xref: /freebsd/crypto/krb5/src/util/verto/ev.c (revision 7f2fe78b9dd5f51c821d771b63d2e096f6fd49e9)
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39 
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47 
48 # if HAVE_FLOOR
49 #  ifndef EV_USE_FLOOR
50 #   define EV_USE_FLOOR 1
51 #  endif
52 # endif
53 
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67 
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83 
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92 
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101 
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110 
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119 
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128 
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137 
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146 
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155 
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164 
165 #endif
166 
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171 
172 #include <stdio.h>
173 
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179 
180 #include <signal.h>
181 
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187 
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198 
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213 
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221 
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223 
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248 
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252 
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 #  define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260 
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 #  define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 #  define EV_USE_REALTIME 0
267 # endif
268 #endif
269 
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 #  define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 #  define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277 
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281 
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 #  define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289 
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293 
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 #  define EV_USE_POLL 0
297 # else
298 #  define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301 
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 #  define EV_USE_EPOLL 0
307 # endif
308 #endif
309 
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313 
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317 
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 #  define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 #  define EV_USE_INOTIFY 0
323 # endif
324 #endif
325 
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329 
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333 
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 #  define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 #  define EV_USE_EVENTFD 0
339 # endif
340 #endif
341 
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 #  define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 #  define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349 
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355 
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359 
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363 
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367 
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376 
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383 
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 #  undef EV_USE_MONOTONIC
391 #  define EV_USE_MONOTONIC 1
392 # else
393 #  undef EV_USE_CLOCK_SYSCALL
394 #  define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397 
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399 
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404 
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409 
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414 
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 #  include <sys/select.h>
419 # endif
420 #endif
421 
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 #  undef EV_USE_INOTIFY
428 #  define EV_USE_INOTIFY 0
429 # endif
430 #endif
431 
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 #  define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 #  ifdef O_CLOEXEC
440 #   define EFD_CLOEXEC O_CLOEXEC
441 #  else
442 #   define EFD_CLOEXEC 02000000
443 #  endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447 
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 #  define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 #  ifdef O_CLOEXEC
456 #   define SFD_CLOEXEC O_CLOEXEC
457 #  else
458 #   define SFD_CLOEXEC 02000000
459 #  endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462 
463 struct signalfd_siginfo
464 {
465   uint32_t ssi_signo;
466   char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469 
470 /**/
471 
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477 
478 /*
479  * This is used to work around floating point rounding problems.
480  * This value is good at least till the year 4000.
481  */
482 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
484 
485 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487 
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490 
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494  * libecb - http://software.schmorp.de/pkg/libecb
495  *
496  * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497  * Copyright (©) 2011 Emanuele Giaquinta
498  * All rights reserved.
499  *
500  * Redistribution and use in source and binary forms, with or without modifica-
501  * tion, are permitted provided that the following conditions are met:
502  *
503  *   1.  Redistributions of source code must retain the above copyright notice,
504  *       this list of conditions and the following disclaimer.
505  *
506  *   2.  Redistributions in binary form must reproduce the above copyright
507  *       notice, this list of conditions and the following disclaimer in the
508  *       documentation and/or other materials provided with the distribution.
509  *
510  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
513  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519  * OF THE POSSIBILITY OF SUCH DAMAGE.
520  *
521  * Alternatively, the contents of this file may be used under the terms of
522  * the GNU General Public License ("GPL") version 2 or any later version,
523  * in which case the provisions of the GPL are applicable instead of
524  * the above. If you wish to allow the use of your version of this file
525  * only under the terms of the GPL and not to allow others to use your
526  * version of this file under the BSD license, indicate your decision
527  * by deleting the provisions above and replace them with the notice
528  * and other provisions required by the GPL. If you do not delete the
529  * provisions above, a recipient may use your version of this file under
530  * either the BSD or the GPL.
531  */
532 
533 #ifndef ECB_H
534 #define ECB_H
535 
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010005
538 
539 #ifdef _WIN32
540   typedef   signed char   int8_t;
541   typedef unsigned char  uint8_t;
542   typedef   signed short  int16_t;
543   typedef unsigned short uint16_t;
544   typedef   signed int    int32_t;
545   typedef unsigned int   uint32_t;
546   #if __GNUC__
547     typedef   signed long long int64_t;
548     typedef unsigned long long uint64_t;
549   #else /* _MSC_VER || __BORLANDC__ */
550     typedef   signed __int64   int64_t;
551     typedef unsigned __int64   uint64_t;
552   #endif
553   #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef  int64_t  intptr_t;
557   #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef  int32_t  intptr_t;
561   #endif
562 #else
563   #include <inttypes.h>
564   #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565     #define ECB_PTRSIZE 8
566   #else
567     #define ECB_PTRSIZE 4
568   #endif
569 #endif
570 
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573 
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576   #if _ILP32
577     #define ECB_AMD64_X32 1
578   #else
579     #define ECB_AMD64 1
580   #endif
581 #endif
582 
583 /* many compilers define _GNUC_ to some versions but then only implement
584  * what their idiot authors think are the "more important" extensions,
585  * causing enormous grief in return for some better fake benchmark numbers.
586  * or so.
587  * we try to detect these and simply assume they are not gcc - if they have
588  * an issue with that they should have done it right in the first place.
589  */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591   #define ECB_GCC_VERSION(major,minor) 0
592 #else
593   #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595 
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597 
598 #if __clang__ && defined __has_builtin
599   #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601   #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603 
604 #if __clang__ && defined __has_extension
605   #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607   #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609 
610 #define ECB_CPP   (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612 
613 #if ECB_CPP
614   #define ECB_C            0
615   #define ECB_STDC_VERSION 0
616 #else
617   #define ECB_C            1
618   #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620 
621 #define ECB_C99   (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11   (ECB_STDC_VERSION >= 201112L)
623 
624 #if ECB_CPP
625   #define ECB_EXTERN_C extern "C"
626   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627   #define ECB_EXTERN_C_END }
628 #else
629   #define ECB_EXTERN_C extern
630   #define ECB_EXTERN_C_BEG
631   #define ECB_EXTERN_C_END
632 #endif
633 
634 /*****************************************************************************/
635 
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
638 
639 #if ECB_NO_THREADS
640   #define ECB_NO_SMP 1
641 #endif
642 
643 #if ECB_NO_SMP
644   #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646 
647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648 #if __xlC__ && ECB_CPP
649   #include <builtins.h>
650 #endif
651 
652 #if 1400 <= _MSC_VER
653   #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654 #endif
655 
656 #ifndef ECB_MEMORY_FENCE
657   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658     #if __i386 || __i386__
659       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
661       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662     #elif ECB_GCC_AMD64
663       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
664       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
665       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
668     #elif defined __ARM_ARCH_2__ \
669       || defined __ARM_ARCH_3__  || defined __ARM_ARCH_3M__  \
670       || defined __ARM_ARCH_4__  || defined __ARM_ARCH_4T__  \
671       || defined __ARM_ARCH_5__  || defined __ARM_ARCH_5E__  \
672       || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673       || defined __ARM_ARCH_5TEJ__
674       /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
676        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677        || defined __ARM_ARCH_6T2__
678       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
680        || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
682     #elif __aarch64__
683       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb ish"  : : : "memory")
684     #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
687       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
688     #elif defined __s390__ || defined __s390x__
689       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690     #elif defined __mips__
691       /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692       /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694     #elif defined __alpha__
695       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
696     #elif defined __hppa__
697       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
698       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699     #elif defined __ia64__
700       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
701     #elif defined __m68k__
702       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
703     #elif defined __m88k__
704       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705     #elif defined __sh__
706       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
707     #endif
708   #endif
709 #endif
710 
711 #ifndef ECB_MEMORY_FENCE
712   #if ECB_GCC_VERSION(4,7)
713     /* see comment below (stdatomic.h) about the C11 memory model. */
714     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
715     #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717 
718   #elif ECB_CLANG_EXTENSION(c_atomic)
719     /* see comment below (stdatomic.h) about the C11 memory model. */
720     #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723 
724   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725     #define ECB_MEMORY_FENCE         __sync_synchronize ()
726   #elif _MSC_VER >= 1500 /* VC++ 2008 */
727     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729     #define ECB_MEMORY_FENCE         _ReadWriteBarrier (); MemoryBarrier()
730     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732   #elif _MSC_VER >= 1400 /* VC++ 2005 */
733     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
735     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737   #elif defined _WIN32
738     #include <WinNT.h>
739     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
740   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741     #include <mbarrier.h>
742     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
743     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
744     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
745   #elif __xlC__
746     #define ECB_MEMORY_FENCE         __sync ()
747   #endif
748 #endif
749 
750 #ifndef ECB_MEMORY_FENCE
751   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752     /* we assume that these memory fences work on all variables/all memory accesses, */
753     /* not just C11 atomics and atomic accesses */
754     #include <stdatomic.h>
755     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756     /* any fence other than seq_cst, which isn't very efficient for us. */
757     /* Why that is, we don't know - either the C11 memory model is quite useless */
758     /* for most usages, or gcc and clang have a bug */
759     /* I *currently* lean towards the latter, and inefficiently implement */
760     /* all three of ecb's fences as a seq_cst fence */
761     /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762     /* for all __atomic_thread_fence's except seq_cst */
763     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
764   #endif
765 #endif
766 
767 #ifndef ECB_MEMORY_FENCE
768   #if !ECB_AVOID_PTHREADS
769     /*
770      * if you get undefined symbol references to pthread_mutex_lock,
771      * or failure to find pthread.h, then you should implement
772      * the ECB_MEMORY_FENCE operations for your cpu/compiler
773      * OR provide pthread.h and link against the posix thread library
774      * of your system.
775      */
776     #include <pthread.h>
777     #define ECB_NEEDS_PTHREADS 1
778     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779 
780     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782   #endif
783 #endif
784 
785 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787 #endif
788 
789 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791 #endif
792 
793 /*****************************************************************************/
794 
795 #if ECB_CPP
796   #define ecb_inline static inline
797 #elif ECB_GCC_VERSION(2,5)
798   #define ecb_inline static __inline__
799 #elif ECB_C99
800   #define ecb_inline static inline
801 #else
802   #define ecb_inline static
803 #endif
804 
805 #if ECB_GCC_VERSION(3,3)
806   #define ecb_restrict __restrict__
807 #elif ECB_C99
808   #define ecb_restrict restrict
809 #else
810   #define ecb_restrict
811 #endif
812 
813 typedef int ecb_bool;
814 
815 #define ECB_CONCAT_(a, b) a ## b
816 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817 #define ECB_STRINGIFY_(a) # a
818 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820 
821 #define ecb_function_ ecb_inline
822 
823 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824   #define ecb_attribute(attrlist)        __attribute__ (attrlist)
825 #else
826   #define ecb_attribute(attrlist)
827 #endif
828 
829 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
831 #else
832   /* possible C11 impl for integral types
833   typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834   #define ecb_is_constant(expr)          _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835 
836   #define ecb_is_constant(expr)          0
837 #endif
838 
839 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
840   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
841 #else
842   #define ecb_expect(expr,value)         (expr)
843 #endif
844 
845 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847 #else
848   #define ecb_prefetch(addr,rw,locality)
849 #endif
850 
851 /* no emulation for ecb_decltype */
852 #if ECB_CPP11
853   // older implementations might have problems with decltype(x)::type, work around it
854   template<class T> struct ecb_decltype_t { typedef T type; };
855   #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857   #define ecb_decltype(x) __typeof__ (x)
858 #endif
859 
860 #if _MSC_VER >= 1300
861   #define ecb_deprecated __declspec (deprecated)
862 #else
863   #define ecb_deprecated ecb_attribute ((__deprecated__))
864 #endif
865 
866 #if _MSC_VER >= 1500
867   #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868 #elif ECB_GCC_VERSION(4,5)
869   #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870 #else
871   #define ecb_deprecated_message(msg) ecb_deprecated
872 #endif
873 
874 #if _MSC_VER >= 1400
875   #define ecb_noinline __declspec (noinline)
876 #else
877   #define ecb_noinline ecb_attribute ((__noinline__))
878 #endif
879 
880 #define ecb_unused     ecb_attribute ((__unused__))
881 #define ecb_const      ecb_attribute ((__const__))
882 #define ecb_pure       ecb_attribute ((__pure__))
883 
884 #if ECB_C11 || __IBMC_NORETURN
885   /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886   #define ecb_noreturn   _Noreturn
887 #elif ECB_CPP11
888   #define ecb_noreturn   [[noreturn]]
889 #elif _MSC_VER >= 1200
890   /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891   #define ecb_noreturn   __declspec (noreturn)
892 #else
893   #define ecb_noreturn   ecb_attribute ((__noreturn__))
894 #endif
895 
896 #if ECB_GCC_VERSION(4,3)
897   #define ecb_artificial ecb_attribute ((__artificial__))
898   #define ecb_hot        ecb_attribute ((__hot__))
899   #define ecb_cold       ecb_attribute ((__cold__))
900 #else
901   #define ecb_artificial
902   #define ecb_hot
903   #define ecb_cold
904 #endif
905 
906 /* put around conditional expressions if you are very sure that the  */
907 /* expression is mostly true or mostly false. note that these return */
908 /* booleans, not the expression.                                     */
909 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
910 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
911 /* for compatibility to the rest of the world */
912 #define ecb_likely(expr)   ecb_expect_true  (expr)
913 #define ecb_unlikely(expr) ecb_expect_false (expr)
914 
915 /* count trailing zero bits and count # of one bits */
916 #if ECB_GCC_VERSION(3,4) \
917     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918         && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919         && ECB_CLANG_BUILTIN(__builtin_popcount))
920   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
922   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
923   #define ecb_ctz32(x)      __builtin_ctz      (x)
924   #define ecb_ctz64(x)      __builtin_ctzll    (x)
925   #define ecb_popcount32(x) __builtin_popcount (x)
926   /* no popcountll */
927 #else
928   ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929   ecb_function_ ecb_const int
ecb_ctz32(uint32_t x)930   ecb_ctz32 (uint32_t x)
931   {
932 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933     unsigned long r;
934     _BitScanForward (&r, x);
935     return (int)r;
936 #else
937     int r = 0;
938 
939     x &= ~x + 1; /* this isolates the lowest bit */
940 
941 #if ECB_branchless_on_i386
942     r += !!(x & 0xaaaaaaaa) << 0;
943     r += !!(x & 0xcccccccc) << 1;
944     r += !!(x & 0xf0f0f0f0) << 2;
945     r += !!(x & 0xff00ff00) << 3;
946     r += !!(x & 0xffff0000) << 4;
947 #else
948     if (x & 0xaaaaaaaa) r +=  1;
949     if (x & 0xcccccccc) r +=  2;
950     if (x & 0xf0f0f0f0) r +=  4;
951     if (x & 0xff00ff00) r +=  8;
952     if (x & 0xffff0000) r += 16;
953 #endif
954 
955     return r;
956 #endif
957   }
958 
959   ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960   ecb_function_ ecb_const int
ecb_ctz64(uint64_t x)961   ecb_ctz64 (uint64_t x)
962   {
963 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964     unsigned long r;
965     _BitScanForward64 (&r, x);
966     return (int)r;
967 #else
968     int shift = x & 0xffffffff ? 0 : 32;
969     return ecb_ctz32 (x >> shift) + shift;
970 #endif
971   }
972 
973   ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974   ecb_function_ ecb_const int
ecb_popcount32(uint32_t x)975   ecb_popcount32 (uint32_t x)
976   {
977     x -=  (x >> 1) & 0x55555555;
978     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979     x  = ((x >> 4) + x) & 0x0f0f0f0f;
980     x *= 0x01010101;
981 
982     return x >> 24;
983   }
984 
985   ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
ecb_ld32(uint32_t x)986   ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987   {
988 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989     unsigned long r;
990     _BitScanReverse (&r, x);
991     return (int)r;
992 #else
993     int r = 0;
994 
995     if (x >> 16) { x >>= 16; r += 16; }
996     if (x >>  8) { x >>=  8; r +=  8; }
997     if (x >>  4) { x >>=  4; r +=  4; }
998     if (x >>  2) { x >>=  2; r +=  2; }
999     if (x >>  1) {           r +=  1; }
1000 
1001     return r;
1002 #endif
1003   }
1004 
1005   ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
ecb_ld64(uint64_t x)1006   ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007   {
1008 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009     unsigned long r;
1010     _BitScanReverse64 (&r, x);
1011     return (int)r;
1012 #else
1013     int r = 0;
1014 
1015     if (x >> 32) { x >>= 32; r += 32; }
1016 
1017     return r + ecb_ld32 (x);
1018 #endif
1019   }
1020 #endif
1021 
1022 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
ecb_is_pot32(uint32_t x)1023 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
ecb_is_pot64(uint64_t x)1025 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026 
1027 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x);
ecb_bitrev8(uint8_t x)1028 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x)
1029 {
1030   return (  (x * 0x0802U & 0x22110U)
1031           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032 }
1033 
1034 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
ecb_bitrev16(uint16_t x)1035 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036 {
1037   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
1038   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
1039   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
1040   x = ( x >>  8              ) | ( x               <<  8);
1041 
1042   return x;
1043 }
1044 
1045 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
ecb_bitrev32(uint32_t x)1046 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047 {
1048   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
1049   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
1050   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
1051   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
1052   x = ( x >> 16              ) | ( x               << 16);
1053 
1054   return x;
1055 }
1056 
1057 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1058 /* so for this version we are lazy */
1059 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060 ecb_function_ ecb_const int
ecb_popcount64(uint64_t x)1061 ecb_popcount64 (uint64_t x)
1062 {
1063   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064 }
1065 
1066 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count);
1067 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count);
1068 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074 
ecb_rotl8(uint8_t x,unsigned int count)1075 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
ecb_rotr8(uint8_t x,unsigned int count)1076 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
ecb_rotl16(uint16_t x,unsigned int count)1077 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
ecb_rotr16(uint16_t x,unsigned int count)1078 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
ecb_rotl32(uint32_t x,unsigned int count)1079 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
ecb_rotr32(uint32_t x,unsigned int count)1080 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
ecb_rotl64(uint64_t x,unsigned int count)1081 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
ecb_rotr64(uint64_t x,unsigned int count)1082 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083 
1084 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085   #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086   #define ecb_bswap16(x)  __builtin_bswap16 (x)
1087   #else
1088   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089   #endif
1090   #define ecb_bswap32(x)  __builtin_bswap32 (x)
1091   #define ecb_bswap64(x)  __builtin_bswap64 (x)
1092 #elif _MSC_VER
1093   #include <stdlib.h>
1094   #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095   #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong  ((uint32_t)(x)))
1096   #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097 #else
1098   ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099   ecb_function_ ecb_const uint16_t
ecb_bswap16(uint16_t x)1100   ecb_bswap16 (uint16_t x)
1101   {
1102     return ecb_rotl16 (x, 8);
1103   }
1104 
1105   ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106   ecb_function_ ecb_const uint32_t
ecb_bswap32(uint32_t x)1107   ecb_bswap32 (uint32_t x)
1108   {
1109     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110   }
1111 
1112   ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113   ecb_function_ ecb_const uint64_t
ecb_bswap64(uint64_t x)1114   ecb_bswap64 (uint64_t x)
1115   {
1116     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117   }
1118 #endif
1119 
1120 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121   #define ecb_unreachable() __builtin_unreachable ()
1122 #else
1123   /* this seems to work fine, but gcc always emits a warning for it :/ */
1124   ecb_inline ecb_noreturn void ecb_unreachable (void);
ecb_unreachable(void)1125   ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126 #endif
1127 
1128 /* try to tell the compiler that some condition is definitely true */
1129 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130 
1131 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132 ecb_inline ecb_const uint32_t
ecb_byteorder_helper(void)1133 ecb_byteorder_helper (void)
1134 {
1135   /* the union code still generates code under pressure in gcc, */
1136   /* but less than using pointers, and always seems to */
1137   /* successfully return a constant. */
1138   /* the reason why we have this horrible preprocessor mess */
1139   /* is to avoid it in all cases, at least on common architectures */
1140   /* or when using a recent enough gcc version (>= 4.6) */
1141 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142     || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143   #define ECB_LITTLE_ENDIAN 1
1144   return 0x44332211;
1145 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146       || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147   #define ECB_BIG_ENDIAN 1
1148   return 0x11223344;
1149 #else
1150   union
1151   {
1152     uint8_t c[4];
1153     uint32_t u;
1154   } u = { 0x11, 0x22, 0x33, 0x44 };
1155   return u.u;
1156 #endif
1157 }
1158 
1159 ecb_inline ecb_const ecb_bool ecb_big_endian    (void);
ecb_big_endian(void)1160 ecb_inline ecb_const ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11223344; }
1161 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
ecb_little_endian(void)1162 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163 
1164 #if ECB_GCC_VERSION(3,0) || ECB_C99
1165   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166 #else
1167   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168 #endif
1169 
1170 #if ECB_CPP
1171   template<typename T>
ecb_div_rd(T val,T div)1172   static inline T ecb_div_rd (T val, T div)
1173   {
1174     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1175   }
1176   template<typename T>
ecb_div_ru(T val,T div)1177   static inline T ecb_div_ru (T val, T div)
1178   {
1179     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1180   }
1181 #else
1182   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1183   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1184 #endif
1185 
1186 #if ecb_cplusplus_does_not_suck
1187   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188   template<typename T, int N>
ecb_array_length(const T (& arr)[N])1189   static inline int ecb_array_length (const T (&arr)[N])
1190   {
1191     return N;
1192   }
1193 #else
1194   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195 #endif
1196 
1197 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198 ecb_function_ ecb_const uint32_t
ecb_binary16_to_binary32(uint32_t x)1199 ecb_binary16_to_binary32 (uint32_t x)
1200 {
1201   unsigned int s = (x & 0x8000) << (31 - 15);
1202   int          e = (x >> 10) & 0x001f;
1203   unsigned int m =  x        & 0x03ff;
1204 
1205   if (ecb_expect_false (e == 31))
1206     /* infinity or NaN */
1207     e = 255 - (127 - 15);
1208   else if (ecb_expect_false (!e))
1209     {
1210       if (ecb_expect_true (!m))
1211         /* zero, handled by code below by forcing e to 0 */
1212         e = 0 - (127 - 15);
1213       else
1214         {
1215           /* subnormal, renormalise */
1216           unsigned int s = 10 - ecb_ld32 (m);
1217 
1218           m = (m << s) & 0x3ff; /* mask implicit bit */
1219           e -= s - 1;
1220         }
1221     }
1222 
1223   /* e and m now are normalised, or zero, (or inf or nan) */
1224   e += 127 - 15;
1225 
1226   return s | (e << 23) | (m << (23 - 10));
1227 }
1228 
1229 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230 ecb_function_ ecb_const uint16_t
ecb_binary32_to_binary16(uint32_t x)1231 ecb_binary32_to_binary16 (uint32_t x)
1232 {
1233   unsigned int s =  (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234   unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235   unsigned int m =   x        & 0x007fffff;
1236 
1237   x &= 0x7fffffff;
1238 
1239   /* if it's within range of binary16 normals, use fast path */
1240   if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241     {
1242       /* mantissa round-to-even */
1243       m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244 
1245       /* handle overflow */
1246       if (ecb_expect_false (m >= 0x00800000))
1247         {
1248           m >>= 1;
1249           e +=  1;
1250         }
1251 
1252       return s | (e << 10) | (m >> (23 - 10));
1253     }
1254 
1255   /* handle large numbers and infinity */
1256   if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257     return s | 0x7c00;
1258 
1259   /* handle zero, subnormals and small numbers */
1260   if (ecb_expect_true (x < 0x38800000))
1261     {
1262       /* zero */
1263       if (ecb_expect_true (!x))
1264         return s;
1265 
1266       /* handle subnormals */
1267 
1268       /* too small, will be zero */
1269       if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270         return s;
1271 
1272       m |= 0x00800000; /* make implicit bit explicit */
1273 
1274       /* very tricky - we need to round to the nearest e (+10) bit value */
1275       {
1276         unsigned int bits = 14 - e;
1277         unsigned int half = (1 << (bits - 1)) - 1;
1278         unsigned int even = (m >> bits) & 1;
1279 
1280         /* if this overflows, we will end up with a normalised number */
1281         m = (m + half + even) >> bits;
1282       }
1283 
1284       return s | m;
1285     }
1286 
1287   /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288   m >>= 13;
1289 
1290   return s | 0x7c00 | m | !m;
1291 }
1292 
1293 /*******************************************************************************/
1294 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295 
1296 /* basically, everything uses "ieee pure-endian" floating point numbers */
1297 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298 #if 0 \
1299     || __i386 || __i386__ \
1300     || ECB_GCC_AMD64 \
1301     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302     || defined __s390__ || defined __s390x__ \
1303     || defined __mips__ \
1304     || defined __alpha__ \
1305     || defined __hppa__ \
1306     || defined __ia64__ \
1307     || defined __m68k__ \
1308     || defined __m88k__ \
1309     || defined __sh__ \
1310     || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311     || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312     || defined __aarch64__
1313   #define ECB_STDFP 1
1314   #include <string.h> /* for memcpy */
1315 #else
1316   #define ECB_STDFP 0
1317 #endif
1318 
1319 #ifndef ECB_NO_LIBM
1320 
1321   #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322 
1323   /* only the oldest of old doesn't have this one. solaris. */
1324   #ifdef INFINITY
1325     #define ECB_INFINITY INFINITY
1326   #else
1327     #define ECB_INFINITY HUGE_VAL
1328   #endif
1329 
1330   #ifdef NAN
1331     #define ECB_NAN NAN
1332   #else
1333     #define ECB_NAN ECB_INFINITY
1334   #endif
1335 
1336   #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338     #define ecb_frexpf(x,e) frexpf ((x), (e))
1339   #else
1340     #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342   #endif
1343 
1344   /* convert a float to ieee single/binary32 */
1345   ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346   ecb_function_ ecb_const uint32_t
ecb_float_to_binary32(float x)1347   ecb_float_to_binary32 (float x)
1348   {
1349     uint32_t r;
1350 
1351     #if ECB_STDFP
1352       memcpy (&r, &x, 4);
1353     #else
1354       /* slow emulation, works for anything but -0 */
1355       uint32_t m;
1356       int e;
1357 
1358       if (x == 0e0f                    ) return 0x00000000U;
1359       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361       if (x != x                       ) return 0x7fbfffffU;
1362 
1363       m = ecb_frexpf (x, &e) * 0x1000000U;
1364 
1365       r = m & 0x80000000U;
1366 
1367       if (r)
1368         m = -m;
1369 
1370       if (e <= -126)
1371         {
1372           m &= 0xffffffU;
1373           m >>= (-125 - e);
1374           e = -126;
1375         }
1376 
1377       r |= (e + 126) << 23;
1378       r |= m & 0x7fffffU;
1379     #endif
1380 
1381     return r;
1382   }
1383 
1384   /* converts an ieee single/binary32 to a float */
1385   ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386   ecb_function_ ecb_const float
ecb_binary32_to_float(uint32_t x)1387   ecb_binary32_to_float (uint32_t x)
1388   {
1389     float r;
1390 
1391     #if ECB_STDFP
1392       memcpy (&r, &x, 4);
1393     #else
1394       /* emulation, only works for normals and subnormals and +0 */
1395       int neg = x >> 31;
1396       int e = (x >> 23) & 0xffU;
1397 
1398       x &= 0x7fffffU;
1399 
1400       if (e)
1401         x |= 0x800000U;
1402       else
1403         e = 1;
1404 
1405       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406       r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407 
1408       r = neg ? -r : r;
1409     #endif
1410 
1411     return r;
1412   }
1413 
1414   /* convert a double to ieee double/binary64 */
1415   ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416   ecb_function_ ecb_const uint64_t
ecb_double_to_binary64(double x)1417   ecb_double_to_binary64 (double x)
1418   {
1419     uint64_t r;
1420 
1421     #if ECB_STDFP
1422       memcpy (&r, &x, 8);
1423     #else
1424       /* slow emulation, works for anything but -0 */
1425       uint64_t m;
1426       int e;
1427 
1428       if (x == 0e0                     ) return 0x0000000000000000U;
1429       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431       if (x != x                       ) return 0X7ff7ffffffffffffU;
1432 
1433       m = frexp (x, &e) * 0x20000000000000U;
1434 
1435       r = m & 0x8000000000000000;;
1436 
1437       if (r)
1438         m = -m;
1439 
1440       if (e <= -1022)
1441         {
1442           m &= 0x1fffffffffffffU;
1443           m >>= (-1021 - e);
1444           e = -1022;
1445         }
1446 
1447       r |= ((uint64_t)(e + 1022)) << 52;
1448       r |= m & 0xfffffffffffffU;
1449     #endif
1450 
1451     return r;
1452   }
1453 
1454   /* converts an ieee double/binary64 to a double */
1455   ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456   ecb_function_ ecb_const double
ecb_binary64_to_double(uint64_t x)1457   ecb_binary64_to_double (uint64_t x)
1458   {
1459     double r;
1460 
1461     #if ECB_STDFP
1462       memcpy (&r, &x, 8);
1463     #else
1464       /* emulation, only works for normals and subnormals and +0 */
1465       int neg = x >> 63;
1466       int e = (x >> 52) & 0x7ffU;
1467 
1468       x &= 0xfffffffffffffU;
1469 
1470       if (e)
1471         x |= 0x10000000000000U;
1472       else
1473         e = 1;
1474 
1475       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477 
1478       r = neg ? -r : r;
1479     #endif
1480 
1481     return r;
1482   }
1483 
1484   /* convert a float to ieee half/binary16 */
1485   ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486   ecb_function_ ecb_const uint16_t
ecb_float_to_binary16(float x)1487   ecb_float_to_binary16 (float x)
1488   {
1489     return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490   }
1491 
1492   /* convert an ieee half/binary16 to float */
1493   ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494   ecb_function_ ecb_const float
ecb_binary16_to_float(uint16_t x)1495   ecb_binary16_to_float (uint16_t x)
1496   {
1497     return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498   }
1499 
1500 #endif
1501 
1502 #endif
1503 
1504 /* ECB.H END */
1505 
1506 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507 /* if your architecture doesn't need memory fences, e.g. because it is
1508  * single-cpu/core, or if you use libev in a project that doesn't use libev
1509  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510  * libev, in which cases the memory fences become nops.
1511  * alternatively, you can remove this #error and link against libpthread,
1512  * which will then provide the memory fences.
1513  */
1514 /*
1515  * krb5 change: per the comment below, we are allowing pthreads on platforms
1516  * which are too old to have better memory thead support, as is the case on
1517  * older Solaris versions.
1518  */
1519 #if 0
1520 # error "memory fences not defined for your architecture, please report"
1521 #endif
1522 #endif
1523 
1524 #ifndef ECB_MEMORY_FENCE
1525 # define ECB_MEMORY_FENCE do { } while (0)
1526 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1527 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1528 #endif
1529 
1530 #define expect_false(cond) ecb_expect_false (cond)
1531 #define expect_true(cond)  ecb_expect_true  (cond)
1532 #define noinline           ecb_noinline
1533 
1534 #define inline_size        ecb_inline
1535 
1536 #if EV_FEATURE_CODE
1537 # define inline_speed      ecb_inline
1538 #else
1539 # define inline_speed      static noinline
1540 #endif
1541 
1542 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1543 
1544 #if EV_MINPRI == EV_MAXPRI
1545 # define ABSPRI(w) (((W)w), 0)
1546 #else
1547 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1548 #endif
1549 
1550 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1551 #define EMPTY2(a,b) /* used to suppress some warnings */
1552 
1553 typedef ev_watcher *W;
1554 typedef ev_watcher_list *WL;
1555 typedef ev_watcher_time *WT;
1556 
1557 #define ev_active(w) ((W)(w))->active
1558 #define ev_at(w) ((WT)(w))->at
1559 
1560 #if EV_USE_REALTIME
1561 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1562 /* giving it a reasonably high chance of working on typical architectures */
1563 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1564 #endif
1565 
1566 #if EV_USE_MONOTONIC
1567 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1568 #endif
1569 
1570 #ifndef EV_FD_TO_WIN32_HANDLE
1571 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1572 #endif
1573 #ifndef EV_WIN32_HANDLE_TO_FD
1574 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1575 #endif
1576 #ifndef EV_WIN32_CLOSE_FD
1577 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1578 #endif
1579 
1580 #ifdef _WIN32
1581 # include "ev_win32.c"
1582 #endif
1583 
1584 /*****************************************************************************/
1585 
1586 /* define a suitable floor function (only used by periodics atm) */
1587 
1588 #if EV_USE_FLOOR
1589 # include <math.h>
1590 # define ev_floor(v) floor (v)
1591 #else
1592 
1593 #include <float.h>
1594 
1595 /* a floor() replacement function, should be independent of ev_tstamp type */
1596 static ev_tstamp noinline
ev_floor(ev_tstamp v)1597 ev_floor (ev_tstamp v)
1598 {
1599   /* the choice of shift factor is not terribly important */
1600 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1601   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1602 #else
1603   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1604 #endif
1605 
1606   /* argument too large for an unsigned long? */
1607   if (expect_false (v >= shift))
1608     {
1609       ev_tstamp f;
1610 
1611       if (v == v - 1.)
1612         return v; /* very large number */
1613 
1614       f = shift * ev_floor (v * (1. / shift));
1615       return f + ev_floor (v - f);
1616     }
1617 
1618   /* special treatment for negative args? */
1619   if (expect_false (v < 0.))
1620     {
1621       ev_tstamp f = -ev_floor (-v);
1622 
1623       return f - (f == v ? 0 : 1);
1624     }
1625 
1626   /* fits into an unsigned long */
1627   return (unsigned long)v;
1628 }
1629 
1630 #endif
1631 
1632 /*****************************************************************************/
1633 
1634 #ifdef __linux
1635 # include <sys/utsname.h>
1636 #endif
1637 
1638 static unsigned int noinline ecb_cold
ev_linux_version(void)1639 ev_linux_version (void)
1640 {
1641 #ifdef __linux
1642   unsigned int v = 0;
1643   struct utsname buf;
1644   int i;
1645   char *p = buf.release;
1646 
1647   if (uname (&buf))
1648     return 0;
1649 
1650   for (i = 3+1; --i; )
1651     {
1652       unsigned int c = 0;
1653 
1654       for (;;)
1655         {
1656           if (*p >= '0' && *p <= '9')
1657             c = c * 10 + *p++ - '0';
1658           else
1659             {
1660               p += *p == '.';
1661               break;
1662             }
1663         }
1664 
1665       v = (v << 8) | c;
1666     }
1667 
1668   return v;
1669 #else
1670   return 0;
1671 #endif
1672 }
1673 
1674 /*****************************************************************************/
1675 
1676 #if EV_AVOID_STDIO
1677 static void noinline ecb_cold
ev_printerr(const char * msg)1678 ev_printerr (const char *msg)
1679 {
1680   write (STDERR_FILENO, msg, strlen (msg));
1681 }
1682 #endif
1683 
1684 static void (*syserr_cb)(const char *msg) EV_THROW;
1685 
1686 void ecb_cold
ev_set_syserr_cb(void (* cb)(const char * msg)EV_THROW)1687 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1688 {
1689   syserr_cb = cb;
1690 }
1691 
1692 static void noinline ecb_cold
ev_syserr(const char * msg)1693 ev_syserr (const char *msg)
1694 {
1695   if (!msg)
1696     msg = "(libev) system error";
1697 
1698   if (syserr_cb)
1699     syserr_cb (msg);
1700   else
1701     {
1702 #if EV_AVOID_STDIO
1703       ev_printerr (msg);
1704       ev_printerr (": ");
1705       ev_printerr (strerror (errno));
1706       ev_printerr ("\n");
1707 #else
1708       perror (msg);
1709 #endif
1710       abort ();
1711     }
1712 }
1713 
1714 static void *
ev_realloc_emul(void * ptr,long size)1715 ev_realloc_emul (void *ptr, long size) EV_THROW
1716 {
1717   /* some systems, notably openbsd and darwin, fail to properly
1718    * implement realloc (x, 0) (as required by both ansi c-89 and
1719    * the single unix specification, so work around them here.
1720    * recently, also (at least) fedora and debian started breaking it,
1721    * despite documenting it otherwise.
1722    */
1723 
1724   if (size)
1725     return realloc (ptr, size);
1726 
1727   free (ptr);
1728   return 0;
1729 }
1730 
1731 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1732 
1733 void ecb_cold
ev_set_allocator(void * (* cb)(void * ptr,long size)EV_THROW)1734 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1735 {
1736   alloc = cb;
1737 }
1738 
1739 inline_speed void *
ev_realloc(void * ptr,long size)1740 ev_realloc (void *ptr, long size)
1741 {
1742   ptr = alloc (ptr, size);
1743 
1744   if (!ptr && size)
1745     {
1746 #if EV_AVOID_STDIO
1747       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1748 #else
1749       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1750 #endif
1751       abort ();
1752     }
1753 
1754   return ptr;
1755 }
1756 
1757 #define ev_malloc(size) ev_realloc (0, (size))
1758 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1759 
1760 /*****************************************************************************/
1761 
1762 /* set in reify when reification needed */
1763 #define EV_ANFD_REIFY 1
1764 
1765 /* file descriptor info structure */
1766 typedef struct
1767 {
1768   WL head;
1769   unsigned char events; /* the events watched for */
1770   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1771   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1772   unsigned char unused;
1773 #if EV_USE_EPOLL
1774   unsigned int egen;    /* generation counter to counter epoll bugs */
1775 #endif
1776 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777   SOCKET handle;
1778 #endif
1779 #if EV_USE_IOCP
1780   OVERLAPPED or, ow;
1781 #endif
1782 } ANFD;
1783 
1784 /* stores the pending event set for a given watcher */
1785 typedef struct
1786 {
1787   W w;
1788   int events; /* the pending event set for the given watcher */
1789 } ANPENDING;
1790 
1791 #if EV_USE_INOTIFY
1792 /* hash table entry per inotify-id */
1793 typedef struct
1794 {
1795   WL head;
1796 } ANFS;
1797 #endif
1798 
1799 /* Heap Entry */
1800 #if EV_HEAP_CACHE_AT
1801   /* a heap element */
1802   typedef struct {
1803     ev_tstamp at;
1804     WT w;
1805   } ANHE;
1806 
1807   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1808   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1809   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1810 #else
1811   /* a heap element */
1812   typedef WT ANHE;
1813 
1814   #define ANHE_w(he)        (he)
1815   #define ANHE_at(he)       (he)->at
1816   #define ANHE_at_cache(he)
1817 #endif
1818 
1819 #if EV_MULTIPLICITY
1820 
1821   struct ev_loop
1822   {
1823     ev_tstamp ev_rt_now;
1824     #define ev_rt_now ((loop)->ev_rt_now)
1825     #define VAR(name,decl) decl;
1826       #include "ev_vars.h"
1827     #undef VAR
1828   };
1829   #include "ev_wrap.h"
1830 
1831   static struct ev_loop default_loop_struct;
1832   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1833 
1834 #else
1835 
1836   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1837   #define VAR(name,decl) static decl;
1838     #include "ev_vars.h"
1839   #undef VAR
1840 
1841   static int ev_default_loop_ptr;
1842 
1843 #endif
1844 
1845 #if EV_FEATURE_API
1846 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1847 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1848 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1849 #else
1850 # define EV_RELEASE_CB (void)0
1851 # define EV_ACQUIRE_CB (void)0
1852 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1853 #endif
1854 
1855 #define EVBREAK_RECURSE 0x80
1856 
1857 /*****************************************************************************/
1858 
1859 #ifndef EV_HAVE_EV_TIME
1860 ev_tstamp
ev_time(void)1861 ev_time (void) EV_THROW
1862 {
1863 #if EV_USE_REALTIME
1864   if (expect_true (have_realtime))
1865     {
1866       struct timespec ts;
1867       clock_gettime (CLOCK_REALTIME, &ts);
1868       return ts.tv_sec + ts.tv_nsec * 1e-9;
1869     }
1870 #endif
1871 
1872   struct timeval tv;
1873   gettimeofday (&tv, 0);
1874   return tv.tv_sec + tv.tv_usec * 1e-6;
1875 }
1876 #endif
1877 
1878 inline_size ev_tstamp
get_clock(void)1879 get_clock (void)
1880 {
1881 #if EV_USE_MONOTONIC
1882   if (expect_true (have_monotonic))
1883     {
1884       struct timespec ts;
1885       clock_gettime (CLOCK_MONOTONIC, &ts);
1886       return ts.tv_sec + ts.tv_nsec * 1e-9;
1887     }
1888 #endif
1889 
1890   return ev_time ();
1891 }
1892 
1893 #if EV_MULTIPLICITY
1894 ev_tstamp
ev_now(EV_P)1895 ev_now (EV_P) EV_THROW
1896 {
1897   return ev_rt_now;
1898 }
1899 #endif
1900 
1901 void
ev_sleep(ev_tstamp delay)1902 ev_sleep (ev_tstamp delay) EV_THROW
1903 {
1904   if (delay > 0.)
1905     {
1906 #if EV_USE_NANOSLEEP
1907       struct timespec ts;
1908 
1909       EV_TS_SET (ts, delay);
1910       nanosleep (&ts, 0);
1911 #elif defined _WIN32
1912       Sleep ((unsigned long)(delay * 1e3));
1913 #else
1914       struct timeval tv;
1915 
1916       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1917       /* something not guaranteed by newer posix versions, but guaranteed */
1918       /* by older ones */
1919       EV_TV_SET (tv, delay);
1920       select (0, 0, 0, 0, &tv);
1921 #endif
1922     }
1923 }
1924 
1925 /*****************************************************************************/
1926 
1927 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1928 
1929 /* find a suitable new size for the given array, */
1930 /* hopefully by rounding to a nice-to-malloc size */
1931 inline_size int
array_nextsize(int elem,int cur,int cnt)1932 array_nextsize (int elem, int cur, int cnt)
1933 {
1934   int ncur = cur + 1;
1935 
1936   do
1937     ncur <<= 1;
1938   while (cnt > ncur);
1939 
1940   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1941   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1942     {
1943       ncur *= elem;
1944       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1945       ncur = ncur - sizeof (void *) * 4;
1946       ncur /= elem;
1947     }
1948 
1949   return ncur;
1950 }
1951 
1952 static void * noinline ecb_cold
array_realloc(int elem,void * base,int * cur,int cnt)1953 array_realloc (int elem, void *base, int *cur, int cnt)
1954 {
1955   *cur = array_nextsize (elem, *cur, cnt);
1956   return ev_realloc (base, elem * *cur);
1957 }
1958 
1959 #define array_init_zero(base,count)	\
1960   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1961 
1962 #define array_needsize(type,base,cur,cnt,init)			\
1963   if (expect_false ((cnt) > (cur)))				\
1964     {								\
1965       int ecb_unused ocur_ = (cur);					\
1966       (base) = (type *)array_realloc				\
1967          (sizeof (type), (base), &(cur), (cnt));		\
1968       init ((base) + (ocur_), (cur) - ocur_);			\
1969     }
1970 
1971 #if 0
1972 #define array_slim(type,stem)					\
1973   if (stem ## max < array_roundsize (stem ## cnt >> 2))		\
1974     {								\
1975       stem ## max = array_roundsize (stem ## cnt >> 1);		\
1976       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1977       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1978     }
1979 #endif
1980 
1981 #define array_free(stem, idx) \
1982   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1983 
1984 /*****************************************************************************/
1985 
1986 /* dummy callback for pending events */
1987 static void noinline
pendingcb(EV_P_ ev_prepare * w,int revents)1988 pendingcb (EV_P_ ev_prepare *w, int revents)
1989 {
1990 }
1991 
1992 void noinline
ev_feed_event(EV_P_ void * w,int revents)1993 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1994 {
1995   W w_ = (W)w;
1996   int pri = ABSPRI (w_);
1997 
1998   if (expect_false (w_->pending))
1999     pendings [pri][w_->pending - 1].events |= revents;
2000   else
2001     {
2002       w_->pending = ++pendingcnt [pri];
2003       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2004       pendings [pri][w_->pending - 1].w      = w_;
2005       pendings [pri][w_->pending - 1].events = revents;
2006     }
2007 
2008   pendingpri = NUMPRI - 1;
2009 }
2010 
2011 inline_speed void
feed_reverse(EV_P_ W w)2012 feed_reverse (EV_P_ W w)
2013 {
2014   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2015   rfeeds [rfeedcnt++] = w;
2016 }
2017 
2018 inline_size void
feed_reverse_done(EV_P_ int revents)2019 feed_reverse_done (EV_P_ int revents)
2020 {
2021   do
2022     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2023   while (rfeedcnt);
2024 }
2025 
2026 inline_speed void
queue_events(EV_P_ W * events,int eventcnt,int type)2027 queue_events (EV_P_ W *events, int eventcnt, int type)
2028 {
2029   int i;
2030 
2031   for (i = 0; i < eventcnt; ++i)
2032     ev_feed_event (EV_A_ events [i], type);
2033 }
2034 
2035 /*****************************************************************************/
2036 
2037 inline_speed void
fd_event_nocheck(EV_P_ int fd,int revents)2038 fd_event_nocheck (EV_P_ int fd, int revents)
2039 {
2040   ANFD *anfd = anfds + fd;
2041   ev_io *w;
2042 
2043   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2044     {
2045       int ev = w->events & revents;
2046 
2047       if (ev)
2048         ev_feed_event (EV_A_ (W)w, ev);
2049     }
2050 }
2051 
2052 /* do not submit kernel events for fds that have reify set */
2053 /* because that means they changed while we were polling for new events */
2054 inline_speed void
fd_event(EV_P_ int fd,int revents)2055 fd_event (EV_P_ int fd, int revents)
2056 {
2057   ANFD *anfd = anfds + fd;
2058 
2059   if (expect_true (!anfd->reify))
2060     fd_event_nocheck (EV_A_ fd, revents);
2061 }
2062 
2063 void
ev_feed_fd_event(EV_P_ int fd,int revents)2064 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2065 {
2066   if (fd >= 0 && fd < anfdmax)
2067     fd_event_nocheck (EV_A_ fd, revents);
2068 }
2069 
2070 /* make sure the external fd watch events are in-sync */
2071 /* with the kernel/libev internal state */
2072 inline_size void
fd_reify(EV_P)2073 fd_reify (EV_P)
2074 {
2075   int i;
2076 
2077 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2078   for (i = 0; i < fdchangecnt; ++i)
2079     {
2080       int fd = fdchanges [i];
2081       ANFD *anfd = anfds + fd;
2082 
2083       if (anfd->reify & EV__IOFDSET && anfd->head)
2084         {
2085           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2086 
2087           if (handle != anfd->handle)
2088             {
2089               unsigned long arg;
2090 
2091               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2092 
2093               /* handle changed, but fd didn't - we need to do it in two steps */
2094               backend_modify (EV_A_ fd, anfd->events, 0);
2095               anfd->events = 0;
2096               anfd->handle = handle;
2097             }
2098         }
2099     }
2100 #endif
2101 
2102   for (i = 0; i < fdchangecnt; ++i)
2103     {
2104       int fd = fdchanges [i];
2105       ANFD *anfd = anfds + fd;
2106       ev_io *w;
2107 
2108       unsigned char o_events = anfd->events;
2109       unsigned char o_reify  = anfd->reify;
2110 
2111       anfd->reify  = 0;
2112 
2113       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2114         {
2115           anfd->events = 0;
2116 
2117           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2118             anfd->events |= (unsigned char)w->events;
2119 
2120           if (o_events != anfd->events)
2121             o_reify = EV__IOFDSET; /* actually |= */
2122         }
2123 
2124       if (o_reify & EV__IOFDSET)
2125         backend_modify (EV_A_ fd, o_events, anfd->events);
2126     }
2127 
2128   fdchangecnt = 0;
2129 }
2130 
2131 /* something about the given fd changed */
2132 inline_size void
fd_change(EV_P_ int fd,int flags)2133 fd_change (EV_P_ int fd, int flags)
2134 {
2135   unsigned char reify = anfds [fd].reify;
2136   anfds [fd].reify |= flags;
2137 
2138   if (expect_true (!reify))
2139     {
2140       ++fdchangecnt;
2141       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2142       fdchanges [fdchangecnt - 1] = fd;
2143     }
2144 }
2145 
2146 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2147 inline_speed void ecb_cold
fd_kill(EV_P_ int fd)2148 fd_kill (EV_P_ int fd)
2149 {
2150   ev_io *w;
2151 
2152   while ((w = (ev_io *)anfds [fd].head))
2153     {
2154       ev_io_stop (EV_A_ w);
2155       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2156     }
2157 }
2158 
2159 /* check whether the given fd is actually valid, for error recovery */
2160 inline_size int ecb_cold
fd_valid(int fd)2161 fd_valid (int fd)
2162 {
2163 #ifdef _WIN32
2164   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2165 #else
2166   return fcntl (fd, F_GETFD) != -1;
2167 #endif
2168 }
2169 
2170 /* called on EBADF to verify fds */
2171 static void noinline ecb_cold
fd_ebadf(EV_P)2172 fd_ebadf (EV_P)
2173 {
2174   int fd;
2175 
2176   for (fd = 0; fd < anfdmax; ++fd)
2177     if (anfds [fd].events)
2178       if (!fd_valid (fd) && errno == EBADF)
2179         fd_kill (EV_A_ fd);
2180 }
2181 
2182 /* called on ENOMEM in select/poll to kill some fds and retry */
2183 static void noinline ecb_cold
fd_enomem(EV_P)2184 fd_enomem (EV_P)
2185 {
2186   int fd;
2187 
2188   for (fd = anfdmax; fd--; )
2189     if (anfds [fd].events)
2190       {
2191         fd_kill (EV_A_ fd);
2192         break;
2193       }
2194 }
2195 
2196 /* usually called after fork if backend needs to re-arm all fds from scratch */
2197 static void noinline
fd_rearm_all(EV_P)2198 fd_rearm_all (EV_P)
2199 {
2200   int fd;
2201 
2202   for (fd = 0; fd < anfdmax; ++fd)
2203     if (anfds [fd].events)
2204       {
2205         anfds [fd].events = 0;
2206         anfds [fd].emask  = 0;
2207         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2208       }
2209 }
2210 
2211 /* used to prepare libev internal fd's */
2212 /* this is not fork-safe */
2213 inline_speed void
fd_intern(int fd)2214 fd_intern (int fd)
2215 {
2216 #ifdef _WIN32
2217   unsigned long arg = 1;
2218   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2219 #else
2220   fcntl (fd, F_SETFD, FD_CLOEXEC);
2221   fcntl (fd, F_SETFL, O_NONBLOCK);
2222 #endif
2223 }
2224 
2225 /*****************************************************************************/
2226 
2227 /*
2228  * the heap functions want a real array index. array index 0 is guaranteed to not
2229  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2230  * the branching factor of the d-tree.
2231  */
2232 
2233 /*
2234  * at the moment we allow libev the luxury of two heaps,
2235  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2236  * which is more cache-efficient.
2237  * the difference is about 5% with 50000+ watchers.
2238  */
2239 #if EV_USE_4HEAP
2240 
2241 #define DHEAP 4
2242 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2243 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2244 #define UPHEAP_DONE(p,k) ((p) == (k))
2245 
2246 /* away from the root */
2247 inline_speed void
downheap(ANHE * heap,int N,int k)2248 downheap (ANHE *heap, int N, int k)
2249 {
2250   ANHE he = heap [k];
2251   ANHE *E = heap + N + HEAP0;
2252 
2253   for (;;)
2254     {
2255       ev_tstamp minat;
2256       ANHE *minpos;
2257       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2258 
2259       /* find minimum child */
2260       if (expect_true (pos + DHEAP - 1 < E))
2261         {
2262           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266         }
2267       else if (pos < E)
2268         {
2269           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2270           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2271           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2272           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2273         }
2274       else
2275         break;
2276 
2277       if (ANHE_at (he) <= minat)
2278         break;
2279 
2280       heap [k] = *minpos;
2281       ev_active (ANHE_w (*minpos)) = k;
2282 
2283       k = minpos - heap;
2284     }
2285 
2286   heap [k] = he;
2287   ev_active (ANHE_w (he)) = k;
2288 }
2289 
2290 #else /* 4HEAP */
2291 
2292 #define HEAP0 1
2293 #define HPARENT(k) ((k) >> 1)
2294 #define UPHEAP_DONE(p,k) (!(p))
2295 
2296 /* away from the root */
2297 inline_speed void
downheap(ANHE * heap,int N,int k)2298 downheap (ANHE *heap, int N, int k)
2299 {
2300   ANHE he = heap [k];
2301 
2302   for (;;)
2303     {
2304       int c = k << 1;
2305 
2306       if (c >= N + HEAP0)
2307         break;
2308 
2309       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2310            ? 1 : 0;
2311 
2312       if (ANHE_at (he) <= ANHE_at (heap [c]))
2313         break;
2314 
2315       heap [k] = heap [c];
2316       ev_active (ANHE_w (heap [k])) = k;
2317 
2318       k = c;
2319     }
2320 
2321   heap [k] = he;
2322   ev_active (ANHE_w (he)) = k;
2323 }
2324 #endif
2325 
2326 /* towards the root */
2327 inline_speed void
upheap(ANHE * heap,int k)2328 upheap (ANHE *heap, int k)
2329 {
2330   ANHE he = heap [k];
2331 
2332   for (;;)
2333     {
2334       int p = HPARENT (k);
2335 
2336       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2337         break;
2338 
2339       heap [k] = heap [p];
2340       ev_active (ANHE_w (heap [k])) = k;
2341       k = p;
2342     }
2343 
2344   heap [k] = he;
2345   ev_active (ANHE_w (he)) = k;
2346 }
2347 
2348 /* move an element suitably so it is in a correct place */
2349 inline_size void
adjustheap(ANHE * heap,int N,int k)2350 adjustheap (ANHE *heap, int N, int k)
2351 {
2352   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2353     upheap (heap, k);
2354   else
2355     downheap (heap, N, k);
2356 }
2357 
2358 /* rebuild the heap: this function is used only once and executed rarely */
2359 inline_size void
reheap(ANHE * heap,int N)2360 reheap (ANHE *heap, int N)
2361 {
2362   int i;
2363 
2364   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2365   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2366   for (i = 0; i < N; ++i)
2367     upheap (heap, i + HEAP0);
2368 }
2369 
2370 /*****************************************************************************/
2371 
2372 /* associate signal watchers to a signal signal */
2373 typedef struct
2374 {
2375   EV_ATOMIC_T pending;
2376 #if EV_MULTIPLICITY
2377   EV_P;
2378 #endif
2379   WL head;
2380 } ANSIG;
2381 
2382 static ANSIG signals [EV_NSIG - 1];
2383 
2384 /*****************************************************************************/
2385 
2386 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2387 
2388 static void noinline ecb_cold
evpipe_init(EV_P)2389 evpipe_init (EV_P)
2390 {
2391   if (!ev_is_active (&pipe_w))
2392     {
2393       int fds [2];
2394 
2395 # if EV_USE_EVENTFD
2396       fds [0] = -1;
2397       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2398       if (fds [1] < 0 && errno == EINVAL)
2399         fds [1] = eventfd (0, 0);
2400 
2401       if (fds [1] < 0)
2402 # endif
2403         {
2404           while (pipe (fds))
2405             ev_syserr ("(libev) error creating signal/async pipe");
2406 
2407           fd_intern (fds [0]);
2408         }
2409 
2410       evpipe [0] = fds [0];
2411 
2412       if (evpipe [1] < 0)
2413         evpipe [1] = fds [1]; /* first call, set write fd */
2414       else
2415         {
2416           /* on subsequent calls, do not change evpipe [1] */
2417           /* so that evpipe_write can always rely on its value. */
2418           /* this branch does not do anything sensible on windows, */
2419           /* so must not be executed on windows */
2420 
2421           dup2 (fds [1], evpipe [1]);
2422           close (fds [1]);
2423         }
2424 
2425       fd_intern (evpipe [1]);
2426 
2427       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2428       ev_io_start (EV_A_ &pipe_w);
2429       ev_unref (EV_A); /* watcher should not keep loop alive */
2430     }
2431 }
2432 
2433 inline_speed void
evpipe_write(EV_P_ EV_ATOMIC_T * flag)2434 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2435 {
2436   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2437 
2438   if (expect_true (*flag))
2439     return;
2440 
2441   *flag = 1;
2442   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2443 
2444   pipe_write_skipped = 1;
2445 
2446   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2447 
2448   if (pipe_write_wanted)
2449     {
2450       int old_errno;
2451 
2452       pipe_write_skipped = 0;
2453       ECB_MEMORY_FENCE_RELEASE;
2454 
2455       old_errno = errno; /* save errno because write will clobber it */
2456 
2457 #if EV_USE_EVENTFD
2458       if (evpipe [0] < 0)
2459         {
2460           uint64_t counter = 1;
2461           write (evpipe [1], &counter, sizeof (uint64_t));
2462         }
2463       else
2464 #endif
2465         {
2466 #ifdef _WIN32
2467           WSABUF buf;
2468           DWORD sent;
2469           buf.buf = &buf;
2470           buf.len = 1;
2471           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2472 #else
2473           write (evpipe [1], &(evpipe [1]), 1);
2474 #endif
2475         }
2476 
2477       errno = old_errno;
2478     }
2479 }
2480 
2481 /* called whenever the libev signal pipe */
2482 /* got some events (signal, async) */
2483 static void
pipecb(EV_P_ ev_io * iow,int revents)2484 pipecb (EV_P_ ev_io *iow, int revents)
2485 {
2486   int i;
2487 
2488   if (revents & EV_READ)
2489     {
2490 #if EV_USE_EVENTFD
2491       if (evpipe [0] < 0)
2492         {
2493           uint64_t counter;
2494           read (evpipe [1], &counter, sizeof (uint64_t));
2495         }
2496       else
2497 #endif
2498         {
2499           char dummy[4];
2500 #ifdef _WIN32
2501           WSABUF buf;
2502           DWORD recvd;
2503           DWORD flags = 0;
2504           buf.buf = dummy;
2505           buf.len = sizeof (dummy);
2506           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2507 #else
2508           read (evpipe [0], &dummy, sizeof (dummy));
2509 #endif
2510         }
2511     }
2512 
2513   pipe_write_skipped = 0;
2514 
2515   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2516 
2517 #if EV_SIGNAL_ENABLE
2518   if (sig_pending)
2519     {
2520       sig_pending = 0;
2521 
2522       ECB_MEMORY_FENCE;
2523 
2524       for (i = EV_NSIG - 1; i--; )
2525         if (expect_false (signals [i].pending))
2526           ev_feed_signal_event (EV_A_ i + 1);
2527     }
2528 #endif
2529 
2530 #if EV_ASYNC_ENABLE
2531   if (async_pending)
2532     {
2533       async_pending = 0;
2534 
2535       ECB_MEMORY_FENCE;
2536 
2537       for (i = asynccnt; i--; )
2538         if (asyncs [i]->sent)
2539           {
2540             asyncs [i]->sent = 0;
2541             ECB_MEMORY_FENCE_RELEASE;
2542             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2543           }
2544     }
2545 #endif
2546 }
2547 
2548 /*****************************************************************************/
2549 
2550 void
ev_feed_signal(int signum)2551 ev_feed_signal (int signum) EV_THROW
2552 {
2553 #if EV_MULTIPLICITY
2554   EV_P;
2555   ECB_MEMORY_FENCE_ACQUIRE;
2556   EV_A = signals [signum - 1].loop;
2557 
2558   if (!EV_A)
2559     return;
2560 #endif
2561 
2562   signals [signum - 1].pending = 1;
2563   evpipe_write (EV_A_ &sig_pending);
2564 }
2565 
2566 static void
ev_sighandler(int signum)2567 ev_sighandler (int signum)
2568 {
2569 #ifdef _WIN32
2570   signal (signum, ev_sighandler);
2571 #endif
2572 
2573   ev_feed_signal (signum);
2574 }
2575 
2576 void noinline
ev_feed_signal_event(EV_P_ int signum)2577 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2578 {
2579   WL w;
2580 
2581   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2582     return;
2583 
2584   --signum;
2585 
2586 #if EV_MULTIPLICITY
2587   /* it is permissible to try to feed a signal to the wrong loop */
2588   /* or, likely more useful, feeding a signal nobody is waiting for */
2589 
2590   if (expect_false (signals [signum].loop != EV_A))
2591     return;
2592 #endif
2593 
2594   signals [signum].pending = 0;
2595   ECB_MEMORY_FENCE_RELEASE;
2596 
2597   for (w = signals [signum].head; w; w = w->next)
2598     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2599 }
2600 
2601 #if EV_USE_SIGNALFD
2602 static void
sigfdcb(EV_P_ ev_io * iow,int revents)2603 sigfdcb (EV_P_ ev_io *iow, int revents)
2604 {
2605   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2606 
2607   for (;;)
2608     {
2609       ssize_t res = read (sigfd, si, sizeof (si));
2610 
2611       /* not ISO-C, as res might be -1, but works with SuS */
2612       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2613         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2614 
2615       if (res < (ssize_t)sizeof (si))
2616         break;
2617     }
2618 }
2619 #endif
2620 
2621 #endif
2622 
2623 /*****************************************************************************/
2624 
2625 #if EV_CHILD_ENABLE
2626 static WL childs [EV_PID_HASHSIZE];
2627 
2628 static ev_signal childev;
2629 
2630 #ifndef WIFCONTINUED
2631 # define WIFCONTINUED(status) 0
2632 #endif
2633 
2634 /* handle a single child status event */
2635 inline_speed void
child_reap(EV_P_ int chain,int pid,int status)2636 child_reap (EV_P_ int chain, int pid, int status)
2637 {
2638   ev_child *w;
2639   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2640 
2641   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2642     {
2643       if ((w->pid == pid || !w->pid)
2644           && (!traced || (w->flags & 1)))
2645         {
2646           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2647           w->rpid    = pid;
2648           w->rstatus = status;
2649           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2650         }
2651     }
2652 }
2653 
2654 #ifndef WCONTINUED
2655 # define WCONTINUED 0
2656 #endif
2657 
2658 /* called on sigchld etc., calls waitpid */
2659 static void
childcb(EV_P_ ev_signal * sw,int revents)2660 childcb (EV_P_ ev_signal *sw, int revents)
2661 {
2662   int pid, status;
2663 
2664   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2665   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2666     if (!WCONTINUED
2667         || errno != EINVAL
2668         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2669       return;
2670 
2671   /* make sure we are called again until all children have been reaped */
2672   /* we need to do it this way so that the callback gets called before we continue */
2673   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2674 
2675   child_reap (EV_A_ pid, pid, status);
2676   if ((EV_PID_HASHSIZE) > 1)
2677     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2678 }
2679 
2680 #endif
2681 
2682 /*****************************************************************************/
2683 
2684 #if EV_USE_IOCP
2685 # include "ev_iocp.c"
2686 #endif
2687 #if EV_USE_PORT
2688 # include "ev_port.c"
2689 #endif
2690 #if EV_USE_KQUEUE
2691 # include "ev_kqueue.c"
2692 #endif
2693 #if EV_USE_EPOLL
2694 # include "ev_epoll.c"
2695 #endif
2696 #if EV_USE_POLL
2697 # include "ev_poll.c"
2698 #endif
2699 #if EV_USE_SELECT
2700 # include "ev_select.c"
2701 #endif
2702 
2703 int ecb_cold
ev_version_major(void)2704 ev_version_major (void) EV_THROW
2705 {
2706   return EV_VERSION_MAJOR;
2707 }
2708 
2709 int ecb_cold
ev_version_minor(void)2710 ev_version_minor (void) EV_THROW
2711 {
2712   return EV_VERSION_MINOR;
2713 }
2714 
2715 /* return true if we are running with elevated privileges and should ignore env variables */
2716 int inline_size ecb_cold
enable_secure(void)2717 enable_secure (void)
2718 {
2719 #ifdef _WIN32
2720   return 0;
2721 #else
2722   return getuid () != geteuid ()
2723       || getgid () != getegid ();
2724 #endif
2725 }
2726 
2727 unsigned int ecb_cold
ev_supported_backends(void)2728 ev_supported_backends (void) EV_THROW
2729 {
2730   unsigned int flags = 0;
2731 
2732   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2733   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2734   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2735   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2736   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2737 
2738   return flags;
2739 }
2740 
2741 unsigned int ecb_cold
ev_recommended_backends(void)2742 ev_recommended_backends (void) EV_THROW
2743 {
2744   unsigned int flags = ev_supported_backends ();
2745 
2746 #ifndef __NetBSD__
2747   /* kqueue is borked on everything but netbsd apparently */
2748   /* it usually doesn't work correctly on anything but sockets and pipes */
2749   flags &= ~EVBACKEND_KQUEUE;
2750 #endif
2751 #ifdef __APPLE__
2752   /* only select works correctly on that "unix-certified" platform */
2753   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2754   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2755 #endif
2756 #ifdef __FreeBSD__
2757   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2758 #endif
2759 
2760   return flags;
2761 }
2762 
2763 unsigned int ecb_cold
ev_embeddable_backends(void)2764 ev_embeddable_backends (void) EV_THROW
2765 {
2766   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2767 
2768   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2769   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2770     flags &= ~EVBACKEND_EPOLL;
2771 
2772   return flags;
2773 }
2774 
2775 unsigned int
ev_backend(EV_P)2776 ev_backend (EV_P) EV_THROW
2777 {
2778   return backend;
2779 }
2780 
2781 #if EV_FEATURE_API
2782 unsigned int
ev_iteration(EV_P)2783 ev_iteration (EV_P) EV_THROW
2784 {
2785   return loop_count;
2786 }
2787 
2788 unsigned int
ev_depth(EV_P)2789 ev_depth (EV_P) EV_THROW
2790 {
2791   return loop_depth;
2792 }
2793 
2794 void
ev_set_io_collect_interval(EV_P_ ev_tstamp interval)2795 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2796 {
2797   io_blocktime = interval;
2798 }
2799 
2800 void
ev_set_timeout_collect_interval(EV_P_ ev_tstamp interval)2801 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2802 {
2803   timeout_blocktime = interval;
2804 }
2805 
2806 void
ev_set_userdata(EV_P_ void * data)2807 ev_set_userdata (EV_P_ void *data) EV_THROW
2808 {
2809   userdata = data;
2810 }
2811 
2812 void *
ev_userdata(EV_P)2813 ev_userdata (EV_P) EV_THROW
2814 {
2815   return userdata;
2816 }
2817 
2818 void
ev_set_invoke_pending_cb(EV_P_ ev_loop_callback invoke_pending_cb)2819 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2820 {
2821   invoke_cb = invoke_pending_cb;
2822 }
2823 
2824 void
ev_set_loop_release_cb(EV_P_ void (* release)(EV_P)EV_THROW,void (* acquire)(EV_P)EV_THROW)2825 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2826 {
2827   release_cb = release;
2828   acquire_cb = acquire;
2829 }
2830 #endif
2831 
2832 /* initialise a loop structure, must be zero-initialised */
2833 static void noinline ecb_cold
loop_init(EV_P_ unsigned int flags)2834 loop_init (EV_P_ unsigned int flags) EV_THROW
2835 {
2836   if (!backend)
2837     {
2838       origflags = flags;
2839 
2840 #if EV_USE_REALTIME
2841       if (!have_realtime)
2842         {
2843           struct timespec ts;
2844 
2845           if (!clock_gettime (CLOCK_REALTIME, &ts))
2846             have_realtime = 1;
2847         }
2848 #endif
2849 
2850 #if EV_USE_MONOTONIC
2851       if (!have_monotonic)
2852         {
2853           struct timespec ts;
2854 
2855           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2856             have_monotonic = 1;
2857         }
2858 #endif
2859 
2860       /* pid check not overridable via env */
2861 #ifndef _WIN32
2862       if (flags & EVFLAG_FORKCHECK)
2863         curpid = getpid ();
2864 #endif
2865 
2866       if (!(flags & EVFLAG_NOENV)
2867           && !enable_secure ()
2868           && getenv ("LIBEV_FLAGS"))
2869         flags = atoi (getenv ("LIBEV_FLAGS"));
2870 
2871       ev_rt_now          = ev_time ();
2872       mn_now             = get_clock ();
2873       now_floor          = mn_now;
2874       rtmn_diff          = ev_rt_now - mn_now;
2875 #if EV_FEATURE_API
2876       invoke_cb          = ev_invoke_pending;
2877 #endif
2878 
2879       io_blocktime       = 0.;
2880       timeout_blocktime  = 0.;
2881       backend            = 0;
2882       backend_fd         = -1;
2883       sig_pending        = 0;
2884 #if EV_ASYNC_ENABLE
2885       async_pending      = 0;
2886 #endif
2887       pipe_write_skipped = 0;
2888       pipe_write_wanted  = 0;
2889       evpipe [0]         = -1;
2890       evpipe [1]         = -1;
2891 #if EV_USE_INOTIFY
2892       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2893 #endif
2894 #if EV_USE_SIGNALFD
2895       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2896 #endif
2897 
2898       if (!(flags & EVBACKEND_MASK))
2899         flags |= ev_recommended_backends ();
2900 
2901 #if EV_USE_IOCP
2902       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2903 #endif
2904 #if EV_USE_PORT
2905       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2906 #endif
2907 #if EV_USE_KQUEUE
2908       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2909 #endif
2910 #if EV_USE_EPOLL
2911       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2912 #endif
2913 #if EV_USE_POLL
2914       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2915 #endif
2916 #if EV_USE_SELECT
2917       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2918 #endif
2919 
2920       ev_prepare_init (&pending_w, pendingcb);
2921 
2922 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2923       ev_init (&pipe_w, pipecb);
2924       ev_set_priority (&pipe_w, EV_MAXPRI);
2925 #endif
2926     }
2927 }
2928 
2929 /* free up a loop structure */
2930 void ecb_cold
ev_loop_destroy(EV_P)2931 ev_loop_destroy (EV_P)
2932 {
2933   int i;
2934 
2935 #if EV_MULTIPLICITY
2936   /* mimic free (0) */
2937   if (!EV_A)
2938     return;
2939 #endif
2940 
2941 #if EV_CLEANUP_ENABLE
2942   /* queue cleanup watchers (and execute them) */
2943   if (expect_false (cleanupcnt))
2944     {
2945       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2946       EV_INVOKE_PENDING;
2947     }
2948 #endif
2949 
2950 #if EV_CHILD_ENABLE
2951   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2952     {
2953       ev_ref (EV_A); /* child watcher */
2954       ev_signal_stop (EV_A_ &childev);
2955     }
2956 #endif
2957 
2958   if (ev_is_active (&pipe_w))
2959     {
2960       /*ev_ref (EV_A);*/
2961       /*ev_io_stop (EV_A_ &pipe_w);*/
2962 
2963       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2964       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2965     }
2966 
2967 #if EV_USE_SIGNALFD
2968   if (ev_is_active (&sigfd_w))
2969     close (sigfd);
2970 #endif
2971 
2972 #if EV_USE_INOTIFY
2973   if (fs_fd >= 0)
2974     close (fs_fd);
2975 #endif
2976 
2977   if (backend_fd >= 0)
2978     close (backend_fd);
2979 
2980 #if EV_USE_IOCP
2981   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2982 #endif
2983 #if EV_USE_PORT
2984   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2985 #endif
2986 #if EV_USE_KQUEUE
2987   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2988 #endif
2989 #if EV_USE_EPOLL
2990   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2991 #endif
2992 #if EV_USE_POLL
2993   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2994 #endif
2995 #if EV_USE_SELECT
2996   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2997 #endif
2998 
2999   for (i = NUMPRI; i--; )
3000     {
3001       array_free (pending, [i]);
3002 #if EV_IDLE_ENABLE
3003       array_free (idle, [i]);
3004 #endif
3005     }
3006 
3007   ev_free (anfds); anfds = 0; anfdmax = 0;
3008 
3009   /* have to use the microsoft-never-gets-it-right macro */
3010   array_free (rfeed, EMPTY);
3011   array_free (fdchange, EMPTY);
3012   array_free (timer, EMPTY);
3013 #if EV_PERIODIC_ENABLE
3014   array_free (periodic, EMPTY);
3015 #endif
3016 #if EV_FORK_ENABLE
3017   array_free (fork, EMPTY);
3018 #endif
3019 #if EV_CLEANUP_ENABLE
3020   array_free (cleanup, EMPTY);
3021 #endif
3022   array_free (prepare, EMPTY);
3023   array_free (check, EMPTY);
3024 #if EV_ASYNC_ENABLE
3025   array_free (async, EMPTY);
3026 #endif
3027 
3028   backend = 0;
3029 
3030 #if EV_MULTIPLICITY
3031   if (ev_is_default_loop (EV_A))
3032 #endif
3033     ev_default_loop_ptr = 0;
3034 #if EV_MULTIPLICITY
3035   else
3036     ev_free (EV_A);
3037 #endif
3038 }
3039 
3040 #if EV_USE_INOTIFY
3041 inline_size void infy_fork (EV_P);
3042 #endif
3043 
3044 inline_size void
loop_fork(EV_P)3045 loop_fork (EV_P)
3046 {
3047 #if EV_USE_PORT
3048   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
3049 #endif
3050 #if EV_USE_KQUEUE
3051   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3052 #endif
3053 #if EV_USE_EPOLL
3054   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
3055 #endif
3056 #if EV_USE_INOTIFY
3057   infy_fork (EV_A);
3058 #endif
3059 
3060 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3061   if (ev_is_active (&pipe_w) && postfork != 2)
3062     {
3063       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3064 
3065       ev_ref (EV_A);
3066       ev_io_stop (EV_A_ &pipe_w);
3067 
3068       if (evpipe [0] >= 0)
3069         EV_WIN32_CLOSE_FD (evpipe [0]);
3070 
3071       evpipe_init (EV_A);
3072       /* iterate over everything, in case we missed something before */
3073       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074     }
3075 #endif
3076 
3077   postfork = 0;
3078 }
3079 
3080 #if EV_MULTIPLICITY
3081 
3082 struct ev_loop * ecb_cold
ev_loop_new(unsigned int flags)3083 ev_loop_new (unsigned int flags) EV_THROW
3084 {
3085   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3086 
3087   memset (EV_A, 0, sizeof (struct ev_loop));
3088   loop_init (EV_A_ flags);
3089 
3090   if (ev_backend (EV_A))
3091     return EV_A;
3092 
3093   ev_free (EV_A);
3094   return 0;
3095 }
3096 
3097 #endif /* multiplicity */
3098 
3099 #if EV_VERIFY
3100 static void noinline ecb_cold
verify_watcher(EV_P_ W w)3101 verify_watcher (EV_P_ W w)
3102 {
3103   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3104 
3105   if (w->pending)
3106     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3107 }
3108 
3109 static void noinline ecb_cold
verify_heap(EV_P_ ANHE * heap,int N)3110 verify_heap (EV_P_ ANHE *heap, int N)
3111 {
3112   int i;
3113 
3114   for (i = HEAP0; i < N + HEAP0; ++i)
3115     {
3116       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3117       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3118       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3119 
3120       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3121     }
3122 }
3123 
3124 static void noinline ecb_cold
array_verify(EV_P_ W * ws,int cnt)3125 array_verify (EV_P_ W *ws, int cnt)
3126 {
3127   while (cnt--)
3128     {
3129       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3130       verify_watcher (EV_A_ ws [cnt]);
3131     }
3132 }
3133 #endif
3134 
3135 #if EV_FEATURE_API
3136 void ecb_cold
ev_verify(EV_P)3137 ev_verify (EV_P) EV_THROW
3138 {
3139 #if EV_VERIFY
3140   int i;
3141   WL w, w2;
3142 
3143   assert (activecnt >= -1);
3144 
3145   assert (fdchangemax >= fdchangecnt);
3146   for (i = 0; i < fdchangecnt; ++i)
3147     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3148 
3149   assert (anfdmax >= 0);
3150   for (i = 0; i < anfdmax; ++i)
3151     {
3152       int j = 0;
3153 
3154       for (w = w2 = anfds [i].head; w; w = w->next)
3155         {
3156           verify_watcher (EV_A_ (W)w);
3157 
3158           if (j++ & 1)
3159             {
3160               assert (("libev: io watcher list contains a loop", w != w2));
3161               w2 = w2->next;
3162             }
3163 
3164           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3165           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3166         }
3167     }
3168 
3169   assert (timermax >= timercnt);
3170   verify_heap (EV_A_ timers, timercnt);
3171 
3172 #if EV_PERIODIC_ENABLE
3173   assert (periodicmax >= periodiccnt);
3174   verify_heap (EV_A_ periodics, periodiccnt);
3175 #endif
3176 
3177   for (i = NUMPRI; i--; )
3178     {
3179       assert (pendingmax [i] >= pendingcnt [i]);
3180 #if EV_IDLE_ENABLE
3181       assert (idleall >= 0);
3182       assert (idlemax [i] >= idlecnt [i]);
3183       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3184 #endif
3185     }
3186 
3187 #if EV_FORK_ENABLE
3188   assert (forkmax >= forkcnt);
3189   array_verify (EV_A_ (W *)forks, forkcnt);
3190 #endif
3191 
3192 #if EV_CLEANUP_ENABLE
3193   assert (cleanupmax >= cleanupcnt);
3194   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3195 #endif
3196 
3197 #if EV_ASYNC_ENABLE
3198   assert (asyncmax >= asynccnt);
3199   array_verify (EV_A_ (W *)asyncs, asynccnt);
3200 #endif
3201 
3202 #if EV_PREPARE_ENABLE
3203   assert (preparemax >= preparecnt);
3204   array_verify (EV_A_ (W *)prepares, preparecnt);
3205 #endif
3206 
3207 #if EV_CHECK_ENABLE
3208   assert (checkmax >= checkcnt);
3209   array_verify (EV_A_ (W *)checks, checkcnt);
3210 #endif
3211 
3212 # if 0
3213 #if EV_CHILD_ENABLE
3214   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3215   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3216 #endif
3217 # endif
3218 #endif
3219 }
3220 #endif
3221 
3222 #if EV_MULTIPLICITY
3223 struct ev_loop * ecb_cold
3224 #else
3225 int
3226 #endif
ev_default_loop(unsigned int flags)3227 ev_default_loop (unsigned int flags) EV_THROW
3228 {
3229   if (!ev_default_loop_ptr)
3230     {
3231 #if EV_MULTIPLICITY
3232       EV_P = ev_default_loop_ptr = &default_loop_struct;
3233 #else
3234       ev_default_loop_ptr = 1;
3235 #endif
3236 
3237       loop_init (EV_A_ flags);
3238 
3239       if (ev_backend (EV_A))
3240         {
3241 #if EV_CHILD_ENABLE
3242           ev_signal_init (&childev, childcb, SIGCHLD);
3243           ev_set_priority (&childev, EV_MAXPRI);
3244           ev_signal_start (EV_A_ &childev);
3245           ev_unref (EV_A); /* child watcher should not keep loop alive */
3246 #endif
3247         }
3248       else
3249         ev_default_loop_ptr = 0;
3250     }
3251 
3252   return ev_default_loop_ptr;
3253 }
3254 
3255 void
ev_loop_fork(EV_P)3256 ev_loop_fork (EV_P) EV_THROW
3257 {
3258   postfork = 1;
3259 }
3260 
3261 /*****************************************************************************/
3262 
3263 void
ev_invoke(EV_P_ void * w,int revents)3264 ev_invoke (EV_P_ void *w, int revents)
3265 {
3266   EV_CB_INVOKE ((W)w, revents);
3267 }
3268 
3269 unsigned int
ev_pending_count(EV_P)3270 ev_pending_count (EV_P) EV_THROW
3271 {
3272   int pri;
3273   unsigned int count = 0;
3274 
3275   for (pri = NUMPRI; pri--; )
3276     count += pendingcnt [pri];
3277 
3278   return count;
3279 }
3280 
3281 void noinline
ev_invoke_pending(EV_P)3282 ev_invoke_pending (EV_P)
3283 {
3284   pendingpri = NUMPRI;
3285 
3286   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3287     {
3288       --pendingpri;
3289 
3290       while (pendingcnt [pendingpri])
3291         {
3292           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3293 
3294           p->w->pending = 0;
3295           EV_CB_INVOKE (p->w, p->events);
3296           EV_FREQUENT_CHECK;
3297         }
3298     }
3299 }
3300 
3301 #if EV_IDLE_ENABLE
3302 /* make idle watchers pending. this handles the "call-idle */
3303 /* only when higher priorities are idle" logic */
3304 inline_size void
idle_reify(EV_P)3305 idle_reify (EV_P)
3306 {
3307   if (expect_false (idleall))
3308     {
3309       int pri;
3310 
3311       for (pri = NUMPRI; pri--; )
3312         {
3313           if (pendingcnt [pri])
3314             break;
3315 
3316           if (idlecnt [pri])
3317             {
3318               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3319               break;
3320             }
3321         }
3322     }
3323 }
3324 #endif
3325 
3326 /* make timers pending */
3327 inline_size void
timers_reify(EV_P)3328 timers_reify (EV_P)
3329 {
3330   EV_FREQUENT_CHECK;
3331 
3332   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3333     {
3334       do
3335         {
3336           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3337 
3338           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3339 
3340           /* first reschedule or stop timer */
3341           if (w->repeat)
3342             {
3343               ev_at (w) += w->repeat;
3344               if (ev_at (w) < mn_now)
3345                 ev_at (w) = mn_now;
3346 
3347               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3348 
3349               ANHE_at_cache (timers [HEAP0]);
3350               downheap (timers, timercnt, HEAP0);
3351             }
3352           else
3353             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3354 
3355           EV_FREQUENT_CHECK;
3356           feed_reverse (EV_A_ (W)w);
3357         }
3358       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3359 
3360       feed_reverse_done (EV_A_ EV_TIMER);
3361     }
3362 }
3363 
3364 #if EV_PERIODIC_ENABLE
3365 
3366 static void noinline
periodic_recalc(EV_P_ ev_periodic * w)3367 periodic_recalc (EV_P_ ev_periodic *w)
3368 {
3369   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3370   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3371 
3372   /* the above almost always errs on the low side */
3373   while (at <= ev_rt_now)
3374     {
3375       ev_tstamp nat = at + w->interval;
3376 
3377       /* when resolution fails us, we use ev_rt_now */
3378       if (expect_false (nat == at))
3379         {
3380           at = ev_rt_now;
3381           break;
3382         }
3383 
3384       at = nat;
3385     }
3386 
3387   ev_at (w) = at;
3388 }
3389 
3390 /* make periodics pending */
3391 inline_size void
periodics_reify(EV_P)3392 periodics_reify (EV_P)
3393 {
3394   EV_FREQUENT_CHECK;
3395 
3396   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3397     {
3398       do
3399         {
3400           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3401 
3402           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3403 
3404           /* first reschedule or stop timer */
3405           if (w->reschedule_cb)
3406             {
3407               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3408 
3409               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3410 
3411               ANHE_at_cache (periodics [HEAP0]);
3412               downheap (periodics, periodiccnt, HEAP0);
3413             }
3414           else if (w->interval)
3415             {
3416               periodic_recalc (EV_A_ w);
3417               ANHE_at_cache (periodics [HEAP0]);
3418               downheap (periodics, periodiccnt, HEAP0);
3419             }
3420           else
3421             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3422 
3423           EV_FREQUENT_CHECK;
3424           feed_reverse (EV_A_ (W)w);
3425         }
3426       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3427 
3428       feed_reverse_done (EV_A_ EV_PERIODIC);
3429     }
3430 }
3431 
3432 /* simply recalculate all periodics */
3433 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3434 static void noinline ecb_cold
periodics_reschedule(EV_P)3435 periodics_reschedule (EV_P)
3436 {
3437   int i;
3438 
3439   /* adjust periodics after time jump */
3440   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3441     {
3442       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3443 
3444       if (w->reschedule_cb)
3445         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3446       else if (w->interval)
3447         periodic_recalc (EV_A_ w);
3448 
3449       ANHE_at_cache (periodics [i]);
3450     }
3451 
3452   reheap (periodics, periodiccnt);
3453 }
3454 #endif
3455 
3456 /* adjust all timers by a given offset */
3457 static void noinline ecb_cold
timers_reschedule(EV_P_ ev_tstamp adjust)3458 timers_reschedule (EV_P_ ev_tstamp adjust)
3459 {
3460   int i;
3461 
3462   for (i = 0; i < timercnt; ++i)
3463     {
3464       ANHE *he = timers + i + HEAP0;
3465       ANHE_w (*he)->at += adjust;
3466       ANHE_at_cache (*he);
3467     }
3468 }
3469 
3470 /* fetch new monotonic and realtime times from the kernel */
3471 /* also detect if there was a timejump, and act accordingly */
3472 inline_speed void
time_update(EV_P_ ev_tstamp max_block)3473 time_update (EV_P_ ev_tstamp max_block)
3474 {
3475 #if EV_USE_MONOTONIC
3476   if (expect_true (have_monotonic))
3477     {
3478       int i;
3479       ev_tstamp odiff = rtmn_diff;
3480 
3481       mn_now = get_clock ();
3482 
3483       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3484       /* interpolate in the meantime */
3485       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3486         {
3487           ev_rt_now = rtmn_diff + mn_now;
3488           return;
3489         }
3490 
3491       now_floor = mn_now;
3492       ev_rt_now = ev_time ();
3493 
3494       /* loop a few times, before making important decisions.
3495        * on the choice of "4": one iteration isn't enough,
3496        * in case we get preempted during the calls to
3497        * ev_time and get_clock. a second call is almost guaranteed
3498        * to succeed in that case, though. and looping a few more times
3499        * doesn't hurt either as we only do this on time-jumps or
3500        * in the unlikely event of having been preempted here.
3501        */
3502       for (i = 4; --i; )
3503         {
3504           ev_tstamp diff;
3505           rtmn_diff = ev_rt_now - mn_now;
3506 
3507           diff = odiff - rtmn_diff;
3508 
3509           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3510             return; /* all is well */
3511 
3512           ev_rt_now = ev_time ();
3513           mn_now    = get_clock ();
3514           now_floor = mn_now;
3515         }
3516 
3517       /* no timer adjustment, as the monotonic clock doesn't jump */
3518       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3519 # if EV_PERIODIC_ENABLE
3520       periodics_reschedule (EV_A);
3521 # endif
3522     }
3523   else
3524 #endif
3525     {
3526       ev_rt_now = ev_time ();
3527 
3528       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3529         {
3530           /* adjust timers. this is easy, as the offset is the same for all of them */
3531           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3532 #if EV_PERIODIC_ENABLE
3533           periodics_reschedule (EV_A);
3534 #endif
3535         }
3536 
3537       mn_now = ev_rt_now;
3538     }
3539 }
3540 
3541 int
ev_run(EV_P_ int flags)3542 ev_run (EV_P_ int flags)
3543 {
3544 #if EV_FEATURE_API
3545   ++loop_depth;
3546 #endif
3547 
3548   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3549 
3550   loop_done = EVBREAK_CANCEL;
3551 
3552   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3553 
3554   do
3555     {
3556 #if EV_VERIFY >= 2
3557       ev_verify (EV_A);
3558 #endif
3559 
3560 #ifndef _WIN32
3561       if (expect_false (curpid)) /* penalise the forking check even more */
3562         if (expect_false (getpid () != curpid))
3563           {
3564             curpid = getpid ();
3565             postfork = 1;
3566           }
3567 #endif
3568 
3569 #if EV_FORK_ENABLE
3570       /* we might have forked, so queue fork handlers */
3571       if (expect_false (postfork))
3572         if (forkcnt)
3573           {
3574             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3575             EV_INVOKE_PENDING;
3576           }
3577 #endif
3578 
3579 #if EV_PREPARE_ENABLE
3580       /* queue prepare watchers (and execute them) */
3581       if (expect_false (preparecnt))
3582         {
3583           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3584           EV_INVOKE_PENDING;
3585         }
3586 #endif
3587 
3588       if (expect_false (loop_done))
3589         break;
3590 
3591       /* we might have forked, so reify kernel state if necessary */
3592       if (expect_false (postfork))
3593         loop_fork (EV_A);
3594 
3595       /* update fd-related kernel structures */
3596       fd_reify (EV_A);
3597 
3598       /* calculate blocking time */
3599       {
3600         ev_tstamp waittime  = 0.;
3601         ev_tstamp sleeptime = 0.;
3602 
3603         /* remember old timestamp for io_blocktime calculation */
3604         ev_tstamp prev_mn_now = mn_now;
3605 
3606         /* update time to cancel out callback processing overhead */
3607         time_update (EV_A_ 1e100);
3608 
3609         /* from now on, we want a pipe-wake-up */
3610         pipe_write_wanted = 1;
3611 
3612         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3613 
3614         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3615           {
3616             waittime = MAX_BLOCKTIME;
3617 
3618             if (timercnt)
3619               {
3620                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3621                 if (waittime > to) waittime = to;
3622               }
3623 
3624 #if EV_PERIODIC_ENABLE
3625             if (periodiccnt)
3626               {
3627                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3628                 if (waittime > to) waittime = to;
3629               }
3630 #endif
3631 
3632             /* don't let timeouts decrease the waittime below timeout_blocktime */
3633             if (expect_false (waittime < timeout_blocktime))
3634               waittime = timeout_blocktime;
3635 
3636             /* at this point, we NEED to wait, so we have to ensure */
3637             /* to pass a minimum nonzero value to the backend */
3638             if (expect_false (waittime < backend_mintime))
3639               waittime = backend_mintime;
3640 
3641             /* extra check because io_blocktime is commonly 0 */
3642             if (expect_false (io_blocktime))
3643               {
3644                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3645 
3646                 if (sleeptime > waittime - backend_mintime)
3647                   sleeptime = waittime - backend_mintime;
3648 
3649                 if (expect_true (sleeptime > 0.))
3650                   {
3651                     ev_sleep (sleeptime);
3652                     waittime -= sleeptime;
3653                   }
3654               }
3655           }
3656 
3657 #if EV_FEATURE_API
3658         ++loop_count;
3659 #endif
3660         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3661         backend_poll (EV_A_ waittime);
3662         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3663 
3664         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3665 
3666         ECB_MEMORY_FENCE_ACQUIRE;
3667         if (pipe_write_skipped)
3668           {
3669             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3670             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3671           }
3672 
3673 
3674         /* update ev_rt_now, do magic */
3675         time_update (EV_A_ waittime + sleeptime);
3676       }
3677 
3678       /* queue pending timers and reschedule them */
3679       timers_reify (EV_A); /* relative timers called last */
3680 #if EV_PERIODIC_ENABLE
3681       periodics_reify (EV_A); /* absolute timers called first */
3682 #endif
3683 
3684 #if EV_IDLE_ENABLE
3685       /* queue idle watchers unless other events are pending */
3686       idle_reify (EV_A);
3687 #endif
3688 
3689 #if EV_CHECK_ENABLE
3690       /* queue check watchers, to be executed first */
3691       if (expect_false (checkcnt))
3692         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3693 #endif
3694 
3695       EV_INVOKE_PENDING;
3696     }
3697   while (expect_true (
3698     activecnt
3699     && !loop_done
3700     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3701   ));
3702 
3703   if (loop_done == EVBREAK_ONE)
3704     loop_done = EVBREAK_CANCEL;
3705 
3706 #if EV_FEATURE_API
3707   --loop_depth;
3708 #endif
3709 
3710   return activecnt;
3711 }
3712 
3713 void
ev_break(EV_P_ int how)3714 ev_break (EV_P_ int how) EV_THROW
3715 {
3716   loop_done = how;
3717 }
3718 
3719 void
ev_ref(EV_P)3720 ev_ref (EV_P) EV_THROW
3721 {
3722   ++activecnt;
3723 }
3724 
3725 void
ev_unref(EV_P)3726 ev_unref (EV_P) EV_THROW
3727 {
3728   --activecnt;
3729 }
3730 
3731 void
ev_now_update(EV_P)3732 ev_now_update (EV_P) EV_THROW
3733 {
3734   time_update (EV_A_ 1e100);
3735 }
3736 
3737 void
ev_suspend(EV_P)3738 ev_suspend (EV_P) EV_THROW
3739 {
3740   ev_now_update (EV_A);
3741 }
3742 
3743 void
ev_resume(EV_P)3744 ev_resume (EV_P) EV_THROW
3745 {
3746   ev_tstamp mn_prev = mn_now;
3747 
3748   ev_now_update (EV_A);
3749   timers_reschedule (EV_A_ mn_now - mn_prev);
3750 #if EV_PERIODIC_ENABLE
3751   /* TODO: really do this? */
3752   periodics_reschedule (EV_A);
3753 #endif
3754 }
3755 
3756 /*****************************************************************************/
3757 /* singly-linked list management, used when the expected list length is short */
3758 
3759 inline_size void
wlist_add(WL * head,WL elem)3760 wlist_add (WL *head, WL elem)
3761 {
3762   elem->next = *head;
3763   *head = elem;
3764 }
3765 
3766 inline_size void
wlist_del(WL * head,WL elem)3767 wlist_del (WL *head, WL elem)
3768 {
3769   while (*head)
3770     {
3771       if (expect_true (*head == elem))
3772         {
3773           *head = elem->next;
3774           break;
3775         }
3776 
3777       head = &(*head)->next;
3778     }
3779 }
3780 
3781 /* internal, faster, version of ev_clear_pending */
3782 inline_speed void
clear_pending(EV_P_ W w)3783 clear_pending (EV_P_ W w)
3784 {
3785   if (w->pending)
3786     {
3787       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3788       w->pending = 0;
3789     }
3790 }
3791 
3792 int
ev_clear_pending(EV_P_ void * w)3793 ev_clear_pending (EV_P_ void *w) EV_THROW
3794 {
3795   W w_ = (W)w;
3796   int pending = w_->pending;
3797 
3798   if (expect_true (pending))
3799     {
3800       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3801       p->w = (W)&pending_w;
3802       w_->pending = 0;
3803       return p->events;
3804     }
3805   else
3806     return 0;
3807 }
3808 
3809 inline_size void
pri_adjust(EV_P_ W w)3810 pri_adjust (EV_P_ W w)
3811 {
3812   int pri = ev_priority (w);
3813   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3814   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3815   ev_set_priority (w, pri);
3816 }
3817 
3818 inline_speed void
ev_start(EV_P_ W w,int active)3819 ev_start (EV_P_ W w, int active)
3820 {
3821   pri_adjust (EV_A_ w);
3822   w->active = active;
3823   ev_ref (EV_A);
3824 }
3825 
3826 inline_size void
ev_stop(EV_P_ W w)3827 ev_stop (EV_P_ W w)
3828 {
3829   ev_unref (EV_A);
3830   w->active = 0;
3831 }
3832 
3833 /*****************************************************************************/
3834 
3835 void noinline
ev_io_start(EV_P_ ev_io * w)3836 ev_io_start (EV_P_ ev_io *w) EV_THROW
3837 {
3838   int fd = w->fd;
3839 
3840   if (expect_false (ev_is_active (w)))
3841     return;
3842 
3843   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3844   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3845 
3846   EV_FREQUENT_CHECK;
3847 
3848   ev_start (EV_A_ (W)w, 1);
3849   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3850   wlist_add (&anfds[fd].head, (WL)w);
3851 
3852   /* common bug, apparently */
3853   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3854 
3855   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3856   w->events &= ~EV__IOFDSET;
3857 
3858   EV_FREQUENT_CHECK;
3859 }
3860 
3861 void noinline
ev_io_stop(EV_P_ ev_io * w)3862 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3863 {
3864   clear_pending (EV_A_ (W)w);
3865   if (expect_false (!ev_is_active (w)))
3866     return;
3867 
3868   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3869 
3870   EV_FREQUENT_CHECK;
3871 
3872   wlist_del (&anfds[w->fd].head, (WL)w);
3873   ev_stop (EV_A_ (W)w);
3874 
3875   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3876 
3877   EV_FREQUENT_CHECK;
3878 }
3879 
3880 void noinline
ev_timer_start(EV_P_ ev_timer * w)3881 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3882 {
3883   if (expect_false (ev_is_active (w)))
3884     return;
3885 
3886   ev_at (w) += mn_now;
3887 
3888   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3889 
3890   EV_FREQUENT_CHECK;
3891 
3892   ++timercnt;
3893   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3894   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3895   ANHE_w (timers [ev_active (w)]) = (WT)w;
3896   ANHE_at_cache (timers [ev_active (w)]);
3897   upheap (timers, ev_active (w));
3898 
3899   EV_FREQUENT_CHECK;
3900 
3901   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3902 }
3903 
3904 void noinline
ev_timer_stop(EV_P_ ev_timer * w)3905 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3906 {
3907   clear_pending (EV_A_ (W)w);
3908   if (expect_false (!ev_is_active (w)))
3909     return;
3910 
3911   EV_FREQUENT_CHECK;
3912 
3913   {
3914     int active = ev_active (w);
3915 
3916     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3917 
3918     --timercnt;
3919 
3920     if (expect_true (active < timercnt + HEAP0))
3921       {
3922         timers [active] = timers [timercnt + HEAP0];
3923         adjustheap (timers, timercnt, active);
3924       }
3925   }
3926 
3927   ev_at (w) -= mn_now;
3928 
3929   ev_stop (EV_A_ (W)w);
3930 
3931   EV_FREQUENT_CHECK;
3932 }
3933 
3934 void noinline
ev_timer_again(EV_P_ ev_timer * w)3935 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3936 {
3937   EV_FREQUENT_CHECK;
3938 
3939   clear_pending (EV_A_ (W)w);
3940 
3941   if (ev_is_active (w))
3942     {
3943       if (w->repeat)
3944         {
3945           ev_at (w) = mn_now + w->repeat;
3946           ANHE_at_cache (timers [ev_active (w)]);
3947           adjustheap (timers, timercnt, ev_active (w));
3948         }
3949       else
3950         ev_timer_stop (EV_A_ w);
3951     }
3952   else if (w->repeat)
3953     {
3954       ev_at (w) = w->repeat;
3955       ev_timer_start (EV_A_ w);
3956     }
3957 
3958   EV_FREQUENT_CHECK;
3959 }
3960 
3961 ev_tstamp
ev_timer_remaining(EV_P_ ev_timer * w)3962 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3963 {
3964   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3965 }
3966 
3967 #if EV_PERIODIC_ENABLE
3968 void noinline
ev_periodic_start(EV_P_ ev_periodic * w)3969 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3970 {
3971   if (expect_false (ev_is_active (w)))
3972     return;
3973 
3974   if (w->reschedule_cb)
3975     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3976   else if (w->interval)
3977     {
3978       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3979       periodic_recalc (EV_A_ w);
3980     }
3981   else
3982     ev_at (w) = w->offset;
3983 
3984   EV_FREQUENT_CHECK;
3985 
3986   ++periodiccnt;
3987   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3988   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3989   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3990   ANHE_at_cache (periodics [ev_active (w)]);
3991   upheap (periodics, ev_active (w));
3992 
3993   EV_FREQUENT_CHECK;
3994 
3995   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3996 }
3997 
3998 void noinline
ev_periodic_stop(EV_P_ ev_periodic * w)3999 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
4000 {
4001   clear_pending (EV_A_ (W)w);
4002   if (expect_false (!ev_is_active (w)))
4003     return;
4004 
4005   EV_FREQUENT_CHECK;
4006 
4007   {
4008     int active = ev_active (w);
4009 
4010     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4011 
4012     --periodiccnt;
4013 
4014     if (expect_true (active < periodiccnt + HEAP0))
4015       {
4016         periodics [active] = periodics [periodiccnt + HEAP0];
4017         adjustheap (periodics, periodiccnt, active);
4018       }
4019   }
4020 
4021   ev_stop (EV_A_ (W)w);
4022 
4023   EV_FREQUENT_CHECK;
4024 }
4025 
4026 void noinline
ev_periodic_again(EV_P_ ev_periodic * w)4027 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4028 {
4029   /* TODO: use adjustheap and recalculation */
4030   ev_periodic_stop (EV_A_ w);
4031   ev_periodic_start (EV_A_ w);
4032 }
4033 #endif
4034 
4035 #ifndef SA_RESTART
4036 # define SA_RESTART 0
4037 #endif
4038 
4039 #if EV_SIGNAL_ENABLE
4040 
4041 void noinline
ev_signal_start(EV_P_ ev_signal * w)4042 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4043 {
4044   if (expect_false (ev_is_active (w)))
4045     return;
4046 
4047   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4048 
4049 #if EV_MULTIPLICITY
4050   assert (("libev: a signal must not be attached to two different loops",
4051            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4052 
4053   signals [w->signum - 1].loop = EV_A;
4054   ECB_MEMORY_FENCE_RELEASE;
4055 #endif
4056 
4057   EV_FREQUENT_CHECK;
4058 
4059 #if EV_USE_SIGNALFD
4060   if (sigfd == -2)
4061     {
4062       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4063       if (sigfd < 0 && errno == EINVAL)
4064         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4065 
4066       if (sigfd >= 0)
4067         {
4068           fd_intern (sigfd); /* doing it twice will not hurt */
4069 
4070           sigemptyset (&sigfd_set);
4071 
4072           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4073           ev_set_priority (&sigfd_w, EV_MAXPRI);
4074           ev_io_start (EV_A_ &sigfd_w);
4075           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4076         }
4077     }
4078 
4079   if (sigfd >= 0)
4080     {
4081       /* TODO: check .head */
4082       sigaddset (&sigfd_set, w->signum);
4083       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4084 
4085       signalfd (sigfd, &sigfd_set, 0);
4086     }
4087 #endif
4088 
4089   ev_start (EV_A_ (W)w, 1);
4090   wlist_add (&signals [w->signum - 1].head, (WL)w);
4091 
4092   if (!((WL)w)->next)
4093 # if EV_USE_SIGNALFD
4094     if (sigfd < 0) /*TODO*/
4095 # endif
4096       {
4097 # ifdef _WIN32
4098         evpipe_init (EV_A);
4099 
4100         signal (w->signum, ev_sighandler);
4101 # else
4102         struct sigaction sa;
4103 
4104         evpipe_init (EV_A);
4105 
4106         sa.sa_handler = ev_sighandler;
4107         sigfillset (&sa.sa_mask);
4108         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4109         sigaction (w->signum, &sa, 0);
4110 
4111         if (origflags & EVFLAG_NOSIGMASK)
4112           {
4113             sigemptyset (&sa.sa_mask);
4114             sigaddset (&sa.sa_mask, w->signum);
4115             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4116           }
4117 #endif
4118       }
4119 
4120   EV_FREQUENT_CHECK;
4121 }
4122 
4123 void noinline
ev_signal_stop(EV_P_ ev_signal * w)4124 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4125 {
4126   clear_pending (EV_A_ (W)w);
4127   if (expect_false (!ev_is_active (w)))
4128     return;
4129 
4130   EV_FREQUENT_CHECK;
4131 
4132   wlist_del (&signals [w->signum - 1].head, (WL)w);
4133   ev_stop (EV_A_ (W)w);
4134 
4135   if (!signals [w->signum - 1].head)
4136     {
4137 #if EV_MULTIPLICITY
4138       signals [w->signum - 1].loop = 0; /* unattach from signal */
4139 #endif
4140 #if EV_USE_SIGNALFD
4141       if (sigfd >= 0)
4142         {
4143           sigset_t ss;
4144 
4145           sigemptyset (&ss);
4146           sigaddset (&ss, w->signum);
4147           sigdelset (&sigfd_set, w->signum);
4148 
4149           signalfd (sigfd, &sigfd_set, 0);
4150           sigprocmask (SIG_UNBLOCK, &ss, 0);
4151         }
4152       else
4153 #endif
4154         signal (w->signum, SIG_DFL);
4155     }
4156 
4157   EV_FREQUENT_CHECK;
4158 }
4159 
4160 #endif
4161 
4162 #if EV_CHILD_ENABLE
4163 
4164 void
ev_child_start(EV_P_ ev_child * w)4165 ev_child_start (EV_P_ ev_child *w) EV_THROW
4166 {
4167 #if EV_MULTIPLICITY
4168   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4169 #endif
4170   if (expect_false (ev_is_active (w)))
4171     return;
4172 
4173   EV_FREQUENT_CHECK;
4174 
4175   ev_start (EV_A_ (W)w, 1);
4176   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4177 
4178   EV_FREQUENT_CHECK;
4179 }
4180 
4181 void
ev_child_stop(EV_P_ ev_child * w)4182 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4183 {
4184   clear_pending (EV_A_ (W)w);
4185   if (expect_false (!ev_is_active (w)))
4186     return;
4187 
4188   EV_FREQUENT_CHECK;
4189 
4190   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4191   ev_stop (EV_A_ (W)w);
4192 
4193   EV_FREQUENT_CHECK;
4194 }
4195 
4196 #endif
4197 
4198 #if EV_STAT_ENABLE
4199 
4200 # ifdef _WIN32
4201 #  undef lstat
4202 #  define lstat(a,b) _stati64 (a,b)
4203 # endif
4204 
4205 #define DEF_STAT_INTERVAL  5.0074891
4206 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4207 #define MIN_STAT_INTERVAL  0.1074891
4208 
4209 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4210 
4211 #if EV_USE_INOTIFY
4212 
4213 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4214 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4215 
4216 static void noinline
infy_add(EV_P_ ev_stat * w)4217 infy_add (EV_P_ ev_stat *w)
4218 {
4219   w->wd = inotify_add_watch (fs_fd, w->path,
4220                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4221                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4222                              | IN_DONT_FOLLOW | IN_MASK_ADD);
4223 
4224   if (w->wd >= 0)
4225     {
4226       struct statfs sfs;
4227 
4228       /* now local changes will be tracked by inotify, but remote changes won't */
4229       /* unless the filesystem is known to be local, we therefore still poll */
4230       /* also do poll on <2.6.25, but with normal frequency */
4231 
4232       if (!fs_2625)
4233         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4234       else if (!statfs (w->path, &sfs)
4235                && (sfs.f_type == 0x1373 /* devfs */
4236                    || sfs.f_type == 0x4006 /* fat */
4237                    || sfs.f_type == 0x4d44 /* msdos */
4238                    || sfs.f_type == 0xEF53 /* ext2/3 */
4239                    || sfs.f_type == 0x72b6 /* jffs2 */
4240                    || sfs.f_type == 0x858458f6 /* ramfs */
4241                    || sfs.f_type == 0x5346544e /* ntfs */
4242                    || sfs.f_type == 0x3153464a /* jfs */
4243                    || sfs.f_type == 0x9123683e /* btrfs */
4244                    || sfs.f_type == 0x52654973 /* reiser3 */
4245                    || sfs.f_type == 0x01021994 /* tmpfs */
4246                    || sfs.f_type == 0x58465342 /* xfs */))
4247         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4248       else
4249         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4250     }
4251   else
4252     {
4253       /* can't use inotify, continue to stat */
4254       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4255 
4256       /* if path is not there, monitor some parent directory for speedup hints */
4257       /* note that exceeding the hardcoded path limit is not a correctness issue, */
4258       /* but an efficiency issue only */
4259       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4260         {
4261           char path [4096];
4262           strcpy (path, w->path);
4263 
4264           do
4265             {
4266               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4267                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4268 
4269               char *pend = strrchr (path, '/');
4270 
4271               if (!pend || pend == path)
4272                 break;
4273 
4274               *pend = 0;
4275               w->wd = inotify_add_watch (fs_fd, path, mask);
4276             }
4277           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4278         }
4279     }
4280 
4281   if (w->wd >= 0)
4282     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4283 
4284   /* now re-arm timer, if required */
4285   if (ev_is_active (&w->timer)) ev_ref (EV_A);
4286   ev_timer_again (EV_A_ &w->timer);
4287   if (ev_is_active (&w->timer)) ev_unref (EV_A);
4288 }
4289 
4290 static void noinline
infy_del(EV_P_ ev_stat * w)4291 infy_del (EV_P_ ev_stat *w)
4292 {
4293   int slot;
4294   int wd = w->wd;
4295 
4296   if (wd < 0)
4297     return;
4298 
4299   w->wd = -2;
4300   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4301   wlist_del (&fs_hash [slot].head, (WL)w);
4302 
4303   /* remove this watcher, if others are watching it, they will rearm */
4304   inotify_rm_watch (fs_fd, wd);
4305 }
4306 
4307 static void noinline
infy_wd(EV_P_ int slot,int wd,struct inotify_event * ev)4308 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4309 {
4310   if (slot < 0)
4311     /* overflow, need to check for all hash slots */
4312     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4313       infy_wd (EV_A_ slot, wd, ev);
4314   else
4315     {
4316       WL w_;
4317 
4318       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4319         {
4320           ev_stat *w = (ev_stat *)w_;
4321           w_ = w_->next; /* lets us remove this watcher and all before it */
4322 
4323           if (w->wd == wd || wd == -1)
4324             {
4325               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4326                 {
4327                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4328                   w->wd = -1;
4329                   infy_add (EV_A_ w); /* re-add, no matter what */
4330                 }
4331 
4332               stat_timer_cb (EV_A_ &w->timer, 0);
4333             }
4334         }
4335     }
4336 }
4337 
4338 static void
infy_cb(EV_P_ ev_io * w,int revents)4339 infy_cb (EV_P_ ev_io *w, int revents)
4340 {
4341   char buf [EV_INOTIFY_BUFSIZE];
4342   int ofs;
4343   int len = read (fs_fd, buf, sizeof (buf));
4344 
4345   for (ofs = 0; ofs < len; )
4346     {
4347       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4348       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4349       ofs += sizeof (struct inotify_event) + ev->len;
4350     }
4351 }
4352 
4353 inline_size void ecb_cold
ev_check_2625(EV_P)4354 ev_check_2625 (EV_P)
4355 {
4356   /* kernels < 2.6.25 are borked
4357    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4358    */
4359   if (ev_linux_version () < 0x020619)
4360     return;
4361 
4362   fs_2625 = 1;
4363 }
4364 
4365 inline_size int
infy_newfd(void)4366 infy_newfd (void)
4367 {
4368 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4369   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4370   if (fd >= 0)
4371     return fd;
4372 #endif
4373   return inotify_init ();
4374 }
4375 
4376 inline_size void
infy_init(EV_P)4377 infy_init (EV_P)
4378 {
4379   if (fs_fd != -2)
4380     return;
4381 
4382   fs_fd = -1;
4383 
4384   ev_check_2625 (EV_A);
4385 
4386   fs_fd = infy_newfd ();
4387 
4388   if (fs_fd >= 0)
4389     {
4390       fd_intern (fs_fd);
4391       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4392       ev_set_priority (&fs_w, EV_MAXPRI);
4393       ev_io_start (EV_A_ &fs_w);
4394       ev_unref (EV_A);
4395     }
4396 }
4397 
4398 inline_size void
infy_fork(EV_P)4399 infy_fork (EV_P)
4400 {
4401   int slot;
4402 
4403   if (fs_fd < 0)
4404     return;
4405 
4406   ev_ref (EV_A);
4407   ev_io_stop (EV_A_ &fs_w);
4408   close (fs_fd);
4409   fs_fd = infy_newfd ();
4410 
4411   if (fs_fd >= 0)
4412     {
4413       fd_intern (fs_fd);
4414       ev_io_set (&fs_w, fs_fd, EV_READ);
4415       ev_io_start (EV_A_ &fs_w);
4416       ev_unref (EV_A);
4417     }
4418 
4419   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4420     {
4421       WL w_ = fs_hash [slot].head;
4422       fs_hash [slot].head = 0;
4423 
4424       while (w_)
4425         {
4426           ev_stat *w = (ev_stat *)w_;
4427           w_ = w_->next; /* lets us add this watcher */
4428 
4429           w->wd = -1;
4430 
4431           if (fs_fd >= 0)
4432             infy_add (EV_A_ w); /* re-add, no matter what */
4433           else
4434             {
4435               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4436               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4437               ev_timer_again (EV_A_ &w->timer);
4438               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4439             }
4440         }
4441     }
4442 }
4443 
4444 #endif
4445 
4446 #ifdef _WIN32
4447 # define EV_LSTAT(p,b) _stati64 (p, b)
4448 #else
4449 # define EV_LSTAT(p,b) lstat (p, b)
4450 #endif
4451 
4452 void
ev_stat_stat(EV_P_ ev_stat * w)4453 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4454 {
4455   if (lstat (w->path, &w->attr) < 0)
4456     w->attr.st_nlink = 0;
4457   else if (!w->attr.st_nlink)
4458     w->attr.st_nlink = 1;
4459 }
4460 
4461 static void noinline
stat_timer_cb(EV_P_ ev_timer * w_,int revents)4462 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4463 {
4464   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4465 
4466   ev_statdata prev = w->attr;
4467   ev_stat_stat (EV_A_ w);
4468 
4469   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4470   if (
4471     prev.st_dev      != w->attr.st_dev
4472     || prev.st_ino   != w->attr.st_ino
4473     || prev.st_mode  != w->attr.st_mode
4474     || prev.st_nlink != w->attr.st_nlink
4475     || prev.st_uid   != w->attr.st_uid
4476     || prev.st_gid   != w->attr.st_gid
4477     || prev.st_rdev  != w->attr.st_rdev
4478     || prev.st_size  != w->attr.st_size
4479     || prev.st_atime != w->attr.st_atime
4480     || prev.st_mtime != w->attr.st_mtime
4481     || prev.st_ctime != w->attr.st_ctime
4482   ) {
4483       /* we only update w->prev on actual differences */
4484       /* in case we test more often than invoke the callback, */
4485       /* to ensure that prev is always different to attr */
4486       w->prev = prev;
4487 
4488       #if EV_USE_INOTIFY
4489         if (fs_fd >= 0)
4490           {
4491             infy_del (EV_A_ w);
4492             infy_add (EV_A_ w);
4493             ev_stat_stat (EV_A_ w); /* avoid race... */
4494           }
4495       #endif
4496 
4497       ev_feed_event (EV_A_ w, EV_STAT);
4498     }
4499 }
4500 
4501 void
ev_stat_start(EV_P_ ev_stat * w)4502 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4503 {
4504   if (expect_false (ev_is_active (w)))
4505     return;
4506 
4507   ev_stat_stat (EV_A_ w);
4508 
4509   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4510     w->interval = MIN_STAT_INTERVAL;
4511 
4512   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4513   ev_set_priority (&w->timer, ev_priority (w));
4514 
4515 #if EV_USE_INOTIFY
4516   infy_init (EV_A);
4517 
4518   if (fs_fd >= 0)
4519     infy_add (EV_A_ w);
4520   else
4521 #endif
4522     {
4523       ev_timer_again (EV_A_ &w->timer);
4524       ev_unref (EV_A);
4525     }
4526 
4527   ev_start (EV_A_ (W)w, 1);
4528 
4529   EV_FREQUENT_CHECK;
4530 }
4531 
4532 void
ev_stat_stop(EV_P_ ev_stat * w)4533 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4534 {
4535   clear_pending (EV_A_ (W)w);
4536   if (expect_false (!ev_is_active (w)))
4537     return;
4538 
4539   EV_FREQUENT_CHECK;
4540 
4541 #if EV_USE_INOTIFY
4542   infy_del (EV_A_ w);
4543 #endif
4544 
4545   if (ev_is_active (&w->timer))
4546     {
4547       ev_ref (EV_A);
4548       ev_timer_stop (EV_A_ &w->timer);
4549     }
4550 
4551   ev_stop (EV_A_ (W)w);
4552 
4553   EV_FREQUENT_CHECK;
4554 }
4555 #endif
4556 
4557 #if EV_IDLE_ENABLE
4558 void
ev_idle_start(EV_P_ ev_idle * w)4559 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4560 {
4561   if (expect_false (ev_is_active (w)))
4562     return;
4563 
4564   pri_adjust (EV_A_ (W)w);
4565 
4566   EV_FREQUENT_CHECK;
4567 
4568   {
4569     int active = ++idlecnt [ABSPRI (w)];
4570 
4571     ++idleall;
4572     ev_start (EV_A_ (W)w, active);
4573 
4574     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4575     idles [ABSPRI (w)][active - 1] = w;
4576   }
4577 
4578   EV_FREQUENT_CHECK;
4579 }
4580 
4581 void
ev_idle_stop(EV_P_ ev_idle * w)4582 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4583 {
4584   clear_pending (EV_A_ (W)w);
4585   if (expect_false (!ev_is_active (w)))
4586     return;
4587 
4588   EV_FREQUENT_CHECK;
4589 
4590   {
4591     int active = ev_active (w);
4592 
4593     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4594     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4595 
4596     ev_stop (EV_A_ (W)w);
4597     --idleall;
4598   }
4599 
4600   EV_FREQUENT_CHECK;
4601 }
4602 #endif
4603 
4604 #if EV_PREPARE_ENABLE
4605 void
ev_prepare_start(EV_P_ ev_prepare * w)4606 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4607 {
4608   if (expect_false (ev_is_active (w)))
4609     return;
4610 
4611   EV_FREQUENT_CHECK;
4612 
4613   ev_start (EV_A_ (W)w, ++preparecnt);
4614   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4615   prepares [preparecnt - 1] = w;
4616 
4617   EV_FREQUENT_CHECK;
4618 }
4619 
4620 void
ev_prepare_stop(EV_P_ ev_prepare * w)4621 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4622 {
4623   clear_pending (EV_A_ (W)w);
4624   if (expect_false (!ev_is_active (w)))
4625     return;
4626 
4627   EV_FREQUENT_CHECK;
4628 
4629   {
4630     int active = ev_active (w);
4631 
4632     prepares [active - 1] = prepares [--preparecnt];
4633     ev_active (prepares [active - 1]) = active;
4634   }
4635 
4636   ev_stop (EV_A_ (W)w);
4637 
4638   EV_FREQUENT_CHECK;
4639 }
4640 #endif
4641 
4642 #if EV_CHECK_ENABLE
4643 void
ev_check_start(EV_P_ ev_check * w)4644 ev_check_start (EV_P_ ev_check *w) EV_THROW
4645 {
4646   if (expect_false (ev_is_active (w)))
4647     return;
4648 
4649   EV_FREQUENT_CHECK;
4650 
4651   ev_start (EV_A_ (W)w, ++checkcnt);
4652   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4653   checks [checkcnt - 1] = w;
4654 
4655   EV_FREQUENT_CHECK;
4656 }
4657 
4658 void
ev_check_stop(EV_P_ ev_check * w)4659 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4660 {
4661   clear_pending (EV_A_ (W)w);
4662   if (expect_false (!ev_is_active (w)))
4663     return;
4664 
4665   EV_FREQUENT_CHECK;
4666 
4667   {
4668     int active = ev_active (w);
4669 
4670     checks [active - 1] = checks [--checkcnt];
4671     ev_active (checks [active - 1]) = active;
4672   }
4673 
4674   ev_stop (EV_A_ (W)w);
4675 
4676   EV_FREQUENT_CHECK;
4677 }
4678 #endif
4679 
4680 #if EV_EMBED_ENABLE
4681 void noinline
ev_embed_sweep(EV_P_ ev_embed * w)4682 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4683 {
4684   ev_run (w->other, EVRUN_NOWAIT);
4685 }
4686 
4687 static void
embed_io_cb(EV_P_ ev_io * io,int revents)4688 embed_io_cb (EV_P_ ev_io *io, int revents)
4689 {
4690   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4691 
4692   if (ev_cb (w))
4693     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4694   else
4695     ev_run (w->other, EVRUN_NOWAIT);
4696 }
4697 
4698 static void
embed_prepare_cb(EV_P_ ev_prepare * prepare,int revents)4699 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4700 {
4701   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4702 
4703   {
4704     EV_P = w->other;
4705 
4706     while (fdchangecnt)
4707       {
4708         fd_reify (EV_A);
4709         ev_run (EV_A_ EVRUN_NOWAIT);
4710       }
4711   }
4712 }
4713 
4714 static void
embed_fork_cb(EV_P_ ev_fork * fork_w,int revents)4715 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4716 {
4717   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4718 
4719   ev_embed_stop (EV_A_ w);
4720 
4721   {
4722     EV_P = w->other;
4723 
4724     ev_loop_fork (EV_A);
4725     ev_run (EV_A_ EVRUN_NOWAIT);
4726   }
4727 
4728   ev_embed_start (EV_A_ w);
4729 }
4730 
4731 #if 0
4732 static void
4733 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4734 {
4735   ev_idle_stop (EV_A_ idle);
4736 }
4737 #endif
4738 
4739 void
ev_embed_start(EV_P_ ev_embed * w)4740 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4741 {
4742   if (expect_false (ev_is_active (w)))
4743     return;
4744 
4745   {
4746     EV_P = w->other;
4747     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4748     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4749   }
4750 
4751   EV_FREQUENT_CHECK;
4752 
4753   ev_set_priority (&w->io, ev_priority (w));
4754   ev_io_start (EV_A_ &w->io);
4755 
4756   ev_prepare_init (&w->prepare, embed_prepare_cb);
4757   ev_set_priority (&w->prepare, EV_MINPRI);
4758   ev_prepare_start (EV_A_ &w->prepare);
4759 
4760   ev_fork_init (&w->fork, embed_fork_cb);
4761   ev_fork_start (EV_A_ &w->fork);
4762 
4763   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4764 
4765   ev_start (EV_A_ (W)w, 1);
4766 
4767   EV_FREQUENT_CHECK;
4768 }
4769 
4770 void
ev_embed_stop(EV_P_ ev_embed * w)4771 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4772 {
4773   clear_pending (EV_A_ (W)w);
4774   if (expect_false (!ev_is_active (w)))
4775     return;
4776 
4777   EV_FREQUENT_CHECK;
4778 
4779   ev_io_stop      (EV_A_ &w->io);
4780   ev_prepare_stop (EV_A_ &w->prepare);
4781   ev_fork_stop    (EV_A_ &w->fork);
4782 
4783   ev_stop (EV_A_ (W)w);
4784 
4785   EV_FREQUENT_CHECK;
4786 }
4787 #endif
4788 
4789 #if EV_FORK_ENABLE
4790 void
ev_fork_start(EV_P_ ev_fork * w)4791 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4792 {
4793   if (expect_false (ev_is_active (w)))
4794     return;
4795 
4796   EV_FREQUENT_CHECK;
4797 
4798   ev_start (EV_A_ (W)w, ++forkcnt);
4799   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4800   forks [forkcnt - 1] = w;
4801 
4802   EV_FREQUENT_CHECK;
4803 }
4804 
4805 void
ev_fork_stop(EV_P_ ev_fork * w)4806 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4807 {
4808   clear_pending (EV_A_ (W)w);
4809   if (expect_false (!ev_is_active (w)))
4810     return;
4811 
4812   EV_FREQUENT_CHECK;
4813 
4814   {
4815     int active = ev_active (w);
4816 
4817     forks [active - 1] = forks [--forkcnt];
4818     ev_active (forks [active - 1]) = active;
4819   }
4820 
4821   ev_stop (EV_A_ (W)w);
4822 
4823   EV_FREQUENT_CHECK;
4824 }
4825 #endif
4826 
4827 #if EV_CLEANUP_ENABLE
4828 void
ev_cleanup_start(EV_P_ ev_cleanup * w)4829 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4830 {
4831   if (expect_false (ev_is_active (w)))
4832     return;
4833 
4834   EV_FREQUENT_CHECK;
4835 
4836   ev_start (EV_A_ (W)w, ++cleanupcnt);
4837   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4838   cleanups [cleanupcnt - 1] = w;
4839 
4840   /* cleanup watchers should never keep a refcount on the loop */
4841   ev_unref (EV_A);
4842   EV_FREQUENT_CHECK;
4843 }
4844 
4845 void
ev_cleanup_stop(EV_P_ ev_cleanup * w)4846 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4847 {
4848   clear_pending (EV_A_ (W)w);
4849   if (expect_false (!ev_is_active (w)))
4850     return;
4851 
4852   EV_FREQUENT_CHECK;
4853   ev_ref (EV_A);
4854 
4855   {
4856     int active = ev_active (w);
4857 
4858     cleanups [active - 1] = cleanups [--cleanupcnt];
4859     ev_active (cleanups [active - 1]) = active;
4860   }
4861 
4862   ev_stop (EV_A_ (W)w);
4863 
4864   EV_FREQUENT_CHECK;
4865 }
4866 #endif
4867 
4868 #if EV_ASYNC_ENABLE
4869 void
ev_async_start(EV_P_ ev_async * w)4870 ev_async_start (EV_P_ ev_async *w) EV_THROW
4871 {
4872   if (expect_false (ev_is_active (w)))
4873     return;
4874 
4875   w->sent = 0;
4876 
4877   evpipe_init (EV_A);
4878 
4879   EV_FREQUENT_CHECK;
4880 
4881   ev_start (EV_A_ (W)w, ++asynccnt);
4882   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4883   asyncs [asynccnt - 1] = w;
4884 
4885   EV_FREQUENT_CHECK;
4886 }
4887 
4888 void
ev_async_stop(EV_P_ ev_async * w)4889 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4890 {
4891   clear_pending (EV_A_ (W)w);
4892   if (expect_false (!ev_is_active (w)))
4893     return;
4894 
4895   EV_FREQUENT_CHECK;
4896 
4897   {
4898     int active = ev_active (w);
4899 
4900     asyncs [active - 1] = asyncs [--asynccnt];
4901     ev_active (asyncs [active - 1]) = active;
4902   }
4903 
4904   ev_stop (EV_A_ (W)w);
4905 
4906   EV_FREQUENT_CHECK;
4907 }
4908 
4909 void
ev_async_send(EV_P_ ev_async * w)4910 ev_async_send (EV_P_ ev_async *w) EV_THROW
4911 {
4912   w->sent = 1;
4913   evpipe_write (EV_A_ &async_pending);
4914 }
4915 #endif
4916 
4917 /*****************************************************************************/
4918 
4919 struct ev_once
4920 {
4921   ev_io io;
4922   ev_timer to;
4923   void (*cb)(int revents, void *arg);
4924   void *arg;
4925 };
4926 
4927 static void
once_cb(EV_P_ struct ev_once * once,int revents)4928 once_cb (EV_P_ struct ev_once *once, int revents)
4929 {
4930   void (*cb)(int revents, void *arg) = once->cb;
4931   void *arg = once->arg;
4932 
4933   ev_io_stop    (EV_A_ &once->io);
4934   ev_timer_stop (EV_A_ &once->to);
4935   ev_free (once);
4936 
4937   cb (revents, arg);
4938 }
4939 
4940 static void
once_cb_io(EV_P_ ev_io * w,int revents)4941 once_cb_io (EV_P_ ev_io *w, int revents)
4942 {
4943   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4944 
4945   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4946 }
4947 
4948 static void
once_cb_to(EV_P_ ev_timer * w,int revents)4949 once_cb_to (EV_P_ ev_timer *w, int revents)
4950 {
4951   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4952 
4953   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4954 }
4955 
4956 void
ev_once(EV_P_ int fd,int events,ev_tstamp timeout,void (* cb)(int revents,void * arg),void * arg)4957 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4958 {
4959   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4960 
4961   if (expect_false (!once))
4962     {
4963       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4964       return;
4965     }
4966 
4967   once->cb  = cb;
4968   once->arg = arg;
4969 
4970   ev_init (&once->io, once_cb_io);
4971   if (fd >= 0)
4972     {
4973       ev_io_set (&once->io, fd, events);
4974       ev_io_start (EV_A_ &once->io);
4975     }
4976 
4977   ev_init (&once->to, once_cb_to);
4978   if (timeout >= 0.)
4979     {
4980       ev_timer_set (&once->to, timeout, 0.);
4981       ev_timer_start (EV_A_ &once->to);
4982     }
4983 }
4984 
4985 /*****************************************************************************/
4986 
4987 #if EV_WALK_ENABLE
4988 void ecb_cold
ev_walk(EV_P_ int types,void (* cb)(EV_P_ int type,void * w))4989 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4990 {
4991   int i, j;
4992   ev_watcher_list *wl, *wn;
4993 
4994   if (types & (EV_IO | EV_EMBED))
4995     for (i = 0; i < anfdmax; ++i)
4996       for (wl = anfds [i].head; wl; )
4997         {
4998           wn = wl->next;
4999 
5000 #if EV_EMBED_ENABLE
5001           if (ev_cb ((ev_io *)wl) == embed_io_cb)
5002             {
5003               if (types & EV_EMBED)
5004                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5005             }
5006           else
5007 #endif
5008 #if EV_USE_INOTIFY
5009           if (ev_cb ((ev_io *)wl) == infy_cb)
5010             ;
5011           else
5012 #endif
5013           if ((ev_io *)wl != &pipe_w)
5014             if (types & EV_IO)
5015               cb (EV_A_ EV_IO, wl);
5016 
5017           wl = wn;
5018         }
5019 
5020   if (types & (EV_TIMER | EV_STAT))
5021     for (i = timercnt + HEAP0; i-- > HEAP0; )
5022 #if EV_STAT_ENABLE
5023       /*TODO: timer is not always active*/
5024       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5025         {
5026           if (types & EV_STAT)
5027             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5028         }
5029       else
5030 #endif
5031       if (types & EV_TIMER)
5032         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5033 
5034 #if EV_PERIODIC_ENABLE
5035   if (types & EV_PERIODIC)
5036     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5037       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5038 #endif
5039 
5040 #if EV_IDLE_ENABLE
5041   if (types & EV_IDLE)
5042     for (j = NUMPRI; j--; )
5043       for (i = idlecnt [j]; i--; )
5044         cb (EV_A_ EV_IDLE, idles [j][i]);
5045 #endif
5046 
5047 #if EV_FORK_ENABLE
5048   if (types & EV_FORK)
5049     for (i = forkcnt; i--; )
5050       if (ev_cb (forks [i]) != embed_fork_cb)
5051         cb (EV_A_ EV_FORK, forks [i]);
5052 #endif
5053 
5054 #if EV_ASYNC_ENABLE
5055   if (types & EV_ASYNC)
5056     for (i = asynccnt; i--; )
5057       cb (EV_A_ EV_ASYNC, asyncs [i]);
5058 #endif
5059 
5060 #if EV_PREPARE_ENABLE
5061   if (types & EV_PREPARE)
5062     for (i = preparecnt; i--; )
5063 # if EV_EMBED_ENABLE
5064       if (ev_cb (prepares [i]) != embed_prepare_cb)
5065 # endif
5066         cb (EV_A_ EV_PREPARE, prepares [i]);
5067 #endif
5068 
5069 #if EV_CHECK_ENABLE
5070   if (types & EV_CHECK)
5071     for (i = checkcnt; i--; )
5072       cb (EV_A_ EV_CHECK, checks [i]);
5073 #endif
5074 
5075 #if EV_SIGNAL_ENABLE
5076   if (types & EV_SIGNAL)
5077     for (i = 0; i < EV_NSIG - 1; ++i)
5078       for (wl = signals [i].head; wl; )
5079         {
5080           wn = wl->next;
5081           cb (EV_A_ EV_SIGNAL, wl);
5082           wl = wn;
5083         }
5084 #endif
5085 
5086 #if EV_CHILD_ENABLE
5087   if (types & EV_CHILD)
5088     for (i = (EV_PID_HASHSIZE); i--; )
5089       for (wl = childs [i]; wl; )
5090         {
5091           wn = wl->next;
5092           cb (EV_A_ EV_CHILD, wl);
5093           wl = wn;
5094         }
5095 #endif
5096 /* EV_STAT     0x00001000 /* stat data changed */
5097 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
5098 }
5099 #endif
5100 
5101 #if EV_MULTIPLICITY
5102   #include "ev_wrap.h"
5103 #endif
5104 
5105