1 //===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides ARM specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARMMCTargetDesc.h"
14 #include "ARMAddressingModes.h"
15 #include "ARMBaseInfo.h"
16 #include "ARMInstPrinter.h"
17 #include "ARMMCAsmInfo.h"
18 #include "TargetInfo/ARMTargetInfo.h"
19 #include "llvm/DebugInfo/CodeView/CodeView.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCCodeEmitter.h"
22 #include "llvm/MC/MCELFStreamer.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCObjectWriter.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/TargetParser/Triple.h"
32
33 using namespace llvm;
34
35 #define GET_REGINFO_MC_DESC
36 #include "ARMGenRegisterInfo.inc"
37
getMCRDeprecationInfo(MCInst & MI,const MCSubtargetInfo & STI,std::string & Info)38 static bool getMCRDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
39 std::string &Info) {
40 if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
41 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
42 (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
43 // Checks for the deprecated CP15ISB encoding:
44 // mcr p15, #0, rX, c7, c5, #4
45 (MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
46 if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
47 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
48 Info = "deprecated since v7, use 'isb'";
49 return true;
50 }
51
52 // Checks for the deprecated CP15DSB encoding:
53 // mcr p15, #0, rX, c7, c10, #4
54 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
55 Info = "deprecated since v7, use 'dsb'";
56 return true;
57 }
58 }
59 // Checks for the deprecated CP15DMB encoding:
60 // mcr p15, #0, rX, c7, c10, #5
61 if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
62 (MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
63 Info = "deprecated since v7, use 'dmb'";
64 return true;
65 }
66 }
67 if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
68 ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
69 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
70 Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
71 "point instructions";
72 return true;
73 }
74 return false;
75 }
76
getMRCDeprecationInfo(MCInst & MI,const MCSubtargetInfo & STI,std::string & Info)77 static bool getMRCDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
78 std::string &Info) {
79 if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
80 ((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
81 (MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
82 Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
83 "point instructions";
84 return true;
85 }
86 return false;
87 }
88
getARMStoreDeprecationInfo(MCInst & MI,const MCSubtargetInfo & STI,std::string & Info)89 static bool getARMStoreDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
90 std::string &Info) {
91 assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
92 "cannot predicate thumb instructions");
93
94 assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
95 for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
96 assert(MI.getOperand(OI).isReg() && "expected register");
97 if (MI.getOperand(OI).getReg() == ARM::PC) {
98 Info = "use of PC in the list is deprecated";
99 return true;
100 }
101 }
102 return false;
103 }
104
getARMLoadDeprecationInfo(MCInst & MI,const MCSubtargetInfo & STI,std::string & Info)105 static bool getARMLoadDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
106 std::string &Info) {
107 assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
108 "cannot predicate thumb instructions");
109
110 assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
111 bool ListContainsPC = false, ListContainsLR = false;
112 for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
113 assert(MI.getOperand(OI).isReg() && "expected register");
114 switch (MI.getOperand(OI).getReg()) {
115 default:
116 break;
117 case ARM::LR:
118 ListContainsLR = true;
119 break;
120 case ARM::PC:
121 ListContainsPC = true;
122 break;
123 }
124 }
125
126 if (ListContainsPC && ListContainsLR) {
127 Info = "use of LR and PC simultaneously in the list is deprecated";
128 return true;
129 }
130
131 return false;
132 }
133
134 #define GET_INSTRINFO_MC_DESC
135 #define ENABLE_INSTR_PREDICATE_VERIFIER
136 #include "ARMGenInstrInfo.inc"
137
138 #define GET_SUBTARGETINFO_MC_DESC
139 #include "ARMGenSubtargetInfo.inc"
140
ParseARMTriple(const Triple & TT,StringRef CPU)141 std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
142 std::string ARMArchFeature;
143
144 ARM::ArchKind ArchID = ARM::parseArch(TT.getArchName());
145 if (ArchID != ARM::ArchKind::INVALID && (CPU.empty() || CPU == "generic"))
146 ARMArchFeature = (ARMArchFeature + "+" + ARM::getArchName(ArchID)).str();
147
148 if (TT.isThumb()) {
149 if (!ARMArchFeature.empty())
150 ARMArchFeature += ",";
151 ARMArchFeature += "+thumb-mode,+v4t";
152 }
153
154 if (TT.isOSNaCl()) {
155 if (!ARMArchFeature.empty())
156 ARMArchFeature += ",";
157 ARMArchFeature += "+nacl-trap";
158 }
159
160 if (TT.isOSWindows()) {
161 if (!ARMArchFeature.empty())
162 ARMArchFeature += ",";
163 ARMArchFeature += "+noarm";
164 }
165
166 return ARMArchFeature;
167 }
168
isPredicated(const MCInst & MI,const MCInstrInfo * MCII)169 bool ARM_MC::isPredicated(const MCInst &MI, const MCInstrInfo *MCII) {
170 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
171 int PredOpIdx = Desc.findFirstPredOperandIdx();
172 return PredOpIdx != -1 && MI.getOperand(PredOpIdx).getImm() != ARMCC::AL;
173 }
174
isCPSRDefined(const MCInst & MI,const MCInstrInfo * MCII)175 bool ARM_MC::isCPSRDefined(const MCInst &MI, const MCInstrInfo *MCII) {
176 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
177 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
178 const MCOperand &MO = MI.getOperand(I);
179 if (MO.isReg() && MO.getReg() == ARM::CPSR &&
180 Desc.operands()[I].isOptionalDef())
181 return true;
182 }
183 return false;
184 }
185
evaluateBranchTarget(const MCInstrDesc & InstDesc,uint64_t Addr,int64_t Imm)186 uint64_t ARM_MC::evaluateBranchTarget(const MCInstrDesc &InstDesc,
187 uint64_t Addr, int64_t Imm) {
188 // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
189 // is 4 bytes.
190 uint64_t Offset =
191 ((InstDesc.TSFlags & ARMII::FormMask) == ARMII::ThumbFrm) ? 4 : 8;
192
193 // A Thumb instruction BLX(i) can be 16-bit aligned while targets Arm code
194 // which is 32-bit aligned. The target address for the case is calculated as
195 // targetAddress = Align(PC,4) + imm32;
196 // where
197 // Align(x, y) = y * (x DIV y);
198 if (InstDesc.getOpcode() == ARM::tBLXi)
199 Addr &= ~0x3;
200
201 return Addr + Imm + Offset;
202 }
203
createARMMCSubtargetInfo(const Triple & TT,StringRef CPU,StringRef FS)204 MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
205 StringRef CPU, StringRef FS) {
206 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
207 if (!FS.empty()) {
208 if (!ArchFS.empty())
209 ArchFS = (Twine(ArchFS) + "," + FS).str();
210 else
211 ArchFS = std::string(FS);
212 }
213
214 return createARMMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
215 }
216
createARMMCInstrInfo()217 static MCInstrInfo *createARMMCInstrInfo() {
218 MCInstrInfo *X = new MCInstrInfo();
219 InitARMMCInstrInfo(X);
220 return X;
221 }
222
initLLVMToCVRegMapping(MCRegisterInfo * MRI)223 void ARM_MC::initLLVMToCVRegMapping(MCRegisterInfo *MRI) {
224 // Mapping from CodeView to MC register id.
225 static const struct {
226 codeview::RegisterId CVReg;
227 MCPhysReg Reg;
228 } RegMap[] = {
229 {codeview::RegisterId::ARM_R0, ARM::R0},
230 {codeview::RegisterId::ARM_R1, ARM::R1},
231 {codeview::RegisterId::ARM_R2, ARM::R2},
232 {codeview::RegisterId::ARM_R3, ARM::R3},
233 {codeview::RegisterId::ARM_R4, ARM::R4},
234 {codeview::RegisterId::ARM_R5, ARM::R5},
235 {codeview::RegisterId::ARM_R6, ARM::R6},
236 {codeview::RegisterId::ARM_R7, ARM::R7},
237 {codeview::RegisterId::ARM_R8, ARM::R8},
238 {codeview::RegisterId::ARM_R9, ARM::R9},
239 {codeview::RegisterId::ARM_R10, ARM::R10},
240 {codeview::RegisterId::ARM_R11, ARM::R11},
241 {codeview::RegisterId::ARM_R12, ARM::R12},
242 {codeview::RegisterId::ARM_SP, ARM::SP},
243 {codeview::RegisterId::ARM_LR, ARM::LR},
244 {codeview::RegisterId::ARM_PC, ARM::PC},
245 {codeview::RegisterId::ARM_CPSR, ARM::CPSR},
246 {codeview::RegisterId::ARM_FPSCR, ARM::FPSCR},
247 {codeview::RegisterId::ARM_FPEXC, ARM::FPEXC},
248 {codeview::RegisterId::ARM_FS0, ARM::S0},
249 {codeview::RegisterId::ARM_FS1, ARM::S1},
250 {codeview::RegisterId::ARM_FS2, ARM::S2},
251 {codeview::RegisterId::ARM_FS3, ARM::S3},
252 {codeview::RegisterId::ARM_FS4, ARM::S4},
253 {codeview::RegisterId::ARM_FS5, ARM::S5},
254 {codeview::RegisterId::ARM_FS6, ARM::S6},
255 {codeview::RegisterId::ARM_FS7, ARM::S7},
256 {codeview::RegisterId::ARM_FS8, ARM::S8},
257 {codeview::RegisterId::ARM_FS9, ARM::S9},
258 {codeview::RegisterId::ARM_FS10, ARM::S10},
259 {codeview::RegisterId::ARM_FS11, ARM::S11},
260 {codeview::RegisterId::ARM_FS12, ARM::S12},
261 {codeview::RegisterId::ARM_FS13, ARM::S13},
262 {codeview::RegisterId::ARM_FS14, ARM::S14},
263 {codeview::RegisterId::ARM_FS15, ARM::S15},
264 {codeview::RegisterId::ARM_FS16, ARM::S16},
265 {codeview::RegisterId::ARM_FS17, ARM::S17},
266 {codeview::RegisterId::ARM_FS18, ARM::S18},
267 {codeview::RegisterId::ARM_FS19, ARM::S19},
268 {codeview::RegisterId::ARM_FS20, ARM::S20},
269 {codeview::RegisterId::ARM_FS21, ARM::S21},
270 {codeview::RegisterId::ARM_FS22, ARM::S22},
271 {codeview::RegisterId::ARM_FS23, ARM::S23},
272 {codeview::RegisterId::ARM_FS24, ARM::S24},
273 {codeview::RegisterId::ARM_FS25, ARM::S25},
274 {codeview::RegisterId::ARM_FS26, ARM::S26},
275 {codeview::RegisterId::ARM_FS27, ARM::S27},
276 {codeview::RegisterId::ARM_FS28, ARM::S28},
277 {codeview::RegisterId::ARM_FS29, ARM::S29},
278 {codeview::RegisterId::ARM_FS30, ARM::S30},
279 {codeview::RegisterId::ARM_FS31, ARM::S31},
280 {codeview::RegisterId::ARM_ND0, ARM::D0},
281 {codeview::RegisterId::ARM_ND1, ARM::D1},
282 {codeview::RegisterId::ARM_ND2, ARM::D2},
283 {codeview::RegisterId::ARM_ND3, ARM::D3},
284 {codeview::RegisterId::ARM_ND4, ARM::D4},
285 {codeview::RegisterId::ARM_ND5, ARM::D5},
286 {codeview::RegisterId::ARM_ND6, ARM::D6},
287 {codeview::RegisterId::ARM_ND7, ARM::D7},
288 {codeview::RegisterId::ARM_ND8, ARM::D8},
289 {codeview::RegisterId::ARM_ND9, ARM::D9},
290 {codeview::RegisterId::ARM_ND10, ARM::D10},
291 {codeview::RegisterId::ARM_ND11, ARM::D11},
292 {codeview::RegisterId::ARM_ND12, ARM::D12},
293 {codeview::RegisterId::ARM_ND13, ARM::D13},
294 {codeview::RegisterId::ARM_ND14, ARM::D14},
295 {codeview::RegisterId::ARM_ND15, ARM::D15},
296 {codeview::RegisterId::ARM_ND16, ARM::D16},
297 {codeview::RegisterId::ARM_ND17, ARM::D17},
298 {codeview::RegisterId::ARM_ND18, ARM::D18},
299 {codeview::RegisterId::ARM_ND19, ARM::D19},
300 {codeview::RegisterId::ARM_ND20, ARM::D20},
301 {codeview::RegisterId::ARM_ND21, ARM::D21},
302 {codeview::RegisterId::ARM_ND22, ARM::D22},
303 {codeview::RegisterId::ARM_ND23, ARM::D23},
304 {codeview::RegisterId::ARM_ND24, ARM::D24},
305 {codeview::RegisterId::ARM_ND25, ARM::D25},
306 {codeview::RegisterId::ARM_ND26, ARM::D26},
307 {codeview::RegisterId::ARM_ND27, ARM::D27},
308 {codeview::RegisterId::ARM_ND28, ARM::D28},
309 {codeview::RegisterId::ARM_ND29, ARM::D29},
310 {codeview::RegisterId::ARM_ND30, ARM::D30},
311 {codeview::RegisterId::ARM_ND31, ARM::D31},
312 {codeview::RegisterId::ARM_NQ0, ARM::Q0},
313 {codeview::RegisterId::ARM_NQ1, ARM::Q1},
314 {codeview::RegisterId::ARM_NQ2, ARM::Q2},
315 {codeview::RegisterId::ARM_NQ3, ARM::Q3},
316 {codeview::RegisterId::ARM_NQ4, ARM::Q4},
317 {codeview::RegisterId::ARM_NQ5, ARM::Q5},
318 {codeview::RegisterId::ARM_NQ6, ARM::Q6},
319 {codeview::RegisterId::ARM_NQ7, ARM::Q7},
320 {codeview::RegisterId::ARM_NQ8, ARM::Q8},
321 {codeview::RegisterId::ARM_NQ9, ARM::Q9},
322 {codeview::RegisterId::ARM_NQ10, ARM::Q10},
323 {codeview::RegisterId::ARM_NQ11, ARM::Q11},
324 {codeview::RegisterId::ARM_NQ12, ARM::Q12},
325 {codeview::RegisterId::ARM_NQ13, ARM::Q13},
326 {codeview::RegisterId::ARM_NQ14, ARM::Q14},
327 {codeview::RegisterId::ARM_NQ15, ARM::Q15},
328 };
329 for (const auto &I : RegMap)
330 MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
331 }
332
createARMMCRegisterInfo(const Triple & Triple)333 static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
334 MCRegisterInfo *X = new MCRegisterInfo();
335 InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
336 ARM_MC::initLLVMToCVRegMapping(X);
337 return X;
338 }
339
createARMMCAsmInfo(const MCRegisterInfo & MRI,const Triple & TheTriple,const MCTargetOptions & Options)340 static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
341 const Triple &TheTriple,
342 const MCTargetOptions &Options) {
343 MCAsmInfo *MAI;
344 if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
345 MAI = new ARMMCAsmInfoDarwin(TheTriple);
346 else if (TheTriple.isWindowsMSVCEnvironment())
347 MAI = new ARMCOFFMCAsmInfoMicrosoft();
348 else if (TheTriple.isOSWindows())
349 MAI = new ARMCOFFMCAsmInfoGNU();
350 else
351 MAI = new ARMELFMCAsmInfo(TheTriple);
352
353 unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
354 MAI->addInitialFrameState(MCCFIInstruction::cfiDefCfa(nullptr, Reg, 0));
355
356 return MAI;
357 }
358
createELFStreamer(const Triple & T,MCContext & Ctx,std::unique_ptr<MCAsmBackend> && MAB,std::unique_ptr<MCObjectWriter> && OW,std::unique_ptr<MCCodeEmitter> && Emitter)359 static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
360 std::unique_ptr<MCAsmBackend> &&MAB,
361 std::unique_ptr<MCObjectWriter> &&OW,
362 std::unique_ptr<MCCodeEmitter> &&Emitter) {
363 return createARMELFStreamer(
364 Ctx, std::move(MAB), std::move(OW), std::move(Emitter),
365 (T.getArch() == Triple::thumb || T.getArch() == Triple::thumbeb),
366 T.isAndroid());
367 }
368
369 static MCStreamer *
createARMMachOStreamer(MCContext & Ctx,std::unique_ptr<MCAsmBackend> && MAB,std::unique_ptr<MCObjectWriter> && OW,std::unique_ptr<MCCodeEmitter> && Emitter)370 createARMMachOStreamer(MCContext &Ctx, std::unique_ptr<MCAsmBackend> &&MAB,
371 std::unique_ptr<MCObjectWriter> &&OW,
372 std::unique_ptr<MCCodeEmitter> &&Emitter) {
373 return createMachOStreamer(Ctx, std::move(MAB), std::move(OW),
374 std::move(Emitter), false);
375 }
376
createARMMCInstPrinter(const Triple & T,unsigned SyntaxVariant,const MCAsmInfo & MAI,const MCInstrInfo & MII,const MCRegisterInfo & MRI)377 static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
378 unsigned SyntaxVariant,
379 const MCAsmInfo &MAI,
380 const MCInstrInfo &MII,
381 const MCRegisterInfo &MRI) {
382 if (SyntaxVariant == 0)
383 return new ARMInstPrinter(MAI, MII, MRI);
384 return nullptr;
385 }
386
createARMMCRelocationInfo(const Triple & TT,MCContext & Ctx)387 static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
388 MCContext &Ctx) {
389 if (TT.isOSBinFormatMachO())
390 return createARMMachORelocationInfo(Ctx);
391 // Default to the stock relocation info.
392 return llvm::createMCRelocationInfo(TT, Ctx);
393 }
394
395 namespace {
396
397 class ARMMCInstrAnalysis : public MCInstrAnalysis {
398 public:
ARMMCInstrAnalysis(const MCInstrInfo * Info)399 ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
400
isUnconditionalBranch(const MCInst & Inst) const401 bool isUnconditionalBranch(const MCInst &Inst) const override {
402 // BCCs with the "always" predicate are unconditional branches.
403 if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
404 return true;
405 return MCInstrAnalysis::isUnconditionalBranch(Inst);
406 }
407
isConditionalBranch(const MCInst & Inst) const408 bool isConditionalBranch(const MCInst &Inst) const override {
409 // BCCs with the "always" predicate are unconditional branches.
410 if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
411 return false;
412 return MCInstrAnalysis::isConditionalBranch(Inst);
413 }
414
evaluateBranch(const MCInst & Inst,uint64_t Addr,uint64_t Size,uint64_t & Target) const415 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
416 uint64_t &Target) const override {
417 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
418
419 // Find the PC-relative immediate operand in the instruction.
420 for (unsigned OpNum = 0; OpNum < Desc.getNumOperands(); ++OpNum) {
421 if (Inst.getOperand(OpNum).isImm() &&
422 Desc.operands()[OpNum].OperandType == MCOI::OPERAND_PCREL) {
423 int64_t Imm = Inst.getOperand(OpNum).getImm();
424 Target = ARM_MC::evaluateBranchTarget(Desc, Addr, Imm);
425 return true;
426 }
427 }
428 return false;
429 }
430
431 std::optional<uint64_t>
432 evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
433 uint64_t Addr, uint64_t Size) const override;
434 };
435
436 } // namespace
437
438 static std::optional<uint64_t>
439 // NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrMode_i12(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)440 evaluateMemOpAddrForAddrMode_i12(const MCInst &Inst, const MCInstrDesc &Desc,
441 unsigned MemOpIndex, uint64_t Addr) {
442 if (MemOpIndex + 1 >= Desc.getNumOperands())
443 return std::nullopt;
444
445 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
446 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
447 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
448 return std::nullopt;
449
450 int32_t OffImm = (int32_t)MO2.getImm();
451 // Special value for #-0. All others are normal.
452 if (OffImm == INT32_MIN)
453 OffImm = 0;
454 return Addr + OffImm;
455 }
456
457 static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode3(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)458 evaluateMemOpAddrForAddrMode3(const MCInst &Inst, const MCInstrDesc &Desc,
459 unsigned MemOpIndex, uint64_t Addr) {
460 if (MemOpIndex + 2 >= Desc.getNumOperands())
461 return std::nullopt;
462
463 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
464 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
465 const MCOperand &MO3 = Inst.getOperand(MemOpIndex + 2);
466 if (!MO1.isReg() || MO1.getReg() != ARM::PC || MO2.getReg() || !MO3.isImm())
467 return std::nullopt;
468
469 unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
470 ARM_AM::AddrOpc Op = ARM_AM::getAM3Op(MO3.getImm());
471
472 if (Op == ARM_AM::sub)
473 return Addr - ImmOffs;
474 return Addr + ImmOffs;
475 }
476
477 static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode5(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)478 evaluateMemOpAddrForAddrMode5(const MCInst &Inst, const MCInstrDesc &Desc,
479 unsigned MemOpIndex, uint64_t Addr) {
480 if (MemOpIndex + 1 >= Desc.getNumOperands())
481 return std::nullopt;
482
483 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
484 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
485 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
486 return std::nullopt;
487
488 unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
489 ARM_AM::AddrOpc Op = ARM_AM::getAM5Op(MO2.getImm());
490
491 if (Op == ARM_AM::sub)
492 return Addr - ImmOffs * 4;
493 return Addr + ImmOffs * 4;
494 }
495
496 static std::optional<uint64_t>
evaluateMemOpAddrForAddrMode5FP16(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)497 evaluateMemOpAddrForAddrMode5FP16(const MCInst &Inst, const MCInstrDesc &Desc,
498 unsigned MemOpIndex, uint64_t Addr) {
499 if (MemOpIndex + 1 >= Desc.getNumOperands())
500 return std::nullopt;
501
502 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
503 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
504 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
505 return std::nullopt;
506
507 unsigned ImmOffs = ARM_AM::getAM5FP16Offset(MO2.getImm());
508 ARM_AM::AddrOpc Op = ARM_AM::getAM5FP16Op(MO2.getImm());
509
510 if (Op == ARM_AM::sub)
511 return Addr - ImmOffs * 2;
512 return Addr + ImmOffs * 2;
513 }
514
515 static std::optional<uint64_t>
516 // NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)517 evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst &Inst, const MCInstrDesc &Desc,
518 unsigned MemOpIndex, uint64_t Addr) {
519 if (MemOpIndex + 1 >= Desc.getNumOperands())
520 return std::nullopt;
521
522 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
523 const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
524 if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
525 return std::nullopt;
526
527 int32_t OffImm = (int32_t)MO2.getImm();
528 assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
529
530 // Special value for #-0. All others are normal.
531 if (OffImm == INT32_MIN)
532 OffImm = 0;
533 return Addr + OffImm;
534 }
535
536 static std::optional<uint64_t>
537 // NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT2_pc(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)538 evaluateMemOpAddrForAddrModeT2_pc(const MCInst &Inst, const MCInstrDesc &Desc,
539 unsigned MemOpIndex, uint64_t Addr) {
540 const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
541 if (!MO1.isImm())
542 return std::nullopt;
543
544 int32_t OffImm = (int32_t)MO1.getImm();
545
546 // Special value for #-0. All others are normal.
547 if (OffImm == INT32_MIN)
548 OffImm = 0;
549 return Addr + OffImm;
550 }
551
552 static std::optional<uint64_t>
553 // NOLINTNEXTLINE(readability-identifier-naming)
evaluateMemOpAddrForAddrModeT1_s(const MCInst & Inst,const MCInstrDesc & Desc,unsigned MemOpIndex,uint64_t Addr)554 evaluateMemOpAddrForAddrModeT1_s(const MCInst &Inst, const MCInstrDesc &Desc,
555 unsigned MemOpIndex, uint64_t Addr) {
556 return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, MemOpIndex, Addr);
557 }
558
evaluateMemoryOperandAddress(const MCInst & Inst,const MCSubtargetInfo * STI,uint64_t Addr,uint64_t Size) const559 std::optional<uint64_t> ARMMCInstrAnalysis::evaluateMemoryOperandAddress(
560 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
561 uint64_t Size) const {
562 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
563
564 // Only load instructions can have PC-relative memory addressing.
565 if (!Desc.mayLoad())
566 return std::nullopt;
567
568 // PC-relative addressing does not update the base register.
569 uint64_t TSFlags = Desc.TSFlags;
570 unsigned IndexMode =
571 (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
572 if (IndexMode != ARMII::IndexModeNone)
573 return std::nullopt;
574
575 // Find the memory addressing operand in the instruction.
576 unsigned OpIndex = Desc.NumDefs;
577 while (OpIndex < Desc.getNumOperands() &&
578 Desc.operands()[OpIndex].OperandType != MCOI::OPERAND_MEMORY)
579 ++OpIndex;
580 if (OpIndex == Desc.getNumOperands())
581 return std::nullopt;
582
583 // Base address for PC-relative addressing is always 32-bit aligned.
584 Addr &= ~0x3;
585
586 // For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
587 // is 4 bytes.
588 switch (Desc.TSFlags & ARMII::FormMask) {
589 default:
590 Addr += 8;
591 break;
592 case ARMII::ThumbFrm:
593 Addr += 4;
594 break;
595 // VLDR* instructions share the same opcode (and thus the same form) for Arm
596 // and Thumb. Use a bit longer route through STI in that case.
597 case ARMII::VFPLdStFrm:
598 Addr += STI->hasFeature(ARM::ModeThumb) ? 4 : 8;
599 break;
600 }
601
602 // Eveluate the address depending on the addressing mode
603 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
604 switch (AddrMode) {
605 default:
606 return std::nullopt;
607 case ARMII::AddrMode_i12:
608 return evaluateMemOpAddrForAddrMode_i12(Inst, Desc, OpIndex, Addr);
609 case ARMII::AddrMode3:
610 return evaluateMemOpAddrForAddrMode3(Inst, Desc, OpIndex, Addr);
611 case ARMII::AddrMode5:
612 return evaluateMemOpAddrForAddrMode5(Inst, Desc, OpIndex, Addr);
613 case ARMII::AddrMode5FP16:
614 return evaluateMemOpAddrForAddrMode5FP16(Inst, Desc, OpIndex, Addr);
615 case ARMII::AddrModeT2_i8s4:
616 return evaluateMemOpAddrForAddrModeT2_i8s4(Inst, Desc, OpIndex, Addr);
617 case ARMII::AddrModeT2_pc:
618 return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, OpIndex, Addr);
619 case ARMII::AddrModeT1_s:
620 return evaluateMemOpAddrForAddrModeT1_s(Inst, Desc, OpIndex, Addr);
621 }
622 }
623
createARMMCInstrAnalysis(const MCInstrInfo * Info)624 static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
625 return new ARMMCInstrAnalysis(Info);
626 }
627
isCDECoproc(size_t Coproc,const MCSubtargetInfo & STI)628 bool ARM::isCDECoproc(size_t Coproc, const MCSubtargetInfo &STI) {
629 // Unfortunately we don't have ARMTargetInfo in the disassembler, so we have
630 // to rely on feature bits.
631 if (Coproc >= 8)
632 return false;
633 return STI.getFeatureBits()[ARM::FeatureCoprocCDE0 + Coproc];
634 }
635
636 // Force static initialization.
LLVMInitializeARMTargetMC()637 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTargetMC() {
638 for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
639 &getTheThumbLETarget(), &getTheThumbBETarget()}) {
640 // Register the MC asm info.
641 RegisterMCAsmInfoFn X(*T, createARMMCAsmInfo);
642
643 // Register the MC instruction info.
644 TargetRegistry::RegisterMCInstrInfo(*T, createARMMCInstrInfo);
645
646 // Register the MC register info.
647 TargetRegistry::RegisterMCRegInfo(*T, createARMMCRegisterInfo);
648
649 // Register the MC subtarget info.
650 TargetRegistry::RegisterMCSubtargetInfo(*T,
651 ARM_MC::createARMMCSubtargetInfo);
652
653 TargetRegistry::RegisterELFStreamer(*T, createELFStreamer);
654 TargetRegistry::RegisterCOFFStreamer(*T, createARMWinCOFFStreamer);
655 TargetRegistry::RegisterMachOStreamer(*T, createARMMachOStreamer);
656
657 // Register the obj target streamer.
658 TargetRegistry::RegisterObjectTargetStreamer(*T,
659 createARMObjectTargetStreamer);
660
661 // Register the asm streamer.
662 TargetRegistry::RegisterAsmTargetStreamer(*T, createARMTargetAsmStreamer);
663
664 // Register the null TargetStreamer.
665 TargetRegistry::RegisterNullTargetStreamer(*T, createARMNullTargetStreamer);
666
667 // Register the MCInstPrinter.
668 TargetRegistry::RegisterMCInstPrinter(*T, createARMMCInstPrinter);
669
670 // Register the MC relocation info.
671 TargetRegistry::RegisterMCRelocationInfo(*T, createARMMCRelocationInfo);
672 }
673
674 // Register the MC instruction analyzer.
675 for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
676 &getTheThumbLETarget(), &getTheThumbBETarget()})
677 TargetRegistry::RegisterMCInstrAnalysis(*T, createARMMCInstrAnalysis);
678
679 for (Target *T : {&getTheARMLETarget(), &getTheThumbLETarget()}) {
680 TargetRegistry::RegisterMCCodeEmitter(*T, createARMLEMCCodeEmitter);
681 TargetRegistry::RegisterMCAsmBackend(*T, createARMLEAsmBackend);
682 }
683 for (Target *T : {&getTheARMBETarget(), &getTheThumbBETarget()}) {
684 TargetRegistry::RegisterMCCodeEmitter(*T, createARMBEMCCodeEmitter);
685 TargetRegistry::RegisterMCAsmBackend(*T, createARMBEAsmBackend);
686 }
687 }
688