1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/traps.c
4 *
5 * Copyright (C) 1995-2009 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/efi.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 #include <linux/ubsan.h>
31 #include <linux/cfi.h>
32
33 #include <asm/atomic.h>
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/efi.h>
39 #include <asm/esr.h>
40 #include <asm/exception.h>
41 #include <asm/extable.h>
42 #include <asm/insn.h>
43 #include <asm/kprobes.h>
44 #include <asm/text-patching.h>
45 #include <asm/traps.h>
46 #include <asm/smp.h>
47 #include <asm/stack_pointer.h>
48 #include <asm/stacktrace.h>
49 #include <asm/system_misc.h>
50 #include <asm/sysreg.h>
51
__check_eq(unsigned long pstate)52 static bool __kprobes __check_eq(unsigned long pstate)
53 {
54 return (pstate & PSR_Z_BIT) != 0;
55 }
56
__check_ne(unsigned long pstate)57 static bool __kprobes __check_ne(unsigned long pstate)
58 {
59 return (pstate & PSR_Z_BIT) == 0;
60 }
61
__check_cs(unsigned long pstate)62 static bool __kprobes __check_cs(unsigned long pstate)
63 {
64 return (pstate & PSR_C_BIT) != 0;
65 }
66
__check_cc(unsigned long pstate)67 static bool __kprobes __check_cc(unsigned long pstate)
68 {
69 return (pstate & PSR_C_BIT) == 0;
70 }
71
__check_mi(unsigned long pstate)72 static bool __kprobes __check_mi(unsigned long pstate)
73 {
74 return (pstate & PSR_N_BIT) != 0;
75 }
76
__check_pl(unsigned long pstate)77 static bool __kprobes __check_pl(unsigned long pstate)
78 {
79 return (pstate & PSR_N_BIT) == 0;
80 }
81
__check_vs(unsigned long pstate)82 static bool __kprobes __check_vs(unsigned long pstate)
83 {
84 return (pstate & PSR_V_BIT) != 0;
85 }
86
__check_vc(unsigned long pstate)87 static bool __kprobes __check_vc(unsigned long pstate)
88 {
89 return (pstate & PSR_V_BIT) == 0;
90 }
91
__check_hi(unsigned long pstate)92 static bool __kprobes __check_hi(unsigned long pstate)
93 {
94 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
95 return (pstate & PSR_C_BIT) != 0;
96 }
97
__check_ls(unsigned long pstate)98 static bool __kprobes __check_ls(unsigned long pstate)
99 {
100 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
101 return (pstate & PSR_C_BIT) == 0;
102 }
103
__check_ge(unsigned long pstate)104 static bool __kprobes __check_ge(unsigned long pstate)
105 {
106 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
107 return (pstate & PSR_N_BIT) == 0;
108 }
109
__check_lt(unsigned long pstate)110 static bool __kprobes __check_lt(unsigned long pstate)
111 {
112 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
113 return (pstate & PSR_N_BIT) != 0;
114 }
115
__check_gt(unsigned long pstate)116 static bool __kprobes __check_gt(unsigned long pstate)
117 {
118 /*PSR_N_BIT ^= PSR_V_BIT */
119 unsigned long temp = pstate ^ (pstate << 3);
120
121 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
122 return (temp & PSR_N_BIT) == 0;
123 }
124
__check_le(unsigned long pstate)125 static bool __kprobes __check_le(unsigned long pstate)
126 {
127 /*PSR_N_BIT ^= PSR_V_BIT */
128 unsigned long temp = pstate ^ (pstate << 3);
129
130 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
131 return (temp & PSR_N_BIT) != 0;
132 }
133
__check_al(unsigned long pstate)134 static bool __kprobes __check_al(unsigned long pstate)
135 {
136 return true;
137 }
138
139 /*
140 * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
141 * it behaves identically to 0b1110 ("al").
142 */
143 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
144 __check_eq, __check_ne, __check_cs, __check_cc,
145 __check_mi, __check_pl, __check_vs, __check_vc,
146 __check_hi, __check_ls, __check_ge, __check_lt,
147 __check_gt, __check_le, __check_al, __check_al
148 };
149
150 int show_unhandled_signals = 0;
151
dump_kernel_instr(const char * lvl,struct pt_regs * regs)152 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
153 {
154 unsigned long addr = instruction_pointer(regs);
155 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
156 int i;
157
158 if (user_mode(regs))
159 return;
160
161 for (i = -4; i < 1; i++) {
162 unsigned int val, bad;
163
164 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
165
166 if (!bad)
167 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
168 else
169 p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
170 }
171
172 printk("%sCode: %s\n", lvl, str);
173 }
174
175 #define S_SMP " SMP"
176
__die(const char * str,long err,struct pt_regs * regs)177 static int __die(const char *str, long err, struct pt_regs *regs)
178 {
179 static int die_counter;
180 int ret;
181
182 pr_emerg("Internal error: %s: %016lx [#%d] " S_SMP "\n",
183 str, err, ++die_counter);
184
185 /* trap and error numbers are mostly meaningless on ARM */
186 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
187 if (ret == NOTIFY_STOP)
188 return ret;
189
190 print_modules();
191 show_regs(regs);
192
193 dump_kernel_instr(KERN_EMERG, regs);
194
195 return ret;
196 }
197
198 static DEFINE_RAW_SPINLOCK(die_lock);
199
200 /*
201 * This function is protected against re-entrancy.
202 */
die(const char * str,struct pt_regs * regs,long err)203 void die(const char *str, struct pt_regs *regs, long err)
204 {
205 int ret;
206 unsigned long flags;
207
208 raw_spin_lock_irqsave(&die_lock, flags);
209
210 oops_enter();
211
212 console_verbose();
213 bust_spinlocks(1);
214 ret = __die(str, err, regs);
215
216 if (regs && kexec_should_crash(current))
217 crash_kexec(regs);
218
219 bust_spinlocks(0);
220 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
221 oops_exit();
222
223 if (in_interrupt())
224 panic("%s: Fatal exception in interrupt", str);
225 if (panic_on_oops)
226 panic("%s: Fatal exception", str);
227
228 raw_spin_unlock_irqrestore(&die_lock, flags);
229
230 if (ret != NOTIFY_STOP)
231 make_task_dead(SIGSEGV);
232 }
233
arm64_show_signal(int signo,const char * str)234 static void arm64_show_signal(int signo, const char *str)
235 {
236 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
237 DEFAULT_RATELIMIT_BURST);
238 struct task_struct *tsk = current;
239 unsigned long esr = tsk->thread.fault_code;
240 struct pt_regs *regs = task_pt_regs(tsk);
241
242 /* Leave if the signal won't be shown */
243 if (!show_unhandled_signals ||
244 !unhandled_signal(tsk, signo) ||
245 !__ratelimit(&rs))
246 return;
247
248 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
249 if (esr)
250 pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
251
252 pr_cont("%s", str);
253 print_vma_addr(KERN_CONT " in ", regs->pc);
254 pr_cont("\n");
255 __show_regs(regs);
256 }
257
arm64_force_sig_fault(int signo,int code,unsigned long far,const char * str)258 void arm64_force_sig_fault(int signo, int code, unsigned long far,
259 const char *str)
260 {
261 arm64_show_signal(signo, str);
262 if (signo == SIGKILL)
263 force_sig(SIGKILL);
264 else
265 force_sig_fault(signo, code, (void __user *)far);
266 }
267
arm64_force_sig_fault_pkey(unsigned long far,const char * str,int pkey)268 void arm64_force_sig_fault_pkey(unsigned long far, const char *str, int pkey)
269 {
270 arm64_show_signal(SIGSEGV, str);
271 force_sig_pkuerr((void __user *)far, pkey);
272 }
273
arm64_force_sig_mceerr(int code,unsigned long far,short lsb,const char * str)274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275 const char *str)
276 {
277 arm64_show_signal(SIGBUS, str);
278 force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280
arm64_force_sig_ptrace_errno_trap(int errno,unsigned long far,const char * str)281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282 const char *str)
283 {
284 arm64_show_signal(SIGTRAP, str);
285 force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,unsigned long far,unsigned long err)288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289 int signo, int sicode, unsigned long far,
290 unsigned long err)
291 {
292 if (user_mode(regs)) {
293 WARN_ON(regs != current_pt_regs());
294 current->thread.fault_address = 0;
295 current->thread.fault_code = err;
296
297 arm64_force_sig_fault(signo, sicode, far, str);
298 } else {
299 die(str, regs, err);
300 }
301 }
302
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT 25
305 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT 10
307 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
308
compat_get_it_state(struct pt_regs * regs)309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311 u32 it, pstate = regs->pstate;
312
313 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315
316 return it;
317 }
318
compat_set_it_state(struct pt_regs * regs,u32 it)319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321 u32 pstate_it;
322
323 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325
326 regs->pstate &= ~PSR_AA32_IT_MASK;
327 regs->pstate |= pstate_it;
328 }
329
advance_itstate(struct pt_regs * regs)330 static void advance_itstate(struct pt_regs *regs)
331 {
332 u32 it;
333
334 /* ARM mode */
335 if (!(regs->pstate & PSR_AA32_T_BIT) ||
336 !(regs->pstate & PSR_AA32_IT_MASK))
337 return;
338
339 it = compat_get_it_state(regs);
340
341 /*
342 * If this is the last instruction of the block, wipe the IT
343 * state. Otherwise advance it.
344 */
345 if (!(it & 7))
346 it = 0;
347 else
348 it = (it & 0xe0) | ((it << 1) & 0x1f);
349
350 compat_set_it_state(regs, it);
351 }
352 #else
advance_itstate(struct pt_regs * regs)353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360 regs->pc += size;
361
362 /*
363 * If we were single stepping, we want to get the step exception after
364 * we return from the trap.
365 */
366 if (user_mode(regs))
367 user_fastforward_single_step(current);
368
369 if (compat_user_mode(regs))
370 advance_itstate(regs);
371 else
372 regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374
user_insn_read(struct pt_regs * regs,u32 * insnp)375 static int user_insn_read(struct pt_regs *regs, u32 *insnp)
376 {
377 u32 instr;
378 unsigned long pc = instruction_pointer(regs);
379
380 if (compat_thumb_mode(regs)) {
381 /* 16-bit Thumb instruction */
382 __le16 instr_le;
383 if (get_user(instr_le, (__le16 __user *)pc))
384 return -EFAULT;
385 instr = le16_to_cpu(instr_le);
386 if (aarch32_insn_is_wide(instr)) {
387 u32 instr2;
388
389 if (get_user(instr_le, (__le16 __user *)(pc + 2)))
390 return -EFAULT;
391 instr2 = le16_to_cpu(instr_le);
392 instr = (instr << 16) | instr2;
393 }
394 } else {
395 /* 32-bit ARM instruction */
396 __le32 instr_le;
397 if (get_user(instr_le, (__le32 __user *)pc))
398 return -EFAULT;
399 instr = le32_to_cpu(instr_le);
400 }
401
402 *insnp = instr;
403 return 0;
404 }
405
force_signal_inject(int signal,int code,unsigned long address,unsigned long err)406 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
407 {
408 const char *desc;
409 struct pt_regs *regs = current_pt_regs();
410
411 if (WARN_ON(!user_mode(regs)))
412 return;
413
414 switch (signal) {
415 case SIGILL:
416 desc = "undefined instruction";
417 break;
418 case SIGSEGV:
419 desc = "illegal memory access";
420 break;
421 default:
422 desc = "unknown or unrecoverable error";
423 break;
424 }
425
426 /* Force signals we don't understand to SIGKILL */
427 if (WARN_ON(signal != SIGKILL &&
428 siginfo_layout(signal, code) != SIL_FAULT)) {
429 signal = SIGKILL;
430 }
431
432 arm64_notify_die(desc, regs, signal, code, address, err);
433 }
434
435 /*
436 * Set up process info to signal segmentation fault - called on access error.
437 */
arm64_notify_segfault(unsigned long addr)438 void arm64_notify_segfault(unsigned long addr)
439 {
440 int code;
441
442 mmap_read_lock(current->mm);
443 if (find_vma(current->mm, untagged_addr(addr)) == NULL)
444 code = SEGV_MAPERR;
445 else
446 code = SEGV_ACCERR;
447 mmap_read_unlock(current->mm);
448
449 force_signal_inject(SIGSEGV, code, addr, 0);
450 }
451
do_el0_undef(struct pt_regs * regs,unsigned long esr)452 void do_el0_undef(struct pt_regs *regs, unsigned long esr)
453 {
454 u32 insn;
455
456 /* check for AArch32 breakpoint instructions */
457 if (!aarch32_break_handler(regs))
458 return;
459
460 if (user_insn_read(regs, &insn))
461 goto out_err;
462
463 if (try_emulate_mrs(regs, insn))
464 return;
465
466 if (try_emulate_armv8_deprecated(regs, insn))
467 return;
468
469 out_err:
470 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
471 }
472
do_el1_undef(struct pt_regs * regs,unsigned long esr)473 void do_el1_undef(struct pt_regs *regs, unsigned long esr)
474 {
475 u32 insn;
476
477 if (aarch64_insn_read((void *)regs->pc, &insn))
478 goto out_err;
479
480 if (try_emulate_el1_ssbs(regs, insn))
481 return;
482
483 out_err:
484 die("Oops - Undefined instruction", regs, esr);
485 }
486
do_el0_bti(struct pt_regs * regs)487 void do_el0_bti(struct pt_regs *regs)
488 {
489 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
490 }
491
do_el1_bti(struct pt_regs * regs,unsigned long esr)492 void do_el1_bti(struct pt_regs *regs, unsigned long esr)
493 {
494 if (efi_runtime_fixup_exception(regs, "BTI violation")) {
495 regs->pstate &= ~PSR_BTYPE_MASK;
496 return;
497 }
498 die("Oops - BTI", regs, esr);
499 }
500
do_el0_gcs(struct pt_regs * regs,unsigned long esr)501 void do_el0_gcs(struct pt_regs *regs, unsigned long esr)
502 {
503 force_signal_inject(SIGSEGV, SEGV_CPERR, regs->pc, 0);
504 }
505
do_el1_gcs(struct pt_regs * regs,unsigned long esr)506 void do_el1_gcs(struct pt_regs *regs, unsigned long esr)
507 {
508 die("Oops - GCS", regs, esr);
509 }
510
do_el0_fpac(struct pt_regs * regs,unsigned long esr)511 void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
512 {
513 force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
514 }
515
do_el1_fpac(struct pt_regs * regs,unsigned long esr)516 void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
517 {
518 /*
519 * Unexpected FPAC exception in the kernel: kill the task before it
520 * does any more harm.
521 */
522 die("Oops - FPAC", regs, esr);
523 }
524
do_el0_mops(struct pt_regs * regs,unsigned long esr)525 void do_el0_mops(struct pt_regs *regs, unsigned long esr)
526 {
527 arm64_mops_reset_regs(®s->user_regs, esr);
528
529 /*
530 * If single stepping then finish the step before executing the
531 * prologue instruction.
532 */
533 user_fastforward_single_step(current);
534 }
535
do_el1_mops(struct pt_regs * regs,unsigned long esr)536 void do_el1_mops(struct pt_regs *regs, unsigned long esr)
537 {
538 arm64_mops_reset_regs(®s->user_regs, esr);
539
540 kernel_fastforward_single_step(regs);
541 }
542
543 #define __user_cache_maint(insn, address, res) \
544 if (address >= TASK_SIZE_MAX) { \
545 res = -EFAULT; \
546 } else { \
547 uaccess_ttbr0_enable(); \
548 asm volatile ( \
549 "1: " insn ", %1\n" \
550 " mov %w0, #0\n" \
551 "2:\n" \
552 _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \
553 : "=r" (res) \
554 : "r" (address)); \
555 uaccess_ttbr0_disable(); \
556 }
557
user_cache_maint_handler(unsigned long esr,struct pt_regs * regs)558 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
559 {
560 unsigned long tagged_address, address;
561 int rt = ESR_ELx_SYS64_ISS_RT(esr);
562 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
563 int ret = 0;
564
565 tagged_address = pt_regs_read_reg(regs, rt);
566 address = untagged_addr(tagged_address);
567
568 switch (crm) {
569 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
570 __user_cache_maint("dc civac", address, ret);
571 break;
572 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
573 __user_cache_maint("dc civac", address, ret);
574 break;
575 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
576 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
577 break;
578 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
579 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
580 break;
581 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
582 __user_cache_maint("dc civac", address, ret);
583 break;
584 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
585 __user_cache_maint("ic ivau", address, ret);
586 break;
587 default:
588 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
589 return;
590 }
591
592 if (ret)
593 arm64_notify_segfault(tagged_address);
594 else
595 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
596 }
597
ctr_read_handler(unsigned long esr,struct pt_regs * regs)598 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
599 {
600 int rt = ESR_ELx_SYS64_ISS_RT(esr);
601 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
602
603 if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) {
604 /* Hide DIC so that we can trap the unnecessary maintenance...*/
605 val &= ~BIT(CTR_EL0_DIC_SHIFT);
606
607 /* ... and fake IminLine to reduce the number of traps. */
608 val &= ~CTR_EL0_IminLine_MASK;
609 val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
610 }
611
612 pt_regs_write_reg(regs, rt, val);
613
614 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
615 }
616
cntvct_read_handler(unsigned long esr,struct pt_regs * regs)617 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
618 {
619 if (test_thread_flag(TIF_TSC_SIGSEGV)) {
620 force_sig(SIGSEGV);
621 } else {
622 int rt = ESR_ELx_SYS64_ISS_RT(esr);
623
624 pt_regs_write_reg(regs, rt, arch_timer_read_counter());
625 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
626 }
627 }
628
cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)629 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
630 {
631 if (test_thread_flag(TIF_TSC_SIGSEGV)) {
632 force_sig(SIGSEGV);
633 } else {
634 int rt = ESR_ELx_SYS64_ISS_RT(esr);
635
636 pt_regs_write_reg(regs, rt, arch_timer_get_rate());
637 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
638 }
639 }
640
mrs_handler(unsigned long esr,struct pt_regs * regs)641 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
642 {
643 u32 sysreg, rt;
644
645 rt = ESR_ELx_SYS64_ISS_RT(esr);
646 sysreg = esr_sys64_to_sysreg(esr);
647
648 if (do_emulate_mrs(regs, sysreg, rt) != 0)
649 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
650 }
651
wfi_handler(unsigned long esr,struct pt_regs * regs)652 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
653 {
654 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
655 }
656
657 struct sys64_hook {
658 unsigned long esr_mask;
659 unsigned long esr_val;
660 void (*handler)(unsigned long esr, struct pt_regs *regs);
661 };
662
663 static const struct sys64_hook sys64_hooks[] = {
664 {
665 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
666 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
667 .handler = user_cache_maint_handler,
668 },
669 {
670 /* Trap read access to CTR_EL0 */
671 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
672 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
673 .handler = ctr_read_handler,
674 },
675 {
676 /* Trap read access to CNTVCT_EL0 */
677 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
678 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
679 .handler = cntvct_read_handler,
680 },
681 {
682 /* Trap read access to CNTVCTSS_EL0 */
683 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
684 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
685 .handler = cntvct_read_handler,
686 },
687 {
688 /* Trap read access to CNTFRQ_EL0 */
689 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
690 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
691 .handler = cntfrq_read_handler,
692 },
693 {
694 /* Trap read access to CPUID registers */
695 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
696 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
697 .handler = mrs_handler,
698 },
699 {
700 /* Trap WFI instructions executed in userspace */
701 .esr_mask = ESR_ELx_WFx_MASK,
702 .esr_val = ESR_ELx_WFx_WFI_VAL,
703 .handler = wfi_handler,
704 },
705 {},
706 };
707
708 #ifdef CONFIG_COMPAT
cp15_cond_valid(unsigned long esr,struct pt_regs * regs)709 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
710 {
711 int cond;
712
713 /* Only a T32 instruction can trap without CV being set */
714 if (!(esr & ESR_ELx_CV)) {
715 u32 it;
716
717 it = compat_get_it_state(regs);
718 if (!it)
719 return true;
720
721 cond = it >> 4;
722 } else {
723 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
724 }
725
726 return aarch32_opcode_cond_checks[cond](regs->pstate);
727 }
728
compat_cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)729 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
730 {
731 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
732
733 pt_regs_write_reg(regs, reg, arch_timer_get_rate());
734 arm64_skip_faulting_instruction(regs, 4);
735 }
736
737 static const struct sys64_hook cp15_32_hooks[] = {
738 {
739 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
740 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
741 .handler = compat_cntfrq_read_handler,
742 },
743 {},
744 };
745
compat_cntvct_read_handler(unsigned long esr,struct pt_regs * regs)746 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
747 {
748 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
749 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
750 u64 val = arch_timer_read_counter();
751
752 pt_regs_write_reg(regs, rt, lower_32_bits(val));
753 pt_regs_write_reg(regs, rt2, upper_32_bits(val));
754 arm64_skip_faulting_instruction(regs, 4);
755 }
756
757 static const struct sys64_hook cp15_64_hooks[] = {
758 {
759 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
760 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
761 .handler = compat_cntvct_read_handler,
762 },
763 {
764 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
765 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
766 .handler = compat_cntvct_read_handler,
767 },
768 {},
769 };
770
do_el0_cp15(unsigned long esr,struct pt_regs * regs)771 void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
772 {
773 const struct sys64_hook *hook, *hook_base;
774
775 if (!cp15_cond_valid(esr, regs)) {
776 /*
777 * There is no T16 variant of a CP access, so we
778 * always advance PC by 4 bytes.
779 */
780 arm64_skip_faulting_instruction(regs, 4);
781 return;
782 }
783
784 switch (ESR_ELx_EC(esr)) {
785 case ESR_ELx_EC_CP15_32:
786 hook_base = cp15_32_hooks;
787 break;
788 case ESR_ELx_EC_CP15_64:
789 hook_base = cp15_64_hooks;
790 break;
791 default:
792 do_el0_undef(regs, esr);
793 return;
794 }
795
796 for (hook = hook_base; hook->handler; hook++)
797 if ((hook->esr_mask & esr) == hook->esr_val) {
798 hook->handler(esr, regs);
799 return;
800 }
801
802 /*
803 * New cp15 instructions may previously have been undefined at
804 * EL0. Fall back to our usual undefined instruction handler
805 * so that we handle these consistently.
806 */
807 do_el0_undef(regs, esr);
808 }
809 #endif
810
do_el0_sys(unsigned long esr,struct pt_regs * regs)811 void do_el0_sys(unsigned long esr, struct pt_regs *regs)
812 {
813 const struct sys64_hook *hook;
814
815 for (hook = sys64_hooks; hook->handler; hook++)
816 if ((hook->esr_mask & esr) == hook->esr_val) {
817 hook->handler(esr, regs);
818 return;
819 }
820
821 /*
822 * New SYS instructions may previously have been undefined at EL0. Fall
823 * back to our usual undefined instruction handler so that we handle
824 * these consistently.
825 */
826 do_el0_undef(regs, esr);
827 }
828
829 static const char *esr_class_str[] = {
830 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
831 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
832 [ESR_ELx_EC_WFx] = "WFI/WFE",
833 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
834 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
835 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
836 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
837 [ESR_ELx_EC_FP_ASIMD] = "ASIMD",
838 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
839 [ESR_ELx_EC_PAC] = "PAC",
840 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
841 [ESR_ELx_EC_BTI] = "BTI",
842 [ESR_ELx_EC_ILL] = "PSTATE.IL",
843 [ESR_ELx_EC_SVC32] = "SVC (AArch32)",
844 [ESR_ELx_EC_HVC32] = "HVC (AArch32)",
845 [ESR_ELx_EC_SMC32] = "SMC (AArch32)",
846 [ESR_ELx_EC_SVC64] = "SVC (AArch64)",
847 [ESR_ELx_EC_HVC64] = "HVC (AArch64)",
848 [ESR_ELx_EC_SMC64] = "SMC (AArch64)",
849 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
850 [ESR_ELx_EC_SVE] = "SVE",
851 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
852 [ESR_ELx_EC_FPAC] = "FPAC",
853 [ESR_ELx_EC_SME] = "SME",
854 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
855 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
856 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
857 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
858 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
859 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
860 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
861 [ESR_ELx_EC_MOPS] = "MOPS",
862 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
863 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
864 [ESR_ELx_EC_GCS] = "Guarded Control Stack",
865 [ESR_ELx_EC_SERROR] = "SError",
866 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
867 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
868 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
869 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
870 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
871 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
872 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
873 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
874 [ESR_ELx_EC_BRK64] = "BRK (AArch64)",
875 };
876
esr_get_class_string(unsigned long esr)877 const char *esr_get_class_string(unsigned long esr)
878 {
879 return esr_class_str[ESR_ELx_EC(esr)];
880 }
881
882 /*
883 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
884 * exceptions taken from EL0.
885 */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned long esr)886 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
887 {
888 unsigned long pc = instruction_pointer(regs);
889
890 current->thread.fault_address = 0;
891 current->thread.fault_code = esr;
892
893 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
894 "Bad EL0 synchronous exception");
895 }
896
897 #ifdef CONFIG_VMAP_STACK
898
899 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
900 __aligned(16);
901
panic_bad_stack(struct pt_regs * regs,unsigned long esr,unsigned long far)902 void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
903 {
904 unsigned long tsk_stk = (unsigned long)current->stack;
905 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
906 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
907
908 console_verbose();
909 pr_emerg("Insufficient stack space to handle exception!");
910
911 pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
912 pr_emerg("FAR: 0x%016lx\n", far);
913
914 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
915 tsk_stk, tsk_stk + THREAD_SIZE);
916 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
917 irq_stk, irq_stk + IRQ_STACK_SIZE);
918 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
919 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
920
921 __show_regs(regs);
922
923 /*
924 * We use nmi_panic to limit the potential for recusive overflows, and
925 * to get a better stack trace.
926 */
927 nmi_panic(NULL, "kernel stack overflow");
928 cpu_park_loop();
929 }
930 #endif
931
arm64_serror_panic(struct pt_regs * regs,unsigned long esr)932 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
933 {
934 console_verbose();
935
936 pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
937 smp_processor_id(), esr, esr_get_class_string(esr));
938 if (regs)
939 __show_regs(regs);
940
941 nmi_panic(regs, "Asynchronous SError Interrupt");
942
943 cpu_park_loop();
944 }
945
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned long esr)946 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
947 {
948 unsigned long aet = arm64_ras_serror_get_severity(esr);
949
950 switch (aet) {
951 case ESR_ELx_AET_CE: /* corrected error */
952 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
953 /*
954 * The CPU can make progress. We may take UEO again as
955 * a more severe error.
956 */
957 return false;
958
959 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
960 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
961 /*
962 * The CPU can't make progress. The exception may have
963 * been imprecise.
964 *
965 * Neoverse-N1 #1349291 means a non-KVM SError reported as
966 * Unrecoverable should be treated as Uncontainable. We
967 * call arm64_serror_panic() in both cases.
968 */
969 return true;
970
971 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
972 default:
973 /* Error has been silently propagated */
974 arm64_serror_panic(regs, esr);
975 }
976 }
977
do_serror(struct pt_regs * regs,unsigned long esr)978 void do_serror(struct pt_regs *regs, unsigned long esr)
979 {
980 /* non-RAS errors are not containable */
981 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
982 arm64_serror_panic(regs, esr);
983 }
984
985 /* GENERIC_BUG traps */
986 #ifdef CONFIG_GENERIC_BUG
is_valid_bugaddr(unsigned long addr)987 int is_valid_bugaddr(unsigned long addr)
988 {
989 /*
990 * bug_handler() only called for BRK #BUG_BRK_IMM.
991 * So the answer is trivial -- any spurious instances with no
992 * bug table entry will be rejected by report_bug() and passed
993 * back to the debug-monitors code and handled as a fatal
994 * unexpected debug exception.
995 */
996 return 1;
997 }
998 #endif
999
bug_handler(struct pt_regs * regs,unsigned long esr)1000 static int bug_handler(struct pt_regs *regs, unsigned long esr)
1001 {
1002 switch (report_bug(regs->pc, regs)) {
1003 case BUG_TRAP_TYPE_BUG:
1004 die("Oops - BUG", regs, esr);
1005 break;
1006
1007 case BUG_TRAP_TYPE_WARN:
1008 break;
1009
1010 default:
1011 /* unknown/unrecognised bug trap type */
1012 return DBG_HOOK_ERROR;
1013 }
1014
1015 /* If thread survives, skip over the BUG instruction and continue: */
1016 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1017 return DBG_HOOK_HANDLED;
1018 }
1019
1020 static struct break_hook bug_break_hook = {
1021 .fn = bug_handler,
1022 .imm = BUG_BRK_IMM,
1023 };
1024
1025 #ifdef CONFIG_CFI_CLANG
cfi_handler(struct pt_regs * regs,unsigned long esr)1026 static int cfi_handler(struct pt_regs *regs, unsigned long esr)
1027 {
1028 unsigned long target;
1029 u32 type;
1030
1031 target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
1032 type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
1033
1034 switch (report_cfi_failure(regs, regs->pc, &target, type)) {
1035 case BUG_TRAP_TYPE_BUG:
1036 die("Oops - CFI", regs, esr);
1037 break;
1038
1039 case BUG_TRAP_TYPE_WARN:
1040 break;
1041
1042 default:
1043 return DBG_HOOK_ERROR;
1044 }
1045
1046 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1047 return DBG_HOOK_HANDLED;
1048 }
1049
1050 static struct break_hook cfi_break_hook = {
1051 .fn = cfi_handler,
1052 .imm = CFI_BRK_IMM_BASE,
1053 .mask = CFI_BRK_IMM_MASK,
1054 };
1055 #endif /* CONFIG_CFI_CLANG */
1056
reserved_fault_handler(struct pt_regs * regs,unsigned long esr)1057 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1058 {
1059 pr_err("%s generated an invalid instruction at %pS!\n",
1060 "Kernel text patching",
1061 (void *)instruction_pointer(regs));
1062
1063 /* We cannot handle this */
1064 return DBG_HOOK_ERROR;
1065 }
1066
1067 static struct break_hook fault_break_hook = {
1068 .fn = reserved_fault_handler,
1069 .imm = FAULT_BRK_IMM,
1070 };
1071
1072 #ifdef CONFIG_KASAN_SW_TAGS
1073
1074 #define KASAN_ESR_RECOVER 0x20
1075 #define KASAN_ESR_WRITE 0x10
1076 #define KASAN_ESR_SIZE_MASK 0x0f
1077 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
1078
kasan_handler(struct pt_regs * regs,unsigned long esr)1079 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1080 {
1081 bool recover = esr & KASAN_ESR_RECOVER;
1082 bool write = esr & KASAN_ESR_WRITE;
1083 size_t size = KASAN_ESR_SIZE(esr);
1084 void *addr = (void *)regs->regs[0];
1085 u64 pc = regs->pc;
1086
1087 kasan_report(addr, size, write, pc);
1088
1089 /*
1090 * The instrumentation allows to control whether we can proceed after
1091 * a crash was detected. This is done by passing the -recover flag to
1092 * the compiler. Disabling recovery allows to generate more compact
1093 * code.
1094 *
1095 * Unfortunately disabling recovery doesn't work for the kernel right
1096 * now. KASAN reporting is disabled in some contexts (for example when
1097 * the allocator accesses slab object metadata; this is controlled by
1098 * current->kasan_depth). All these accesses are detected by the tool,
1099 * even though the reports for them are not printed.
1100 *
1101 * This is something that might be fixed at some point in the future.
1102 */
1103 if (!recover)
1104 die("Oops - KASAN", regs, esr);
1105
1106 /* If thread survives, skip over the brk instruction and continue: */
1107 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1108 return DBG_HOOK_HANDLED;
1109 }
1110
1111 static struct break_hook kasan_break_hook = {
1112 .fn = kasan_handler,
1113 .imm = KASAN_BRK_IMM,
1114 .mask = KASAN_BRK_MASK,
1115 };
1116 #endif
1117
1118 #ifdef CONFIG_UBSAN_TRAP
ubsan_handler(struct pt_regs * regs,unsigned long esr)1119 static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1120 {
1121 die(report_ubsan_failure(esr & UBSAN_BRK_MASK), regs, esr);
1122 return DBG_HOOK_HANDLED;
1123 }
1124
1125 static struct break_hook ubsan_break_hook = {
1126 .fn = ubsan_handler,
1127 .imm = UBSAN_BRK_IMM,
1128 .mask = UBSAN_BRK_MASK,
1129 };
1130 #endif
1131
1132 /*
1133 * Initial handler for AArch64 BRK exceptions
1134 * This handler only used until debug_traps_init().
1135 */
early_brk64(unsigned long addr,unsigned long esr,struct pt_regs * regs)1136 int __init early_brk64(unsigned long addr, unsigned long esr,
1137 struct pt_regs *regs)
1138 {
1139 #ifdef CONFIG_CFI_CLANG
1140 if (esr_is_cfi_brk(esr))
1141 return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1142 #endif
1143 #ifdef CONFIG_KASAN_SW_TAGS
1144 if ((esr_brk_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1145 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1146 #endif
1147 #ifdef CONFIG_UBSAN_TRAP
1148 if (esr_is_ubsan_brk(esr))
1149 return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1150 #endif
1151 return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1152 }
1153
trap_init(void)1154 void __init trap_init(void)
1155 {
1156 register_kernel_break_hook(&bug_break_hook);
1157 #ifdef CONFIG_CFI_CLANG
1158 register_kernel_break_hook(&cfi_break_hook);
1159 #endif
1160 register_kernel_break_hook(&fault_break_hook);
1161 #ifdef CONFIG_KASAN_SW_TAGS
1162 register_kernel_break_hook(&kasan_break_hook);
1163 #endif
1164 #ifdef CONFIG_UBSAN_TRAP
1165 register_kernel_break_hook(&ubsan_break_hook);
1166 #endif
1167 debug_traps_init();
1168 }
1169