xref: /freebsd/sys/kern/kern_exec.c (revision 09dfe066f00c927e88c23265387d432e6d9f0c5e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1993, David Greenman
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_capsicum.h"
31 #include "opt_hwpmc_hooks.h"
32 #include "opt_ktrace.h"
33 #include "opt_vm.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/acct.h>
38 #include <sys/asan.h>
39 #include <sys/capsicum.h>
40 #include <sys/compressor.h>
41 #include <sys/eventhandler.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/filedesc.h>
45 #include <sys/imgact.h>
46 #include <sys/imgact_elf.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mman.h>
51 #include <sys/mount.h>
52 #include <sys/mutex.h>
53 #include <sys/namei.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sched.h>
61 #include <sys/sdt.h>
62 #include <sys/sf_buf.h>
63 #include <sys/shm.h>
64 #include <sys/signalvar.h>
65 #include <sys/smp.h>
66 #include <sys/stat.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/sysproto.h>
71 #include <sys/timers.h>
72 #include <sys/umtxvar.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_extern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_pager.h>
88 
89 #ifdef	HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 #include <security/audit/audit.h>
94 #include <security/mac/mac_framework.h>
95 
96 #ifdef KDTRACE_HOOKS
97 #include <sys/dtrace_bsd.h>
98 dtrace_execexit_func_t	dtrace_fasttrap_exec;
99 #endif
100 
101 SDT_PROVIDER_DECLARE(proc);
102 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
103 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
104 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
105 
106 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
107 
108 int coredump_pack_fileinfo = 1;
109 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
110     &coredump_pack_fileinfo, 0,
111     "Enable file path packing in 'procstat -f' coredump notes");
112 
113 int coredump_pack_vmmapinfo = 1;
114 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
115     &coredump_pack_vmmapinfo, 0,
116     "Enable file path packing in 'procstat -v' coredump notes");
117 
118 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
119 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
120 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
121 static int do_execve(struct thread *td, struct image_args *args,
122     struct mac *mac_p, struct vmspace *oldvmspace);
123 
124 /* XXX This should be vm_size_t. */
125 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
126     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
127     "Location of process' ps_strings structure");
128 
129 /* XXX This should be vm_size_t. */
130 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
131     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
132     "Top of process stack");
133 
134 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
135     NULL, 0, sysctl_kern_stackprot, "I",
136     "Stack memory permissions");
137 
138 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
139 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
140     &ps_arg_cache_limit, 0,
141     "Process' command line characters cache limit");
142 
143 static int disallow_high_osrel;
144 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
145     &disallow_high_osrel, 0,
146     "Disallow execution of binaries built for higher version of the world");
147 
148 static int map_at_zero = 0;
149 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
150     "Permit processes to map an object at virtual address 0.");
151 
152 static int core_dump_can_intr = 1;
153 SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
154     &core_dump_can_intr, 0,
155     "Core dumping interruptible with SIGKILL");
156 
157 static int
sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)158 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
159 {
160 	struct proc *p;
161 	vm_offset_t ps_strings;
162 
163 	p = curproc;
164 #ifdef SCTL_MASK32
165 	if (req->flags & SCTL_MASK32) {
166 		unsigned int val;
167 		val = (unsigned int)PROC_PS_STRINGS(p);
168 		return (SYSCTL_OUT(req, &val, sizeof(val)));
169 	}
170 #endif
171 	ps_strings = PROC_PS_STRINGS(p);
172 	return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
173 }
174 
175 static int
sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)176 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
177 {
178 	struct proc *p;
179 	vm_offset_t val;
180 
181 	p = curproc;
182 #ifdef SCTL_MASK32
183 	if (req->flags & SCTL_MASK32) {
184 		unsigned int val32;
185 
186 		val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
187 		return (SYSCTL_OUT(req, &val32, sizeof(val32)));
188 	}
189 #endif
190 	val = round_page(p->p_vmspace->vm_stacktop);
191 	return (SYSCTL_OUT(req, &val, sizeof(val)));
192 }
193 
194 static int
sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)195 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
196 {
197 	struct proc *p;
198 
199 	p = curproc;
200 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
201 	    sizeof(p->p_sysent->sv_stackprot)));
202 }
203 
204 /*
205  * Each of the items is a pointer to a `const struct execsw', hence the
206  * double pointer here.
207  */
208 static const struct execsw **execsw;
209 
210 #ifndef _SYS_SYSPROTO_H_
211 struct execve_args {
212 	char    *fname;
213 	char    **argv;
214 	char    **envv;
215 };
216 #endif
217 
218 int
sys_execve(struct thread * td,struct execve_args * uap)219 sys_execve(struct thread *td, struct execve_args *uap)
220 {
221 	struct image_args args;
222 	struct vmspace *oldvmspace;
223 	int error;
224 
225 	error = pre_execve(td, &oldvmspace);
226 	if (error != 0)
227 		return (error);
228 	error = exec_copyin_args(&args, uap->fname, uap->argv, uap->envv);
229 	if (error == 0)
230 		error = kern_execve(td, &args, NULL, oldvmspace);
231 	post_execve(td, error, oldvmspace);
232 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
233 	return (error);
234 }
235 
236 #ifndef _SYS_SYSPROTO_H_
237 struct fexecve_args {
238 	int	fd;
239 	char	**argv;
240 	char	**envv;
241 };
242 #endif
243 int
sys_fexecve(struct thread * td,struct fexecve_args * uap)244 sys_fexecve(struct thread *td, struct fexecve_args *uap)
245 {
246 	struct image_args args;
247 	struct vmspace *oldvmspace;
248 	int error;
249 
250 	error = pre_execve(td, &oldvmspace);
251 	if (error != 0)
252 		return (error);
253 	error = exec_copyin_args(&args, NULL, uap->argv, uap->envv);
254 	if (error == 0) {
255 		args.fd = uap->fd;
256 		error = kern_execve(td, &args, NULL, oldvmspace);
257 	}
258 	post_execve(td, error, oldvmspace);
259 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
260 	return (error);
261 }
262 
263 #ifndef _SYS_SYSPROTO_H_
264 struct __mac_execve_args {
265 	char	*fname;
266 	char	**argv;
267 	char	**envv;
268 	struct mac	*mac_p;
269 };
270 #endif
271 
272 int
sys___mac_execve(struct thread * td,struct __mac_execve_args * uap)273 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
274 {
275 #ifdef MAC
276 	struct image_args args;
277 	struct vmspace *oldvmspace;
278 	int error;
279 
280 	error = pre_execve(td, &oldvmspace);
281 	if (error != 0)
282 		return (error);
283 	error = exec_copyin_args(&args, uap->fname, uap->argv, uap->envv);
284 	if (error == 0)
285 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
286 	post_execve(td, error, oldvmspace);
287 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
288 	return (error);
289 #else
290 	return (ENOSYS);
291 #endif
292 }
293 
294 int
pre_execve(struct thread * td,struct vmspace ** oldvmspace)295 pre_execve(struct thread *td, struct vmspace **oldvmspace)
296 {
297 	struct proc *p;
298 	int error;
299 
300 	KASSERT(td == curthread, ("non-current thread %p", td));
301 	error = 0;
302 	p = td->td_proc;
303 	if ((p->p_flag & P_HADTHREADS) != 0) {
304 		PROC_LOCK(p);
305 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
306 			error = ERESTART;
307 		PROC_UNLOCK(p);
308 	}
309 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
310 	    ("nested execve"));
311 	*oldvmspace = p->p_vmspace;
312 	return (error);
313 }
314 
315 void
post_execve(struct thread * td,int error,struct vmspace * oldvmspace)316 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
317 {
318 	struct proc *p;
319 
320 	KASSERT(td == curthread, ("non-current thread %p", td));
321 	p = td->td_proc;
322 	if ((p->p_flag & P_HADTHREADS) != 0) {
323 		PROC_LOCK(p);
324 		/*
325 		 * If success, we upgrade to SINGLE_EXIT state to
326 		 * force other threads to suicide.
327 		 */
328 		if (error == EJUSTRETURN)
329 			thread_single(p, SINGLE_EXIT);
330 		else
331 			thread_single_end(p, SINGLE_BOUNDARY);
332 		PROC_UNLOCK(p);
333 	}
334 	exec_cleanup(td, oldvmspace);
335 }
336 
337 /*
338  * kern_execve() has the astonishing property of not always returning to
339  * the caller.  If sufficiently bad things happen during the call to
340  * do_execve(), it can end up calling exit1(); as a result, callers must
341  * avoid doing anything which they might need to undo (e.g., allocating
342  * memory).
343  */
344 int
kern_execve(struct thread * td,struct image_args * args,struct mac * mac_p,struct vmspace * oldvmspace)345 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
346     struct vmspace *oldvmspace)
347 {
348 
349 	TSEXEC(td->td_proc->p_pid, args->begin_argv);
350 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
351 	    exec_args_get_begin_envv(args) - args->begin_argv);
352 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
353 	    args->endp - exec_args_get_begin_envv(args));
354 #ifdef KTRACE
355 	if (KTRPOINT(td, KTR_ARGS)) {
356 		ktrdata(KTR_ARGS, args->begin_argv,
357 		    exec_args_get_begin_envv(args) - args->begin_argv);
358         }
359 	if (KTRPOINT(td, KTR_ENVS)) {
360 		ktrdata(KTR_ENVS, exec_args_get_begin_envv(args),
361 		    args->endp - exec_args_get_begin_envv(args));
362         }
363 #endif
364 	/* Must have at least one argument. */
365 	if (args->argc == 0) {
366 		exec_free_args(args);
367 		return (EINVAL);
368 	}
369 	return (do_execve(td, args, mac_p, oldvmspace));
370 }
371 
372 static void
execve_nosetid(struct image_params * imgp)373 execve_nosetid(struct image_params *imgp)
374 {
375 	imgp->credential_setid = false;
376 	if (imgp->newcred != NULL) {
377 		crfree(imgp->newcred);
378 		imgp->newcred = NULL;
379 	}
380 }
381 
382 /*
383  * In-kernel implementation of execve().  All arguments are assumed to be
384  * userspace pointers from the passed thread.
385  */
386 static int
do_execve(struct thread * td,struct image_args * args,struct mac * mac_p,struct vmspace * oldvmspace)387 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
388     struct vmspace *oldvmspace)
389 {
390 	struct proc *p = td->td_proc;
391 	struct nameidata nd;
392 	struct ucred *oldcred;
393 	struct uidinfo *euip = NULL;
394 	uintptr_t stack_base;
395 	struct image_params image_params, *imgp;
396 	struct vattr attr;
397 	struct pargs *oldargs = NULL, *newargs = NULL;
398 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
399 #ifdef KTRACE
400 	struct ktr_io_params *kiop;
401 #endif
402 	struct vnode *oldtextvp, *newtextvp;
403 	struct vnode *oldtextdvp, *newtextdvp;
404 	char *oldbinname, *newbinname;
405 	bool credential_changing;
406 #ifdef MAC
407 	struct label *interpvplabel = NULL;
408 	bool will_transition;
409 #endif
410 #ifdef HWPMC_HOOKS
411 	struct pmckern_procexec pe;
412 #endif
413 	int error, i, orig_osrel;
414 	uint32_t orig_fctl0;
415 	Elf_Brandinfo *orig_brandinfo;
416 	size_t freepath_size;
417 	static const char fexecv_proc_title[] = "(fexecv)";
418 
419 	imgp = &image_params;
420 	oldtextvp = oldtextdvp = NULL;
421 	newtextvp = newtextdvp = NULL;
422 	newbinname = oldbinname = NULL;
423 #ifdef KTRACE
424 	kiop = NULL;
425 #endif
426 
427 	/*
428 	 * Lock the process and set the P_INEXEC flag to indicate that
429 	 * it should be left alone until we're done here.  This is
430 	 * necessary to avoid race conditions - e.g. in ptrace() -
431 	 * that might allow a local user to illicitly obtain elevated
432 	 * privileges.
433 	 */
434 	PROC_LOCK(p);
435 	KASSERT((p->p_flag & P_INEXEC) == 0,
436 	    ("%s(): process already has P_INEXEC flag", __func__));
437 	p->p_flag |= P_INEXEC;
438 	PROC_UNLOCK(p);
439 
440 	/*
441 	 * Initialize part of the common data
442 	 */
443 	bzero(imgp, sizeof(*imgp));
444 	imgp->proc = p;
445 	imgp->attr = &attr;
446 	imgp->args = args;
447 	oldcred = p->p_ucred;
448 	orig_osrel = p->p_osrel;
449 	orig_fctl0 = p->p_fctl0;
450 	orig_brandinfo = p->p_elf_brandinfo;
451 
452 #ifdef MAC
453 	error = mac_execve_enter(imgp, mac_p);
454 	if (error)
455 		goto exec_fail;
456 #endif
457 
458 	SDT_PROBE1(proc, , , exec, args->fname);
459 
460 interpret:
461 	if (args->fname != NULL) {
462 #ifdef CAPABILITY_MODE
463 		if (CAP_TRACING(td))
464 			ktrcapfail(CAPFAIL_NAMEI, args->fname);
465 		/*
466 		 * While capability mode can't reach this point via direct
467 		 * path arguments to execve(), we also don't allow
468 		 * interpreters to be used in capability mode (for now).
469 		 * Catch indirect lookups and return a permissions error.
470 		 */
471 		if (IN_CAPABILITY_MODE(td)) {
472 			error = ECAPMODE;
473 			goto exec_fail;
474 		}
475 #endif
476 
477 		/*
478 		 * Translate the file name. namei() returns a vnode
479 		 * pointer in ni_vp among other things.
480 		 */
481 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
482 		    AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
483 		    args->fname);
484 
485 		error = namei(&nd);
486 		if (error)
487 			goto exec_fail;
488 
489 		newtextvp = nd.ni_vp;
490 		newtextdvp = nd.ni_dvp;
491 		nd.ni_dvp = NULL;
492 		newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
493 		    M_WAITOK);
494 		memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
495 		newbinname[nd.ni_cnd.cn_namelen] = '\0';
496 		imgp->vp = newtextvp;
497 
498 		/*
499 		 * Do the best to calculate the full path to the image file.
500 		 */
501 		if (args->fname[0] == '/') {
502 			imgp->execpath = args->fname;
503 		} else {
504 			VOP_UNLOCK(imgp->vp);
505 			freepath_size = MAXPATHLEN;
506 			if (vn_fullpath_hardlink(newtextvp, newtextdvp,
507 			    newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
508 			    &imgp->freepath, &freepath_size) != 0)
509 				imgp->execpath = args->fname;
510 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
511 		}
512 	} else if (imgp->interpreter_vp) {
513 		/*
514 		 * An image activator has already provided an open vnode
515 		 */
516 		newtextvp = imgp->interpreter_vp;
517 		imgp->interpreter_vp = NULL;
518 		if (vn_fullpath(newtextvp, &imgp->execpath,
519 		    &imgp->freepath) != 0)
520 			imgp->execpath = args->fname;
521 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
522 		AUDIT_ARG_VNODE1(newtextvp);
523 		imgp->vp = newtextvp;
524 	} else {
525 		AUDIT_ARG_FD(args->fd);
526 
527 		/*
528 		 * If the descriptors was not opened with O_PATH, then
529 		 * we require that it was opened with O_EXEC or
530 		 * O_RDONLY.  In either case, exec_check_permissions()
531 		 * below checks _current_ file access mode regardless
532 		 * of the permissions additionally checked at the
533 		 * open(2).
534 		 */
535 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
536 		    &newtextvp);
537 		if (error != 0)
538 			goto exec_fail;
539 
540 		if (vn_fullpath(newtextvp, &imgp->execpath,
541 		    &imgp->freepath) != 0)
542 			imgp->execpath = args->fname;
543 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
544 		AUDIT_ARG_VNODE1(newtextvp);
545 		imgp->vp = newtextvp;
546 	}
547 
548 	/*
549 	 * Check file permissions.  Also 'opens' file and sets its vnode to
550 	 * text mode.
551 	 */
552 	error = exec_check_permissions(imgp);
553 	if (error)
554 		goto exec_fail_dealloc;
555 
556 	imgp->object = imgp->vp->v_object;
557 	if (imgp->object != NULL)
558 		vm_object_reference(imgp->object);
559 
560 	error = exec_map_first_page(imgp);
561 	if (error)
562 		goto exec_fail_dealloc;
563 
564 	imgp->proc->p_osrel = 0;
565 	imgp->proc->p_fctl0 = 0;
566 	imgp->proc->p_elf_brandinfo = NULL;
567 
568 	/*
569 	 * Implement image setuid/setgid.
570 	 *
571 	 * Determine new credentials before attempting image activators
572 	 * so that it can be used by process_exec handlers to determine
573 	 * credential/setid changes.
574 	 *
575 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
576 	 * the process is being traced.
577 	 *
578 	 * We disable setuid/setgid/etc in capability mode on the basis
579 	 * that most setugid applications are not written with that
580 	 * environment in mind, and will therefore almost certainly operate
581 	 * incorrectly. In principle there's no reason that setugid
582 	 * applications might not be useful in capability mode, so we may want
583 	 * to reconsider this conservative design choice in the future.
584 	 *
585 	 * XXXMAC: For the time being, use NOSUID to also prohibit
586 	 * transitions on the file system.
587 	 */
588 	credential_changing = false;
589 	credential_changing |= (attr.va_mode & S_ISUID) &&
590 	    oldcred->cr_uid != attr.va_uid;
591 	credential_changing |= (attr.va_mode & S_ISGID) &&
592 	    oldcred->cr_gid != attr.va_gid;
593 #ifdef MAC
594 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
595 	    interpvplabel, imgp) != 0;
596 	credential_changing |= will_transition;
597 #endif
598 
599 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
600 	if (credential_changing)
601 		imgp->proc->p_pdeathsig = 0;
602 
603 	if (credential_changing &&
604 #ifdef CAPABILITY_MODE
605 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
606 #endif
607 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
608 	    (p->p_flag & P_TRACED) == 0) {
609 		imgp->credential_setid = true;
610 		VOP_UNLOCK(imgp->vp);
611 		imgp->newcred = crdup(oldcred);
612 		if (attr.va_mode & S_ISUID) {
613 			euip = uifind(attr.va_uid);
614 			change_euid(imgp->newcred, euip);
615 		}
616 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
617 		if (attr.va_mode & S_ISGID)
618 			change_egid(imgp->newcred, attr.va_gid);
619 		/*
620 		 * Implement correct POSIX saved-id behavior.
621 		 *
622 		 * XXXMAC: Note that the current logic will save the
623 		 * uid and gid if a MAC domain transition occurs, even
624 		 * though maybe it shouldn't.
625 		 */
626 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
627 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
628 	} else {
629 		/*
630 		 * Implement correct POSIX saved-id behavior.
631 		 *
632 		 * XXX: It's not clear that the existing behavior is
633 		 * POSIX-compliant.  A number of sources indicate that the
634 		 * saved uid/gid should only be updated if the new ruid is
635 		 * not equal to the old ruid, or the new euid is not equal
636 		 * to the old euid and the new euid is not equal to the old
637 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
638 		 * Also, this code uses the new (replaced) euid and egid as
639 		 * the source, which may or may not be the right ones to use.
640 		 */
641 		if (oldcred->cr_svuid != oldcred->cr_uid ||
642 		    oldcred->cr_svgid != oldcred->cr_gid) {
643 			VOP_UNLOCK(imgp->vp);
644 			imgp->newcred = crdup(oldcred);
645 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
646 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
647 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
648 		}
649 	}
650 	/* The new credentials are installed into the process later. */
651 
652 	/*
653 	 *	Loop through the list of image activators, calling each one.
654 	 *	An activator returns -1 if there is no match, 0 on success,
655 	 *	and an error otherwise.
656 	 */
657 	error = -1;
658 	for (i = 0; error == -1 && execsw[i]; ++i) {
659 		if (execsw[i]->ex_imgact == NULL)
660 			continue;
661 		error = (*execsw[i]->ex_imgact)(imgp);
662 	}
663 
664 	if (error) {
665 		if (error == -1)
666 			error = ENOEXEC;
667 		goto exec_fail_dealloc;
668 	}
669 
670 	/*
671 	 * Special interpreter operation, cleanup and loop up to try to
672 	 * activate the interpreter.
673 	 */
674 	if (imgp->interpreted) {
675 		exec_unmap_first_page(imgp);
676 		/*
677 		 * The text reference needs to be removed for scripts.
678 		 * There is a short period before we determine that
679 		 * something is a script where text reference is active.
680 		 * The vnode lock is held over this entire period
681 		 * so nothing should illegitimately be blocked.
682 		 */
683 		MPASS(imgp->textset);
684 		VOP_UNSET_TEXT_CHECKED(newtextvp);
685 		imgp->textset = false;
686 		/* free name buffer and old vnode */
687 #ifdef MAC
688 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
689 #endif
690 		if (imgp->opened) {
691 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
692 			imgp->opened = false;
693 		}
694 		vput(newtextvp);
695 		imgp->vp = newtextvp = NULL;
696 		if (args->fname != NULL) {
697 			if (newtextdvp != NULL) {
698 				vrele(newtextdvp);
699 				newtextdvp = NULL;
700 			}
701 			NDFREE_PNBUF(&nd);
702 			free(newbinname, M_PARGS);
703 			newbinname = NULL;
704 		}
705 		vm_object_deallocate(imgp->object);
706 		imgp->object = NULL;
707 		execve_nosetid(imgp);
708 		imgp->execpath = NULL;
709 		free(imgp->freepath, M_TEMP);
710 		imgp->freepath = NULL;
711 		/* set new name to that of the interpreter */
712 		if (imgp->interpreter_vp) {
713 			args->fname = NULL;
714 		} else {
715 			args->fname = imgp->interpreter_name;
716 		}
717 		goto interpret;
718 	}
719 
720 	/*
721 	 * NB: We unlock the vnode here because it is believed that none
722 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
723 	 */
724 	VOP_UNLOCK(imgp->vp);
725 
726 	if (disallow_high_osrel &&
727 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
728 		error = ENOEXEC;
729 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
730 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
731 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
732 		goto exec_fail_dealloc;
733 	}
734 
735 	/*
736 	 * Copy out strings (args and env) and initialize stack base.
737 	 */
738 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
739 	if (error != 0) {
740 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
741 		goto exec_fail_dealloc;
742 	}
743 
744 	/*
745 	 * Stack setup.
746 	 */
747 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
748 	if (error != 0) {
749 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
750 		goto exec_fail_dealloc;
751 	}
752 
753 	/*
754 	 * For security and other reasons, the file descriptor table cannot be
755 	 * shared after an exec.
756 	 */
757 	fdunshare(td);
758 	pdunshare(td);
759 	/* close files on exec */
760 	fdcloseexec(td);
761 
762 	/*
763 	 * Malloc things before we need locks.
764 	 */
765 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
766 	/* Cache arguments if they fit inside our allowance */
767 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
768 		newargs = pargs_alloc(i);
769 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
770 	}
771 
772 	/*
773 	 * For security and other reasons, signal handlers cannot
774 	 * be shared after an exec. The new process gets a copy of the old
775 	 * handlers. In execsigs(), the new process will have its signals
776 	 * reset.
777 	 */
778 	if (sigacts_shared(p->p_sigacts)) {
779 		oldsigacts = p->p_sigacts;
780 		newsigacts = sigacts_alloc();
781 		sigacts_copy(newsigacts, oldsigacts);
782 	}
783 
784 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
785 
786 	PROC_LOCK(p);
787 	if (oldsigacts)
788 		p->p_sigacts = newsigacts;
789 	/* Stop profiling */
790 	stopprofclock(p);
791 
792 	/* reset caught signals */
793 	execsigs(p);
794 
795 	/* name this process - nameiexec(p, ndp) */
796 	bzero(p->p_comm, sizeof(p->p_comm));
797 	if (args->fname)
798 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
799 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
800 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
801 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
802 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
803 #ifdef KTR
804 	sched_clear_tdname(td);
805 #endif
806 
807 	/*
808 	 * mark as execed, wakeup the process that vforked (if any) and tell
809 	 * it that it now has its own resources back
810 	 */
811 	p->p_flag |= P_EXEC;
812 	td->td_pflags2 &= ~TDP2_UEXTERR;
813 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
814 		p->p_flag2 &= ~P2_NOTRACE;
815 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
816 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
817 	p->p_flag2 &= ~(P2_MEMBAR_PRIVE | P2_MEMBAR_PRIVE_SYNCORE |
818 	    P2_MEMBAR_GLOBE);
819 	if (p->p_flag & P_PPWAIT) {
820 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
821 		cv_broadcast(&p->p_pwait);
822 		/* STOPs are no longer ignored, arrange for AST */
823 		signotify(td);
824 	}
825 
826 	if ((imgp->sysent->sv_setid_allowed != NULL &&
827 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
828 	    (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
829 		execve_nosetid(imgp);
830 
831 	/*
832 	 * Implement image setuid/setgid installation.
833 	 */
834 	if (imgp->credential_setid) {
835 		/*
836 		 * Turn off syscall tracing for set-id programs, except for
837 		 * root.  Record any set-id flags first to make sure that
838 		 * we do not regain any tracing during a possible block.
839 		 */
840 		setsugid(p);
841 #ifdef KTRACE
842 		kiop = ktrprocexec(p);
843 #endif
844 		/*
845 		 * Close any file descriptors 0..2 that reference procfs,
846 		 * then make sure file descriptors 0..2 are in use.
847 		 *
848 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
849 		 * taking sleepable locks, so temporarily drop our locks.
850 		 */
851 		PROC_UNLOCK(p);
852 		VOP_UNLOCK(imgp->vp);
853 		fdsetugidsafety(td);
854 		error = fdcheckstd(td);
855 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
856 		if (error != 0)
857 			goto exec_fail_dealloc;
858 		PROC_LOCK(p);
859 #ifdef MAC
860 		if (will_transition) {
861 			mac_vnode_execve_transition(oldcred, imgp->newcred,
862 			    imgp->vp, interpvplabel, imgp);
863 		}
864 #endif
865 	} else {
866 		if (oldcred->cr_uid == oldcred->cr_ruid &&
867 		    oldcred->cr_gid == oldcred->cr_rgid)
868 			p->p_flag &= ~P_SUGID;
869 	}
870 	/*
871 	 * Set the new credentials.
872 	 */
873 	if (imgp->newcred != NULL) {
874 		proc_set_cred(p, imgp->newcred);
875 		crfree(oldcred);
876 		oldcred = NULL;
877 	}
878 
879 	/*
880 	 * Store the vp for use in kern.proc.pathname.  This vnode was
881 	 * referenced by namei() or by fexecve variant of fname handling.
882 	 */
883 	oldtextvp = p->p_textvp;
884 	p->p_textvp = newtextvp;
885 	oldtextdvp = p->p_textdvp;
886 	p->p_textdvp = newtextdvp;
887 	newtextdvp = NULL;
888 	oldbinname = p->p_binname;
889 	p->p_binname = newbinname;
890 	newbinname = NULL;
891 
892 #ifdef KDTRACE_HOOKS
893 	/*
894 	 * Tell the DTrace fasttrap provider about the exec if it
895 	 * has declared an interest.
896 	 */
897 	if (dtrace_fasttrap_exec)
898 		dtrace_fasttrap_exec(p);
899 #endif
900 
901 	/*
902 	 * Notify others that we exec'd, and clear the P_INEXEC flag
903 	 * as we're now a bona fide freshly-execed process.
904 	 */
905 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
906 	p->p_flag &= ~P_INEXEC;
907 
908 	/* clear "fork but no exec" flag, as we _are_ execing */
909 	p->p_acflag &= ~AFORK;
910 
911 	/*
912 	 * Free any previous argument cache and replace it with
913 	 * the new argument cache, if any.
914 	 */
915 	oldargs = p->p_args;
916 	p->p_args = newargs;
917 	newargs = NULL;
918 
919 	PROC_UNLOCK(p);
920 
921 #ifdef	HWPMC_HOOKS
922 	/*
923 	 * Check if system-wide sampling is in effect or if the
924 	 * current process is using PMCs.  If so, do exec() time
925 	 * processing.  This processing needs to happen AFTER the
926 	 * P_INEXEC flag is cleared.
927 	 */
928 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
929 		VOP_UNLOCK(imgp->vp);
930 		pe.pm_credentialschanged = credential_changing;
931 		pe.pm_baseaddr = imgp->reloc_base;
932 		pe.pm_dynaddr = imgp->et_dyn_addr;
933 
934 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
935 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
936 	}
937 #endif
938 
939 	/* Set values passed into the program in registers. */
940 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
941 
942 	VOP_MMAPPED(imgp->vp);
943 
944 	SDT_PROBE1(proc, , , exec__success, args->fname);
945 
946 exec_fail_dealloc:
947 	if (error != 0) {
948 		p->p_osrel = orig_osrel;
949 		p->p_fctl0 = orig_fctl0;
950 		p->p_elf_brandinfo = orig_brandinfo;
951 	}
952 
953 	if (imgp->firstpage != NULL)
954 		exec_unmap_first_page(imgp);
955 
956 	if (imgp->vp != NULL) {
957 		if (imgp->opened)
958 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
959 		if (imgp->textset)
960 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
961 		if (error != 0)
962 			vput(imgp->vp);
963 		else
964 			VOP_UNLOCK(imgp->vp);
965 		if (args->fname != NULL)
966 			NDFREE_PNBUF(&nd);
967 		if (newtextdvp != NULL)
968 			vrele(newtextdvp);
969 		free(newbinname, M_PARGS);
970 	}
971 
972 	if (imgp->object != NULL)
973 		vm_object_deallocate(imgp->object);
974 
975 	free(imgp->freepath, M_TEMP);
976 
977 	if (error == 0) {
978 		if (p->p_ptevents & PTRACE_EXEC) {
979 			PROC_LOCK(p);
980 			if (p->p_ptevents & PTRACE_EXEC)
981 				td->td_dbgflags |= TDB_EXEC;
982 			PROC_UNLOCK(p);
983 		}
984 	} else {
985 exec_fail:
986 		/* we're done here, clear P_INEXEC */
987 		PROC_LOCK(p);
988 		p->p_flag &= ~P_INEXEC;
989 		PROC_UNLOCK(p);
990 
991 		SDT_PROBE1(proc, , , exec__failure, error);
992 	}
993 
994 	if (imgp->newcred != NULL && oldcred != NULL)
995 		crfree(imgp->newcred);
996 
997 #ifdef MAC
998 	mac_execve_exit(imgp);
999 	mac_execve_interpreter_exit(interpvplabel);
1000 #endif
1001 	exec_free_args(args);
1002 
1003 	/*
1004 	 * Handle deferred decrement of ref counts.
1005 	 */
1006 	if (oldtextvp != NULL)
1007 		vrele(oldtextvp);
1008 	if (oldtextdvp != NULL)
1009 		vrele(oldtextdvp);
1010 	free(oldbinname, M_PARGS);
1011 #ifdef KTRACE
1012 	ktr_io_params_free(kiop);
1013 #endif
1014 	pargs_drop(oldargs);
1015 	pargs_drop(newargs);
1016 	if (oldsigacts != NULL)
1017 		sigacts_free(oldsigacts);
1018 	if (euip != NULL)
1019 		uifree(euip);
1020 
1021 	if (error && imgp->vmspace_destroyed) {
1022 		/* sorry, no more process anymore. exit gracefully */
1023 		exec_cleanup(td, oldvmspace);
1024 		exit1(td, 0, SIGABRT);
1025 		/* NOT REACHED */
1026 	}
1027 
1028 #ifdef KTRACE
1029 	if (error == 0)
1030 		ktrprocctor(p);
1031 #endif
1032 
1033 	/*
1034 	 * We don't want cpu_set_syscall_retval() to overwrite any of
1035 	 * the register values put in place by exec_setregs().
1036 	 * Implementations of cpu_set_syscall_retval() will leave
1037 	 * registers unmodified when returning EJUSTRETURN.
1038 	 */
1039 	return (error == 0 ? EJUSTRETURN : error);
1040 }
1041 
1042 void
exec_cleanup(struct thread * td,struct vmspace * oldvmspace)1043 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
1044 {
1045 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
1046 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
1047 		    ("oldvmspace still used"));
1048 		vmspace_free(oldvmspace);
1049 		td->td_pflags &= ~TDP_EXECVMSPC;
1050 	}
1051 }
1052 
1053 int
exec_map_first_page(struct image_params * imgp)1054 exec_map_first_page(struct image_params *imgp)
1055 {
1056 	vm_object_t object;
1057 	vm_page_t m;
1058 	int error;
1059 
1060 	if (imgp->firstpage != NULL)
1061 		exec_unmap_first_page(imgp);
1062 
1063 	object = imgp->vp->v_object;
1064 	if (object == NULL)
1065 		return (EACCES);
1066 #if VM_NRESERVLEVEL > 0
1067 	if ((object->flags & OBJ_COLORED) == 0) {
1068 		VM_OBJECT_WLOCK(object);
1069 		vm_object_color(object, 0);
1070 		VM_OBJECT_WUNLOCK(object);
1071 	}
1072 #endif
1073 	error = vm_page_grab_valid_unlocked(&m, object, 0,
1074 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1075 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1076 
1077 	if (error != VM_PAGER_OK)
1078 		return (EIO);
1079 	imgp->firstpage = sf_buf_alloc(m, 0);
1080 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1081 
1082 	return (0);
1083 }
1084 
1085 void
exec_unmap_first_page(struct image_params * imgp)1086 exec_unmap_first_page(struct image_params *imgp)
1087 {
1088 	vm_page_t m;
1089 
1090 	if (imgp->firstpage != NULL) {
1091 		m = sf_buf_page(imgp->firstpage);
1092 		sf_buf_free(imgp->firstpage);
1093 		imgp->firstpage = NULL;
1094 		vm_page_unwire(m, PQ_ACTIVE);
1095 	}
1096 }
1097 
1098 void
exec_onexec_old(struct thread * td)1099 exec_onexec_old(struct thread *td)
1100 {
1101 	sigfastblock_clear(td);
1102 	umtx_exec(td->td_proc);
1103 }
1104 
1105 /*
1106  * This is an optimization which removes the unmanaged shared page
1107  * mapping. In combination with pmap_remove_pages(), which cleans all
1108  * managed mappings in the process' vmspace pmap, no work will be left
1109  * for pmap_remove(min, max).
1110  */
1111 void
exec_free_abi_mappings(struct proc * p)1112 exec_free_abi_mappings(struct proc *p)
1113 {
1114 	struct vmspace *vmspace;
1115 
1116 	vmspace = p->p_vmspace;
1117 	if (refcount_load(&vmspace->vm_refcnt) != 1)
1118 		return;
1119 
1120 	if (!PROC_HAS_SHP(p))
1121 		return;
1122 
1123 	pmap_remove(vmspace_pmap(vmspace), vmspace->vm_shp_base,
1124 	    vmspace->vm_shp_base + p->p_sysent->sv_shared_page_len);
1125 }
1126 
1127 /*
1128  * Run down the current address space and install a new one.
1129  */
1130 int
exec_new_vmspace(struct image_params * imgp,struct sysentvec * sv)1131 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1132 {
1133 	int error;
1134 	struct proc *p = imgp->proc;
1135 	struct vmspace *vmspace = p->p_vmspace;
1136 	struct thread *td = curthread;
1137 	vm_offset_t sv_minuser;
1138 	vm_map_t map;
1139 
1140 	imgp->vmspace_destroyed = true;
1141 	imgp->sysent = sv;
1142 
1143 	if (p->p_sysent->sv_onexec_old != NULL)
1144 		p->p_sysent->sv_onexec_old(td);
1145 	itimers_exec(p);
1146 
1147 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1148 
1149 	/*
1150 	 * Blow away entire process VM, if address space not shared,
1151 	 * otherwise, create a new VM space so that other threads are
1152 	 * not disrupted
1153 	 */
1154 	map = &vmspace->vm_map;
1155 	if (map_at_zero)
1156 		sv_minuser = sv->sv_minuser;
1157 	else
1158 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1159 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1160 	    vm_map_min(map) == sv_minuser &&
1161 	    vm_map_max(map) == sv->sv_maxuser &&
1162 	    cpu_exec_vmspace_reuse(p, map)) {
1163 		exec_free_abi_mappings(p);
1164 		shmexit(vmspace);
1165 		pmap_remove_pages(vmspace_pmap(vmspace));
1166 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1167 		/*
1168 		 * An exec terminates mlockall(MCL_FUTURE).
1169 		 * ASLR and W^X states must be re-evaluated.
1170 		 */
1171 		vm_map_lock(map);
1172 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1173 		    MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
1174 		vm_map_unlock(map);
1175 	} else {
1176 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1177 		if (error)
1178 			return (error);
1179 		vmspace = p->p_vmspace;
1180 		map = &vmspace->vm_map;
1181 	}
1182 	map->flags |= imgp->map_flags;
1183 
1184 	return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
1185 }
1186 
1187 /*
1188  * Compute the stack size limit and map the main process stack.
1189  * Map the shared page.
1190  */
1191 int
exec_map_stack(struct image_params * imgp)1192 exec_map_stack(struct image_params *imgp)
1193 {
1194 	struct rlimit rlim_stack;
1195 	struct sysentvec *sv;
1196 	struct proc *p;
1197 	vm_map_t map;
1198 	struct vmspace *vmspace;
1199 	vm_offset_t stack_addr, stack_top;
1200 	vm_offset_t sharedpage_addr;
1201 	u_long ssiz;
1202 	int error, find_space, stack_off;
1203 	vm_prot_t stack_prot;
1204 	vm_object_t obj;
1205 
1206 	p = imgp->proc;
1207 	sv = p->p_sysent;
1208 
1209 	if (imgp->stack_sz != 0) {
1210 		ssiz = trunc_page(imgp->stack_sz);
1211 		PROC_LOCK(p);
1212 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1213 		PROC_UNLOCK(p);
1214 		if (ssiz > rlim_stack.rlim_max)
1215 			ssiz = rlim_stack.rlim_max;
1216 		if (ssiz > rlim_stack.rlim_cur) {
1217 			rlim_stack.rlim_cur = ssiz;
1218 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1219 		}
1220 	} else if (sv->sv_maxssiz != NULL) {
1221 		ssiz = *sv->sv_maxssiz;
1222 	} else {
1223 		ssiz = maxssiz;
1224 	}
1225 
1226 	vmspace = p->p_vmspace;
1227 	map = &vmspace->vm_map;
1228 
1229 	stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
1230 	    imgp->stack_prot : sv->sv_stackprot;
1231 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1232 		stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1233 		    lim_max(curthread, RLIMIT_DATA));
1234 		find_space = VMFS_ANY_SPACE;
1235 	} else {
1236 		stack_addr = sv->sv_usrstack - ssiz;
1237 		find_space = VMFS_NO_SPACE;
1238 	}
1239 	error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
1240 	    sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
1241 	    MAP_STACK_AREA);
1242 	if (error != KERN_SUCCESS) {
1243 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1244 		    "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
1245 		    stack_prot, error, vm_mmap_to_errno(error));
1246 		return (vm_mmap_to_errno(error));
1247 	}
1248 
1249 	stack_top = stack_addr + ssiz;
1250 	if ((map->flags & MAP_ASLR_STACK) != 0) {
1251 		/* Randomize within the first page of the stack. */
1252 		arc4rand(&stack_off, sizeof(stack_off), 0);
1253 		stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
1254 	}
1255 
1256 	/* Map a shared page */
1257 	obj = sv->sv_shared_page_obj;
1258 	if (obj == NULL) {
1259 		sharedpage_addr = 0;
1260 		goto out;
1261 	}
1262 
1263 	/*
1264 	 * If randomization is disabled then the shared page will
1265 	 * be mapped at address specified in sysentvec.
1266 	 * Otherwise any address above .data section can be selected.
1267 	 * Same logic is used for stack address randomization.
1268 	 * If the address randomization is applied map a guard page
1269 	 * at the top of UVA.
1270 	 */
1271 	vm_object_reference(obj);
1272 	if ((imgp->imgp_flags & IMGP_ASLR_SHARED_PAGE) != 0) {
1273 		sharedpage_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1274 		    lim_max(curthread, RLIMIT_DATA));
1275 
1276 		error = vm_map_fixed(map, NULL, 0,
1277 		    sv->sv_maxuser - PAGE_SIZE, PAGE_SIZE,
1278 		    VM_PROT_NONE, VM_PROT_NONE, MAP_CREATE_GUARD);
1279 		if (error != KERN_SUCCESS) {
1280 			/*
1281 			 * This is not fatal, so let's just print a warning
1282 			 * and continue.
1283 			 */
1284 			uprintf("%s: Mapping guard page at the top of UVA failed"
1285 			    " mach error %d errno %d",
1286 			    __func__, error, vm_mmap_to_errno(error));
1287 		}
1288 
1289 		error = vm_map_find(map, obj, 0,
1290 		    &sharedpage_addr, sv->sv_shared_page_len,
1291 		    sv->sv_maxuser, VMFS_ANY_SPACE,
1292 		    VM_PROT_READ | VM_PROT_EXECUTE,
1293 		    VM_PROT_READ | VM_PROT_EXECUTE,
1294 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1295 	} else {
1296 		sharedpage_addr = sv->sv_shared_page_base;
1297 		vm_map_fixed(map, obj, 0,
1298 		    sharedpage_addr, sv->sv_shared_page_len,
1299 		    VM_PROT_READ | VM_PROT_EXECUTE,
1300 		    VM_PROT_READ | VM_PROT_EXECUTE,
1301 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1302 	}
1303 	if (error != KERN_SUCCESS) {
1304 		uprintf("%s: mapping shared page at addr: %p"
1305 		    "failed, mach error %d errno %d\n", __func__,
1306 		    (void *)sharedpage_addr, error, vm_mmap_to_errno(error));
1307 		vm_object_deallocate(obj);
1308 		return (vm_mmap_to_errno(error));
1309 	}
1310 out:
1311 	/*
1312 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1313 	 * are still used to enforce the stack rlimit on the process stack.
1314 	 */
1315 	vmspace->vm_maxsaddr = (char *)stack_addr;
1316 	vmspace->vm_stacktop = stack_top;
1317 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1318 	vmspace->vm_shp_base = sharedpage_addr;
1319 
1320 	return (0);
1321 }
1322 
1323 /*
1324  * Copy out argument and environment strings from the old process address
1325  * space into the temporary string buffer.
1326  */
1327 int
exec_copyin_args(struct image_args * args,const char * fname,char ** argv,char ** envv)1328 exec_copyin_args(struct image_args *args, const char *fname,
1329     char **argv, char **envv)
1330 {
1331 	u_long arg, env;
1332 	int error;
1333 
1334 	bzero(args, sizeof(*args));
1335 	if (argv == NULL)
1336 		return (EFAULT);
1337 
1338 	/*
1339 	 * Allocate demand-paged memory for the file name, argument, and
1340 	 * environment strings.
1341 	 */
1342 	error = exec_alloc_args(args);
1343 	if (error != 0)
1344 		return (error);
1345 
1346 	/*
1347 	 * Copy the file name.
1348 	 */
1349 	error = exec_args_add_fname(args, fname, UIO_USERSPACE);
1350 	if (error != 0)
1351 		goto err_exit;
1352 
1353 	/*
1354 	 * extract arguments first
1355 	 */
1356 	for (;;) {
1357 		error = fueword(argv++, &arg);
1358 		if (error == -1) {
1359 			error = EFAULT;
1360 			goto err_exit;
1361 		}
1362 		if (arg == 0)
1363 			break;
1364 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1365 		    UIO_USERSPACE);
1366 		if (error != 0)
1367 			goto err_exit;
1368 	}
1369 
1370 	/*
1371 	 * extract environment strings
1372 	 */
1373 	if (envv) {
1374 		for (;;) {
1375 			error = fueword(envv++, &env);
1376 			if (error == -1) {
1377 				error = EFAULT;
1378 				goto err_exit;
1379 			}
1380 			if (env == 0)
1381 				break;
1382 			error = exec_args_add_env(args,
1383 			    (char *)(uintptr_t)env, UIO_USERSPACE);
1384 			if (error != 0)
1385 				goto err_exit;
1386 		}
1387 	}
1388 
1389 	return (0);
1390 
1391 err_exit:
1392 	exec_free_args(args);
1393 	return (error);
1394 }
1395 
1396 struct exec_args_kva {
1397 	vm_offset_t addr;
1398 	u_int gen;
1399 	SLIST_ENTRY(exec_args_kva) next;
1400 };
1401 
1402 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
1403 
1404 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1405 static struct mtx exec_args_kva_mtx;
1406 static u_int exec_args_gen;
1407 
1408 static void
exec_prealloc_args_kva(void * arg __unused)1409 exec_prealloc_args_kva(void *arg __unused)
1410 {
1411 	struct exec_args_kva *argkva;
1412 	u_int i;
1413 
1414 	SLIST_INIT(&exec_args_kva_freelist);
1415 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1416 	for (i = 0; i < exec_map_entries; i++) {
1417 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1418 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1419 		argkva->gen = exec_args_gen;
1420 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1421 	}
1422 }
1423 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1424 
1425 static vm_offset_t
exec_alloc_args_kva(void ** cookie)1426 exec_alloc_args_kva(void **cookie)
1427 {
1428 	struct exec_args_kva *argkva;
1429 
1430 	argkva = (void *)atomic_readandclear_ptr(
1431 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
1432 	if (argkva == NULL) {
1433 		mtx_lock(&exec_args_kva_mtx);
1434 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1435 			(void)mtx_sleep(&exec_args_kva_freelist,
1436 			    &exec_args_kva_mtx, 0, "execkva", 0);
1437 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1438 		mtx_unlock(&exec_args_kva_mtx);
1439 	}
1440 	kasan_mark((void *)argkva->addr, exec_map_entry_size,
1441 	    exec_map_entry_size, 0);
1442 	*(struct exec_args_kva **)cookie = argkva;
1443 	return (argkva->addr);
1444 }
1445 
1446 static void
exec_release_args_kva(struct exec_args_kva * argkva,u_int gen)1447 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
1448 {
1449 	vm_offset_t base;
1450 
1451 	base = argkva->addr;
1452 	kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1453 	    KASAN_EXEC_ARGS_FREED);
1454 	if (argkva->gen != gen) {
1455 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1456 		    MADV_FREE);
1457 		argkva->gen = gen;
1458 	}
1459 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1460 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
1461 		mtx_lock(&exec_args_kva_mtx);
1462 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1463 		wakeup_one(&exec_args_kva_freelist);
1464 		mtx_unlock(&exec_args_kva_mtx);
1465 	}
1466 }
1467 
1468 static void
exec_free_args_kva(void * cookie)1469 exec_free_args_kva(void *cookie)
1470 {
1471 
1472 	exec_release_args_kva(cookie, exec_args_gen);
1473 }
1474 
1475 static void
exec_args_kva_lowmem(void * arg __unused,int flags __unused)1476 exec_args_kva_lowmem(void *arg __unused, int flags __unused)
1477 {
1478 	SLIST_HEAD(, exec_args_kva) head;
1479 	struct exec_args_kva *argkva;
1480 	u_int gen;
1481 	int i;
1482 
1483 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1484 
1485 	/*
1486 	 * Force an madvise of each KVA range. Any currently allocated ranges
1487 	 * will have MADV_FREE applied once they are freed.
1488 	 */
1489 	SLIST_INIT(&head);
1490 	mtx_lock(&exec_args_kva_mtx);
1491 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1492 	mtx_unlock(&exec_args_kva_mtx);
1493 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
1494 		SLIST_REMOVE_HEAD(&head, next);
1495 		exec_release_args_kva(argkva, gen);
1496 	}
1497 
1498 	CPU_FOREACH(i) {
1499 		argkva = (void *)atomic_readandclear_ptr(
1500 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1501 		if (argkva != NULL)
1502 			exec_release_args_kva(argkva, gen);
1503 	}
1504 }
1505 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
1506     EVENTHANDLER_PRI_ANY);
1507 
1508 /*
1509  * Allocate temporary demand-paged, zero-filled memory for the file name,
1510  * argument, and environment strings.
1511  */
1512 int
exec_alloc_args(struct image_args * args)1513 exec_alloc_args(struct image_args *args)
1514 {
1515 
1516 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1517 	return (0);
1518 }
1519 
1520 void
exec_free_args(struct image_args * args)1521 exec_free_args(struct image_args *args)
1522 {
1523 
1524 	if (args->buf != NULL) {
1525 		exec_free_args_kva(args->bufkva);
1526 		args->buf = NULL;
1527 	}
1528 	if (args->fname_buf != NULL) {
1529 		free(args->fname_buf, M_TEMP);
1530 		args->fname_buf = NULL;
1531 	}
1532 }
1533 
1534 /*
1535  * A set to functions to fill struct image args.
1536  *
1537  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1538  * fname) before the other functions.  All exec_args_add_arg() calls must
1539  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
1540  * may be called any time after exec_args_add_fname().
1541  *
1542  * exec_args_add_fname() - install path to be executed
1543  * exec_args_add_arg() - append an argument string
1544  * exec_args_add_env() - append an env string
1545  * exec_args_adjust_args() - adjust location of the argument list to
1546  *                           allow new arguments to be prepended
1547  */
1548 int
exec_args_add_fname(struct image_args * args,const char * fname,enum uio_seg segflg)1549 exec_args_add_fname(struct image_args *args, const char *fname,
1550     enum uio_seg segflg)
1551 {
1552 	int error;
1553 	size_t length;
1554 
1555 	KASSERT(args->fname == NULL, ("fname already appended"));
1556 	KASSERT(args->endp == NULL, ("already appending to args"));
1557 
1558 	if (fname != NULL) {
1559 		args->fname = args->buf;
1560 		error = segflg == UIO_SYSSPACE ?
1561 		    copystr(fname, args->fname, PATH_MAX, &length) :
1562 		    copyinstr(fname, args->fname, PATH_MAX, &length);
1563 		if (error != 0)
1564 			return (error == ENAMETOOLONG ? E2BIG : error);
1565 	} else
1566 		length = 0;
1567 
1568 	/* Set up for _arg_*()/_env_*() */
1569 	args->endp = args->buf + length;
1570 	/* begin_argv must be set and kept updated */
1571 	args->begin_argv = args->endp;
1572 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
1573 	    ("too little space remaining for arguments %zu < %zu",
1574 	    exec_map_entry_size - length, (size_t)ARG_MAX));
1575 	args->stringspace = ARG_MAX;
1576 
1577 	return (0);
1578 }
1579 
1580 static int
exec_args_add_str(struct image_args * args,const char * str,enum uio_seg segflg,int * countp)1581 exec_args_add_str(struct image_args *args, const char *str,
1582     enum uio_seg segflg, int *countp)
1583 {
1584 	int error;
1585 	size_t length;
1586 
1587 	KASSERT(args->endp != NULL, ("endp not initialized"));
1588 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1589 
1590 	error = (segflg == UIO_SYSSPACE) ?
1591 	    copystr(str, args->endp, args->stringspace, &length) :
1592 	    copyinstr(str, args->endp, args->stringspace, &length);
1593 	if (error != 0)
1594 		return (error == ENAMETOOLONG ? E2BIG : error);
1595 	args->stringspace -= length;
1596 	args->endp += length;
1597 	(*countp)++;
1598 
1599 	return (0);
1600 }
1601 
1602 int
exec_args_add_arg(struct image_args * args,const char * argp,enum uio_seg segflg)1603 exec_args_add_arg(struct image_args *args, const char *argp,
1604     enum uio_seg segflg)
1605 {
1606 
1607 	KASSERT(args->envc == 0, ("appending args after env"));
1608 
1609 	return (exec_args_add_str(args, argp, segflg, &args->argc));
1610 }
1611 
1612 int
exec_args_add_env(struct image_args * args,const char * envp,enum uio_seg segflg)1613 exec_args_add_env(struct image_args *args, const char *envp,
1614     enum uio_seg segflg)
1615 {
1616 
1617 	if (args->envc == 0)
1618 		args->begin_envv = args->endp;
1619 
1620 	return (exec_args_add_str(args, envp, segflg, &args->envc));
1621 }
1622 
1623 int
exec_args_adjust_args(struct image_args * args,size_t consume,ssize_t extend)1624 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1625 {
1626 	ssize_t offset;
1627 
1628 	KASSERT(args->endp != NULL, ("endp not initialized"));
1629 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1630 
1631 	offset = extend - consume;
1632 	if (args->stringspace < offset)
1633 		return (E2BIG);
1634 	memmove(args->begin_argv + extend, args->begin_argv + consume,
1635 	    args->endp - args->begin_argv + consume);
1636 	if (args->envc > 0)
1637 		args->begin_envv += offset;
1638 	args->endp += offset;
1639 	args->stringspace -= offset;
1640 	return (0);
1641 }
1642 
1643 char *
exec_args_get_begin_envv(struct image_args * args)1644 exec_args_get_begin_envv(struct image_args *args)
1645 {
1646 
1647 	KASSERT(args->endp != NULL, ("endp not initialized"));
1648 
1649 	if (args->envc > 0)
1650 		return (args->begin_envv);
1651 	return (args->endp);
1652 }
1653 
1654 /*
1655  * Copy strings out to the new process address space, constructing new arg
1656  * and env vector tables. Return a pointer to the base so that it can be used
1657  * as the initial stack pointer.
1658  */
1659 int
exec_copyout_strings(struct image_params * imgp,uintptr_t * stack_base)1660 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1661 {
1662 	int argc, envc;
1663 	char **vectp;
1664 	char *stringp;
1665 	uintptr_t destp, ustringp;
1666 	struct ps_strings *arginfo;
1667 	struct proc *p;
1668 	struct sysentvec *sysent;
1669 	size_t execpath_len;
1670 	int error, szsigcode;
1671 	char canary[sizeof(long) * 8];
1672 
1673 	p = imgp->proc;
1674 	sysent = p->p_sysent;
1675 
1676 	destp =	PROC_PS_STRINGS(p);
1677 	arginfo = imgp->ps_strings = (void *)destp;
1678 
1679 	/*
1680 	 * Install sigcode.
1681 	 */
1682 	if (sysent->sv_shared_page_base == 0 && sysent->sv_szsigcode != NULL) {
1683 		szsigcode = *(sysent->sv_szsigcode);
1684 		destp -= szsigcode;
1685 		destp = rounddown2(destp, sizeof(void *));
1686 		error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
1687 		if (error != 0)
1688 			return (error);
1689 	}
1690 
1691 	/*
1692 	 * Copy the image path for the rtld.
1693 	 */
1694 	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
1695 		execpath_len = strlen(imgp->execpath) + 1;
1696 		destp -= execpath_len;
1697 		destp = rounddown2(destp, sizeof(void *));
1698 		imgp->execpathp = (void *)destp;
1699 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1700 		if (error != 0)
1701 			return (error);
1702 	}
1703 
1704 	/*
1705 	 * Prepare the canary for SSP.
1706 	 */
1707 	arc4rand(canary, sizeof(canary), 0);
1708 	destp -= sizeof(canary);
1709 	imgp->canary = (void *)destp;
1710 	error = copyout(canary, imgp->canary, sizeof(canary));
1711 	if (error != 0)
1712 		return (error);
1713 	imgp->canarylen = sizeof(canary);
1714 
1715 	/*
1716 	 * Prepare the pagesizes array.
1717 	 */
1718 	imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
1719 	destp -= imgp->pagesizeslen;
1720 	destp = rounddown2(destp, sizeof(void *));
1721 	imgp->pagesizes = (void *)destp;
1722 	error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
1723 	if (error != 0)
1724 		return (error);
1725 
1726 	/*
1727 	 * Allocate room for the argument and environment strings.
1728 	 */
1729 	destp -= ARG_MAX - imgp->args->stringspace;
1730 	destp = rounddown2(destp, sizeof(void *));
1731 	ustringp = destp;
1732 
1733 	if (imgp->auxargs) {
1734 		/*
1735 		 * Allocate room on the stack for the ELF auxargs
1736 		 * array.  It has up to AT_COUNT entries.
1737 		 */
1738 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1739 		destp = rounddown2(destp, sizeof(void *));
1740 	}
1741 
1742 	vectp = (char **)destp;
1743 
1744 	/*
1745 	 * Allocate room for the argv[] and env vectors including the
1746 	 * terminating NULL pointers.
1747 	 */
1748 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1749 
1750 	/*
1751 	 * vectp also becomes our initial stack base
1752 	 */
1753 	*stack_base = (uintptr_t)vectp;
1754 
1755 	stringp = imgp->args->begin_argv;
1756 	argc = imgp->args->argc;
1757 	envc = imgp->args->envc;
1758 
1759 	/*
1760 	 * Copy out strings - arguments and environment.
1761 	 */
1762 	error = copyout(stringp, (void *)ustringp,
1763 	    ARG_MAX - imgp->args->stringspace);
1764 	if (error != 0)
1765 		return (error);
1766 
1767 	/*
1768 	 * Fill in "ps_strings" struct for ps, w, etc.
1769 	 */
1770 	imgp->argv = vectp;
1771 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1772 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
1773 		return (EFAULT);
1774 
1775 	/*
1776 	 * Fill in argument portion of vector table.
1777 	 */
1778 	for (; argc > 0; --argc) {
1779 		if (suword(vectp++, ustringp) != 0)
1780 			return (EFAULT);
1781 		while (*stringp++ != 0)
1782 			ustringp++;
1783 		ustringp++;
1784 	}
1785 
1786 	/* a null vector table pointer separates the argp's from the envp's */
1787 	if (suword(vectp++, 0) != 0)
1788 		return (EFAULT);
1789 
1790 	imgp->envv = vectp;
1791 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1792 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
1793 		return (EFAULT);
1794 
1795 	/*
1796 	 * Fill in environment portion of vector table.
1797 	 */
1798 	for (; envc > 0; --envc) {
1799 		if (suword(vectp++, ustringp) != 0)
1800 			return (EFAULT);
1801 		while (*stringp++ != 0)
1802 			ustringp++;
1803 		ustringp++;
1804 	}
1805 
1806 	/* end of vector table is a null pointer */
1807 	if (suword(vectp, 0) != 0)
1808 		return (EFAULT);
1809 
1810 	if (imgp->auxargs) {
1811 		vectp++;
1812 		error = imgp->sysent->sv_copyout_auxargs(imgp,
1813 		    (uintptr_t)vectp);
1814 		if (error != 0)
1815 			return (error);
1816 	}
1817 
1818 	return (0);
1819 }
1820 
1821 /*
1822  * Check permissions of file to execute.
1823  *	Called with imgp->vp locked.
1824  *	Return 0 for success or error code on failure.
1825  */
1826 int
exec_check_permissions(struct image_params * imgp)1827 exec_check_permissions(struct image_params *imgp)
1828 {
1829 	struct vnode *vp = imgp->vp;
1830 	struct vattr *attr = imgp->attr;
1831 	struct thread *td;
1832 	int error;
1833 
1834 	td = curthread;
1835 
1836 	/* Get file attributes */
1837 	error = VOP_GETATTR(vp, attr, td->td_ucred);
1838 	if (error)
1839 		return (error);
1840 
1841 #ifdef MAC
1842 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1843 	if (error)
1844 		return (error);
1845 #endif
1846 
1847 	/*
1848 	 * 1) Check if file execution is disabled for the filesystem that
1849 	 *    this file resides on.
1850 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
1851 	 *    privileged user will always succeed, and we don't want this
1852 	 *    to happen unless the file really is executable.
1853 	 * 3) Ensure that the file is a regular file.
1854 	 */
1855 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1856 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1857 	    (attr->va_type != VREG))
1858 		return (EACCES);
1859 
1860 	/*
1861 	 * Zero length files can't be exec'd
1862 	 */
1863 	if (attr->va_size == 0)
1864 		return (ENOEXEC);
1865 
1866 	/*
1867 	 *  Check for execute permission to file based on current credentials.
1868 	 */
1869 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1870 	if (error)
1871 		return (error);
1872 
1873 	/*
1874 	 * Check number of open-for-writes on the file and deny execution
1875 	 * if there are any.
1876 	 *
1877 	 * Add a text reference now so no one can write to the
1878 	 * executable while we're activating it.
1879 	 *
1880 	 * Remember if this was set before and unset it in case this is not
1881 	 * actually an executable image.
1882 	 */
1883 	error = VOP_SET_TEXT(vp);
1884 	if (error != 0)
1885 		return (error);
1886 	imgp->textset = true;
1887 
1888 	/*
1889 	 * Call filesystem specific open routine (which does nothing in the
1890 	 * general case).
1891 	 */
1892 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1893 	if (error == 0)
1894 		imgp->opened = true;
1895 	return (error);
1896 }
1897 
1898 /*
1899  * Exec handler registration
1900  */
1901 int
exec_register(const struct execsw * execsw_arg)1902 exec_register(const struct execsw *execsw_arg)
1903 {
1904 	const struct execsw **es, **xs, **newexecsw;
1905 	u_int count = 2;	/* New slot and trailing NULL */
1906 
1907 	if (execsw)
1908 		for (es = execsw; *es; es++)
1909 			count++;
1910 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1911 	xs = newexecsw;
1912 	if (execsw)
1913 		for (es = execsw; *es; es++)
1914 			*xs++ = *es;
1915 	*xs++ = execsw_arg;
1916 	*xs = NULL;
1917 	if (execsw)
1918 		free(execsw, M_TEMP);
1919 	execsw = newexecsw;
1920 	return (0);
1921 }
1922 
1923 int
exec_unregister(const struct execsw * execsw_arg)1924 exec_unregister(const struct execsw *execsw_arg)
1925 {
1926 	const struct execsw **es, **xs, **newexecsw;
1927 	int count = 1;
1928 
1929 	if (execsw == NULL)
1930 		panic("unregister with no handlers left?\n");
1931 
1932 	for (es = execsw; *es; es++) {
1933 		if (*es == execsw_arg)
1934 			break;
1935 	}
1936 	if (*es == NULL)
1937 		return (ENOENT);
1938 	for (es = execsw; *es; es++)
1939 		if (*es != execsw_arg)
1940 			count++;
1941 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1942 	xs = newexecsw;
1943 	for (es = execsw; *es; es++)
1944 		if (*es != execsw_arg)
1945 			*xs++ = *es;
1946 	*xs = NULL;
1947 	if (execsw)
1948 		free(execsw, M_TEMP);
1949 	execsw = newexecsw;
1950 	return (0);
1951 }
1952 
1953 /*
1954  * Write out a core segment to the compression stream.
1955  */
1956 static int
compress_chunk(struct coredump_params * cp,char * base,char * buf,size_t len)1957 compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
1958 {
1959 	size_t chunk_len;
1960 	int error;
1961 
1962 	error = 0;
1963 	while (len > 0) {
1964 		chunk_len = MIN(len, CORE_BUF_SIZE);
1965 
1966 		/*
1967 		 * We can get EFAULT error here.
1968 		 * In that case zero out the current chunk of the segment.
1969 		 */
1970 		error = copyin(base, buf, chunk_len);
1971 		if (error != 0)
1972 			bzero(buf, chunk_len);
1973 		error = compressor_write(cp->comp, buf, chunk_len);
1974 		if (error != 0)
1975 			break;
1976 		base += chunk_len;
1977 		len -= chunk_len;
1978 	}
1979 	return (error);
1980 }
1981 
1982 int
core_write(struct coredump_params * cp,const void * base,size_t len,off_t offset,enum uio_seg seg,size_t * resid)1983 core_write(struct coredump_params *cp, const void *base, size_t len,
1984     off_t offset, enum uio_seg seg, size_t *resid)
1985 {
1986 
1987 	return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
1988 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1989 	    cp->active_cred, cp->file_cred, resid, cp->td));
1990 }
1991 
1992 int
core_output(char * base,size_t len,off_t offset,struct coredump_params * cp,void * tmpbuf)1993 core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
1994     void *tmpbuf)
1995 {
1996 	vm_map_t map;
1997 	struct mount *mp;
1998 	size_t resid, runlen;
1999 	int error;
2000 	bool success;
2001 
2002 	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
2003 	    ("%s: user address %p is not page-aligned", __func__, base));
2004 
2005 	if (cp->comp != NULL)
2006 		return (compress_chunk(cp, base, tmpbuf, len));
2007 
2008 	error = 0;
2009 	map = &cp->td->td_proc->p_vmspace->vm_map;
2010 	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
2011 		/*
2012 		 * Attempt to page in all virtual pages in the range.  If a
2013 		 * virtual page is not backed by the pager, it is represented as
2014 		 * a hole in the file.  This can occur with zero-filled
2015 		 * anonymous memory or truncated files, for example.
2016 		 */
2017 		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
2018 			if (core_dump_can_intr && curproc_sigkilled())
2019 				return (EINTR);
2020 			error = vm_fault(map, (uintptr_t)base + runlen,
2021 			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
2022 			if (runlen == 0)
2023 				success = error == KERN_SUCCESS;
2024 			else if ((error == KERN_SUCCESS) != success)
2025 				break;
2026 		}
2027 
2028 		if (success) {
2029 			error = core_write(cp, base, runlen, offset,
2030 			    UIO_USERSPACE, &resid);
2031 			if (error != 0) {
2032 				if (error != EFAULT)
2033 					break;
2034 
2035 				/*
2036 				 * EFAULT may be returned if the user mapping
2037 				 * could not be accessed, e.g., because a mapped
2038 				 * file has been truncated.  Skip the page if no
2039 				 * progress was made, to protect against a
2040 				 * hypothetical scenario where vm_fault() was
2041 				 * successful but core_write() returns EFAULT
2042 				 * anyway.
2043 				 */
2044 				runlen -= resid;
2045 				if (runlen == 0) {
2046 					success = false;
2047 					runlen = PAGE_SIZE;
2048 				}
2049 			}
2050 		}
2051 		if (!success) {
2052 			error = vn_start_write(cp->vp, &mp, V_WAIT);
2053 			if (error != 0)
2054 				break;
2055 			vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
2056 			error = vn_truncate_locked(cp->vp, offset + runlen,
2057 			    false, cp->td->td_ucred);
2058 			VOP_UNLOCK(cp->vp);
2059 			vn_finished_write(mp);
2060 			if (error != 0)
2061 				break;
2062 		}
2063 	}
2064 	return (error);
2065 }
2066 
2067 /*
2068  * Drain into a core file.
2069  */
2070 int
sbuf_drain_core_output(void * arg,const char * data,int len)2071 sbuf_drain_core_output(void *arg, const char *data, int len)
2072 {
2073 	struct coredump_params *cp;
2074 	struct proc *p;
2075 	int error, locked;
2076 
2077 	cp = arg;
2078 	p = cp->td->td_proc;
2079 
2080 	/*
2081 	 * Some kern_proc out routines that print to this sbuf may
2082 	 * call us with the process lock held. Draining with the
2083 	 * non-sleepable lock held is unsafe. The lock is needed for
2084 	 * those routines when dumping a live process. In our case we
2085 	 * can safely release the lock before draining and acquire
2086 	 * again after.
2087 	 */
2088 	locked = PROC_LOCKED(p);
2089 	if (locked)
2090 		PROC_UNLOCK(p);
2091 	if (cp->comp != NULL)
2092 		error = compressor_write(cp->comp, __DECONST(char *, data),
2093 		    len);
2094 	else
2095 		error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2096 		    UIO_SYSSPACE, NULL);
2097 	if (locked)
2098 		PROC_LOCK(p);
2099 	if (error != 0)
2100 		return (-error);
2101 	cp->offset += len;
2102 	return (len);
2103 }
2104