1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 # define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 # define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 # define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 # define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 # define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 # define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 # define EV_USE_POLL 0
297 # else
298 # define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 # define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 # define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 # define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 # define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 # define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 # define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 # define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 # undef EV_USE_MONOTONIC
391 # define EV_USE_MONOTONIC 1
392 # else
393 # undef EV_USE_CLOCK_SYSCALL
394 # define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 # include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 # undef EV_USE_INOTIFY
428 # define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 # define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define EFD_CLOEXEC O_CLOEXEC
441 # else
442 # define EFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 # define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 # ifdef O_CLOEXEC
456 # define SFD_CLOEXEC O_CLOEXEC
457 # else
458 # define SFD_CLOEXEC 02000000
459 # endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010005
538
539 #ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562 #else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569 #endif
570
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581 #endif
582
583 /* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592 #else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598 #if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601 #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603
604 #if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607 #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609
610 #define ECB_CPP (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612
613 #if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616 #else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620
621 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624 #if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628 #else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632 #endif
633
634 /*****************************************************************************/
635
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639 #if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641 #endif
642
643 #if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646
647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648 #if __xlC__ && ECB_CPP
649 #include <builtins.h>
650 #endif
651
652 #if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654 #endif
655
656 #ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709 #endif
710
711 #ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748 #endif
749
750 #ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765 #endif
766
767 #ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783 #endif
784
785 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 #endif
788
789 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791 #endif
792
793 /*****************************************************************************/
794
795 #if ECB_CPP
796 #define ecb_inline static inline
797 #elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799 #elif ECB_C99
800 #define ecb_inline static inline
801 #else
802 #define ecb_inline static
803 #endif
804
805 #if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807 #elif ECB_C99
808 #define ecb_restrict restrict
809 #else
810 #define ecb_restrict
811 #endif
812
813 typedef int ecb_bool;
814
815 #define ECB_CONCAT_(a, b) a ## b
816 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817 #define ECB_STRINGIFY_(a) # a
818 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821 #define ecb_function_ ecb_inline
822
823 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825 #else
826 #define ecb_attribute(attrlist)
827 #endif
828
829 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831 #else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837 #endif
838
839 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
841 #else
842 #define ecb_expect(expr,value) (expr)
843 #endif
844
845 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847 #else
848 #define ecb_prefetch(addr,rw,locality)
849 #endif
850
851 /* no emulation for ecb_decltype */
852 #if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858 #endif
859
860 #if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862 #else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864 #endif
865
866 #if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868 #elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870 #else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872 #endif
873
874 #if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876 #else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878 #endif
879
880 #define ecb_unused ecb_attribute ((__unused__))
881 #define ecb_const ecb_attribute ((__const__))
882 #define ecb_pure ecb_attribute ((__pure__))
883
884 #if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887 #elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889 #elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892 #else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894 #endif
895
896 #if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900 #else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904 #endif
905
906 /* put around conditional expressions if you are very sure that the */
907 /* expression is mostly true or mostly false. note that these return */
908 /* booleans, not the expression. */
909 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911 /* for compatibility to the rest of the world */
912 #define ecb_likely(expr) ecb_expect_true (expr)
913 #define ecb_unlikely(expr) ecb_expect_false (expr)
914
915 /* count trailing zero bits and count # of one bits */
916 #if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927 #else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
ecb_ctz32(uint32_t x)930 ecb_ctz32 (uint32_t x)
931 {
932 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936 #else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941 #if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947 #else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953 #endif
954
955 return r;
956 #endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
ecb_ctz64(uint64_t x)961 ecb_ctz64 (uint64_t x)
962 {
963 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967 #else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970 #endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
ecb_popcount32(uint32_t x)975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
ecb_ld32(uint32_t x)986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992 #else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002 #endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
ecb_ld64(uint64_t x)1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012 #else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018 #endif
1019 }
1020 #endif
1021
1022 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
ecb_is_pot32(uint32_t x)1023 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
ecb_is_pot64(uint64_t x)1025 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
ecb_bitrev8(uint8_t x)1028 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029 {
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 }
1033
1034 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
ecb_bitrev16(uint16_t x)1035 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 {
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043 }
1044
1045 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
ecb_bitrev32(uint32_t x)1046 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 {
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055 }
1056
1057 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058 /* so for this version we are lazy */
1059 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060 ecb_function_ ecb_const int
ecb_popcount64(uint64_t x)1061 ecb_popcount64 (uint64_t x)
1062 {
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064 }
1065
1066 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
ecb_rotl8(uint8_t x,unsigned int count)1075 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
ecb_rotr8(uint8_t x,unsigned int count)1076 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
ecb_rotl16(uint16_t x,unsigned int count)1077 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
ecb_rotr16(uint16_t x,unsigned int count)1078 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
ecb_rotl32(uint32_t x,unsigned int count)1079 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
ecb_rotr32(uint32_t x,unsigned int count)1080 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
ecb_rotl64(uint64_t x,unsigned int count)1081 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
ecb_rotr64(uint64_t x,unsigned int count)1082 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092 #elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 #else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
ecb_bswap16(uint16_t x)1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
ecb_bswap32(uint32_t x)1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
ecb_bswap64(uint64_t x)1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118 #endif
1119
1120 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122 #else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
ecb_unreachable(void)1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 #endif
1127
1128 /* try to tell the compiler that some condition is definitely true */
1129 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132 ecb_inline ecb_const uint32_t
ecb_byteorder_helper(void)1133 ecb_byteorder_helper (void)
1134 {
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149 #else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156 #endif
1157 }
1158
1159 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
ecb_big_endian(void)1160 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
ecb_little_endian(void)1162 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164 #if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166 #else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168 #endif
1169
1170 #if ECB_CPP
1171 template<typename T>
ecb_div_rd(T val,T div)1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
ecb_div_ru(T val,T div)1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181 #else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184 #endif
1185
1186 #if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
ecb_array_length(const T (& arr)[N])1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193 #else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195 #endif
1196
1197 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198 ecb_function_ ecb_const uint32_t
ecb_binary16_to_binary32(uint32_t x)1199 ecb_binary16_to_binary32 (uint32_t x)
1200 {
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227 }
1228
1229 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230 ecb_function_ ecb_const uint16_t
ecb_binary32_to_binary16(uint32_t x)1231 ecb_binary32_to_binary16 (uint32_t x)
1232 {
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291 }
1292
1293 /*******************************************************************************/
1294 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296 /* basically, everything uses "ieee pure-endian" floating point numbers */
1297 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298 #if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315 #else
1316 #define ECB_STDFP 0
1317 #endif
1318
1319 #ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
ecb_float_to_binary32(float x)1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
ecb_binary32_to_float(uint32_t x)1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
ecb_double_to_binary64(double x)1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
ecb_binary64_to_double(uint64_t x)1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
ecb_float_to_binary16(float x)1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
ecb_binary16_to_float(uint16_t x)1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500 #endif
1501
1502 #endif
1503
1504 /* ECB.H END */
1505
1506 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 /* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514 /*
1515 * krb5 change: per the comment below, we are allowing pthreads on platforms
1516 * which are too old to have better memory thead support, as is the case on
1517 * older Solaris versions.
1518 */
1519 #if 0
1520 # error "memory fences not defined for your architecture, please report"
1521 #endif
1522 #endif
1523
1524 #ifndef ECB_MEMORY_FENCE
1525 # define ECB_MEMORY_FENCE do { } while (0)
1526 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1527 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1528 #endif
1529
1530 #define expect_false(cond) ecb_expect_false (cond)
1531 #define expect_true(cond) ecb_expect_true (cond)
1532 #define noinline ecb_noinline
1533
1534 #define inline_size ecb_inline
1535
1536 #if EV_FEATURE_CODE
1537 # define inline_speed ecb_inline
1538 #else
1539 # define inline_speed static noinline
1540 #endif
1541
1542 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1543
1544 #if EV_MINPRI == EV_MAXPRI
1545 # define ABSPRI(w) (((W)w), 0)
1546 #else
1547 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1548 #endif
1549
1550 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1551 #define EMPTY2(a,b) /* used to suppress some warnings */
1552
1553 typedef ev_watcher *W;
1554 typedef ev_watcher_list *WL;
1555 typedef ev_watcher_time *WT;
1556
1557 #define ev_active(w) ((W)(w))->active
1558 #define ev_at(w) ((WT)(w))->at
1559
1560 #if EV_USE_REALTIME
1561 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1562 /* giving it a reasonably high chance of working on typical architectures */
1563 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1564 #endif
1565
1566 #if EV_USE_MONOTONIC
1567 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1568 #endif
1569
1570 #ifndef EV_FD_TO_WIN32_HANDLE
1571 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1572 #endif
1573 #ifndef EV_WIN32_HANDLE_TO_FD
1574 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1575 #endif
1576 #ifndef EV_WIN32_CLOSE_FD
1577 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1578 #endif
1579
1580 #ifdef _WIN32
1581 # include "ev_win32.c"
1582 #endif
1583
1584 /*****************************************************************************/
1585
1586 /* define a suitable floor function (only used by periodics atm) */
1587
1588 #if EV_USE_FLOOR
1589 # include <math.h>
1590 # define ev_floor(v) floor (v)
1591 #else
1592
1593 #include <float.h>
1594
1595 /* a floor() replacement function, should be independent of ev_tstamp type */
1596 static ev_tstamp noinline
ev_floor(ev_tstamp v)1597 ev_floor (ev_tstamp v)
1598 {
1599 /* the choice of shift factor is not terribly important */
1600 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1601 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1602 #else
1603 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1604 #endif
1605
1606 /* argument too large for an unsigned long? */
1607 if (expect_false (v >= shift))
1608 {
1609 ev_tstamp f;
1610
1611 if (v == v - 1.)
1612 return v; /* very large number */
1613
1614 f = shift * ev_floor (v * (1. / shift));
1615 return f + ev_floor (v - f);
1616 }
1617
1618 /* special treatment for negative args? */
1619 if (expect_false (v < 0.))
1620 {
1621 ev_tstamp f = -ev_floor (-v);
1622
1623 return f - (f == v ? 0 : 1);
1624 }
1625
1626 /* fits into an unsigned long */
1627 return (unsigned long)v;
1628 }
1629
1630 #endif
1631
1632 /*****************************************************************************/
1633
1634 #ifdef __linux
1635 # include <sys/utsname.h>
1636 #endif
1637
1638 static unsigned int noinline ecb_cold
ev_linux_version(void)1639 ev_linux_version (void)
1640 {
1641 #ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669 #else
1670 return 0;
1671 #endif
1672 }
1673
1674 /*****************************************************************************/
1675
1676 #if EV_AVOID_STDIO
1677 static void noinline ecb_cold
ev_printerr(const char * msg)1678 ev_printerr (const char *msg)
1679 {
1680 write (STDERR_FILENO, msg, strlen (msg));
1681 }
1682 #endif
1683
1684 static void (*syserr_cb)(const char *msg) EV_THROW;
1685
1686 void ecb_cold
ev_set_syserr_cb(void (* cb)(const char * msg)EV_THROW)1687 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1688 {
1689 syserr_cb = cb;
1690 }
1691
1692 static void noinline ecb_cold
ev_syserr(const char * msg)1693 ev_syserr (const char *msg)
1694 {
1695 if (!msg)
1696 msg = "(libev) system error";
1697
1698 if (syserr_cb)
1699 syserr_cb (msg);
1700 else
1701 {
1702 #if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707 #else
1708 perror (msg);
1709 #endif
1710 abort ();
1711 }
1712 }
1713
1714 static void *
ev_realloc_emul(void * ptr,long size)1715 ev_realloc_emul (void *ptr, long size) EV_THROW
1716 {
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729 }
1730
1731 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1732
1733 void ecb_cold
ev_set_allocator(void * (* cb)(void * ptr,long size)EV_THROW)1734 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1735 {
1736 alloc = cb;
1737 }
1738
1739 inline_speed void *
ev_realloc(void * ptr,long size)1740 ev_realloc (void *ptr, long size)
1741 {
1742 ptr = alloc (ptr, size);
1743
1744 if (!ptr && size)
1745 {
1746 #if EV_AVOID_STDIO
1747 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1748 #else
1749 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1750 #endif
1751 abort ();
1752 }
1753
1754 return ptr;
1755 }
1756
1757 #define ev_malloc(size) ev_realloc (0, (size))
1758 #define ev_free(ptr) ev_realloc ((ptr), 0)
1759
1760 /*****************************************************************************/
1761
1762 /* set in reify when reification needed */
1763 #define EV_ANFD_REIFY 1
1764
1765 /* file descriptor info structure */
1766 typedef struct
1767 {
1768 WL head;
1769 unsigned char events; /* the events watched for */
1770 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1771 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1772 unsigned char unused;
1773 #if EV_USE_EPOLL
1774 unsigned int egen; /* generation counter to counter epoll bugs */
1775 #endif
1776 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777 SOCKET handle;
1778 #endif
1779 #if EV_USE_IOCP
1780 OVERLAPPED or, ow;
1781 #endif
1782 } ANFD;
1783
1784 /* stores the pending event set for a given watcher */
1785 typedef struct
1786 {
1787 W w;
1788 int events; /* the pending event set for the given watcher */
1789 } ANPENDING;
1790
1791 #if EV_USE_INOTIFY
1792 /* hash table entry per inotify-id */
1793 typedef struct
1794 {
1795 WL head;
1796 } ANFS;
1797 #endif
1798
1799 /* Heap Entry */
1800 #if EV_HEAP_CACHE_AT
1801 /* a heap element */
1802 typedef struct {
1803 ev_tstamp at;
1804 WT w;
1805 } ANHE;
1806
1807 #define ANHE_w(he) (he).w /* access watcher, read-write */
1808 #define ANHE_at(he) (he).at /* access cached at, read-only */
1809 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1810 #else
1811 /* a heap element */
1812 typedef WT ANHE;
1813
1814 #define ANHE_w(he) (he)
1815 #define ANHE_at(he) (he)->at
1816 #define ANHE_at_cache(he)
1817 #endif
1818
1819 #if EV_MULTIPLICITY
1820
1821 struct ev_loop
1822 {
1823 ev_tstamp ev_rt_now;
1824 #define ev_rt_now ((loop)->ev_rt_now)
1825 #define VAR(name,decl) decl;
1826 #include "ev_vars.h"
1827 #undef VAR
1828 };
1829 #include "ev_wrap.h"
1830
1831 static struct ev_loop default_loop_struct;
1832 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1833
1834 #else
1835
1836 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1837 #define VAR(name,decl) static decl;
1838 #include "ev_vars.h"
1839 #undef VAR
1840
1841 static int ev_default_loop_ptr;
1842
1843 #endif
1844
1845 #if EV_FEATURE_API
1846 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1847 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1848 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1849 #else
1850 # define EV_RELEASE_CB (void)0
1851 # define EV_ACQUIRE_CB (void)0
1852 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1853 #endif
1854
1855 #define EVBREAK_RECURSE 0x80
1856
1857 /*****************************************************************************/
1858
1859 #ifndef EV_HAVE_EV_TIME
1860 ev_tstamp
ev_time(void)1861 ev_time (void) EV_THROW
1862 {
1863 #if EV_USE_REALTIME
1864 if (expect_true (have_realtime))
1865 {
1866 struct timespec ts;
1867 clock_gettime (CLOCK_REALTIME, &ts);
1868 return ts.tv_sec + ts.tv_nsec * 1e-9;
1869 }
1870 #endif
1871
1872 struct timeval tv;
1873 gettimeofday (&tv, 0);
1874 return tv.tv_sec + tv.tv_usec * 1e-6;
1875 }
1876 #endif
1877
1878 inline_size ev_tstamp
get_clock(void)1879 get_clock (void)
1880 {
1881 #if EV_USE_MONOTONIC
1882 if (expect_true (have_monotonic))
1883 {
1884 struct timespec ts;
1885 clock_gettime (CLOCK_MONOTONIC, &ts);
1886 return ts.tv_sec + ts.tv_nsec * 1e-9;
1887 }
1888 #endif
1889
1890 return ev_time ();
1891 }
1892
1893 #if EV_MULTIPLICITY
1894 ev_tstamp
ev_now(EV_P)1895 ev_now (EV_P) EV_THROW
1896 {
1897 return ev_rt_now;
1898 }
1899 #endif
1900
1901 void
ev_sleep(ev_tstamp delay)1902 ev_sleep (ev_tstamp delay) EV_THROW
1903 {
1904 if (delay > 0.)
1905 {
1906 #if EV_USE_NANOSLEEP
1907 struct timespec ts;
1908
1909 EV_TS_SET (ts, delay);
1910 nanosleep (&ts, 0);
1911 #elif defined _WIN32
1912 Sleep ((unsigned long)(delay * 1e3));
1913 #else
1914 struct timeval tv;
1915
1916 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1917 /* something not guaranteed by newer posix versions, but guaranteed */
1918 /* by older ones */
1919 EV_TV_SET (tv, delay);
1920 select (0, 0, 0, 0, &tv);
1921 #endif
1922 }
1923 }
1924
1925 /*****************************************************************************/
1926
1927 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1928
1929 /* find a suitable new size for the given array, */
1930 /* hopefully by rounding to a nice-to-malloc size */
1931 inline_size int
array_nextsize(int elem,int cur,int cnt)1932 array_nextsize (int elem, int cur, int cnt)
1933 {
1934 int ncur = cur + 1;
1935
1936 do
1937 ncur <<= 1;
1938 while (cnt > ncur);
1939
1940 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1941 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1942 {
1943 ncur *= elem;
1944 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1945 ncur = ncur - sizeof (void *) * 4;
1946 ncur /= elem;
1947 }
1948
1949 return ncur;
1950 }
1951
1952 static void * noinline ecb_cold
array_realloc(int elem,void * base,int * cur,int cnt)1953 array_realloc (int elem, void *base, int *cur, int cnt)
1954 {
1955 *cur = array_nextsize (elem, *cur, cnt);
1956 return ev_realloc (base, elem * *cur);
1957 }
1958
1959 #define array_init_zero(base,count) \
1960 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1961
1962 #define array_needsize(type,base,cur,cnt,init) \
1963 if (expect_false ((cnt) > (cur))) \
1964 { \
1965 int ecb_unused ocur_ = (cur); \
1966 (base) = (type *)array_realloc \
1967 (sizeof (type), (base), &(cur), (cnt)); \
1968 init ((base) + (ocur_), (cur) - ocur_); \
1969 }
1970
1971 #if 0
1972 #define array_slim(type,stem) \
1973 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1974 { \
1975 stem ## max = array_roundsize (stem ## cnt >> 1); \
1976 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1977 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1978 }
1979 #endif
1980
1981 #define array_free(stem, idx) \
1982 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1983
1984 /*****************************************************************************/
1985
1986 /* dummy callback for pending events */
1987 static void noinline
pendingcb(EV_P_ ev_prepare * w,int revents)1988 pendingcb (EV_P_ ev_prepare *w, int revents)
1989 {
1990 }
1991
1992 void noinline
ev_feed_event(EV_P_ void * w,int revents)1993 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1994 {
1995 W w_ = (W)w;
1996 int pri = ABSPRI (w_);
1997
1998 if (expect_false (w_->pending))
1999 pendings [pri][w_->pending - 1].events |= revents;
2000 else
2001 {
2002 w_->pending = ++pendingcnt [pri];
2003 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2004 pendings [pri][w_->pending - 1].w = w_;
2005 pendings [pri][w_->pending - 1].events = revents;
2006 }
2007
2008 pendingpri = NUMPRI - 1;
2009 }
2010
2011 inline_speed void
feed_reverse(EV_P_ W w)2012 feed_reverse (EV_P_ W w)
2013 {
2014 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2015 rfeeds [rfeedcnt++] = w;
2016 }
2017
2018 inline_size void
feed_reverse_done(EV_P_ int revents)2019 feed_reverse_done (EV_P_ int revents)
2020 {
2021 do
2022 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2023 while (rfeedcnt);
2024 }
2025
2026 inline_speed void
queue_events(EV_P_ W * events,int eventcnt,int type)2027 queue_events (EV_P_ W *events, int eventcnt, int type)
2028 {
2029 int i;
2030
2031 for (i = 0; i < eventcnt; ++i)
2032 ev_feed_event (EV_A_ events [i], type);
2033 }
2034
2035 /*****************************************************************************/
2036
2037 inline_speed void
fd_event_nocheck(EV_P_ int fd,int revents)2038 fd_event_nocheck (EV_P_ int fd, int revents)
2039 {
2040 ANFD *anfd = anfds + fd;
2041 ev_io *w;
2042
2043 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2044 {
2045 int ev = w->events & revents;
2046
2047 if (ev)
2048 ev_feed_event (EV_A_ (W)w, ev);
2049 }
2050 }
2051
2052 /* do not submit kernel events for fds that have reify set */
2053 /* because that means they changed while we were polling for new events */
2054 inline_speed void
fd_event(EV_P_ int fd,int revents)2055 fd_event (EV_P_ int fd, int revents)
2056 {
2057 ANFD *anfd = anfds + fd;
2058
2059 if (expect_true (!anfd->reify))
2060 fd_event_nocheck (EV_A_ fd, revents);
2061 }
2062
2063 void
ev_feed_fd_event(EV_P_ int fd,int revents)2064 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2065 {
2066 if (fd >= 0 && fd < anfdmax)
2067 fd_event_nocheck (EV_A_ fd, revents);
2068 }
2069
2070 /* make sure the external fd watch events are in-sync */
2071 /* with the kernel/libev internal state */
2072 inline_size void
fd_reify(EV_P)2073 fd_reify (EV_P)
2074 {
2075 int i;
2076
2077 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2078 for (i = 0; i < fdchangecnt; ++i)
2079 {
2080 int fd = fdchanges [i];
2081 ANFD *anfd = anfds + fd;
2082
2083 if (anfd->reify & EV__IOFDSET && anfd->head)
2084 {
2085 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2086
2087 if (handle != anfd->handle)
2088 {
2089 unsigned long arg;
2090
2091 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2092
2093 /* handle changed, but fd didn't - we need to do it in two steps */
2094 backend_modify (EV_A_ fd, anfd->events, 0);
2095 anfd->events = 0;
2096 anfd->handle = handle;
2097 }
2098 }
2099 }
2100 #endif
2101
2102 for (i = 0; i < fdchangecnt; ++i)
2103 {
2104 int fd = fdchanges [i];
2105 ANFD *anfd = anfds + fd;
2106 ev_io *w;
2107
2108 unsigned char o_events = anfd->events;
2109 unsigned char o_reify = anfd->reify;
2110
2111 anfd->reify = 0;
2112
2113 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2114 {
2115 anfd->events = 0;
2116
2117 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2118 anfd->events |= (unsigned char)w->events;
2119
2120 if (o_events != anfd->events)
2121 o_reify = EV__IOFDSET; /* actually |= */
2122 }
2123
2124 if (o_reify & EV__IOFDSET)
2125 backend_modify (EV_A_ fd, o_events, anfd->events);
2126 }
2127
2128 fdchangecnt = 0;
2129 }
2130
2131 /* something about the given fd changed */
2132 inline_size void
fd_change(EV_P_ int fd,int flags)2133 fd_change (EV_P_ int fd, int flags)
2134 {
2135 unsigned char reify = anfds [fd].reify;
2136 anfds [fd].reify |= flags;
2137
2138 if (expect_true (!reify))
2139 {
2140 ++fdchangecnt;
2141 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2142 fdchanges [fdchangecnt - 1] = fd;
2143 }
2144 }
2145
2146 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2147 inline_speed void ecb_cold
fd_kill(EV_P_ int fd)2148 fd_kill (EV_P_ int fd)
2149 {
2150 ev_io *w;
2151
2152 while ((w = (ev_io *)anfds [fd].head))
2153 {
2154 ev_io_stop (EV_A_ w);
2155 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2156 }
2157 }
2158
2159 /* check whether the given fd is actually valid, for error recovery */
2160 inline_size int ecb_cold
fd_valid(int fd)2161 fd_valid (int fd)
2162 {
2163 #ifdef _WIN32
2164 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2165 #else
2166 return fcntl (fd, F_GETFD) != -1;
2167 #endif
2168 }
2169
2170 /* called on EBADF to verify fds */
2171 static void noinline ecb_cold
fd_ebadf(EV_P)2172 fd_ebadf (EV_P)
2173 {
2174 int fd;
2175
2176 for (fd = 0; fd < anfdmax; ++fd)
2177 if (anfds [fd].events)
2178 if (!fd_valid (fd) && errno == EBADF)
2179 fd_kill (EV_A_ fd);
2180 }
2181
2182 /* called on ENOMEM in select/poll to kill some fds and retry */
2183 static void noinline ecb_cold
fd_enomem(EV_P)2184 fd_enomem (EV_P)
2185 {
2186 int fd;
2187
2188 for (fd = anfdmax; fd--; )
2189 if (anfds [fd].events)
2190 {
2191 fd_kill (EV_A_ fd);
2192 break;
2193 }
2194 }
2195
2196 /* usually called after fork if backend needs to re-arm all fds from scratch */
2197 static void noinline
fd_rearm_all(EV_P)2198 fd_rearm_all (EV_P)
2199 {
2200 int fd;
2201
2202 for (fd = 0; fd < anfdmax; ++fd)
2203 if (anfds [fd].events)
2204 {
2205 anfds [fd].events = 0;
2206 anfds [fd].emask = 0;
2207 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2208 }
2209 }
2210
2211 /* used to prepare libev internal fd's */
2212 /* this is not fork-safe */
2213 inline_speed void
fd_intern(int fd)2214 fd_intern (int fd)
2215 {
2216 #ifdef _WIN32
2217 unsigned long arg = 1;
2218 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2219 #else
2220 fcntl (fd, F_SETFD, FD_CLOEXEC);
2221 fcntl (fd, F_SETFL, O_NONBLOCK);
2222 #endif
2223 }
2224
2225 /*****************************************************************************/
2226
2227 /*
2228 * the heap functions want a real array index. array index 0 is guaranteed to not
2229 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2230 * the branching factor of the d-tree.
2231 */
2232
2233 /*
2234 * at the moment we allow libev the luxury of two heaps,
2235 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2236 * which is more cache-efficient.
2237 * the difference is about 5% with 50000+ watchers.
2238 */
2239 #if EV_USE_4HEAP
2240
2241 #define DHEAP 4
2242 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2243 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2244 #define UPHEAP_DONE(p,k) ((p) == (k))
2245
2246 /* away from the root */
2247 inline_speed void
downheap(ANHE * heap,int N,int k)2248 downheap (ANHE *heap, int N, int k)
2249 {
2250 ANHE he = heap [k];
2251 ANHE *E = heap + N + HEAP0;
2252
2253 for (;;)
2254 {
2255 ev_tstamp minat;
2256 ANHE *minpos;
2257 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2258
2259 /* find minimum child */
2260 if (expect_true (pos + DHEAP - 1 < E))
2261 {
2262 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266 }
2267 else if (pos < E)
2268 {
2269 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2270 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2271 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2272 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2273 }
2274 else
2275 break;
2276
2277 if (ANHE_at (he) <= minat)
2278 break;
2279
2280 heap [k] = *minpos;
2281 ev_active (ANHE_w (*minpos)) = k;
2282
2283 k = minpos - heap;
2284 }
2285
2286 heap [k] = he;
2287 ev_active (ANHE_w (he)) = k;
2288 }
2289
2290 #else /* 4HEAP */
2291
2292 #define HEAP0 1
2293 #define HPARENT(k) ((k) >> 1)
2294 #define UPHEAP_DONE(p,k) (!(p))
2295
2296 /* away from the root */
2297 inline_speed void
downheap(ANHE * heap,int N,int k)2298 downheap (ANHE *heap, int N, int k)
2299 {
2300 ANHE he = heap [k];
2301
2302 for (;;)
2303 {
2304 int c = k << 1;
2305
2306 if (c >= N + HEAP0)
2307 break;
2308
2309 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2310 ? 1 : 0;
2311
2312 if (ANHE_at (he) <= ANHE_at (heap [c]))
2313 break;
2314
2315 heap [k] = heap [c];
2316 ev_active (ANHE_w (heap [k])) = k;
2317
2318 k = c;
2319 }
2320
2321 heap [k] = he;
2322 ev_active (ANHE_w (he)) = k;
2323 }
2324 #endif
2325
2326 /* towards the root */
2327 inline_speed void
upheap(ANHE * heap,int k)2328 upheap (ANHE *heap, int k)
2329 {
2330 ANHE he = heap [k];
2331
2332 for (;;)
2333 {
2334 int p = HPARENT (k);
2335
2336 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2337 break;
2338
2339 heap [k] = heap [p];
2340 ev_active (ANHE_w (heap [k])) = k;
2341 k = p;
2342 }
2343
2344 heap [k] = he;
2345 ev_active (ANHE_w (he)) = k;
2346 }
2347
2348 /* move an element suitably so it is in a correct place */
2349 inline_size void
adjustheap(ANHE * heap,int N,int k)2350 adjustheap (ANHE *heap, int N, int k)
2351 {
2352 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2353 upheap (heap, k);
2354 else
2355 downheap (heap, N, k);
2356 }
2357
2358 /* rebuild the heap: this function is used only once and executed rarely */
2359 inline_size void
reheap(ANHE * heap,int N)2360 reheap (ANHE *heap, int N)
2361 {
2362 int i;
2363
2364 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2365 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2366 for (i = 0; i < N; ++i)
2367 upheap (heap, i + HEAP0);
2368 }
2369
2370 /*****************************************************************************/
2371
2372 /* associate signal watchers to a signal signal */
2373 typedef struct
2374 {
2375 EV_ATOMIC_T pending;
2376 #if EV_MULTIPLICITY
2377 EV_P;
2378 #endif
2379 WL head;
2380 } ANSIG;
2381
2382 static ANSIG signals [EV_NSIG - 1];
2383
2384 /*****************************************************************************/
2385
2386 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2387
2388 static void noinline ecb_cold
evpipe_init(EV_P)2389 evpipe_init (EV_P)
2390 {
2391 if (!ev_is_active (&pipe_w))
2392 {
2393 int fds [2];
2394
2395 # if EV_USE_EVENTFD
2396 fds [0] = -1;
2397 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2398 if (fds [1] < 0 && errno == EINVAL)
2399 fds [1] = eventfd (0, 0);
2400
2401 if (fds [1] < 0)
2402 # endif
2403 {
2404 while (pipe (fds))
2405 ev_syserr ("(libev) error creating signal/async pipe");
2406
2407 fd_intern (fds [0]);
2408 }
2409
2410 evpipe [0] = fds [0];
2411
2412 if (evpipe [1] < 0)
2413 evpipe [1] = fds [1]; /* first call, set write fd */
2414 else
2415 {
2416 /* on subsequent calls, do not change evpipe [1] */
2417 /* so that evpipe_write can always rely on its value. */
2418 /* this branch does not do anything sensible on windows, */
2419 /* so must not be executed on windows */
2420
2421 dup2 (fds [1], evpipe [1]);
2422 close (fds [1]);
2423 }
2424
2425 fd_intern (evpipe [1]);
2426
2427 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2428 ev_io_start (EV_A_ &pipe_w);
2429 ev_unref (EV_A); /* watcher should not keep loop alive */
2430 }
2431 }
2432
2433 inline_speed void
evpipe_write(EV_P_ EV_ATOMIC_T * flag)2434 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2435 {
2436 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2437
2438 if (expect_true (*flag))
2439 return;
2440
2441 *flag = 1;
2442 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2443
2444 pipe_write_skipped = 1;
2445
2446 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2447
2448 if (pipe_write_wanted)
2449 {
2450 int old_errno;
2451
2452 pipe_write_skipped = 0;
2453 ECB_MEMORY_FENCE_RELEASE;
2454
2455 old_errno = errno; /* save errno because write will clobber it */
2456
2457 #if EV_USE_EVENTFD
2458 if (evpipe [0] < 0)
2459 {
2460 uint64_t counter = 1;
2461 write (evpipe [1], &counter, sizeof (uint64_t));
2462 }
2463 else
2464 #endif
2465 {
2466 #ifdef _WIN32
2467 WSABUF buf;
2468 DWORD sent;
2469 buf.buf = &buf;
2470 buf.len = 1;
2471 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2472 #else
2473 write (evpipe [1], &(evpipe [1]), 1);
2474 #endif
2475 }
2476
2477 errno = old_errno;
2478 }
2479 }
2480
2481 /* called whenever the libev signal pipe */
2482 /* got some events (signal, async) */
2483 static void
pipecb(EV_P_ ev_io * iow,int revents)2484 pipecb (EV_P_ ev_io *iow, int revents)
2485 {
2486 int i;
2487
2488 if (revents & EV_READ)
2489 {
2490 #if EV_USE_EVENTFD
2491 if (evpipe [0] < 0)
2492 {
2493 uint64_t counter;
2494 read (evpipe [1], &counter, sizeof (uint64_t));
2495 }
2496 else
2497 #endif
2498 {
2499 char dummy[4];
2500 #ifdef _WIN32
2501 WSABUF buf;
2502 DWORD recvd;
2503 DWORD flags = 0;
2504 buf.buf = dummy;
2505 buf.len = sizeof (dummy);
2506 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2507 #else
2508 read (evpipe [0], &dummy, sizeof (dummy));
2509 #endif
2510 }
2511 }
2512
2513 pipe_write_skipped = 0;
2514
2515 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2516
2517 #if EV_SIGNAL_ENABLE
2518 if (sig_pending)
2519 {
2520 sig_pending = 0;
2521
2522 ECB_MEMORY_FENCE;
2523
2524 for (i = EV_NSIG - 1; i--; )
2525 if (expect_false (signals [i].pending))
2526 ev_feed_signal_event (EV_A_ i + 1);
2527 }
2528 #endif
2529
2530 #if EV_ASYNC_ENABLE
2531 if (async_pending)
2532 {
2533 async_pending = 0;
2534
2535 ECB_MEMORY_FENCE;
2536
2537 for (i = asynccnt; i--; )
2538 if (asyncs [i]->sent)
2539 {
2540 asyncs [i]->sent = 0;
2541 ECB_MEMORY_FENCE_RELEASE;
2542 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2543 }
2544 }
2545 #endif
2546 }
2547
2548 /*****************************************************************************/
2549
2550 void
ev_feed_signal(int signum)2551 ev_feed_signal (int signum) EV_THROW
2552 {
2553 #if EV_MULTIPLICITY
2554 EV_P;
2555 ECB_MEMORY_FENCE_ACQUIRE;
2556 EV_A = signals [signum - 1].loop;
2557
2558 if (!EV_A)
2559 return;
2560 #endif
2561
2562 signals [signum - 1].pending = 1;
2563 evpipe_write (EV_A_ &sig_pending);
2564 }
2565
2566 static void
ev_sighandler(int signum)2567 ev_sighandler (int signum)
2568 {
2569 #ifdef _WIN32
2570 signal (signum, ev_sighandler);
2571 #endif
2572
2573 ev_feed_signal (signum);
2574 }
2575
2576 void noinline
ev_feed_signal_event(EV_P_ int signum)2577 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2578 {
2579 WL w;
2580
2581 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2582 return;
2583
2584 --signum;
2585
2586 #if EV_MULTIPLICITY
2587 /* it is permissible to try to feed a signal to the wrong loop */
2588 /* or, likely more useful, feeding a signal nobody is waiting for */
2589
2590 if (expect_false (signals [signum].loop != EV_A))
2591 return;
2592 #endif
2593
2594 signals [signum].pending = 0;
2595 ECB_MEMORY_FENCE_RELEASE;
2596
2597 for (w = signals [signum].head; w; w = w->next)
2598 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2599 }
2600
2601 #if EV_USE_SIGNALFD
2602 static void
sigfdcb(EV_P_ ev_io * iow,int revents)2603 sigfdcb (EV_P_ ev_io *iow, int revents)
2604 {
2605 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2606
2607 for (;;)
2608 {
2609 ssize_t res = read (sigfd, si, sizeof (si));
2610
2611 /* not ISO-C, as res might be -1, but works with SuS */
2612 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2613 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2614
2615 if (res < (ssize_t)sizeof (si))
2616 break;
2617 }
2618 }
2619 #endif
2620
2621 #endif
2622
2623 /*****************************************************************************/
2624
2625 #if EV_CHILD_ENABLE
2626 static WL childs [EV_PID_HASHSIZE];
2627
2628 static ev_signal childev;
2629
2630 #ifndef WIFCONTINUED
2631 # define WIFCONTINUED(status) 0
2632 #endif
2633
2634 /* handle a single child status event */
2635 inline_speed void
child_reap(EV_P_ int chain,int pid,int status)2636 child_reap (EV_P_ int chain, int pid, int status)
2637 {
2638 ev_child *w;
2639 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2640
2641 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2642 {
2643 if ((w->pid == pid || !w->pid)
2644 && (!traced || (w->flags & 1)))
2645 {
2646 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2647 w->rpid = pid;
2648 w->rstatus = status;
2649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2650 }
2651 }
2652 }
2653
2654 #ifndef WCONTINUED
2655 # define WCONTINUED 0
2656 #endif
2657
2658 /* called on sigchld etc., calls waitpid */
2659 static void
childcb(EV_P_ ev_signal * sw,int revents)2660 childcb (EV_P_ ev_signal *sw, int revents)
2661 {
2662 int pid, status;
2663
2664 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2665 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2666 if (!WCONTINUED
2667 || errno != EINVAL
2668 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2669 return;
2670
2671 /* make sure we are called again until all children have been reaped */
2672 /* we need to do it this way so that the callback gets called before we continue */
2673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2674
2675 child_reap (EV_A_ pid, pid, status);
2676 if ((EV_PID_HASHSIZE) > 1)
2677 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2678 }
2679
2680 #endif
2681
2682 /*****************************************************************************/
2683
2684 #if EV_USE_IOCP
2685 # include "ev_iocp.c"
2686 #endif
2687 #if EV_USE_PORT
2688 # include "ev_port.c"
2689 #endif
2690 #if EV_USE_KQUEUE
2691 # include "ev_kqueue.c"
2692 #endif
2693 #if EV_USE_EPOLL
2694 # include "ev_epoll.c"
2695 #endif
2696 #if EV_USE_POLL
2697 # include "ev_poll.c"
2698 #endif
2699 #if EV_USE_SELECT
2700 # include "ev_select.c"
2701 #endif
2702
2703 int ecb_cold
ev_version_major(void)2704 ev_version_major (void) EV_THROW
2705 {
2706 return EV_VERSION_MAJOR;
2707 }
2708
2709 int ecb_cold
ev_version_minor(void)2710 ev_version_minor (void) EV_THROW
2711 {
2712 return EV_VERSION_MINOR;
2713 }
2714
2715 /* return true if we are running with elevated privileges and should ignore env variables */
2716 int inline_size ecb_cold
enable_secure(void)2717 enable_secure (void)
2718 {
2719 #ifdef _WIN32
2720 return 0;
2721 #else
2722 return getuid () != geteuid ()
2723 || getgid () != getegid ();
2724 #endif
2725 }
2726
2727 unsigned int ecb_cold
ev_supported_backends(void)2728 ev_supported_backends (void) EV_THROW
2729 {
2730 unsigned int flags = 0;
2731
2732 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2733 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2734 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2735 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2736 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2737
2738 return flags;
2739 }
2740
2741 unsigned int ecb_cold
ev_recommended_backends(void)2742 ev_recommended_backends (void) EV_THROW
2743 {
2744 unsigned int flags = ev_supported_backends ();
2745
2746 #ifndef __NetBSD__
2747 /* kqueue is borked on everything but netbsd apparently */
2748 /* it usually doesn't work correctly on anything but sockets and pipes */
2749 flags &= ~EVBACKEND_KQUEUE;
2750 #endif
2751 #ifdef __APPLE__
2752 /* only select works correctly on that "unix-certified" platform */
2753 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2754 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2755 #endif
2756 #ifdef __FreeBSD__
2757 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2758 #endif
2759
2760 return flags;
2761 }
2762
2763 unsigned int ecb_cold
ev_embeddable_backends(void)2764 ev_embeddable_backends (void) EV_THROW
2765 {
2766 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2767
2768 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2769 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2770 flags &= ~EVBACKEND_EPOLL;
2771
2772 return flags;
2773 }
2774
2775 unsigned int
ev_backend(EV_P)2776 ev_backend (EV_P) EV_THROW
2777 {
2778 return backend;
2779 }
2780
2781 #if EV_FEATURE_API
2782 unsigned int
ev_iteration(EV_P)2783 ev_iteration (EV_P) EV_THROW
2784 {
2785 return loop_count;
2786 }
2787
2788 unsigned int
ev_depth(EV_P)2789 ev_depth (EV_P) EV_THROW
2790 {
2791 return loop_depth;
2792 }
2793
2794 void
ev_set_io_collect_interval(EV_P_ ev_tstamp interval)2795 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2796 {
2797 io_blocktime = interval;
2798 }
2799
2800 void
ev_set_timeout_collect_interval(EV_P_ ev_tstamp interval)2801 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2802 {
2803 timeout_blocktime = interval;
2804 }
2805
2806 void
ev_set_userdata(EV_P_ void * data)2807 ev_set_userdata (EV_P_ void *data) EV_THROW
2808 {
2809 userdata = data;
2810 }
2811
2812 void *
ev_userdata(EV_P)2813 ev_userdata (EV_P) EV_THROW
2814 {
2815 return userdata;
2816 }
2817
2818 void
ev_set_invoke_pending_cb(EV_P_ ev_loop_callback invoke_pending_cb)2819 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2820 {
2821 invoke_cb = invoke_pending_cb;
2822 }
2823
2824 void
ev_set_loop_release_cb(EV_P_ void (* release)(EV_P)EV_THROW,void (* acquire)(EV_P)EV_THROW)2825 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2826 {
2827 release_cb = release;
2828 acquire_cb = acquire;
2829 }
2830 #endif
2831
2832 /* initialise a loop structure, must be zero-initialised */
2833 static void noinline ecb_cold
loop_init(EV_P_ unsigned int flags)2834 loop_init (EV_P_ unsigned int flags) EV_THROW
2835 {
2836 if (!backend)
2837 {
2838 origflags = flags;
2839
2840 #if EV_USE_REALTIME
2841 if (!have_realtime)
2842 {
2843 struct timespec ts;
2844
2845 if (!clock_gettime (CLOCK_REALTIME, &ts))
2846 have_realtime = 1;
2847 }
2848 #endif
2849
2850 #if EV_USE_MONOTONIC
2851 if (!have_monotonic)
2852 {
2853 struct timespec ts;
2854
2855 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2856 have_monotonic = 1;
2857 }
2858 #endif
2859
2860 /* pid check not overridable via env */
2861 #ifndef _WIN32
2862 if (flags & EVFLAG_FORKCHECK)
2863 curpid = getpid ();
2864 #endif
2865
2866 if (!(flags & EVFLAG_NOENV)
2867 && !enable_secure ()
2868 && getenv ("LIBEV_FLAGS"))
2869 flags = atoi (getenv ("LIBEV_FLAGS"));
2870
2871 ev_rt_now = ev_time ();
2872 mn_now = get_clock ();
2873 now_floor = mn_now;
2874 rtmn_diff = ev_rt_now - mn_now;
2875 #if EV_FEATURE_API
2876 invoke_cb = ev_invoke_pending;
2877 #endif
2878
2879 io_blocktime = 0.;
2880 timeout_blocktime = 0.;
2881 backend = 0;
2882 backend_fd = -1;
2883 sig_pending = 0;
2884 #if EV_ASYNC_ENABLE
2885 async_pending = 0;
2886 #endif
2887 pipe_write_skipped = 0;
2888 pipe_write_wanted = 0;
2889 evpipe [0] = -1;
2890 evpipe [1] = -1;
2891 #if EV_USE_INOTIFY
2892 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2893 #endif
2894 #if EV_USE_SIGNALFD
2895 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2896 #endif
2897
2898 if (!(flags & EVBACKEND_MASK))
2899 flags |= ev_recommended_backends ();
2900
2901 #if EV_USE_IOCP
2902 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2903 #endif
2904 #if EV_USE_PORT
2905 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2906 #endif
2907 #if EV_USE_KQUEUE
2908 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2909 #endif
2910 #if EV_USE_EPOLL
2911 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2912 #endif
2913 #if EV_USE_POLL
2914 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2915 #endif
2916 #if EV_USE_SELECT
2917 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2918 #endif
2919
2920 ev_prepare_init (&pending_w, pendingcb);
2921
2922 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2923 ev_init (&pipe_w, pipecb);
2924 ev_set_priority (&pipe_w, EV_MAXPRI);
2925 #endif
2926 }
2927 }
2928
2929 /* free up a loop structure */
2930 void ecb_cold
ev_loop_destroy(EV_P)2931 ev_loop_destroy (EV_P)
2932 {
2933 int i;
2934
2935 #if EV_MULTIPLICITY
2936 /* mimic free (0) */
2937 if (!EV_A)
2938 return;
2939 #endif
2940
2941 #if EV_CLEANUP_ENABLE
2942 /* queue cleanup watchers (and execute them) */
2943 if (expect_false (cleanupcnt))
2944 {
2945 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2946 EV_INVOKE_PENDING;
2947 }
2948 #endif
2949
2950 #if EV_CHILD_ENABLE
2951 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2952 {
2953 ev_ref (EV_A); /* child watcher */
2954 ev_signal_stop (EV_A_ &childev);
2955 }
2956 #endif
2957
2958 if (ev_is_active (&pipe_w))
2959 {
2960 /*ev_ref (EV_A);*/
2961 /*ev_io_stop (EV_A_ &pipe_w);*/
2962
2963 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2964 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2965 }
2966
2967 #if EV_USE_SIGNALFD
2968 if (ev_is_active (&sigfd_w))
2969 close (sigfd);
2970 #endif
2971
2972 #if EV_USE_INOTIFY
2973 if (fs_fd >= 0)
2974 close (fs_fd);
2975 #endif
2976
2977 if (backend_fd >= 0)
2978 close (backend_fd);
2979
2980 #if EV_USE_IOCP
2981 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2982 #endif
2983 #if EV_USE_PORT
2984 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2985 #endif
2986 #if EV_USE_KQUEUE
2987 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2988 #endif
2989 #if EV_USE_EPOLL
2990 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2991 #endif
2992 #if EV_USE_POLL
2993 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2994 #endif
2995 #if EV_USE_SELECT
2996 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2997 #endif
2998
2999 for (i = NUMPRI; i--; )
3000 {
3001 array_free (pending, [i]);
3002 #if EV_IDLE_ENABLE
3003 array_free (idle, [i]);
3004 #endif
3005 }
3006
3007 ev_free (anfds); anfds = 0; anfdmax = 0;
3008
3009 /* have to use the microsoft-never-gets-it-right macro */
3010 array_free (rfeed, EMPTY);
3011 array_free (fdchange, EMPTY);
3012 array_free (timer, EMPTY);
3013 #if EV_PERIODIC_ENABLE
3014 array_free (periodic, EMPTY);
3015 #endif
3016 #if EV_FORK_ENABLE
3017 array_free (fork, EMPTY);
3018 #endif
3019 #if EV_CLEANUP_ENABLE
3020 array_free (cleanup, EMPTY);
3021 #endif
3022 array_free (prepare, EMPTY);
3023 array_free (check, EMPTY);
3024 #if EV_ASYNC_ENABLE
3025 array_free (async, EMPTY);
3026 #endif
3027
3028 backend = 0;
3029
3030 #if EV_MULTIPLICITY
3031 if (ev_is_default_loop (EV_A))
3032 #endif
3033 ev_default_loop_ptr = 0;
3034 #if EV_MULTIPLICITY
3035 else
3036 ev_free (EV_A);
3037 #endif
3038 }
3039
3040 #if EV_USE_INOTIFY
3041 inline_size void infy_fork (EV_P);
3042 #endif
3043
3044 inline_size void
loop_fork(EV_P)3045 loop_fork (EV_P)
3046 {
3047 #if EV_USE_PORT
3048 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3049 #endif
3050 #if EV_USE_KQUEUE
3051 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3052 #endif
3053 #if EV_USE_EPOLL
3054 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3055 #endif
3056 #if EV_USE_INOTIFY
3057 infy_fork (EV_A);
3058 #endif
3059
3060 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3061 if (ev_is_active (&pipe_w) && postfork != 2)
3062 {
3063 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3064
3065 ev_ref (EV_A);
3066 ev_io_stop (EV_A_ &pipe_w);
3067
3068 if (evpipe [0] >= 0)
3069 EV_WIN32_CLOSE_FD (evpipe [0]);
3070
3071 evpipe_init (EV_A);
3072 /* iterate over everything, in case we missed something before */
3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074 }
3075 #endif
3076
3077 postfork = 0;
3078 }
3079
3080 #if EV_MULTIPLICITY
3081
3082 struct ev_loop * ecb_cold
ev_loop_new(unsigned int flags)3083 ev_loop_new (unsigned int flags) EV_THROW
3084 {
3085 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3086
3087 memset (EV_A, 0, sizeof (struct ev_loop));
3088 loop_init (EV_A_ flags);
3089
3090 if (ev_backend (EV_A))
3091 return EV_A;
3092
3093 ev_free (EV_A);
3094 return 0;
3095 }
3096
3097 #endif /* multiplicity */
3098
3099 #if EV_VERIFY
3100 static void noinline ecb_cold
verify_watcher(EV_P_ W w)3101 verify_watcher (EV_P_ W w)
3102 {
3103 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3104
3105 if (w->pending)
3106 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3107 }
3108
3109 static void noinline ecb_cold
verify_heap(EV_P_ ANHE * heap,int N)3110 verify_heap (EV_P_ ANHE *heap, int N)
3111 {
3112 int i;
3113
3114 for (i = HEAP0; i < N + HEAP0; ++i)
3115 {
3116 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3117 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3118 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3119
3120 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3121 }
3122 }
3123
3124 static void noinline ecb_cold
array_verify(EV_P_ W * ws,int cnt)3125 array_verify (EV_P_ W *ws, int cnt)
3126 {
3127 while (cnt--)
3128 {
3129 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3130 verify_watcher (EV_A_ ws [cnt]);
3131 }
3132 }
3133 #endif
3134
3135 #if EV_FEATURE_API
3136 void ecb_cold
ev_verify(EV_P)3137 ev_verify (EV_P) EV_THROW
3138 {
3139 #if EV_VERIFY
3140 int i;
3141 WL w, w2;
3142
3143 assert (activecnt >= -1);
3144
3145 assert (fdchangemax >= fdchangecnt);
3146 for (i = 0; i < fdchangecnt; ++i)
3147 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3148
3149 assert (anfdmax >= 0);
3150 for (i = 0; i < anfdmax; ++i)
3151 {
3152 int j = 0;
3153
3154 for (w = w2 = anfds [i].head; w; w = w->next)
3155 {
3156 verify_watcher (EV_A_ (W)w);
3157
3158 if (j++ & 1)
3159 {
3160 assert (("libev: io watcher list contains a loop", w != w2));
3161 w2 = w2->next;
3162 }
3163
3164 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3165 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3166 }
3167 }
3168
3169 assert (timermax >= timercnt);
3170 verify_heap (EV_A_ timers, timercnt);
3171
3172 #if EV_PERIODIC_ENABLE
3173 assert (periodicmax >= periodiccnt);
3174 verify_heap (EV_A_ periodics, periodiccnt);
3175 #endif
3176
3177 for (i = NUMPRI; i--; )
3178 {
3179 assert (pendingmax [i] >= pendingcnt [i]);
3180 #if EV_IDLE_ENABLE
3181 assert (idleall >= 0);
3182 assert (idlemax [i] >= idlecnt [i]);
3183 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3184 #endif
3185 }
3186
3187 #if EV_FORK_ENABLE
3188 assert (forkmax >= forkcnt);
3189 array_verify (EV_A_ (W *)forks, forkcnt);
3190 #endif
3191
3192 #if EV_CLEANUP_ENABLE
3193 assert (cleanupmax >= cleanupcnt);
3194 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3195 #endif
3196
3197 #if EV_ASYNC_ENABLE
3198 assert (asyncmax >= asynccnt);
3199 array_verify (EV_A_ (W *)asyncs, asynccnt);
3200 #endif
3201
3202 #if EV_PREPARE_ENABLE
3203 assert (preparemax >= preparecnt);
3204 array_verify (EV_A_ (W *)prepares, preparecnt);
3205 #endif
3206
3207 #if EV_CHECK_ENABLE
3208 assert (checkmax >= checkcnt);
3209 array_verify (EV_A_ (W *)checks, checkcnt);
3210 #endif
3211
3212 # if 0
3213 #if EV_CHILD_ENABLE
3214 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3215 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3216 #endif
3217 # endif
3218 #endif
3219 }
3220 #endif
3221
3222 #if EV_MULTIPLICITY
3223 struct ev_loop * ecb_cold
3224 #else
3225 int
3226 #endif
ev_default_loop(unsigned int flags)3227 ev_default_loop (unsigned int flags) EV_THROW
3228 {
3229 if (!ev_default_loop_ptr)
3230 {
3231 #if EV_MULTIPLICITY
3232 EV_P = ev_default_loop_ptr = &default_loop_struct;
3233 #else
3234 ev_default_loop_ptr = 1;
3235 #endif
3236
3237 loop_init (EV_A_ flags);
3238
3239 if (ev_backend (EV_A))
3240 {
3241 #if EV_CHILD_ENABLE
3242 ev_signal_init (&childev, childcb, SIGCHLD);
3243 ev_set_priority (&childev, EV_MAXPRI);
3244 ev_signal_start (EV_A_ &childev);
3245 ev_unref (EV_A); /* child watcher should not keep loop alive */
3246 #endif
3247 }
3248 else
3249 ev_default_loop_ptr = 0;
3250 }
3251
3252 return ev_default_loop_ptr;
3253 }
3254
3255 void
ev_loop_fork(EV_P)3256 ev_loop_fork (EV_P) EV_THROW
3257 {
3258 postfork = 1;
3259 }
3260
3261 /*****************************************************************************/
3262
3263 void
ev_invoke(EV_P_ void * w,int revents)3264 ev_invoke (EV_P_ void *w, int revents)
3265 {
3266 EV_CB_INVOKE ((W)w, revents);
3267 }
3268
3269 unsigned int
ev_pending_count(EV_P)3270 ev_pending_count (EV_P) EV_THROW
3271 {
3272 int pri;
3273 unsigned int count = 0;
3274
3275 for (pri = NUMPRI; pri--; )
3276 count += pendingcnt [pri];
3277
3278 return count;
3279 }
3280
3281 void noinline
ev_invoke_pending(EV_P)3282 ev_invoke_pending (EV_P)
3283 {
3284 pendingpri = NUMPRI;
3285
3286 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3287 {
3288 --pendingpri;
3289
3290 while (pendingcnt [pendingpri])
3291 {
3292 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3293
3294 p->w->pending = 0;
3295 EV_CB_INVOKE (p->w, p->events);
3296 EV_FREQUENT_CHECK;
3297 }
3298 }
3299 }
3300
3301 #if EV_IDLE_ENABLE
3302 /* make idle watchers pending. this handles the "call-idle */
3303 /* only when higher priorities are idle" logic */
3304 inline_size void
idle_reify(EV_P)3305 idle_reify (EV_P)
3306 {
3307 if (expect_false (idleall))
3308 {
3309 int pri;
3310
3311 for (pri = NUMPRI; pri--; )
3312 {
3313 if (pendingcnt [pri])
3314 break;
3315
3316 if (idlecnt [pri])
3317 {
3318 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3319 break;
3320 }
3321 }
3322 }
3323 }
3324 #endif
3325
3326 /* make timers pending */
3327 inline_size void
timers_reify(EV_P)3328 timers_reify (EV_P)
3329 {
3330 EV_FREQUENT_CHECK;
3331
3332 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3333 {
3334 do
3335 {
3336 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3337
3338 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3339
3340 /* first reschedule or stop timer */
3341 if (w->repeat)
3342 {
3343 ev_at (w) += w->repeat;
3344 if (ev_at (w) < mn_now)
3345 ev_at (w) = mn_now;
3346
3347 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3348
3349 ANHE_at_cache (timers [HEAP0]);
3350 downheap (timers, timercnt, HEAP0);
3351 }
3352 else
3353 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3354
3355 EV_FREQUENT_CHECK;
3356 feed_reverse (EV_A_ (W)w);
3357 }
3358 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3359
3360 feed_reverse_done (EV_A_ EV_TIMER);
3361 }
3362 }
3363
3364 #if EV_PERIODIC_ENABLE
3365
3366 static void noinline
periodic_recalc(EV_P_ ev_periodic * w)3367 periodic_recalc (EV_P_ ev_periodic *w)
3368 {
3369 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3370 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3371
3372 /* the above almost always errs on the low side */
3373 while (at <= ev_rt_now)
3374 {
3375 ev_tstamp nat = at + w->interval;
3376
3377 /* when resolution fails us, we use ev_rt_now */
3378 if (expect_false (nat == at))
3379 {
3380 at = ev_rt_now;
3381 break;
3382 }
3383
3384 at = nat;
3385 }
3386
3387 ev_at (w) = at;
3388 }
3389
3390 /* make periodics pending */
3391 inline_size void
periodics_reify(EV_P)3392 periodics_reify (EV_P)
3393 {
3394 EV_FREQUENT_CHECK;
3395
3396 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3397 {
3398 do
3399 {
3400 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3401
3402 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3403
3404 /* first reschedule or stop timer */
3405 if (w->reschedule_cb)
3406 {
3407 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3408
3409 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3410
3411 ANHE_at_cache (periodics [HEAP0]);
3412 downheap (periodics, periodiccnt, HEAP0);
3413 }
3414 else if (w->interval)
3415 {
3416 periodic_recalc (EV_A_ w);
3417 ANHE_at_cache (periodics [HEAP0]);
3418 downheap (periodics, periodiccnt, HEAP0);
3419 }
3420 else
3421 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3422
3423 EV_FREQUENT_CHECK;
3424 feed_reverse (EV_A_ (W)w);
3425 }
3426 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3427
3428 feed_reverse_done (EV_A_ EV_PERIODIC);
3429 }
3430 }
3431
3432 /* simply recalculate all periodics */
3433 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3434 static void noinline ecb_cold
periodics_reschedule(EV_P)3435 periodics_reschedule (EV_P)
3436 {
3437 int i;
3438
3439 /* adjust periodics after time jump */
3440 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3441 {
3442 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3443
3444 if (w->reschedule_cb)
3445 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3446 else if (w->interval)
3447 periodic_recalc (EV_A_ w);
3448
3449 ANHE_at_cache (periodics [i]);
3450 }
3451
3452 reheap (periodics, periodiccnt);
3453 }
3454 #endif
3455
3456 /* adjust all timers by a given offset */
3457 static void noinline ecb_cold
timers_reschedule(EV_P_ ev_tstamp adjust)3458 timers_reschedule (EV_P_ ev_tstamp adjust)
3459 {
3460 int i;
3461
3462 for (i = 0; i < timercnt; ++i)
3463 {
3464 ANHE *he = timers + i + HEAP0;
3465 ANHE_w (*he)->at += adjust;
3466 ANHE_at_cache (*he);
3467 }
3468 }
3469
3470 /* fetch new monotonic and realtime times from the kernel */
3471 /* also detect if there was a timejump, and act accordingly */
3472 inline_speed void
time_update(EV_P_ ev_tstamp max_block)3473 time_update (EV_P_ ev_tstamp max_block)
3474 {
3475 #if EV_USE_MONOTONIC
3476 if (expect_true (have_monotonic))
3477 {
3478 int i;
3479 ev_tstamp odiff = rtmn_diff;
3480
3481 mn_now = get_clock ();
3482
3483 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3484 /* interpolate in the meantime */
3485 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3486 {
3487 ev_rt_now = rtmn_diff + mn_now;
3488 return;
3489 }
3490
3491 now_floor = mn_now;
3492 ev_rt_now = ev_time ();
3493
3494 /* loop a few times, before making important decisions.
3495 * on the choice of "4": one iteration isn't enough,
3496 * in case we get preempted during the calls to
3497 * ev_time and get_clock. a second call is almost guaranteed
3498 * to succeed in that case, though. and looping a few more times
3499 * doesn't hurt either as we only do this on time-jumps or
3500 * in the unlikely event of having been preempted here.
3501 */
3502 for (i = 4; --i; )
3503 {
3504 ev_tstamp diff;
3505 rtmn_diff = ev_rt_now - mn_now;
3506
3507 diff = odiff - rtmn_diff;
3508
3509 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3510 return; /* all is well */
3511
3512 ev_rt_now = ev_time ();
3513 mn_now = get_clock ();
3514 now_floor = mn_now;
3515 }
3516
3517 /* no timer adjustment, as the monotonic clock doesn't jump */
3518 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3519 # if EV_PERIODIC_ENABLE
3520 periodics_reschedule (EV_A);
3521 # endif
3522 }
3523 else
3524 #endif
3525 {
3526 ev_rt_now = ev_time ();
3527
3528 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3529 {
3530 /* adjust timers. this is easy, as the offset is the same for all of them */
3531 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3532 #if EV_PERIODIC_ENABLE
3533 periodics_reschedule (EV_A);
3534 #endif
3535 }
3536
3537 mn_now = ev_rt_now;
3538 }
3539 }
3540
3541 int
ev_run(EV_P_ int flags)3542 ev_run (EV_P_ int flags)
3543 {
3544 #if EV_FEATURE_API
3545 ++loop_depth;
3546 #endif
3547
3548 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3549
3550 loop_done = EVBREAK_CANCEL;
3551
3552 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3553
3554 do
3555 {
3556 #if EV_VERIFY >= 2
3557 ev_verify (EV_A);
3558 #endif
3559
3560 #ifndef _WIN32
3561 if (expect_false (curpid)) /* penalise the forking check even more */
3562 if (expect_false (getpid () != curpid))
3563 {
3564 curpid = getpid ();
3565 postfork = 1;
3566 }
3567 #endif
3568
3569 #if EV_FORK_ENABLE
3570 /* we might have forked, so queue fork handlers */
3571 if (expect_false (postfork))
3572 if (forkcnt)
3573 {
3574 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3575 EV_INVOKE_PENDING;
3576 }
3577 #endif
3578
3579 #if EV_PREPARE_ENABLE
3580 /* queue prepare watchers (and execute them) */
3581 if (expect_false (preparecnt))
3582 {
3583 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3584 EV_INVOKE_PENDING;
3585 }
3586 #endif
3587
3588 if (expect_false (loop_done))
3589 break;
3590
3591 /* we might have forked, so reify kernel state if necessary */
3592 if (expect_false (postfork))
3593 loop_fork (EV_A);
3594
3595 /* update fd-related kernel structures */
3596 fd_reify (EV_A);
3597
3598 /* calculate blocking time */
3599 {
3600 ev_tstamp waittime = 0.;
3601 ev_tstamp sleeptime = 0.;
3602
3603 /* remember old timestamp for io_blocktime calculation */
3604 ev_tstamp prev_mn_now = mn_now;
3605
3606 /* update time to cancel out callback processing overhead */
3607 time_update (EV_A_ 1e100);
3608
3609 /* from now on, we want a pipe-wake-up */
3610 pipe_write_wanted = 1;
3611
3612 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3613
3614 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3615 {
3616 waittime = MAX_BLOCKTIME;
3617
3618 if (timercnt)
3619 {
3620 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3621 if (waittime > to) waittime = to;
3622 }
3623
3624 #if EV_PERIODIC_ENABLE
3625 if (periodiccnt)
3626 {
3627 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3628 if (waittime > to) waittime = to;
3629 }
3630 #endif
3631
3632 /* don't let timeouts decrease the waittime below timeout_blocktime */
3633 if (expect_false (waittime < timeout_blocktime))
3634 waittime = timeout_blocktime;
3635
3636 /* at this point, we NEED to wait, so we have to ensure */
3637 /* to pass a minimum nonzero value to the backend */
3638 if (expect_false (waittime < backend_mintime))
3639 waittime = backend_mintime;
3640
3641 /* extra check because io_blocktime is commonly 0 */
3642 if (expect_false (io_blocktime))
3643 {
3644 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3645
3646 if (sleeptime > waittime - backend_mintime)
3647 sleeptime = waittime - backend_mintime;
3648
3649 if (expect_true (sleeptime > 0.))
3650 {
3651 ev_sleep (sleeptime);
3652 waittime -= sleeptime;
3653 }
3654 }
3655 }
3656
3657 #if EV_FEATURE_API
3658 ++loop_count;
3659 #endif
3660 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3661 backend_poll (EV_A_ waittime);
3662 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3663
3664 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3665
3666 ECB_MEMORY_FENCE_ACQUIRE;
3667 if (pipe_write_skipped)
3668 {
3669 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3670 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3671 }
3672
3673
3674 /* update ev_rt_now, do magic */
3675 time_update (EV_A_ waittime + sleeptime);
3676 }
3677
3678 /* queue pending timers and reschedule them */
3679 timers_reify (EV_A); /* relative timers called last */
3680 #if EV_PERIODIC_ENABLE
3681 periodics_reify (EV_A); /* absolute timers called first */
3682 #endif
3683
3684 #if EV_IDLE_ENABLE
3685 /* queue idle watchers unless other events are pending */
3686 idle_reify (EV_A);
3687 #endif
3688
3689 #if EV_CHECK_ENABLE
3690 /* queue check watchers, to be executed first */
3691 if (expect_false (checkcnt))
3692 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3693 #endif
3694
3695 EV_INVOKE_PENDING;
3696 }
3697 while (expect_true (
3698 activecnt
3699 && !loop_done
3700 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3701 ));
3702
3703 if (loop_done == EVBREAK_ONE)
3704 loop_done = EVBREAK_CANCEL;
3705
3706 #if EV_FEATURE_API
3707 --loop_depth;
3708 #endif
3709
3710 return activecnt;
3711 }
3712
3713 void
ev_break(EV_P_ int how)3714 ev_break (EV_P_ int how) EV_THROW
3715 {
3716 loop_done = how;
3717 }
3718
3719 void
ev_ref(EV_P)3720 ev_ref (EV_P) EV_THROW
3721 {
3722 ++activecnt;
3723 }
3724
3725 void
ev_unref(EV_P)3726 ev_unref (EV_P) EV_THROW
3727 {
3728 --activecnt;
3729 }
3730
3731 void
ev_now_update(EV_P)3732 ev_now_update (EV_P) EV_THROW
3733 {
3734 time_update (EV_A_ 1e100);
3735 }
3736
3737 void
ev_suspend(EV_P)3738 ev_suspend (EV_P) EV_THROW
3739 {
3740 ev_now_update (EV_A);
3741 }
3742
3743 void
ev_resume(EV_P)3744 ev_resume (EV_P) EV_THROW
3745 {
3746 ev_tstamp mn_prev = mn_now;
3747
3748 ev_now_update (EV_A);
3749 timers_reschedule (EV_A_ mn_now - mn_prev);
3750 #if EV_PERIODIC_ENABLE
3751 /* TODO: really do this? */
3752 periodics_reschedule (EV_A);
3753 #endif
3754 }
3755
3756 /*****************************************************************************/
3757 /* singly-linked list management, used when the expected list length is short */
3758
3759 inline_size void
wlist_add(WL * head,WL elem)3760 wlist_add (WL *head, WL elem)
3761 {
3762 elem->next = *head;
3763 *head = elem;
3764 }
3765
3766 inline_size void
wlist_del(WL * head,WL elem)3767 wlist_del (WL *head, WL elem)
3768 {
3769 while (*head)
3770 {
3771 if (expect_true (*head == elem))
3772 {
3773 *head = elem->next;
3774 break;
3775 }
3776
3777 head = &(*head)->next;
3778 }
3779 }
3780
3781 /* internal, faster, version of ev_clear_pending */
3782 inline_speed void
clear_pending(EV_P_ W w)3783 clear_pending (EV_P_ W w)
3784 {
3785 if (w->pending)
3786 {
3787 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3788 w->pending = 0;
3789 }
3790 }
3791
3792 int
ev_clear_pending(EV_P_ void * w)3793 ev_clear_pending (EV_P_ void *w) EV_THROW
3794 {
3795 W w_ = (W)w;
3796 int pending = w_->pending;
3797
3798 if (expect_true (pending))
3799 {
3800 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3801 p->w = (W)&pending_w;
3802 w_->pending = 0;
3803 return p->events;
3804 }
3805 else
3806 return 0;
3807 }
3808
3809 inline_size void
pri_adjust(EV_P_ W w)3810 pri_adjust (EV_P_ W w)
3811 {
3812 int pri = ev_priority (w);
3813 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3814 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3815 ev_set_priority (w, pri);
3816 }
3817
3818 inline_speed void
ev_start(EV_P_ W w,int active)3819 ev_start (EV_P_ W w, int active)
3820 {
3821 pri_adjust (EV_A_ w);
3822 w->active = active;
3823 ev_ref (EV_A);
3824 }
3825
3826 inline_size void
ev_stop(EV_P_ W w)3827 ev_stop (EV_P_ W w)
3828 {
3829 ev_unref (EV_A);
3830 w->active = 0;
3831 }
3832
3833 /*****************************************************************************/
3834
3835 void noinline
ev_io_start(EV_P_ ev_io * w)3836 ev_io_start (EV_P_ ev_io *w) EV_THROW
3837 {
3838 int fd = w->fd;
3839
3840 if (expect_false (ev_is_active (w)))
3841 return;
3842
3843 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3844 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3845
3846 EV_FREQUENT_CHECK;
3847
3848 ev_start (EV_A_ (W)w, 1);
3849 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3850 wlist_add (&anfds[fd].head, (WL)w);
3851
3852 /* common bug, apparently */
3853 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3854
3855 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3856 w->events &= ~EV__IOFDSET;
3857
3858 EV_FREQUENT_CHECK;
3859 }
3860
3861 void noinline
ev_io_stop(EV_P_ ev_io * w)3862 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3863 {
3864 clear_pending (EV_A_ (W)w);
3865 if (expect_false (!ev_is_active (w)))
3866 return;
3867
3868 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3869
3870 EV_FREQUENT_CHECK;
3871
3872 wlist_del (&anfds[w->fd].head, (WL)w);
3873 ev_stop (EV_A_ (W)w);
3874
3875 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3876
3877 EV_FREQUENT_CHECK;
3878 }
3879
3880 void noinline
ev_timer_start(EV_P_ ev_timer * w)3881 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3882 {
3883 if (expect_false (ev_is_active (w)))
3884 return;
3885
3886 ev_at (w) += mn_now;
3887
3888 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3889
3890 EV_FREQUENT_CHECK;
3891
3892 ++timercnt;
3893 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3894 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3895 ANHE_w (timers [ev_active (w)]) = (WT)w;
3896 ANHE_at_cache (timers [ev_active (w)]);
3897 upheap (timers, ev_active (w));
3898
3899 EV_FREQUENT_CHECK;
3900
3901 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3902 }
3903
3904 void noinline
ev_timer_stop(EV_P_ ev_timer * w)3905 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3906 {
3907 clear_pending (EV_A_ (W)w);
3908 if (expect_false (!ev_is_active (w)))
3909 return;
3910
3911 EV_FREQUENT_CHECK;
3912
3913 {
3914 int active = ev_active (w);
3915
3916 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3917
3918 --timercnt;
3919
3920 if (expect_true (active < timercnt + HEAP0))
3921 {
3922 timers [active] = timers [timercnt + HEAP0];
3923 adjustheap (timers, timercnt, active);
3924 }
3925 }
3926
3927 ev_at (w) -= mn_now;
3928
3929 ev_stop (EV_A_ (W)w);
3930
3931 EV_FREQUENT_CHECK;
3932 }
3933
3934 void noinline
ev_timer_again(EV_P_ ev_timer * w)3935 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3936 {
3937 EV_FREQUENT_CHECK;
3938
3939 clear_pending (EV_A_ (W)w);
3940
3941 if (ev_is_active (w))
3942 {
3943 if (w->repeat)
3944 {
3945 ev_at (w) = mn_now + w->repeat;
3946 ANHE_at_cache (timers [ev_active (w)]);
3947 adjustheap (timers, timercnt, ev_active (w));
3948 }
3949 else
3950 ev_timer_stop (EV_A_ w);
3951 }
3952 else if (w->repeat)
3953 {
3954 ev_at (w) = w->repeat;
3955 ev_timer_start (EV_A_ w);
3956 }
3957
3958 EV_FREQUENT_CHECK;
3959 }
3960
3961 ev_tstamp
ev_timer_remaining(EV_P_ ev_timer * w)3962 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3963 {
3964 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3965 }
3966
3967 #if EV_PERIODIC_ENABLE
3968 void noinline
ev_periodic_start(EV_P_ ev_periodic * w)3969 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3970 {
3971 if (expect_false (ev_is_active (w)))
3972 return;
3973
3974 if (w->reschedule_cb)
3975 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3976 else if (w->interval)
3977 {
3978 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3979 periodic_recalc (EV_A_ w);
3980 }
3981 else
3982 ev_at (w) = w->offset;
3983
3984 EV_FREQUENT_CHECK;
3985
3986 ++periodiccnt;
3987 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3988 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3989 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3990 ANHE_at_cache (periodics [ev_active (w)]);
3991 upheap (periodics, ev_active (w));
3992
3993 EV_FREQUENT_CHECK;
3994
3995 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3996 }
3997
3998 void noinline
ev_periodic_stop(EV_P_ ev_periodic * w)3999 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
4000 {
4001 clear_pending (EV_A_ (W)w);
4002 if (expect_false (!ev_is_active (w)))
4003 return;
4004
4005 EV_FREQUENT_CHECK;
4006
4007 {
4008 int active = ev_active (w);
4009
4010 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4011
4012 --periodiccnt;
4013
4014 if (expect_true (active < periodiccnt + HEAP0))
4015 {
4016 periodics [active] = periodics [periodiccnt + HEAP0];
4017 adjustheap (periodics, periodiccnt, active);
4018 }
4019 }
4020
4021 ev_stop (EV_A_ (W)w);
4022
4023 EV_FREQUENT_CHECK;
4024 }
4025
4026 void noinline
ev_periodic_again(EV_P_ ev_periodic * w)4027 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4028 {
4029 /* TODO: use adjustheap and recalculation */
4030 ev_periodic_stop (EV_A_ w);
4031 ev_periodic_start (EV_A_ w);
4032 }
4033 #endif
4034
4035 #ifndef SA_RESTART
4036 # define SA_RESTART 0
4037 #endif
4038
4039 #if EV_SIGNAL_ENABLE
4040
4041 void noinline
ev_signal_start(EV_P_ ev_signal * w)4042 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4043 {
4044 if (expect_false (ev_is_active (w)))
4045 return;
4046
4047 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4048
4049 #if EV_MULTIPLICITY
4050 assert (("libev: a signal must not be attached to two different loops",
4051 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4052
4053 signals [w->signum - 1].loop = EV_A;
4054 ECB_MEMORY_FENCE_RELEASE;
4055 #endif
4056
4057 EV_FREQUENT_CHECK;
4058
4059 #if EV_USE_SIGNALFD
4060 if (sigfd == -2)
4061 {
4062 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4063 if (sigfd < 0 && errno == EINVAL)
4064 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4065
4066 if (sigfd >= 0)
4067 {
4068 fd_intern (sigfd); /* doing it twice will not hurt */
4069
4070 sigemptyset (&sigfd_set);
4071
4072 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4073 ev_set_priority (&sigfd_w, EV_MAXPRI);
4074 ev_io_start (EV_A_ &sigfd_w);
4075 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4076 }
4077 }
4078
4079 if (sigfd >= 0)
4080 {
4081 /* TODO: check .head */
4082 sigaddset (&sigfd_set, w->signum);
4083 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4084
4085 signalfd (sigfd, &sigfd_set, 0);
4086 }
4087 #endif
4088
4089 ev_start (EV_A_ (W)w, 1);
4090 wlist_add (&signals [w->signum - 1].head, (WL)w);
4091
4092 if (!((WL)w)->next)
4093 # if EV_USE_SIGNALFD
4094 if (sigfd < 0) /*TODO*/
4095 # endif
4096 {
4097 # ifdef _WIN32
4098 evpipe_init (EV_A);
4099
4100 signal (w->signum, ev_sighandler);
4101 # else
4102 struct sigaction sa;
4103
4104 evpipe_init (EV_A);
4105
4106 sa.sa_handler = ev_sighandler;
4107 sigfillset (&sa.sa_mask);
4108 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4109 sigaction (w->signum, &sa, 0);
4110
4111 if (origflags & EVFLAG_NOSIGMASK)
4112 {
4113 sigemptyset (&sa.sa_mask);
4114 sigaddset (&sa.sa_mask, w->signum);
4115 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4116 }
4117 #endif
4118 }
4119
4120 EV_FREQUENT_CHECK;
4121 }
4122
4123 void noinline
ev_signal_stop(EV_P_ ev_signal * w)4124 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4125 {
4126 clear_pending (EV_A_ (W)w);
4127 if (expect_false (!ev_is_active (w)))
4128 return;
4129
4130 EV_FREQUENT_CHECK;
4131
4132 wlist_del (&signals [w->signum - 1].head, (WL)w);
4133 ev_stop (EV_A_ (W)w);
4134
4135 if (!signals [w->signum - 1].head)
4136 {
4137 #if EV_MULTIPLICITY
4138 signals [w->signum - 1].loop = 0; /* unattach from signal */
4139 #endif
4140 #if EV_USE_SIGNALFD
4141 if (sigfd >= 0)
4142 {
4143 sigset_t ss;
4144
4145 sigemptyset (&ss);
4146 sigaddset (&ss, w->signum);
4147 sigdelset (&sigfd_set, w->signum);
4148
4149 signalfd (sigfd, &sigfd_set, 0);
4150 sigprocmask (SIG_UNBLOCK, &ss, 0);
4151 }
4152 else
4153 #endif
4154 signal (w->signum, SIG_DFL);
4155 }
4156
4157 EV_FREQUENT_CHECK;
4158 }
4159
4160 #endif
4161
4162 #if EV_CHILD_ENABLE
4163
4164 void
ev_child_start(EV_P_ ev_child * w)4165 ev_child_start (EV_P_ ev_child *w) EV_THROW
4166 {
4167 #if EV_MULTIPLICITY
4168 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4169 #endif
4170 if (expect_false (ev_is_active (w)))
4171 return;
4172
4173 EV_FREQUENT_CHECK;
4174
4175 ev_start (EV_A_ (W)w, 1);
4176 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4177
4178 EV_FREQUENT_CHECK;
4179 }
4180
4181 void
ev_child_stop(EV_P_ ev_child * w)4182 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4183 {
4184 clear_pending (EV_A_ (W)w);
4185 if (expect_false (!ev_is_active (w)))
4186 return;
4187
4188 EV_FREQUENT_CHECK;
4189
4190 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4191 ev_stop (EV_A_ (W)w);
4192
4193 EV_FREQUENT_CHECK;
4194 }
4195
4196 #endif
4197
4198 #if EV_STAT_ENABLE
4199
4200 # ifdef _WIN32
4201 # undef lstat
4202 # define lstat(a,b) _stati64 (a,b)
4203 # endif
4204
4205 #define DEF_STAT_INTERVAL 5.0074891
4206 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4207 #define MIN_STAT_INTERVAL 0.1074891
4208
4209 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4210
4211 #if EV_USE_INOTIFY
4212
4213 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4214 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4215
4216 static void noinline
infy_add(EV_P_ ev_stat * w)4217 infy_add (EV_P_ ev_stat *w)
4218 {
4219 w->wd = inotify_add_watch (fs_fd, w->path,
4220 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4221 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4222 | IN_DONT_FOLLOW | IN_MASK_ADD);
4223
4224 if (w->wd >= 0)
4225 {
4226 struct statfs sfs;
4227
4228 /* now local changes will be tracked by inotify, but remote changes won't */
4229 /* unless the filesystem is known to be local, we therefore still poll */
4230 /* also do poll on <2.6.25, but with normal frequency */
4231
4232 if (!fs_2625)
4233 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4234 else if (!statfs (w->path, &sfs)
4235 && (sfs.f_type == 0x1373 /* devfs */
4236 || sfs.f_type == 0x4006 /* fat */
4237 || sfs.f_type == 0x4d44 /* msdos */
4238 || sfs.f_type == 0xEF53 /* ext2/3 */
4239 || sfs.f_type == 0x72b6 /* jffs2 */
4240 || sfs.f_type == 0x858458f6 /* ramfs */
4241 || sfs.f_type == 0x5346544e /* ntfs */
4242 || sfs.f_type == 0x3153464a /* jfs */
4243 || sfs.f_type == 0x9123683e /* btrfs */
4244 || sfs.f_type == 0x52654973 /* reiser3 */
4245 || sfs.f_type == 0x01021994 /* tmpfs */
4246 || sfs.f_type == 0x58465342 /* xfs */))
4247 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4248 else
4249 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4250 }
4251 else
4252 {
4253 /* can't use inotify, continue to stat */
4254 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4255
4256 /* if path is not there, monitor some parent directory for speedup hints */
4257 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4258 /* but an efficiency issue only */
4259 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4260 {
4261 char path [4096];
4262 strcpy (path, w->path);
4263
4264 do
4265 {
4266 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4267 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4268
4269 char *pend = strrchr (path, '/');
4270
4271 if (!pend || pend == path)
4272 break;
4273
4274 *pend = 0;
4275 w->wd = inotify_add_watch (fs_fd, path, mask);
4276 }
4277 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4278 }
4279 }
4280
4281 if (w->wd >= 0)
4282 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4283
4284 /* now re-arm timer, if required */
4285 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4286 ev_timer_again (EV_A_ &w->timer);
4287 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4288 }
4289
4290 static void noinline
infy_del(EV_P_ ev_stat * w)4291 infy_del (EV_P_ ev_stat *w)
4292 {
4293 int slot;
4294 int wd = w->wd;
4295
4296 if (wd < 0)
4297 return;
4298
4299 w->wd = -2;
4300 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4301 wlist_del (&fs_hash [slot].head, (WL)w);
4302
4303 /* remove this watcher, if others are watching it, they will rearm */
4304 inotify_rm_watch (fs_fd, wd);
4305 }
4306
4307 static void noinline
infy_wd(EV_P_ int slot,int wd,struct inotify_event * ev)4308 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4309 {
4310 if (slot < 0)
4311 /* overflow, need to check for all hash slots */
4312 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4313 infy_wd (EV_A_ slot, wd, ev);
4314 else
4315 {
4316 WL w_;
4317
4318 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4319 {
4320 ev_stat *w = (ev_stat *)w_;
4321 w_ = w_->next; /* lets us remove this watcher and all before it */
4322
4323 if (w->wd == wd || wd == -1)
4324 {
4325 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4326 {
4327 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4328 w->wd = -1;
4329 infy_add (EV_A_ w); /* re-add, no matter what */
4330 }
4331
4332 stat_timer_cb (EV_A_ &w->timer, 0);
4333 }
4334 }
4335 }
4336 }
4337
4338 static void
infy_cb(EV_P_ ev_io * w,int revents)4339 infy_cb (EV_P_ ev_io *w, int revents)
4340 {
4341 char buf [EV_INOTIFY_BUFSIZE];
4342 int ofs;
4343 int len = read (fs_fd, buf, sizeof (buf));
4344
4345 for (ofs = 0; ofs < len; )
4346 {
4347 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4348 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4349 ofs += sizeof (struct inotify_event) + ev->len;
4350 }
4351 }
4352
4353 inline_size void ecb_cold
ev_check_2625(EV_P)4354 ev_check_2625 (EV_P)
4355 {
4356 /* kernels < 2.6.25 are borked
4357 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4358 */
4359 if (ev_linux_version () < 0x020619)
4360 return;
4361
4362 fs_2625 = 1;
4363 }
4364
4365 inline_size int
infy_newfd(void)4366 infy_newfd (void)
4367 {
4368 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4369 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4370 if (fd >= 0)
4371 return fd;
4372 #endif
4373 return inotify_init ();
4374 }
4375
4376 inline_size void
infy_init(EV_P)4377 infy_init (EV_P)
4378 {
4379 if (fs_fd != -2)
4380 return;
4381
4382 fs_fd = -1;
4383
4384 ev_check_2625 (EV_A);
4385
4386 fs_fd = infy_newfd ();
4387
4388 if (fs_fd >= 0)
4389 {
4390 fd_intern (fs_fd);
4391 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4392 ev_set_priority (&fs_w, EV_MAXPRI);
4393 ev_io_start (EV_A_ &fs_w);
4394 ev_unref (EV_A);
4395 }
4396 }
4397
4398 inline_size void
infy_fork(EV_P)4399 infy_fork (EV_P)
4400 {
4401 int slot;
4402
4403 if (fs_fd < 0)
4404 return;
4405
4406 ev_ref (EV_A);
4407 ev_io_stop (EV_A_ &fs_w);
4408 close (fs_fd);
4409 fs_fd = infy_newfd ();
4410
4411 if (fs_fd >= 0)
4412 {
4413 fd_intern (fs_fd);
4414 ev_io_set (&fs_w, fs_fd, EV_READ);
4415 ev_io_start (EV_A_ &fs_w);
4416 ev_unref (EV_A);
4417 }
4418
4419 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4420 {
4421 WL w_ = fs_hash [slot].head;
4422 fs_hash [slot].head = 0;
4423
4424 while (w_)
4425 {
4426 ev_stat *w = (ev_stat *)w_;
4427 w_ = w_->next; /* lets us add this watcher */
4428
4429 w->wd = -1;
4430
4431 if (fs_fd >= 0)
4432 infy_add (EV_A_ w); /* re-add, no matter what */
4433 else
4434 {
4435 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4436 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4437 ev_timer_again (EV_A_ &w->timer);
4438 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4439 }
4440 }
4441 }
4442 }
4443
4444 #endif
4445
4446 #ifdef _WIN32
4447 # define EV_LSTAT(p,b) _stati64 (p, b)
4448 #else
4449 # define EV_LSTAT(p,b) lstat (p, b)
4450 #endif
4451
4452 void
ev_stat_stat(EV_P_ ev_stat * w)4453 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4454 {
4455 if (lstat (w->path, &w->attr) < 0)
4456 w->attr.st_nlink = 0;
4457 else if (!w->attr.st_nlink)
4458 w->attr.st_nlink = 1;
4459 }
4460
4461 static void noinline
stat_timer_cb(EV_P_ ev_timer * w_,int revents)4462 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4463 {
4464 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4465
4466 ev_statdata prev = w->attr;
4467 ev_stat_stat (EV_A_ w);
4468
4469 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4470 if (
4471 prev.st_dev != w->attr.st_dev
4472 || prev.st_ino != w->attr.st_ino
4473 || prev.st_mode != w->attr.st_mode
4474 || prev.st_nlink != w->attr.st_nlink
4475 || prev.st_uid != w->attr.st_uid
4476 || prev.st_gid != w->attr.st_gid
4477 || prev.st_rdev != w->attr.st_rdev
4478 || prev.st_size != w->attr.st_size
4479 || prev.st_atime != w->attr.st_atime
4480 || prev.st_mtime != w->attr.st_mtime
4481 || prev.st_ctime != w->attr.st_ctime
4482 ) {
4483 /* we only update w->prev on actual differences */
4484 /* in case we test more often than invoke the callback, */
4485 /* to ensure that prev is always different to attr */
4486 w->prev = prev;
4487
4488 #if EV_USE_INOTIFY
4489 if (fs_fd >= 0)
4490 {
4491 infy_del (EV_A_ w);
4492 infy_add (EV_A_ w);
4493 ev_stat_stat (EV_A_ w); /* avoid race... */
4494 }
4495 #endif
4496
4497 ev_feed_event (EV_A_ w, EV_STAT);
4498 }
4499 }
4500
4501 void
ev_stat_start(EV_P_ ev_stat * w)4502 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4503 {
4504 if (expect_false (ev_is_active (w)))
4505 return;
4506
4507 ev_stat_stat (EV_A_ w);
4508
4509 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4510 w->interval = MIN_STAT_INTERVAL;
4511
4512 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4513 ev_set_priority (&w->timer, ev_priority (w));
4514
4515 #if EV_USE_INOTIFY
4516 infy_init (EV_A);
4517
4518 if (fs_fd >= 0)
4519 infy_add (EV_A_ w);
4520 else
4521 #endif
4522 {
4523 ev_timer_again (EV_A_ &w->timer);
4524 ev_unref (EV_A);
4525 }
4526
4527 ev_start (EV_A_ (W)w, 1);
4528
4529 EV_FREQUENT_CHECK;
4530 }
4531
4532 void
ev_stat_stop(EV_P_ ev_stat * w)4533 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4534 {
4535 clear_pending (EV_A_ (W)w);
4536 if (expect_false (!ev_is_active (w)))
4537 return;
4538
4539 EV_FREQUENT_CHECK;
4540
4541 #if EV_USE_INOTIFY
4542 infy_del (EV_A_ w);
4543 #endif
4544
4545 if (ev_is_active (&w->timer))
4546 {
4547 ev_ref (EV_A);
4548 ev_timer_stop (EV_A_ &w->timer);
4549 }
4550
4551 ev_stop (EV_A_ (W)w);
4552
4553 EV_FREQUENT_CHECK;
4554 }
4555 #endif
4556
4557 #if EV_IDLE_ENABLE
4558 void
ev_idle_start(EV_P_ ev_idle * w)4559 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4560 {
4561 if (expect_false (ev_is_active (w)))
4562 return;
4563
4564 pri_adjust (EV_A_ (W)w);
4565
4566 EV_FREQUENT_CHECK;
4567
4568 {
4569 int active = ++idlecnt [ABSPRI (w)];
4570
4571 ++idleall;
4572 ev_start (EV_A_ (W)w, active);
4573
4574 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4575 idles [ABSPRI (w)][active - 1] = w;
4576 }
4577
4578 EV_FREQUENT_CHECK;
4579 }
4580
4581 void
ev_idle_stop(EV_P_ ev_idle * w)4582 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4583 {
4584 clear_pending (EV_A_ (W)w);
4585 if (expect_false (!ev_is_active (w)))
4586 return;
4587
4588 EV_FREQUENT_CHECK;
4589
4590 {
4591 int active = ev_active (w);
4592
4593 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4594 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4595
4596 ev_stop (EV_A_ (W)w);
4597 --idleall;
4598 }
4599
4600 EV_FREQUENT_CHECK;
4601 }
4602 #endif
4603
4604 #if EV_PREPARE_ENABLE
4605 void
ev_prepare_start(EV_P_ ev_prepare * w)4606 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4607 {
4608 if (expect_false (ev_is_active (w)))
4609 return;
4610
4611 EV_FREQUENT_CHECK;
4612
4613 ev_start (EV_A_ (W)w, ++preparecnt);
4614 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4615 prepares [preparecnt - 1] = w;
4616
4617 EV_FREQUENT_CHECK;
4618 }
4619
4620 void
ev_prepare_stop(EV_P_ ev_prepare * w)4621 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4622 {
4623 clear_pending (EV_A_ (W)w);
4624 if (expect_false (!ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 {
4630 int active = ev_active (w);
4631
4632 prepares [active - 1] = prepares [--preparecnt];
4633 ev_active (prepares [active - 1]) = active;
4634 }
4635
4636 ev_stop (EV_A_ (W)w);
4637
4638 EV_FREQUENT_CHECK;
4639 }
4640 #endif
4641
4642 #if EV_CHECK_ENABLE
4643 void
ev_check_start(EV_P_ ev_check * w)4644 ev_check_start (EV_P_ ev_check *w) EV_THROW
4645 {
4646 if (expect_false (ev_is_active (w)))
4647 return;
4648
4649 EV_FREQUENT_CHECK;
4650
4651 ev_start (EV_A_ (W)w, ++checkcnt);
4652 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4653 checks [checkcnt - 1] = w;
4654
4655 EV_FREQUENT_CHECK;
4656 }
4657
4658 void
ev_check_stop(EV_P_ ev_check * w)4659 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4660 {
4661 clear_pending (EV_A_ (W)w);
4662 if (expect_false (!ev_is_active (w)))
4663 return;
4664
4665 EV_FREQUENT_CHECK;
4666
4667 {
4668 int active = ev_active (w);
4669
4670 checks [active - 1] = checks [--checkcnt];
4671 ev_active (checks [active - 1]) = active;
4672 }
4673
4674 ev_stop (EV_A_ (W)w);
4675
4676 EV_FREQUENT_CHECK;
4677 }
4678 #endif
4679
4680 #if EV_EMBED_ENABLE
4681 void noinline
ev_embed_sweep(EV_P_ ev_embed * w)4682 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4683 {
4684 ev_run (w->other, EVRUN_NOWAIT);
4685 }
4686
4687 static void
embed_io_cb(EV_P_ ev_io * io,int revents)4688 embed_io_cb (EV_P_ ev_io *io, int revents)
4689 {
4690 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4691
4692 if (ev_cb (w))
4693 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4694 else
4695 ev_run (w->other, EVRUN_NOWAIT);
4696 }
4697
4698 static void
embed_prepare_cb(EV_P_ ev_prepare * prepare,int revents)4699 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4700 {
4701 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4702
4703 {
4704 EV_P = w->other;
4705
4706 while (fdchangecnt)
4707 {
4708 fd_reify (EV_A);
4709 ev_run (EV_A_ EVRUN_NOWAIT);
4710 }
4711 }
4712 }
4713
4714 static void
embed_fork_cb(EV_P_ ev_fork * fork_w,int revents)4715 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4716 {
4717 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4718
4719 ev_embed_stop (EV_A_ w);
4720
4721 {
4722 EV_P = w->other;
4723
4724 ev_loop_fork (EV_A);
4725 ev_run (EV_A_ EVRUN_NOWAIT);
4726 }
4727
4728 ev_embed_start (EV_A_ w);
4729 }
4730
4731 #if 0
4732 static void
4733 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4734 {
4735 ev_idle_stop (EV_A_ idle);
4736 }
4737 #endif
4738
4739 void
ev_embed_start(EV_P_ ev_embed * w)4740 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4741 {
4742 if (expect_false (ev_is_active (w)))
4743 return;
4744
4745 {
4746 EV_P = w->other;
4747 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4748 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4749 }
4750
4751 EV_FREQUENT_CHECK;
4752
4753 ev_set_priority (&w->io, ev_priority (w));
4754 ev_io_start (EV_A_ &w->io);
4755
4756 ev_prepare_init (&w->prepare, embed_prepare_cb);
4757 ev_set_priority (&w->prepare, EV_MINPRI);
4758 ev_prepare_start (EV_A_ &w->prepare);
4759
4760 ev_fork_init (&w->fork, embed_fork_cb);
4761 ev_fork_start (EV_A_ &w->fork);
4762
4763 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4764
4765 ev_start (EV_A_ (W)w, 1);
4766
4767 EV_FREQUENT_CHECK;
4768 }
4769
4770 void
ev_embed_stop(EV_P_ ev_embed * w)4771 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4772 {
4773 clear_pending (EV_A_ (W)w);
4774 if (expect_false (!ev_is_active (w)))
4775 return;
4776
4777 EV_FREQUENT_CHECK;
4778
4779 ev_io_stop (EV_A_ &w->io);
4780 ev_prepare_stop (EV_A_ &w->prepare);
4781 ev_fork_stop (EV_A_ &w->fork);
4782
4783 ev_stop (EV_A_ (W)w);
4784
4785 EV_FREQUENT_CHECK;
4786 }
4787 #endif
4788
4789 #if EV_FORK_ENABLE
4790 void
ev_fork_start(EV_P_ ev_fork * w)4791 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4792 {
4793 if (expect_false (ev_is_active (w)))
4794 return;
4795
4796 EV_FREQUENT_CHECK;
4797
4798 ev_start (EV_A_ (W)w, ++forkcnt);
4799 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4800 forks [forkcnt - 1] = w;
4801
4802 EV_FREQUENT_CHECK;
4803 }
4804
4805 void
ev_fork_stop(EV_P_ ev_fork * w)4806 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4807 {
4808 clear_pending (EV_A_ (W)w);
4809 if (expect_false (!ev_is_active (w)))
4810 return;
4811
4812 EV_FREQUENT_CHECK;
4813
4814 {
4815 int active = ev_active (w);
4816
4817 forks [active - 1] = forks [--forkcnt];
4818 ev_active (forks [active - 1]) = active;
4819 }
4820
4821 ev_stop (EV_A_ (W)w);
4822
4823 EV_FREQUENT_CHECK;
4824 }
4825 #endif
4826
4827 #if EV_CLEANUP_ENABLE
4828 void
ev_cleanup_start(EV_P_ ev_cleanup * w)4829 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4830 {
4831 if (expect_false (ev_is_active (w)))
4832 return;
4833
4834 EV_FREQUENT_CHECK;
4835
4836 ev_start (EV_A_ (W)w, ++cleanupcnt);
4837 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4838 cleanups [cleanupcnt - 1] = w;
4839
4840 /* cleanup watchers should never keep a refcount on the loop */
4841 ev_unref (EV_A);
4842 EV_FREQUENT_CHECK;
4843 }
4844
4845 void
ev_cleanup_stop(EV_P_ ev_cleanup * w)4846 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4847 {
4848 clear_pending (EV_A_ (W)w);
4849 if (expect_false (!ev_is_active (w)))
4850 return;
4851
4852 EV_FREQUENT_CHECK;
4853 ev_ref (EV_A);
4854
4855 {
4856 int active = ev_active (w);
4857
4858 cleanups [active - 1] = cleanups [--cleanupcnt];
4859 ev_active (cleanups [active - 1]) = active;
4860 }
4861
4862 ev_stop (EV_A_ (W)w);
4863
4864 EV_FREQUENT_CHECK;
4865 }
4866 #endif
4867
4868 #if EV_ASYNC_ENABLE
4869 void
ev_async_start(EV_P_ ev_async * w)4870 ev_async_start (EV_P_ ev_async *w) EV_THROW
4871 {
4872 if (expect_false (ev_is_active (w)))
4873 return;
4874
4875 w->sent = 0;
4876
4877 evpipe_init (EV_A);
4878
4879 EV_FREQUENT_CHECK;
4880
4881 ev_start (EV_A_ (W)w, ++asynccnt);
4882 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4883 asyncs [asynccnt - 1] = w;
4884
4885 EV_FREQUENT_CHECK;
4886 }
4887
4888 void
ev_async_stop(EV_P_ ev_async * w)4889 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4890 {
4891 clear_pending (EV_A_ (W)w);
4892 if (expect_false (!ev_is_active (w)))
4893 return;
4894
4895 EV_FREQUENT_CHECK;
4896
4897 {
4898 int active = ev_active (w);
4899
4900 asyncs [active - 1] = asyncs [--asynccnt];
4901 ev_active (asyncs [active - 1]) = active;
4902 }
4903
4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
4907 }
4908
4909 void
ev_async_send(EV_P_ ev_async * w)4910 ev_async_send (EV_P_ ev_async *w) EV_THROW
4911 {
4912 w->sent = 1;
4913 evpipe_write (EV_A_ &async_pending);
4914 }
4915 #endif
4916
4917 /*****************************************************************************/
4918
4919 struct ev_once
4920 {
4921 ev_io io;
4922 ev_timer to;
4923 void (*cb)(int revents, void *arg);
4924 void *arg;
4925 };
4926
4927 static void
once_cb(EV_P_ struct ev_once * once,int revents)4928 once_cb (EV_P_ struct ev_once *once, int revents)
4929 {
4930 void (*cb)(int revents, void *arg) = once->cb;
4931 void *arg = once->arg;
4932
4933 ev_io_stop (EV_A_ &once->io);
4934 ev_timer_stop (EV_A_ &once->to);
4935 ev_free (once);
4936
4937 cb (revents, arg);
4938 }
4939
4940 static void
once_cb_io(EV_P_ ev_io * w,int revents)4941 once_cb_io (EV_P_ ev_io *w, int revents)
4942 {
4943 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4944
4945 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4946 }
4947
4948 static void
once_cb_to(EV_P_ ev_timer * w,int revents)4949 once_cb_to (EV_P_ ev_timer *w, int revents)
4950 {
4951 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4952
4953 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4954 }
4955
4956 void
ev_once(EV_P_ int fd,int events,ev_tstamp timeout,void (* cb)(int revents,void * arg),void * arg)4957 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4958 {
4959 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4960
4961 if (expect_false (!once))
4962 {
4963 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4964 return;
4965 }
4966
4967 once->cb = cb;
4968 once->arg = arg;
4969
4970 ev_init (&once->io, once_cb_io);
4971 if (fd >= 0)
4972 {
4973 ev_io_set (&once->io, fd, events);
4974 ev_io_start (EV_A_ &once->io);
4975 }
4976
4977 ev_init (&once->to, once_cb_to);
4978 if (timeout >= 0.)
4979 {
4980 ev_timer_set (&once->to, timeout, 0.);
4981 ev_timer_start (EV_A_ &once->to);
4982 }
4983 }
4984
4985 /*****************************************************************************/
4986
4987 #if EV_WALK_ENABLE
4988 void ecb_cold
ev_walk(EV_P_ int types,void (* cb)(EV_P_ int type,void * w))4989 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4990 {
4991 int i, j;
4992 ev_watcher_list *wl, *wn;
4993
4994 if (types & (EV_IO | EV_EMBED))
4995 for (i = 0; i < anfdmax; ++i)
4996 for (wl = anfds [i].head; wl; )
4997 {
4998 wn = wl->next;
4999
5000 #if EV_EMBED_ENABLE
5001 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5002 {
5003 if (types & EV_EMBED)
5004 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5005 }
5006 else
5007 #endif
5008 #if EV_USE_INOTIFY
5009 if (ev_cb ((ev_io *)wl) == infy_cb)
5010 ;
5011 else
5012 #endif
5013 if ((ev_io *)wl != &pipe_w)
5014 if (types & EV_IO)
5015 cb (EV_A_ EV_IO, wl);
5016
5017 wl = wn;
5018 }
5019
5020 if (types & (EV_TIMER | EV_STAT))
5021 for (i = timercnt + HEAP0; i-- > HEAP0; )
5022 #if EV_STAT_ENABLE
5023 /*TODO: timer is not always active*/
5024 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5025 {
5026 if (types & EV_STAT)
5027 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5028 }
5029 else
5030 #endif
5031 if (types & EV_TIMER)
5032 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5033
5034 #if EV_PERIODIC_ENABLE
5035 if (types & EV_PERIODIC)
5036 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5037 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5038 #endif
5039
5040 #if EV_IDLE_ENABLE
5041 if (types & EV_IDLE)
5042 for (j = NUMPRI; j--; )
5043 for (i = idlecnt [j]; i--; )
5044 cb (EV_A_ EV_IDLE, idles [j][i]);
5045 #endif
5046
5047 #if EV_FORK_ENABLE
5048 if (types & EV_FORK)
5049 for (i = forkcnt; i--; )
5050 if (ev_cb (forks [i]) != embed_fork_cb)
5051 cb (EV_A_ EV_FORK, forks [i]);
5052 #endif
5053
5054 #if EV_ASYNC_ENABLE
5055 if (types & EV_ASYNC)
5056 for (i = asynccnt; i--; )
5057 cb (EV_A_ EV_ASYNC, asyncs [i]);
5058 #endif
5059
5060 #if EV_PREPARE_ENABLE
5061 if (types & EV_PREPARE)
5062 for (i = preparecnt; i--; )
5063 # if EV_EMBED_ENABLE
5064 if (ev_cb (prepares [i]) != embed_prepare_cb)
5065 # endif
5066 cb (EV_A_ EV_PREPARE, prepares [i]);
5067 #endif
5068
5069 #if EV_CHECK_ENABLE
5070 if (types & EV_CHECK)
5071 for (i = checkcnt; i--; )
5072 cb (EV_A_ EV_CHECK, checks [i]);
5073 #endif
5074
5075 #if EV_SIGNAL_ENABLE
5076 if (types & EV_SIGNAL)
5077 for (i = 0; i < EV_NSIG - 1; ++i)
5078 for (wl = signals [i].head; wl; )
5079 {
5080 wn = wl->next;
5081 cb (EV_A_ EV_SIGNAL, wl);
5082 wl = wn;
5083 }
5084 #endif
5085
5086 #if EV_CHILD_ENABLE
5087 if (types & EV_CHILD)
5088 for (i = (EV_PID_HASHSIZE); i--; )
5089 for (wl = childs [i]; wl; )
5090 {
5091 wn = wl->next;
5092 cb (EV_A_ EV_CHILD, wl);
5093 wl = wn;
5094 }
5095 #endif
5096 /* EV_STAT 0x00001000 /* stat data changed */
5097 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5098 }
5099 #endif
5100
5101 #if EV_MULTIPLICITY
5102 #include "ev_wrap.h"
5103 #endif
5104
5105