xref: /freebsd/sys/dev/random/fenestrasX/fx_pool.c (revision 93b02f69a6f6ffb833227c2fd56d48daac128156)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/domainset.h>
30 #include <sys/fail.h>
31 #include <sys/limits.h>
32 #include <sys/lock.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/random.h>
38 #include <sys/sdt.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 
43 #include <machine/atomic.h>
44 #include <machine/smp.h>
45 
46 #include <dev/random/randomdev.h>
47 #include <dev/random/random_harvestq.h>
48 
49 #include <dev/random/fenestrasX/fx_brng.h>
50 #include <dev/random/fenestrasX/fx_hash.h>
51 #include <dev/random/fenestrasX/fx_pool.h>
52 #include <dev/random/fenestrasX/fx_priv.h>
53 #include <dev/random/fenestrasX/fx_pub.h>
54 
55 /*
56  * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
57  */
58 #define	FXENT_RESSED_INTVL_GFACT	3
59 #define	FXENT_RESEED_INTVL_MAX		3600
60 
61 /*
62  * Pool reseed schedule.  Initially, only pool 0 is active.  Until the timer
63  * interval reaches INTVL_MAX, only pool 0 is used.
64  *
65  * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
66  * (if active) every 3^k timer reseeds.  (§ 3.3)
67  *
68  * (Entropy harvesting only round robins across active pools.)
69  */
70 #define	FXENT_RESEED_BASE		3
71 
72 /*
73  * Number of bytes from high quality sources to allocate to pool 0 before
74  * normal round-robin allocation after each timer reseed. (§ 3.4)
75  */
76 #define	FXENT_HI_SRC_POOL0_BYTES	32
77 
78 /*
79  * § 3.1
80  *
81  * Low sources provide unconditioned entropy, such as mouse movements; high
82  * sources are assumed to provide high-quality random bytes.  Pull sources are
83  * those which can be polled, i.e., anything randomdev calls a "random_source."
84  *
85  * In the whitepaper, low sources are pull.  For us, at least in the existing
86  * design, low-quality sources push into some global ring buffer and then get
87  * forwarded into the RNG by a thread that continually polls.  Presumably their
88  * design batches low entopy signals in some way (SHA512?) and only requests
89  * them dynamically on reseed.  I'm not sure what the benefit is vs feeding
90  * into the pools directly.
91  */
92 enum fxrng_ent_access_cls {
93 	FXRNG_PUSH,
94 	FXRNG_PULL,
95 };
96 enum fxrng_ent_source_cls {
97 	FXRNG_HI,
98 	FXRNG_LO,
99 	FXRNG_GARBAGE,
100 };
101 struct fxrng_ent_cls {
102 	enum fxrng_ent_access_cls	entc_axx_cls;
103 	enum fxrng_ent_source_cls	entc_src_cls;
104 };
105 
106 static const struct fxrng_ent_cls fxrng_hi_pull = {
107 	.entc_axx_cls = FXRNG_PULL,
108 	.entc_src_cls = FXRNG_HI,
109 };
110 static const struct fxrng_ent_cls fxrng_hi_push = {
111 	.entc_axx_cls = FXRNG_PUSH,
112 	.entc_src_cls = FXRNG_HI,
113 };
114 static const struct fxrng_ent_cls fxrng_lo_push = {
115 	.entc_axx_cls = FXRNG_PUSH,
116 	.entc_src_cls = FXRNG_LO,
117 };
118 static const struct fxrng_ent_cls fxrng_garbage = {
119 	.entc_axx_cls = FXRNG_PUSH,
120 	.entc_src_cls = FXRNG_GARBAGE,
121 };
122 
123 /*
124  * This table is a mapping of randomdev's current source abstractions to the
125  * designations above; at some point, if the design seems reasonable, it would
126  * make more sense to pull this up into the abstraction layer instead.
127  */
128 static const struct fxrng_ent_char {
129 	const struct fxrng_ent_cls	*entc_cls;
130 } fxrng_ent_char[ENTROPYSOURCE] = {
131 	[RANDOM_CACHED] = {
132 		.entc_cls = &fxrng_hi_push,
133 	},
134 	[RANDOM_ATTACH] = {
135 		.entc_cls = &fxrng_lo_push,
136 	},
137 	[RANDOM_KEYBOARD] = {
138 		.entc_cls = &fxrng_lo_push,
139 	},
140 	[RANDOM_MOUSE] = {
141 		.entc_cls = &fxrng_lo_push,
142 	},
143 	[RANDOM_NET_TUN] = {
144 		.entc_cls = &fxrng_lo_push,
145 	},
146 	[RANDOM_NET_ETHER] = {
147 		.entc_cls = &fxrng_lo_push,
148 	},
149 	[RANDOM_NET_NG] = {
150 		.entc_cls = &fxrng_lo_push,
151 	},
152 	[RANDOM_INTERRUPT] = {
153 		.entc_cls = &fxrng_lo_push,
154 	},
155 	[RANDOM_SWI] = {
156 		.entc_cls = &fxrng_lo_push,
157 	},
158 	[RANDOM_FS_ATIME] = {
159 		.entc_cls = &fxrng_lo_push,
160 	},
161 	[RANDOM_UMA] = {
162 		.entc_cls = &fxrng_lo_push,
163 	},
164 	[RANDOM_CALLOUT] = {
165 		.entc_cls = &fxrng_lo_push,
166 	},
167 	[RANDOM_RANDOMDEV] = {
168 		.entc_cls = &fxrng_lo_push,
169 	},
170 	[RANDOM_PURE_SAFE] = {
171 		.entc_cls = &fxrng_hi_push,
172 	},
173 	[RANDOM_PURE_GLXSB] = {
174 		.entc_cls = &fxrng_hi_push,
175 	},
176 	[RANDOM_PURE_HIFN] = {
177 		.entc_cls = &fxrng_hi_push,
178 	},
179 	[RANDOM_PURE_RDRAND] = {
180 		.entc_cls = &fxrng_hi_pull,
181 	},
182 	[RANDOM_PURE_RDSEED] = {
183 		.entc_cls = &fxrng_hi_pull,
184 	},
185 	[RANDOM_PURE_NEHEMIAH] = {
186 		.entc_cls = &fxrng_hi_pull,
187 	},
188 	[RANDOM_PURE_RNDTEST] = {
189 		.entc_cls = &fxrng_garbage,
190 	},
191 	[RANDOM_PURE_VIRTIO] = {
192 		.entc_cls = &fxrng_hi_pull,
193 	},
194 	[RANDOM_PURE_BROADCOM] = {
195 		.entc_cls = &fxrng_hi_push,
196 	},
197 	[RANDOM_PURE_CCP] = {
198 		.entc_cls = &fxrng_hi_pull,
199 	},
200 	[RANDOM_PURE_DARN] = {
201 		.entc_cls = &fxrng_hi_pull,
202 	},
203 	[RANDOM_PURE_TPM] = {
204 		.entc_cls = &fxrng_hi_push,
205 	},
206 	[RANDOM_PURE_VMGENID] = {
207 		.entc_cls = &fxrng_hi_push,
208 	},
209 	[RANDOM_PURE_QUALCOMM] = {
210 		.entc_cls = &fxrng_hi_pull,
211 	},
212 	[RANDOM_PURE_ARMV8] = {
213 		.entc_cls = &fxrng_hi_pull,
214 	},
215 	[RANDOM_PURE_ARM_TRNG] = {
216 		.entc_cls = &fxrng_hi_pull,
217 	},
218 };
219 
220 /* Useful for single-bit-per-source state. */
221 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
222 
223 /* XXX Borrowed from not-yet-committed D22702. */
224 #ifndef BIT_TEST_SET_ATOMIC_ACQ
225 #define	BIT_TEST_SET_ATOMIC_ACQ(_s, n, p)	\
226 	(atomic_testandset_acq_long(		\
227 	    &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
228 #endif
229 #define	FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
230 	BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
231 
232 /* For special behavior on first-time entropy sources. (§ 3.1) */
233 static struct fxrng_bits __read_mostly fxrng_seen;
234 
235 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
236 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
237 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
238 
239 /* Entropy pools.  Lock order is ENT -> RNG(root) -> RNG(leaf). */
240 static struct mtx fxent_pool_lk;
241 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
242 #define	FXENT_LOCK()		mtx_lock(&fxent_pool_lk)
243 #define	FXENT_UNLOCK()		mtx_unlock(&fxent_pool_lk)
244 #define	FXENT_ASSERT(rng)	mtx_assert(&fxent_pool_lk, MA_OWNED)
245 #define	FXENT_ASSERT_NOT(rng)	mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
246 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
247 static unsigned __read_mostly fxent_nactpools = 1;
248 static struct timeout_task fxent_reseed_timer;
249 static int __read_mostly fxent_timer_ready;
250 
251 /*
252  * Track number of bytes of entropy harvested from high-quality sources prior
253  * to initial keying.  The idea is to collect more jitter entropy when fewer
254  * high-quality bytes were available and less if we had other good sources.  We
255  * want to provide always-on availability but don't necessarily have *any*
256  * great sources on some platforms.
257  *
258  * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
259  * make more sense to pull this up into the abstraction layer instead.
260  *
261  * Jitter entropy is unimplemented for now.
262  */
263 static unsigned long fxrng_preseed_ent;
264 
265 void
fxrng_pools_init(void)266 fxrng_pools_init(void)
267 {
268 	size_t i;
269 
270 	for (i = 0; i < nitems(fxent_pool); i++)
271 		fxrng_hash_init(&fxent_pool[i]);
272 }
273 
274 static inline bool
fxrng_hi_source(enum random_entropy_source src)275 fxrng_hi_source(enum random_entropy_source src)
276 {
277 	return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
278 }
279 
280 /*
281  * A racy check that this high-entropy source's event should contribute to
282  * pool0 on the basis of per-source byte count.  The check is racy for two
283  * reasons:
284  *   - Performance: The vast majority of the time, we've already taken 32 bytes
285  *     from any present high quality source and the racy check lets us avoid
286  *     dirtying the cache for the global array.
287  *   - Correctness: It's fine that the check is racy.  The failure modes are:
288  *     • False positive: We will detect when we take the lock.
289  *     • False negative: We still collect the entropy; it just won't be
290  *       preferentially placed in pool0 in this case.
291  */
292 static inline bool
fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)293 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
294 {
295 	return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
296 	    FXENT_HI_SRC_POOL0_BYTES);
297 }
298 
299 /*
300  * Top level entropy processing API from randomdev.
301  *
302  * Invoked by the core randomdev subsystem both for preload entropy, "push"
303  * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
304  */
305 void
fxrng_event_processor(struct harvest_event * event)306 fxrng_event_processor(struct harvest_event *event)
307 {
308 	enum random_entropy_source src;
309 	unsigned pool;
310 	bool first_time, first_32;
311 
312 	src = event->he_source;
313 
314 	ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
315 	    "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
316 	    (unsigned)event->he_size, sizeof(event->he_entropy));
317 
318 	/*
319 	 * Zero bytes of source entropy doesn't count as observing this source
320 	 * for the first time.  We still harvest the counter entropy.
321 	 */
322 	first_time = event->he_size > 0 &&
323 	    !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
324 	if (__predict_false(first_time)) {
325 		/*
326 		 * "The first time [any source] provides entropy, it is used to
327 		 * directly reseed the root PRNG.  The entropy pools are
328 		 * bypassed." (§ 3.1)
329 		 *
330 		 * Unlike Windows, we cannot rely on loader(8) seed material
331 		 * being present, so we perform initial keying in the kernel.
332 		 * We use brng_generation 0 to represent an unkeyed state.
333 		 *
334 		 * Prior to initial keying, it doesn't make sense to try to mix
335 		 * the entropy directly with the root PRNG state, as the root
336 		 * PRNG is unkeyed.  Instead, we collect pre-keying dynamic
337 		 * entropy in pool0 and do not bump the root PRNG seed version
338 		 * or set its key.  Initial keying will incorporate pool0 and
339 		 * bump the brng_generation (seed version).
340 		 *
341 		 * After initial keying, we do directly mix in first-time
342 		 * entropy sources.  We use the root BRNG to generate 32 bytes
343 		 * and use fxrng_hash to mix it with the new entropy source and
344 		 * re-key with the first 256 bits of hash output.
345 		 */
346 		FXENT_LOCK();
347 		FXRNG_BRNG_LOCK(&fxrng_root);
348 		if (__predict_true(fxrng_root.brng_generation > 0)) {
349 			/* Bypass the pools: */
350 			FXENT_UNLOCK();
351 			fxrng_brng_src_reseed(event);
352 			FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
353 			return;
354 		}
355 
356 		/*
357 		 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
358 		 * lock, so we only need to hold on to the pool lock to prevent
359 		 * initial keying without this entropy.
360 		 */
361 		FXRNG_BRNG_UNLOCK(&fxrng_root);
362 
363 		/* Root PRNG hasn't been keyed yet, just accumulate event. */
364 		fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
365 		    sizeof(event->he_somecounter));
366 		fxrng_hash_update(&fxent_pool[0], event->he_entropy,
367 		    event->he_size);
368 
369 		if (fxrng_hi_source(src)) {
370 			/* Prevent overflow. */
371 			if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
372 				fxrng_preseed_ent += event->he_size;
373 		}
374 		FXENT_UNLOCK();
375 		return;
376 	}
377 	/* !first_time */
378 
379 	/*
380 	 * "The first 32 bytes produced by a high entropy source after a reseed
381 	 * from the pools is always put in pool 0." (§ 3.4)
382 	 *
383 	 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
384 	 * fxent_timer_reseed_npools() below.
385 	 */
386 	first_32 = event->he_size > 0 &&
387 	    fxrng_hi_source(src) &&
388 	    atomic_load_acq_int(&fxent_nactpools) > 1 &&
389 	    fxrng_hi_pool0_eligible_racy(src);
390 	if (__predict_false(first_32)) {
391 		unsigned rem, seen;
392 
393 		FXENT_LOCK();
394 		seen = fxrng_reseed_seen[src];
395 		if (seen == FXENT_HI_SRC_POOL0_BYTES)
396 			goto round_robin;
397 
398 		rem = FXENT_HI_SRC_POOL0_BYTES - seen;
399 		rem = MIN(rem, event->he_size);
400 
401 		fxrng_reseed_seen[src] = seen + rem;
402 
403 		/*
404 		 * We put 'rem' bytes in pool0, and any remaining bytes are
405 		 * round-robin'd across other pools.
406 		 */
407 		fxrng_hash_update(&fxent_pool[0],
408 		    ((uint8_t *)event->he_entropy) + event->he_size - rem,
409 		    rem);
410 		if (rem == event->he_size) {
411 			fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
412 			    sizeof(event->he_somecounter));
413 			FXENT_UNLOCK();
414 			return;
415 		}
416 
417 		/*
418 		 * If fewer bytes were needed than this even provied, We only
419 		 * take the last rem bytes of the entropy buffer and leave the
420 		 * timecounter to be round-robin'd with the remaining entropy.
421 		 */
422 		event->he_size -= rem;
423 		goto round_robin;
424 	}
425 	/* !first_32 */
426 
427 	FXENT_LOCK();
428 
429 round_robin:
430 	FXENT_ASSERT();
431 	pool = event->he_destination % fxent_nactpools;
432 	fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
433 	    event->he_size);
434 	fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
435 	    sizeof(event->he_somecounter));
436 
437 	if (__predict_false(fxrng_hi_source(src) &&
438 	    atomic_load_acq_64(&fxrng_root_generation) == 0)) {
439 		/* Prevent overflow. */
440 		if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
441 			fxrng_preseed_ent += event->he_size;
442 	}
443 	FXENT_UNLOCK();
444 }
445 
446 /*
447  * Top level "seeded" API/signal from randomdev.
448  *
449  * This is our warning that a request is coming: we need to be seeded.  In
450  * fenestrasX, a request for random bytes _never_ fails.  "We (ed: ditto) have
451  * observed that there are many callers that never check for the error code,
452  * even if they are generating cryptographic key material." (§ 1.6)
453  *
454  * If we returned 'false', both read_random(9) and chacha20_randomstir()
455  * (arc4random(9)) will blindly charge on with something almost certainly worse
456  * than what we've got, or are able to get quickly enough.
457  */
458 bool
fxrng_alg_seeded(void)459 fxrng_alg_seeded(void)
460 {
461 	uint8_t hash[FXRNG_HASH_SZ];
462 	sbintime_t sbt;
463 
464 	/* The vast majority of the time, we expect to already be seeded. */
465 	if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
466 		return (true);
467 
468 	/*
469 	 * Take the lock and recheck; only one thread needs to do the initial
470 	 * seeding work.
471 	 */
472 	FXENT_LOCK();
473 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
474 		FXENT_UNLOCK();
475 		return (true);
476 	}
477 	/* XXX Any one-off initial seeding goes here. */
478 
479 	fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
480 	fxrng_hash_init(&fxent_pool[0]);
481 
482 	fxrng_brng_reseed(hash, sizeof(hash));
483 	FXENT_UNLOCK();
484 
485 	randomdev_unblock();
486 	explicit_bzero(hash, sizeof(hash));
487 
488 	/*
489 	 * This may be called too early for taskqueue_thread to be initialized.
490 	 * fxent_pool_timer_init will detect if we've already unblocked and
491 	 * queue the first timer reseed at that point.
492 	 */
493 	if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
494 		sbt = SBT_1S;
495 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
496 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
497 	}
498 	return (true);
499 }
500 
501 /*
502  * Timer-based reseeds and pool expansion.
503  */
504 static void
fxent_timer_reseed_npools(unsigned n)505 fxent_timer_reseed_npools(unsigned n)
506 {
507 	/*
508 	 * 64 * 8 => moderately large 512 bytes.  Could be static, as we are
509 	 * only used in a static context.  On the other hand, this is in
510 	 * threadqueue TASK context and we're likely nearly at top of stack
511 	 * already.
512 	 */
513 	uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
514 	unsigned i;
515 
516 	ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
517 
518 	FXENT_ASSERT();
519 	/*
520 	 * Collect entropy from pools 0..n-1 by concatenating the output hashes
521 	 * and then feeding them into fxrng_brng_reseed, which will hash the
522 	 * aggregate together with the current root PRNG keystate to produce a
523 	 * new key.  It will also bump the global generation counter
524 	 * appropriately.
525 	 */
526 	for (i = 0; i < n; i++) {
527 		fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
528 		    FXRNG_HASH_SZ);
529 		fxrng_hash_init(&fxent_pool[i]);
530 	}
531 
532 	fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
533 	explicit_bzero(hash, n * FXRNG_HASH_SZ);
534 
535 	/*
536 	 * "The first 32 bytes produced by a high entropy source after a reseed
537 	 * from the pools is always put in pool 0." (§ 3.4)
538 	 *
539 	 * So here we reset the tracking (somewhat naively given the majority
540 	 * of sources on most machines are not what we consider "high", but at
541 	 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
542 	 * prioritized into pool0.
543 	 *
544 	 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
545 	 */
546 	memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
547 	FXENT_ASSERT();
548 }
549 
550 static void
fxent_timer_reseed(void * ctx __unused,int pending __unused)551 fxent_timer_reseed(void *ctx __unused, int pending __unused)
552 {
553 	static unsigned reseed_intvl_sec = 1;
554 	/* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
555 	static uint64_t reseed_number = 1;
556 
557 	unsigned next_ival, i, k;
558 	sbintime_t sbt;
559 
560 	if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
561 		next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
562 		if (next_ival > FXENT_RESEED_INTVL_MAX)
563 			next_ival = FXENT_RESEED_INTVL_MAX;
564 		FXENT_LOCK();
565 		fxent_timer_reseed_npools(1);
566 		FXENT_UNLOCK();
567 	} else {
568 		/*
569 		 * The creation of entropy pools beyond 0 is enabled when the
570 		 * reseed interval hits the maximum. (§ 3.3)
571 		 */
572 		next_ival = reseed_intvl_sec;
573 
574 		/*
575 		 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
576 		 * general, pool n..0 every 3^n reseeds.
577 		 */
578 		k = reseed_number;
579 		reseed_number++;
580 
581 		/* Count how many pools, from [0, i), to use for reseed. */
582 		for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
583 			if ((k % FXENT_RESEED_BASE) != 0)
584 				break;
585 			k /= FXENT_RESEED_BASE;
586 		}
587 
588 		/*
589 		 * If we haven't activated pool i yet, activate it and only
590 		 * reseed from [0, i-1).  (§ 3.3)
591 		 */
592 		FXENT_LOCK();
593 		if (i == fxent_nactpools + 1) {
594 			fxent_timer_reseed_npools(fxent_nactpools);
595 			fxent_nactpools++;
596 		} else {
597 			/* Just reseed from [0, i). */
598 			fxent_timer_reseed_npools(i);
599 		}
600 		FXENT_UNLOCK();
601 	}
602 
603 	/* Schedule the next reseed. */
604 	sbt = next_ival * SBT_1S;
605 	taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
606 	    -sbt, (sbt / 3), C_PREL(2));
607 
608 	reseed_intvl_sec = next_ival;
609 }
610 
611 static void
fxent_pool_timer_init(void * dummy __unused)612 fxent_pool_timer_init(void *dummy __unused)
613 {
614 	sbintime_t sbt;
615 
616 	TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
617 	    fxent_timer_reseed, NULL);
618 
619 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
620 		sbt = SBT_1S;
621 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
622 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
623 	}
624 	atomic_store_rel_int(&fxent_timer_ready, 1);
625 }
626 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
627 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
628     fxent_pool_timer_init, NULL);
629