1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 /* 28 * Copyright (c) 2015, Joyent, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/mman.h> 34 #include <ctf_impl.h> 35 #include <sys/debug.h> 36 37 /* 38 * This static string is used as the template for initially populating a 39 * dynamic container's string table. We always store \0 in the first byte, 40 * and we use the generic string "PARENT" to mark this container's parent 41 * if one is associated with the container using ctf_import(). 42 */ 43 static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT"; 44 45 /* 46 * To create an empty CTF container, we just declare a zeroed header and call 47 * ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w 48 * and initialize the dynamic members. We set dtstrlen to 1 to reserve the 49 * first byte of the string table for a \0 byte, and we start assigning type 50 * IDs at 1 because type ID 0 is used as a sentinel. 51 */ 52 ctf_file_t * 53 ctf_create(int *errp) 54 { 55 static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; 56 57 const ulong_t hashlen = 128; 58 ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); 59 ctf_sect_t cts; 60 ctf_file_t *fp; 61 62 if (hash == NULL) 63 return (ctf_set_open_errno(errp, EAGAIN)); 64 65 cts.cts_name = _CTF_SECTION; 66 cts.cts_type = SHT_PROGBITS; 67 cts.cts_flags = 0; 68 cts.cts_data = &hdr; 69 cts.cts_size = sizeof (hdr); 70 cts.cts_entsize = 1; 71 cts.cts_offset = 0; 72 73 if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) { 74 ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); 75 return (NULL); 76 } 77 78 fp->ctf_flags |= LCTF_RDWR; 79 fp->ctf_dthashlen = hashlen; 80 bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); 81 fp->ctf_dthash = hash; 82 fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); 83 fp->ctf_dtnextid = 1; 84 fp->ctf_dtoldid = 0; 85 86 return (fp); 87 } 88 89 ctf_file_t * 90 ctf_fdcreate(int fd, int *errp) 91 { 92 ctf_file_t *fp; 93 static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; 94 95 const ulong_t hashlen = 128; 96 ctf_dtdef_t **hash; 97 ctf_sect_t cts; 98 99 if (fd == -1) 100 return (ctf_create(errp)); 101 102 hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); 103 104 if (hash == NULL) 105 return (ctf_set_open_errno(errp, EAGAIN)); 106 107 cts.cts_name = _CTF_SECTION; 108 cts.cts_type = SHT_PROGBITS; 109 cts.cts_flags = 0; 110 cts.cts_data = &hdr; 111 cts.cts_size = sizeof (hdr); 112 cts.cts_entsize = 1; 113 cts.cts_offset = 0; 114 115 if ((fp = ctf_fdcreate_int(fd, errp, &cts)) == NULL) { 116 ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); 117 return (NULL); 118 } 119 120 fp->ctf_flags |= LCTF_RDWR; 121 fp->ctf_dthashlen = hashlen; 122 bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); 123 fp->ctf_dthash = hash; 124 fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); 125 fp->ctf_dtnextid = 1; 126 fp->ctf_dtoldid = 0; 127 128 return (fp); 129 } 130 131 static uchar_t * 132 ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) 133 { 134 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 135 ctf_member_t ctm; 136 137 for (; dmd != NULL; dmd = ctf_list_next(dmd)) { 138 if (dmd->dmd_name) { 139 ctm.ctm_name = soff; 140 soff += strlen(dmd->dmd_name) + 1; 141 } else 142 ctm.ctm_name = 0; 143 144 ctm.ctm_type = (ushort_t)dmd->dmd_type; 145 ctm.ctm_offset = (ushort_t)dmd->dmd_offset; 146 147 bcopy(&ctm, t, sizeof (ctm)); 148 t += sizeof (ctm); 149 } 150 151 return (t); 152 } 153 154 static uchar_t * 155 ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) 156 { 157 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 158 ctf_lmember_t ctlm; 159 160 for (; dmd != NULL; dmd = ctf_list_next(dmd)) { 161 if (dmd->dmd_name) { 162 ctlm.ctlm_name = soff; 163 soff += strlen(dmd->dmd_name) + 1; 164 } else 165 ctlm.ctlm_name = 0; 166 167 ctlm.ctlm_type = (ushort_t)dmd->dmd_type; 168 ctlm.ctlm_pad = 0; 169 ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset); 170 ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset); 171 172 bcopy(&ctlm, t, sizeof (ctlm)); 173 t += sizeof (ctlm); 174 } 175 176 return (t); 177 } 178 179 static uchar_t * 180 ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) 181 { 182 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 183 ctf_enum_t cte; 184 185 for (; dmd != NULL; dmd = ctf_list_next(dmd)) { 186 cte.cte_name = soff; 187 cte.cte_value = dmd->dmd_value; 188 soff += strlen(dmd->dmd_name) + 1; 189 bcopy(&cte, t, sizeof (cte)); 190 t += sizeof (cte); 191 } 192 193 return (t); 194 } 195 196 static uchar_t * 197 ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s) 198 { 199 ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 200 size_t len; 201 202 for (; dmd != NULL; dmd = ctf_list_next(dmd)) { 203 if (dmd->dmd_name == NULL) 204 continue; /* skip anonymous members */ 205 len = strlen(dmd->dmd_name) + 1; 206 bcopy(dmd->dmd_name, s, len); 207 s += len; 208 } 209 210 return (s); 211 } 212 213 /* 214 * Only types of dyanmic CTF containers contain reference counts. These 215 * containers are marked RD/WR. Because of that we basically make this a no-op 216 * for compatability with non-dynamic CTF sections. This is also a no-op for 217 * types which are not dynamic types. It is the responsibility of the caller to 218 * make sure it is a valid type. We help that caller out on debug builds. 219 * 220 * Note that the reference counts are not maintained for types that are not 221 * within this container. In other words if we have a type in a parent, that 222 * will not have its reference count increased. On the flip side, the parent 223 * will not be allowed to remove dynamic types if it has children. 224 */ 225 static void 226 ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid) 227 { 228 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); 229 230 if (dtd == NULL) 231 return; 232 233 if (!(fp->ctf_flags & LCTF_RDWR)) 234 return; 235 236 dtd->dtd_ref++; 237 } 238 239 /* 240 * Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the 241 * caller should ensure that this is already a valid type. 242 */ 243 static void 244 ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid) 245 { 246 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); 247 248 if (dtd == NULL) 249 return; 250 251 if (!(fp->ctf_flags & LCTF_RDWR)) 252 return; 253 254 ASSERT(dtd->dtd_ref >= 1); 255 dtd->dtd_ref--; 256 } 257 258 /* 259 * If the specified CTF container is writable and has been modified, reload 260 * this container with the updated type definitions. In order to make this 261 * code and the rest of libctf as simple as possible, we perform updates by 262 * taking the dynamic type definitions and creating an in-memory CTF file 263 * containing the definitions, and then call ctf_bufopen() on it. This not 264 * only leverages ctf_bufopen(), but also avoids having to bifurcate the rest 265 * of the library code with different lookup paths for static and dynamic 266 * type definitions. We are therefore optimizing greatly for lookup over 267 * update, which we assume will be an uncommon operation. We perform one 268 * extra trick here for the benefit of callers and to keep our code simple: 269 * ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp 270 * constant for the caller, so after ctf_bufopen() returns, we use bcopy to 271 * swap the interior of the old and new ctf_file_t's, and then free the old. 272 * 273 * Note that the lists of dynamic types stays around and the resulting container 274 * is still writeable. Furthermore, the reference counts that are on the dtd's 275 * are still valid. 276 */ 277 int 278 ctf_update(ctf_file_t *fp) 279 { 280 ctf_file_t ofp, *nfp; 281 ctf_header_t hdr, *bhdr; 282 ctf_dtdef_t *dtd; 283 ctf_dsdef_t *dsd; 284 ctf_dldef_t *dld; 285 ctf_sect_t cts, *symp, *strp; 286 287 uchar_t *s, *s0, *t; 288 ctf_lblent_t *label; 289 uint16_t *obj, *func; 290 size_t size, objsize, funcsize, labelsize, plen; 291 void *buf; 292 int err; 293 ulong_t i; 294 const char *plabel; 295 const char *sname; 296 297 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; 298 uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data; 299 300 if (!(fp->ctf_flags & LCTF_RDWR)) 301 return (ctf_set_errno(fp, ECTF_RDONLY)); 302 303 if (!(fp->ctf_flags & LCTF_DIRTY)) 304 return (0); /* no update required */ 305 306 /* 307 * Fill in an initial CTF header. We will leave the label, object, 308 * and function sections empty and only output a header, type section, 309 * and string table. The type section begins at a 4-byte aligned 310 * boundary past the CTF header itself (at relative offset zero). 311 */ 312 bzero(&hdr, sizeof (hdr)); 313 hdr.cth_magic = CTF_MAGIC; 314 hdr.cth_version = CTF_VERSION; 315 316 if (fp->ctf_flags & LCTF_CHILD) { 317 if (fp->ctf_parname == NULL) { 318 plen = 0; 319 hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */ 320 plabel = NULL; 321 } else { 322 plen = strlen(fp->ctf_parname) + 1; 323 plabel = ctf_label_topmost(fp->ctf_parent); 324 } 325 } else { 326 plabel = NULL; 327 plen = 0; 328 } 329 330 /* 331 * Iterate over the labels that we have. 332 */ 333 for (labelsize = 0, dld = ctf_list_next(&fp->ctf_dldefs); 334 dld != NULL; dld = ctf_list_next(dld)) 335 labelsize += sizeof (ctf_lblent_t); 336 337 /* 338 * Iterate through the dynamic type definition list and compute the 339 * size of the CTF type section we will need to generate. 340 */ 341 for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs); 342 dtd != NULL; dtd = ctf_list_next(dtd)) { 343 344 uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 345 uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); 346 347 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) 348 size += sizeof (ctf_stype_t); 349 else 350 size += sizeof (ctf_type_t); 351 352 switch (kind) { 353 case CTF_K_INTEGER: 354 case CTF_K_FLOAT: 355 size += sizeof (uint_t); 356 break; 357 case CTF_K_ARRAY: 358 size += sizeof (ctf_array_t); 359 break; 360 case CTF_K_FUNCTION: 361 size += sizeof (ushort_t) * (vlen + (vlen & 1)); 362 break; 363 case CTF_K_STRUCT: 364 case CTF_K_UNION: 365 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) 366 size += sizeof (ctf_member_t) * vlen; 367 else 368 size += sizeof (ctf_lmember_t) * vlen; 369 break; 370 case CTF_K_ENUM: 371 size += sizeof (ctf_enum_t) * vlen; 372 break; 373 } 374 } 375 376 /* 377 * An entry for each object must exist in the data section. However, if 378 * the symbol is SHN_UNDEF, then it is skipped. For objects, the storage 379 * is just the size of the 2-byte id. For functions it's always 2 bytes, 380 * plus 2 bytes per argument and the return type. 381 */ 382 dsd = ctf_list_next(&fp->ctf_dsdefs); 383 for (objsize = 0, funcsize = 0, i = 0; i < fp->ctf_nsyms; i++) { 384 int type; 385 386 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { 387 const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; 388 389 type = ELF32_ST_TYPE(symp->st_info); 390 if (ctf_sym_valid(strbase, type, symp->st_shndx, 391 symp->st_value, symp->st_name) == B_FALSE) 392 continue; 393 } else { 394 const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; 395 396 type = ELF64_ST_TYPE(symp->st_info); 397 if (ctf_sym_valid(strbase, type, symp->st_shndx, 398 symp->st_value, symp->st_name) == B_FALSE) 399 continue; 400 } 401 402 while (dsd != NULL && i > dsd->dsd_symidx) 403 dsd = ctf_list_next(dsd); 404 if (type == STT_OBJECT) { 405 objsize += sizeof (uint16_t); 406 } else { 407 /* Every function has a uint16_t info no matter what */ 408 if (dsd == NULL || i < dsd->dsd_symidx) { 409 funcsize += sizeof (uint16_t); 410 } else { 411 funcsize += sizeof (uint16_t) * 412 (dsd->dsd_nargs + 2); 413 } 414 } 415 } 416 417 /* 418 * The objtoff and funcoffset must be 2-byte aligned. We're guaranteed 419 * that this is always true for the objtoff because labels are always 8 420 * bytes large. Similarly, because objects are always two bytes of data, 421 * this will always be true for funcoff. 422 */ 423 hdr.cth_objtoff = hdr.cth_lbloff + labelsize; 424 hdr.cth_funcoff = hdr.cth_objtoff + objsize; 425 426 /* 427 * The type offset must be 4 byte aligned. 428 */ 429 hdr.cth_typeoff = hdr.cth_funcoff + funcsize; 430 if (hdr.cth_typeoff & 3) 431 hdr.cth_typeoff += 4 - (hdr.cth_typeoff & 3); 432 ASSERT((hdr.cth_typeoff & 3) == 0); 433 434 /* 435 * Fill in the string table offset and size, compute the size of the 436 * entire CTF buffer we need, and then allocate a new buffer and 437 * bcopy the finished header to the start of the buffer. 438 */ 439 hdr.cth_stroff = hdr.cth_typeoff + size; 440 hdr.cth_strlen = fp->ctf_dtstrlen + plen; 441 size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen; 442 ctf_dprintf("lbloff: %u\nobjtoff: %u\nfuncoff: %u\n" 443 "typeoff: %u\nstroff: %u\nstrlen: %u\n", 444 hdr.cth_lbloff, hdr.cth_objtoff, hdr.cth_funcoff, 445 hdr.cth_typeoff, hdr.cth_stroff, hdr.cth_strlen); 446 447 if ((buf = ctf_data_alloc(size)) == MAP_FAILED) 448 return (ctf_set_errno(fp, EAGAIN)); 449 450 bcopy(&hdr, buf, sizeof (ctf_header_t)); 451 bhdr = buf; 452 label = (ctf_lblent_t *)((uintptr_t)buf + sizeof (ctf_header_t)); 453 t = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_typeoff; 454 s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff; 455 obj = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) + 456 hdr.cth_objtoff); 457 func = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) + 458 hdr.cth_funcoff); 459 460 bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE)); 461 s += sizeof (_CTF_STRTAB_TEMPLATE); 462 463 /* 464 * We have an actual parent name and we're a child container, therefore 465 * we should make sure to note our parent's name here. 466 */ 467 if (plen != 0) { 468 VERIFY(s + plen - s0 <= hdr.cth_strlen); 469 bcopy(fp->ctf_parname, s, plen); 470 bhdr->cth_parname = s - s0; 471 s += plen; 472 } 473 474 /* 475 * First pass over the labels and copy them out. 476 */ 477 for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL; 478 dld = ctf_list_next(dld), label++) { 479 size_t len = strlen(dld->dld_name) + 1; 480 481 VERIFY(s + len - s0 <= hdr.cth_strlen); 482 bcopy(dld->dld_name, s, len); 483 label->ctl_typeidx = dld->dld_type; 484 label->ctl_label = s - s0; 485 s += len; 486 487 if (plabel != NULL && strcmp(plabel, dld->dld_name) == 0) 488 bhdr->cth_parlabel = label->ctl_label; 489 } 490 491 /* 492 * We now take a final lap through the dynamic type definition list and 493 * copy the appropriate type records and strings to the output buffer. 494 */ 495 for (dtd = ctf_list_next(&fp->ctf_dtdefs); 496 dtd != NULL; dtd = ctf_list_next(dtd)) { 497 498 uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 499 uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); 500 501 ctf_array_t cta; 502 uint_t encoding; 503 size_t len; 504 505 if (dtd->dtd_name != NULL) { 506 dtd->dtd_data.ctt_name = (uint_t)(s - s0); 507 len = strlen(dtd->dtd_name) + 1; 508 VERIFY(s + len - s0 <= hdr.cth_strlen); 509 bcopy(dtd->dtd_name, s, len); 510 s += len; 511 } else 512 dtd->dtd_data.ctt_name = 0; 513 514 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) 515 len = sizeof (ctf_stype_t); 516 else 517 len = sizeof (ctf_type_t); 518 519 bcopy(&dtd->dtd_data, t, len); 520 t += len; 521 522 switch (kind) { 523 case CTF_K_INTEGER: 524 case CTF_K_FLOAT: 525 if (kind == CTF_K_INTEGER) { 526 encoding = CTF_INT_DATA( 527 dtd->dtd_u.dtu_enc.cte_format, 528 dtd->dtd_u.dtu_enc.cte_offset, 529 dtd->dtd_u.dtu_enc.cte_bits); 530 } else { 531 encoding = CTF_FP_DATA( 532 dtd->dtd_u.dtu_enc.cte_format, 533 dtd->dtd_u.dtu_enc.cte_offset, 534 dtd->dtd_u.dtu_enc.cte_bits); 535 } 536 bcopy(&encoding, t, sizeof (encoding)); 537 t += sizeof (encoding); 538 break; 539 540 case CTF_K_ARRAY: 541 cta.cta_contents = (ushort_t) 542 dtd->dtd_u.dtu_arr.ctr_contents; 543 cta.cta_index = (ushort_t) 544 dtd->dtd_u.dtu_arr.ctr_index; 545 cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems; 546 bcopy(&cta, t, sizeof (cta)); 547 t += sizeof (cta); 548 break; 549 550 case CTF_K_FUNCTION: { 551 ushort_t *argv = (ushort_t *)(uintptr_t)t; 552 uint_t argc; 553 554 for (argc = 0; argc < vlen; argc++) 555 *argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc]; 556 557 if (vlen & 1) 558 *argv++ = 0; /* pad to 4-byte boundary */ 559 560 t = (uchar_t *)argv; 561 break; 562 } 563 564 case CTF_K_STRUCT: 565 case CTF_K_UNION: 566 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) 567 t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t); 568 else 569 t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t); 570 s = ctf_copy_membnames(dtd, s); 571 break; 572 573 case CTF_K_ENUM: 574 t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t); 575 s = ctf_copy_membnames(dtd, s); 576 break; 577 } 578 } 579 580 /* 581 * Now we fill in our dynamic data and function sections. We use the 582 * same criteria as above, but also consult the dsd list. 583 */ 584 dsd = ctf_list_next(&fp->ctf_dsdefs); 585 for (i = 0; i < fp->ctf_nsyms; i++) { 586 int type; 587 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { 588 const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; 589 type = ELF32_ST_TYPE(symp->st_info); 590 591 if (ctf_sym_valid(strbase, type, symp->st_shndx, 592 symp->st_value, symp->st_name) == B_FALSE) 593 continue; 594 } else { 595 const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; 596 type = ELF64_ST_TYPE(symp->st_info); 597 if (ctf_sym_valid(strbase, type, symp->st_shndx, 598 symp->st_value, symp->st_name) == B_FALSE) 599 continue; 600 } 601 602 while (dsd != NULL && i > dsd->dsd_symidx) { 603 dsd = ctf_list_next(dsd); 604 } 605 if (type == STT_OBJECT) { 606 if (dsd == NULL || i < dsd->dsd_symidx) { 607 *obj = 0; 608 } else { 609 *obj = dsd->dsd_tid; 610 } 611 obj++; 612 VERIFY((uintptr_t)obj <= (uintptr_t)func); 613 } else { 614 if (dsd == NULL || i < dsd->dsd_symidx) { 615 ushort_t data = CTF_TYPE_INFO(CTF_K_UNKNOWN, 616 0, 0); 617 *func = data; 618 func++; 619 } else { 620 int j; 621 ushort_t data = CTF_TYPE_INFO(CTF_K_FUNCTION, 0, 622 dsd->dsd_nargs); 623 624 *func = data; 625 func++; 626 *func = dsd->dsd_tid; 627 func++; 628 for (j = 0; j < dsd->dsd_nargs; j++) 629 func[j] = dsd->dsd_argc[j]; 630 func += dsd->dsd_nargs; 631 } 632 } 633 } 634 635 /* 636 * Finally, we are ready to ctf_bufopen() the new container. If this 637 * is successful, we then switch nfp and fp and free the old container. 638 */ 639 ctf_data_protect(buf, size); 640 cts.cts_name = _CTF_SECTION; 641 cts.cts_type = SHT_PROGBITS; 642 cts.cts_flags = 0; 643 cts.cts_data = buf; 644 cts.cts_size = size; 645 cts.cts_entsize = 1; 646 cts.cts_offset = 0; 647 648 if (fp->ctf_nsyms == 0) { 649 symp = NULL; 650 strp = NULL; 651 } else { 652 symp = &fp->ctf_symtab; 653 strp = &fp->ctf_strtab; 654 } 655 656 if ((nfp = ctf_bufopen(&cts, symp, strp, &err)) == NULL) { 657 ctf_data_free(buf, size); 658 return (ctf_set_errno(fp, err)); 659 } 660 661 (void) ctf_setmodel(nfp, ctf_getmodel(fp)); 662 (void) ctf_import(nfp, fp->ctf_parent); 663 664 nfp->ctf_refcnt = fp->ctf_refcnt; 665 nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY; 666 nfp->ctf_dthash = fp->ctf_dthash; 667 nfp->ctf_dthashlen = fp->ctf_dthashlen; 668 nfp->ctf_dtdefs = fp->ctf_dtdefs; 669 nfp->ctf_dsdefs = fp->ctf_dsdefs; 670 nfp->ctf_dldefs = fp->ctf_dldefs; 671 nfp->ctf_dtstrlen = fp->ctf_dtstrlen; 672 nfp->ctf_dtnextid = fp->ctf_dtnextid; 673 nfp->ctf_dtoldid = fp->ctf_dtnextid - 1; 674 nfp->ctf_specific = fp->ctf_specific; 675 676 fp->ctf_dthash = NULL; 677 fp->ctf_dthashlen = 0; 678 bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t)); 679 bzero(&fp->ctf_dsdefs, sizeof (ctf_list_t)); 680 bzero(&fp->ctf_dldefs, sizeof (ctf_list_t)); 681 682 /* 683 * Because the various containers share the data sections, we don't want 684 * to have ctf_close free it all. However, the name of the section is in 685 * fact unique to the ctf_sect_t. Thus we save the names of the symbol 686 * and string sections around the bzero() and restore them afterwards, 687 * ensuring that we don't result in a memory leak. 688 */ 689 sname = fp->ctf_symtab.cts_name; 690 bzero(&fp->ctf_symtab, sizeof (ctf_sect_t)); 691 fp->ctf_symtab.cts_name = sname; 692 693 sname = fp->ctf_strtab.cts_name; 694 bzero(&fp->ctf_strtab, sizeof (ctf_sect_t)); 695 fp->ctf_strtab.cts_name = sname; 696 697 bcopy(fp, &ofp, sizeof (ctf_file_t)); 698 bcopy(nfp, fp, sizeof (ctf_file_t)); 699 bcopy(&ofp, nfp, sizeof (ctf_file_t)); 700 701 /* 702 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an 703 * array of type name prefixes and the corresponding ctf_hash to use. 704 * NOTE: This code must be kept in sync with the code in ctf_bufopen(). 705 */ 706 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; 707 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; 708 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; 709 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; 710 711 nfp->ctf_refcnt = 1; /* force nfp to be freed */ 712 ctf_close(nfp); 713 714 return (0); 715 } 716 717 void 718 ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd) 719 { 720 ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); 721 722 dtd->dtd_hash = fp->ctf_dthash[h]; 723 fp->ctf_dthash[h] = dtd; 724 ctf_list_append(&fp->ctf_dtdefs, dtd); 725 } 726 727 void 728 ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd) 729 { 730 ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); 731 ctf_dtdef_t *p, **q = &fp->ctf_dthash[h]; 732 ctf_dmdef_t *dmd, *nmd; 733 size_t len; 734 int kind, i; 735 736 for (p = *q; p != NULL; p = p->dtd_hash) { 737 if (p != dtd) 738 q = &p->dtd_hash; 739 else 740 break; 741 } 742 743 if (p != NULL) 744 *q = p->dtd_hash; 745 746 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 747 switch (kind) { 748 case CTF_K_STRUCT: 749 case CTF_K_UNION: 750 case CTF_K_ENUM: 751 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 752 dmd != NULL; dmd = nmd) { 753 if (dmd->dmd_name != NULL) { 754 len = strlen(dmd->dmd_name) + 1; 755 ctf_free(dmd->dmd_name, len); 756 fp->ctf_dtstrlen -= len; 757 } 758 if (kind != CTF_K_ENUM) 759 ctf_ref_dec(fp, dmd->dmd_type); 760 nmd = ctf_list_next(dmd); 761 ctf_free(dmd, sizeof (ctf_dmdef_t)); 762 } 763 break; 764 case CTF_K_FUNCTION: 765 ctf_ref_dec(fp, dtd->dtd_data.ctt_type); 766 for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++) 767 if (dtd->dtd_u.dtu_argv[i] != 0) 768 ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]); 769 ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) * 770 CTF_INFO_VLEN(dtd->dtd_data.ctt_info)); 771 break; 772 case CTF_K_ARRAY: 773 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); 774 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); 775 break; 776 case CTF_K_TYPEDEF: 777 ctf_ref_dec(fp, dtd->dtd_data.ctt_type); 778 break; 779 case CTF_K_POINTER: 780 case CTF_K_VOLATILE: 781 case CTF_K_CONST: 782 case CTF_K_RESTRICT: 783 ctf_ref_dec(fp, dtd->dtd_data.ctt_type); 784 break; 785 } 786 787 if (dtd->dtd_name) { 788 len = strlen(dtd->dtd_name) + 1; 789 ctf_free(dtd->dtd_name, len); 790 fp->ctf_dtstrlen -= len; 791 } 792 793 ctf_list_delete(&fp->ctf_dtdefs, dtd); 794 ctf_free(dtd, sizeof (ctf_dtdef_t)); 795 } 796 797 ctf_dtdef_t * 798 ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type) 799 { 800 ulong_t h = type & (fp->ctf_dthashlen - 1); 801 ctf_dtdef_t *dtd; 802 803 if (fp->ctf_dthash == NULL) 804 return (NULL); 805 806 for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) { 807 if (dtd->dtd_type == type) 808 break; 809 } 810 811 return (dtd); 812 } 813 814 ctf_dsdef_t * 815 ctf_dsd_lookup(ctf_file_t *fp, ulong_t idx) 816 { 817 ctf_dsdef_t *dsd; 818 819 for (dsd = ctf_list_next(&fp->ctf_dsdefs); dsd != NULL; 820 dsd = ctf_list_next(dsd)) { 821 if (dsd->dsd_symidx == idx) 822 return (dsd); 823 } 824 825 return (NULL); 826 } 827 828 /* 829 * We order the ctf_dsdef_t by symbol index to make things better for updates. 830 */ 831 void 832 ctf_dsd_insert(ctf_file_t *fp, ctf_dsdef_t *dsd) 833 { 834 ctf_dsdef_t *i; 835 836 for (i = ctf_list_next(&fp->ctf_dsdefs); i != NULL; 837 i = ctf_list_next(i)) { 838 if (i->dsd_symidx > dsd->dsd_symidx) 839 break; 840 } 841 842 if (i == NULL) { 843 ctf_list_append(&fp->ctf_dsdefs, dsd); 844 return; 845 } 846 847 ctf_list_insert_before(&fp->ctf_dsdefs, i, dsd); 848 } 849 850 /* ARGSUSED */ 851 void 852 ctf_dsd_delete(ctf_file_t *fp, ctf_dsdef_t *dsd) 853 { 854 if (dsd->dsd_nargs > 0) 855 ctf_free(dsd->dsd_argc, 856 sizeof (ctf_id_t) * dsd->dsd_nargs); 857 ctf_list_delete(&fp->ctf_dsdefs, dsd); 858 ctf_free(dsd, sizeof (ctf_dsdef_t)); 859 } 860 861 ctf_dldef_t * 862 ctf_dld_lookup(ctf_file_t *fp, const char *name) 863 { 864 ctf_dldef_t *dld; 865 866 for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL; 867 dld = ctf_list_next(dld)) { 868 if (strcmp(name, dld->dld_name) == 0) 869 return (dld); 870 } 871 872 return (NULL); 873 } 874 875 void 876 ctf_dld_insert(ctf_file_t *fp, ctf_dldef_t *dld, uint_t pos) 877 { 878 ctf_dldef_t *l; 879 880 if (pos == 0) { 881 ctf_list_prepend(&fp->ctf_dldefs, dld); 882 return; 883 } 884 885 for (l = ctf_list_next(&fp->ctf_dldefs); pos != 0 && dld != NULL; 886 l = ctf_list_next(l), pos--) 887 ; 888 889 if (l == NULL) 890 ctf_list_append(&fp->ctf_dldefs, dld); 891 else 892 ctf_list_insert_before(&fp->ctf_dsdefs, l, dld); 893 } 894 895 void 896 ctf_dld_delete(ctf_file_t *fp, ctf_dldef_t *dld) 897 { 898 ctf_list_delete(&fp->ctf_dldefs, dld); 899 900 if (dld->dld_name != NULL) { 901 size_t len = strlen(dld->dld_name) + 1; 902 ctf_free(dld->dld_name, len); 903 fp->ctf_dtstrlen -= len; 904 } 905 906 ctf_free(dld, sizeof (ctf_dldef_t)); 907 } 908 909 /* 910 * Discard all of the dynamic type definitions that have been added to the 911 * container since the last call to ctf_update(). We locate such types by 912 * scanning the list and deleting elements that have type IDs greater than 913 * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly 914 * with our reference counting schemes, we must delete the dynamic list in 915 * reverse. 916 */ 917 int 918 ctf_discard(ctf_file_t *fp) 919 { 920 ctf_dtdef_t *dtd, *ntd; 921 922 if (!(fp->ctf_flags & LCTF_RDWR)) 923 return (ctf_set_errno(fp, ECTF_RDONLY)); 924 925 if (!(fp->ctf_flags & LCTF_DIRTY)) 926 return (0); /* no update required */ 927 928 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { 929 ntd = ctf_list_prev(dtd); 930 if (dtd->dtd_type <= fp->ctf_dtoldid) 931 continue; /* skip types that have been committed */ 932 933 ctf_dtd_delete(fp, dtd); 934 } 935 936 fp->ctf_dtnextid = fp->ctf_dtoldid + 1; 937 fp->ctf_flags &= ~LCTF_DIRTY; 938 939 return (0); 940 } 941 942 static ctf_id_t 943 ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp) 944 { 945 ctf_dtdef_t *dtd; 946 ctf_id_t type; 947 char *s = NULL; 948 949 if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) 950 return (ctf_set_errno(fp, EINVAL)); 951 952 if (!(fp->ctf_flags & LCTF_RDWR)) 953 return (ctf_set_errno(fp, ECTF_RDONLY)); 954 955 if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE) 956 return (ctf_set_errno(fp, ECTF_FULL)); 957 958 if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL) 959 return (ctf_set_errno(fp, EAGAIN)); 960 961 if (name != NULL && (s = ctf_strdup(name)) == NULL) { 962 ctf_free(dtd, sizeof (ctf_dtdef_t)); 963 return (ctf_set_errno(fp, EAGAIN)); 964 } 965 966 type = fp->ctf_dtnextid++; 967 type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD)); 968 969 bzero(dtd, sizeof (ctf_dtdef_t)); 970 dtd->dtd_name = s; 971 dtd->dtd_type = type; 972 973 if (s != NULL) 974 fp->ctf_dtstrlen += strlen(s) + 1; 975 976 ctf_dtd_insert(fp, dtd); 977 fp->ctf_flags |= LCTF_DIRTY; 978 979 *rp = dtd; 980 return (type); 981 } 982 983 ctf_id_t 984 ctf_add_encoded(ctf_file_t *fp, uint_t flag, 985 const char *name, const ctf_encoding_t *ep, uint_t kind) 986 { 987 ctf_dtdef_t *dtd; 988 ctf_id_t type; 989 990 if (ep == NULL) 991 return (ctf_set_errno(fp, EINVAL)); 992 993 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) 994 return (CTF_ERR); /* errno is set for us */ 995 996 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); 997 998 /* 999 * If the type's size is not an even number of bytes, then we should 1000 * round up the type size to the nearest byte. 1001 */ 1002 dtd->dtd_data.ctt_size = ep->cte_bits / NBBY; 1003 if ((ep->cte_bits % NBBY) != 0) 1004 dtd->dtd_data.ctt_size++; 1005 dtd->dtd_u.dtu_enc = *ep; 1006 1007 return (type); 1008 } 1009 1010 ctf_id_t 1011 ctf_add_reftype(ctf_file_t *fp, uint_t flag, 1012 const char *name, ctf_id_t ref, uint_t kind) 1013 { 1014 ctf_dtdef_t *dtd; 1015 ctf_id_t type; 1016 1017 if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE) 1018 return (ctf_set_errno(fp, EINVAL)); 1019 1020 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) 1021 return (CTF_ERR); /* errno is set for us */ 1022 1023 ctf_ref_inc(fp, ref); 1024 1025 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); 1026 dtd->dtd_data.ctt_type = (ushort_t)ref; 1027 1028 return (type); 1029 } 1030 1031 ctf_id_t 1032 ctf_add_integer(ctf_file_t *fp, uint_t flag, 1033 const char *name, const ctf_encoding_t *ep) 1034 { 1035 return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER)); 1036 } 1037 1038 ctf_id_t 1039 ctf_add_float(ctf_file_t *fp, uint_t flag, 1040 const char *name, const ctf_encoding_t *ep) 1041 { 1042 return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT)); 1043 } 1044 1045 ctf_id_t 1046 ctf_add_pointer(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) 1047 { 1048 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_POINTER)); 1049 } 1050 1051 ctf_id_t 1052 ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp) 1053 { 1054 ctf_dtdef_t *dtd; 1055 ctf_id_t type; 1056 ctf_file_t *fpd; 1057 1058 if (arp == NULL) 1059 return (ctf_set_errno(fp, EINVAL)); 1060 1061 fpd = fp; 1062 if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && 1063 ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) { 1064 ctf_dprintf("bad contents for array: %ld\n", 1065 arp->ctr_contents); 1066 return (ctf_set_errno(fp, ECTF_BADID)); 1067 } 1068 1069 fpd = fp; 1070 if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && 1071 ctf_dtd_lookup(fp, arp->ctr_index) == NULL) { 1072 ctf_dprintf("bad index for array: %ld\n", arp->ctr_index); 1073 return (ctf_set_errno(fp, ECTF_BADID)); 1074 } 1075 1076 if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) 1077 return (CTF_ERR); /* errno is set for us */ 1078 1079 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0); 1080 dtd->dtd_data.ctt_size = 0; 1081 dtd->dtd_u.dtu_arr = *arp; 1082 ctf_ref_inc(fp, arp->ctr_contents); 1083 ctf_ref_inc(fp, arp->ctr_index); 1084 1085 return (type); 1086 } 1087 1088 int 1089 ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) 1090 { 1091 ctf_file_t *fpd; 1092 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); 1093 1094 if (!(fp->ctf_flags & LCTF_RDWR)) 1095 return (ctf_set_errno(fp, ECTF_RDONLY)); 1096 1097 if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY) 1098 return (ctf_set_errno(fp, ECTF_BADID)); 1099 1100 fpd = fp; 1101 if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && 1102 ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) 1103 return (ctf_set_errno(fp, ECTF_BADID)); 1104 1105 fpd = fp; 1106 if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && 1107 ctf_dtd_lookup(fp, arp->ctr_index) == NULL) 1108 return (ctf_set_errno(fp, ECTF_BADID)); 1109 1110 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); 1111 ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); 1112 fp->ctf_flags |= LCTF_DIRTY; 1113 dtd->dtd_u.dtu_arr = *arp; 1114 ctf_ref_inc(fp, arp->ctr_contents); 1115 ctf_ref_inc(fp, arp->ctr_index); 1116 1117 return (0); 1118 } 1119 1120 ctf_id_t 1121 ctf_add_funcptr(ctf_file_t *fp, uint_t flag, 1122 const ctf_funcinfo_t *ctc, const ctf_id_t *argv) 1123 { 1124 ctf_dtdef_t *dtd; 1125 ctf_id_t type; 1126 uint_t vlen; 1127 int i; 1128 ctf_id_t *vdat = NULL; 1129 ctf_file_t *fpd; 1130 1131 if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 || 1132 (ctc->ctc_argc != 0 && argv == NULL)) 1133 return (ctf_set_errno(fp, EINVAL)); 1134 1135 vlen = ctc->ctc_argc; 1136 if (ctc->ctc_flags & CTF_FUNC_VARARG) 1137 vlen++; /* add trailing zero to indicate varargs (see below) */ 1138 1139 if (vlen > CTF_MAX_VLEN) 1140 return (ctf_set_errno(fp, EOVERFLOW)); 1141 1142 fpd = fp; 1143 if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL && 1144 ctf_dtd_lookup(fp, ctc->ctc_return) == NULL) 1145 return (ctf_set_errno(fp, ECTF_BADID)); 1146 1147 for (i = 0; i < ctc->ctc_argc; i++) { 1148 fpd = fp; 1149 if (ctf_lookup_by_id(&fpd, argv[i]) == NULL && 1150 ctf_dtd_lookup(fp, argv[i]) == NULL) 1151 return (ctf_set_errno(fp, ECTF_BADID)); 1152 } 1153 1154 if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL) 1155 return (ctf_set_errno(fp, EAGAIN)); 1156 1157 if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) { 1158 ctf_free(vdat, sizeof (ctf_id_t) * vlen); 1159 return (CTF_ERR); /* errno is set for us */ 1160 } 1161 1162 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen); 1163 dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return; 1164 1165 ctf_ref_inc(fp, ctc->ctc_return); 1166 for (i = 0; i < ctc->ctc_argc; i++) 1167 ctf_ref_inc(fp, argv[i]); 1168 1169 bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc); 1170 if (ctc->ctc_flags & CTF_FUNC_VARARG) 1171 vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */ 1172 dtd->dtd_u.dtu_argv = vdat; 1173 1174 return (type); 1175 } 1176 1177 ctf_id_t 1178 ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name) 1179 { 1180 ctf_hash_t *hp = &fp->ctf_structs; 1181 ctf_helem_t *hep = NULL; 1182 ctf_dtdef_t *dtd = NULL; 1183 ctf_id_t type = CTF_ERR; 1184 1185 if (name != NULL) 1186 hep = ctf_hash_lookup(hp, fp, name, strlen(name)); 1187 1188 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { 1189 type = hep->h_type; 1190 dtd = ctf_dtd_lookup(fp, type); 1191 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) 1192 dtd = NULL; 1193 } 1194 1195 if (dtd == NULL) { 1196 type = ctf_add_generic(fp, flag, name, &dtd); 1197 if (type == CTF_ERR) 1198 return (CTF_ERR); /* errno is set for us */ 1199 } 1200 1201 VERIFY(type != CTF_ERR); 1202 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0); 1203 dtd->dtd_data.ctt_size = 0; 1204 1205 /* 1206 * Always dirty in case we modified a forward. 1207 */ 1208 fp->ctf_flags |= LCTF_DIRTY; 1209 1210 return (type); 1211 } 1212 1213 ctf_id_t 1214 ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name) 1215 { 1216 ctf_hash_t *hp = &fp->ctf_unions; 1217 ctf_helem_t *hep = NULL; 1218 ctf_dtdef_t *dtd = NULL; 1219 ctf_id_t type = CTF_ERR; 1220 1221 if (name != NULL) 1222 hep = ctf_hash_lookup(hp, fp, name, strlen(name)); 1223 1224 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { 1225 type = hep->h_type; 1226 dtd = ctf_dtd_lookup(fp, type); 1227 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) 1228 dtd = NULL; 1229 } 1230 1231 if (dtd == NULL) { 1232 type = ctf_add_generic(fp, flag, name, &dtd); 1233 if (type == CTF_ERR) 1234 return (CTF_ERR); /* errno is set for us */ 1235 } 1236 1237 VERIFY(type != CTF_ERR); 1238 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0); 1239 dtd->dtd_data.ctt_size = 0; 1240 1241 /* 1242 * Always dirty in case we modified a forward. 1243 */ 1244 fp->ctf_flags |= LCTF_DIRTY; 1245 1246 return (type); 1247 } 1248 1249 ctf_id_t 1250 ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name) 1251 { 1252 ctf_hash_t *hp = &fp->ctf_enums; 1253 ctf_helem_t *hep = NULL; 1254 ctf_dtdef_t *dtd = NULL; 1255 ctf_id_t type = CTF_ERR; 1256 1257 if (name != NULL) 1258 hep = ctf_hash_lookup(hp, fp, name, strlen(name)); 1259 1260 if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { 1261 type = hep->h_type; 1262 dtd = ctf_dtd_lookup(fp, type); 1263 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) 1264 dtd = NULL; 1265 } 1266 1267 if (dtd == NULL) { 1268 type = ctf_add_generic(fp, flag, name, &dtd); 1269 if (type == CTF_ERR) 1270 return (CTF_ERR); /* errno is set for us */ 1271 } 1272 1273 VERIFY(type != CTF_ERR); 1274 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0); 1275 dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int; 1276 1277 /* 1278 * Always dirty in case we modified a forward. 1279 */ 1280 fp->ctf_flags |= LCTF_DIRTY; 1281 1282 return (type); 1283 } 1284 1285 ctf_id_t 1286 ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind) 1287 { 1288 ctf_hash_t *hp; 1289 ctf_helem_t *hep; 1290 ctf_dtdef_t *dtd; 1291 ctf_id_t type; 1292 1293 switch (kind) { 1294 case CTF_K_STRUCT: 1295 hp = &fp->ctf_structs; 1296 break; 1297 case CTF_K_UNION: 1298 hp = &fp->ctf_unions; 1299 break; 1300 case CTF_K_ENUM: 1301 hp = &fp->ctf_enums; 1302 break; 1303 default: 1304 return (ctf_set_errno(fp, ECTF_NOTSUE)); 1305 } 1306 1307 /* 1308 * If the type is already defined or exists as a forward tag, just 1309 * return the ctf_id_t of the existing definition. 1310 */ 1311 if (name != NULL && (hep = ctf_hash_lookup(hp, 1312 fp, name, strlen(name))) != NULL) 1313 return (hep->h_type); 1314 1315 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) 1316 return (CTF_ERR); /* errno is set for us */ 1317 1318 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0); 1319 dtd->dtd_data.ctt_type = kind; 1320 1321 return (type); 1322 } 1323 1324 ctf_id_t 1325 ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) 1326 { 1327 ctf_dtdef_t *dtd; 1328 ctf_id_t type; 1329 ctf_file_t *fpd; 1330 1331 fpd = fp; 1332 if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL && 1333 ctf_dtd_lookup(fp, ref) == NULL)) 1334 return (ctf_set_errno(fp, EINVAL)); 1335 1336 if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) 1337 return (CTF_ERR); /* errno is set for us */ 1338 1339 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0); 1340 dtd->dtd_data.ctt_type = (ushort_t)ref; 1341 ctf_ref_inc(fp, ref); 1342 1343 return (type); 1344 } 1345 1346 ctf_id_t 1347 ctf_add_volatile(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) 1348 { 1349 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_VOLATILE)); 1350 } 1351 1352 ctf_id_t 1353 ctf_add_const(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) 1354 { 1355 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_CONST)); 1356 } 1357 1358 ctf_id_t 1359 ctf_add_restrict(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) 1360 { 1361 return (ctf_add_reftype(fp, flag, name, ref, CTF_K_RESTRICT)); 1362 } 1363 1364 int 1365 ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value) 1366 { 1367 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid); 1368 ctf_dmdef_t *dmd; 1369 1370 uint_t kind, vlen, root; 1371 char *s; 1372 1373 if (name == NULL) 1374 return (ctf_set_errno(fp, EINVAL)); 1375 1376 if (!(fp->ctf_flags & LCTF_RDWR)) 1377 return (ctf_set_errno(fp, ECTF_RDONLY)); 1378 1379 if (dtd == NULL) 1380 return (ctf_set_errno(fp, ECTF_BADID)); 1381 1382 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1383 root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); 1384 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); 1385 1386 if (kind != CTF_K_ENUM) 1387 return (ctf_set_errno(fp, ECTF_NOTENUM)); 1388 1389 if (vlen == CTF_MAX_VLEN) 1390 return (ctf_set_errno(fp, ECTF_DTFULL)); 1391 1392 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 1393 dmd != NULL; dmd = ctf_list_next(dmd)) { 1394 if (strcmp(dmd->dmd_name, name) == 0) { 1395 ctf_dprintf("encountered duplicate member %s\n", name); 1396 return (ctf_set_errno(fp, ECTF_DUPMEMBER)); 1397 } 1398 } 1399 1400 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) 1401 return (ctf_set_errno(fp, EAGAIN)); 1402 1403 if ((s = ctf_strdup(name)) == NULL) { 1404 ctf_free(dmd, sizeof (ctf_dmdef_t)); 1405 return (ctf_set_errno(fp, EAGAIN)); 1406 } 1407 1408 dmd->dmd_name = s; 1409 dmd->dmd_type = CTF_ERR; 1410 dmd->dmd_offset = 0; 1411 dmd->dmd_value = value; 1412 1413 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); 1414 ctf_list_append(&dtd->dtd_u.dtu_members, dmd); 1415 1416 fp->ctf_dtstrlen += strlen(s) + 1; 1417 fp->ctf_flags |= LCTF_DIRTY; 1418 1419 return (0); 1420 } 1421 1422 int 1423 ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type, 1424 ulong_t offset) 1425 { 1426 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid); 1427 ctf_dmdef_t *dmd; 1428 1429 ulong_t mbitsz; 1430 ssize_t msize, malign, ssize; 1431 uint_t kind, vlen, root; 1432 int mkind; 1433 char *s = NULL; 1434 1435 if (!(fp->ctf_flags & LCTF_RDWR)) 1436 return (ctf_set_errno(fp, ECTF_RDONLY)); 1437 1438 if (dtd == NULL) 1439 return (ctf_set_errno(fp, ECTF_BADID)); 1440 1441 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 1442 root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); 1443 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); 1444 1445 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) 1446 return (ctf_set_errno(fp, ECTF_NOTSOU)); 1447 1448 if (vlen == CTF_MAX_VLEN) 1449 return (ctf_set_errno(fp, ECTF_DTFULL)); 1450 1451 /* 1452 * Structures may have members which are anonymous. If they have two of 1453 * these, then the duplicate member detection would find it due to the 1454 * string of "", so we skip it. 1455 */ 1456 if (name != NULL && *name != '\0') { 1457 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 1458 dmd != NULL; dmd = ctf_list_next(dmd)) { 1459 if (dmd->dmd_name != NULL && 1460 strcmp(dmd->dmd_name, name) == 0) { 1461 return (ctf_set_errno(fp, ECTF_DUPMEMBER)); 1462 } 1463 } 1464 } 1465 1466 if ((msize = ctf_type_size(fp, type)) == CTF_ERR || 1467 (malign = ctf_type_align(fp, type)) == CTF_ERR || 1468 (mkind = ctf_type_kind(fp, type)) == CTF_ERR) 1469 return (CTF_ERR); /* errno is set for us */ 1470 1471 /* 1472 * ctf_type_size returns sizes in bytes. However, for bitfields, that 1473 * means that it may misrepresent and actually rounds it up to a power 1474 * of two and store that in bytes. So instead we have to get the 1475 * Integers encoding and rely on that. 1476 */ 1477 if (mkind == CTF_K_INTEGER) { 1478 ctf_encoding_t e; 1479 1480 if (ctf_type_encoding(fp, type, &e) == CTF_ERR) 1481 return (CTF_ERR); /* errno is set for us */ 1482 mbitsz = e.cte_bits; 1483 } else if (mkind == CTF_K_FORWARD) { 1484 /* 1485 * This is a rather rare case. In general one cannot add a 1486 * forward to a structure. However, the CTF tools traditionally 1487 * tried to add a forward to the struct cpu as the last member. 1488 * Therefore, if we find one here, we're going to verify the 1489 * size and make sure it's zero. It's certainly odd, but that's 1490 * life. 1491 * 1492 * Further, if it's not an absolute position being specified, 1493 * then we refuse to add it. 1494 */ 1495 if (offset == ULONG_MAX) 1496 return (ctf_set_errno(fp, EINVAL)); 1497 VERIFY(msize == 0); 1498 mbitsz = msize; 1499 } else { 1500 mbitsz = msize * 8; 1501 } 1502 1503 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) 1504 return (ctf_set_errno(fp, EAGAIN)); 1505 1506 if (name != NULL && (s = ctf_strdup(name)) == NULL) { 1507 ctf_free(dmd, sizeof (ctf_dmdef_t)); 1508 return (ctf_set_errno(fp, EAGAIN)); 1509 } 1510 1511 dmd->dmd_name = s; 1512 dmd->dmd_type = type; 1513 dmd->dmd_value = -1; 1514 1515 if (kind == CTF_K_STRUCT && vlen != 0) { 1516 ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members); 1517 ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type); 1518 size_t off; 1519 1520 if (offset == ULONG_MAX) { 1521 ctf_encoding_t linfo; 1522 ssize_t lsize; 1523 1524 off = lmd->dmd_offset; 1525 if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR) 1526 off += linfo.cte_bits; 1527 else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR) 1528 off += lsize * NBBY; 1529 1530 /* 1531 * Round up the offset of the end of the last member to 1532 * the next byte boundary, convert 'off' to bytes, and 1533 * then round it up again to the next multiple of the 1534 * alignment required by the new member. Finally, 1535 * convert back to bits and store the result in 1536 * dmd_offset. Technically we could do more efficient 1537 * packing if the new member is a bit-field, but we're 1538 * the "compiler" and ANSI says we can do as we choose. 1539 */ 1540 off = roundup(off, NBBY) / NBBY; 1541 off = roundup(off, MAX(malign, 1)); 1542 dmd->dmd_offset = off * NBBY; 1543 ssize = off + msize; 1544 } else { 1545 dmd->dmd_offset = offset; 1546 ssize = (offset + mbitsz) / NBBY; 1547 } 1548 } else { 1549 dmd->dmd_offset = 0; 1550 ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL); 1551 ssize = MAX(ssize, msize); 1552 } 1553 1554 if (ssize > CTF_MAX_SIZE) { 1555 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; 1556 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(ssize); 1557 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(ssize); 1558 } else 1559 dtd->dtd_data.ctt_size = (ushort_t)ssize; 1560 1561 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); 1562 ctf_list_append(&dtd->dtd_u.dtu_members, dmd); 1563 1564 if (s != NULL) 1565 fp->ctf_dtstrlen += strlen(s) + 1; 1566 1567 ctf_ref_inc(fp, type); 1568 fp->ctf_flags |= LCTF_DIRTY; 1569 return (0); 1570 } 1571 1572 /* 1573 * This removes a type from the dynamic section. This will fail if the type is 1574 * referenced by another type. Note that the CTF ID is never reused currently by 1575 * CTF. Note that if this container is a parent container then we just outright 1576 * refuse to remove the type. There currently is no notion of searching for the 1577 * ctf_dtdef_t in parent containers. If there is, then this constraint could 1578 * become finer grained. 1579 */ 1580 int 1581 ctf_delete_type(ctf_file_t *fp, ctf_id_t type) 1582 { 1583 ctf_file_t *fpd; 1584 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); 1585 1586 if (!(fp->ctf_flags & LCTF_RDWR)) 1587 return (ctf_set_errno(fp, ECTF_RDONLY)); 1588 1589 /* 1590 * We want to give as useful an errno as possible. That means that we 1591 * want to distinguish between a type which does not exist and one for 1592 * which the type is not dynamic. 1593 */ 1594 fpd = fp; 1595 if (ctf_lookup_by_id(&fpd, type) == NULL && 1596 ctf_dtd_lookup(fp, type) == NULL) 1597 return (CTF_ERR); /* errno is set for us */ 1598 1599 if (dtd == NULL) 1600 return (ctf_set_errno(fp, ECTF_NOTDYN)); 1601 1602 if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1) 1603 return (ctf_set_errno(fp, ECTF_REFERENCED)); 1604 1605 ctf_dtd_delete(fp, dtd); 1606 fp->ctf_flags |= LCTF_DIRTY; 1607 return (0); 1608 } 1609 1610 static int 1611 enumcmp(const char *name, int value, void *arg) 1612 { 1613 ctf_bundle_t *ctb = arg; 1614 int bvalue; 1615 1616 return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type, 1617 name, &bvalue) == CTF_ERR || value != bvalue); 1618 } 1619 1620 static int 1621 enumadd(const char *name, int value, void *arg) 1622 { 1623 ctf_bundle_t *ctb = arg; 1624 1625 return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type, 1626 name, value) == CTF_ERR); 1627 } 1628 1629 /*ARGSUSED*/ 1630 static int 1631 membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg) 1632 { 1633 ctf_bundle_t *ctb = arg; 1634 ctf_membinfo_t ctm; 1635 1636 return (ctf_member_info(ctb->ctb_file, ctb->ctb_type, 1637 name, &ctm) == CTF_ERR || ctm.ctm_offset != offset); 1638 } 1639 1640 static int 1641 membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg) 1642 { 1643 ctf_bundle_t *ctb = arg; 1644 ctf_dmdef_t *dmd; 1645 char *s = NULL; 1646 1647 if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) 1648 return (ctf_set_errno(ctb->ctb_file, EAGAIN)); 1649 1650 if (name != NULL && (s = ctf_strdup(name)) == NULL) { 1651 ctf_free(dmd, sizeof (ctf_dmdef_t)); 1652 return (ctf_set_errno(ctb->ctb_file, EAGAIN)); 1653 } 1654 1655 /* 1656 * For now, dmd_type is copied as the src_fp's type; it is reset to an 1657 * equivalent dst_fp type by a final loop in ctf_add_type(), below. 1658 */ 1659 dmd->dmd_name = s; 1660 dmd->dmd_type = type; 1661 dmd->dmd_offset = offset; 1662 dmd->dmd_value = -1; 1663 1664 ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd); 1665 1666 if (s != NULL) 1667 ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1; 1668 1669 ctb->ctb_file->ctf_flags |= LCTF_DIRTY; 1670 return (0); 1671 } 1672 1673 /* 1674 * The ctf_add_type routine is used to copy a type from a source CTF container 1675 * to a dynamic destination container. This routine operates recursively by 1676 * following the source type's links and embedded member types. If the 1677 * destination container already contains a named type which has the same 1678 * attributes, then we succeed and return this type but no changes occur. 1679 */ 1680 ctf_id_t 1681 ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type) 1682 { 1683 ctf_id_t dst_type = CTF_ERR; 1684 uint_t dst_kind = CTF_K_UNKNOWN; 1685 1686 const ctf_type_t *tp; 1687 const char *name; 1688 uint_t kind, flag, vlen; 1689 1690 ctf_bundle_t src, dst; 1691 ctf_encoding_t src_en, dst_en; 1692 ctf_arinfo_t src_ar, dst_ar; 1693 1694 ctf_dtdef_t *dtd; 1695 ctf_funcinfo_t ctc; 1696 ssize_t size; 1697 1698 ctf_hash_t *hp; 1699 ctf_helem_t *hep; 1700 1701 if (dst_fp == src_fp) 1702 return (src_type); 1703 1704 if (!(dst_fp->ctf_flags & LCTF_RDWR)) 1705 return (ctf_set_errno(dst_fp, ECTF_RDONLY)); 1706 1707 if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL) 1708 return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); 1709 1710 name = ctf_strptr(src_fp, tp->ctt_name); 1711 kind = LCTF_INFO_KIND(src_fp, tp->ctt_info); 1712 flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info); 1713 vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info); 1714 1715 switch (kind) { 1716 case CTF_K_STRUCT: 1717 hp = &dst_fp->ctf_structs; 1718 break; 1719 case CTF_K_UNION: 1720 hp = &dst_fp->ctf_unions; 1721 break; 1722 case CTF_K_ENUM: 1723 hp = &dst_fp->ctf_enums; 1724 break; 1725 default: 1726 hp = &dst_fp->ctf_names; 1727 break; 1728 } 1729 1730 /* 1731 * If the source type has a name and is a root type (visible at the 1732 * top-level scope), lookup the name in the destination container and 1733 * verify that it is of the same kind before we do anything else. 1734 */ 1735 if ((flag & CTF_ADD_ROOT) && name[0] != '\0' && 1736 (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) { 1737 dst_type = (ctf_id_t)hep->h_type; 1738 dst_kind = ctf_type_kind(dst_fp, dst_type); 1739 } 1740 1741 /* 1742 * If an identically named dst_type exists, fail with ECTF_CONFLICT 1743 * unless dst_type is a forward declaration and src_type is a struct, 1744 * union, or enum (i.e. the definition of the previous forward decl). 1745 */ 1746 if (dst_type != CTF_ERR && dst_kind != kind && ( 1747 dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM && 1748 kind != CTF_K_STRUCT && kind != CTF_K_UNION))) 1749 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1750 1751 /* 1752 * If the non-empty name was not found in the appropriate hash, search 1753 * the list of pending dynamic definitions that are not yet committed. 1754 * If a matching name and kind are found, assume this is the type that 1755 * we are looking for. This is necessary to permit ctf_add_type() to 1756 * operate recursively on entities such as a struct that contains a 1757 * pointer member that refers to the same struct type. 1758 */ 1759 if (dst_type == CTF_ERR && name[0] != '\0') { 1760 for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL && 1761 dtd->dtd_type > dst_fp->ctf_dtoldid; 1762 dtd = ctf_list_prev(dtd)) { 1763 if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) == kind && 1764 dtd->dtd_name != NULL && 1765 strcmp(dtd->dtd_name, name) == 0) 1766 return (dtd->dtd_type); 1767 } 1768 } 1769 1770 src.ctb_file = src_fp; 1771 src.ctb_type = src_type; 1772 src.ctb_dtd = NULL; 1773 1774 dst.ctb_file = dst_fp; 1775 dst.ctb_type = dst_type; 1776 dst.ctb_dtd = NULL; 1777 1778 /* 1779 * Now perform kind-specific processing. If dst_type is CTF_ERR, then 1780 * we add a new type with the same properties as src_type to dst_fp. 1781 * If dst_type is not CTF_ERR, then we verify that dst_type has the 1782 * same attributes as src_type. We recurse for embedded references. 1783 */ 1784 switch (kind) { 1785 case CTF_K_INTEGER: 1786 case CTF_K_FLOAT: 1787 if (ctf_type_encoding(src_fp, src_type, &src_en) != 0) 1788 return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); 1789 1790 if (dst_type != CTF_ERR) { 1791 if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0) 1792 return (CTF_ERR); /* errno is set for us */ 1793 1794 if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t))) 1795 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1796 1797 } else if (kind == CTF_K_INTEGER) { 1798 dst_type = ctf_add_integer(dst_fp, flag, name, &src_en); 1799 } else 1800 dst_type = ctf_add_float(dst_fp, flag, name, &src_en); 1801 break; 1802 1803 case CTF_K_POINTER: 1804 case CTF_K_VOLATILE: 1805 case CTF_K_CONST: 1806 case CTF_K_RESTRICT: 1807 src_type = ctf_type_reference(src_fp, src_type); 1808 src_type = ctf_add_type(dst_fp, src_fp, src_type); 1809 1810 if (src_type == CTF_ERR) 1811 return (CTF_ERR); /* errno is set for us */ 1812 1813 dst_type = ctf_add_reftype(dst_fp, flag, NULL, src_type, kind); 1814 break; 1815 1816 case CTF_K_ARRAY: 1817 if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR) 1818 return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); 1819 1820 src_ar.ctr_contents = 1821 ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents); 1822 src_ar.ctr_index = 1823 ctf_add_type(dst_fp, src_fp, src_ar.ctr_index); 1824 src_ar.ctr_nelems = src_ar.ctr_nelems; 1825 1826 if (src_ar.ctr_contents == CTF_ERR || 1827 src_ar.ctr_index == CTF_ERR) 1828 return (CTF_ERR); /* errno is set for us */ 1829 1830 if (dst_type != CTF_ERR) { 1831 if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0) 1832 return (CTF_ERR); /* errno is set for us */ 1833 1834 if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) 1835 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1836 } else 1837 dst_type = ctf_add_array(dst_fp, flag, &src_ar); 1838 break; 1839 1840 case CTF_K_FUNCTION: 1841 ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type); 1842 ctc.ctc_argc = 0; 1843 ctc.ctc_flags = 0; 1844 1845 if (ctc.ctc_return == CTF_ERR) 1846 return (CTF_ERR); /* errno is set for us */ 1847 1848 dst_type = ctf_add_funcptr(dst_fp, flag, &ctc, NULL); 1849 break; 1850 1851 case CTF_K_STRUCT: 1852 case CTF_K_UNION: { 1853 ctf_dmdef_t *dmd; 1854 int errs = 0; 1855 1856 /* 1857 * Technically to match a struct or union we need to check both 1858 * ways (src members vs. dst, dst members vs. src) but we make 1859 * this more optimal by only checking src vs. dst and comparing 1860 * the total size of the structure (which we must do anyway) 1861 * which covers the possibility of dst members not in src. 1862 * This optimization can be defeated for unions, but is so 1863 * pathological as to render it irrelevant for our purposes. 1864 */ 1865 if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { 1866 if (ctf_type_size(src_fp, src_type) != 1867 ctf_type_size(dst_fp, dst_type)) 1868 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1869 1870 if (ctf_member_iter(src_fp, src_type, membcmp, &dst)) 1871 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1872 1873 break; 1874 } 1875 1876 /* 1877 * Unlike the other cases, copying structs and unions is done 1878 * manually so as to avoid repeated lookups in ctf_add_member 1879 * and to ensure the exact same member offsets as in src_type. 1880 */ 1881 dst_type = ctf_add_generic(dst_fp, flag, name, &dtd); 1882 if (dst_type == CTF_ERR) 1883 return (CTF_ERR); /* errno is set for us */ 1884 1885 dst.ctb_type = dst_type; 1886 dst.ctb_dtd = dtd; 1887 1888 if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0) 1889 errs++; /* increment errs and fail at bottom of case */ 1890 1891 if ((size = ctf_type_size(src_fp, src_type)) > CTF_MAX_SIZE) { 1892 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; 1893 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size); 1894 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size); 1895 } else 1896 dtd->dtd_data.ctt_size = (ushort_t)size; 1897 1898 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen); 1899 1900 /* 1901 * Make a final pass through the members changing each dmd_type 1902 * (a src_fp type) to an equivalent type in dst_fp. We pass 1903 * through all members, leaving any that fail set to CTF_ERR. 1904 */ 1905 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 1906 dmd != NULL; dmd = ctf_list_next(dmd)) { 1907 if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp, 1908 dmd->dmd_type)) == CTF_ERR) 1909 errs++; 1910 } 1911 1912 if (errs) 1913 return (CTF_ERR); /* errno is set for us */ 1914 1915 /* 1916 * Now that we know that we can't fail, we go through and bump 1917 * all the reference counts on the member types. 1918 */ 1919 for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); 1920 dmd != NULL; dmd = ctf_list_next(dmd)) 1921 ctf_ref_inc(dst_fp, dmd->dmd_type); 1922 break; 1923 } 1924 1925 case CTF_K_ENUM: 1926 if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { 1927 if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) || 1928 ctf_enum_iter(dst_fp, dst_type, enumcmp, &src)) 1929 return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); 1930 } else { 1931 dst_type = ctf_add_enum(dst_fp, flag, name); 1932 if ((dst.ctb_type = dst_type) == CTF_ERR || 1933 ctf_enum_iter(src_fp, src_type, enumadd, &dst)) 1934 return (CTF_ERR); /* errno is set for us */ 1935 } 1936 break; 1937 1938 case CTF_K_FORWARD: 1939 if (dst_type == CTF_ERR) { 1940 dst_type = ctf_add_forward(dst_fp, 1941 flag, name, CTF_K_STRUCT); /* assume STRUCT */ 1942 } 1943 break; 1944 1945 case CTF_K_TYPEDEF: 1946 src_type = ctf_type_reference(src_fp, src_type); 1947 src_type = ctf_add_type(dst_fp, src_fp, src_type); 1948 1949 if (src_type == CTF_ERR) 1950 return (CTF_ERR); /* errno is set for us */ 1951 1952 /* 1953 * If dst_type is not CTF_ERR at this point, we should check if 1954 * ctf_type_reference(dst_fp, dst_type) != src_type and if so 1955 * fail with ECTF_CONFLICT. However, this causes problems with 1956 * <sys/types.h> typedefs that vary based on things like if 1957 * _ILP32x then pid_t is int otherwise long. We therefore omit 1958 * this check and assume that if the identically named typedef 1959 * already exists in dst_fp, it is correct or equivalent. 1960 */ 1961 if (dst_type == CTF_ERR) { 1962 dst_type = ctf_add_typedef(dst_fp, flag, 1963 name, src_type); 1964 } 1965 break; 1966 1967 default: 1968 return (ctf_set_errno(dst_fp, ECTF_CORRUPT)); 1969 } 1970 1971 return (dst_type); 1972 } 1973 1974 int 1975 ctf_add_function(ctf_file_t *fp, ulong_t idx, const ctf_funcinfo_t *fip, 1976 const ctf_id_t *argc) 1977 { 1978 int i; 1979 ctf_dsdef_t *dsd; 1980 ctf_file_t *afp; 1981 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; 1982 1983 if (!(fp->ctf_flags & LCTF_RDWR)) 1984 return (ctf_set_errno(fp, ECTF_RDONLY)); 1985 1986 if (ctf_dsd_lookup(fp, idx) != NULL) 1987 return (ctf_set_errno(fp, ECTF_CONFLICT)); 1988 1989 if (symbase == NULL) 1990 return (ctf_set_errno(fp, ECTF_STRTAB)); 1991 1992 if (idx > fp->ctf_nsyms) 1993 return (ctf_set_errno(fp, ECTF_NOTDATA)); 1994 1995 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { 1996 const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx; 1997 if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC) 1998 return (ctf_set_errno(fp, ECTF_NOTFUNC)); 1999 } else { 2000 const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx; 2001 if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC) 2002 return (ctf_set_errno(fp, ECTF_NOTFUNC)); 2003 } 2004 2005 afp = fp; 2006 if (ctf_lookup_by_id(&afp, fip->ctc_return) == NULL) 2007 return (CTF_ERR); /* errno is set for us */ 2008 2009 for (i = 0; i < fip->ctc_argc; i++) { 2010 afp = fp; 2011 if (ctf_lookup_by_id(&afp, argc[i]) == NULL) 2012 return (CTF_ERR); /* errno is set for us */ 2013 } 2014 2015 dsd = ctf_alloc(sizeof (ctf_dsdef_t)); 2016 if (dsd == NULL) 2017 return (ctf_set_errno(fp, ENOMEM)); 2018 dsd->dsd_nargs = fip->ctc_argc; 2019 if (fip->ctc_flags & CTF_FUNC_VARARG) 2020 dsd->dsd_nargs++; 2021 if (dsd->dsd_nargs != 0) { 2022 dsd->dsd_argc = ctf_alloc(sizeof (ctf_id_t) * dsd->dsd_nargs); 2023 if (dsd->dsd_argc == NULL) { 2024 ctf_free(dsd, sizeof (ctf_dsdef_t)); 2025 return (ctf_set_errno(fp, ENOMEM)); 2026 } 2027 bcopy(argc, dsd->dsd_argc, sizeof (ctf_id_t) * fip->ctc_argc); 2028 if (fip->ctc_flags & CTF_FUNC_VARARG) 2029 dsd->dsd_argc[fip->ctc_argc] = 0; 2030 } 2031 dsd->dsd_symidx = idx; 2032 dsd->dsd_tid = fip->ctc_return; 2033 2034 ctf_dsd_insert(fp, dsd); 2035 fp->ctf_flags |= LCTF_DIRTY; 2036 2037 return (0); 2038 } 2039 2040 int 2041 ctf_add_object(ctf_file_t *fp, ulong_t idx, ctf_id_t type) 2042 { 2043 ctf_dsdef_t *dsd; 2044 ctf_file_t *afp; 2045 uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; 2046 2047 if (!(fp->ctf_flags & LCTF_RDWR)) 2048 return (ctf_set_errno(fp, ECTF_RDONLY)); 2049 2050 if (!(fp->ctf_flags & LCTF_RDWR)) 2051 return (ctf_set_errno(fp, ECTF_RDONLY)); 2052 2053 if (ctf_dsd_lookup(fp, idx) != NULL) 2054 return (ctf_set_errno(fp, ECTF_CONFLICT)); 2055 2056 if (symbase == NULL) 2057 return (ctf_set_errno(fp, ECTF_STRTAB)); 2058 2059 if (idx > fp->ctf_nsyms) 2060 return (ctf_set_errno(fp, ECTF_NOTDATA)); 2061 2062 if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { 2063 const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx; 2064 if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT) 2065 return (ctf_set_errno(fp, ECTF_NOTDATA)); 2066 } else { 2067 const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx; 2068 if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT) 2069 return (ctf_set_errno(fp, ECTF_NOTDATA)); 2070 } 2071 2072 afp = fp; 2073 if (ctf_lookup_by_id(&afp, type) == NULL) 2074 return (CTF_ERR); /* errno is set for us */ 2075 2076 dsd = ctf_alloc(sizeof (ctf_dsdef_t)); 2077 if (dsd == NULL) 2078 return (ctf_set_errno(fp, ENOMEM)); 2079 dsd->dsd_symidx = idx; 2080 dsd->dsd_tid = type; 2081 dsd->dsd_argc = NULL; 2082 2083 ctf_dsd_insert(fp, dsd); 2084 fp->ctf_flags |= LCTF_DIRTY; 2085 2086 return (0); 2087 } 2088 2089 void 2090 ctf_dataptr(ctf_file_t *fp, const void **addrp, size_t *sizep) 2091 { 2092 if (addrp != NULL) 2093 *addrp = fp->ctf_base; 2094 if (sizep != NULL) 2095 *sizep = fp->ctf_size; 2096 } 2097 2098 int 2099 ctf_add_label(ctf_file_t *fp, const char *name, ctf_id_t type, uint_t position) 2100 { 2101 ctf_file_t *fpd; 2102 ctf_dldef_t *dld; 2103 2104 if (name == NULL) 2105 return (ctf_set_errno(fp, EINVAL)); 2106 2107 if (!(fp->ctf_flags & LCTF_RDWR)) 2108 return (ctf_set_errno(fp, ECTF_RDONLY)); 2109 2110 fpd = fp; 2111 if (type != 0 && ctf_lookup_by_id(&fpd, type) == NULL) 2112 return (CTF_ERR); /* errno is set for us */ 2113 2114 if (type != 0 && (fp->ctf_flags & LCTF_CHILD) && 2115 CTF_TYPE_ISPARENT(type)) 2116 return (ctf_set_errno(fp, ECTF_NOPARENT)); 2117 2118 if (ctf_dld_lookup(fp, name) != NULL) 2119 return (ctf_set_errno(fp, ECTF_LABELEXISTS)); 2120 2121 if ((dld = ctf_alloc(sizeof (ctf_dldef_t))) == NULL) 2122 return (ctf_set_errno(fp, EAGAIN)); 2123 2124 if ((dld->dld_name = ctf_strdup(name)) == NULL) { 2125 ctf_free(dld, sizeof (ctf_dldef_t)); 2126 return (ctf_set_errno(fp, EAGAIN)); 2127 } 2128 2129 dld->dld_type = type; 2130 fp->ctf_dtstrlen += strlen(name) + 1; 2131 ctf_dld_insert(fp, dld, position); 2132 fp->ctf_flags |= LCTF_DIRTY; 2133 2134 return (0); 2135 } 2136 2137 /* 2138 * Update the size of a structure or union. Note that we don't allow this to 2139 * shrink the size of a struct or union, only to increase it. This is useful for 2140 * cases when you have a structure whose actual size is larger than the sum of 2141 * its members due to padding for natural alignment. 2142 */ 2143 int 2144 ctf_set_size(ctf_file_t *fp, ctf_id_t id, const ulong_t newsz) 2145 { 2146 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id); 2147 uint_t kind; 2148 size_t oldsz; 2149 2150 if (!(fp->ctf_flags & LCTF_RDWR)) 2151 return (ctf_set_errno(fp, ECTF_RDONLY)); 2152 2153 if (dtd == NULL) 2154 return (ctf_set_errno(fp, ECTF_BADID)); 2155 2156 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 2157 2158 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) 2159 return (ctf_set_errno(fp, ECTF_NOTSOU)); 2160 2161 if ((oldsz = dtd->dtd_data.ctt_size) == CTF_LSIZE_SENT) 2162 oldsz = CTF_TYPE_LSIZE(&dtd->dtd_data); 2163 2164 if (newsz < oldsz) 2165 return (ctf_set_errno(fp, EINVAL)); 2166 2167 if (newsz > CTF_MAX_SIZE) { 2168 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; 2169 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(newsz); 2170 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(newsz); 2171 } else { 2172 dtd->dtd_data.ctt_size = (ushort_t)newsz; 2173 } 2174 2175 fp->ctf_flags |= LCTF_DIRTY; 2176 return (0); 2177 } 2178 2179 int 2180 ctf_set_root(ctf_file_t *fp, ctf_id_t id, const boolean_t vis) 2181 { 2182 ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id); 2183 uint_t kind, vlen; 2184 2185 if (!(fp->ctf_flags & LCTF_RDWR)) 2186 return (ctf_set_errno(fp, ECTF_RDONLY)); 2187 2188 if (dtd == NULL) 2189 return (ctf_set_errno(fp, ECTF_BADID)); 2190 2191 kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); 2192 vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); 2193 2194 dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, vis, vlen); 2195 return (0); 2196 } 2197