1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "%Z%%M% %I% %E% SMI"
27
28 /*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent. Note that these names are used mainly for
31 * convenience and to represent the direction of the merge. They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent. For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established. For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent. If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent. We iterate
72 * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured. Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet. As such, we can't establish the links from these new nodes into the
79 * parent graph. We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent. Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created. As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly. We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created. Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established. As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph. We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child. Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114 #include <stdio.h>
115 #include <strings.h>
116 #include <assert.h>
117 #include <pthread.h>
118
119 #include "ctf_headers.h"
120 #include "ctftools.h"
121 #include "list.h"
122 #include "alist.h"
123 #include "memory.h"
124 #include "traverse.h"
125
126 typedef struct equiv_data equiv_data_t;
127 typedef struct merge_cb_data merge_cb_data_t;
128
129 /*
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework. We have our
132 * own traversal mechanism and ops vector here for those two cases.
133 */
134 typedef struct tdesc_ops {
135 const char *name;
136 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137 tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138 } tdesc_ops_t;
139 extern tdesc_ops_t tdesc_ops[];
140
141 /*
142 * The workhorse structure of tdata_t merging. Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
144 */
145 struct merge_cb_data {
146 tdata_t *md_parent;
147 tdata_t *md_tgt;
148 alist_t *md_ta; /* Type Association */
149 alist_t *md_fdida; /* Forward -> Definition ID Association */
150 list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */
151 hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */
152 list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */
153 int md_flags;
154 }; /* merge_cb_data_t */
155
156 /*
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify. If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
162 */
163 #define MCD_F_SELFUNIQUIFY 0x1
164
165 /*
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix). If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t. It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
172 */
173 #define MCD_F_REFMERGE 0x2
174
175 /*
176 * Mapping of child type IDs to parent type IDs
177 */
178
179 static void
add_mapping(alist_t * ta,tid_t srcid,tid_t tgtid)180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181 {
182 debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183
184 assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185 assert(srcid != 0 && tgtid != 0);
186
187 alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188 }
189
190 static tid_t
get_mapping(alist_t * ta,int srcid)191 get_mapping(alist_t *ta, int srcid)
192 {
193 void *ltgtid;
194
195 if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)<gtid))
196 return ((uintptr_t)ltgtid);
197 else
198 return (0);
199 }
200
201 /*
202 * Determining equivalence of tdesc_t subgraphs
203 */
204
205 struct equiv_data {
206 alist_t *ed_ta;
207 tdesc_t *ed_node;
208 tdesc_t *ed_tgt;
209
210 int ed_clear_mark;
211 int ed_cur_mark;
212 int ed_selfuniquify;
213 }; /* equiv_data_t */
214
215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217 /*ARGSUSED2*/
218 static int
equiv_intrinsic(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed __unused)219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220 {
221 intr_t *si = stdp->t_intr;
222 intr_t *ti = ttdp->t_intr;
223
224 if (si->intr_type != ti->intr_type ||
225 si->intr_signed != ti->intr_signed ||
226 si->intr_offset != ti->intr_offset ||
227 si->intr_nbits != ti->intr_nbits)
228 return (0);
229
230 if (si->intr_type == INTR_INT &&
231 si->intr_iformat != ti->intr_iformat)
232 return (0);
233 else if (si->intr_type == INTR_REAL &&
234 si->intr_fformat != ti->intr_fformat)
235 return (0);
236
237 return (1);
238 }
239
240 static int
equiv_plain(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242 {
243 return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244 }
245
246 static int
equiv_function(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248 {
249 fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250 int i;
251
252 if (fn1->fn_nargs != fn2->fn_nargs ||
253 fn1->fn_vargs != fn2->fn_vargs)
254 return (0);
255
256 if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257 return (0);
258
259 for (i = 0; i < (int) fn1->fn_nargs; i++) {
260 if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261 return (0);
262 }
263
264 return (1);
265 }
266
267 static int
equiv_array(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269 {
270 ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272 if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273 !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274 return (0);
275
276 if (ar1->ad_nelems != ar2->ad_nelems)
277 return (0);
278
279 return (1);
280 }
281
282 static int
equiv_su(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed)283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284 {
285 mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286
287 while (ml1 && ml2) {
288 if (ml1->ml_offset != ml2->ml_offset ||
289 strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
290 ml1->ml_size != ml2->ml_size ||
291 !equiv_node(ml1->ml_type, ml2->ml_type, ed))
292 return (0);
293
294 ml1 = ml1->ml_next;
295 ml2 = ml2->ml_next;
296 }
297
298 if (ml1 || ml2)
299 return (0);
300
301 return (1);
302 }
303
304 /*ARGSUSED2*/
305 static int
equiv_enum(tdesc_t * stdp,tdesc_t * ttdp,equiv_data_t * ed __unused)306 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
307 {
308 elist_t *el1 = stdp->t_emem;
309 elist_t *el2 = ttdp->t_emem;
310
311 while (el1 && el2) {
312 if (el1->el_number != el2->el_number ||
313 strcmp(el1->el_name, el2->el_name) != 0)
314 return (0);
315
316 el1 = el1->el_next;
317 el2 = el2->el_next;
318 }
319
320 if (el1 || el2)
321 return (0);
322
323 return (1);
324 }
325
326 /*ARGSUSED*/
327 static int
equiv_assert(tdesc_t * stdp __unused,tdesc_t * ttdp __unused,equiv_data_t * ed __unused)328 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
329 {
330 /* foul, evil, and very bad - this is a "shouldn't happen" */
331 assert(1 == 0);
332
333 return (0);
334 }
335
336 static int
fwd_equiv(tdesc_t * ctdp,tdesc_t * mtdp)337 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
338 {
339 tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
340
341 return (defn->t_type == STRUCT || defn->t_type == UNION ||
342 defn->t_type == ENUM);
343 }
344
345 static int
equiv_node(tdesc_t * ctdp,tdesc_t * mtdp,equiv_data_t * ed)346 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
347 {
348 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
349 int mapping;
350
351 if (ctdp->t_emark > ed->ed_clear_mark &&
352 mtdp->t_emark > ed->ed_clear_mark)
353 return (ctdp->t_emark == mtdp->t_emark);
354
355 /*
356 * In normal (non-self-uniquify) mode, we don't want to do equivalency
357 * checking on a subgraph that has already been checked. If a mapping
358 * has already been established for a given child node, we can simply
359 * compare the mapping for the child node with the ID of the parent
360 * node. If we are in self-uniquify mode, then we're comparing two
361 * subgraphs within the child graph, and thus need to ignore any
362 * type mappings that have been created, as they are only valid into the
363 * parent.
364 */
365 if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
366 mapping == mtdp->t_id && !ed->ed_selfuniquify)
367 return (1);
368
369 if (!streq(ctdp->t_name, mtdp->t_name))
370 return (0);
371
372 if (ctdp->t_type != mtdp->t_type) {
373 if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
374 return (fwd_equiv(ctdp, mtdp));
375 else
376 return (0);
377 }
378
379 ctdp->t_emark = ed->ed_cur_mark;
380 mtdp->t_emark = ed->ed_cur_mark;
381 ed->ed_cur_mark++;
382
383 if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
384 return (equiv(ctdp, mtdp, ed));
385
386 return (1);
387 }
388
389 /*
390 * We perform an equivalency check on two subgraphs by traversing through them
391 * in lockstep. If a given node is equivalent in both the parent and the child,
392 * we mark it in both subgraphs, using the t_emark field, with a monotonically
393 * increasing number. If, in the course of the traversal, we reach a node that
394 * we have visited and numbered during this equivalency check, we have a cycle.
395 * If the previously-visited nodes don't have the same emark, then the edges
396 * that brought us to these nodes are not equivalent, and so the check ends.
397 * If the emarks are the same, the edges are equivalent. We then backtrack and
398 * continue the traversal. If we have exhausted all edges in the subgraph, and
399 * have not found any inequivalent nodes, then the subgraphs are equivalent.
400 */
401 static int
equiv_cb(void * bucket,void * arg)402 equiv_cb(void *bucket, void *arg)
403 {
404 equiv_data_t *ed = arg;
405 tdesc_t *mtdp = bucket;
406 tdesc_t *ctdp = ed->ed_node;
407
408 ed->ed_clear_mark = ed->ed_cur_mark + 1;
409 ed->ed_cur_mark = ed->ed_clear_mark + 1;
410
411 if (equiv_node(ctdp, mtdp, ed)) {
412 debug(3, "equiv_node matched %d <%x> %d <%x>\n",
413 ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
414 ed->ed_tgt = mtdp;
415 /* matched. stop looking */
416 return (-1);
417 }
418
419 return (0);
420 }
421
422 /*ARGSUSED1*/
423 static int
map_td_tree_pre(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)424 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
425 {
426 merge_cb_data_t *mcd = private;
427
428 if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
429 return (0);
430
431 return (1);
432 }
433
434 /*ARGSUSED1*/
435 static int
map_td_tree_post(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)436 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
437 {
438 merge_cb_data_t *mcd = private;
439 equiv_data_t ed;
440
441 ed.ed_ta = mcd->md_ta;
442 ed.ed_clear_mark = mcd->md_parent->td_curemark;
443 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
444 ed.ed_node = ctdp;
445 ed.ed_selfuniquify = 0;
446
447 debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
448
449 if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
450 equiv_cb, &ed) < 0) {
451 /* We found an equivalent node */
452 if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
453 int id = mcd->md_tgt->td_nextid++;
454
455 debug(3, "Creating new defn type %d <%x>\n", id, id);
456 add_mapping(mcd->md_ta, ctdp->t_id, id);
457 alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
458 (void *)(ulong_t)id);
459 hash_add(mcd->md_tdtba, ctdp);
460 } else
461 add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
462
463 } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
464 equiv_cb, &ed) < 0) {
465 /*
466 * We didn't find an equivalent node by looking through the
467 * layout hash, but we somehow found it by performing an
468 * exhaustive search through the entire graph. This usually
469 * means that the "name" hash function is broken.
470 */
471 aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
472 tdesc_name(ctdp), ed.ed_tgt->t_id);
473 } else {
474 int id = mcd->md_tgt->td_nextid++;
475
476 debug(3, "Creating new type %d <%x>\n", id, id);
477 add_mapping(mcd->md_ta, ctdp->t_id, id);
478 hash_add(mcd->md_tdtba, ctdp);
479 }
480
481 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
482
483 return (1);
484 }
485
486 /*ARGSUSED1*/
487 static int
map_td_tree_self_post(tdesc_t * ctdp,tdesc_t ** ctdpp __unused,void * private)488 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
489 {
490 merge_cb_data_t *mcd = private;
491 equiv_data_t ed;
492
493 ed.ed_ta = mcd->md_ta;
494 ed.ed_clear_mark = mcd->md_parent->td_curemark;
495 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
496 ed.ed_node = ctdp;
497 ed.ed_selfuniquify = 1;
498 ed.ed_tgt = NULL;
499
500 if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
501 debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
502 ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
503 add_mapping(mcd->md_ta, ctdp->t_id,
504 get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
505 } else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
506 equiv_cb, &ed) < 0) {
507 /*
508 * We didn't find an equivalent node using the quick way (going
509 * through the hash normally), but we did find it by iterating
510 * through the entire hash. This usually means that the hash
511 * function is broken.
512 */
513 aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
514 ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
515 ed.ed_tgt->t_id);
516 } else {
517 int id = mcd->md_tgt->td_nextid++;
518
519 debug(3, "Creating new type %d <%x>\n", id, id);
520 add_mapping(mcd->md_ta, ctdp->t_id, id);
521 hash_add(mcd->md_tdtba, ctdp);
522 }
523
524 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
525
526 return (1);
527 }
528
529 static tdtrav_cb_f map_pre[] = {
530 NULL,
531 map_td_tree_pre, /* intrinsic */
532 map_td_tree_pre, /* pointer */
533 map_td_tree_pre, /* array */
534 map_td_tree_pre, /* function */
535 map_td_tree_pre, /* struct */
536 map_td_tree_pre, /* union */
537 map_td_tree_pre, /* enum */
538 map_td_tree_pre, /* forward */
539 map_td_tree_pre, /* typedef */
540 tdtrav_assert, /* typedef_unres */
541 map_td_tree_pre, /* volatile */
542 map_td_tree_pre, /* const */
543 map_td_tree_pre /* restrict */
544 };
545
546 static tdtrav_cb_f map_post[] = {
547 NULL,
548 map_td_tree_post, /* intrinsic */
549 map_td_tree_post, /* pointer */
550 map_td_tree_post, /* array */
551 map_td_tree_post, /* function */
552 map_td_tree_post, /* struct */
553 map_td_tree_post, /* union */
554 map_td_tree_post, /* enum */
555 map_td_tree_post, /* forward */
556 map_td_tree_post, /* typedef */
557 tdtrav_assert, /* typedef_unres */
558 map_td_tree_post, /* volatile */
559 map_td_tree_post, /* const */
560 map_td_tree_post /* restrict */
561 };
562
563 static tdtrav_cb_f map_self_post[] = {
564 NULL,
565 map_td_tree_self_post, /* intrinsic */
566 map_td_tree_self_post, /* pointer */
567 map_td_tree_self_post, /* array */
568 map_td_tree_self_post, /* function */
569 map_td_tree_self_post, /* struct */
570 map_td_tree_self_post, /* union */
571 map_td_tree_self_post, /* enum */
572 map_td_tree_self_post, /* forward */
573 map_td_tree_self_post, /* typedef */
574 tdtrav_assert, /* typedef_unres */
575 map_td_tree_self_post, /* volatile */
576 map_td_tree_self_post, /* const */
577 map_td_tree_self_post /* restrict */
578 };
579
580 /*
581 * Determining equivalence of iidesc_t nodes
582 */
583
584 typedef struct iifind_data {
585 iidesc_t *iif_template;
586 alist_t *iif_ta;
587 int iif_newidx;
588 int iif_refmerge;
589 } iifind_data_t;
590
591 /*
592 * Check to see if this iidesc_t (node) - the current one on the list we're
593 * iterating through - matches the target one (iif->iif_template). Return -1
594 * if it matches, to stop the iteration.
595 */
596 static int
iidesc_match(void * data,void * arg)597 iidesc_match(void *data, void *arg)
598 {
599 iidesc_t *node = data;
600 iifind_data_t *iif = arg;
601 int i;
602
603 if (node->ii_type != iif->iif_template->ii_type ||
604 !streq(node->ii_name, iif->iif_template->ii_name) ||
605 node->ii_dtype->t_id != iif->iif_newidx)
606 return (0);
607
608 if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
609 !streq(node->ii_owner, iif->iif_template->ii_owner))
610 return (0);
611
612 if (node->ii_nargs != iif->iif_template->ii_nargs)
613 return (0);
614
615 for (i = 0; i < node->ii_nargs; i++) {
616 if (get_mapping(iif->iif_ta,
617 iif->iif_template->ii_args[i]->t_id) !=
618 node->ii_args[i]->t_id)
619 return (0);
620 }
621
622 if (iif->iif_refmerge) {
623 switch (iif->iif_template->ii_type) {
624 case II_GFUN:
625 case II_SFUN:
626 case II_GVAR:
627 case II_SVAR:
628 debug(3, "suppressing duping of %d %s from %s\n",
629 iif->iif_template->ii_type,
630 iif->iif_template->ii_name,
631 (iif->iif_template->ii_owner ?
632 iif->iif_template->ii_owner : "NULL"));
633 return (0);
634 case II_NOT:
635 case II_PSYM:
636 case II_SOU:
637 case II_TYPE:
638 break;
639 }
640 }
641
642 return (-1);
643 }
644
645 static int
merge_type_cb(void * data,void * arg)646 merge_type_cb(void *data, void *arg)
647 {
648 iidesc_t *sii = data;
649 merge_cb_data_t *mcd = arg;
650 iifind_data_t iif;
651 tdtrav_cb_f *post;
652
653 post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
654
655 /* Map the tdesc nodes */
656 (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
657 mcd);
658
659 /* Map the iidesc nodes */
660 iif.iif_template = sii;
661 iif.iif_ta = mcd->md_ta;
662 iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
663 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
664
665 if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
666 &iif) == 1)
667 /* successfully mapped */
668 return (1);
669
670 debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
671 sii->ii_type);
672
673 list_add(mcd->md_iitba, sii);
674
675 return (0);
676 }
677
678 static int
remap_node(tdesc_t ** tgtp,tdesc_t * oldtgt,int selftid,tdesc_t * newself,merge_cb_data_t * mcd)679 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
680 merge_cb_data_t *mcd)
681 {
682 tdesc_t *tgt = NULL;
683 tdesc_t template;
684 int oldid = oldtgt->t_id;
685
686 if (oldid == selftid) {
687 *tgtp = newself;
688 return (1);
689 }
690
691 if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
692 aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
693
694 if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
695 (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
696 !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
697 (void *)&tgt))) {
698 debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
699 template.t_id, oldid, oldid);
700 *tgtp = oldtgt;
701 list_add(mcd->md_tdtbr, tgtp);
702 return (0);
703 }
704
705 *tgtp = tgt;
706 return (1);
707 }
708
709 static tdesc_t *
conjure_template(tdesc_t * old,int newselfid)710 conjure_template(tdesc_t *old, int newselfid)
711 {
712 tdesc_t *new = xcalloc(sizeof (tdesc_t));
713
714 new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
715 new->t_type = old->t_type;
716 new->t_size = old->t_size;
717 new->t_id = newselfid;
718 new->t_flags = old->t_flags;
719
720 return (new);
721 }
722
723 /*ARGSUSED2*/
724 static tdesc_t *
conjure_intrinsic(tdesc_t * old,int newselfid,merge_cb_data_t * mcd __unused)725 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
726 {
727 tdesc_t *new = conjure_template(old, newselfid);
728
729 new->t_intr = xmalloc(sizeof (intr_t));
730 bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
731
732 return (new);
733 }
734
735 static tdesc_t *
conjure_plain(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)736 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
737 {
738 tdesc_t *new = conjure_template(old, newselfid);
739
740 (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
741
742 return (new);
743 }
744
745 static tdesc_t *
conjure_function(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)746 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
747 {
748 tdesc_t *new = conjure_template(old, newselfid);
749 fndef_t *nfn = xmalloc(sizeof (fndef_t));
750 fndef_t *ofn = old->t_fndef;
751 int i;
752
753 (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
754
755 nfn->fn_nargs = ofn->fn_nargs;
756 nfn->fn_vargs = ofn->fn_vargs;
757
758 if (nfn->fn_nargs > 0)
759 nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
760
761 for (i = 0; i < (int) ofn->fn_nargs; i++) {
762 (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
763 new, mcd);
764 }
765
766 new->t_fndef = nfn;
767
768 return (new);
769 }
770
771 static tdesc_t *
conjure_array(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)772 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
773 {
774 tdesc_t *new = conjure_template(old, newselfid);
775 ardef_t *nar = xmalloc(sizeof (ardef_t));
776 ardef_t *oar = old->t_ardef;
777
778 (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
779 mcd);
780 (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
781 mcd);
782
783 nar->ad_nelems = oar->ad_nelems;
784
785 new->t_ardef = nar;
786
787 return (new);
788 }
789
790 static tdesc_t *
conjure_su(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)791 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
792 {
793 tdesc_t *new = conjure_template(old, newselfid);
794 mlist_t *omem, **nmemp;
795
796 for (omem = old->t_members, nmemp = &new->t_members;
797 omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
798 *nmemp = xmalloc(sizeof (mlist_t));
799 (*nmemp)->ml_offset = omem->ml_offset;
800 (*nmemp)->ml_size = omem->ml_size;
801 (*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
802 (void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
803 old->t_id, new, mcd);
804 }
805 *nmemp = NULL;
806
807 return (new);
808 }
809
810 /*ARGSUSED2*/
811 static tdesc_t *
conjure_enum(tdesc_t * old,int newselfid,merge_cb_data_t * mcd __unused)812 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
813 {
814 tdesc_t *new = conjure_template(old, newselfid);
815 elist_t *oel, **nelp;
816
817 for (oel = old->t_emem, nelp = &new->t_emem;
818 oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
819 *nelp = xmalloc(sizeof (elist_t));
820 (*nelp)->el_name = xstrdup(oel->el_name);
821 (*nelp)->el_number = oel->el_number;
822 }
823 *nelp = NULL;
824
825 return (new);
826 }
827
828 /*ARGSUSED2*/
829 static tdesc_t *
conjure_forward(tdesc_t * old,int newselfid,merge_cb_data_t * mcd)830 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
831 {
832 tdesc_t *new = conjure_template(old, newselfid);
833
834 list_add(&mcd->md_tgt->td_fwdlist, new);
835
836 return (new);
837 }
838
839 /*ARGSUSED*/
840 static tdesc_t *
conjure_assert(tdesc_t * old __unused,int newselfid __unused,merge_cb_data_t * mcd __unused)841 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
842 {
843 assert(1 == 0);
844 return (NULL);
845 }
846
847 static iidesc_t *
conjure_iidesc(iidesc_t * old,merge_cb_data_t * mcd)848 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
849 {
850 iidesc_t *new = iidesc_dup(old);
851 int i;
852
853 (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
854 for (i = 0; i < new->ii_nargs; i++) {
855 (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
856 mcd);
857 }
858
859 return (new);
860 }
861
862 static int
fwd_redir(tdesc_t * fwd,tdesc_t ** fwdp,void * private)863 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
864 {
865 alist_t *map = private;
866 void *defn;
867
868 if (!alist_find(map, (void *)fwd, (void **)&defn))
869 return (0);
870
871 debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
872
873 *fwdp = defn;
874
875 return (1);
876 }
877
878 static tdtrav_cb_f fwd_redir_cbs[] = {
879 NULL,
880 NULL, /* intrinsic */
881 NULL, /* pointer */
882 NULL, /* array */
883 NULL, /* function */
884 NULL, /* struct */
885 NULL, /* union */
886 NULL, /* enum */
887 fwd_redir, /* forward */
888 NULL, /* typedef */
889 tdtrav_assert, /* typedef_unres */
890 NULL, /* volatile */
891 NULL, /* const */
892 NULL /* restrict */
893 };
894
895 typedef struct redir_mstr_data {
896 tdata_t *rmd_tgt;
897 alist_t *rmd_map;
898 } redir_mstr_data_t;
899
900 static int
redir_mstr_fwd_cb(void * name,void * value,void * arg)901 redir_mstr_fwd_cb(void *name, void *value, void *arg)
902 {
903 tdesc_t *fwd = name;
904 int defnid = (uintptr_t)value;
905 redir_mstr_data_t *rmd = arg;
906 tdesc_t template;
907 tdesc_t *defn;
908
909 template.t_id = defnid;
910
911 if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
912 (void *)&defn)) {
913 aborterr("Couldn't unforward %d (%s)\n", defnid,
914 tdesc_name(defn));
915 }
916
917 debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
918
919 alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
920
921 return (1);
922 }
923
924 static void
redir_mstr_fwds(merge_cb_data_t * mcd)925 redir_mstr_fwds(merge_cb_data_t *mcd)
926 {
927 redir_mstr_data_t rmd;
928 alist_t *map = alist_new(NULL, NULL);
929
930 rmd.rmd_tgt = mcd->md_tgt;
931 rmd.rmd_map = map;
932
933 if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
934 (void) iitraverse_hash(mcd->md_tgt->td_iihash,
935 &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
936 }
937
938 alist_free(map);
939 }
940
941 static int
add_iitba_cb(void * data,void * private)942 add_iitba_cb(void *data, void *private)
943 {
944 merge_cb_data_t *mcd = private;
945 iidesc_t *tba = data;
946 iidesc_t *new;
947 iifind_data_t iif;
948 int newidx;
949
950 newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
951 assert(newidx != -1);
952
953 (void) list_remove(mcd->md_iitba, data, NULL, NULL);
954
955 iif.iif_template = tba;
956 iif.iif_ta = mcd->md_ta;
957 iif.iif_newidx = newidx;
958 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
959
960 if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
961 &iif) == 1) {
962 debug(3, "iidesc_t %s already exists\n",
963 (tba->ii_name ? tba->ii_name : "(anon)"));
964 return (1);
965 }
966
967 new = conjure_iidesc(tba, mcd);
968 hash_add(mcd->md_tgt->td_iihash, new);
969
970 return (1);
971 }
972
973 static int
add_tdesc(tdesc_t * oldtdp,int newid,merge_cb_data_t * mcd)974 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
975 {
976 tdesc_t *newtdp;
977 tdesc_t template;
978
979 template.t_id = newid;
980 assert(hash_find(mcd->md_parent->td_idhash,
981 (void *)&template, NULL) == 0);
982
983 debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
984 oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
985 oldtdp->t_id, newid, newid);
986
987 if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
988 mcd)) == NULL)
989 /* couldn't map everything */
990 return (0);
991
992 debug(3, "succeeded\n");
993
994 hash_add(mcd->md_tgt->td_idhash, newtdp);
995 hash_add(mcd->md_tgt->td_layouthash, newtdp);
996
997 return (1);
998 }
999
1000 static int
add_tdtba_cb(void * data,void * arg)1001 add_tdtba_cb(void *data, void *arg)
1002 {
1003 tdesc_t *tdp = data;
1004 merge_cb_data_t *mcd = arg;
1005 int newid;
1006 int rc;
1007
1008 newid = get_mapping(mcd->md_ta, tdp->t_id);
1009 assert(newid != -1);
1010
1011 if ((rc = add_tdesc(tdp, newid, mcd)))
1012 hash_remove(mcd->md_tdtba, (void *)tdp);
1013
1014 return (rc);
1015 }
1016
1017 static int
add_tdtbr_cb(void * data,void * arg)1018 add_tdtbr_cb(void *data, void *arg)
1019 {
1020 tdesc_t **tdpp = data;
1021 merge_cb_data_t *mcd = arg;
1022
1023 debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1024
1025 if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1026 return (0);
1027
1028 (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1029 return (1);
1030 }
1031
1032 static void
merge_types(hash_t * src,merge_cb_data_t * mcd)1033 merge_types(hash_t *src, merge_cb_data_t *mcd)
1034 {
1035 list_t *iitba = NULL;
1036 list_t *tdtbr = NULL;
1037 int iirc, tdrc;
1038
1039 mcd->md_iitba = &iitba;
1040 mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1041 tdesc_layoutcmp);
1042 mcd->md_tdtbr = &tdtbr;
1043
1044 (void) hash_iter(src, merge_type_cb, mcd);
1045
1046 tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1047 debug(3, "add_tdtba_cb added %d items\n", tdrc);
1048
1049 iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1050 debug(3, "add_iitba_cb added %d items\n", iirc);
1051
1052 assert(list_count(*mcd->md_iitba) == 0 &&
1053 hash_count(mcd->md_tdtba) == 0);
1054
1055 tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1056 debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1057
1058 if (list_count(*mcd->md_tdtbr) != 0)
1059 aborterr("Couldn't remap all nodes\n");
1060
1061 /*
1062 * We now have an alist of master forwards and the ids of the new master
1063 * definitions for those forwards in mcd->md_fdida. By this point,
1064 * we're guaranteed that all of the master definitions referenced in
1065 * fdida have been added to the master tree. We now traverse through
1066 * the master tree, redirecting all edges inbound to forwards that have
1067 * definitions to those definitions.
1068 */
1069 if (mcd->md_parent == mcd->md_tgt) {
1070 redir_mstr_fwds(mcd);
1071 }
1072 }
1073
1074 void
merge_into_master(tdata_t * cur,tdata_t * mstr,tdata_t * tgt,int selfuniquify)1075 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1076 {
1077 merge_cb_data_t mcd;
1078
1079 cur->td_ref++;
1080 mstr->td_ref++;
1081 if (tgt)
1082 tgt->td_ref++;
1083
1084 assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1085 (tgt == NULL || tgt->td_ref == 1));
1086
1087 mcd.md_parent = mstr;
1088 mcd.md_tgt = (tgt ? tgt : mstr);
1089 mcd.md_ta = alist_new(NULL, NULL);
1090 mcd.md_fdida = alist_new(NULL, NULL);
1091 mcd.md_flags = 0;
1092
1093 if (selfuniquify)
1094 mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1095 if (tgt)
1096 mcd.md_flags |= MCD_F_REFMERGE;
1097
1098 mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1099 mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1100
1101 merge_types(cur->td_iihash, &mcd);
1102
1103 if (debug_level >= 3) {
1104 debug(3, "Type association stats\n");
1105 alist_stats(mcd.md_ta, 0);
1106 debug(3, "Layout hash stats\n");
1107 hash_stats(mcd.md_tgt->td_layouthash, 1);
1108 }
1109
1110 alist_free(mcd.md_fdida);
1111 alist_free(mcd.md_ta);
1112
1113 cur->td_ref--;
1114 mstr->td_ref--;
1115 if (tgt)
1116 tgt->td_ref--;
1117 }
1118
1119 tdesc_ops_t tdesc_ops[] = {
1120 { "ERROR! BAD tdesc TYPE", NULL, NULL },
1121 { "intrinsic", equiv_intrinsic, conjure_intrinsic },
1122 { "pointer", equiv_plain, conjure_plain },
1123 { "array", equiv_array, conjure_array },
1124 { "function", equiv_function, conjure_function },
1125 { "struct", equiv_su, conjure_su },
1126 { "union", equiv_su, conjure_su },
1127 { "enum", equiv_enum, conjure_enum },
1128 { "forward", NULL, conjure_forward },
1129 { "typedef", equiv_plain, conjure_plain },
1130 { "typedef_unres", equiv_assert, conjure_assert },
1131 { "volatile", equiv_plain, conjure_plain },
1132 { "const", equiv_plain, conjure_plain },
1133 { "restrict", equiv_plain, conjure_plain }
1134 };
1135