xref: /freebsd/sys/net/if_ethersubr.c (revision 6a13b3d90612120c6e157ce7aaf7e2d1340e98ad)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_netgraph.h"
35 #include "opt_mbuf_profiling.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/devctl.h>
41 #include <sys/eventhandler.h>
42 #include <sys/jail.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/module.h>
48 #include <sys/msan.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/uuid.h>
56 #ifdef KDB
57 #include <sys/kdb.h>
58 #endif
59 
60 #include <net/ieee_oui.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_private.h>
64 #include <net/if_arp.h>
65 #include <net/netisr.h>
66 #include <net/route.h>
67 #include <net/if_llc.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if_bridgevar.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_llatbl.h>
75 #include <net/pfil.h>
76 #include <net/rss_config.h>
77 #include <net/vnet.h>
78 
79 #include <netpfil/pf/pf_mtag.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/nd6.h>
90 #endif
91 #include <security/mac/mac_framework.h>
92 
93 #include <crypto/sha1.h>
94 
95 #ifdef CTASSERT
96 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
97 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
98 #endif
99 
100 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_attach_p)(struct ifnet *ifp);
107 void	(*ng_ether_detach_p)(struct ifnet *ifp);
108 
109 /* if_bridge(4) support */
110 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
111 bool	(*bridge_same_p)(const void *, const void *);
112 void	*(*bridge_get_softc_p)(struct ifnet *);
113 bool	(*bridge_member_ifaddrs_p)(void);
114 
115 /* if_lagg(4) support */
116 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
117 
118 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
119 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
120 
121 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
122 		struct sockaddr *);
123 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
124 
125 static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
126 
127 #define senderr(e) do { error = (e); goto bad;} while (0)
128 
129 static void
update_mbuf_csumflags(struct mbuf * src,struct mbuf * dst)130 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
131 {
132 	int csum_flags = 0;
133 
134 	if (src->m_pkthdr.csum_flags & CSUM_IP)
135 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
136 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
137 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
138 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
139 		csum_flags |= CSUM_SCTP_VALID;
140 	dst->m_pkthdr.csum_flags |= csum_flags;
141 	if (csum_flags & CSUM_DATA_VALID)
142 		dst->m_pkthdr.csum_data = 0xffff;
143 }
144 
145 /*
146  * Handle link-layer encapsulation requests.
147  */
148 static int
ether_requestencap(struct ifnet * ifp,struct if_encap_req * req)149 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
150 {
151 	struct ether_header *eh;
152 	struct arphdr *ah;
153 	uint16_t etype;
154 	const u_char *lladdr;
155 
156 	if (req->rtype != IFENCAP_LL)
157 		return (EOPNOTSUPP);
158 
159 	if (req->bufsize < ETHER_HDR_LEN)
160 		return (ENOMEM);
161 
162 	eh = (struct ether_header *)req->buf;
163 	lladdr = req->lladdr;
164 	req->lladdr_off = 0;
165 
166 	switch (req->family) {
167 	case AF_INET:
168 		etype = htons(ETHERTYPE_IP);
169 		break;
170 	case AF_INET6:
171 		etype = htons(ETHERTYPE_IPV6);
172 		break;
173 	case AF_ARP:
174 		ah = (struct arphdr *)req->hdata;
175 		ah->ar_hrd = htons(ARPHRD_ETHER);
176 
177 		switch(ntohs(ah->ar_op)) {
178 		case ARPOP_REVREQUEST:
179 		case ARPOP_REVREPLY:
180 			etype = htons(ETHERTYPE_REVARP);
181 			break;
182 		case ARPOP_REQUEST:
183 		case ARPOP_REPLY:
184 		default:
185 			etype = htons(ETHERTYPE_ARP);
186 			break;
187 		}
188 
189 		if (req->flags & IFENCAP_FLAG_BROADCAST)
190 			lladdr = ifp->if_broadcastaddr;
191 		break;
192 	default:
193 		return (EAFNOSUPPORT);
194 	}
195 
196 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
197 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
198 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
199 	req->bufsize = sizeof(struct ether_header);
200 
201 	return (0);
202 }
203 
204 static int
ether_resolve_addr(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro,u_char * phdr,uint32_t * pflags,struct llentry ** plle)205 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
206 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
207 	uint32_t *pflags, struct llentry **plle)
208 {
209 	uint32_t lleflags = 0;
210 	int error = 0;
211 #if defined(INET) || defined(INET6)
212 	struct ether_header *eh = (struct ether_header *)phdr;
213 	uint16_t etype;
214 #endif
215 
216 	if (plle)
217 		*plle = NULL;
218 
219 	switch (dst->sa_family) {
220 #ifdef INET
221 	case AF_INET:
222 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
223 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
224 			    plle);
225 		else {
226 			if (m->m_flags & M_BCAST)
227 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
228 				    ETHER_ADDR_LEN);
229 			else {
230 				const struct in_addr *a;
231 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
232 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
233 			}
234 			etype = htons(ETHERTYPE_IP);
235 			memcpy(&eh->ether_type, &etype, sizeof(etype));
236 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
237 		}
238 		break;
239 #endif
240 #ifdef INET6
241 	case AF_INET6:
242 		if ((m->m_flags & M_MCAST) == 0) {
243 			int af = RO_GET_FAMILY(ro, dst);
244 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
245 			    &lleflags, plle);
246 		} else {
247 			const struct in6_addr *a6;
248 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
249 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
250 			etype = htons(ETHERTYPE_IPV6);
251 			memcpy(&eh->ether_type, &etype, sizeof(etype));
252 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
253 		}
254 		break;
255 #endif
256 	default:
257 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
258 		if (m != NULL)
259 			m_freem(m);
260 		return (EAFNOSUPPORT);
261 	}
262 
263 	if (error == EHOSTDOWN) {
264 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
265 			error = EHOSTUNREACH;
266 	}
267 
268 	if (error != 0)
269 		return (error);
270 
271 	*pflags = RT_MAY_LOOP;
272 	if (lleflags & LLE_IFADDR)
273 		*pflags |= RT_L2_ME;
274 
275 	return (0);
276 }
277 
278 /*
279  * Ethernet output routine.
280  * Encapsulate a packet of type family for the local net.
281  * Use trailer local net encapsulation if enough data in first
282  * packet leaves a multiple of 512 bytes of data in remainder.
283  */
284 int
ether_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)285 ether_output(struct ifnet *ifp, struct mbuf *m,
286 	const struct sockaddr *dst, struct route *ro)
287 {
288 	int error = 0;
289 	char linkhdr[ETHER_HDR_LEN], *phdr;
290 	struct ether_header *eh;
291 	struct pf_mtag *t;
292 	bool loop_copy;
293 	int hlen;	/* link layer header length */
294 	uint32_t pflags;
295 	struct llentry *lle = NULL;
296 	int addref = 0;
297 
298 	phdr = NULL;
299 	pflags = 0;
300 	if (ro != NULL) {
301 		/* XXX BPF uses ro_prepend */
302 		if (ro->ro_prepend != NULL) {
303 			phdr = ro->ro_prepend;
304 			hlen = ro->ro_plen;
305 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
306 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
307 				lle = ro->ro_lle;
308 				if (lle != NULL &&
309 				    (lle->la_flags & LLE_VALID) == 0) {
310 					LLE_FREE(lle);
311 					lle = NULL;	/* redundant */
312 					ro->ro_lle = NULL;
313 				}
314 				if (lle == NULL) {
315 					/* if we lookup, keep cache */
316 					addref = 1;
317 				} else
318 					/*
319 					 * Notify LLE code that
320 					 * the entry was used
321 					 * by datapath.
322 					 */
323 					llentry_provide_feedback(lle);
324 			}
325 			if (lle != NULL) {
326 				phdr = lle->r_linkdata;
327 				hlen = lle->r_hdrlen;
328 				pflags = lle->r_flags;
329 			}
330 		}
331 	}
332 
333 #ifdef MAC
334 	error = mac_ifnet_check_transmit(ifp, m);
335 	if (error)
336 		senderr(error);
337 #endif
338 
339 	M_PROFILE(m);
340 	if (ifp->if_flags & IFF_MONITOR)
341 		senderr(ENETDOWN);
342 	if (!((ifp->if_flags & IFF_UP) &&
343 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
344 		senderr(ENETDOWN);
345 
346 	if (phdr == NULL) {
347 		/* No prepend data supplied. Try to calculate ourselves. */
348 		phdr = linkhdr;
349 		hlen = ETHER_HDR_LEN;
350 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
351 		    addref ? &lle : NULL);
352 		if (addref && lle != NULL)
353 			ro->ro_lle = lle;
354 		if (error != 0)
355 			return (error == EWOULDBLOCK ? 0 : error);
356 	}
357 
358 	if ((pflags & RT_L2_ME) != 0) {
359 		update_mbuf_csumflags(m, m);
360 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
361 	}
362 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
363 
364 	/*
365 	 * Add local net header.  If no space in first mbuf,
366 	 * allocate another.
367 	 *
368 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
369 	 * This is done because BPF code shifts m_data pointer
370 	 * to the end of ethernet header prior to calling if_output().
371 	 */
372 	M_PREPEND(m, hlen, M_NOWAIT);
373 	if (m == NULL)
374 		senderr(ENOBUFS);
375 	if ((pflags & RT_HAS_HEADER) == 0) {
376 		eh = mtod(m, struct ether_header *);
377 		memcpy(eh, phdr, hlen);
378 	}
379 
380 	/*
381 	 * If a simplex interface, and the packet is being sent to our
382 	 * Ethernet address or a broadcast address, loopback a copy.
383 	 * XXX To make a simplex device behave exactly like a duplex
384 	 * device, we should copy in the case of sending to our own
385 	 * ethernet address (thus letting the original actually appear
386 	 * on the wire). However, we don't do that here for security
387 	 * reasons and compatibility with the original behavior.
388 	 */
389 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
390 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
391 		struct mbuf *n;
392 
393 		/*
394 		 * Because if_simloop() modifies the packet, we need a
395 		 * writable copy through m_dup() instead of a readonly
396 		 * one as m_copy[m] would give us. The alternative would
397 		 * be to modify if_simloop() to handle the readonly mbuf,
398 		 * but performancewise it is mostly equivalent (trading
399 		 * extra data copying vs. extra locking).
400 		 *
401 		 * XXX This is a local workaround.  A number of less
402 		 * often used kernel parts suffer from the same bug.
403 		 * See PR kern/105943 for a proposed general solution.
404 		 */
405 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
406 			update_mbuf_csumflags(m, n);
407 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
408 		} else
409 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
410 	}
411 
412        /*
413 	* Bridges require special output handling.
414 	*/
415 	if (ifp->if_bridge) {
416 		BRIDGE_OUTPUT(ifp, m, error);
417 		return (error);
418 	}
419 
420 #if defined(INET) || defined(INET6)
421 	if (ifp->if_carp &&
422 	    (error = (*carp_output_p)(ifp, m, dst)))
423 		goto bad;
424 #endif
425 
426 	/* Handle ng_ether(4) processing, if any */
427 	if (ifp->if_l2com != NULL) {
428 		KASSERT(ng_ether_output_p != NULL,
429 		    ("ng_ether_output_p is NULL"));
430 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
431 bad:			if (m != NULL)
432 				m_freem(m);
433 			return (error);
434 		}
435 		if (m == NULL)
436 			return (0);
437 	}
438 
439 	/* Continue with link-layer output */
440 	return ether_output_frame(ifp, m);
441 }
442 
443 static bool
ether_set_pcp(struct mbuf ** mp,struct ifnet * ifp,uint8_t pcp)444 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
445 {
446 	struct ether_8021q_tag qtag;
447 	struct ether_header *eh;
448 
449 	eh = mtod(*mp, struct ether_header *);
450 	if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
451 	    eh->ether_type == htons(ETHERTYPE_QINQ)) {
452 		(*mp)->m_flags &= ~M_VLANTAG;
453 		return (true);
454 	}
455 
456 	qtag.vid = 0;
457 	qtag.pcp = pcp;
458 	qtag.proto = ETHERTYPE_VLAN;
459 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
460 		return (true);
461 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
462 	return (false);
463 }
464 
465 /*
466  * Ethernet link layer output routine to send a raw frame to the device.
467  *
468  * This assumes that the 14 byte Ethernet header is present and contiguous
469  * in the first mbuf (if BRIDGE'ing).
470  */
471 int
ether_output_frame(struct ifnet * ifp,struct mbuf * m)472 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
473 {
474 	if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
475 		return (0);
476 
477 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
478 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
479 		case PFIL_DROPPED:
480 			return (EACCES);
481 		case PFIL_CONSUMED:
482 			return (0);
483 		}
484 
485 #ifdef EXPERIMENTAL
486 #if defined(INET6) && defined(INET)
487 	/* draft-ietf-6man-ipv6only-flag */
488 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
489 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
490 		struct ether_header *eh;
491 
492 		eh = mtod(m, struct ether_header *);
493 		switch (ntohs(eh->ether_type)) {
494 		case ETHERTYPE_IP:
495 		case ETHERTYPE_ARP:
496 		case ETHERTYPE_REVARP:
497 			m_freem(m);
498 			return (EAFNOSUPPORT);
499 			/* NOTREACHED */
500 			break;
501 		};
502 	}
503 #endif
504 #endif
505 
506 	/*
507 	 * Queue message on interface, update output statistics if successful,
508 	 * and start output if interface not yet active.
509 	 *
510 	 * If KMSAN is enabled, use it to verify that the data does not contain
511 	 * any uninitialized bytes.
512 	 */
513 	kmsan_check_mbuf(m, "ether_output");
514 	return ((ifp->if_transmit)(ifp, m));
515 }
516 
517 /*
518  * Process a received Ethernet packet; the packet is in the
519  * mbuf chain m with the ethernet header at the front.
520  */
521 static void
ether_input_internal(struct ifnet * ifp,struct mbuf * m)522 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
523 {
524 	struct ether_header *eh;
525 	u_short etype;
526 
527 	if ((ifp->if_flags & IFF_UP) == 0) {
528 		m_freem(m);
529 		return;
530 	}
531 #ifdef DIAGNOSTIC
532 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
533 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
534 		m_freem(m);
535 		return;
536 	}
537 #endif
538 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
539 		/* Drivers should pullup and ensure the mbuf is valid */
540 		if_printf(ifp, "discard frame w/o leading ethernet "
541 				"header (len %d pkt len %d)\n",
542 				m->m_len, m->m_pkthdr.len);
543 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
544 		m_freem(m);
545 		return;
546 	}
547 	eh = mtod(m, struct ether_header *);
548 	etype = ntohs(eh->ether_type);
549 	random_harvest_queue_ether(m, sizeof(*m));
550 
551 #ifdef EXPERIMENTAL
552 #if defined(INET6) && defined(INET)
553 	/* draft-ietf-6man-ipv6only-flag */
554 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
555 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
556 		switch (etype) {
557 		case ETHERTYPE_IP:
558 		case ETHERTYPE_ARP:
559 		case ETHERTYPE_REVARP:
560 			m_freem(m);
561 			return;
562 			/* NOTREACHED */
563 			break;
564 		};
565 	}
566 #endif
567 #endif
568 
569 	CURVNET_SET_QUIET(ifp->if_vnet);
570 
571 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
572 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
573 			m->m_flags |= M_BCAST;
574 		else
575 			m->m_flags |= M_MCAST;
576 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
577 	}
578 
579 #ifdef MAC
580 	/*
581 	 * Tag the mbuf with an appropriate MAC label before any other
582 	 * consumers can get to it.
583 	 */
584 	mac_ifnet_create_mbuf(ifp, m);
585 #endif
586 
587 	/*
588 	 * Give bpf a chance at the packet.
589 	 */
590 	ETHER_BPF_MTAP(ifp, m);
591 
592 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
593 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
594 
595 	/* Allow monitor mode to claim this frame, after stats are updated. */
596 	if (ifp->if_flags & IFF_MONITOR) {
597 		m_freem(m);
598 		CURVNET_RESTORE();
599 		return;
600 	}
601 
602 	/* Handle input from a lagg(4) port */
603 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
604 		KASSERT(lagg_input_ethernet_p != NULL,
605 		    ("%s: if_lagg not loaded!", __func__));
606 		m = (*lagg_input_ethernet_p)(ifp, m);
607 		if (m != NULL)
608 			ifp = m->m_pkthdr.rcvif;
609 		else {
610 			CURVNET_RESTORE();
611 			return;
612 		}
613 	}
614 
615 	/*
616 	 * If the hardware did not process an 802.1Q tag, do this now,
617 	 * to allow 802.1P priority frames to be passed to the main input
618 	 * path correctly.
619 	 */
620 	if ((m->m_flags & M_VLANTAG) == 0 &&
621 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
622 		struct ether_vlan_header *evl;
623 
624 		if (m->m_len < sizeof(*evl) &&
625 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
626 #ifdef DIAGNOSTIC
627 			if_printf(ifp, "cannot pullup VLAN header\n");
628 #endif
629 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
630 			CURVNET_RESTORE();
631 			return;
632 		}
633 
634 		evl = mtod(m, struct ether_vlan_header *);
635 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
636 		m->m_flags |= M_VLANTAG;
637 
638 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
639 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
640 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
641 		eh = mtod(m, struct ether_header *);
642 	}
643 
644 	M_SETFIB(m, ifp->if_fib);
645 
646 	/* Allow ng_ether(4) to claim this frame. */
647 	if (ifp->if_l2com != NULL) {
648 		KASSERT(ng_ether_input_p != NULL,
649 		    ("%s: ng_ether_input_p is NULL", __func__));
650 		m->m_flags &= ~M_PROMISC;
651 		(*ng_ether_input_p)(ifp, &m);
652 		if (m == NULL) {
653 			CURVNET_RESTORE();
654 			return;
655 		}
656 		eh = mtod(m, struct ether_header *);
657 	}
658 
659 	/*
660 	 * Allow if_bridge(4) to claim this frame.
661 	 *
662 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
663 	 * and the frame should be delivered locally.
664 	 *
665 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
666 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
667 	 * should be re-examined.
668 	 */
669 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
670 		m->m_flags &= ~M_PROMISC;
671 		BRIDGE_INPUT(ifp, m);
672 		if (m == NULL) {
673 			CURVNET_RESTORE();
674 			return;
675 		}
676 		eh = mtod(m, struct ether_header *);
677 	}
678 
679 #if defined(INET) || defined(INET6)
680 	/*
681 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
682 	 * mbuf flows up to Layer 3.
683 	 * FreeBSD's implementation of carp(4) uses the inprotosw
684 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
685 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
686 	 * is outside the scope of the M_PROMISC test below.
687 	 * TODO: Maintain a hash table of ethernet addresses other than
688 	 * ether_dhost which may be active on this ifp.
689 	 */
690 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
691 		m->m_flags &= ~M_PROMISC;
692 	} else
693 #endif
694 	{
695 		/*
696 		 * If the frame received was not for our MAC address, set the
697 		 * M_PROMISC flag on the mbuf chain. The frame may need to
698 		 * be seen by the rest of the Ethernet input path in case of
699 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
700 		 * seen by upper protocol layers.
701 		 */
702 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
703 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
704 			m->m_flags |= M_PROMISC;
705 	}
706 
707 	ether_demux(ifp, m);
708 	CURVNET_RESTORE();
709 }
710 
711 /*
712  * Ethernet input dispatch; by default, direct dispatch here regardless of
713  * global configuration.  However, if RSS is enabled, hook up RSS affinity
714  * so that when deferred or hybrid dispatch is enabled, we can redistribute
715  * load based on RSS.
716  *
717  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
718  * not it had already done work distribution via multi-queue.  Then we could
719  * direct dispatch in the event load balancing was already complete and
720  * handle the case of interfaces with different capabilities better.
721  *
722  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
723  * at multiple layers?
724  *
725  * XXXRW: For now, enable all this only if RSS is compiled in, although it
726  * works fine without RSS.  Need to characterise the performance overhead
727  * of the detour through the netisr code in the event the result is always
728  * direct dispatch.
729  */
730 static void
ether_nh_input(struct mbuf * m)731 ether_nh_input(struct mbuf *m)
732 {
733 
734 	M_ASSERTPKTHDR(m);
735 	KASSERT(m->m_pkthdr.rcvif != NULL,
736 	    ("%s: NULL interface pointer", __func__));
737 	ether_input_internal(m->m_pkthdr.rcvif, m);
738 }
739 
740 static struct netisr_handler	ether_nh = {
741 	.nh_name = "ether",
742 	.nh_handler = ether_nh_input,
743 	.nh_proto = NETISR_ETHER,
744 #ifdef RSS
745 	.nh_policy = NETISR_POLICY_CPU,
746 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
747 	.nh_m2cpuid = rss_m2cpuid,
748 #else
749 	.nh_policy = NETISR_POLICY_SOURCE,
750 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
751 #endif
752 };
753 
754 static void
ether_init(__unused void * arg)755 ether_init(__unused void *arg)
756 {
757 
758 	netisr_register(&ether_nh);
759 }
760 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
761 
762 static void
vnet_ether_init(const __unused void * arg)763 vnet_ether_init(const __unused void *arg)
764 {
765 	struct pfil_head_args args;
766 
767 	args.pa_version = PFIL_VERSION;
768 	args.pa_flags = PFIL_IN | PFIL_OUT;
769 	args.pa_type = PFIL_TYPE_ETHERNET;
770 	args.pa_headname = PFIL_ETHER_NAME;
771 	V_link_pfil_head = pfil_head_register(&args);
772 
773 #ifdef VIMAGE
774 	netisr_register_vnet(&ether_nh);
775 #endif
776 }
777 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
778     vnet_ether_init, NULL);
779 
780 #ifdef VIMAGE
781 static void
vnet_ether_pfil_destroy(const __unused void * arg)782 vnet_ether_pfil_destroy(const __unused void *arg)
783 {
784 
785 	pfil_head_unregister(V_link_pfil_head);
786 }
787 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
788     vnet_ether_pfil_destroy, NULL);
789 
790 static void
vnet_ether_destroy(__unused void * arg)791 vnet_ether_destroy(__unused void *arg)
792 {
793 
794 	netisr_unregister_vnet(&ether_nh);
795 }
796 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
797     vnet_ether_destroy, NULL);
798 #endif
799 
800 static void
ether_input(struct ifnet * ifp,struct mbuf * m)801 ether_input(struct ifnet *ifp, struct mbuf *m)
802 {
803 	struct epoch_tracker et;
804 	struct mbuf *mn;
805 	bool needs_epoch;
806 
807 	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
808 #ifdef INVARIANTS
809 	/*
810 	 * This temporary code is here to prevent epoch unaware and unmarked
811 	 * drivers to panic the system.  Once all drivers are taken care of,
812 	 * the whole INVARIANTS block should go away.
813 	 */
814 	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
815 		static bool printedonce;
816 
817 		needs_epoch = true;
818 		if (!printedonce) {
819 			printedonce = true;
820 			if_printf(ifp, "called %s w/o net epoch! "
821 			    "PLEASE file a bug report.", __func__);
822 #ifdef KDB
823 			kdb_backtrace();
824 #endif
825 		}
826 	}
827 #endif
828 
829 	/*
830 	 * The drivers are allowed to pass in a chain of packets linked with
831 	 * m_nextpkt. We split them up into separate packets here and pass
832 	 * them up. This allows the drivers to amortize the receive lock.
833 	 */
834 	CURVNET_SET_QUIET(ifp->if_vnet);
835 	if (__predict_false(needs_epoch))
836 		NET_EPOCH_ENTER(et);
837 	while (m) {
838 		mn = m->m_nextpkt;
839 		m->m_nextpkt = NULL;
840 
841 		/*
842 		 * We will rely on rcvif being set properly in the deferred
843 		 * context, so assert it is correct here.
844 		 */
845 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
846 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
847 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
848 		netisr_dispatch(NETISR_ETHER, m);
849 		m = mn;
850 	}
851 	if (__predict_false(needs_epoch))
852 		NET_EPOCH_EXIT(et);
853 	CURVNET_RESTORE();
854 }
855 
856 /*
857  * Upper layer processing for a received Ethernet packet.
858  */
859 void
ether_demux(struct ifnet * ifp,struct mbuf * m)860 ether_demux(struct ifnet *ifp, struct mbuf *m)
861 {
862 	struct ether_header *eh;
863 	int i, isr;
864 	u_short ether_type;
865 
866 	NET_EPOCH_ASSERT();
867 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
868 
869 	/* Do not grab PROMISC frames in case we are re-entered. */
870 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
871 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
872 		if (i != PFIL_PASS)
873 			return;
874 	}
875 
876 	eh = mtod(m, struct ether_header *);
877 	ether_type = ntohs(eh->ether_type);
878 
879 	/*
880 	 * If this frame has a VLAN tag other than 0, call vlan_input()
881 	 * if its module is loaded. Otherwise, drop.
882 	 */
883 	if ((m->m_flags & M_VLANTAG) &&
884 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
885 		if (ifp->if_vlantrunk == NULL) {
886 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
887 			m_freem(m);
888 			return;
889 		}
890 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
891 		    __func__));
892 		/* Clear before possibly re-entering ether_input(). */
893 		m->m_flags &= ~M_PROMISC;
894 		(*vlan_input_p)(ifp, m);
895 		return;
896 	}
897 
898 	/*
899 	 * Pass promiscuously received frames to the upper layer if the user
900 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
901 	 */
902 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
903 		m_freem(m);
904 		return;
905 	}
906 
907 	/*
908 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
909 	 */
910 	m->m_flags &= ~M_VLANTAG;
911 	m_clrprotoflags(m);
912 
913 	/*
914 	 * Dispatch frame to upper layer.
915 	 */
916 	switch (ether_type) {
917 #ifdef INET
918 	case ETHERTYPE_IP:
919 		isr = NETISR_IP;
920 		break;
921 
922 	case ETHERTYPE_ARP:
923 		if (ifp->if_flags & IFF_NOARP) {
924 			/* Discard packet if ARP is disabled on interface */
925 			m_freem(m);
926 			return;
927 		}
928 		isr = NETISR_ARP;
929 		break;
930 #endif
931 #ifdef INET6
932 	case ETHERTYPE_IPV6:
933 		isr = NETISR_IPV6;
934 		break;
935 #endif
936 	default:
937 		goto discard;
938 	}
939 
940 	/* Strip off Ethernet header. */
941 	m_adj(m, ETHER_HDR_LEN);
942 
943 	netisr_dispatch(isr, m);
944 	return;
945 
946 discard:
947 	/*
948 	 * Packet is to be discarded.  If netgraph is present,
949 	 * hand the packet to it for last chance processing;
950 	 * otherwise dispose of it.
951 	 */
952 	if (ifp->if_l2com != NULL) {
953 		KASSERT(ng_ether_input_orphan_p != NULL,
954 		    ("ng_ether_input_orphan_p is NULL"));
955 		(*ng_ether_input_orphan_p)(ifp, m);
956 		return;
957 	}
958 	m_freem(m);
959 }
960 
961 /*
962  * Convert Ethernet address to printable (loggable) representation.
963  * This routine is for compatibility; it's better to just use
964  *
965  *	printf("%6D", <pointer to address>, ":");
966  *
967  * since there's no static buffer involved.
968  */
969 char *
ether_sprintf(const u_char * ap)970 ether_sprintf(const u_char *ap)
971 {
972 	static char etherbuf[18];
973 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
974 	return (etherbuf);
975 }
976 
977 /*
978  * Perform common duties while attaching to interface list
979  */
980 void
ether_ifattach(struct ifnet * ifp,const u_int8_t * lla)981 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
982 {
983 	int i;
984 	struct ifaddr *ifa;
985 	struct sockaddr_dl *sdl;
986 
987 	ifp->if_addrlen = ETHER_ADDR_LEN;
988 	ifp->if_hdrlen = (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0 ?
989 	    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN : ETHER_HDR_LEN;
990 	ifp->if_mtu = ETHERMTU;
991 	if_attach(ifp);
992 	ifp->if_output = ether_output;
993 	ifp->if_input = ether_input;
994 	ifp->if_resolvemulti = ether_resolvemulti;
995 	ifp->if_requestencap = ether_requestencap;
996 #ifdef VIMAGE
997 	ifp->if_reassign = ether_reassign;
998 #endif
999 	if (ifp->if_baudrate == 0)
1000 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1001 	ifp->if_broadcastaddr = etherbroadcastaddr;
1002 
1003 	ifa = ifp->if_addr;
1004 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1005 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1006 	sdl->sdl_type = IFT_ETHER;
1007 	sdl->sdl_alen = ifp->if_addrlen;
1008 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1009 
1010 	if (ifp->if_hw_addr != NULL)
1011 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1012 
1013 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1014 	if (ng_ether_attach_p != NULL)
1015 		(*ng_ether_attach_p)(ifp);
1016 
1017 	/* Announce Ethernet MAC address if non-zero. */
1018 	for (i = 0; i < ifp->if_addrlen; i++)
1019 		if (lla[i] != 0)
1020 			break;
1021 	if (i != ifp->if_addrlen)
1022 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1023 
1024 	uuid_ether_add(LLADDR(sdl));
1025 
1026 	/* Add necessary bits are setup; announce it now. */
1027 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1028 	if (IS_DEFAULT_VNET(curvnet))
1029 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1030 }
1031 
1032 /*
1033  * Perform common duties while detaching an Ethernet interface
1034  */
1035 void
ether_ifdetach(struct ifnet * ifp)1036 ether_ifdetach(struct ifnet *ifp)
1037 {
1038 	struct sockaddr_dl *sdl;
1039 
1040 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1041 	uuid_ether_del(LLADDR(sdl));
1042 
1043 	if (ifp->if_l2com != NULL) {
1044 		KASSERT(ng_ether_detach_p != NULL,
1045 		    ("ng_ether_detach_p is NULL"));
1046 		(*ng_ether_detach_p)(ifp);
1047 	}
1048 
1049 	bpfdetach(ifp);
1050 	if_detach(ifp);
1051 }
1052 
1053 #ifdef VIMAGE
1054 void
ether_reassign(struct ifnet * ifp,struct vnet * new_vnet,char * unused __unused)1055 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1056 {
1057 
1058 	if (ifp->if_l2com != NULL) {
1059 		KASSERT(ng_ether_detach_p != NULL,
1060 		    ("ng_ether_detach_p is NULL"));
1061 		(*ng_ether_detach_p)(ifp);
1062 	}
1063 
1064 	if (ng_ether_attach_p != NULL) {
1065 		CURVNET_SET_QUIET(new_vnet);
1066 		(*ng_ether_attach_p)(ifp);
1067 		CURVNET_RESTORE();
1068 	}
1069 }
1070 #endif
1071 
1072 SYSCTL_DECL(_net_link);
1073 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1074     "Ethernet");
1075 
1076 #if 0
1077 /*
1078  * This is for reference.  We have a table-driven version
1079  * of the little-endian crc32 generator, which is faster
1080  * than the double-loop.
1081  */
1082 uint32_t
1083 ether_crc32_le(const uint8_t *buf, size_t len)
1084 {
1085 	size_t i;
1086 	uint32_t crc;
1087 	int bit;
1088 	uint8_t data;
1089 
1090 	crc = 0xffffffff;	/* initial value */
1091 
1092 	for (i = 0; i < len; i++) {
1093 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1094 			carry = (crc ^ data) & 1;
1095 			crc >>= 1;
1096 			if (carry)
1097 				crc = (crc ^ ETHER_CRC_POLY_LE);
1098 		}
1099 	}
1100 
1101 	return (crc);
1102 }
1103 #else
1104 uint32_t
ether_crc32_le(const uint8_t * buf,size_t len)1105 ether_crc32_le(const uint8_t *buf, size_t len)
1106 {
1107 	static const uint32_t crctab[] = {
1108 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1109 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1110 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1111 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1112 	};
1113 	size_t i;
1114 	uint32_t crc;
1115 
1116 	crc = 0xffffffff;	/* initial value */
1117 
1118 	for (i = 0; i < len; i++) {
1119 		crc ^= buf[i];
1120 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1121 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1122 	}
1123 
1124 	return (crc);
1125 }
1126 #endif
1127 
1128 uint32_t
ether_crc32_be(const uint8_t * buf,size_t len)1129 ether_crc32_be(const uint8_t *buf, size_t len)
1130 {
1131 	size_t i;
1132 	uint32_t crc, carry;
1133 	int bit;
1134 	uint8_t data;
1135 
1136 	crc = 0xffffffff;	/* initial value */
1137 
1138 	for (i = 0; i < len; i++) {
1139 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1140 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1141 			crc <<= 1;
1142 			if (carry)
1143 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1144 		}
1145 	}
1146 
1147 	return (crc);
1148 }
1149 
1150 int
ether_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1151 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1152 {
1153 	struct ifaddr *ifa = (struct ifaddr *) data;
1154 	struct ifreq *ifr = (struct ifreq *) data;
1155 	int error = 0;
1156 
1157 	switch (command) {
1158 	case SIOCSIFADDR:
1159 		ifp->if_flags |= IFF_UP;
1160 
1161 		switch (ifa->ifa_addr->sa_family) {
1162 #ifdef INET
1163 		case AF_INET:
1164 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1165 			arp_ifinit(ifp, ifa);
1166 			break;
1167 #endif
1168 		default:
1169 			ifp->if_init(ifp->if_softc);
1170 			break;
1171 		}
1172 		break;
1173 
1174 	case SIOCGIFADDR:
1175 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1176 		    ETHER_ADDR_LEN);
1177 		break;
1178 
1179 	case SIOCSIFMTU:
1180 		/*
1181 		 * Set the interface MTU.
1182 		 */
1183 		if (ifr->ifr_mtu > ETHERMTU) {
1184 			error = EINVAL;
1185 		} else {
1186 			ifp->if_mtu = ifr->ifr_mtu;
1187 		}
1188 		break;
1189 
1190 	case SIOCSLANPCP:
1191 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1192 		if (error != 0)
1193 			break;
1194 		if (ifr->ifr_lan_pcp > 7 &&
1195 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1196 			error = EINVAL;
1197 		} else {
1198 			ifp->if_pcp = ifr->ifr_lan_pcp;
1199 			/* broadcast event about PCP change */
1200 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1201 		}
1202 		break;
1203 
1204 	case SIOCGLANPCP:
1205 		ifr->ifr_lan_pcp = ifp->if_pcp;
1206 		break;
1207 
1208 	default:
1209 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1210 		break;
1211 	}
1212 	return (error);
1213 }
1214 
1215 static int
ether_resolvemulti(struct ifnet * ifp,struct sockaddr ** llsa,struct sockaddr * sa)1216 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1217 	struct sockaddr *sa)
1218 {
1219 	struct sockaddr_dl *sdl;
1220 #ifdef INET
1221 	struct sockaddr_in *sin;
1222 #endif
1223 #ifdef INET6
1224 	struct sockaddr_in6 *sin6;
1225 #endif
1226 	u_char *e_addr;
1227 
1228 	switch(sa->sa_family) {
1229 	case AF_LINK:
1230 		/*
1231 		 * No mapping needed. Just check that it's a valid MC address.
1232 		 */
1233 		sdl = (struct sockaddr_dl *)sa;
1234 		e_addr = LLADDR(sdl);
1235 		if (!ETHER_IS_MULTICAST(e_addr))
1236 			return EADDRNOTAVAIL;
1237 		*llsa = NULL;
1238 		return 0;
1239 
1240 #ifdef INET
1241 	case AF_INET:
1242 		sin = (struct sockaddr_in *)sa;
1243 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1244 			return EADDRNOTAVAIL;
1245 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1246 		sdl->sdl_alen = ETHER_ADDR_LEN;
1247 		e_addr = LLADDR(sdl);
1248 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1249 		*llsa = (struct sockaddr *)sdl;
1250 		return 0;
1251 #endif
1252 #ifdef INET6
1253 	case AF_INET6:
1254 		sin6 = (struct sockaddr_in6 *)sa;
1255 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1256 			/*
1257 			 * An IP6 address of 0 means listen to all
1258 			 * of the Ethernet multicast address used for IP6.
1259 			 * (This is used for multicast routers.)
1260 			 */
1261 			ifp->if_flags |= IFF_ALLMULTI;
1262 			*llsa = NULL;
1263 			return 0;
1264 		}
1265 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1266 			return EADDRNOTAVAIL;
1267 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1268 		sdl->sdl_alen = ETHER_ADDR_LEN;
1269 		e_addr = LLADDR(sdl);
1270 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1271 		*llsa = (struct sockaddr *)sdl;
1272 		return 0;
1273 #endif
1274 
1275 	default:
1276 		/*
1277 		 * Well, the text isn't quite right, but it's the name
1278 		 * that counts...
1279 		 */
1280 		return EAFNOSUPPORT;
1281 	}
1282 }
1283 
1284 static moduledata_t ether_mod = {
1285 	.name = "ether",
1286 };
1287 
1288 void
ether_vlan_mtap(struct bpf_if * bp,struct mbuf * m,void * data,u_int dlen)1289 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1290 {
1291 	struct ether_vlan_header vlan;
1292 	struct mbuf mv, mb;
1293 
1294 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1295 	    ("%s: vlan information not present", __func__));
1296 	KASSERT(m->m_len >= sizeof(struct ether_header),
1297 	    ("%s: mbuf not large enough for header", __func__));
1298 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1299 	vlan.evl_proto = vlan.evl_encap_proto;
1300 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1301 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1302 	m->m_len -= sizeof(struct ether_header);
1303 	m->m_data += sizeof(struct ether_header);
1304 	/*
1305 	 * If a data link has been supplied by the caller, then we will need to
1306 	 * re-create a stack allocated mbuf chain with the following structure:
1307 	 *
1308 	 * (1) mbuf #1 will contain the supplied data link
1309 	 * (2) mbuf #2 will contain the vlan header
1310 	 * (3) mbuf #3 will contain the original mbuf's packet data
1311 	 *
1312 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1313 	 */
1314 	if (data != NULL) {
1315 		mv.m_next = m;
1316 		mv.m_data = (caddr_t)&vlan;
1317 		mv.m_len = sizeof(vlan);
1318 		mb.m_next = &mv;
1319 		mb.m_data = data;
1320 		mb.m_len = dlen;
1321 		bpf_mtap(bp, &mb);
1322 	} else
1323 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1324 	m->m_len += sizeof(struct ether_header);
1325 	m->m_data -= sizeof(struct ether_header);
1326 }
1327 
1328 struct mbuf *
ether_vlanencap_proto(struct mbuf * m,uint16_t tag,uint16_t proto)1329 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1330 {
1331 	struct ether_vlan_header *evl;
1332 
1333 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1334 	if (m == NULL)
1335 		return (NULL);
1336 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1337 
1338 	if (m->m_len < sizeof(*evl)) {
1339 		m = m_pullup(m, sizeof(*evl));
1340 		if (m == NULL)
1341 			return (NULL);
1342 	}
1343 
1344 	/*
1345 	 * Transform the Ethernet header into an Ethernet header
1346 	 * with 802.1Q encapsulation.
1347 	 */
1348 	evl = mtod(m, struct ether_vlan_header *);
1349 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1350 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1351 	evl->evl_encap_proto = htons(proto);
1352 	evl->evl_tag = htons(tag);
1353 	return (m);
1354 }
1355 
1356 void
ether_bpf_mtap_if(struct ifnet * ifp,struct mbuf * m)1357 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1358 {
1359 	if (bpf_peers_present(ifp->if_bpf)) {
1360 		M_ASSERTVALID(m);
1361 		if ((m->m_flags & M_VLANTAG) != 0)
1362 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1363 		else
1364 			bpf_mtap(ifp->if_bpf, m);
1365 	}
1366 }
1367 
1368 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1369     "IEEE 802.1Q VLAN");
1370 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1371     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1372     "for consistency");
1373 
1374 VNET_DEFINE_STATIC(int, soft_pad);
1375 #define	V_soft_pad	VNET(soft_pad)
1376 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1377     &VNET_NAME(soft_pad), 0,
1378     "pad short frames before tagging");
1379 
1380 /*
1381  * For now, make preserving PCP via an mbuf tag optional, as it increases
1382  * per-packet memory allocations and frees.  In the future, it would be
1383  * preferable to reuse ether_vtag for this, or similar.
1384  */
1385 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1386 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1387 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1388     &VNET_NAME(vlan_mtag_pcp), 0,
1389     "Retain VLAN PCP information as packets are passed up the stack");
1390 
1391 static inline bool
ether_do_pcp(struct ifnet * ifp,struct mbuf * m)1392 ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1393 {
1394 	if (ifp->if_type == IFT_L2VLAN)
1395 		return (false);
1396 	if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1397 		return (true);
1398 	if (V_vlan_mtag_pcp &&
1399 	    m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1400 		return (true);
1401 	return (false);
1402 }
1403 
1404 bool
ether_8021q_frame(struct mbuf ** mp,struct ifnet * ife,struct ifnet * p,const struct ether_8021q_tag * qtag)1405 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1406     const struct ether_8021q_tag *qtag)
1407 {
1408 	struct m_tag *mtag;
1409 	int n;
1410 	uint16_t tag;
1411 	uint8_t pcp = qtag->pcp;
1412 	static const char pad[8];	/* just zeros */
1413 
1414 	/*
1415 	 * Pad the frame to the minimum size allowed if told to.
1416 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1417 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1418 	 * bridges that violate paragraph C.4.4.3.a from the same
1419 	 * document, i.e., fail to pad short frames after untagging.
1420 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1421 	 * untagging it will produce a 62-byte frame, which is a runt
1422 	 * and requires padding.  There are VLAN-enabled network
1423 	 * devices that just discard such runts instead or mishandle
1424 	 * them somehow.
1425 	 */
1426 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1427 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1428 		     n > 0; n -= sizeof(pad)) {
1429 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1430 				break;
1431 		}
1432 		if (n > 0) {
1433 			m_freem(*mp);
1434 			*mp = NULL;
1435 			if_printf(ife, "cannot pad short frame");
1436 			return (false);
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * If PCP is set in mbuf, use it
1442 	 */
1443 	if ((*mp)->m_flags & M_VLANTAG) {
1444 		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1445 	}
1446 
1447 	/*
1448 	 * If underlying interface can do VLAN tag insertion itself,
1449 	 * just pass the packet along. However, we need some way to
1450 	 * tell the interface where the packet came from so that it
1451 	 * knows how to find the VLAN tag to use, so we attach a
1452 	 * packet tag that holds it.
1453 	 */
1454 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1455 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1456 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1457 	else
1458 		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1459 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1460 	    (qtag->proto == ETHERTYPE_VLAN)) {
1461 		(*mp)->m_pkthdr.ether_vtag = tag;
1462 		(*mp)->m_flags |= M_VLANTAG;
1463 	} else {
1464 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1465 		if (*mp == NULL) {
1466 			if_printf(ife, "unable to prepend 802.1Q header");
1467 			return (false);
1468 		}
1469 		(*mp)->m_flags &= ~M_VLANTAG;
1470 	}
1471 	return (true);
1472 }
1473 
1474 /*
1475  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1476  * cryptographic hash function on the containing jail's name, UUID and the
1477  * interface name to attempt to provide a unique but stable address.
1478  * Pseudo-interfaces which require a MAC address should use this function to
1479  * allocate non-locally-administered addresses.
1480  */
1481 void
ether_gen_addr_byname(const char * nameunit,struct ether_addr * hwaddr)1482 ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1483 {
1484 	SHA1_CTX ctx;
1485 	char *buf;
1486 	char uuid[HOSTUUIDLEN + 1];
1487 	uint64_t addr;
1488 	int i, sz;
1489 	char digest[SHA1_RESULTLEN];
1490 	char jailname[MAXHOSTNAMELEN];
1491 
1492 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1493 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1494 		/* Fall back to a random mac address. */
1495 		goto rando;
1496 	}
1497 
1498 	/* If each (vnet) jail would also have a unique hostuuid this would not
1499 	 * be necessary. */
1500 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1501 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1502 	    jailname);
1503 	if (sz < 0) {
1504 		/* Fall back to a random mac address. */
1505 		goto rando;
1506 	}
1507 
1508 	SHA1Init(&ctx);
1509 	SHA1Update(&ctx, buf, sz);
1510 	SHA1Final(digest, &ctx);
1511 	free(buf, M_TEMP);
1512 
1513 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1514 	    OUI_FREEBSD_GENERATED_MASK;
1515 	addr = OUI_FREEBSD(addr);
1516 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1517 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1518 		    0xFF;
1519 	}
1520 
1521 	return;
1522 rando:
1523 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1524 	/* Unicast */
1525 	hwaddr->octet[0] &= 0xFE;
1526 	/* Locally administered. */
1527 	hwaddr->octet[0] |= 0x02;
1528 }
1529 
1530 void
ether_gen_addr(struct ifnet * ifp,struct ether_addr * hwaddr)1531 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1532 {
1533 	ether_gen_addr_byname(if_name(ifp), hwaddr);
1534 }
1535 
1536 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1537 MODULE_VERSION(ether, 1);
1538