1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 * Copyright (c) 2018 Joyent, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_bhyve_snapshot.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/smp.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/reg.h>
41 #include <sys/smr.h>
42 #include <sys/sysctl.h>
43
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/pmap.h>
47
48 #include <machine/psl.h>
49 #include <machine/cpufunc.h>
50 #include <machine/md_var.h>
51 #include <machine/segments.h>
52 #include <machine/smp.h>
53 #include <machine/specialreg.h>
54 #include <machine/vmparam.h>
55
56 #include <machine/vmm.h>
57 #include <machine/vmm_dev.h>
58 #include <machine/vmm_instruction_emul.h>
59 #include <machine/vmm_snapshot.h>
60
61 #include <dev/vmm/vmm_ktr.h>
62
63 #include "vmm_lapic.h"
64 #include "vmm_host.h"
65 #include "vmm_ioport.h"
66 #include "vmm_stat.h"
67 #include "vatpic.h"
68 #include "vlapic.h"
69 #include "vlapic_priv.h"
70
71 #include "ept.h"
72 #include "vmx_cpufunc.h"
73 #include "vmx.h"
74 #include "vmx_msr.h"
75 #include "x86.h"
76 #include "vmx_controls.h"
77
78 #define PINBASED_CTLS_ONE_SETTING \
79 (PINBASED_EXTINT_EXITING | \
80 PINBASED_NMI_EXITING | \
81 PINBASED_VIRTUAL_NMI)
82 #define PINBASED_CTLS_ZERO_SETTING 0
83
84 #define PROCBASED_CTLS_WINDOW_SETTING \
85 (PROCBASED_INT_WINDOW_EXITING | \
86 PROCBASED_NMI_WINDOW_EXITING)
87
88 #define PROCBASED_CTLS_ONE_SETTING \
89 (PROCBASED_SECONDARY_CONTROLS | \
90 PROCBASED_MWAIT_EXITING | \
91 PROCBASED_MONITOR_EXITING | \
92 PROCBASED_IO_EXITING | \
93 PROCBASED_MSR_BITMAPS | \
94 PROCBASED_CTLS_WINDOW_SETTING | \
95 PROCBASED_CR8_LOAD_EXITING | \
96 PROCBASED_CR8_STORE_EXITING)
97 #define PROCBASED_CTLS_ZERO_SETTING \
98 (PROCBASED_CR3_LOAD_EXITING | \
99 PROCBASED_CR3_STORE_EXITING | \
100 PROCBASED_IO_BITMAPS)
101
102 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT
103 #define PROCBASED_CTLS2_ZERO_SETTING 0
104
105 #define VM_EXIT_CTLS_ONE_SETTING \
106 (VM_EXIT_SAVE_DEBUG_CONTROLS | \
107 VM_EXIT_HOST_LMA | \
108 VM_EXIT_SAVE_EFER | \
109 VM_EXIT_LOAD_EFER | \
110 VM_EXIT_ACKNOWLEDGE_INTERRUPT)
111
112 #define VM_EXIT_CTLS_ZERO_SETTING 0
113
114 #define VM_ENTRY_CTLS_ONE_SETTING \
115 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \
116 VM_ENTRY_LOAD_EFER)
117
118 #define VM_ENTRY_CTLS_ZERO_SETTING \
119 (VM_ENTRY_INTO_SMM | \
120 VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
121
122 #define HANDLED 1
123 #define UNHANDLED 0
124
125 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
126 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
127
128 bool vmx_have_msr_tsc_aux;
129
130 SYSCTL_DECL(_hw_vmm);
131 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
132 NULL);
133
134 int vmxon_enabled[MAXCPU];
135 static uint8_t *vmxon_region;
136
137 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
138 static uint32_t exit_ctls, entry_ctls;
139
140 static uint64_t cr0_ones_mask, cr0_zeros_mask;
141 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
142 &cr0_ones_mask, 0, NULL);
143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
144 &cr0_zeros_mask, 0, NULL);
145
146 static uint64_t cr4_ones_mask, cr4_zeros_mask;
147 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
148 &cr4_ones_mask, 0, NULL);
149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
150 &cr4_zeros_mask, 0, NULL);
151
152 static int vmx_initialized;
153 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
154 &vmx_initialized, 0, "Intel VMX initialized");
155
156 /*
157 * Optional capabilities
158 */
159 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
160 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
161 NULL);
162
163 static int cap_halt_exit;
164 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
165 "HLT triggers a VM-exit");
166
167 static int cap_pause_exit;
168 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
169 0, "PAUSE triggers a VM-exit");
170
171 static int cap_wbinvd_exit;
172 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit,
173 0, "WBINVD triggers a VM-exit");
174
175 static int cap_rdpid;
176 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
177 "Guests are allowed to use RDPID");
178
179 static int cap_rdtscp;
180 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
181 "Guests are allowed to use RDTSCP");
182
183 static int cap_unrestricted_guest;
184 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
185 &cap_unrestricted_guest, 0, "Unrestricted guests");
186
187 static int cap_monitor_trap;
188 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
189 &cap_monitor_trap, 0, "Monitor trap flag");
190
191 static int cap_invpcid;
192 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
193 0, "Guests are allowed to use INVPCID");
194
195 static int tpr_shadowing;
196 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing,
197 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
198 &tpr_shadowing, 0, "TPR shadowing support");
199
200 static int virtual_interrupt_delivery;
201 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery,
202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
203 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
204
205 static int posted_interrupts;
206 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts,
207 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
208 &posted_interrupts, 0, "APICv posted interrupt support");
209
210 static int pirvec = -1;
211 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
212 &pirvec, 0, "APICv posted interrupt vector");
213
214 static struct unrhdr *vpid_unr;
215 static u_int vpid_alloc_failed;
216 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
217 &vpid_alloc_failed, 0, NULL);
218
219 int guest_l1d_flush;
220 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
221 &guest_l1d_flush, 0, NULL);
222 int guest_l1d_flush_sw;
223 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
224 &guest_l1d_flush_sw, 0, NULL);
225
226 static struct msr_entry msr_load_list[1] __aligned(16);
227
228 /*
229 * The definitions of SDT probes for VMX.
230 */
231
232 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
233 "struct vmx *", "int", "struct vm_exit *");
234
235 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
236 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
237
238 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
239 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
240
241 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
242 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
243
244 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
245 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
246
247 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
248 "struct vmx *", "int", "struct vm_exit *");
249
250 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
251 "struct vmx *", "int", "struct vm_exit *");
252
253 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
254 "struct vmx *", "int", "struct vm_exit *");
255
256 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
257 "struct vmx *", "int", "struct vm_exit *");
258
259 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
260 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
261
262 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
263 "struct vmx *", "int", "struct vm_exit *");
264
265 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
266 "struct vmx *", "int", "struct vm_exit *");
267
268 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
269 "struct vmx *", "int", "struct vm_exit *");
270
271 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
272 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
273
274 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
275 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
276
277 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
278 "struct vmx *", "int", "struct vm_exit *", "uint64_t");
279
280 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
281 "struct vmx *", "int", "struct vm_exit *");
282
283 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
284 "struct vmx *", "int", "struct vm_exit *");
285
286 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
287 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
288
289 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
290 "struct vmx *", "int", "struct vm_exit *");
291
292 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
293 "struct vmx *", "int", "struct vm_exit *");
294
295 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
296 "struct vmx *", "int", "struct vm_exit *");
297
298 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
299 "struct vmx *", "int", "struct vm_exit *");
300
301 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
302 "struct vmx *", "int", "struct vm_exit *", "uint32_t");
303
304 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
305 "struct vmx *", "int", "struct vm_exit *", "int");
306
307 /*
308 * Use the last page below 4GB as the APIC access address. This address is
309 * occupied by the boot firmware so it is guaranteed that it will not conflict
310 * with a page in system memory.
311 */
312 #define APIC_ACCESS_ADDRESS 0xFFFFF000
313
314 static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc);
315 static int vmx_getreg(void *vcpui, int reg, uint64_t *retval);
316 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
317 static void vmx_inject_pir(struct vlapic *vlapic);
318 #ifdef BHYVE_SNAPSHOT
319 static int vmx_restore_tsc(void *vcpui, uint64_t now);
320 #endif
321
322 static inline bool
host_has_rdpid(void)323 host_has_rdpid(void)
324 {
325 return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
326 }
327
328 static inline bool
host_has_rdtscp(void)329 host_has_rdtscp(void)
330 {
331 return ((amd_feature & AMDID_RDTSCP) != 0);
332 }
333
334 #ifdef KTR
335 static const char *
exit_reason_to_str(int reason)336 exit_reason_to_str(int reason)
337 {
338 static char reasonbuf[32];
339
340 switch (reason) {
341 case EXIT_REASON_EXCEPTION:
342 return "exception";
343 case EXIT_REASON_EXT_INTR:
344 return "extint";
345 case EXIT_REASON_TRIPLE_FAULT:
346 return "triplefault";
347 case EXIT_REASON_INIT:
348 return "init";
349 case EXIT_REASON_SIPI:
350 return "sipi";
351 case EXIT_REASON_IO_SMI:
352 return "iosmi";
353 case EXIT_REASON_SMI:
354 return "smi";
355 case EXIT_REASON_INTR_WINDOW:
356 return "intrwindow";
357 case EXIT_REASON_NMI_WINDOW:
358 return "nmiwindow";
359 case EXIT_REASON_TASK_SWITCH:
360 return "taskswitch";
361 case EXIT_REASON_CPUID:
362 return "cpuid";
363 case EXIT_REASON_GETSEC:
364 return "getsec";
365 case EXIT_REASON_HLT:
366 return "hlt";
367 case EXIT_REASON_INVD:
368 return "invd";
369 case EXIT_REASON_INVLPG:
370 return "invlpg";
371 case EXIT_REASON_RDPMC:
372 return "rdpmc";
373 case EXIT_REASON_RDTSC:
374 return "rdtsc";
375 case EXIT_REASON_RSM:
376 return "rsm";
377 case EXIT_REASON_VMCALL:
378 return "vmcall";
379 case EXIT_REASON_VMCLEAR:
380 return "vmclear";
381 case EXIT_REASON_VMLAUNCH:
382 return "vmlaunch";
383 case EXIT_REASON_VMPTRLD:
384 return "vmptrld";
385 case EXIT_REASON_VMPTRST:
386 return "vmptrst";
387 case EXIT_REASON_VMREAD:
388 return "vmread";
389 case EXIT_REASON_VMRESUME:
390 return "vmresume";
391 case EXIT_REASON_VMWRITE:
392 return "vmwrite";
393 case EXIT_REASON_VMXOFF:
394 return "vmxoff";
395 case EXIT_REASON_VMXON:
396 return "vmxon";
397 case EXIT_REASON_CR_ACCESS:
398 return "craccess";
399 case EXIT_REASON_DR_ACCESS:
400 return "draccess";
401 case EXIT_REASON_INOUT:
402 return "inout";
403 case EXIT_REASON_RDMSR:
404 return "rdmsr";
405 case EXIT_REASON_WRMSR:
406 return "wrmsr";
407 case EXIT_REASON_INVAL_VMCS:
408 return "invalvmcs";
409 case EXIT_REASON_INVAL_MSR:
410 return "invalmsr";
411 case EXIT_REASON_MWAIT:
412 return "mwait";
413 case EXIT_REASON_MTF:
414 return "mtf";
415 case EXIT_REASON_MONITOR:
416 return "monitor";
417 case EXIT_REASON_PAUSE:
418 return "pause";
419 case EXIT_REASON_MCE_DURING_ENTRY:
420 return "mce-during-entry";
421 case EXIT_REASON_TPR:
422 return "tpr";
423 case EXIT_REASON_APIC_ACCESS:
424 return "apic-access";
425 case EXIT_REASON_GDTR_IDTR:
426 return "gdtridtr";
427 case EXIT_REASON_LDTR_TR:
428 return "ldtrtr";
429 case EXIT_REASON_EPT_FAULT:
430 return "eptfault";
431 case EXIT_REASON_EPT_MISCONFIG:
432 return "eptmisconfig";
433 case EXIT_REASON_INVEPT:
434 return "invept";
435 case EXIT_REASON_RDTSCP:
436 return "rdtscp";
437 case EXIT_REASON_VMX_PREEMPT:
438 return "vmxpreempt";
439 case EXIT_REASON_INVVPID:
440 return "invvpid";
441 case EXIT_REASON_WBINVD:
442 return "wbinvd";
443 case EXIT_REASON_XSETBV:
444 return "xsetbv";
445 case EXIT_REASON_APIC_WRITE:
446 return "apic-write";
447 default:
448 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
449 return (reasonbuf);
450 }
451 }
452 #endif /* KTR */
453
454 static int
vmx_allow_x2apic_msrs(struct vmx * vmx)455 vmx_allow_x2apic_msrs(struct vmx *vmx)
456 {
457 int i, error;
458
459 error = 0;
460
461 /*
462 * Allow readonly access to the following x2APIC MSRs from the guest.
463 */
464 error += guest_msr_ro(vmx, MSR_APIC_ID);
465 error += guest_msr_ro(vmx, MSR_APIC_VERSION);
466 error += guest_msr_ro(vmx, MSR_APIC_LDR);
467 error += guest_msr_ro(vmx, MSR_APIC_SVR);
468
469 for (i = 0; i < 8; i++)
470 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
471
472 for (i = 0; i < 8; i++)
473 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
474
475 for (i = 0; i < 8; i++)
476 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
477
478 error += guest_msr_ro(vmx, MSR_APIC_ESR);
479 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
480 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
481 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
482 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
483 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
484 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
485 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
486 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
487 error += guest_msr_ro(vmx, MSR_APIC_ICR);
488
489 /*
490 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
491 *
492 * These registers get special treatment described in the section
493 * "Virtualizing MSR-Based APIC Accesses".
494 */
495 error += guest_msr_rw(vmx, MSR_APIC_TPR);
496 error += guest_msr_rw(vmx, MSR_APIC_EOI);
497 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
498
499 return (error);
500 }
501
502 u_long
vmx_fix_cr0(u_long cr0)503 vmx_fix_cr0(u_long cr0)
504 {
505
506 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
507 }
508
509 u_long
vmx_fix_cr4(u_long cr4)510 vmx_fix_cr4(u_long cr4)
511 {
512
513 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
514 }
515
516 static void
vpid_free(int vpid)517 vpid_free(int vpid)
518 {
519 if (vpid < 0 || vpid > 0xffff)
520 panic("vpid_free: invalid vpid %d", vpid);
521
522 /*
523 * VPIDs [0,vm_maxcpu] are special and are not allocated from
524 * the unit number allocator.
525 */
526
527 if (vpid > vm_maxcpu)
528 free_unr(vpid_unr, vpid);
529 }
530
531 static uint16_t
vpid_alloc(int vcpuid)532 vpid_alloc(int vcpuid)
533 {
534 int x;
535
536 /*
537 * If the "enable vpid" execution control is not enabled then the
538 * VPID is required to be 0 for all vcpus.
539 */
540 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0)
541 return (0);
542
543 /*
544 * Try to allocate a unique VPID for each from the unit number
545 * allocator.
546 */
547 x = alloc_unr(vpid_unr);
548
549 if (x == -1) {
550 atomic_add_int(&vpid_alloc_failed, 1);
551
552 /*
553 * If the unit number allocator does not have enough unique
554 * VPIDs then we need to allocate from the [1,vm_maxcpu] range.
555 *
556 * These VPIDs are not be unique across VMs but this does not
557 * affect correctness because the combined mappings are also
558 * tagged with the EP4TA which is unique for each VM.
559 *
560 * It is still sub-optimal because the invvpid will invalidate
561 * combined mappings for a particular VPID across all EP4TAs.
562 */
563 return (vcpuid + 1);
564 }
565
566 return (x);
567 }
568
569 static void
vpid_init(void)570 vpid_init(void)
571 {
572 /*
573 * VPID 0 is required when the "enable VPID" execution control is
574 * disabled.
575 *
576 * VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the
577 * unit number allocator does not have sufficient unique VPIDs to
578 * satisfy the allocation.
579 *
580 * The remaining VPIDs are managed by the unit number allocator.
581 */
582 vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL);
583 }
584
585 static void
vmx_disable(void * arg __unused)586 vmx_disable(void *arg __unused)
587 {
588 struct invvpid_desc invvpid_desc = { 0 };
589 struct invept_desc invept_desc = { 0 };
590
591 if (vmxon_enabled[curcpu]) {
592 /*
593 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
594 *
595 * VMXON or VMXOFF are not required to invalidate any TLB
596 * caching structures. This prevents potential retention of
597 * cached information in the TLB between distinct VMX episodes.
598 */
599 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
600 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
601 vmxoff();
602 }
603 load_cr4(rcr4() & ~CR4_VMXE);
604 }
605
606 static int
vmx_modcleanup(void)607 vmx_modcleanup(void)
608 {
609
610 if (pirvec >= 0)
611 lapic_ipi_free(pirvec);
612
613 if (vpid_unr != NULL) {
614 delete_unrhdr(vpid_unr);
615 vpid_unr = NULL;
616 }
617
618 if (nmi_flush_l1d_sw == 1)
619 nmi_flush_l1d_sw = 0;
620
621 smp_rendezvous(NULL, vmx_disable, NULL, NULL);
622
623 if (vmxon_region != NULL)
624 kmem_free(vmxon_region, (mp_maxid + 1) * PAGE_SIZE);
625
626 return (0);
627 }
628
629 static void
vmx_enable(void * arg __unused)630 vmx_enable(void *arg __unused)
631 {
632 int error;
633 uint64_t feature_control;
634
635 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
636 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
637 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
638 wrmsr(MSR_IA32_FEATURE_CONTROL,
639 feature_control | IA32_FEATURE_CONTROL_VMX_EN |
640 IA32_FEATURE_CONTROL_LOCK);
641 }
642
643 load_cr4(rcr4() | CR4_VMXE);
644
645 *(uint32_t *)&vmxon_region[curcpu * PAGE_SIZE] = vmx_revision();
646 error = vmxon(&vmxon_region[curcpu * PAGE_SIZE]);
647 if (error == 0)
648 vmxon_enabled[curcpu] = 1;
649 }
650
651 static void
vmx_modresume(void)652 vmx_modresume(void)
653 {
654
655 if (vmxon_enabled[curcpu])
656 vmxon(&vmxon_region[curcpu * PAGE_SIZE]);
657 }
658
659 static int
vmx_modinit(int ipinum)660 vmx_modinit(int ipinum)
661 {
662 int error;
663 uint64_t basic, fixed0, fixed1, feature_control;
664 uint32_t tmp, procbased2_vid_bits;
665
666 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
667 if (!(cpu_feature2 & CPUID2_VMX)) {
668 printf("vmx_modinit: processor does not support VMX "
669 "operation\n");
670 return (ENXIO);
671 }
672
673 /*
674 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
675 * are set (bits 0 and 2 respectively).
676 */
677 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
678 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
679 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
680 printf("vmx_modinit: VMX operation disabled by BIOS\n");
681 return (ENXIO);
682 }
683
684 /*
685 * Verify capabilities MSR_VMX_BASIC:
686 * - bit 54 indicates support for INS/OUTS decoding
687 */
688 basic = rdmsr(MSR_VMX_BASIC);
689 if ((basic & (1UL << 54)) == 0) {
690 printf("vmx_modinit: processor does not support desired basic "
691 "capabilities\n");
692 return (EINVAL);
693 }
694
695 /* Check support for primary processor-based VM-execution controls */
696 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
697 MSR_VMX_TRUE_PROCBASED_CTLS,
698 PROCBASED_CTLS_ONE_SETTING,
699 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
700 if (error) {
701 printf("vmx_modinit: processor does not support desired "
702 "primary processor-based controls\n");
703 return (error);
704 }
705
706 /* Clear the processor-based ctl bits that are set on demand */
707 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
708
709 /* Check support for secondary processor-based VM-execution controls */
710 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
711 MSR_VMX_PROCBASED_CTLS2,
712 PROCBASED_CTLS2_ONE_SETTING,
713 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
714 if (error) {
715 printf("vmx_modinit: processor does not support desired "
716 "secondary processor-based controls\n");
717 return (error);
718 }
719
720 /* Check support for VPID */
721 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
722 PROCBASED2_ENABLE_VPID, 0, &tmp);
723 if (error == 0)
724 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
725
726 /* Check support for pin-based VM-execution controls */
727 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
728 MSR_VMX_TRUE_PINBASED_CTLS,
729 PINBASED_CTLS_ONE_SETTING,
730 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
731 if (error) {
732 printf("vmx_modinit: processor does not support desired "
733 "pin-based controls\n");
734 return (error);
735 }
736
737 /* Check support for VM-exit controls */
738 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
739 VM_EXIT_CTLS_ONE_SETTING,
740 VM_EXIT_CTLS_ZERO_SETTING,
741 &exit_ctls);
742 if (error) {
743 printf("vmx_modinit: processor does not support desired "
744 "exit controls\n");
745 return (error);
746 }
747
748 /* Check support for VM-entry controls */
749 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
750 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
751 &entry_ctls);
752 if (error) {
753 printf("vmx_modinit: processor does not support desired "
754 "entry controls\n");
755 return (error);
756 }
757
758 /*
759 * Check support for optional features by testing them
760 * as individual bits
761 */
762 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
763 MSR_VMX_TRUE_PROCBASED_CTLS,
764 PROCBASED_HLT_EXITING, 0,
765 &tmp) == 0);
766
767 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
768 MSR_VMX_PROCBASED_CTLS,
769 PROCBASED_MTF, 0,
770 &tmp) == 0);
771
772 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
773 MSR_VMX_TRUE_PROCBASED_CTLS,
774 PROCBASED_PAUSE_EXITING, 0,
775 &tmp) == 0);
776
777 cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
778 MSR_VMX_PROCBASED_CTLS2,
779 PROCBASED2_WBINVD_EXITING,
780 0,
781 &tmp) == 0);
782
783 /*
784 * Check support for RDPID and/or RDTSCP.
785 *
786 * Support a pass-through-based implementation of these via the
787 * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
788 * VM-execution control.
789 *
790 * The "enable RDTSCP" VM-execution control applies to both RDPID
791 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
792 * Instruction Behavior in VMX Non-root operation"); this is why
793 * only this VM-execution control needs to be enabled in order to
794 * enable passing through whichever of RDPID and/or RDTSCP are
795 * supported by the host.
796 *
797 * The "RDTSC exiting" VM-execution control applies to both RDTSC
798 * and RDTSCP (again, per SDM volume 3, section 25.3), and is
799 * already set up for RDTSC and RDTSCP pass-through by the current
800 * implementation of RDTSC.
801 *
802 * Although RDPID and RDTSCP are optional capabilities, since there
803 * does not currently seem to be a use case for enabling/disabling
804 * these via libvmmapi, choose not to support this and, instead,
805 * just statically always enable or always disable this support
806 * across all vCPUs on all VMs. (Note that there may be some
807 * complications to providing this functionality, e.g., the MSR
808 * bitmap is currently per-VM rather than per-vCPU while the
809 * capability API wants to be able to control capabilities on a
810 * per-vCPU basis).
811 */
812 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
813 MSR_VMX_PROCBASED_CTLS2,
814 PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
815 cap_rdpid = error == 0 && host_has_rdpid();
816 cap_rdtscp = error == 0 && host_has_rdtscp();
817 if (cap_rdpid || cap_rdtscp) {
818 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
819 vmx_have_msr_tsc_aux = true;
820 }
821
822 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
823 MSR_VMX_PROCBASED_CTLS2,
824 PROCBASED2_UNRESTRICTED_GUEST, 0,
825 &tmp) == 0);
826
827 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
828 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
829 &tmp) == 0);
830
831 /*
832 * Check support for TPR shadow.
833 */
834 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
835 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
836 &tmp);
837 if (error == 0) {
838 tpr_shadowing = 1;
839 #ifndef BURN_BRIDGES
840 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
841 &tpr_shadowing);
842 #endif
843 TUNABLE_INT_FETCH("hw.vmm.vmx.cap.tpr_shadowing",
844 &tpr_shadowing);
845 }
846
847 if (tpr_shadowing) {
848 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
849 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
850 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
851 }
852
853 /*
854 * Check support for virtual interrupt delivery.
855 */
856 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
857 PROCBASED2_VIRTUALIZE_X2APIC_MODE |
858 PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
859 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
860
861 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
862 procbased2_vid_bits, 0, &tmp);
863 if (error == 0 && tpr_shadowing) {
864 virtual_interrupt_delivery = 1;
865 #ifndef BURN_BRIDGES
866 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
867 &virtual_interrupt_delivery);
868 #endif
869 TUNABLE_INT_FETCH("hw.vmm.vmx.cap.virtual_interrupt_delivery",
870 &virtual_interrupt_delivery);
871 }
872
873 if (virtual_interrupt_delivery) {
874 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
875 procbased_ctls2 |= procbased2_vid_bits;
876 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
877
878 /*
879 * Check for Posted Interrupts only if Virtual Interrupt
880 * Delivery is enabled.
881 */
882 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
883 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
884 &tmp);
885 if (error == 0) {
886 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
887 &IDTVEC(justreturn));
888 if (pirvec < 0) {
889 if (bootverbose) {
890 printf("vmx_modinit: unable to "
891 "allocate posted interrupt "
892 "vector\n");
893 }
894 } else {
895 posted_interrupts = 1;
896 #ifndef BURN_BRIDGES
897 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
898 &posted_interrupts);
899 #endif
900 TUNABLE_INT_FETCH("hw.vmm.vmx.cap.posted_interrupts",
901 &posted_interrupts);
902 }
903 }
904 }
905
906 if (posted_interrupts)
907 pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
908
909 /* Initialize EPT */
910 error = ept_init(ipinum);
911 if (error) {
912 printf("vmx_modinit: ept initialization failed (%d)\n", error);
913 return (error);
914 }
915
916 guest_l1d_flush = (cpu_ia32_arch_caps &
917 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
918 #ifndef BURN_BRIDGES
919 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
920 #endif
921 TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush", &guest_l1d_flush);
922
923 /*
924 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when
925 * available. Otherwise fall back to the software flush
926 * method which loads enough data from the kernel text to
927 * flush existing L1D content, both on VMX entry and on NMI
928 * return.
929 */
930 if (guest_l1d_flush) {
931 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
932 guest_l1d_flush_sw = 1;
933 #ifndef BURN_BRIDGES
934 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
935 &guest_l1d_flush_sw);
936 #endif
937 TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush_sw",
938 &guest_l1d_flush_sw);
939 }
940 if (guest_l1d_flush_sw) {
941 if (nmi_flush_l1d_sw <= 1)
942 nmi_flush_l1d_sw = 1;
943 } else {
944 msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
945 msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
946 }
947 }
948
949 /*
950 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
951 */
952 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
953 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
954 cr0_ones_mask = fixed0 & fixed1;
955 cr0_zeros_mask = ~fixed0 & ~fixed1;
956
957 /*
958 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
959 * if unrestricted guest execution is allowed.
960 */
961 if (cap_unrestricted_guest)
962 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
963
964 /*
965 * Do not allow the guest to set CR0_NW or CR0_CD.
966 */
967 cr0_zeros_mask |= (CR0_NW | CR0_CD);
968
969 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
970 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
971 cr4_ones_mask = fixed0 & fixed1;
972 cr4_zeros_mask = ~fixed0 & ~fixed1;
973
974 vpid_init();
975
976 vmx_msr_init();
977
978 /* enable VMX operation */
979 vmxon_region = kmem_malloc((mp_maxid + 1) * PAGE_SIZE,
980 M_WAITOK | M_ZERO);
981 smp_rendezvous(NULL, vmx_enable, NULL, NULL);
982
983 vmx_initialized = 1;
984
985 return (0);
986 }
987
988 static void
vmx_trigger_hostintr(int vector)989 vmx_trigger_hostintr(int vector)
990 {
991 uintptr_t func;
992 struct gate_descriptor *gd;
993
994 gd = &idt[vector];
995
996 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
997 "invalid vector %d", vector));
998 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
999 vector));
1000 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
1001 "has invalid type %d", vector, gd->gd_type));
1002 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
1003 "has invalid dpl %d", vector, gd->gd_dpl));
1004 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
1005 "for vector %d has invalid selector %d", vector, gd->gd_selector));
1006 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
1007 "IST %d", vector, gd->gd_ist));
1008
1009 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
1010 vmx_call_isr(func);
1011 }
1012
1013 static int
vmx_setup_cr_shadow(int which,struct vmcs * vmcs,uint32_t initial)1014 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
1015 {
1016 int error, mask_ident, shadow_ident;
1017 uint64_t mask_value;
1018
1019 if (which != 0 && which != 4)
1020 panic("vmx_setup_cr_shadow: unknown cr%d", which);
1021
1022 if (which == 0) {
1023 mask_ident = VMCS_CR0_MASK;
1024 mask_value = cr0_ones_mask | cr0_zeros_mask;
1025 shadow_ident = VMCS_CR0_SHADOW;
1026 } else {
1027 mask_ident = VMCS_CR4_MASK;
1028 mask_value = cr4_ones_mask | cr4_zeros_mask;
1029 shadow_ident = VMCS_CR4_SHADOW;
1030 }
1031
1032 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1033 if (error)
1034 return (error);
1035
1036 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1037 if (error)
1038 return (error);
1039
1040 return (0);
1041 }
1042 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1043 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1044
1045 static void *
vmx_init(struct vm * vm,pmap_t pmap)1046 vmx_init(struct vm *vm, pmap_t pmap)
1047 {
1048 int error __diagused;
1049 struct vmx *vmx;
1050
1051 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1052 vmx->vm = vm;
1053
1054 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1055
1056 /*
1057 * Clean up EPTP-tagged guest physical and combined mappings
1058 *
1059 * VMX transitions are not required to invalidate any guest physical
1060 * mappings. So, it may be possible for stale guest physical mappings
1061 * to be present in the processor TLBs.
1062 *
1063 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1064 */
1065 ept_invalidate_mappings(vmx->eptp);
1066
1067 vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1068 M_WAITOK | M_ZERO);
1069 msr_bitmap_initialize(vmx->msr_bitmap);
1070
1071 /*
1072 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1073 * The guest FSBASE and GSBASE are saved and restored during
1074 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1075 * always restored from the vmcs host state area on vm-exit.
1076 *
1077 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1078 * how they are saved/restored so can be directly accessed by the
1079 * guest.
1080 *
1081 * MSR_EFER is saved and restored in the guest VMCS area on a
1082 * VM exit and entry respectively. It is also restored from the
1083 * host VMCS area on a VM exit.
1084 *
1085 * The TSC MSR is exposed read-only. Writes are disallowed as
1086 * that will impact the host TSC. If the guest does a write
1087 * the "use TSC offsetting" execution control is enabled and the
1088 * difference between the host TSC and the guest TSC is written
1089 * into the TSC offset in the VMCS.
1090 *
1091 * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1092 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1093 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1094 * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1095 * exposed read-only so that the VMM can do one fewer MSR read per
1096 * exit than if this register were exposed read-write; the guest
1097 * restore value can be updated during guest writes (expected to be
1098 * rare) instead of during all exits (common).
1099 */
1100 if (guest_msr_rw(vmx, MSR_GSBASE) ||
1101 guest_msr_rw(vmx, MSR_FSBASE) ||
1102 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1103 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1104 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1105 guest_msr_rw(vmx, MSR_EFER) ||
1106 guest_msr_ro(vmx, MSR_TSC) ||
1107 ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1108 panic("vmx_init: error setting guest msr access");
1109
1110 if (virtual_interrupt_delivery) {
1111 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1112 APIC_ACCESS_ADDRESS);
1113 /* XXX this should really return an error to the caller */
1114 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1115 }
1116
1117 vmx->pmap = pmap;
1118 return (vmx);
1119 }
1120
1121 static void *
vmx_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)1122 vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
1123 {
1124 struct vmx *vmx = vmi;
1125 struct vmcs *vmcs;
1126 struct vmx_vcpu *vcpu;
1127 uint32_t exc_bitmap;
1128 uint16_t vpid;
1129 int error;
1130
1131 vpid = vpid_alloc(vcpuid);
1132
1133 vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO);
1134 vcpu->vmx = vmx;
1135 vcpu->vcpu = vcpu1;
1136 vcpu->vcpuid = vcpuid;
1137 vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX,
1138 M_WAITOK | M_ZERO);
1139 vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
1140 M_WAITOK | M_ZERO);
1141 vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX,
1142 M_WAITOK | M_ZERO);
1143
1144 vmcs = vcpu->vmcs;
1145 vmcs->identifier = vmx_revision();
1146 error = vmclear(vmcs);
1147 if (error != 0) {
1148 panic("vmx_init: vmclear error %d on vcpu %d\n",
1149 error, vcpuid);
1150 }
1151
1152 vmx_msr_guest_init(vmx, vcpu);
1153
1154 error = vmcs_init(vmcs);
1155 KASSERT(error == 0, ("vmcs_init error %d", error));
1156
1157 VMPTRLD(vmcs);
1158 error = 0;
1159 error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx);
1160 error += vmwrite(VMCS_EPTP, vmx->eptp);
1161 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1162 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1163 if (vcpu_trap_wbinvd(vcpu->vcpu)) {
1164 KASSERT(cap_wbinvd_exit, ("WBINVD trap not available"));
1165 procbased_ctls2 |= PROCBASED2_WBINVD_EXITING;
1166 }
1167 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1168 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1169 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1170 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1171 error += vmwrite(VMCS_VPID, vpid);
1172
1173 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1174 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1175 (vm_offset_t)&msr_load_list[0]));
1176 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1177 nitems(msr_load_list));
1178 vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1179 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1180 }
1181
1182 /* exception bitmap */
1183 if (vcpu_trace_exceptions(vcpu->vcpu))
1184 exc_bitmap = 0xffffffff;
1185 else
1186 exc_bitmap = 1 << IDT_MC;
1187 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1188
1189 vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1;
1190 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1191
1192 if (tpr_shadowing) {
1193 error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page));
1194 }
1195
1196 if (virtual_interrupt_delivery) {
1197 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1198 error += vmwrite(VMCS_EOI_EXIT0, 0);
1199 error += vmwrite(VMCS_EOI_EXIT1, 0);
1200 error += vmwrite(VMCS_EOI_EXIT2, 0);
1201 error += vmwrite(VMCS_EOI_EXIT3, 0);
1202 }
1203 if (posted_interrupts) {
1204 error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1205 error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc));
1206 }
1207 VMCLEAR(vmcs);
1208 KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
1209
1210 vcpu->cap.set = 0;
1211 vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1212 vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1213 vcpu->cap.proc_ctls = procbased_ctls;
1214 vcpu->cap.proc_ctls2 = procbased_ctls2;
1215 vcpu->cap.exc_bitmap = exc_bitmap;
1216
1217 vcpu->state.nextrip = ~0;
1218 vcpu->state.lastcpu = NOCPU;
1219 vcpu->state.vpid = vpid;
1220
1221 /*
1222 * Set up the CR0/4 shadows, and init the read shadow
1223 * to the power-on register value from the Intel Sys Arch.
1224 * CR0 - 0x60000010
1225 * CR4 - 0
1226 */
1227 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1228 if (error != 0)
1229 panic("vmx_setup_cr0_shadow %d", error);
1230
1231 error = vmx_setup_cr4_shadow(vmcs, 0);
1232 if (error != 0)
1233 panic("vmx_setup_cr4_shadow %d", error);
1234
1235 vcpu->ctx.pmap = vmx->pmap;
1236
1237 return (vcpu);
1238 }
1239
1240 static int
vmx_handle_cpuid(struct vmx_vcpu * vcpu,struct vmxctx * vmxctx)1241 vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx)
1242 {
1243 int handled;
1244
1245 handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax,
1246 (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1247 (uint64_t *)&vmxctx->guest_rdx);
1248 return (handled);
1249 }
1250
1251 static __inline void
vmx_run_trace(struct vmx_vcpu * vcpu)1252 vmx_run_trace(struct vmx_vcpu *vcpu)
1253 {
1254 VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1255 }
1256
1257 static __inline void
vmx_exit_trace(struct vmx_vcpu * vcpu,uint64_t rip,uint32_t exit_reason,int handled)1258 vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason,
1259 int handled)
1260 {
1261 VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx",
1262 handled ? "handled" : "unhandled",
1263 exit_reason_to_str(exit_reason), rip);
1264 }
1265
1266 static __inline void
vmx_astpending_trace(struct vmx_vcpu * vcpu,uint64_t rip)1267 vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip)
1268 {
1269 VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip);
1270 }
1271
1272 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1273 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1274
1275 /*
1276 * Invalidate guest mappings identified by its vpid from the TLB.
1277 */
1278 static __inline void
vmx_invvpid(struct vmx * vmx,struct vmx_vcpu * vcpu,pmap_t pmap,int running)1279 vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running)
1280 {
1281 struct vmxstate *vmxstate;
1282 struct invvpid_desc invvpid_desc;
1283
1284 vmxstate = &vcpu->state;
1285 if (vmxstate->vpid == 0)
1286 return;
1287
1288 if (!running) {
1289 /*
1290 * Set the 'lastcpu' to an invalid host cpu.
1291 *
1292 * This will invalidate TLB entries tagged with the vcpu's
1293 * vpid the next time it runs via vmx_set_pcpu_defaults().
1294 */
1295 vmxstate->lastcpu = NOCPU;
1296 return;
1297 }
1298
1299 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1300 "critical section", __func__, vcpu->vcpuid));
1301
1302 /*
1303 * Invalidate all mappings tagged with 'vpid'
1304 *
1305 * We do this because this vcpu was executing on a different host
1306 * cpu when it last ran. We do not track whether it invalidated
1307 * mappings associated with its 'vpid' during that run. So we must
1308 * assume that the mappings associated with 'vpid' on 'curcpu' are
1309 * stale and invalidate them.
1310 *
1311 * Note that we incur this penalty only when the scheduler chooses to
1312 * move the thread associated with this vcpu between host cpus.
1313 *
1314 * Note also that this will invalidate mappings tagged with 'vpid'
1315 * for "all" EP4TAs.
1316 */
1317 if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1318 invvpid_desc._res1 = 0;
1319 invvpid_desc._res2 = 0;
1320 invvpid_desc.vpid = vmxstate->vpid;
1321 invvpid_desc.linear_addr = 0;
1322 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1323 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1);
1324 } else {
1325 /*
1326 * The invvpid can be skipped if an invept is going to
1327 * be performed before entering the guest. The invept
1328 * will invalidate combined mappings tagged with
1329 * 'vmx->eptp' for all vpids.
1330 */
1331 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1);
1332 }
1333 }
1334
1335 static void
vmx_set_pcpu_defaults(struct vmx * vmx,struct vmx_vcpu * vcpu,pmap_t pmap)1336 vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap)
1337 {
1338 struct vmxstate *vmxstate;
1339
1340 vmxstate = &vcpu->state;
1341 if (vmxstate->lastcpu == curcpu)
1342 return;
1343
1344 vmxstate->lastcpu = curcpu;
1345
1346 vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
1347
1348 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1349 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1350 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1351 vmx_invvpid(vmx, vcpu, pmap, 1);
1352 }
1353
1354 /*
1355 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1356 */
1357 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1358
1359 static void __inline
vmx_set_int_window_exiting(struct vmx_vcpu * vcpu)1360 vmx_set_int_window_exiting(struct vmx_vcpu *vcpu)
1361 {
1362
1363 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1364 vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1365 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1366 VMX_CTR0(vcpu, "Enabling interrupt window exiting");
1367 }
1368 }
1369
1370 static void __inline
vmx_clear_int_window_exiting(struct vmx_vcpu * vcpu)1371 vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu)
1372 {
1373
1374 KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1375 ("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls));
1376 vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1377 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1378 VMX_CTR0(vcpu, "Disabling interrupt window exiting");
1379 }
1380
1381 static void __inline
vmx_set_nmi_window_exiting(struct vmx_vcpu * vcpu)1382 vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu)
1383 {
1384
1385 if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1386 vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1387 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1388 VMX_CTR0(vcpu, "Enabling NMI window exiting");
1389 }
1390 }
1391
1392 static void __inline
vmx_clear_nmi_window_exiting(struct vmx_vcpu * vcpu)1393 vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu)
1394 {
1395
1396 KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1397 ("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls));
1398 vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1399 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1400 VMX_CTR0(vcpu, "Disabling NMI window exiting");
1401 }
1402
1403 int
vmx_set_tsc_offset(struct vmx_vcpu * vcpu,uint64_t offset)1404 vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset)
1405 {
1406 int error;
1407
1408 if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1409 vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET;
1410 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
1411 VMX_CTR0(vcpu, "Enabling TSC offsetting");
1412 }
1413
1414 error = vmwrite(VMCS_TSC_OFFSET, offset);
1415 #ifdef BHYVE_SNAPSHOT
1416 if (error == 0)
1417 vm_set_tsc_offset(vcpu->vcpu, offset);
1418 #endif
1419 return (error);
1420 }
1421
1422 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \
1423 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1424 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \
1425 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1426
1427 static void
vmx_inject_nmi(struct vmx_vcpu * vcpu)1428 vmx_inject_nmi(struct vmx_vcpu *vcpu)
1429 {
1430 uint32_t gi __diagused, info;
1431
1432 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1433 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1434 "interruptibility-state %#x", gi));
1435
1436 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1437 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1438 "VM-entry interruption information %#x", info));
1439
1440 /*
1441 * Inject the virtual NMI. The vector must be the NMI IDT entry
1442 * or the VMCS entry check will fail.
1443 */
1444 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1445 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1446
1447 VMX_CTR0(vcpu, "Injecting vNMI");
1448
1449 /* Clear the request */
1450 vm_nmi_clear(vcpu->vcpu);
1451 }
1452
1453 static void
vmx_inject_interrupts(struct vmx_vcpu * vcpu,struct vlapic * vlapic,uint64_t guestrip)1454 vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
1455 uint64_t guestrip)
1456 {
1457 int vector, need_nmi_exiting, extint_pending;
1458 uint64_t rflags, entryinfo;
1459 uint32_t gi, info;
1460
1461 if (vcpu->cap.set & (1 << VM_CAP_MASK_HWINTR)) {
1462 return;
1463 }
1464
1465 if (vcpu->state.nextrip != guestrip) {
1466 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1467 if (gi & HWINTR_BLOCKING) {
1468 VMX_CTR2(vcpu, "Guest interrupt blocking "
1469 "cleared due to rip change: %#lx/%#lx",
1470 vcpu->state.nextrip, guestrip);
1471 gi &= ~HWINTR_BLOCKING;
1472 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1473 }
1474 }
1475
1476 if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) {
1477 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1478 "intinfo is not valid: %#lx", __func__, entryinfo));
1479
1480 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1481 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1482 "pending exception: %#lx/%#x", __func__, entryinfo, info));
1483
1484 info = entryinfo;
1485 vector = info & 0xff;
1486 if (vector == IDT_BP || vector == IDT_OF) {
1487 /*
1488 * VT-x requires #BP and #OF to be injected as software
1489 * exceptions.
1490 */
1491 info &= ~VMCS_INTR_T_MASK;
1492 info |= VMCS_INTR_T_SWEXCEPTION;
1493 }
1494
1495 if (info & VMCS_INTR_DEL_ERRCODE)
1496 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1497
1498 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1499 }
1500
1501 if (vm_nmi_pending(vcpu->vcpu)) {
1502 /*
1503 * If there are no conditions blocking NMI injection then
1504 * inject it directly here otherwise enable "NMI window
1505 * exiting" to inject it as soon as we can.
1506 *
1507 * We also check for STI_BLOCKING because some implementations
1508 * don't allow NMI injection in this case. If we are running
1509 * on a processor that doesn't have this restriction it will
1510 * immediately exit and the NMI will be injected in the
1511 * "NMI window exiting" handler.
1512 */
1513 need_nmi_exiting = 1;
1514 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1515 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1516 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1517 if ((info & VMCS_INTR_VALID) == 0) {
1518 vmx_inject_nmi(vcpu);
1519 need_nmi_exiting = 0;
1520 } else {
1521 VMX_CTR1(vcpu, "Cannot inject NMI "
1522 "due to VM-entry intr info %#x", info);
1523 }
1524 } else {
1525 VMX_CTR1(vcpu, "Cannot inject NMI due to "
1526 "Guest Interruptibility-state %#x", gi);
1527 }
1528
1529 if (need_nmi_exiting)
1530 vmx_set_nmi_window_exiting(vcpu);
1531 }
1532
1533 extint_pending = vm_extint_pending(vcpu->vcpu);
1534
1535 if (!extint_pending && virtual_interrupt_delivery) {
1536 vmx_inject_pir(vlapic);
1537 return;
1538 }
1539
1540 /*
1541 * If interrupt-window exiting is already in effect then don't bother
1542 * checking for pending interrupts. This is just an optimization and
1543 * not needed for correctness.
1544 */
1545 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1546 VMX_CTR0(vcpu, "Skip interrupt injection due to "
1547 "pending int_window_exiting");
1548 return;
1549 }
1550
1551 if (!extint_pending) {
1552 /* Ask the local apic for a vector to inject */
1553 if (!vlapic_pending_intr(vlapic, &vector))
1554 return;
1555
1556 /*
1557 * From the Intel SDM, Volume 3, Section "Maskable
1558 * Hardware Interrupts":
1559 * - maskable interrupt vectors [16,255] can be delivered
1560 * through the local APIC.
1561 */
1562 KASSERT(vector >= 16 && vector <= 255,
1563 ("invalid vector %d from local APIC", vector));
1564 } else {
1565 /* Ask the legacy pic for a vector to inject */
1566 vatpic_pending_intr(vcpu->vmx->vm, &vector);
1567
1568 /*
1569 * From the Intel SDM, Volume 3, Section "Maskable
1570 * Hardware Interrupts":
1571 * - maskable interrupt vectors [0,255] can be delivered
1572 * through the INTR pin.
1573 */
1574 KASSERT(vector >= 0 && vector <= 255,
1575 ("invalid vector %d from INTR", vector));
1576 }
1577
1578 /* Check RFLAGS.IF and the interruptibility state of the guest */
1579 rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1580 if ((rflags & PSL_I) == 0) {
1581 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1582 "rflags %#lx", vector, rflags);
1583 goto cantinject;
1584 }
1585
1586 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1587 if (gi & HWINTR_BLOCKING) {
1588 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1589 "Guest Interruptibility-state %#x", vector, gi);
1590 goto cantinject;
1591 }
1592
1593 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1594 if (info & VMCS_INTR_VALID) {
1595 /*
1596 * This is expected and could happen for multiple reasons:
1597 * - A vectoring VM-entry was aborted due to astpending
1598 * - A VM-exit happened during event injection.
1599 * - An exception was injected above.
1600 * - An NMI was injected above or after "NMI window exiting"
1601 */
1602 VMX_CTR2(vcpu, "Cannot inject vector %d due to "
1603 "VM-entry intr info %#x", vector, info);
1604 goto cantinject;
1605 }
1606
1607 /* Inject the interrupt */
1608 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1609 info |= vector;
1610 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1611
1612 if (!extint_pending) {
1613 /* Update the Local APIC ISR */
1614 vlapic_intr_accepted(vlapic, vector);
1615 } else {
1616 vm_extint_clear(vcpu->vcpu);
1617 vatpic_intr_accepted(vcpu->vmx->vm, vector);
1618
1619 /*
1620 * After we accepted the current ExtINT the PIC may
1621 * have posted another one. If that is the case, set
1622 * the Interrupt Window Exiting execution control so
1623 * we can inject that one too.
1624 *
1625 * Also, interrupt window exiting allows us to inject any
1626 * pending APIC vector that was preempted by the ExtINT
1627 * as soon as possible. This applies both for the software
1628 * emulated vlapic and the hardware assisted virtual APIC.
1629 */
1630 vmx_set_int_window_exiting(vcpu);
1631 }
1632
1633 VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector);
1634
1635 return;
1636
1637 cantinject:
1638 /*
1639 * Set the Interrupt Window Exiting execution control so we can inject
1640 * the interrupt as soon as blocking condition goes away.
1641 */
1642 vmx_set_int_window_exiting(vcpu);
1643 }
1644
1645 /*
1646 * If the Virtual NMIs execution control is '1' then the logical processor
1647 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1648 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1649 * virtual-NMI blocking.
1650 *
1651 * This unblocking occurs even if the IRET causes a fault. In this case the
1652 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1653 */
1654 static void
vmx_restore_nmi_blocking(struct vmx_vcpu * vcpu)1655 vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu)
1656 {
1657 uint32_t gi;
1658
1659 VMX_CTR0(vcpu, "Restore Virtual-NMI blocking");
1660 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1661 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1662 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1663 }
1664
1665 static void
vmx_clear_nmi_blocking(struct vmx_vcpu * vcpu)1666 vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu)
1667 {
1668 uint32_t gi;
1669
1670 VMX_CTR0(vcpu, "Clear Virtual-NMI blocking");
1671 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1672 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1673 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1674 }
1675
1676 static void
vmx_assert_nmi_blocking(struct vmx_vcpu * vcpu)1677 vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu)
1678 {
1679 uint32_t gi __diagused;
1680
1681 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1682 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1683 ("NMI blocking is not in effect %#x", gi));
1684 }
1685
1686 static int
vmx_emulate_xsetbv(struct vmx * vmx,struct vmx_vcpu * vcpu,struct vm_exit * vmexit)1687 vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu,
1688 struct vm_exit *vmexit)
1689 {
1690 struct vmxctx *vmxctx;
1691 uint64_t xcrval;
1692 const struct xsave_limits *limits;
1693
1694 vmxctx = &vcpu->ctx;
1695 limits = vmm_get_xsave_limits();
1696
1697 /*
1698 * Note that the processor raises a GP# fault on its own if
1699 * xsetbv is executed for CPL != 0, so we do not have to
1700 * emulate that fault here.
1701 */
1702
1703 /* Only xcr0 is supported. */
1704 if (vmxctx->guest_rcx != 0) {
1705 vm_inject_gp(vcpu->vcpu);
1706 return (HANDLED);
1707 }
1708
1709 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1710 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1711 vm_inject_ud(vcpu->vcpu);
1712 return (HANDLED);
1713 }
1714
1715 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1716 if ((xcrval & ~limits->xcr0_allowed) != 0) {
1717 vm_inject_gp(vcpu->vcpu);
1718 return (HANDLED);
1719 }
1720
1721 if (!(xcrval & XFEATURE_ENABLED_X87)) {
1722 vm_inject_gp(vcpu->vcpu);
1723 return (HANDLED);
1724 }
1725
1726 /* AVX (YMM_Hi128) requires SSE. */
1727 if (xcrval & XFEATURE_ENABLED_AVX &&
1728 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1729 vm_inject_gp(vcpu->vcpu);
1730 return (HANDLED);
1731 }
1732
1733 /*
1734 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1735 * ZMM_Hi256, and Hi16_ZMM.
1736 */
1737 if (xcrval & XFEATURE_AVX512 &&
1738 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1739 (XFEATURE_AVX512 | XFEATURE_AVX)) {
1740 vm_inject_gp(vcpu->vcpu);
1741 return (HANDLED);
1742 }
1743
1744 /*
1745 * Intel MPX requires both bound register state flags to be
1746 * set.
1747 */
1748 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1749 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1750 vm_inject_gp(vcpu->vcpu);
1751 return (HANDLED);
1752 }
1753
1754 /*
1755 * This runs "inside" vmrun() with the guest's FPU state, so
1756 * modifying xcr0 directly modifies the guest's xcr0, not the
1757 * host's.
1758 */
1759 load_xcr(0, xcrval);
1760 return (HANDLED);
1761 }
1762
1763 static uint64_t
vmx_get_guest_reg(struct vmx_vcpu * vcpu,int ident)1764 vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident)
1765 {
1766 const struct vmxctx *vmxctx;
1767
1768 vmxctx = &vcpu->ctx;
1769
1770 switch (ident) {
1771 case 0:
1772 return (vmxctx->guest_rax);
1773 case 1:
1774 return (vmxctx->guest_rcx);
1775 case 2:
1776 return (vmxctx->guest_rdx);
1777 case 3:
1778 return (vmxctx->guest_rbx);
1779 case 4:
1780 return (vmcs_read(VMCS_GUEST_RSP));
1781 case 5:
1782 return (vmxctx->guest_rbp);
1783 case 6:
1784 return (vmxctx->guest_rsi);
1785 case 7:
1786 return (vmxctx->guest_rdi);
1787 case 8:
1788 return (vmxctx->guest_r8);
1789 case 9:
1790 return (vmxctx->guest_r9);
1791 case 10:
1792 return (vmxctx->guest_r10);
1793 case 11:
1794 return (vmxctx->guest_r11);
1795 case 12:
1796 return (vmxctx->guest_r12);
1797 case 13:
1798 return (vmxctx->guest_r13);
1799 case 14:
1800 return (vmxctx->guest_r14);
1801 case 15:
1802 return (vmxctx->guest_r15);
1803 default:
1804 panic("invalid vmx register %d", ident);
1805 }
1806 }
1807
1808 static void
vmx_set_guest_reg(struct vmx_vcpu * vcpu,int ident,uint64_t regval)1809 vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval)
1810 {
1811 struct vmxctx *vmxctx;
1812
1813 vmxctx = &vcpu->ctx;
1814
1815 switch (ident) {
1816 case 0:
1817 vmxctx->guest_rax = regval;
1818 break;
1819 case 1:
1820 vmxctx->guest_rcx = regval;
1821 break;
1822 case 2:
1823 vmxctx->guest_rdx = regval;
1824 break;
1825 case 3:
1826 vmxctx->guest_rbx = regval;
1827 break;
1828 case 4:
1829 vmcs_write(VMCS_GUEST_RSP, regval);
1830 break;
1831 case 5:
1832 vmxctx->guest_rbp = regval;
1833 break;
1834 case 6:
1835 vmxctx->guest_rsi = regval;
1836 break;
1837 case 7:
1838 vmxctx->guest_rdi = regval;
1839 break;
1840 case 8:
1841 vmxctx->guest_r8 = regval;
1842 break;
1843 case 9:
1844 vmxctx->guest_r9 = regval;
1845 break;
1846 case 10:
1847 vmxctx->guest_r10 = regval;
1848 break;
1849 case 11:
1850 vmxctx->guest_r11 = regval;
1851 break;
1852 case 12:
1853 vmxctx->guest_r12 = regval;
1854 break;
1855 case 13:
1856 vmxctx->guest_r13 = regval;
1857 break;
1858 case 14:
1859 vmxctx->guest_r14 = regval;
1860 break;
1861 case 15:
1862 vmxctx->guest_r15 = regval;
1863 break;
1864 default:
1865 panic("invalid vmx register %d", ident);
1866 }
1867 }
1868
1869 static int
vmx_emulate_cr0_access(struct vmx_vcpu * vcpu,uint64_t exitqual)1870 vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1871 {
1872 uint64_t crval, regval;
1873
1874 /* We only handle mov to %cr0 at this time */
1875 if ((exitqual & 0xf0) != 0x00)
1876 return (UNHANDLED);
1877
1878 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1879
1880 vmcs_write(VMCS_CR0_SHADOW, regval);
1881
1882 crval = regval | cr0_ones_mask;
1883 crval &= ~cr0_zeros_mask;
1884 vmcs_write(VMCS_GUEST_CR0, crval);
1885
1886 if (regval & CR0_PG) {
1887 uint64_t efer, entry_ctls;
1888
1889 /*
1890 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1891 * the "IA-32e mode guest" bit in VM-entry control must be
1892 * equal.
1893 */
1894 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1895 if (efer & EFER_LME) {
1896 efer |= EFER_LMA;
1897 vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1898 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1899 entry_ctls |= VM_ENTRY_GUEST_LMA;
1900 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1901 }
1902 }
1903
1904 return (HANDLED);
1905 }
1906
1907 static int
vmx_emulate_cr4_access(struct vmx_vcpu * vcpu,uint64_t exitqual)1908 vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
1909 {
1910 uint64_t crval, regval;
1911
1912 /* We only handle mov to %cr4 at this time */
1913 if ((exitqual & 0xf0) != 0x00)
1914 return (UNHANDLED);
1915
1916 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
1917
1918 vmcs_write(VMCS_CR4_SHADOW, regval);
1919
1920 crval = regval | cr4_ones_mask;
1921 crval &= ~cr4_zeros_mask;
1922 vmcs_write(VMCS_GUEST_CR4, crval);
1923
1924 return (HANDLED);
1925 }
1926
1927 static int
vmx_emulate_cr8_access(struct vmx * vmx,struct vmx_vcpu * vcpu,uint64_t exitqual)1928 vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu,
1929 uint64_t exitqual)
1930 {
1931 struct vlapic *vlapic;
1932 uint64_t cr8;
1933 int regnum;
1934
1935 /* We only handle mov %cr8 to/from a register at this time. */
1936 if ((exitqual & 0xe0) != 0x00) {
1937 return (UNHANDLED);
1938 }
1939
1940 vlapic = vm_lapic(vcpu->vcpu);
1941 regnum = (exitqual >> 8) & 0xf;
1942 if (exitqual & 0x10) {
1943 cr8 = vlapic_get_cr8(vlapic);
1944 vmx_set_guest_reg(vcpu, regnum, cr8);
1945 } else {
1946 cr8 = vmx_get_guest_reg(vcpu, regnum);
1947 vlapic_set_cr8(vlapic, cr8);
1948 }
1949
1950 return (HANDLED);
1951 }
1952
1953 /*
1954 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1955 */
1956 static int
vmx_cpl(void)1957 vmx_cpl(void)
1958 {
1959 uint32_t ssar;
1960
1961 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1962 return ((ssar >> 5) & 0x3);
1963 }
1964
1965 static enum vm_cpu_mode
vmx_cpu_mode(void)1966 vmx_cpu_mode(void)
1967 {
1968 uint32_t csar;
1969
1970 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1971 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1972 if (csar & 0x2000)
1973 return (CPU_MODE_64BIT); /* CS.L = 1 */
1974 else
1975 return (CPU_MODE_COMPATIBILITY);
1976 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1977 return (CPU_MODE_PROTECTED);
1978 } else {
1979 return (CPU_MODE_REAL);
1980 }
1981 }
1982
1983 static enum vm_paging_mode
vmx_paging_mode(void)1984 vmx_paging_mode(void)
1985 {
1986 uint64_t cr4;
1987
1988 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1989 return (PAGING_MODE_FLAT);
1990 cr4 = vmcs_read(VMCS_GUEST_CR4);
1991 if (!(cr4 & CR4_PAE))
1992 return (PAGING_MODE_32);
1993 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1994 if (!(cr4 & CR4_LA57))
1995 return (PAGING_MODE_64);
1996 return (PAGING_MODE_64_LA57);
1997 } else
1998 return (PAGING_MODE_PAE);
1999 }
2000
2001 static uint64_t
inout_str_index(struct vmx_vcpu * vcpu,int in)2002 inout_str_index(struct vmx_vcpu *vcpu, int in)
2003 {
2004 uint64_t val;
2005 int error __diagused;
2006 enum vm_reg_name reg;
2007
2008 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
2009 error = vmx_getreg(vcpu, reg, &val);
2010 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
2011 return (val);
2012 }
2013
2014 static uint64_t
inout_str_count(struct vmx_vcpu * vcpu,int rep)2015 inout_str_count(struct vmx_vcpu *vcpu, int rep)
2016 {
2017 uint64_t val;
2018 int error __diagused;
2019
2020 if (rep) {
2021 error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val);
2022 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
2023 } else {
2024 val = 1;
2025 }
2026 return (val);
2027 }
2028
2029 static int
inout_str_addrsize(uint32_t inst_info)2030 inout_str_addrsize(uint32_t inst_info)
2031 {
2032 uint32_t size;
2033
2034 size = (inst_info >> 7) & 0x7;
2035 switch (size) {
2036 case 0:
2037 return (2); /* 16 bit */
2038 case 1:
2039 return (4); /* 32 bit */
2040 case 2:
2041 return (8); /* 64 bit */
2042 default:
2043 panic("%s: invalid size encoding %d", __func__, size);
2044 }
2045 }
2046
2047 static void
inout_str_seginfo(struct vmx_vcpu * vcpu,uint32_t inst_info,int in,struct vm_inout_str * vis)2048 inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in,
2049 struct vm_inout_str *vis)
2050 {
2051 int error __diagused, s;
2052
2053 if (in) {
2054 vis->seg_name = VM_REG_GUEST_ES;
2055 } else {
2056 s = (inst_info >> 15) & 0x7;
2057 vis->seg_name = vm_segment_name(s);
2058 }
2059
2060 error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
2061 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2062 }
2063
2064 static void
vmx_paging_info(struct vm_guest_paging * paging)2065 vmx_paging_info(struct vm_guest_paging *paging)
2066 {
2067 paging->cr3 = vmcs_guest_cr3();
2068 paging->cpl = vmx_cpl();
2069 paging->cpu_mode = vmx_cpu_mode();
2070 paging->paging_mode = vmx_paging_mode();
2071 }
2072
2073 static void
vmexit_inst_emul(struct vm_exit * vmexit,uint64_t gpa,uint64_t gla)2074 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2075 {
2076 struct vm_guest_paging *paging;
2077 uint32_t csar;
2078
2079 paging = &vmexit->u.inst_emul.paging;
2080
2081 vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2082 vmexit->inst_length = 0;
2083 vmexit->u.inst_emul.gpa = gpa;
2084 vmexit->u.inst_emul.gla = gla;
2085 vmx_paging_info(paging);
2086 switch (paging->cpu_mode) {
2087 case CPU_MODE_REAL:
2088 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2089 vmexit->u.inst_emul.cs_d = 0;
2090 break;
2091 case CPU_MODE_PROTECTED:
2092 case CPU_MODE_COMPATIBILITY:
2093 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2094 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2095 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2096 break;
2097 default:
2098 vmexit->u.inst_emul.cs_base = 0;
2099 vmexit->u.inst_emul.cs_d = 0;
2100 break;
2101 }
2102 vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2103 }
2104
2105 static int
ept_fault_type(uint64_t ept_qual)2106 ept_fault_type(uint64_t ept_qual)
2107 {
2108 int fault_type;
2109
2110 if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2111 fault_type = VM_PROT_WRITE;
2112 else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2113 fault_type = VM_PROT_EXECUTE;
2114 else
2115 fault_type= VM_PROT_READ;
2116
2117 return (fault_type);
2118 }
2119
2120 static bool
ept_emulation_fault(uint64_t ept_qual)2121 ept_emulation_fault(uint64_t ept_qual)
2122 {
2123 int read, write;
2124
2125 /* EPT fault on an instruction fetch doesn't make sense here */
2126 if (ept_qual & EPT_VIOLATION_INST_FETCH)
2127 return (false);
2128
2129 /* EPT fault must be a read fault or a write fault */
2130 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2131 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2132 if ((read | write) == 0)
2133 return (false);
2134
2135 /*
2136 * The EPT violation must have been caused by accessing a
2137 * guest-physical address that is a translation of a guest-linear
2138 * address.
2139 */
2140 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2141 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2142 return (false);
2143 }
2144
2145 return (true);
2146 }
2147
2148 static __inline int
apic_access_virtualization(struct vmx_vcpu * vcpu)2149 apic_access_virtualization(struct vmx_vcpu *vcpu)
2150 {
2151 uint32_t proc_ctls2;
2152
2153 proc_ctls2 = vcpu->cap.proc_ctls2;
2154 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2155 }
2156
2157 static __inline int
x2apic_virtualization(struct vmx_vcpu * vcpu)2158 x2apic_virtualization(struct vmx_vcpu *vcpu)
2159 {
2160 uint32_t proc_ctls2;
2161
2162 proc_ctls2 = vcpu->cap.proc_ctls2;
2163 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2164 }
2165
2166 static int
vmx_handle_apic_write(struct vmx_vcpu * vcpu,struct vlapic * vlapic,uint64_t qual)2167 vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
2168 uint64_t qual)
2169 {
2170 int error, handled, offset;
2171 uint32_t *apic_regs, vector;
2172 bool retu;
2173
2174 handled = HANDLED;
2175 offset = APIC_WRITE_OFFSET(qual);
2176
2177 if (!apic_access_virtualization(vcpu)) {
2178 /*
2179 * In general there should not be any APIC write VM-exits
2180 * unless APIC-access virtualization is enabled.
2181 *
2182 * However self-IPI virtualization can legitimately trigger
2183 * an APIC-write VM-exit so treat it specially.
2184 */
2185 if (x2apic_virtualization(vcpu) &&
2186 offset == APIC_OFFSET_SELF_IPI) {
2187 apic_regs = (uint32_t *)(vlapic->apic_page);
2188 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2189 vlapic_self_ipi_handler(vlapic, vector);
2190 return (HANDLED);
2191 } else
2192 return (UNHANDLED);
2193 }
2194
2195 switch (offset) {
2196 case APIC_OFFSET_ID:
2197 vlapic_id_write_handler(vlapic);
2198 break;
2199 case APIC_OFFSET_LDR:
2200 vlapic_ldr_write_handler(vlapic);
2201 break;
2202 case APIC_OFFSET_DFR:
2203 vlapic_dfr_write_handler(vlapic);
2204 break;
2205 case APIC_OFFSET_SVR:
2206 vlapic_svr_write_handler(vlapic);
2207 break;
2208 case APIC_OFFSET_ESR:
2209 vlapic_esr_write_handler(vlapic);
2210 break;
2211 case APIC_OFFSET_ICR_LOW:
2212 retu = false;
2213 error = vlapic_icrlo_write_handler(vlapic, &retu);
2214 if (error != 0 || retu)
2215 handled = UNHANDLED;
2216 break;
2217 case APIC_OFFSET_CMCI_LVT:
2218 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2219 vlapic_lvt_write_handler(vlapic, offset);
2220 break;
2221 case APIC_OFFSET_TIMER_ICR:
2222 vlapic_icrtmr_write_handler(vlapic);
2223 break;
2224 case APIC_OFFSET_TIMER_DCR:
2225 vlapic_dcr_write_handler(vlapic);
2226 break;
2227 default:
2228 handled = UNHANDLED;
2229 break;
2230 }
2231 return (handled);
2232 }
2233
2234 static bool
apic_access_fault(struct vmx_vcpu * vcpu,uint64_t gpa)2235 apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa)
2236 {
2237
2238 if (apic_access_virtualization(vcpu) &&
2239 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2240 return (true);
2241 else
2242 return (false);
2243 }
2244
2245 static int
vmx_handle_apic_access(struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2246 vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2247 {
2248 uint64_t qual;
2249 int access_type, offset, allowed;
2250
2251 if (!apic_access_virtualization(vcpu))
2252 return (UNHANDLED);
2253
2254 qual = vmexit->u.vmx.exit_qualification;
2255 access_type = APIC_ACCESS_TYPE(qual);
2256 offset = APIC_ACCESS_OFFSET(qual);
2257
2258 allowed = 0;
2259 if (access_type == 0) {
2260 /*
2261 * Read data access to the following registers is expected.
2262 */
2263 switch (offset) {
2264 case APIC_OFFSET_APR:
2265 case APIC_OFFSET_PPR:
2266 case APIC_OFFSET_RRR:
2267 case APIC_OFFSET_CMCI_LVT:
2268 case APIC_OFFSET_TIMER_CCR:
2269 allowed = 1;
2270 break;
2271 default:
2272 break;
2273 }
2274 } else if (access_type == 1) {
2275 /*
2276 * Write data access to the following registers is expected.
2277 */
2278 switch (offset) {
2279 case APIC_OFFSET_VER:
2280 case APIC_OFFSET_APR:
2281 case APIC_OFFSET_PPR:
2282 case APIC_OFFSET_RRR:
2283 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2284 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2285 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2286 case APIC_OFFSET_CMCI_LVT:
2287 case APIC_OFFSET_TIMER_CCR:
2288 allowed = 1;
2289 break;
2290 default:
2291 break;
2292 }
2293 }
2294
2295 if (allowed) {
2296 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2297 VIE_INVALID_GLA);
2298 }
2299
2300 /*
2301 * Regardless of whether the APIC-access is allowed this handler
2302 * always returns UNHANDLED:
2303 * - if the access is allowed then it is handled by emulating the
2304 * instruction that caused the VM-exit (outside the critical section)
2305 * - if the access is not allowed then it will be converted to an
2306 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2307 */
2308 return (UNHANDLED);
2309 }
2310
2311 static enum task_switch_reason
vmx_task_switch_reason(uint64_t qual)2312 vmx_task_switch_reason(uint64_t qual)
2313 {
2314 int reason;
2315
2316 reason = (qual >> 30) & 0x3;
2317 switch (reason) {
2318 case 0:
2319 return (TSR_CALL);
2320 case 1:
2321 return (TSR_IRET);
2322 case 2:
2323 return (TSR_JMP);
2324 case 3:
2325 return (TSR_IDT_GATE);
2326 default:
2327 panic("%s: invalid reason %d", __func__, reason);
2328 }
2329 }
2330
2331 static int
emulate_wrmsr(struct vmx_vcpu * vcpu,u_int num,uint64_t val,bool * retu)2332 emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
2333 {
2334 int error;
2335
2336 if (lapic_msr(num))
2337 error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
2338 else
2339 error = vmx_wrmsr(vcpu, num, val, retu);
2340
2341 return (error);
2342 }
2343
2344 static int
emulate_rdmsr(struct vmx_vcpu * vcpu,u_int num,bool * retu)2345 emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu)
2346 {
2347 struct vmxctx *vmxctx;
2348 uint64_t result;
2349 uint32_t eax, edx;
2350 int error;
2351
2352 if (lapic_msr(num))
2353 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
2354 else
2355 error = vmx_rdmsr(vcpu, num, &result, retu);
2356
2357 if (error == 0) {
2358 eax = result;
2359 vmxctx = &vcpu->ctx;
2360 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2361 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2362
2363 edx = result >> 32;
2364 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2365 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2366 }
2367
2368 return (error);
2369 }
2370
2371 static int
vmx_exit_process(struct vmx * vmx,struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2372 vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2373 {
2374 int error, errcode, errcode_valid, handled, in;
2375 struct vmxctx *vmxctx;
2376 struct vlapic *vlapic;
2377 struct vm_inout_str *vis;
2378 struct vm_task_switch *ts;
2379 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2380 uint32_t intr_type, intr_vec, reason;
2381 uint64_t exitintinfo, qual, gpa;
2382 #ifdef KDTRACE_HOOKS
2383 int vcpuid;
2384 #endif
2385 bool retu;
2386
2387 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2388 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2389
2390 handled = UNHANDLED;
2391 vmxctx = &vcpu->ctx;
2392 #ifdef KDTRACE_HOOKS
2393 vcpuid = vcpu->vcpuid;
2394 #endif
2395
2396 qual = vmexit->u.vmx.exit_qualification;
2397 reason = vmexit->u.vmx.exit_reason;
2398 vmexit->exitcode = VM_EXITCODE_BOGUS;
2399
2400 vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
2401 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit);
2402
2403 /*
2404 * VM-entry failures during or after loading guest state.
2405 *
2406 * These VM-exits are uncommon but must be handled specially
2407 * as most VM-exit fields are not populated as usual.
2408 */
2409 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2410 VMX_CTR0(vcpu, "Handling MCE during VM-entry");
2411 __asm __volatile("int $18");
2412 return (1);
2413 }
2414
2415 /*
2416 * VM exits that can be triggered during event delivery need to
2417 * be handled specially by re-injecting the event if the IDT
2418 * vectoring information field's valid bit is set.
2419 *
2420 * See "Information for VM Exits During Event Delivery" in Intel SDM
2421 * for details.
2422 */
2423 idtvec_info = vmcs_idt_vectoring_info();
2424 if (idtvec_info & VMCS_IDT_VEC_VALID) {
2425 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2426 exitintinfo = idtvec_info;
2427 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2428 idtvec_err = vmcs_idt_vectoring_err();
2429 exitintinfo |= (uint64_t)idtvec_err << 32;
2430 }
2431 error = vm_exit_intinfo(vcpu->vcpu, exitintinfo);
2432 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2433 __func__, error));
2434
2435 /*
2436 * If 'virtual NMIs' are being used and the VM-exit
2437 * happened while injecting an NMI during the previous
2438 * VM-entry, then clear "blocking by NMI" in the
2439 * Guest Interruptibility-State so the NMI can be
2440 * reinjected on the subsequent VM-entry.
2441 *
2442 * However, if the NMI was being delivered through a task
2443 * gate, then the new task must start execution with NMIs
2444 * blocked so don't clear NMI blocking in this case.
2445 */
2446 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2447 if (intr_type == VMCS_INTR_T_NMI) {
2448 if (reason != EXIT_REASON_TASK_SWITCH)
2449 vmx_clear_nmi_blocking(vcpu);
2450 else
2451 vmx_assert_nmi_blocking(vcpu);
2452 }
2453
2454 /*
2455 * Update VM-entry instruction length if the event being
2456 * delivered was a software interrupt or software exception.
2457 */
2458 if (intr_type == VMCS_INTR_T_SWINTR ||
2459 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2460 intr_type == VMCS_INTR_T_SWEXCEPTION) {
2461 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2462 }
2463 }
2464
2465 switch (reason) {
2466 case EXIT_REASON_TASK_SWITCH:
2467 ts = &vmexit->u.task_switch;
2468 ts->tsssel = qual & 0xffff;
2469 ts->reason = vmx_task_switch_reason(qual);
2470 ts->ext = 0;
2471 ts->errcode_valid = 0;
2472 vmx_paging_info(&ts->paging);
2473 /*
2474 * If the task switch was due to a CALL, JMP, IRET, software
2475 * interrupt (INT n) or software exception (INT3, INTO),
2476 * then the saved %rip references the instruction that caused
2477 * the task switch. The instruction length field in the VMCS
2478 * is valid in this case.
2479 *
2480 * In all other cases (e.g., NMI, hardware exception) the
2481 * saved %rip is one that would have been saved in the old TSS
2482 * had the task switch completed normally so the instruction
2483 * length field is not needed in this case and is explicitly
2484 * set to 0.
2485 */
2486 if (ts->reason == TSR_IDT_GATE) {
2487 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2488 ("invalid idtvec_info %#x for IDT task switch",
2489 idtvec_info));
2490 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2491 if (intr_type != VMCS_INTR_T_SWINTR &&
2492 intr_type != VMCS_INTR_T_SWEXCEPTION &&
2493 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2494 /* Task switch triggered by external event */
2495 ts->ext = 1;
2496 vmexit->inst_length = 0;
2497 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2498 ts->errcode_valid = 1;
2499 ts->errcode = vmcs_idt_vectoring_err();
2500 }
2501 }
2502 }
2503 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2504 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts);
2505 VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, "
2506 "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2507 ts->ext ? "external" : "internal",
2508 ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2509 break;
2510 case EXIT_REASON_CR_ACCESS:
2511 vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1);
2512 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual);
2513 switch (qual & 0xf) {
2514 case 0:
2515 handled = vmx_emulate_cr0_access(vcpu, qual);
2516 break;
2517 case 4:
2518 handled = vmx_emulate_cr4_access(vcpu, qual);
2519 break;
2520 case 8:
2521 handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2522 break;
2523 }
2524 break;
2525 case EXIT_REASON_RDMSR:
2526 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
2527 retu = false;
2528 ecx = vmxctx->guest_rcx;
2529 VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx);
2530 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx);
2531 error = emulate_rdmsr(vcpu, ecx, &retu);
2532 if (error) {
2533 vmexit->exitcode = VM_EXITCODE_RDMSR;
2534 vmexit->u.msr.code = ecx;
2535 } else if (!retu) {
2536 handled = HANDLED;
2537 } else {
2538 /* Return to userspace with a valid exitcode */
2539 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2540 ("emulate_rdmsr retu with bogus exitcode"));
2541 }
2542 break;
2543 case EXIT_REASON_WRMSR:
2544 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
2545 retu = false;
2546 eax = vmxctx->guest_rax;
2547 ecx = vmxctx->guest_rcx;
2548 edx = vmxctx->guest_rdx;
2549 VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx",
2550 ecx, (uint64_t)edx << 32 | eax);
2551 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx,
2552 (uint64_t)edx << 32 | eax);
2553 error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax,
2554 &retu);
2555 if (error) {
2556 vmexit->exitcode = VM_EXITCODE_WRMSR;
2557 vmexit->u.msr.code = ecx;
2558 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2559 } else if (!retu) {
2560 handled = HANDLED;
2561 } else {
2562 /* Return to userspace with a valid exitcode */
2563 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2564 ("emulate_wrmsr retu with bogus exitcode"));
2565 }
2566 break;
2567 case EXIT_REASON_HLT:
2568 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
2569 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit);
2570 vmexit->exitcode = VM_EXITCODE_HLT;
2571 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2572 if (virtual_interrupt_delivery)
2573 vmexit->u.hlt.intr_status =
2574 vmcs_read(VMCS_GUEST_INTR_STATUS);
2575 else
2576 vmexit->u.hlt.intr_status = 0;
2577 break;
2578 case EXIT_REASON_MTF:
2579 vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1);
2580 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit);
2581 vmexit->exitcode = VM_EXITCODE_MTRAP;
2582 vmexit->inst_length = 0;
2583 break;
2584 case EXIT_REASON_PAUSE:
2585 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
2586 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit);
2587 vmexit->exitcode = VM_EXITCODE_PAUSE;
2588 break;
2589 case EXIT_REASON_INTR_WINDOW:
2590 vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1);
2591 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit);
2592 vmx_clear_int_window_exiting(vcpu);
2593 return (1);
2594 case EXIT_REASON_EXT_INTR:
2595 /*
2596 * External interrupts serve only to cause VM exits and allow
2597 * the host interrupt handler to run.
2598 *
2599 * If this external interrupt triggers a virtual interrupt
2600 * to a VM, then that state will be recorded by the
2601 * host interrupt handler in the VM's softc. We will inject
2602 * this virtual interrupt during the subsequent VM enter.
2603 */
2604 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2605 SDT_PROBE4(vmm, vmx, exit, interrupt,
2606 vmx, vcpuid, vmexit, intr_info);
2607
2608 /*
2609 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2610 * This appears to be a bug in VMware Fusion?
2611 */
2612 if (!(intr_info & VMCS_INTR_VALID))
2613 return (1);
2614 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2615 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2616 ("VM exit interruption info invalid: %#x", intr_info));
2617 vmx_trigger_hostintr(intr_info & 0xff);
2618
2619 /*
2620 * This is special. We want to treat this as an 'handled'
2621 * VM-exit but not increment the instruction pointer.
2622 */
2623 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
2624 return (1);
2625 case EXIT_REASON_NMI_WINDOW:
2626 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit);
2627 /* Exit to allow the pending virtual NMI to be injected */
2628 if (vm_nmi_pending(vcpu->vcpu))
2629 vmx_inject_nmi(vcpu);
2630 vmx_clear_nmi_window_exiting(vcpu);
2631 vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1);
2632 return (1);
2633 case EXIT_REASON_INOUT:
2634 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
2635 vmexit->exitcode = VM_EXITCODE_INOUT;
2636 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2637 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2638 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2639 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2640 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2641 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2642 if (vmexit->u.inout.string) {
2643 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2644 vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2645 vis = &vmexit->u.inout_str;
2646 vmx_paging_info(&vis->paging);
2647 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2648 vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2649 vis->index = inout_str_index(vcpu, in);
2650 vis->count = inout_str_count(vcpu, vis->inout.rep);
2651 vis->addrsize = inout_str_addrsize(inst_info);
2652 inout_str_seginfo(vcpu, inst_info, in, vis);
2653 }
2654 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit);
2655 break;
2656 case EXIT_REASON_CPUID:
2657 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
2658 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit);
2659 handled = vmx_handle_cpuid(vcpu, vmxctx);
2660 break;
2661 case EXIT_REASON_EXCEPTION:
2662 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
2663 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2664 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2665 ("VM exit interruption info invalid: %#x", intr_info));
2666
2667 intr_vec = intr_info & 0xff;
2668 intr_type = intr_info & VMCS_INTR_T_MASK;
2669
2670 /*
2671 * If Virtual NMIs control is 1 and the VM-exit is due to a
2672 * fault encountered during the execution of IRET then we must
2673 * restore the state of "virtual-NMI blocking" before resuming
2674 * the guest.
2675 *
2676 * See "Resuming Guest Software after Handling an Exception".
2677 * See "Information for VM Exits Due to Vectored Events".
2678 */
2679 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2680 (intr_vec != IDT_DF) &&
2681 (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2682 vmx_restore_nmi_blocking(vcpu);
2683
2684 /*
2685 * The NMI has already been handled in vmx_exit_handle_nmi().
2686 */
2687 if (intr_type == VMCS_INTR_T_NMI)
2688 return (1);
2689
2690 /*
2691 * Call the machine check handler by hand. Also don't reflect
2692 * the machine check back into the guest.
2693 */
2694 if (intr_vec == IDT_MC) {
2695 VMX_CTR0(vcpu, "Vectoring to MCE handler");
2696 __asm __volatile("int $18");
2697 return (1);
2698 }
2699
2700 /*
2701 * If the hypervisor has requested user exits for
2702 * debug exceptions, bounce them out to userland.
2703 */
2704 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2705 (vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) {
2706 vmexit->exitcode = VM_EXITCODE_BPT;
2707 vmexit->u.bpt.inst_length = vmexit->inst_length;
2708 vmexit->inst_length = 0;
2709 break;
2710 }
2711
2712 if (intr_vec == IDT_PF) {
2713 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2714 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2715 __func__, error));
2716 }
2717
2718 /*
2719 * Software exceptions exhibit trap-like behavior. This in
2720 * turn requires populating the VM-entry instruction length
2721 * so that the %rip in the trap frame is past the INT3/INTO
2722 * instruction.
2723 */
2724 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2725 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2726
2727 /* Reflect all other exceptions back into the guest */
2728 errcode_valid = errcode = 0;
2729 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2730 errcode_valid = 1;
2731 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2732 }
2733 VMX_CTR2(vcpu, "Reflecting exception %d/%#x into "
2734 "the guest", intr_vec, errcode);
2735 SDT_PROBE5(vmm, vmx, exit, exception,
2736 vmx, vcpuid, vmexit, intr_vec, errcode);
2737 error = vm_inject_exception(vcpu->vcpu, intr_vec,
2738 errcode_valid, errcode, 0);
2739 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2740 __func__, error));
2741 return (1);
2742
2743 case EXIT_REASON_EPT_FAULT:
2744 /*
2745 * If 'gpa' lies within the address space allocated to
2746 * memory then this must be a nested page fault otherwise
2747 * this must be an instruction that accesses MMIO space.
2748 */
2749 gpa = vmcs_gpa();
2750 if (vm_mem_allocated(vcpu->vcpu, gpa) ||
2751 apic_access_fault(vcpu, gpa)) {
2752 vmexit->exitcode = VM_EXITCODE_PAGING;
2753 vmexit->inst_length = 0;
2754 vmexit->u.paging.gpa = gpa;
2755 vmexit->u.paging.fault_type = ept_fault_type(qual);
2756 vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
2757 SDT_PROBE5(vmm, vmx, exit, nestedfault,
2758 vmx, vcpuid, vmexit, gpa, qual);
2759 } else if (ept_emulation_fault(qual)) {
2760 vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2761 vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
2762 SDT_PROBE4(vmm, vmx, exit, mmiofault,
2763 vmx, vcpuid, vmexit, gpa);
2764 }
2765 /*
2766 * If Virtual NMIs control is 1 and the VM-exit is due to an
2767 * EPT fault during the execution of IRET then we must restore
2768 * the state of "virtual-NMI blocking" before resuming.
2769 *
2770 * See description of "NMI unblocking due to IRET" in
2771 * "Exit Qualification for EPT Violations".
2772 */
2773 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2774 (qual & EXIT_QUAL_NMIUDTI) != 0)
2775 vmx_restore_nmi_blocking(vcpu);
2776 break;
2777 case EXIT_REASON_VIRTUALIZED_EOI:
2778 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2779 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2780 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit);
2781 vmexit->inst_length = 0; /* trap-like */
2782 break;
2783 case EXIT_REASON_APIC_ACCESS:
2784 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit);
2785 handled = vmx_handle_apic_access(vcpu, vmexit);
2786 break;
2787 case EXIT_REASON_APIC_WRITE:
2788 /*
2789 * APIC-write VM exit is trap-like so the %rip is already
2790 * pointing to the next instruction.
2791 */
2792 vmexit->inst_length = 0;
2793 vlapic = vm_lapic(vcpu->vcpu);
2794 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2795 vmx, vcpuid, vmexit, vlapic);
2796 handled = vmx_handle_apic_write(vcpu, vlapic, qual);
2797 break;
2798 case EXIT_REASON_XSETBV:
2799 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit);
2800 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2801 break;
2802 case EXIT_REASON_MONITOR:
2803 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit);
2804 vmexit->exitcode = VM_EXITCODE_MONITOR;
2805 break;
2806 case EXIT_REASON_MWAIT:
2807 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit);
2808 vmexit->exitcode = VM_EXITCODE_MWAIT;
2809 break;
2810 case EXIT_REASON_TPR:
2811 vlapic = vm_lapic(vcpu->vcpu);
2812 vlapic_sync_tpr(vlapic);
2813 vmexit->inst_length = 0;
2814 handled = HANDLED;
2815 break;
2816 case EXIT_REASON_VMCALL:
2817 case EXIT_REASON_VMCLEAR:
2818 case EXIT_REASON_VMLAUNCH:
2819 case EXIT_REASON_VMPTRLD:
2820 case EXIT_REASON_VMPTRST:
2821 case EXIT_REASON_VMREAD:
2822 case EXIT_REASON_VMRESUME:
2823 case EXIT_REASON_VMWRITE:
2824 case EXIT_REASON_VMXOFF:
2825 case EXIT_REASON_VMXON:
2826 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit);
2827 vmexit->exitcode = VM_EXITCODE_VMINSN;
2828 break;
2829 case EXIT_REASON_INVD:
2830 case EXIT_REASON_WBINVD:
2831 /* ignore exit */
2832 handled = HANDLED;
2833 break;
2834 default:
2835 SDT_PROBE4(vmm, vmx, exit, unknown,
2836 vmx, vcpuid, vmexit, reason);
2837 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
2838 break;
2839 }
2840
2841 if (handled) {
2842 /*
2843 * It is possible that control is returned to userland
2844 * even though we were able to handle the VM exit in the
2845 * kernel.
2846 *
2847 * In such a case we want to make sure that the userland
2848 * restarts guest execution at the instruction *after*
2849 * the one we just processed. Therefore we update the
2850 * guest rip in the VMCS and in 'vmexit'.
2851 */
2852 vmexit->rip += vmexit->inst_length;
2853 vmexit->inst_length = 0;
2854 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2855 } else {
2856 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2857 /*
2858 * If this VM exit was not claimed by anybody then
2859 * treat it as a generic VMX exit.
2860 */
2861 vmexit->exitcode = VM_EXITCODE_VMX;
2862 vmexit->u.vmx.status = VM_SUCCESS;
2863 vmexit->u.vmx.inst_type = 0;
2864 vmexit->u.vmx.inst_error = 0;
2865 } else {
2866 /*
2867 * The exitcode and collateral have been populated.
2868 * The VM exit will be processed further in userland.
2869 */
2870 }
2871 }
2872
2873 SDT_PROBE4(vmm, vmx, exit, return,
2874 vmx, vcpuid, vmexit, handled);
2875 return (handled);
2876 }
2877
2878 static __inline void
vmx_exit_inst_error(struct vmxctx * vmxctx,int rc,struct vm_exit * vmexit)2879 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2880 {
2881
2882 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2883 ("vmx_exit_inst_error: invalid inst_fail_status %d",
2884 vmxctx->inst_fail_status));
2885
2886 vmexit->inst_length = 0;
2887 vmexit->exitcode = VM_EXITCODE_VMX;
2888 vmexit->u.vmx.status = vmxctx->inst_fail_status;
2889 vmexit->u.vmx.inst_error = vmcs_instruction_error();
2890 vmexit->u.vmx.exit_reason = ~0;
2891 vmexit->u.vmx.exit_qualification = ~0;
2892
2893 switch (rc) {
2894 case VMX_VMRESUME_ERROR:
2895 case VMX_VMLAUNCH_ERROR:
2896 vmexit->u.vmx.inst_type = rc;
2897 break;
2898 default:
2899 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2900 }
2901 }
2902
2903 /*
2904 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2905 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2906 * sufficient to simply vector to the NMI handler via a software interrupt.
2907 * However, this must be done before maskable interrupts are enabled
2908 * otherwise the "iret" issued by an interrupt handler will incorrectly
2909 * clear NMI blocking.
2910 */
2911 static __inline void
vmx_exit_handle_nmi(struct vmx_vcpu * vcpu,struct vm_exit * vmexit)2912 vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
2913 {
2914 uint32_t intr_info;
2915
2916 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2917
2918 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2919 return;
2920
2921 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2922 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2923 ("VM exit interruption info invalid: %#x", intr_info));
2924
2925 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2926 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2927 "to NMI has invalid vector: %#x", intr_info));
2928 VMX_CTR0(vcpu, "Vectoring to NMI handler");
2929 __asm __volatile("int $2");
2930 }
2931 }
2932
2933 static __inline void
vmx_dr_enter_guest(struct vmxctx * vmxctx)2934 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2935 {
2936 register_t rflags;
2937
2938 /* Save host control debug registers. */
2939 vmxctx->host_dr7 = rdr7();
2940 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2941
2942 /*
2943 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2944 * exceptions in the host based on the guest DRx values. The
2945 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2946 */
2947 load_dr7(0);
2948 wrmsr(MSR_DEBUGCTLMSR, 0);
2949
2950 /*
2951 * Disable single stepping the kernel to avoid corrupting the
2952 * guest DR6. A debugger might still be able to corrupt the
2953 * guest DR6 by setting a breakpoint after this point and then
2954 * single stepping.
2955 */
2956 rflags = read_rflags();
2957 vmxctx->host_tf = rflags & PSL_T;
2958 write_rflags(rflags & ~PSL_T);
2959
2960 /* Save host debug registers. */
2961 vmxctx->host_dr0 = rdr0();
2962 vmxctx->host_dr1 = rdr1();
2963 vmxctx->host_dr2 = rdr2();
2964 vmxctx->host_dr3 = rdr3();
2965 vmxctx->host_dr6 = rdr6();
2966
2967 /* Restore guest debug registers. */
2968 load_dr0(vmxctx->guest_dr0);
2969 load_dr1(vmxctx->guest_dr1);
2970 load_dr2(vmxctx->guest_dr2);
2971 load_dr3(vmxctx->guest_dr3);
2972 load_dr6(vmxctx->guest_dr6);
2973 }
2974
2975 static __inline void
vmx_dr_leave_guest(struct vmxctx * vmxctx)2976 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2977 {
2978
2979 /* Save guest debug registers. */
2980 vmxctx->guest_dr0 = rdr0();
2981 vmxctx->guest_dr1 = rdr1();
2982 vmxctx->guest_dr2 = rdr2();
2983 vmxctx->guest_dr3 = rdr3();
2984 vmxctx->guest_dr6 = rdr6();
2985
2986 /*
2987 * Restore host debug registers. Restore DR7, DEBUGCTL, and
2988 * PSL_T last.
2989 */
2990 load_dr0(vmxctx->host_dr0);
2991 load_dr1(vmxctx->host_dr1);
2992 load_dr2(vmxctx->host_dr2);
2993 load_dr3(vmxctx->host_dr3);
2994 load_dr6(vmxctx->host_dr6);
2995 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2996 load_dr7(vmxctx->host_dr7);
2997 write_rflags(read_rflags() | vmxctx->host_tf);
2998 }
2999
3000 static __inline void
vmx_pmap_activate(struct vmx * vmx,pmap_t pmap)3001 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
3002 {
3003 long eptgen;
3004 int cpu;
3005
3006 cpu = curcpu;
3007
3008 CPU_SET_ATOMIC(cpu, &pmap->pm_active);
3009 smr_enter(pmap->pm_eptsmr);
3010 eptgen = atomic_load_long(&pmap->pm_eptgen);
3011 if (eptgen != vmx->eptgen[cpu]) {
3012 vmx->eptgen[cpu] = eptgen;
3013 invept(INVEPT_TYPE_SINGLE_CONTEXT,
3014 (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
3015 }
3016 }
3017
3018 static __inline void
vmx_pmap_deactivate(struct vmx * vmx,pmap_t pmap)3019 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
3020 {
3021 smr_exit(pmap->pm_eptsmr);
3022 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
3023 }
3024
3025 static int
vmx_run(void * vcpui,register_t rip,pmap_t pmap,struct vm_eventinfo * evinfo)3026 vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
3027 {
3028 int rc, handled, launched;
3029 struct vmx *vmx;
3030 struct vmx_vcpu *vcpu;
3031 struct vmxctx *vmxctx;
3032 struct vmcs *vmcs;
3033 struct vm_exit *vmexit;
3034 struct vlapic *vlapic;
3035 uint32_t exit_reason;
3036 struct region_descriptor gdtr, idtr;
3037 uint16_t ldt_sel;
3038
3039 vcpu = vcpui;
3040 vmx = vcpu->vmx;
3041 vmcs = vcpu->vmcs;
3042 vmxctx = &vcpu->ctx;
3043 vlapic = vm_lapic(vcpu->vcpu);
3044 vmexit = vm_exitinfo(vcpu->vcpu);
3045 launched = 0;
3046
3047 KASSERT(vmxctx->pmap == pmap,
3048 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
3049
3050 vmx_msr_guest_enter(vcpu);
3051
3052 VMPTRLD(vmcs);
3053
3054 /*
3055 * XXX
3056 * We do this every time because we may setup the virtual machine
3057 * from a different process than the one that actually runs it.
3058 *
3059 * If the life of a virtual machine was spent entirely in the context
3060 * of a single process we could do this once in vmx_init().
3061 */
3062 vmcs_write(VMCS_HOST_CR3, rcr3());
3063
3064 vmcs_write(VMCS_GUEST_RIP, rip);
3065 vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3066 do {
3067 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3068 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3069
3070 handled = UNHANDLED;
3071 /*
3072 * Interrupts are disabled from this point on until the
3073 * guest starts executing. This is done for the following
3074 * reasons:
3075 *
3076 * If an AST is asserted on this thread after the check below,
3077 * then the IPI_AST notification will not be lost, because it
3078 * will cause a VM exit due to external interrupt as soon as
3079 * the guest state is loaded.
3080 *
3081 * A posted interrupt after 'vmx_inject_interrupts()' will
3082 * not be "lost" because it will be held pending in the host
3083 * APIC because interrupts are disabled. The pending interrupt
3084 * will be recognized as soon as the guest state is loaded.
3085 *
3086 * The same reasoning applies to the IPI generated by
3087 * pmap_invalidate_ept().
3088 */
3089 disable_intr();
3090 vmx_inject_interrupts(vcpu, vlapic, rip);
3091
3092 /*
3093 * Check for vcpu suspension after injecting events because
3094 * vmx_inject_interrupts() can suspend the vcpu due to a
3095 * triple fault.
3096 */
3097 if (vcpu_suspended(evinfo)) {
3098 enable_intr();
3099 vm_exit_suspended(vcpu->vcpu, rip);
3100 break;
3101 }
3102
3103 if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
3104 enable_intr();
3105 vm_exit_rendezvous(vcpu->vcpu, rip);
3106 break;
3107 }
3108
3109 if (vcpu_reqidle(evinfo)) {
3110 enable_intr();
3111 vm_exit_reqidle(vcpu->vcpu, rip);
3112 break;
3113 }
3114
3115 if (vcpu_should_yield(vcpu->vcpu)) {
3116 enable_intr();
3117 vm_exit_astpending(vcpu->vcpu, rip);
3118 vmx_astpending_trace(vcpu, rip);
3119 handled = HANDLED;
3120 break;
3121 }
3122
3123 if (vcpu_debugged(vcpu->vcpu)) {
3124 enable_intr();
3125 vm_exit_debug(vcpu->vcpu, rip);
3126 break;
3127 }
3128
3129 /*
3130 * If TPR Shadowing is enabled, the TPR Threshold
3131 * must be updated right before entering the guest.
3132 */
3133 if (tpr_shadowing && !virtual_interrupt_delivery) {
3134 if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3135 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3136 }
3137 }
3138
3139 /*
3140 * VM exits restore the base address but not the
3141 * limits of GDTR and IDTR. The VMCS only stores the
3142 * base address, so VM exits set the limits to 0xffff.
3143 * Save and restore the full GDTR and IDTR to restore
3144 * the limits.
3145 *
3146 * The VMCS does not save the LDTR at all, and VM
3147 * exits clear LDTR as if a NULL selector were loaded.
3148 * The userspace hypervisor probably doesn't use a
3149 * LDT, but save and restore it to be safe.
3150 */
3151 sgdt(&gdtr);
3152 sidt(&idtr);
3153 ldt_sel = sldt();
3154
3155 /*
3156 * The TSC_AUX MSR must be saved/restored while interrupts
3157 * are disabled so that it is not possible for the guest
3158 * TSC_AUX MSR value to be overwritten by the resume
3159 * portion of the IPI_SUSPEND codepath. This is why the
3160 * transition of this MSR is handled separately from those
3161 * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3162 * be transitioned with preemption disabled but interrupts
3163 * enabled.
3164 *
3165 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3166 * anywhere in this loop so long as they happen with
3167 * interrupts disabled. This location is chosen for
3168 * simplicity.
3169 */
3170 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3171
3172 vmx_dr_enter_guest(vmxctx);
3173
3174 /*
3175 * Mark the EPT as active on this host CPU and invalidate
3176 * EPTP-tagged TLB entries if required.
3177 */
3178 vmx_pmap_activate(vmx, pmap);
3179
3180 vmx_run_trace(vcpu);
3181 rc = vmx_enter_guest(vmxctx, vmx, launched);
3182
3183 vmx_pmap_deactivate(vmx, pmap);
3184 vmx_dr_leave_guest(vmxctx);
3185 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3186
3187 bare_lgdt(&gdtr);
3188 lidt(&idtr);
3189 lldt(ldt_sel);
3190
3191 /* Collect some information for VM exit processing */
3192 vmexit->rip = rip = vmcs_guest_rip();
3193 vmexit->inst_length = vmexit_instruction_length();
3194 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3195 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3196
3197 /* Update 'nextrip' */
3198 vcpu->state.nextrip = rip;
3199
3200 if (rc == VMX_GUEST_VMEXIT) {
3201 vmx_exit_handle_nmi(vcpu, vmexit);
3202 enable_intr();
3203 handled = vmx_exit_process(vmx, vcpu, vmexit);
3204 } else {
3205 enable_intr();
3206 vmx_exit_inst_error(vmxctx, rc, vmexit);
3207 }
3208 launched = 1;
3209 vmx_exit_trace(vcpu, rip, exit_reason, handled);
3210 rip = vmexit->rip;
3211 } while (handled);
3212
3213 /*
3214 * If a VM exit has been handled then the exitcode must be BOGUS
3215 * If a VM exit is not handled then the exitcode must not be BOGUS
3216 */
3217 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3218 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3219 panic("Mismatch between handled (%d) and exitcode (%d)",
3220 handled, vmexit->exitcode);
3221 }
3222
3223 VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d",
3224 vmexit->exitcode);
3225
3226 VMCLEAR(vmcs);
3227 vmx_msr_guest_exit(vcpu);
3228
3229 return (0);
3230 }
3231
3232 static void
vmx_vcpu_cleanup(void * vcpui)3233 vmx_vcpu_cleanup(void *vcpui)
3234 {
3235 struct vmx_vcpu *vcpu = vcpui;
3236
3237 vpid_free(vcpu->state.vpid);
3238 free(vcpu->pir_desc, M_VMX);
3239 free(vcpu->apic_page, M_VMX);
3240 free(vcpu->vmcs, M_VMX);
3241 free(vcpu, M_VMX);
3242 }
3243
3244 static void
vmx_cleanup(void * vmi)3245 vmx_cleanup(void *vmi)
3246 {
3247 struct vmx *vmx = vmi;
3248
3249 if (virtual_interrupt_delivery)
3250 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3251
3252 free(vmx->msr_bitmap, M_VMX);
3253 free(vmx, M_VMX);
3254
3255 return;
3256 }
3257
3258 static register_t *
vmxctx_regptr(struct vmxctx * vmxctx,int reg)3259 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3260 {
3261
3262 switch (reg) {
3263 case VM_REG_GUEST_RAX:
3264 return (&vmxctx->guest_rax);
3265 case VM_REG_GUEST_RBX:
3266 return (&vmxctx->guest_rbx);
3267 case VM_REG_GUEST_RCX:
3268 return (&vmxctx->guest_rcx);
3269 case VM_REG_GUEST_RDX:
3270 return (&vmxctx->guest_rdx);
3271 case VM_REG_GUEST_RSI:
3272 return (&vmxctx->guest_rsi);
3273 case VM_REG_GUEST_RDI:
3274 return (&vmxctx->guest_rdi);
3275 case VM_REG_GUEST_RBP:
3276 return (&vmxctx->guest_rbp);
3277 case VM_REG_GUEST_R8:
3278 return (&vmxctx->guest_r8);
3279 case VM_REG_GUEST_R9:
3280 return (&vmxctx->guest_r9);
3281 case VM_REG_GUEST_R10:
3282 return (&vmxctx->guest_r10);
3283 case VM_REG_GUEST_R11:
3284 return (&vmxctx->guest_r11);
3285 case VM_REG_GUEST_R12:
3286 return (&vmxctx->guest_r12);
3287 case VM_REG_GUEST_R13:
3288 return (&vmxctx->guest_r13);
3289 case VM_REG_GUEST_R14:
3290 return (&vmxctx->guest_r14);
3291 case VM_REG_GUEST_R15:
3292 return (&vmxctx->guest_r15);
3293 case VM_REG_GUEST_CR2:
3294 return (&vmxctx->guest_cr2);
3295 case VM_REG_GUEST_DR0:
3296 return (&vmxctx->guest_dr0);
3297 case VM_REG_GUEST_DR1:
3298 return (&vmxctx->guest_dr1);
3299 case VM_REG_GUEST_DR2:
3300 return (&vmxctx->guest_dr2);
3301 case VM_REG_GUEST_DR3:
3302 return (&vmxctx->guest_dr3);
3303 case VM_REG_GUEST_DR6:
3304 return (&vmxctx->guest_dr6);
3305 default:
3306 break;
3307 }
3308 return (NULL);
3309 }
3310
3311 static int
vmxctx_getreg(struct vmxctx * vmxctx,int reg,uint64_t * retval)3312 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3313 {
3314 register_t *regp;
3315
3316 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3317 *retval = *regp;
3318 return (0);
3319 } else
3320 return (EINVAL);
3321 }
3322
3323 static int
vmxctx_setreg(struct vmxctx * vmxctx,int reg,uint64_t val)3324 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3325 {
3326 register_t *regp;
3327
3328 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3329 *regp = val;
3330 return (0);
3331 } else
3332 return (EINVAL);
3333 }
3334
3335 static int
vmx_get_intr_shadow(struct vmx_vcpu * vcpu,int running,uint64_t * retval)3336 vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval)
3337 {
3338 uint64_t gi;
3339 int error;
3340
3341 error = vmcs_getreg(vcpu->vmcs, running,
3342 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3343 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3344 return (error);
3345 }
3346
3347 static int
vmx_modify_intr_shadow(struct vmx_vcpu * vcpu,int running,uint64_t val)3348 vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val)
3349 {
3350 struct vmcs *vmcs;
3351 uint64_t gi;
3352 int error, ident;
3353
3354 /*
3355 * Forcing the vcpu into an interrupt shadow is not supported.
3356 */
3357 if (val) {
3358 error = EINVAL;
3359 goto done;
3360 }
3361
3362 vmcs = vcpu->vmcs;
3363 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3364 error = vmcs_getreg(vmcs, running, ident, &gi);
3365 if (error == 0) {
3366 gi &= ~HWINTR_BLOCKING;
3367 error = vmcs_setreg(vmcs, running, ident, gi);
3368 }
3369 done:
3370 VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val,
3371 error ? "failed" : "succeeded");
3372 return (error);
3373 }
3374
3375 static int
vmx_shadow_reg(int reg)3376 vmx_shadow_reg(int reg)
3377 {
3378 int shreg;
3379
3380 shreg = -1;
3381
3382 switch (reg) {
3383 case VM_REG_GUEST_CR0:
3384 shreg = VMCS_CR0_SHADOW;
3385 break;
3386 case VM_REG_GUEST_CR4:
3387 shreg = VMCS_CR4_SHADOW;
3388 break;
3389 default:
3390 break;
3391 }
3392
3393 return (shreg);
3394 }
3395
3396 static int
vmx_getreg(void * vcpui,int reg,uint64_t * retval)3397 vmx_getreg(void *vcpui, int reg, uint64_t *retval)
3398 {
3399 int running, hostcpu;
3400 struct vmx_vcpu *vcpu = vcpui;
3401 struct vmx *vmx = vcpu->vmx;
3402
3403 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3404 if (running && hostcpu != curcpu)
3405 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm),
3406 vcpu->vcpuid);
3407
3408 switch (reg) {
3409 case VM_REG_GUEST_INTR_SHADOW:
3410 return (vmx_get_intr_shadow(vcpu, running, retval));
3411 case VM_REG_GUEST_KGS_BASE:
3412 *retval = vcpu->guest_msrs[IDX_MSR_KGSBASE];
3413 return (0);
3414 case VM_REG_GUEST_TPR:
3415 *retval = vlapic_get_cr8(vm_lapic(vcpu->vcpu));
3416 return (0);
3417 }
3418
3419 if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0)
3420 return (0);
3421
3422 return (vmcs_getreg(vcpu->vmcs, running, reg, retval));
3423 }
3424
3425 static int
vmx_setreg(void * vcpui,int reg,uint64_t val)3426 vmx_setreg(void *vcpui, int reg, uint64_t val)
3427 {
3428 int error, hostcpu, running, shadow;
3429 uint64_t ctls;
3430 pmap_t pmap;
3431 struct vmx_vcpu *vcpu = vcpui;
3432 struct vmx *vmx = vcpu->vmx;
3433
3434 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3435 if (running && hostcpu != curcpu)
3436 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm),
3437 vcpu->vcpuid);
3438
3439 if (reg == VM_REG_GUEST_INTR_SHADOW)
3440 return (vmx_modify_intr_shadow(vcpu, running, val));
3441
3442 if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0)
3443 return (0);
3444
3445 /* Do not permit user write access to VMCS fields by offset. */
3446 if (reg < 0)
3447 return (EINVAL);
3448
3449 error = vmcs_setreg(vcpu->vmcs, running, reg, val);
3450
3451 if (error == 0) {
3452 /*
3453 * If the "load EFER" VM-entry control is 1 then the
3454 * value of EFER.LMA must be identical to "IA-32e mode guest"
3455 * bit in the VM-entry control.
3456 */
3457 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3458 (reg == VM_REG_GUEST_EFER)) {
3459 vmcs_getreg(vcpu->vmcs, running,
3460 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3461 if (val & EFER_LMA)
3462 ctls |= VM_ENTRY_GUEST_LMA;
3463 else
3464 ctls &= ~VM_ENTRY_GUEST_LMA;
3465 vmcs_setreg(vcpu->vmcs, running,
3466 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3467 }
3468
3469 shadow = vmx_shadow_reg(reg);
3470 if (shadow > 0) {
3471 /*
3472 * Store the unmodified value in the shadow
3473 */
3474 error = vmcs_setreg(vcpu->vmcs, running,
3475 VMCS_IDENT(shadow), val);
3476 }
3477
3478 if (reg == VM_REG_GUEST_CR3) {
3479 /*
3480 * Invalidate the guest vcpu's TLB mappings to emulate
3481 * the behavior of updating %cr3.
3482 *
3483 * XXX the processor retains global mappings when %cr3
3484 * is updated but vmx_invvpid() does not.
3485 */
3486 pmap = vcpu->ctx.pmap;
3487 vmx_invvpid(vmx, vcpu, pmap, running);
3488 }
3489 }
3490
3491 return (error);
3492 }
3493
3494 static int
vmx_getdesc(void * vcpui,int reg,struct seg_desc * desc)3495 vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc)
3496 {
3497 int hostcpu, running;
3498 struct vmx_vcpu *vcpu = vcpui;
3499 struct vmx *vmx = vcpu->vmx;
3500
3501 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3502 if (running && hostcpu != curcpu)
3503 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm),
3504 vcpu->vcpuid);
3505
3506 return (vmcs_getdesc(vcpu->vmcs, running, reg, desc));
3507 }
3508
3509 static int
vmx_setdesc(void * vcpui,int reg,struct seg_desc * desc)3510 vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc)
3511 {
3512 int hostcpu, running;
3513 struct vmx_vcpu *vcpu = vcpui;
3514 struct vmx *vmx = vcpu->vmx;
3515
3516 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
3517 if (running && hostcpu != curcpu)
3518 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm),
3519 vcpu->vcpuid);
3520
3521 return (vmcs_setdesc(vcpu->vmcs, running, reg, desc));
3522 }
3523
3524 static int
vmx_getcap(void * vcpui,int type,int * retval)3525 vmx_getcap(void *vcpui, int type, int *retval)
3526 {
3527 struct vmx_vcpu *vcpu = vcpui;
3528 int vcap;
3529 int ret;
3530
3531 ret = ENOENT;
3532
3533 vcap = vcpu->cap.set;
3534
3535 switch (type) {
3536 case VM_CAP_HALT_EXIT:
3537 if (cap_halt_exit)
3538 ret = 0;
3539 break;
3540 case VM_CAP_PAUSE_EXIT:
3541 if (cap_pause_exit)
3542 ret = 0;
3543 break;
3544 case VM_CAP_MTRAP_EXIT:
3545 if (cap_monitor_trap)
3546 ret = 0;
3547 break;
3548 case VM_CAP_RDPID:
3549 if (cap_rdpid)
3550 ret = 0;
3551 break;
3552 case VM_CAP_RDTSCP:
3553 if (cap_rdtscp)
3554 ret = 0;
3555 break;
3556 case VM_CAP_UNRESTRICTED_GUEST:
3557 if (cap_unrestricted_guest)
3558 ret = 0;
3559 break;
3560 case VM_CAP_ENABLE_INVPCID:
3561 if (cap_invpcid)
3562 ret = 0;
3563 break;
3564 case VM_CAP_BPT_EXIT:
3565 case VM_CAP_IPI_EXIT:
3566 ret = 0;
3567 break;
3568 default:
3569 break;
3570 }
3571
3572 if (ret == 0)
3573 *retval = (vcap & (1 << type)) ? 1 : 0;
3574
3575 return (ret);
3576 }
3577
3578 static int
vmx_setcap(void * vcpui,int type,int val)3579 vmx_setcap(void *vcpui, int type, int val)
3580 {
3581 struct vmx_vcpu *vcpu = vcpui;
3582 struct vmcs *vmcs = vcpu->vmcs;
3583 struct vlapic *vlapic;
3584 uint32_t baseval;
3585 uint32_t *pptr;
3586 int error;
3587 int flag;
3588 int reg;
3589 int retval;
3590
3591 retval = ENOENT;
3592 pptr = NULL;
3593
3594 switch (type) {
3595 case VM_CAP_HALT_EXIT:
3596 if (cap_halt_exit) {
3597 retval = 0;
3598 pptr = &vcpu->cap.proc_ctls;
3599 baseval = *pptr;
3600 flag = PROCBASED_HLT_EXITING;
3601 reg = VMCS_PRI_PROC_BASED_CTLS;
3602 }
3603 break;
3604 case VM_CAP_MTRAP_EXIT:
3605 if (cap_monitor_trap) {
3606 retval = 0;
3607 pptr = &vcpu->cap.proc_ctls;
3608 baseval = *pptr;
3609 flag = PROCBASED_MTF;
3610 reg = VMCS_PRI_PROC_BASED_CTLS;
3611 }
3612 break;
3613 case VM_CAP_PAUSE_EXIT:
3614 if (cap_pause_exit) {
3615 retval = 0;
3616 pptr = &vcpu->cap.proc_ctls;
3617 baseval = *pptr;
3618 flag = PROCBASED_PAUSE_EXITING;
3619 reg = VMCS_PRI_PROC_BASED_CTLS;
3620 }
3621 break;
3622 case VM_CAP_RDPID:
3623 case VM_CAP_RDTSCP:
3624 if (cap_rdpid || cap_rdtscp)
3625 /*
3626 * Choose not to support enabling/disabling
3627 * RDPID/RDTSCP via libvmmapi since, as per the
3628 * discussion in vmx_modinit(), RDPID/RDTSCP are
3629 * either always enabled or always disabled.
3630 */
3631 error = EOPNOTSUPP;
3632 break;
3633 case VM_CAP_UNRESTRICTED_GUEST:
3634 if (cap_unrestricted_guest) {
3635 retval = 0;
3636 pptr = &vcpu->cap.proc_ctls2;
3637 baseval = *pptr;
3638 flag = PROCBASED2_UNRESTRICTED_GUEST;
3639 reg = VMCS_SEC_PROC_BASED_CTLS;
3640 }
3641 break;
3642 case VM_CAP_ENABLE_INVPCID:
3643 if (cap_invpcid) {
3644 retval = 0;
3645 pptr = &vcpu->cap.proc_ctls2;
3646 baseval = *pptr;
3647 flag = PROCBASED2_ENABLE_INVPCID;
3648 reg = VMCS_SEC_PROC_BASED_CTLS;
3649 }
3650 break;
3651 case VM_CAP_BPT_EXIT:
3652 retval = 0;
3653
3654 /* Don't change the bitmap if we are tracing all exceptions. */
3655 if (vcpu->cap.exc_bitmap != 0xffffffff) {
3656 pptr = &vcpu->cap.exc_bitmap;
3657 baseval = *pptr;
3658 flag = (1 << IDT_BP);
3659 reg = VMCS_EXCEPTION_BITMAP;
3660 }
3661 break;
3662 case VM_CAP_IPI_EXIT:
3663 retval = 0;
3664
3665 vlapic = vm_lapic(vcpu->vcpu);
3666 vlapic->ipi_exit = val;
3667 break;
3668 case VM_CAP_MASK_HWINTR:
3669 retval = 0;
3670 break;
3671 default:
3672 break;
3673 }
3674
3675 if (retval)
3676 return (retval);
3677
3678 if (pptr != NULL) {
3679 if (val) {
3680 baseval |= flag;
3681 } else {
3682 baseval &= ~flag;
3683 }
3684 VMPTRLD(vmcs);
3685 error = vmwrite(reg, baseval);
3686 VMCLEAR(vmcs);
3687
3688 if (error)
3689 return (error);
3690
3691 /*
3692 * Update optional stored flags, and record
3693 * setting
3694 */
3695 *pptr = baseval;
3696 }
3697
3698 if (val) {
3699 vcpu->cap.set |= (1 << type);
3700 } else {
3701 vcpu->cap.set &= ~(1 << type);
3702 }
3703
3704 return (0);
3705 }
3706
3707 static struct vmspace *
vmx_vmspace_alloc(vm_offset_t min,vm_offset_t max)3708 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
3709 {
3710 return (ept_vmspace_alloc(min, max));
3711 }
3712
3713 static void
vmx_vmspace_free(struct vmspace * vmspace)3714 vmx_vmspace_free(struct vmspace *vmspace)
3715 {
3716 ept_vmspace_free(vmspace);
3717 }
3718
3719 struct vlapic_vtx {
3720 struct vlapic vlapic;
3721 struct pir_desc *pir_desc;
3722 struct vmx_vcpu *vcpu;
3723 u_int pending_prio;
3724 };
3725
3726 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4))
3727
3728 #define VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg) \
3729 do { \
3730 VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d", \
3731 level ? "level" : "edge", vector); \
3732 VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]); \
3733 VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]); \
3734 VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]); \
3735 VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]); \
3736 VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no"); \
3737 } while (0)
3738
3739 /*
3740 * vlapic->ops handlers that utilize the APICv hardware assist described in
3741 * Chapter 29 of the Intel SDM.
3742 */
3743 static int
vmx_set_intr_ready(struct vlapic * vlapic,int vector,bool level)3744 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3745 {
3746 struct vlapic_vtx *vlapic_vtx;
3747 struct pir_desc *pir_desc;
3748 uint64_t mask;
3749 int idx, notify = 0;
3750
3751 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3752 pir_desc = vlapic_vtx->pir_desc;
3753
3754 /*
3755 * Keep track of interrupt requests in the PIR descriptor. This is
3756 * because the virtual APIC page pointed to by the VMCS cannot be
3757 * modified if the vcpu is running.
3758 */
3759 idx = vector / 64;
3760 mask = 1UL << (vector % 64);
3761 atomic_set_long(&pir_desc->pir[idx], mask);
3762
3763 /*
3764 * A notification is required whenever the 'pending' bit makes a
3765 * transition from 0->1.
3766 *
3767 * Even if the 'pending' bit is already asserted, notification about
3768 * the incoming interrupt may still be necessary. For example, if a
3769 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3770 * the 0->1 'pending' transition with a notification, but the vCPU
3771 * would ignore the interrupt for the time being. The same vCPU would
3772 * need to then be notified if a high-priority interrupt arrived which
3773 * satisfied the PPR.
3774 *
3775 * The priorities of interrupts injected while 'pending' is asserted
3776 * are tracked in a custom bitfield 'pending_prio'. Should the
3777 * to-be-injected interrupt exceed the priorities already present, the
3778 * notification is sent. The priorities recorded in 'pending_prio' are
3779 * cleared whenever the 'pending' bit makes another 0->1 transition.
3780 */
3781 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3782 notify = 1;
3783 vlapic_vtx->pending_prio = 0;
3784 } else {
3785 const u_int old_prio = vlapic_vtx->pending_prio;
3786 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3787
3788 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3789 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3790 notify = 1;
3791 }
3792 }
3793
3794 VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level,
3795 "vmx_set_intr_ready");
3796 return (notify);
3797 }
3798
3799 static int
vmx_pending_intr(struct vlapic * vlapic,int * vecptr)3800 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3801 {
3802 struct vlapic_vtx *vlapic_vtx;
3803 struct pir_desc *pir_desc;
3804 struct LAPIC *lapic;
3805 uint64_t pending, pirval;
3806 uint8_t ppr, vpr, rvi;
3807 struct vm_exit *vmexit;
3808 int i;
3809
3810 /*
3811 * This function is only expected to be called from the 'HLT' exit
3812 * handler which does not care about the vector that is pending.
3813 */
3814 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3815
3816 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3817 pir_desc = vlapic_vtx->pir_desc;
3818 lapic = vlapic->apic_page;
3819
3820 /*
3821 * While a virtual interrupt may have already been
3822 * processed the actual delivery maybe pending the
3823 * interruptibility of the guest. Recognize a pending
3824 * interrupt by reevaluating virtual interrupts
3825 * following Section 30.2.1 in the Intel SDM Volume 3.
3826 */
3827 vmexit = vm_exitinfo(vlapic->vcpu);
3828 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3829 ("vmx_pending_intr: exitcode not 'HLT'"));
3830 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3831 ppr = lapic->ppr & APIC_TPR_INT;
3832 if (rvi > ppr)
3833 return (1);
3834
3835 pending = atomic_load_acq_long(&pir_desc->pending);
3836 if (!pending)
3837 return (0);
3838
3839 /*
3840 * If there is an interrupt pending then it will be recognized only
3841 * if its priority is greater than the processor priority.
3842 *
3843 * Special case: if the processor priority is zero then any pending
3844 * interrupt will be recognized.
3845 */
3846 if (ppr == 0)
3847 return (1);
3848
3849 VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr);
3850
3851 vpr = 0;
3852 for (i = 3; i >= 0; i--) {
3853 pirval = pir_desc->pir[i];
3854 if (pirval != 0) {
3855 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3856 break;
3857 }
3858 }
3859
3860 /*
3861 * If the highest-priority pending interrupt falls short of the
3862 * processor priority of this vCPU, ensure that 'pending_prio' does not
3863 * have any stale bits which would preclude a higher-priority interrupt
3864 * from incurring a notification later.
3865 */
3866 if (vpr <= ppr) {
3867 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3868 const u_int old = vlapic_vtx->pending_prio;
3869
3870 if (old > prio_bit && (old & prio_bit) == 0) {
3871 vlapic_vtx->pending_prio = prio_bit;
3872 }
3873 return (0);
3874 }
3875 return (1);
3876 }
3877
3878 static void
vmx_intr_accepted(struct vlapic * vlapic,int vector)3879 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3880 {
3881
3882 panic("vmx_intr_accepted: not expected to be called");
3883 }
3884
3885 static void
vmx_set_tmr(struct vlapic * vlapic,int vector,bool level)3886 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3887 {
3888 struct vlapic_vtx *vlapic_vtx;
3889 struct vmcs *vmcs;
3890 uint64_t mask, val;
3891
3892 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3893 KASSERT(!vcpu_is_running(vlapic->vcpu, NULL),
3894 ("vmx_set_tmr: vcpu cannot be running"));
3895
3896 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3897 vmcs = vlapic_vtx->vcpu->vmcs;
3898 mask = 1UL << (vector % 64);
3899
3900 VMPTRLD(vmcs);
3901 val = vmcs_read(VMCS_EOI_EXIT(vector));
3902 if (level)
3903 val |= mask;
3904 else
3905 val &= ~mask;
3906 vmcs_write(VMCS_EOI_EXIT(vector), val);
3907 VMCLEAR(vmcs);
3908 }
3909
3910 static void
vmx_enable_x2apic_mode_ts(struct vlapic * vlapic)3911 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3912 {
3913 struct vlapic_vtx *vlapic_vtx;
3914 struct vmx_vcpu *vcpu;
3915 struct vmcs *vmcs;
3916 uint32_t proc_ctls;
3917
3918 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3919 vcpu = vlapic_vtx->vcpu;
3920 vmcs = vcpu->vmcs;
3921
3922 proc_ctls = vcpu->cap.proc_ctls;
3923 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3924 proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3925 proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3926 vcpu->cap.proc_ctls = proc_ctls;
3927
3928 VMPTRLD(vmcs);
3929 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3930 VMCLEAR(vmcs);
3931 }
3932
3933 static void
vmx_enable_x2apic_mode_vid(struct vlapic * vlapic)3934 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3935 {
3936 struct vlapic_vtx *vlapic_vtx;
3937 struct vmx *vmx;
3938 struct vmx_vcpu *vcpu;
3939 struct vmcs *vmcs;
3940 uint32_t proc_ctls2;
3941 int error __diagused;
3942
3943 vlapic_vtx = (struct vlapic_vtx *)vlapic;
3944 vcpu = vlapic_vtx->vcpu;
3945 vmx = vcpu->vmx;
3946 vmcs = vcpu->vmcs;
3947
3948 proc_ctls2 = vcpu->cap.proc_ctls2;
3949 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3950 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3951
3952 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3953 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3954 vcpu->cap.proc_ctls2 = proc_ctls2;
3955
3956 VMPTRLD(vmcs);
3957 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3958 VMCLEAR(vmcs);
3959
3960 if (vlapic->vcpuid == 0) {
3961 /*
3962 * The nested page table mappings are shared by all vcpus
3963 * so unmap the APIC access page just once.
3964 */
3965 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3966 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3967 __func__, error));
3968
3969 /*
3970 * The MSR bitmap is shared by all vcpus so modify it only
3971 * once in the context of vcpu 0.
3972 */
3973 error = vmx_allow_x2apic_msrs(vmx);
3974 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3975 __func__, error));
3976 }
3977 }
3978
3979 static void
vmx_post_intr(struct vlapic * vlapic,int hostcpu)3980 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3981 {
3982
3983 ipi_cpu(hostcpu, pirvec);
3984 }
3985
3986 /*
3987 * Transfer the pending interrupts in the PIR descriptor to the IRR
3988 * in the virtual APIC page.
3989 */
3990 static void
vmx_inject_pir(struct vlapic * vlapic)3991 vmx_inject_pir(struct vlapic *vlapic)
3992 {
3993 struct vlapic_vtx *vlapic_vtx;
3994 struct pir_desc *pir_desc;
3995 struct LAPIC *lapic;
3996 uint64_t val, pirval;
3997 int rvi, pirbase = -1;
3998 uint16_t intr_status_old, intr_status_new;
3999
4000 vlapic_vtx = (struct vlapic_vtx *)vlapic;
4001 pir_desc = vlapic_vtx->pir_desc;
4002 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
4003 VLAPIC_CTR0(vlapic, "vmx_inject_pir: "
4004 "no posted interrupt pending");
4005 return;
4006 }
4007
4008 pirval = 0;
4009 pirbase = -1;
4010 lapic = vlapic->apic_page;
4011
4012 val = atomic_readandclear_long(&pir_desc->pir[0]);
4013 if (val != 0) {
4014 lapic->irr0 |= val;
4015 lapic->irr1 |= val >> 32;
4016 pirbase = 0;
4017 pirval = val;
4018 }
4019
4020 val = atomic_readandclear_long(&pir_desc->pir[1]);
4021 if (val != 0) {
4022 lapic->irr2 |= val;
4023 lapic->irr3 |= val >> 32;
4024 pirbase = 64;
4025 pirval = val;
4026 }
4027
4028 val = atomic_readandclear_long(&pir_desc->pir[2]);
4029 if (val != 0) {
4030 lapic->irr4 |= val;
4031 lapic->irr5 |= val >> 32;
4032 pirbase = 128;
4033 pirval = val;
4034 }
4035
4036 val = atomic_readandclear_long(&pir_desc->pir[3]);
4037 if (val != 0) {
4038 lapic->irr6 |= val;
4039 lapic->irr7 |= val >> 32;
4040 pirbase = 192;
4041 pirval = val;
4042 }
4043
4044 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
4045
4046 /*
4047 * Update RVI so the processor can evaluate pending virtual
4048 * interrupts on VM-entry.
4049 *
4050 * It is possible for pirval to be 0 here, even though the
4051 * pending bit has been set. The scenario is:
4052 * CPU-Y is sending a posted interrupt to CPU-X, which
4053 * is running a guest and processing posted interrupts in h/w.
4054 * CPU-X will eventually exit and the state seen in s/w is
4055 * the pending bit set, but no PIR bits set.
4056 *
4057 * CPU-X CPU-Y
4058 * (vm running) (host running)
4059 * rx posted interrupt
4060 * CLEAR pending bit
4061 * SET PIR bit
4062 * READ/CLEAR PIR bits
4063 * SET pending bit
4064 * (vm exit)
4065 * pending bit set, PIR 0
4066 */
4067 if (pirval != 0) {
4068 rvi = pirbase + flsl(pirval) - 1;
4069 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
4070 intr_status_new = (intr_status_old & 0xFF00) | rvi;
4071 if (intr_status_new > intr_status_old) {
4072 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
4073 VLAPIC_CTR2(vlapic, "vmx_inject_pir: "
4074 "guest_intr_status changed from 0x%04x to 0x%04x",
4075 intr_status_old, intr_status_new);
4076 }
4077 }
4078 }
4079
4080 static struct vlapic *
vmx_vlapic_init(void * vcpui)4081 vmx_vlapic_init(void *vcpui)
4082 {
4083 struct vmx *vmx;
4084 struct vmx_vcpu *vcpu;
4085 struct vlapic *vlapic;
4086 struct vlapic_vtx *vlapic_vtx;
4087
4088 vcpu = vcpui;
4089 vmx = vcpu->vmx;
4090
4091 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
4092 vlapic->vm = vmx->vm;
4093 vlapic->vcpu = vcpu->vcpu;
4094 vlapic->vcpuid = vcpu->vcpuid;
4095 vlapic->apic_page = (struct LAPIC *)vcpu->apic_page;
4096
4097 vlapic_vtx = (struct vlapic_vtx *)vlapic;
4098 vlapic_vtx->pir_desc = vcpu->pir_desc;
4099 vlapic_vtx->vcpu = vcpu;
4100
4101 if (tpr_shadowing) {
4102 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4103 }
4104
4105 if (virtual_interrupt_delivery) {
4106 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4107 vlapic->ops.pending_intr = vmx_pending_intr;
4108 vlapic->ops.intr_accepted = vmx_intr_accepted;
4109 vlapic->ops.set_tmr = vmx_set_tmr;
4110 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4111 }
4112
4113 if (posted_interrupts)
4114 vlapic->ops.post_intr = vmx_post_intr;
4115
4116 vlapic_init(vlapic);
4117
4118 return (vlapic);
4119 }
4120
4121 static void
vmx_vlapic_cleanup(struct vlapic * vlapic)4122 vmx_vlapic_cleanup(struct vlapic *vlapic)
4123 {
4124
4125 vlapic_cleanup(vlapic);
4126 free(vlapic, M_VLAPIC);
4127 }
4128
4129 #ifdef BHYVE_SNAPSHOT
4130 static int
vmx_vcpu_snapshot(void * vcpui,struct vm_snapshot_meta * meta)4131 vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
4132 {
4133 struct vmcs *vmcs;
4134 struct vmx *vmx;
4135 struct vmx_vcpu *vcpu;
4136 struct vmxctx *vmxctx;
4137 int err, run, hostcpu;
4138
4139 err = 0;
4140 vcpu = vcpui;
4141 vmx = vcpu->vmx;
4142 vmcs = vcpu->vmcs;
4143
4144 run = vcpu_is_running(vcpu->vcpu, &hostcpu);
4145 if (run && hostcpu != curcpu) {
4146 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4147 vcpu->vcpuid);
4148 return (EINVAL);
4149 }
4150
4151 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4152 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4153 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4154 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4155 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4156 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4157 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4158
4159 /* Guest segments */
4160 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4161 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4162
4163 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4164 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4165
4166 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4167 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4168
4169 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4170 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4171
4172 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4173 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4174
4175 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4176 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4177
4178 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4179 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4180
4181 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4182 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4183
4184 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4185
4186 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4187 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4188
4189 /* Guest page tables */
4190 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4191 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4192 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4193 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4194
4195 /* Other guest state */
4196 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4197 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4198 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4199 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4200 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4201 err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4202 err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4203 if (err != 0)
4204 goto done;
4205
4206 SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs,
4207 sizeof(vcpu->guest_msrs), meta, err, done);
4208
4209 SNAPSHOT_BUF_OR_LEAVE(vcpu->pir_desc,
4210 sizeof(*vcpu->pir_desc), meta, err, done);
4211
4212 SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr,
4213 sizeof(vcpu->mtrr), meta, err, done);
4214
4215 vmxctx = &vcpu->ctx;
4216 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done);
4217 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done);
4218 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done);
4219 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done);
4220 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done);
4221 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done);
4222 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done);
4223 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done);
4224 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done);
4225 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done);
4226 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done);
4227 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done);
4228 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done);
4229 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done);
4230 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done);
4231 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done);
4232 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done);
4233 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done);
4234 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done);
4235 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done);
4236 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done);
4237
4238 done:
4239 return (err);
4240 }
4241
4242 static int
vmx_restore_tsc(void * vcpui,uint64_t offset)4243 vmx_restore_tsc(void *vcpui, uint64_t offset)
4244 {
4245 struct vmx_vcpu *vcpu = vcpui;
4246 struct vmcs *vmcs;
4247 struct vmx *vmx;
4248 int error, running, hostcpu;
4249
4250 vmx = vcpu->vmx;
4251 vmcs = vcpu->vmcs;
4252
4253 running = vcpu_is_running(vcpu->vcpu, &hostcpu);
4254 if (running && hostcpu != curcpu) {
4255 printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
4256 vcpu->vcpuid);
4257 return (EINVAL);
4258 }
4259
4260 if (!running)
4261 VMPTRLD(vmcs);
4262
4263 error = vmx_set_tsc_offset(vcpu, offset);
4264
4265 if (!running)
4266 VMCLEAR(vmcs);
4267 return (error);
4268 }
4269 #endif
4270
4271 const struct vmm_ops vmm_ops_intel = {
4272 .modinit = vmx_modinit,
4273 .modcleanup = vmx_modcleanup,
4274 .modresume = vmx_modresume,
4275 .init = vmx_init,
4276 .run = vmx_run,
4277 .cleanup = vmx_cleanup,
4278 .vcpu_init = vmx_vcpu_init,
4279 .vcpu_cleanup = vmx_vcpu_cleanup,
4280 .getreg = vmx_getreg,
4281 .setreg = vmx_setreg,
4282 .getdesc = vmx_getdesc,
4283 .setdesc = vmx_setdesc,
4284 .getcap = vmx_getcap,
4285 .setcap = vmx_setcap,
4286 .vmspace_alloc = vmx_vmspace_alloc,
4287 .vmspace_free = vmx_vmspace_free,
4288 .vlapic_init = vmx_vlapic_init,
4289 .vlapic_cleanup = vmx_vlapic_cleanup,
4290 #ifdef BHYVE_SNAPSHOT
4291 .vcpu_snapshot = vmx_vcpu_snapshot,
4292 .restore_tsc = vmx_restore_tsc,
4293 #endif
4294 };
4295