793 794 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 795 return (SET_ERROR(EINVAL)); 796 797 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 798 return (SET_ERROR(ENOTSUP)); 799 800 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 801 &zfsvfs->z_groupquota_obj; 802 803 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 804 if (err) 805 return (err); 806 fuid_dirtied = zfsvfs->z_fuid_dirty; 807 808 tx = dmu_tx_create(zfsvfs->z_os); 809 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 810 if (*objp == 0) { 811 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 812 zfs_userquota_prop_prefixes[type]); 813 } 814 if (fuid_dirtied) 815 zfs_fuid_txhold(zfsvfs, tx); 816 err = dmu_tx_assign(tx, TXG_WAIT); 817 if (err) { 818 dmu_tx_abort(tx); 819 return (err); 820 } 821 822 mutex_enter(&zfsvfs->z_lock); 823 if (*objp == 0) { 824 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 825 DMU_OT_NONE, 0, tx); 826 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 827 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 828 } 829 mutex_exit(&zfsvfs->z_lock); 830 831 if (quota == 0) { 832 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 833 if (err == ENOENT) 834 err = 0; 835 } else { 836 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 837 } 838 ASSERT(err == 0); 839 if (fuid_dirtied) 840 zfs_fuid_sync(zfsvfs, tx); 841 dmu_tx_commit(tx); 842 return (err); 843 } 844 845 boolean_t 846 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 847 { 848 char buf[32]; 849 uint64_t used, quota, usedobj, quotaobj; 850 int err; 851 852 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 853 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 854 855 if (quotaobj == 0 || zfsvfs->z_replay) 856 return (B_FALSE); 857 858 (void) sprintf(buf, "%llx", (longlong_t)fuid); 859 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 860 if (err != 0) 861 return (B_FALSE); 862 863 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 864 if (err != 0) 865 return (B_FALSE); 866 return (used >= quota); 867 } 868 869 boolean_t 870 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 871 { 872 uint64_t fuid; 873 uint64_t quotaobj; 874 875 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 876 877 fuid = isgroup ? zp->z_gid : zp->z_uid; 878 879 if (quotaobj == 0 || zfsvfs->z_replay) 880 return (B_FALSE); 881 882 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 883 } 884 885 int 886 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 887 { 888 objset_t *os; 889 zfsvfs_t *zfsvfs; 890 uint64_t zval; 891 int i, error; 892 uint64_t sa_obj; 893 894 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 895 896 /* 897 * We claim to always be readonly so we can open snapshots; 898 * other ZPL code will prevent us from writing to snapshots. 899 */ 900 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 901 if (error) { 902 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 903 return (error); 904 } 905 906 /* 907 * Initialize the zfs-specific filesystem structure. 908 * Should probably make this a kmem cache, shuffle fields, 909 * and just bzero up to z_hold_mtx[]. 910 */ 911 zfsvfs->z_vfs = NULL; 912 zfsvfs->z_parent = zfsvfs; 913 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 914 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 915 zfsvfs->z_os = os; 916 917 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 918 if (error) { 919 goto out; 920 } else if (zfsvfs->z_version > 921 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 922 (void) printf("Can't mount a version %lld file system " 923 "on a version %lld pool\n. Pool must be upgraded to mount " 924 "this file system.", (u_longlong_t)zfsvfs->z_version, 925 (u_longlong_t)spa_version(dmu_objset_spa(os))); 926 error = SET_ERROR(ENOTSUP); 927 goto out; 928 } 929 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 930 goto out; 931 zfsvfs->z_norm = (int)zval; 932 933 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 934 goto out; 935 zfsvfs->z_utf8 = (zval != 0); 936 937 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 938 goto out; 939 zfsvfs->z_case = (uint_t)zval; 940 941 /* 942 * Fold case on file systems that are always or sometimes case 943 * insensitive. 944 */ 945 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 946 zfsvfs->z_case == ZFS_CASE_MIXED) 947 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 948 949 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 950 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 951 952 if (zfsvfs->z_use_sa) { 953 /* should either have both of these objects or none */ 954 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 955 &sa_obj); 956 if (error) 957 goto out; 958 } else { 959 /* 960 * Pre SA versions file systems should never touch 961 * either the attribute registration or layout objects. 962 */ 963 sa_obj = 0; 964 } 965 966 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 967 &zfsvfs->z_attr_table); 968 if (error) 969 goto out; 970 971 if (zfsvfs->z_version >= ZPL_VERSION_SA) 972 sa_register_update_callback(os, zfs_sa_upgrade); 973 974 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 975 &zfsvfs->z_root); 976 if (error) 977 goto out; 978 ASSERT(zfsvfs->z_root != 0); 979 980 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 981 &zfsvfs->z_unlinkedobj); 982 if (error) 983 goto out; 984 985 error = zap_lookup(os, MASTER_NODE_OBJ, 986 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 987 8, 1, &zfsvfs->z_userquota_obj); 988 if (error && error != ENOENT) 989 goto out; 990 991 error = zap_lookup(os, MASTER_NODE_OBJ, 992 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 993 8, 1, &zfsvfs->z_groupquota_obj); 994 if (error && error != ENOENT) 995 goto out; 996 997 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 998 &zfsvfs->z_fuid_obj); 999 if (error && error != ENOENT) 1000 goto out; 1001 1002 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 1003 &zfsvfs->z_shares_dir); 1004 if (error && error != ENOENT) 1005 goto out; 1006 1007 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1008 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 1009 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1010 offsetof(znode_t, z_link_node)); 1011 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 1012 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 1013 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 1014 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1015 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1016 1017 *zfvp = zfsvfs; 1018 return (0); 1019 1020 out: 1021 dmu_objset_disown(os, zfsvfs); 1022 *zfvp = NULL; 1023 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1024 return (error); 1025 } 1026 1027 static int 1028 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1029 { 1030 int error; 1031 1032 error = zfs_register_callbacks(zfsvfs->z_vfs); 1033 if (error) 1034 return (error); 1035 1036 /* 1037 * Set the objset user_ptr to track its zfsvfs. 1038 */ 1039 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1040 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1041 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1042 1043 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1044 1045 /* 1046 * If we are not mounting (ie: online recv), then we don't 1047 * have to worry about replaying the log as we blocked all 1048 * operations out since we closed the ZIL. 1049 */ 1050 if (mounting) { 1051 boolean_t readonly; 1052 1053 /* 1054 * During replay we remove the read only flag to 1055 * allow replays to succeed. 1056 */ 1057 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1058 if (readonly != 0) 1059 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1060 else 1061 zfs_unlinked_drain(zfsvfs); 1062 1063 /* 1064 * Parse and replay the intent log. 1065 * 1066 * Because of ziltest, this must be done after 1067 * zfs_unlinked_drain(). (Further note: ziltest 1068 * doesn't use readonly mounts, where 1069 * zfs_unlinked_drain() isn't called.) This is because 1070 * ziltest causes spa_sync() to think it's committed, 1071 * but actually it is not, so the intent log contains 1072 * many txg's worth of changes. 1073 * 1074 * In particular, if object N is in the unlinked set in 1075 * the last txg to actually sync, then it could be 1076 * actually freed in a later txg and then reallocated 1077 * in a yet later txg. This would write a "create 1078 * object N" record to the intent log. Normally, this 1079 * would be fine because the spa_sync() would have 1080 * written out the fact that object N is free, before 1081 * we could write the "create object N" intent log 1082 * record. 1083 * 1084 * But when we are in ziltest mode, we advance the "open 1085 * txg" without actually spa_sync()-ing the changes to 1086 * disk. So we would see that object N is still 1087 * allocated and in the unlinked set, and there is an 1088 * intent log record saying to allocate it. 1089 */ 1090 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1091 if (zil_replay_disable) { 1092 zil_destroy(zfsvfs->z_log, B_FALSE); 1093 } else { 1094 zfsvfs->z_replay = B_TRUE; 1095 zil_replay(zfsvfs->z_os, zfsvfs, 1096 zfs_replay_vector); 1097 zfsvfs->z_replay = B_FALSE; 1098 } 1099 } 1100 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1101 } 1102 1103 return (0); 1104 } 1105 1106 void 1107 zfsvfs_free(zfsvfs_t *zfsvfs) 1108 { 1109 int i; 1110 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1111 1112 /* 1113 * This is a barrier to prevent the filesystem from going away in 1114 * zfs_znode_move() until we can safely ensure that the filesystem is 1115 * not unmounted. We consider the filesystem valid before the barrier 1116 * and invalid after the barrier. 1117 */ 1118 rw_enter(&zfsvfs_lock, RW_READER); 1119 rw_exit(&zfsvfs_lock); 1120 1121 zfs_fuid_destroy(zfsvfs); 1122 1123 mutex_destroy(&zfsvfs->z_znodes_lock); 1124 mutex_destroy(&zfsvfs->z_lock); 1125 list_destroy(&zfsvfs->z_all_znodes); 1126 rrm_destroy(&zfsvfs->z_teardown_lock); 1127 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1128 rw_destroy(&zfsvfs->z_fuid_lock); 1129 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1130 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1131 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1132 } 1133 1134 static void 1135 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1136 { 1137 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1138 if (zfsvfs->z_vfs) { 1139 if (zfsvfs->z_use_fuids) { 1140 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1141 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1142 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1143 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1144 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1145 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1146 } else { 1147 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1148 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1149 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1150 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1151 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1152 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1153 } 1154 } 1155 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1156 } 1157 1158 static int 1159 zfs_domount(vfs_t *vfsp, char *osname) 1160 { 1161 dev_t mount_dev; 1162 uint64_t recordsize, fsid_guid; 1163 int error = 0; 1164 zfsvfs_t *zfsvfs; 1165 1166 ASSERT(vfsp); 1167 ASSERT(osname); 1168 1169 error = zfsvfs_create(osname, &zfsvfs); 1170 if (error) 1171 return (error); 1172 zfsvfs->z_vfs = vfsp; 1173 1174 /* Initialize the generic filesystem structure. */ 1175 vfsp->vfs_bcount = 0; 1176 vfsp->vfs_data = NULL; 1177 1178 if (zfs_create_unique_device(&mount_dev) == -1) { 1179 error = SET_ERROR(ENODEV); 1180 goto out; 1181 } 1182 ASSERT(vfs_devismounted(mount_dev) == 0); 1183 1184 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1185 NULL)) 1186 goto out; 1187 1188 vfsp->vfs_dev = mount_dev; 1189 vfsp->vfs_fstype = zfsfstype; 1190 vfsp->vfs_bsize = recordsize; 1191 vfsp->vfs_flag |= VFS_NOTRUNC; 1192 vfsp->vfs_data = zfsvfs; 1193 1194 /* 1195 * The fsid is 64 bits, composed of an 8-bit fs type, which 1196 * separates our fsid from any other filesystem types, and a 1197 * 56-bit objset unique ID. The objset unique ID is unique to 1198 * all objsets open on this system, provided by unique_create(). 1199 * The 8-bit fs type must be put in the low bits of fsid[1] 1200 * because that's where other Solaris filesystems put it. 1201 */ 1202 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1203 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1204 vfsp->vfs_fsid.val[0] = fsid_guid; 1205 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1206 zfsfstype & 0xFF; 1207 1208 /* 1209 * Set features for file system. 1210 */ 1211 zfs_set_fuid_feature(zfsvfs); 1212 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1213 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1214 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1215 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1216 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1217 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1218 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1219 } 1220 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1221 1222 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1223 uint64_t pval; 1224 1225 atime_changed_cb(zfsvfs, B_FALSE); 1226 readonly_changed_cb(zfsvfs, B_TRUE); 1227 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1228 goto out; 1229 xattr_changed_cb(zfsvfs, pval); 1230 zfsvfs->z_issnap = B_TRUE; 1231 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1232 1233 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1234 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1235 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1236 } else { 1237 error = zfsvfs_setup(zfsvfs, B_TRUE); 1238 } 1239 1240 if (!zfsvfs->z_issnap) 1241 zfsctl_create(zfsvfs); 1242 out: 1243 if (error) { 1244 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1245 zfsvfs_free(zfsvfs); 1246 } else { 1247 atomic_inc_32(&zfs_active_fs_count); 1248 } 1249 1250 return (error); 1251 } 1252 1253 void 1254 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1255 { 1256 objset_t *os = zfsvfs->z_os; 1257 1258 if (!dmu_objset_is_snapshot(os)) 1259 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1260 } 1261 1262 /* 1263 * Convert a decimal digit string to a uint64_t integer. 1264 */ 1265 static int 1266 str_to_uint64(char *str, uint64_t *objnum) 1267 { 1268 uint64_t num = 0; 1269 1270 while (*str) { 1271 if (*str < '0' || *str > '9') 1272 return (SET_ERROR(EINVAL)); 1273 1274 num = num*10 + *str++ - '0'; 1275 } 1276 1277 *objnum = num; 1278 return (0); 1279 } 1280 1281 /* 1282 * The boot path passed from the boot loader is in the form of 1283 * "rootpool-name/root-filesystem-object-number'. Convert this 1284 * string to a dataset name: "rootpool-name/root-filesystem-name". 1285 */ 1286 static int 1287 zfs_parse_bootfs(char *bpath, char *outpath) 1288 { 1289 char *slashp; 1290 uint64_t objnum; 1291 int error; 1292 1293 if (*bpath == 0 || *bpath == '/') 1294 return (SET_ERROR(EINVAL)); 1295 1296 (void) strcpy(outpath, bpath); 1297 1298 slashp = strchr(bpath, '/'); 1299 1300 /* if no '/', just return the pool name */ 1301 if (slashp == NULL) { 1302 return (0); 1303 } 1304 1305 /* if not a number, just return the root dataset name */ 1306 if (str_to_uint64(slashp+1, &objnum)) { 1307 return (0); 1308 } 1309 1310 *slashp = '\0'; 1311 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1312 *slashp = '/'; 1313 1314 return (error); 1315 } 1316 1317 /* 1318 * Check that the hex label string is appropriate for the dataset being 1319 * mounted into the global_zone proper. 1320 * 1321 * Return an error if the hex label string is not default or 1322 * admin_low/admin_high. For admin_low labels, the corresponding 1323 * dataset must be readonly. 1324 */ 1325 int 1326 zfs_check_global_label(const char *dsname, const char *hexsl) 1327 { 1328 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1329 return (0); 1330 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1331 return (0); 1332 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1333 /* must be readonly */ 1334 uint64_t rdonly; 1335 1336 if (dsl_prop_get_integer(dsname, 1337 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1338 return (SET_ERROR(EACCES)); 1339 return (rdonly ? 0 : EACCES); 1340 } 1341 return (SET_ERROR(EACCES)); 1342 } 1343 1344 /* 1345 * Determine whether the mount is allowed according to MAC check. 1346 * by comparing (where appropriate) label of the dataset against 1347 * the label of the zone being mounted into. If the dataset has 1348 * no label, create one. 1349 * 1350 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1351 */ 1352 static int 1353 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1354 { 1355 int error, retv; 1356 zone_t *mntzone = NULL; 1357 ts_label_t *mnt_tsl; 1358 bslabel_t *mnt_sl; 1359 bslabel_t ds_sl; 1360 char ds_hexsl[MAXNAMELEN]; 1361 1362 retv = EACCES; /* assume the worst */ 1363 1364 /* 1365 * Start by getting the dataset label if it exists. 1366 */ 1367 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1368 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1369 if (error) 1370 return (SET_ERROR(EACCES)); 1371 1372 /* 1373 * If labeling is NOT enabled, then disallow the mount of datasets 1374 * which have a non-default label already. No other label checks 1375 * are needed. 1376 */ 1377 if (!is_system_labeled()) { 1378 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1379 return (0); 1380 return (SET_ERROR(EACCES)); 1381 } 1382 1383 /* 1384 * Get the label of the mountpoint. If mounting into the global 1385 * zone (i.e. mountpoint is not within an active zone and the 1386 * zoned property is off), the label must be default or 1387 * admin_low/admin_high only; no other checks are needed. 1388 */ 1389 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1390 if (mntzone->zone_id == GLOBAL_ZONEID) { 1391 uint64_t zoned; 1392 1393 zone_rele(mntzone); 1394 1395 if (dsl_prop_get_integer(osname, 1396 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1397 return (SET_ERROR(EACCES)); 1398 if (!zoned) 1399 return (zfs_check_global_label(osname, ds_hexsl)); 1400 else 1401 /* 1402 * This is the case of a zone dataset being mounted 1403 * initially, before the zone has been fully created; 1404 * allow this mount into global zone. 1405 */ 1406 return (0); 1407 } 1408 1409 mnt_tsl = mntzone->zone_slabel; 1410 ASSERT(mnt_tsl != NULL); 1411 label_hold(mnt_tsl); 1412 mnt_sl = label2bslabel(mnt_tsl); 1413 1414 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1415 /* 1416 * The dataset doesn't have a real label, so fabricate one. 1417 */ 1418 char *str = NULL; 1419 1420 if (l_to_str_internal(mnt_sl, &str) == 0 && 1421 dsl_prop_set_string(osname, 1422 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1423 ZPROP_SRC_LOCAL, str) == 0) 1424 retv = 0; 1425 if (str != NULL) 1426 kmem_free(str, strlen(str) + 1); 1427 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1428 /* 1429 * Now compare labels to complete the MAC check. If the 1430 * labels are equal then allow access. If the mountpoint 1431 * label dominates the dataset label, allow readonly access. 1432 * Otherwise, access is denied. 1433 */ 1434 if (blequal(mnt_sl, &ds_sl)) 1435 retv = 0; 1436 else if (bldominates(mnt_sl, &ds_sl)) { 1437 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1438 retv = 0; 1439 } 1440 } 1441 1442 label_rele(mnt_tsl); 1443 zone_rele(mntzone); 1444 return (retv); 1445 } 1446 1447 static int 1448 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1449 { 1450 int error = 0; 1451 static int zfsrootdone = 0; 1452 zfsvfs_t *zfsvfs = NULL; 1453 znode_t *zp = NULL; 1454 vnode_t *vp = NULL; 1455 char *zfs_bootfs; 1456 char *zfs_devid; 1457 1458 ASSERT(vfsp); 1459 1460 /* 1461 * The filesystem that we mount as root is defined in the 1462 * boot property "zfs-bootfs" with a format of 1463 * "poolname/root-dataset-objnum". 1464 */ 1465 if (why == ROOT_INIT) { 1466 if (zfsrootdone++) 1467 return (SET_ERROR(EBUSY)); 1468 /* 1469 * the process of doing a spa_load will require the 1470 * clock to be set before we could (for example) do 1471 * something better by looking at the timestamp on 1472 * an uberblock, so just set it to -1. 1473 */ 1474 clkset(-1); 1475 1476 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1477 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1478 "bootfs name"); 1479 return (SET_ERROR(EINVAL)); 1480 } 1481 zfs_devid = spa_get_bootprop("diskdevid"); 1482 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1483 if (zfs_devid) 1484 spa_free_bootprop(zfs_devid); 1485 if (error) { 1486 spa_free_bootprop(zfs_bootfs); 1487 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1488 error); 1489 return (error); 1490 } 1491 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1492 spa_free_bootprop(zfs_bootfs); 1493 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1494 error); 1495 return (error); 1496 } 1497 1498 spa_free_bootprop(zfs_bootfs); 1499 1500 if (error = vfs_lock(vfsp)) 1501 return (error); 1502 1503 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1504 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1505 goto out; 1506 } 1507 1508 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1509 ASSERT(zfsvfs); 1510 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1511 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1512 goto out; 1513 } 1514 1515 vp = ZTOV(zp); 1516 mutex_enter(&vp->v_lock); 1517 vp->v_flag |= VROOT; 1518 mutex_exit(&vp->v_lock); 1519 rootvp = vp; 1520 1521 /* 1522 * Leave rootvp held. The root file system is never unmounted. 1523 */ 1524 1525 vfs_add((struct vnode *)0, vfsp, 1526 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1527 out: 1528 vfs_unlock(vfsp); 1529 return (error); 1530 } else if (why == ROOT_REMOUNT) { 1531 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1532 vfsp->vfs_flag |= VFS_REMOUNT; 1533 1534 /* refresh mount options */ 1535 zfs_unregister_callbacks(vfsp->vfs_data); 1536 return (zfs_register_callbacks(vfsp)); 1537 1538 } else if (why == ROOT_UNMOUNT) { 1539 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1540 (void) zfs_sync(vfsp, 0, 0); 1541 return (0); 1542 } 1543 1544 /* 1545 * if "why" is equal to anything else other than ROOT_INIT, 1546 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1547 */ 1548 return (SET_ERROR(ENOTSUP)); 1549 } 1550 1551 /*ARGSUSED*/ 1552 static int 1553 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1554 { 1555 char *osname; 1556 pathname_t spn; 1557 int error = 0; 1558 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1559 UIO_SYSSPACE : UIO_USERSPACE; 1560 int canwrite; 1561 1562 if (mvp->v_type != VDIR) 1563 return (SET_ERROR(ENOTDIR)); 1564 1565 mutex_enter(&mvp->v_lock); 1566 if ((uap->flags & MS_REMOUNT) == 0 && 1567 (uap->flags & MS_OVERLAY) == 0 && 1568 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1569 mutex_exit(&mvp->v_lock); 1570 return (SET_ERROR(EBUSY)); 1571 } 1572 mutex_exit(&mvp->v_lock); 1573 1574 /* 1575 * ZFS does not support passing unparsed data in via MS_DATA. 1576 * Users should use the MS_OPTIONSTR interface; this means 1577 * that all option parsing is already done and the options struct 1578 * can be interrogated. 1579 */ 1580 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1581 return (SET_ERROR(EINVAL)); 1582 1583 /* 1584 * Get the objset name (the "special" mount argument). 1585 */ 1586 if (error = pn_get(uap->spec, fromspace, &spn)) 1587 return (error); 1588 1589 osname = spn.pn_path; 1590 1591 /* 1592 * Check for mount privilege? 1593 * 1594 * If we don't have privilege then see if 1595 * we have local permission to allow it 1596 */ 1597 error = secpolicy_fs_mount(cr, mvp, vfsp); 1598 if (error) { 1599 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1600 vattr_t vattr; 1601 1602 /* 1603 * Make sure user is the owner of the mount point 1604 * or has sufficient privileges. 1605 */ 1606 1607 vattr.va_mask = AT_UID; 1608 1609 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1610 goto out; 1611 } 1612 1613 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1614 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1615 goto out; 1616 } 1617 secpolicy_fs_mount_clearopts(cr, vfsp); 1618 } else { 1619 goto out; 1620 } 1621 } 1622 1623 /* 1624 * Refuse to mount a filesystem if we are in a local zone and the 1625 * dataset is not visible. 1626 */ 1627 if (!INGLOBALZONE(curproc) && 1628 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1629 error = SET_ERROR(EPERM); 1630 goto out; 1631 } 1632 1633 error = zfs_mount_label_policy(vfsp, osname); 1634 if (error) 1635 goto out; 1636 1637 /* 1638 * When doing a remount, we simply refresh our temporary properties 1639 * according to those options set in the current VFS options. 1640 */ 1641 if (uap->flags & MS_REMOUNT) { 1642 /* refresh mount options */ 1643 zfs_unregister_callbacks(vfsp->vfs_data); 1644 error = zfs_register_callbacks(vfsp); 1645 goto out; 1646 } 1647 1648 error = zfs_domount(vfsp, osname); 1649 1650 /* 1651 * Add an extra VFS_HOLD on our parent vfs so that it can't 1652 * disappear due to a forced unmount. 1653 */ 1654 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1655 VFS_HOLD(mvp->v_vfsp); 1656 1657 out: 1658 if (error == 0) { 1659 rw_enter(&rz_zev_rwlock, RW_READER); 1660 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount) 1661 rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname, 1662 uap->flags & MS_REMOUNT ? B_TRUE : B_FALSE); 1663 rw_exit(&rz_zev_rwlock); 1664 } 1665 pn_free(&spn); 1666 return (error); 1667 } 1668 1669 static int 1670 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1671 { 1672 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1673 dev32_t d32; 1674 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1675 1676 ZFS_ENTER(zfsvfs); 1677 1678 dmu_objset_space(zfsvfs->z_os, 1679 &refdbytes, &availbytes, &usedobjs, &availobjs); 1680 1681 /* 1682 * The underlying storage pool actually uses multiple block sizes. 1683 * We report the fragsize as the smallest block size we support, 1684 * and we report our blocksize as the filesystem's maximum blocksize. 1685 */ 1686 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1687 statp->f_bsize = zfsvfs->z_max_blksz; 1688 1689 /* 1690 * The following report "total" blocks of various kinds in the 1691 * file system, but reported in terms of f_frsize - the 1692 * "fragment" size. 1693 */ 1694 1695 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1696 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1697 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1698 1699 /* 1700 * statvfs() should really be called statufs(), because it assumes 1701 * static metadata. ZFS doesn't preallocate files, so the best 1702 * we can do is report the max that could possibly fit in f_files, 1703 * and that minus the number actually used in f_ffree. 1704 * For f_ffree, report the smaller of the number of object available 1705 * and the number of blocks (each object will take at least a block). 1706 */ 1707 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1708 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1709 statp->f_files = statp->f_ffree + usedobjs; 1710 1711 (void) cmpldev(&d32, vfsp->vfs_dev); 1712 statp->f_fsid = d32; 1713 1714 /* 1715 * We're a zfs filesystem. 1716 */ 1717 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1718 1719 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1720 1721 statp->f_namemax = MAXNAMELEN - 1; 1722 1723 /* 1724 * We have all of 32 characters to stuff a string here. 1725 * Is there anything useful we could/should provide? 1726 */ 1727 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1728 1729 ZFS_EXIT(zfsvfs); 1730 return (0); 1731 } 1732 1733 static int 1734 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1735 { 1736 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1737 znode_t *rootzp; 1738 int error; 1739 1740 ZFS_ENTER(zfsvfs); 1741 1742 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1743 if (error == 0) 1744 *vpp = ZTOV(rootzp); 1745 1746 ZFS_EXIT(zfsvfs); 1747 return (error); 1748 } 1749 1750 /* 1751 * Teardown the zfsvfs::z_os. 1752 * 1753 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1754 * and 'z_teardown_inactive_lock' held. 1755 */ 1756 static int 1757 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1758 { 1759 znode_t *zp; 1760 1761 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1762 1763 if (!unmounting) { 1764 /* 1765 * We purge the parent filesystem's vfsp as the parent 1766 * filesystem and all of its snapshots have their vnode's 1767 * v_vfsp set to the parent's filesystem's vfsp. Note, 1768 * 'z_parent' is self referential for non-snapshots. 1769 */ 1770 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1771 } 1772 1773 /* 1774 * Close the zil. NB: Can't close the zil while zfs_inactive 1775 * threads are blocked as zil_close can call zfs_inactive. 1776 */ 1777 if (zfsvfs->z_log) { 1778 zil_close(zfsvfs->z_log); 1779 zfsvfs->z_log = NULL; 1780 } 1781 1782 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1783 1784 /* 1785 * If we are not unmounting (ie: online recv) and someone already 1786 * unmounted this file system while we were doing the switcheroo, 1787 * or a reopen of z_os failed then just bail out now. 1788 */ 1789 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1790 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1791 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1792 return (SET_ERROR(EIO)); 1793 } 1794 1795 /* 1796 * At this point there are no vops active, and any new vops will 1797 * fail with EIO since we have z_teardown_lock for writer (only 1798 * relavent for forced unmount). 1799 * 1800 * Release all holds on dbufs. 1801 */ 1802 mutex_enter(&zfsvfs->z_znodes_lock); 1803 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1804 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1805 if (zp->z_sa_hdl) { 1806 ASSERT(ZTOV(zp)->v_count > 0); 1807 zfs_znode_dmu_fini(zp); 1808 } 1809 mutex_exit(&zfsvfs->z_znodes_lock); 1810 1811 /* 1812 * If we are unmounting, set the unmounted flag and let new vops 1813 * unblock. zfs_inactive will have the unmounted behavior, and all 1814 * other vops will fail with EIO. 1815 */ 1816 if (unmounting) { 1817 zfsvfs->z_unmounted = B_TRUE; 1818 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1819 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1820 } 1821 1822 /* 1823 * z_os will be NULL if there was an error in attempting to reopen 1824 * zfsvfs, so just return as the properties had already been 1825 * unregistered and cached data had been evicted before. 1826 */ 1827 if (zfsvfs->z_os == NULL) 1828 return (0); 1829 1830 /* 1831 * Unregister properties. 1832 */ 1833 zfs_unregister_callbacks(zfsvfs); 1834 1835 /* 1836 * Evict cached data 1837 */ 1838 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1839 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1840 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1841 dmu_objset_evict_dbufs(zfsvfs->z_os); 1842 1843 return (0); 1844 } 1845 1846 /*ARGSUSED*/ 1847 static int 1848 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1849 { 1850 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1851 objset_t *os; 1852 int ret; 1853 1854 ret = secpolicy_fs_unmount(cr, vfsp); 1855 if (ret) { 1856 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1857 ZFS_DELEG_PERM_MOUNT, cr)) 1858 return (ret); 1859 } 1860 1861 /* 1862 * We purge the parent filesystem's vfsp as the parent filesystem 1863 * and all of its snapshots have their vnode's v_vfsp set to the 1864 * parent's filesystem's vfsp. Note, 'z_parent' is self 1865 * referential for non-snapshots. 1866 */ 1867 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1868 1869 /* 1870 * Unmount any snapshots mounted under .zfs before unmounting the 1871 * dataset itself. 1872 */ 1873 if (zfsvfs->z_ctldir != NULL && 1874 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1875 return (ret); 1876 } 1877 1878 if (!(fflag & MS_FORCE)) { 1879 /* 1880 * Check the number of active vnodes in the file system. 1881 * Our count is maintained in the vfs structure, but the 1882 * number is off by 1 to indicate a hold on the vfs 1883 * structure itself. 1884 * 1885 * The '.zfs' directory maintains a reference of its 1886 * own, and any active references underneath are 1887 * reflected in the vnode count. 1888 */ 1889 if (zfsvfs->z_ctldir == NULL) { 1890 if (vfsp->vfs_count > 1) 1891 return (SET_ERROR(EBUSY)); 1892 } else { 1893 if (vfsp->vfs_count > 2 || 1894 zfsvfs->z_ctldir->v_count > 1) 1895 return (SET_ERROR(EBUSY)); 1896 } 1897 } 1898 1899 vfsp->vfs_flag |= VFS_UNMOUNTED; 1900 1901 rw_enter(&rz_zev_rwlock, RW_READER); 1902 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount) 1903 rz_zev_callbacks->rz_zev_zfs_umount(vfsp); 1904 rw_exit(&rz_zev_rwlock); 1905 1906 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1907 os = zfsvfs->z_os; 1908 1909 /* 1910 * z_os will be NULL if there was an error in 1911 * attempting to reopen zfsvfs. 1912 */ 1913 if (os != NULL) { 1914 /* 1915 * Unset the objset user_ptr. 1916 */ 1917 mutex_enter(&os->os_user_ptr_lock); 1918 dmu_objset_set_user(os, NULL); 1919 mutex_exit(&os->os_user_ptr_lock); 1920 1921 /* 1922 * Finally release the objset 1923 */ 1924 dmu_objset_disown(os, zfsvfs); 1925 } 1926 1927 /* 1928 * We can now safely destroy the '.zfs' directory node. 1929 */ 1930 if (zfsvfs->z_ctldir != NULL) 1931 zfsctl_destroy(zfsvfs); 1932 1933 return (0); 1934 } 1935 1936 static int 1937 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1938 { 1939 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1940 znode_t *zp; 1941 uint64_t object = 0; 1942 uint64_t fid_gen = 0; 1943 uint64_t gen_mask; 1944 uint64_t zp_gen; 1945 int i, err; 1946 1947 *vpp = NULL; 1948 1949 ZFS_ENTER(zfsvfs); 1950 1951 if (fidp->fid_len == LONG_FID_LEN) { 1952 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1953 uint64_t objsetid = 0; 1954 uint64_t setgen = 0; 1955 1956 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1957 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1958 1959 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1960 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1961 1962 ZFS_EXIT(zfsvfs); 1963 1964 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1965 if (err) 1966 return (SET_ERROR(EINVAL)); 1967 ZFS_ENTER(zfsvfs); 1968 } 1969 1970 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1971 zfid_short_t *zfid = (zfid_short_t *)fidp; 1972 1973 for (i = 0; i < sizeof (zfid->zf_object); i++) 1974 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1975 1976 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1977 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1978 } else { 1979 ZFS_EXIT(zfsvfs); 1980 return (SET_ERROR(EINVAL)); 1981 } 1982 1983 /* A zero fid_gen means we are in the .zfs control directories */ 1984 if (fid_gen == 0 && 1985 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1986 *vpp = zfsvfs->z_ctldir; 1987 ASSERT(*vpp != NULL); 1988 if (object == ZFSCTL_INO_SNAPDIR) { 1989 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1990 0, NULL, NULL, NULL, NULL, NULL) == 0); 1991 } else { 1992 VN_HOLD(*vpp); 1993 } 1994 ZFS_EXIT(zfsvfs); 1995 return (0); 1996 } 1997 1998 gen_mask = -1ULL >> (64 - 8 * i); 1999 2000 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2001 if (err = zfs_zget(zfsvfs, object, &zp)) { 2002 ZFS_EXIT(zfsvfs); 2003 return (err); 2004 } 2005 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2006 sizeof (uint64_t)); 2007 zp_gen = zp_gen & gen_mask; 2008 if (zp_gen == 0) 2009 zp_gen = 1; 2010 if (zp->z_unlinked || zp_gen != fid_gen) { 2011 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2012 VN_RELE(ZTOV(zp)); 2013 ZFS_EXIT(zfsvfs); 2014 return (SET_ERROR(EINVAL)); 2015 } 2016 2017 *vpp = ZTOV(zp); 2018 ZFS_EXIT(zfsvfs); 2019 return (0); 2020 } 2021 2022 /* 2023 * Block out VOPs and close zfsvfs_t::z_os 2024 * 2025 * Note, if successful, then we return with the 'z_teardown_lock' and 2026 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 2027 * dataset and objset intact so that they can be atomically handed off during 2028 * a subsequent rollback or recv operation and the resume thereafter. 2029 */ 2030 int 2031 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2032 { 2033 int error; 2034 2035 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2036 return (error); 2037 2038 return (0); 2039 } 2040 2041 /* 2042 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2043 * is an invariant across any of the operations that can be performed while the 2044 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2045 * are the same: the relevant objset and associated dataset are owned by 2046 * zfsvfs, held, and long held on entry. 2047 */ 2048 int 2049 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2050 { 2051 int err; 2052 znode_t *zp; 2053 uint64_t sa_obj = 0; 2054 2055 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2056 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2057 2058 /* 2059 * We already own this, so just hold and rele it to update the 2060 * objset_t, as the one we had before may have been evicted. 2061 */ 2062 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); 2063 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2064 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); 2065 dmu_objset_rele(zfsvfs->z_os, zfsvfs); 2066 2067 /* 2068 * Make sure version hasn't changed 2069 */ 2070 2071 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2072 &zfsvfs->z_version); 2073 2074 if (err) 2075 goto bail; 2076 2077 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2078 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2079 2080 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2081 goto bail; 2082 2083 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2084 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2085 goto bail; 2086 2087 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2088 sa_register_update_callback(zfsvfs->z_os, 2089 zfs_sa_upgrade); 2090 2091 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2092 2093 zfs_set_fuid_feature(zfsvfs); 2094 2095 /* 2096 * Attempt to re-establish all the active znodes with 2097 * their dbufs. If a zfs_rezget() fails, then we'll let 2098 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2099 * when they try to use their znode. 2100 */ 2101 mutex_enter(&zfsvfs->z_znodes_lock); 2102 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2103 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2104 (void) zfs_rezget(zp); 2105 } 2106 mutex_exit(&zfsvfs->z_znodes_lock); 2107 2108 bail: 2109 /* release the VOPs */ 2110 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2111 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2112 2113 if (err) { 2114 /* 2115 * Since we couldn't setup the sa framework, try to force 2116 * unmount this file system. 2117 */ 2118 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2119 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2120 } 2121 return (err); 2122 } 2123 2124 static void 2125 zfs_freevfs(vfs_t *vfsp) 2126 { 2127 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2128 2129 /* 2130 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2131 * from zfs_mount(). Release it here. If we came through 2132 * zfs_mountroot() instead, we didn't grab an extra hold, so 2133 * skip the VFS_RELE for rootvfs. 2134 */ 2135 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2136 VFS_RELE(zfsvfs->z_parent->z_vfs); 2137 2138 zfsvfs_free(zfsvfs); 2139 2140 atomic_dec_32(&zfs_active_fs_count); 2141 } 2142 2143 /* 2144 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2145 * so we can't safely do any non-idempotent initialization here. 2146 * Leave that to zfs_init() and zfs_fini(), which are called 2147 * from the module's _init() and _fini() entry points. 2148 */ 2149 /*ARGSUSED*/ 2150 static int 2151 zfs_vfsinit(int fstype, char *name) 2152 { 2153 int error; 2154 2155 zfsfstype = fstype; 2156 2157 /* 2158 * Setup vfsops and vnodeops tables. 2159 */ 2160 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2161 if (error != 0) { 2162 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2163 } 2164 2165 error = zfs_create_op_tables(); 2166 if (error) { 2167 zfs_remove_op_tables(); 2168 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2169 (void) vfs_freevfsops_by_type(zfsfstype); 2170 return (error); 2171 } 2172 2173 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2174 2175 /* 2176 * Unique major number for all zfs mounts. 2177 * If we run out of 32-bit minors, we'll getudev() another major. 2178 */ 2179 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2180 zfs_minor = ZFS_MIN_MINOR; 2181 2182 return (0); 2183 } 2184 2185 void 2186 zfs_init(void) 2187 { 2188 /* 2189 * Initialize .zfs directory structures 2190 */ 2191 zfsctl_init(); 2192 2193 /* 2194 * Initialize znode cache, vnode ops, etc... 2195 */ 2196 zfs_znode_init(); 2197 2198 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2199 } 2200 2201 void 2202 zfs_fini(void) 2203 { 2204 zfsctl_fini(); 2205 zfs_znode_fini(); 2206 } 2207 2208 int 2209 zfs_busy(void) 2210 { 2211 return (zfs_active_fs_count != 0); 2212 } 2213 2214 int 2215 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2216 { 2217 int error; 2218 objset_t *os = zfsvfs->z_os; 2219 dmu_tx_t *tx; 2220 2221 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2222 return (SET_ERROR(EINVAL)); 2223 2224 if (newvers < zfsvfs->z_version) 2225 return (SET_ERROR(EINVAL)); 2226 2227 if (zfs_spa_version_map(newvers) > 2228 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2229 return (SET_ERROR(ENOTSUP)); 2230 2231 tx = dmu_tx_create(os); 2232 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2233 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2234 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2235 ZFS_SA_ATTRS); 2236 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2237 } 2238 error = dmu_tx_assign(tx, TXG_WAIT); 2239 if (error) { 2240 dmu_tx_abort(tx); 2241 return (error); 2242 } 2243 2244 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2245 8, 1, &newvers, tx); 2246 2247 if (error) { 2248 dmu_tx_commit(tx); 2249 return (error); 2250 } 2251 2252 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2253 uint64_t sa_obj; 2254 2255 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2256 SPA_VERSION_SA); 2257 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2258 DMU_OT_NONE, 0, tx); 2259 2260 error = zap_add(os, MASTER_NODE_OBJ, 2261 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2262 ASSERT0(error); 2263 2264 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2265 sa_register_update_callback(os, zfs_sa_upgrade); 2266 } 2267 2268 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2269 "from %llu to %llu", zfsvfs->z_version, newvers); 2270 2271 dmu_tx_commit(tx); 2272 2273 zfsvfs->z_version = newvers; 2274 2275 zfs_set_fuid_feature(zfsvfs); 2276 2277 return (0); 2278 } 2279 2280 /* 2281 * Read a property stored within the master node. 2282 */ 2283 int 2284 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2285 { 2286 const char *pname; 2287 int error = ENOENT; 2288 2289 /* 2290 * Look up the file system's value for the property. For the 2291 * version property, we look up a slightly different string. 2292 */ 2293 if (prop == ZFS_PROP_VERSION) 2294 pname = ZPL_VERSION_STR; 2295 else 2296 pname = zfs_prop_to_name(prop); 2297 2298 if (os != NULL) 2299 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2300 2301 if (error == ENOENT) { 2302 /* No value set, use the default value */ 2303 switch (prop) { 2304 case ZFS_PROP_VERSION: 2305 *value = ZPL_VERSION; 2306 break; 2307 case ZFS_PROP_NORMALIZE: 2308 case ZFS_PROP_UTF8ONLY: 2309 *value = 0; 2310 break; 2311 case ZFS_PROP_CASE: 2312 *value = ZFS_CASE_SENSITIVE; 2313 break; 2314 default: 2315 return (error); 2316 } 2317 error = 0; 2318 } 2319 return (error); 2320 } 2321 2322 static vfsdef_t vfw = { 2323 VFSDEF_VERSION, 2324 MNTTYPE_ZFS, 2325 zfs_vfsinit, 2326 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2327 VSW_XID|VSW_ZMOUNT, 2328 &zfs_mntopts 2329 }; 2330 2331 struct modlfs zfs_modlfs = { 2332 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2333 }; 2334