xref: /linux/arch/arm64/kernel/traps.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/efi.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 #include <linux/ubsan.h>
31 #include <linux/cfi.h>
32 
33 #include <asm/atomic.h>
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/efi.h>
39 #include <asm/esr.h>
40 #include <asm/exception.h>
41 #include <asm/extable.h>
42 #include <asm/insn.h>
43 #include <asm/kprobes.h>
44 #include <asm/text-patching.h>
45 #include <asm/traps.h>
46 #include <asm/smp.h>
47 #include <asm/stack_pointer.h>
48 #include <asm/stacktrace.h>
49 #include <asm/system_misc.h>
50 #include <asm/sysreg.h>
51 
__check_eq(unsigned long pstate)52 static bool __kprobes __check_eq(unsigned long pstate)
53 {
54 	return (pstate & PSR_Z_BIT) != 0;
55 }
56 
__check_ne(unsigned long pstate)57 static bool __kprobes __check_ne(unsigned long pstate)
58 {
59 	return (pstate & PSR_Z_BIT) == 0;
60 }
61 
__check_cs(unsigned long pstate)62 static bool __kprobes __check_cs(unsigned long pstate)
63 {
64 	return (pstate & PSR_C_BIT) != 0;
65 }
66 
__check_cc(unsigned long pstate)67 static bool __kprobes __check_cc(unsigned long pstate)
68 {
69 	return (pstate & PSR_C_BIT) == 0;
70 }
71 
__check_mi(unsigned long pstate)72 static bool __kprobes __check_mi(unsigned long pstate)
73 {
74 	return (pstate & PSR_N_BIT) != 0;
75 }
76 
__check_pl(unsigned long pstate)77 static bool __kprobes __check_pl(unsigned long pstate)
78 {
79 	return (pstate & PSR_N_BIT) == 0;
80 }
81 
__check_vs(unsigned long pstate)82 static bool __kprobes __check_vs(unsigned long pstate)
83 {
84 	return (pstate & PSR_V_BIT) != 0;
85 }
86 
__check_vc(unsigned long pstate)87 static bool __kprobes __check_vc(unsigned long pstate)
88 {
89 	return (pstate & PSR_V_BIT) == 0;
90 }
91 
__check_hi(unsigned long pstate)92 static bool __kprobes __check_hi(unsigned long pstate)
93 {
94 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
95 	return (pstate & PSR_C_BIT) != 0;
96 }
97 
__check_ls(unsigned long pstate)98 static bool __kprobes __check_ls(unsigned long pstate)
99 {
100 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
101 	return (pstate & PSR_C_BIT) == 0;
102 }
103 
__check_ge(unsigned long pstate)104 static bool __kprobes __check_ge(unsigned long pstate)
105 {
106 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
107 	return (pstate & PSR_N_BIT) == 0;
108 }
109 
__check_lt(unsigned long pstate)110 static bool __kprobes __check_lt(unsigned long pstate)
111 {
112 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
113 	return (pstate & PSR_N_BIT) != 0;
114 }
115 
__check_gt(unsigned long pstate)116 static bool __kprobes __check_gt(unsigned long pstate)
117 {
118 	/*PSR_N_BIT ^= PSR_V_BIT */
119 	unsigned long temp = pstate ^ (pstate << 3);
120 
121 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
122 	return (temp & PSR_N_BIT) == 0;
123 }
124 
__check_le(unsigned long pstate)125 static bool __kprobes __check_le(unsigned long pstate)
126 {
127 	/*PSR_N_BIT ^= PSR_V_BIT */
128 	unsigned long temp = pstate ^ (pstate << 3);
129 
130 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
131 	return (temp & PSR_N_BIT) != 0;
132 }
133 
__check_al(unsigned long pstate)134 static bool __kprobes __check_al(unsigned long pstate)
135 {
136 	return true;
137 }
138 
139 /*
140  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
141  * it behaves identically to 0b1110 ("al").
142  */
143 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
144 	__check_eq, __check_ne, __check_cs, __check_cc,
145 	__check_mi, __check_pl, __check_vs, __check_vc,
146 	__check_hi, __check_ls, __check_ge, __check_lt,
147 	__check_gt, __check_le, __check_al, __check_al
148 };
149 
150 int show_unhandled_signals = 0;
151 
dump_kernel_instr(const char * lvl,struct pt_regs * regs)152 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
153 {
154 	unsigned long addr = instruction_pointer(regs);
155 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
156 	int i;
157 
158 	if (user_mode(regs))
159 		return;
160 
161 	for (i = -4; i < 1; i++) {
162 		unsigned int val, bad;
163 
164 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
165 
166 		if (!bad)
167 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
168 		else
169 			p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
170 	}
171 
172 	printk("%sCode: %s\n", lvl, str);
173 }
174 
175 #define S_SMP " SMP"
176 
__die(const char * str,long err,struct pt_regs * regs)177 static int __die(const char *str, long err, struct pt_regs *regs)
178 {
179 	static int die_counter;
180 	int ret;
181 
182 	pr_emerg("Internal error: %s: %016lx [#%d] " S_SMP "\n",
183 		 str, err, ++die_counter);
184 
185 	/* trap and error numbers are mostly meaningless on ARM */
186 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
187 	if (ret == NOTIFY_STOP)
188 		return ret;
189 
190 	print_modules();
191 	show_regs(regs);
192 
193 	dump_kernel_instr(KERN_EMERG, regs);
194 
195 	return ret;
196 }
197 
198 static DEFINE_RAW_SPINLOCK(die_lock);
199 
200 /*
201  * This function is protected against re-entrancy.
202  */
die(const char * str,struct pt_regs * regs,long err)203 void die(const char *str, struct pt_regs *regs, long err)
204 {
205 	int ret;
206 	unsigned long flags;
207 
208 	raw_spin_lock_irqsave(&die_lock, flags);
209 
210 	oops_enter();
211 
212 	console_verbose();
213 	bust_spinlocks(1);
214 	ret = __die(str, err, regs);
215 
216 	if (regs && kexec_should_crash(current))
217 		crash_kexec(regs);
218 
219 	bust_spinlocks(0);
220 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
221 	oops_exit();
222 
223 	if (in_interrupt())
224 		panic("%s: Fatal exception in interrupt", str);
225 	if (panic_on_oops)
226 		panic("%s: Fatal exception", str);
227 
228 	raw_spin_unlock_irqrestore(&die_lock, flags);
229 
230 	if (ret != NOTIFY_STOP)
231 		make_task_dead(SIGSEGV);
232 }
233 
arm64_show_signal(int signo,const char * str)234 static void arm64_show_signal(int signo, const char *str)
235 {
236 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
237 				      DEFAULT_RATELIMIT_BURST);
238 	struct task_struct *tsk = current;
239 	unsigned long esr = tsk->thread.fault_code;
240 	struct pt_regs *regs = task_pt_regs(tsk);
241 
242 	/* Leave if the signal won't be shown */
243 	if (!show_unhandled_signals ||
244 	    !unhandled_signal(tsk, signo) ||
245 	    !__ratelimit(&rs))
246 		return;
247 
248 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
249 	if (esr)
250 		pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
251 
252 	pr_cont("%s", str);
253 	print_vma_addr(KERN_CONT " in ", regs->pc);
254 	pr_cont("\n");
255 	__show_regs(regs);
256 }
257 
arm64_force_sig_fault(int signo,int code,unsigned long far,const char * str)258 void arm64_force_sig_fault(int signo, int code, unsigned long far,
259 			   const char *str)
260 {
261 	arm64_show_signal(signo, str);
262 	if (signo == SIGKILL)
263 		force_sig(SIGKILL);
264 	else
265 		force_sig_fault(signo, code, (void __user *)far);
266 }
267 
arm64_force_sig_fault_pkey(unsigned long far,const char * str,int pkey)268 void arm64_force_sig_fault_pkey(unsigned long far, const char *str, int pkey)
269 {
270 	arm64_show_signal(SIGSEGV, str);
271 	force_sig_pkuerr((void __user *)far, pkey);
272 }
273 
arm64_force_sig_mceerr(int code,unsigned long far,short lsb,const char * str)274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275 			    const char *str)
276 {
277 	arm64_show_signal(SIGBUS, str);
278 	force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280 
arm64_force_sig_ptrace_errno_trap(int errno,unsigned long far,const char * str)281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282 				       const char *str)
283 {
284 	arm64_show_signal(SIGTRAP, str);
285 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287 
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,unsigned long far,unsigned long err)288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289 		      int signo, int sicode, unsigned long far,
290 		      unsigned long err)
291 {
292 	if (user_mode(regs)) {
293 		WARN_ON(regs != current_pt_regs());
294 		current->thread.fault_address = 0;
295 		current->thread.fault_code = err;
296 
297 		arm64_force_sig_fault(signo, sicode, far, str);
298 	} else {
299 		die(str, regs, err);
300 	}
301 }
302 
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT	25
305 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT	10
307 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
308 
compat_get_it_state(struct pt_regs * regs)309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311 	u32 it, pstate = regs->pstate;
312 
313 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315 
316 	return it;
317 }
318 
compat_set_it_state(struct pt_regs * regs,u32 it)319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321 	u32 pstate_it;
322 
323 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325 
326 	regs->pstate &= ~PSR_AA32_IT_MASK;
327 	regs->pstate |= pstate_it;
328 }
329 
advance_itstate(struct pt_regs * regs)330 static void advance_itstate(struct pt_regs *regs)
331 {
332 	u32 it;
333 
334 	/* ARM mode */
335 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
336 	    !(regs->pstate & PSR_AA32_IT_MASK))
337 		return;
338 
339 	it  = compat_get_it_state(regs);
340 
341 	/*
342 	 * If this is the last instruction of the block, wipe the IT
343 	 * state. Otherwise advance it.
344 	 */
345 	if (!(it & 7))
346 		it = 0;
347 	else
348 		it = (it & 0xe0) | ((it << 1) & 0x1f);
349 
350 	compat_set_it_state(regs, it);
351 }
352 #else
advance_itstate(struct pt_regs * regs)353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357 
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360 	regs->pc += size;
361 
362 	/*
363 	 * If we were single stepping, we want to get the step exception after
364 	 * we return from the trap.
365 	 */
366 	if (user_mode(regs))
367 		user_fastforward_single_step(current);
368 
369 	if (compat_user_mode(regs))
370 		advance_itstate(regs);
371 	else
372 		regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374 
user_insn_read(struct pt_regs * regs,u32 * insnp)375 static int user_insn_read(struct pt_regs *regs, u32 *insnp)
376 {
377 	u32 instr;
378 	unsigned long pc = instruction_pointer(regs);
379 
380 	if (compat_thumb_mode(regs)) {
381 		/* 16-bit Thumb instruction */
382 		__le16 instr_le;
383 		if (get_user(instr_le, (__le16 __user *)pc))
384 			return -EFAULT;
385 		instr = le16_to_cpu(instr_le);
386 		if (aarch32_insn_is_wide(instr)) {
387 			u32 instr2;
388 
389 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
390 				return -EFAULT;
391 			instr2 = le16_to_cpu(instr_le);
392 			instr = (instr << 16) | instr2;
393 		}
394 	} else {
395 		/* 32-bit ARM instruction */
396 		__le32 instr_le;
397 		if (get_user(instr_le, (__le32 __user *)pc))
398 			return -EFAULT;
399 		instr = le32_to_cpu(instr_le);
400 	}
401 
402 	*insnp = instr;
403 	return 0;
404 }
405 
force_signal_inject(int signal,int code,unsigned long address,unsigned long err)406 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
407 {
408 	const char *desc;
409 	struct pt_regs *regs = current_pt_regs();
410 
411 	if (WARN_ON(!user_mode(regs)))
412 		return;
413 
414 	switch (signal) {
415 	case SIGILL:
416 		desc = "undefined instruction";
417 		break;
418 	case SIGSEGV:
419 		desc = "illegal memory access";
420 		break;
421 	default:
422 		desc = "unknown or unrecoverable error";
423 		break;
424 	}
425 
426 	/* Force signals we don't understand to SIGKILL */
427 	if (WARN_ON(signal != SIGKILL &&
428 		    siginfo_layout(signal, code) != SIL_FAULT)) {
429 		signal = SIGKILL;
430 	}
431 
432 	arm64_notify_die(desc, regs, signal, code, address, err);
433 }
434 
435 /*
436  * Set up process info to signal segmentation fault - called on access error.
437  */
arm64_notify_segfault(unsigned long addr)438 void arm64_notify_segfault(unsigned long addr)
439 {
440 	int code;
441 
442 	mmap_read_lock(current->mm);
443 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
444 		code = SEGV_MAPERR;
445 	else
446 		code = SEGV_ACCERR;
447 	mmap_read_unlock(current->mm);
448 
449 	force_signal_inject(SIGSEGV, code, addr, 0);
450 }
451 
do_el0_undef(struct pt_regs * regs,unsigned long esr)452 void do_el0_undef(struct pt_regs *regs, unsigned long esr)
453 {
454 	u32 insn;
455 
456 	/* check for AArch32 breakpoint instructions */
457 	if (!aarch32_break_handler(regs))
458 		return;
459 
460 	if (user_insn_read(regs, &insn))
461 		goto out_err;
462 
463 	if (try_emulate_mrs(regs, insn))
464 		return;
465 
466 	if (try_emulate_armv8_deprecated(regs, insn))
467 		return;
468 
469 out_err:
470 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
471 }
472 
do_el1_undef(struct pt_regs * regs,unsigned long esr)473 void do_el1_undef(struct pt_regs *regs, unsigned long esr)
474 {
475 	u32 insn;
476 
477 	if (aarch64_insn_read((void *)regs->pc, &insn))
478 		goto out_err;
479 
480 	if (try_emulate_el1_ssbs(regs, insn))
481 		return;
482 
483 out_err:
484 	die("Oops - Undefined instruction", regs, esr);
485 }
486 
do_el0_bti(struct pt_regs * regs)487 void do_el0_bti(struct pt_regs *regs)
488 {
489 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
490 }
491 
do_el1_bti(struct pt_regs * regs,unsigned long esr)492 void do_el1_bti(struct pt_regs *regs, unsigned long esr)
493 {
494 	if (efi_runtime_fixup_exception(regs, "BTI violation")) {
495 		regs->pstate &= ~PSR_BTYPE_MASK;
496 		return;
497 	}
498 	die("Oops - BTI", regs, esr);
499 }
500 
do_el0_gcs(struct pt_regs * regs,unsigned long esr)501 void do_el0_gcs(struct pt_regs *regs, unsigned long esr)
502 {
503 	force_signal_inject(SIGSEGV, SEGV_CPERR, regs->pc, 0);
504 }
505 
do_el1_gcs(struct pt_regs * regs,unsigned long esr)506 void do_el1_gcs(struct pt_regs *regs, unsigned long esr)
507 {
508 	die("Oops - GCS", regs, esr);
509 }
510 
do_el0_fpac(struct pt_regs * regs,unsigned long esr)511 void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
512 {
513 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
514 }
515 
do_el1_fpac(struct pt_regs * regs,unsigned long esr)516 void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
517 {
518 	/*
519 	 * Unexpected FPAC exception in the kernel: kill the task before it
520 	 * does any more harm.
521 	 */
522 	die("Oops - FPAC", regs, esr);
523 }
524 
do_el0_mops(struct pt_regs * regs,unsigned long esr)525 void do_el0_mops(struct pt_regs *regs, unsigned long esr)
526 {
527 	arm64_mops_reset_regs(&regs->user_regs, esr);
528 
529 	/*
530 	 * If single stepping then finish the step before executing the
531 	 * prologue instruction.
532 	 */
533 	user_fastforward_single_step(current);
534 }
535 
do_el1_mops(struct pt_regs * regs,unsigned long esr)536 void do_el1_mops(struct pt_regs *regs, unsigned long esr)
537 {
538 	arm64_mops_reset_regs(&regs->user_regs, esr);
539 
540 	kernel_fastforward_single_step(regs);
541 }
542 
543 #define __user_cache_maint(insn, address, res)			\
544 	if (address >= TASK_SIZE_MAX) {				\
545 		res = -EFAULT;					\
546 	} else {						\
547 		uaccess_ttbr0_enable();				\
548 		asm volatile (					\
549 			"1:	" insn ", %1\n"			\
550 			"	mov	%w0, #0\n"		\
551 			"2:\n"					\
552 			_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)	\
553 			: "=r" (res)				\
554 			: "r" (address));			\
555 		uaccess_ttbr0_disable();			\
556 	}
557 
user_cache_maint_handler(unsigned long esr,struct pt_regs * regs)558 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
559 {
560 	unsigned long tagged_address, address;
561 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
562 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
563 	int ret = 0;
564 
565 	tagged_address = pt_regs_read_reg(regs, rt);
566 	address = untagged_addr(tagged_address);
567 
568 	switch (crm) {
569 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
570 		__user_cache_maint("dc civac", address, ret);
571 		break;
572 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
573 		__user_cache_maint("dc civac", address, ret);
574 		break;
575 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
576 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
577 		break;
578 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
579 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
580 		break;
581 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
582 		__user_cache_maint("dc civac", address, ret);
583 		break;
584 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
585 		__user_cache_maint("ic ivau", address, ret);
586 		break;
587 	default:
588 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
589 		return;
590 	}
591 
592 	if (ret)
593 		arm64_notify_segfault(tagged_address);
594 	else
595 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
596 }
597 
ctr_read_handler(unsigned long esr,struct pt_regs * regs)598 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
599 {
600 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
601 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
602 
603 	if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) {
604 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
605 		val &= ~BIT(CTR_EL0_DIC_SHIFT);
606 
607 		/* ... and fake IminLine to reduce the number of traps. */
608 		val &= ~CTR_EL0_IminLine_MASK;
609 		val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
610 	}
611 
612 	pt_regs_write_reg(regs, rt, val);
613 
614 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
615 }
616 
cntvct_read_handler(unsigned long esr,struct pt_regs * regs)617 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
618 {
619 	if (test_thread_flag(TIF_TSC_SIGSEGV)) {
620 		force_sig(SIGSEGV);
621 	} else {
622 		int rt = ESR_ELx_SYS64_ISS_RT(esr);
623 
624 		pt_regs_write_reg(regs, rt, arch_timer_read_counter());
625 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
626 	}
627 }
628 
cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)629 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
630 {
631 	if (test_thread_flag(TIF_TSC_SIGSEGV)) {
632 		force_sig(SIGSEGV);
633 	} else {
634 		int rt = ESR_ELx_SYS64_ISS_RT(esr);
635 
636 		pt_regs_write_reg(regs, rt, arch_timer_get_rate());
637 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
638 	}
639 }
640 
mrs_handler(unsigned long esr,struct pt_regs * regs)641 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
642 {
643 	u32 sysreg, rt;
644 
645 	rt = ESR_ELx_SYS64_ISS_RT(esr);
646 	sysreg = esr_sys64_to_sysreg(esr);
647 
648 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
649 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
650 }
651 
wfi_handler(unsigned long esr,struct pt_regs * regs)652 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
653 {
654 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
655 }
656 
657 struct sys64_hook {
658 	unsigned long esr_mask;
659 	unsigned long esr_val;
660 	void (*handler)(unsigned long esr, struct pt_regs *regs);
661 };
662 
663 static const struct sys64_hook sys64_hooks[] = {
664 	{
665 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
666 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
667 		.handler = user_cache_maint_handler,
668 	},
669 	{
670 		/* Trap read access to CTR_EL0 */
671 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
672 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
673 		.handler = ctr_read_handler,
674 	},
675 	{
676 		/* Trap read access to CNTVCT_EL0 */
677 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
678 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
679 		.handler = cntvct_read_handler,
680 	},
681 	{
682 		/* Trap read access to CNTVCTSS_EL0 */
683 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
684 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
685 		.handler = cntvct_read_handler,
686 	},
687 	{
688 		/* Trap read access to CNTFRQ_EL0 */
689 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
690 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
691 		.handler = cntfrq_read_handler,
692 	},
693 	{
694 		/* Trap read access to CPUID registers */
695 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
696 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
697 		.handler = mrs_handler,
698 	},
699 	{
700 		/* Trap WFI instructions executed in userspace */
701 		.esr_mask = ESR_ELx_WFx_MASK,
702 		.esr_val = ESR_ELx_WFx_WFI_VAL,
703 		.handler = wfi_handler,
704 	},
705 	{},
706 };
707 
708 #ifdef CONFIG_COMPAT
cp15_cond_valid(unsigned long esr,struct pt_regs * regs)709 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
710 {
711 	int cond;
712 
713 	/* Only a T32 instruction can trap without CV being set */
714 	if (!(esr & ESR_ELx_CV)) {
715 		u32 it;
716 
717 		it = compat_get_it_state(regs);
718 		if (!it)
719 			return true;
720 
721 		cond = it >> 4;
722 	} else {
723 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
724 	}
725 
726 	return aarch32_opcode_cond_checks[cond](regs->pstate);
727 }
728 
compat_cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)729 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
730 {
731 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
732 
733 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
734 	arm64_skip_faulting_instruction(regs, 4);
735 }
736 
737 static const struct sys64_hook cp15_32_hooks[] = {
738 	{
739 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
740 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
741 		.handler = compat_cntfrq_read_handler,
742 	},
743 	{},
744 };
745 
compat_cntvct_read_handler(unsigned long esr,struct pt_regs * regs)746 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
747 {
748 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
749 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
750 	u64 val = arch_timer_read_counter();
751 
752 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
753 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
754 	arm64_skip_faulting_instruction(regs, 4);
755 }
756 
757 static const struct sys64_hook cp15_64_hooks[] = {
758 	{
759 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
760 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
761 		.handler = compat_cntvct_read_handler,
762 	},
763 	{
764 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
765 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
766 		.handler = compat_cntvct_read_handler,
767 	},
768 	{},
769 };
770 
do_el0_cp15(unsigned long esr,struct pt_regs * regs)771 void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
772 {
773 	const struct sys64_hook *hook, *hook_base;
774 
775 	if (!cp15_cond_valid(esr, regs)) {
776 		/*
777 		 * There is no T16 variant of a CP access, so we
778 		 * always advance PC by 4 bytes.
779 		 */
780 		arm64_skip_faulting_instruction(regs, 4);
781 		return;
782 	}
783 
784 	switch (ESR_ELx_EC(esr)) {
785 	case ESR_ELx_EC_CP15_32:
786 		hook_base = cp15_32_hooks;
787 		break;
788 	case ESR_ELx_EC_CP15_64:
789 		hook_base = cp15_64_hooks;
790 		break;
791 	default:
792 		do_el0_undef(regs, esr);
793 		return;
794 	}
795 
796 	for (hook = hook_base; hook->handler; hook++)
797 		if ((hook->esr_mask & esr) == hook->esr_val) {
798 			hook->handler(esr, regs);
799 			return;
800 		}
801 
802 	/*
803 	 * New cp15 instructions may previously have been undefined at
804 	 * EL0. Fall back to our usual undefined instruction handler
805 	 * so that we handle these consistently.
806 	 */
807 	do_el0_undef(regs, esr);
808 }
809 #endif
810 
do_el0_sys(unsigned long esr,struct pt_regs * regs)811 void do_el0_sys(unsigned long esr, struct pt_regs *regs)
812 {
813 	const struct sys64_hook *hook;
814 
815 	for (hook = sys64_hooks; hook->handler; hook++)
816 		if ((hook->esr_mask & esr) == hook->esr_val) {
817 			hook->handler(esr, regs);
818 			return;
819 		}
820 
821 	/*
822 	 * New SYS instructions may previously have been undefined at EL0. Fall
823 	 * back to our usual undefined instruction handler so that we handle
824 	 * these consistently.
825 	 */
826 	do_el0_undef(regs, esr);
827 }
828 
829 static const char *esr_class_str[] = {
830 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
831 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
832 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
833 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
834 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
835 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
836 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
837 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
838 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
839 	[ESR_ELx_EC_PAC]		= "PAC",
840 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
841 	[ESR_ELx_EC_BTI]		= "BTI",
842 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
843 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
844 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
845 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
846 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
847 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
848 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
849 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
850 	[ESR_ELx_EC_SVE]		= "SVE",
851 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
852 	[ESR_ELx_EC_FPAC]		= "FPAC",
853 	[ESR_ELx_EC_SME]		= "SME",
854 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
855 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
856 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
857 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
858 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
859 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
860 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
861 	[ESR_ELx_EC_MOPS]		= "MOPS",
862 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
863 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
864 	[ESR_ELx_EC_GCS]		= "Guarded Control Stack",
865 	[ESR_ELx_EC_SERROR]		= "SError",
866 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
867 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
868 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
869 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
870 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
871 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
872 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
873 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
874 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
875 };
876 
esr_get_class_string(unsigned long esr)877 const char *esr_get_class_string(unsigned long esr)
878 {
879 	return esr_class_str[ESR_ELx_EC(esr)];
880 }
881 
882 /*
883  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
884  * exceptions taken from EL0.
885  */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned long esr)886 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
887 {
888 	unsigned long pc = instruction_pointer(regs);
889 
890 	current->thread.fault_address = 0;
891 	current->thread.fault_code = esr;
892 
893 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
894 			      "Bad EL0 synchronous exception");
895 }
896 
897 #ifdef CONFIG_VMAP_STACK
898 
899 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
900 	__aligned(16);
901 
panic_bad_stack(struct pt_regs * regs,unsigned long esr,unsigned long far)902 void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
903 {
904 	unsigned long tsk_stk = (unsigned long)current->stack;
905 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
906 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
907 
908 	console_verbose();
909 	pr_emerg("Insufficient stack space to handle exception!");
910 
911 	pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
912 	pr_emerg("FAR: 0x%016lx\n", far);
913 
914 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
915 		 tsk_stk, tsk_stk + THREAD_SIZE);
916 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
917 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
918 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
919 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
920 
921 	__show_regs(regs);
922 
923 	/*
924 	 * We use nmi_panic to limit the potential for recusive overflows, and
925 	 * to get a better stack trace.
926 	 */
927 	nmi_panic(NULL, "kernel stack overflow");
928 	cpu_park_loop();
929 }
930 #endif
931 
arm64_serror_panic(struct pt_regs * regs,unsigned long esr)932 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
933 {
934 	console_verbose();
935 
936 	pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
937 		smp_processor_id(), esr, esr_get_class_string(esr));
938 	if (regs)
939 		__show_regs(regs);
940 
941 	nmi_panic(regs, "Asynchronous SError Interrupt");
942 
943 	cpu_park_loop();
944 }
945 
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned long esr)946 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
947 {
948 	unsigned long aet = arm64_ras_serror_get_severity(esr);
949 
950 	switch (aet) {
951 	case ESR_ELx_AET_CE:	/* corrected error */
952 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
953 		/*
954 		 * The CPU can make progress. We may take UEO again as
955 		 * a more severe error.
956 		 */
957 		return false;
958 
959 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
960 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
961 		/*
962 		 * The CPU can't make progress. The exception may have
963 		 * been imprecise.
964 		 *
965 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
966 		 * Unrecoverable should be treated as Uncontainable. We
967 		 * call arm64_serror_panic() in both cases.
968 		 */
969 		return true;
970 
971 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
972 	default:
973 		/* Error has been silently propagated */
974 		arm64_serror_panic(regs, esr);
975 	}
976 }
977 
do_serror(struct pt_regs * regs,unsigned long esr)978 void do_serror(struct pt_regs *regs, unsigned long esr)
979 {
980 	/* non-RAS errors are not containable */
981 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
982 		arm64_serror_panic(regs, esr);
983 }
984 
985 /* GENERIC_BUG traps */
986 #ifdef CONFIG_GENERIC_BUG
is_valid_bugaddr(unsigned long addr)987 int is_valid_bugaddr(unsigned long addr)
988 {
989 	/*
990 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
991 	 * So the answer is trivial -- any spurious instances with no
992 	 * bug table entry will be rejected by report_bug() and passed
993 	 * back to the debug-monitors code and handled as a fatal
994 	 * unexpected debug exception.
995 	 */
996 	return 1;
997 }
998 #endif
999 
bug_handler(struct pt_regs * regs,unsigned long esr)1000 static int bug_handler(struct pt_regs *regs, unsigned long esr)
1001 {
1002 	switch (report_bug(regs->pc, regs)) {
1003 	case BUG_TRAP_TYPE_BUG:
1004 		die("Oops - BUG", regs, esr);
1005 		break;
1006 
1007 	case BUG_TRAP_TYPE_WARN:
1008 		break;
1009 
1010 	default:
1011 		/* unknown/unrecognised bug trap type */
1012 		return DBG_HOOK_ERROR;
1013 	}
1014 
1015 	/* If thread survives, skip over the BUG instruction and continue: */
1016 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1017 	return DBG_HOOK_HANDLED;
1018 }
1019 
1020 static struct break_hook bug_break_hook = {
1021 	.fn = bug_handler,
1022 	.imm = BUG_BRK_IMM,
1023 };
1024 
1025 #ifdef CONFIG_CFI_CLANG
cfi_handler(struct pt_regs * regs,unsigned long esr)1026 static int cfi_handler(struct pt_regs *regs, unsigned long esr)
1027 {
1028 	unsigned long target;
1029 	u32 type;
1030 
1031 	target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
1032 	type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
1033 
1034 	switch (report_cfi_failure(regs, regs->pc, &target, type)) {
1035 	case BUG_TRAP_TYPE_BUG:
1036 		die("Oops - CFI", regs, esr);
1037 		break;
1038 
1039 	case BUG_TRAP_TYPE_WARN:
1040 		break;
1041 
1042 	default:
1043 		return DBG_HOOK_ERROR;
1044 	}
1045 
1046 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1047 	return DBG_HOOK_HANDLED;
1048 }
1049 
1050 static struct break_hook cfi_break_hook = {
1051 	.fn = cfi_handler,
1052 	.imm = CFI_BRK_IMM_BASE,
1053 	.mask = CFI_BRK_IMM_MASK,
1054 };
1055 #endif /* CONFIG_CFI_CLANG */
1056 
reserved_fault_handler(struct pt_regs * regs,unsigned long esr)1057 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1058 {
1059 	pr_err("%s generated an invalid instruction at %pS!\n",
1060 		"Kernel text patching",
1061 		(void *)instruction_pointer(regs));
1062 
1063 	/* We cannot handle this */
1064 	return DBG_HOOK_ERROR;
1065 }
1066 
1067 static struct break_hook fault_break_hook = {
1068 	.fn = reserved_fault_handler,
1069 	.imm = FAULT_BRK_IMM,
1070 };
1071 
1072 #ifdef CONFIG_KASAN_SW_TAGS
1073 
1074 #define KASAN_ESR_RECOVER	0x20
1075 #define KASAN_ESR_WRITE	0x10
1076 #define KASAN_ESR_SIZE_MASK	0x0f
1077 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
1078 
kasan_handler(struct pt_regs * regs,unsigned long esr)1079 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1080 {
1081 	bool recover = esr & KASAN_ESR_RECOVER;
1082 	bool write = esr & KASAN_ESR_WRITE;
1083 	size_t size = KASAN_ESR_SIZE(esr);
1084 	void *addr = (void *)regs->regs[0];
1085 	u64 pc = regs->pc;
1086 
1087 	kasan_report(addr, size, write, pc);
1088 
1089 	/*
1090 	 * The instrumentation allows to control whether we can proceed after
1091 	 * a crash was detected. This is done by passing the -recover flag to
1092 	 * the compiler. Disabling recovery allows to generate more compact
1093 	 * code.
1094 	 *
1095 	 * Unfortunately disabling recovery doesn't work for the kernel right
1096 	 * now. KASAN reporting is disabled in some contexts (for example when
1097 	 * the allocator accesses slab object metadata; this is controlled by
1098 	 * current->kasan_depth). All these accesses are detected by the tool,
1099 	 * even though the reports for them are not printed.
1100 	 *
1101 	 * This is something that might be fixed at some point in the future.
1102 	 */
1103 	if (!recover)
1104 		die("Oops - KASAN", regs, esr);
1105 
1106 	/* If thread survives, skip over the brk instruction and continue: */
1107 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1108 	return DBG_HOOK_HANDLED;
1109 }
1110 
1111 static struct break_hook kasan_break_hook = {
1112 	.fn	= kasan_handler,
1113 	.imm	= KASAN_BRK_IMM,
1114 	.mask	= KASAN_BRK_MASK,
1115 };
1116 #endif
1117 
1118 #ifdef CONFIG_UBSAN_TRAP
ubsan_handler(struct pt_regs * regs,unsigned long esr)1119 static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1120 {
1121 	die(report_ubsan_failure(esr & UBSAN_BRK_MASK), regs, esr);
1122 	return DBG_HOOK_HANDLED;
1123 }
1124 
1125 static struct break_hook ubsan_break_hook = {
1126 	.fn	= ubsan_handler,
1127 	.imm	= UBSAN_BRK_IMM,
1128 	.mask	= UBSAN_BRK_MASK,
1129 };
1130 #endif
1131 
1132 /*
1133  * Initial handler for AArch64 BRK exceptions
1134  * This handler only used until debug_traps_init().
1135  */
early_brk64(unsigned long addr,unsigned long esr,struct pt_regs * regs)1136 int __init early_brk64(unsigned long addr, unsigned long esr,
1137 		struct pt_regs *regs)
1138 {
1139 #ifdef CONFIG_CFI_CLANG
1140 	if (esr_is_cfi_brk(esr))
1141 		return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1142 #endif
1143 #ifdef CONFIG_KASAN_SW_TAGS
1144 	if ((esr_brk_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1145 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1146 #endif
1147 #ifdef CONFIG_UBSAN_TRAP
1148 	if (esr_is_ubsan_brk(esr))
1149 		return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1150 #endif
1151 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1152 }
1153 
trap_init(void)1154 void __init trap_init(void)
1155 {
1156 	register_kernel_break_hook(&bug_break_hook);
1157 #ifdef CONFIG_CFI_CLANG
1158 	register_kernel_break_hook(&cfi_break_hook);
1159 #endif
1160 	register_kernel_break_hook(&fault_break_hook);
1161 #ifdef CONFIG_KASAN_SW_TAGS
1162 	register_kernel_break_hook(&kasan_break_hook);
1163 #endif
1164 #ifdef CONFIG_UBSAN_TRAP
1165 	register_kernel_break_hook(&ubsan_break_hook);
1166 #endif
1167 	debug_traps_init();
1168 }
1169