1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include "vfio.h"
41
42 #define DRIVER_VERSION "0.2"
43 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
45
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
62
63 struct vfio_iommu {
64 struct list_head domain_list;
65 struct list_head iova_list;
66 struct mutex lock;
67 struct rb_root dma_list;
68 struct list_head device_list;
69 struct mutex device_list_lock;
70 unsigned int dma_avail;
71 unsigned int vaddr_invalid_count;
72 uint64_t pgsize_bitmap;
73 uint64_t num_non_pinned_groups;
74 bool v2;
75 bool dirty_page_tracking;
76 struct list_head emulated_iommu_groups;
77 };
78
79 struct vfio_domain {
80 struct iommu_domain *domain;
81 struct list_head next;
82 struct list_head group_list;
83 bool enforce_cache_coherency : 1;
84 };
85
86 struct vfio_dma {
87 struct rb_node node;
88 dma_addr_t iova; /* Device address */
89 unsigned long vaddr; /* Process virtual addr */
90 size_t size; /* Map size (bytes) */
91 int prot; /* IOMMU_READ/WRITE */
92 bool iommu_mapped;
93 bool lock_cap; /* capable(CAP_IPC_LOCK) */
94 bool vaddr_invalid;
95 struct task_struct *task;
96 struct rb_root pfn_list; /* Ex-user pinned pfn list */
97 unsigned long *bitmap;
98 struct mm_struct *mm;
99 size_t locked_vm;
100 };
101
102 struct vfio_batch {
103 struct page **pages; /* for pin_user_pages_remote */
104 struct page *fallback_page; /* if pages alloc fails */
105 unsigned int capacity; /* length of pages array */
106 unsigned int size; /* of batch currently */
107 unsigned int offset; /* of next entry in pages */
108 };
109
110 struct vfio_iommu_group {
111 struct iommu_group *iommu_group;
112 struct list_head next;
113 bool pinned_page_dirty_scope;
114 };
115
116 struct vfio_iova {
117 struct list_head list;
118 dma_addr_t start;
119 dma_addr_t end;
120 };
121
122 /*
123 * Guest RAM pinning working set or DMA target
124 */
125 struct vfio_pfn {
126 struct rb_node node;
127 dma_addr_t iova; /* Device address */
128 unsigned long pfn; /* Host pfn */
129 unsigned int ref_count;
130 };
131
132 struct vfio_regions {
133 struct list_head list;
134 dma_addr_t iova;
135 phys_addr_t phys;
136 size_t len;
137 };
138
139 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
140
141 /*
142 * Input argument of number of bits to bitmap_set() is unsigned integer, which
143 * further casts to signed integer for unaligned multi-bit operation,
144 * __bitmap_set().
145 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
146 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
147 * system.
148 */
149 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
150 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
151
152 static int put_pfn(unsigned long pfn, int prot);
153
154 static struct vfio_iommu_group*
155 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
156 struct iommu_group *iommu_group);
157
158 /*
159 * This code handles mapping and unmapping of user data buffers
160 * into DMA'ble space using the IOMMU
161 */
162
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)163 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
164 dma_addr_t start, size_t size)
165 {
166 struct rb_node *node = iommu->dma_list.rb_node;
167
168 while (node) {
169 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
170
171 if (start + size <= dma->iova)
172 node = node->rb_left;
173 else if (start >= dma->iova + dma->size)
174 node = node->rb_right;
175 else
176 return dma;
177 }
178
179 return NULL;
180 }
181
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,u64 size)182 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
183 dma_addr_t start, u64 size)
184 {
185 struct rb_node *res = NULL;
186 struct rb_node *node = iommu->dma_list.rb_node;
187 struct vfio_dma *dma_res = NULL;
188
189 while (node) {
190 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
191
192 if (start < dma->iova + dma->size) {
193 res = node;
194 dma_res = dma;
195 if (start >= dma->iova)
196 break;
197 node = node->rb_left;
198 } else {
199 node = node->rb_right;
200 }
201 }
202 if (res && size && dma_res->iova >= start + size)
203 res = NULL;
204 return res;
205 }
206
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)207 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
208 {
209 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
210 struct vfio_dma *dma;
211
212 while (*link) {
213 parent = *link;
214 dma = rb_entry(parent, struct vfio_dma, node);
215
216 if (new->iova + new->size <= dma->iova)
217 link = &(*link)->rb_left;
218 else
219 link = &(*link)->rb_right;
220 }
221
222 rb_link_node(&new->node, parent, link);
223 rb_insert_color(&new->node, &iommu->dma_list);
224 }
225
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)226 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
227 {
228 rb_erase(&old->node, &iommu->dma_list);
229 }
230
231
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)232 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
233 {
234 uint64_t npages = dma->size / pgsize;
235
236 if (npages > DIRTY_BITMAP_PAGES_MAX)
237 return -EINVAL;
238
239 /*
240 * Allocate extra 64 bits that are used to calculate shift required for
241 * bitmap_shift_left() to manipulate and club unaligned number of pages
242 * in adjacent vfio_dma ranges.
243 */
244 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
245 GFP_KERNEL);
246 if (!dma->bitmap)
247 return -ENOMEM;
248
249 return 0;
250 }
251
vfio_dma_bitmap_free(struct vfio_dma * dma)252 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
253 {
254 kvfree(dma->bitmap);
255 dma->bitmap = NULL;
256 }
257
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)258 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
259 {
260 struct rb_node *p;
261 unsigned long pgshift = __ffs(pgsize);
262
263 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
264 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
265
266 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
267 }
268 }
269
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)270 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
271 {
272 struct rb_node *n;
273 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
274
275 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
276 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
277
278 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
279 }
280 }
281
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)282 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
283 {
284 struct rb_node *n;
285
286 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
287 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
288 int ret;
289
290 ret = vfio_dma_bitmap_alloc(dma, pgsize);
291 if (ret) {
292 struct rb_node *p;
293
294 for (p = rb_prev(n); p; p = rb_prev(p)) {
295 struct vfio_dma *dma = rb_entry(p,
296 struct vfio_dma, node);
297
298 vfio_dma_bitmap_free(dma);
299 }
300 return ret;
301 }
302 vfio_dma_populate_bitmap(dma, pgsize);
303 }
304 return 0;
305 }
306
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)307 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
308 {
309 struct rb_node *n;
310
311 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
312 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
313
314 vfio_dma_bitmap_free(dma);
315 }
316 }
317
318 /*
319 * Helper Functions for host iova-pfn list
320 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)321 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
322 {
323 struct vfio_pfn *vpfn;
324 struct rb_node *node = dma->pfn_list.rb_node;
325
326 while (node) {
327 vpfn = rb_entry(node, struct vfio_pfn, node);
328
329 if (iova < vpfn->iova)
330 node = node->rb_left;
331 else if (iova > vpfn->iova)
332 node = node->rb_right;
333 else
334 return vpfn;
335 }
336 return NULL;
337 }
338
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)339 static void vfio_link_pfn(struct vfio_dma *dma,
340 struct vfio_pfn *new)
341 {
342 struct rb_node **link, *parent = NULL;
343 struct vfio_pfn *vpfn;
344
345 link = &dma->pfn_list.rb_node;
346 while (*link) {
347 parent = *link;
348 vpfn = rb_entry(parent, struct vfio_pfn, node);
349
350 if (new->iova < vpfn->iova)
351 link = &(*link)->rb_left;
352 else
353 link = &(*link)->rb_right;
354 }
355
356 rb_link_node(&new->node, parent, link);
357 rb_insert_color(&new->node, &dma->pfn_list);
358 }
359
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)360 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
361 {
362 rb_erase(&old->node, &dma->pfn_list);
363 }
364
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)365 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
366 unsigned long pfn)
367 {
368 struct vfio_pfn *vpfn;
369
370 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
371 if (!vpfn)
372 return -ENOMEM;
373
374 vpfn->iova = iova;
375 vpfn->pfn = pfn;
376 vpfn->ref_count = 1;
377 vfio_link_pfn(dma, vpfn);
378 return 0;
379 }
380
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)381 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
382 struct vfio_pfn *vpfn)
383 {
384 vfio_unlink_pfn(dma, vpfn);
385 kfree(vpfn);
386 }
387
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)388 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
389 unsigned long iova)
390 {
391 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
392
393 if (vpfn)
394 vpfn->ref_count++;
395 return vpfn;
396 }
397
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)398 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
399 {
400 int ret = 0;
401
402 vpfn->ref_count--;
403 if (!vpfn->ref_count) {
404 ret = put_pfn(vpfn->pfn, dma->prot);
405 vfio_remove_from_pfn_list(dma, vpfn);
406 }
407 return ret;
408 }
409
mm_lock_acct(struct task_struct * task,struct mm_struct * mm,bool lock_cap,long npage)410 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
411 bool lock_cap, long npage)
412 {
413 int ret = mmap_write_lock_killable(mm);
414
415 if (ret)
416 return ret;
417
418 ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
419 mmap_write_unlock(mm);
420 return ret;
421 }
422
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)423 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
424 {
425 struct mm_struct *mm;
426 int ret;
427
428 if (!npage)
429 return 0;
430
431 mm = dma->mm;
432 if (async && !mmget_not_zero(mm))
433 return -ESRCH; /* process exited */
434
435 ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
436 if (!ret)
437 dma->locked_vm += npage;
438
439 if (async)
440 mmput(mm);
441
442 return ret;
443 }
444
445 /*
446 * Some mappings aren't backed by a struct page, for example an mmap'd
447 * MMIO range for our own or another device. These use a different
448 * pfn conversion and shouldn't be tracked as locked pages.
449 * For compound pages, any driver that sets the reserved bit in head
450 * page needs to set the reserved bit in all subpages to be safe.
451 */
is_invalid_reserved_pfn(unsigned long pfn)452 static bool is_invalid_reserved_pfn(unsigned long pfn)
453 {
454 if (pfn_valid(pfn))
455 return PageReserved(pfn_to_page(pfn));
456
457 return true;
458 }
459
put_pfn(unsigned long pfn,int prot)460 static int put_pfn(unsigned long pfn, int prot)
461 {
462 if (!is_invalid_reserved_pfn(pfn)) {
463 struct page *page = pfn_to_page(pfn);
464
465 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
466 return 1;
467 }
468 return 0;
469 }
470
471 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
472
__vfio_batch_init(struct vfio_batch * batch,bool single)473 static void __vfio_batch_init(struct vfio_batch *batch, bool single)
474 {
475 batch->size = 0;
476 batch->offset = 0;
477
478 if (single || unlikely(disable_hugepages))
479 goto fallback;
480
481 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
482 if (!batch->pages)
483 goto fallback;
484
485 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
486 return;
487
488 fallback:
489 batch->pages = &batch->fallback_page;
490 batch->capacity = 1;
491 }
492
vfio_batch_init(struct vfio_batch * batch)493 static void vfio_batch_init(struct vfio_batch *batch)
494 {
495 __vfio_batch_init(batch, false);
496 }
497
vfio_batch_init_single(struct vfio_batch * batch)498 static void vfio_batch_init_single(struct vfio_batch *batch)
499 {
500 __vfio_batch_init(batch, true);
501 }
502
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)503 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
504 {
505 while (batch->size) {
506 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
507
508 put_pfn(pfn, dma->prot);
509 batch->offset++;
510 batch->size--;
511 }
512 }
513
vfio_batch_fini(struct vfio_batch * batch)514 static void vfio_batch_fini(struct vfio_batch *batch)
515 {
516 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
517 free_page((unsigned long)batch->pages);
518 }
519
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,unsigned long * addr_mask,bool write_fault)520 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
521 unsigned long vaddr, unsigned long *pfn,
522 unsigned long *addr_mask, bool write_fault)
523 {
524 struct follow_pfnmap_args args = { .vma = vma, .address = vaddr };
525 int ret;
526
527 ret = follow_pfnmap_start(&args);
528 if (ret) {
529 bool unlocked = false;
530
531 ret = fixup_user_fault(mm, vaddr,
532 FAULT_FLAG_REMOTE |
533 (write_fault ? FAULT_FLAG_WRITE : 0),
534 &unlocked);
535 if (unlocked)
536 return -EAGAIN;
537
538 if (ret)
539 return ret;
540
541 ret = follow_pfnmap_start(&args);
542 if (ret)
543 return ret;
544 }
545
546 if (write_fault && !args.writable) {
547 ret = -EFAULT;
548 } else {
549 *pfn = args.pfn;
550 *addr_mask = args.addr_mask;
551 }
552
553 follow_pfnmap_end(&args);
554 return ret;
555 }
556
557 /*
558 * Returns the positive number of pfns successfully obtained or a negative
559 * error code. The initial pfn is stored in the pfn arg. For page-backed
560 * pfns, the provided batch is also updated to indicate the filled pages and
561 * initial offset. For VM_PFNMAP pfns, only the returned number of pfns and
562 * returned initial pfn are provided; subsequent pfns are contiguous.
563 */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,unsigned long npages,int prot,unsigned long * pfn,struct vfio_batch * batch)564 static long vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
565 unsigned long npages, int prot, unsigned long *pfn,
566 struct vfio_batch *batch)
567 {
568 unsigned long pin_pages = min_t(unsigned long, npages, batch->capacity);
569 struct vm_area_struct *vma;
570 unsigned int flags = 0;
571 long ret;
572
573 if (prot & IOMMU_WRITE)
574 flags |= FOLL_WRITE;
575
576 mmap_read_lock(mm);
577 ret = pin_user_pages_remote(mm, vaddr, pin_pages, flags | FOLL_LONGTERM,
578 batch->pages, NULL);
579 if (ret > 0) {
580 *pfn = page_to_pfn(batch->pages[0]);
581 batch->size = ret;
582 batch->offset = 0;
583 goto done;
584 } else if (!ret) {
585 ret = -EFAULT;
586 }
587
588 vaddr = untagged_addr_remote(mm, vaddr);
589
590 retry:
591 vma = vma_lookup(mm, vaddr);
592
593 if (vma && vma->vm_flags & VM_PFNMAP) {
594 unsigned long addr_mask;
595
596 ret = follow_fault_pfn(vma, mm, vaddr, pfn, &addr_mask,
597 prot & IOMMU_WRITE);
598 if (ret == -EAGAIN)
599 goto retry;
600
601 if (!ret) {
602 if (is_invalid_reserved_pfn(*pfn)) {
603 unsigned long epfn;
604
605 epfn = (*pfn | (~addr_mask >> PAGE_SHIFT)) + 1;
606 ret = min_t(long, npages, epfn - *pfn);
607 } else {
608 ret = -EFAULT;
609 }
610 }
611 }
612 done:
613 mmap_read_unlock(mm);
614 return ret;
615 }
616
617 /*
618 * Attempt to pin pages. We really don't want to track all the pfns and
619 * the iommu can only map chunks of consecutive pfns anyway, so get the
620 * first page and all consecutive pages with the same locking.
621 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,unsigned long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)622 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
623 unsigned long npage, unsigned long *pfn_base,
624 unsigned long limit, struct vfio_batch *batch)
625 {
626 unsigned long pfn;
627 struct mm_struct *mm = current->mm;
628 long ret, pinned = 0, lock_acct = 0;
629 bool rsvd;
630 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
631
632 /* This code path is only user initiated */
633 if (!mm)
634 return -ENODEV;
635
636 if (batch->size) {
637 /* Leftover pages in batch from an earlier call. */
638 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
639 pfn = *pfn_base;
640 rsvd = is_invalid_reserved_pfn(*pfn_base);
641 } else {
642 *pfn_base = 0;
643 }
644
645 if (unlikely(disable_hugepages))
646 npage = 1;
647
648 while (npage) {
649 if (!batch->size) {
650 /*
651 * Large mappings may take a while to repeatedly refill
652 * the batch, so conditionally relinquish the CPU when
653 * needed to avoid stalls.
654 */
655 cond_resched();
656
657 /* Empty batch, so refill it. */
658 ret = vaddr_get_pfns(mm, vaddr, npage, dma->prot,
659 &pfn, batch);
660 if (ret < 0)
661 goto unpin_out;
662
663 if (!*pfn_base) {
664 *pfn_base = pfn;
665 rsvd = is_invalid_reserved_pfn(*pfn_base);
666 }
667
668 /* Handle pfnmap */
669 if (!batch->size) {
670 if (pfn != *pfn_base + pinned || !rsvd)
671 goto out;
672
673 pinned += ret;
674 npage -= ret;
675 vaddr += (PAGE_SIZE * ret);
676 iova += (PAGE_SIZE * ret);
677 continue;
678 }
679 }
680
681 /*
682 * pfn is preset for the first iteration of this inner loop
683 * due to the fact that vaddr_get_pfns() needs to provide the
684 * initial pfn for pfnmaps. Therefore to reduce redundancy,
685 * the next pfn is fetched at the end of the loop.
686 * A PageReserved() page could still qualify as page backed
687 * and rsvd here, and therefore continues to use the batch.
688 */
689 while (true) {
690 if (pfn != *pfn_base + pinned ||
691 rsvd != is_invalid_reserved_pfn(pfn))
692 goto out;
693
694 /*
695 * Reserved pages aren't counted against the user,
696 * externally pinned pages are already counted against
697 * the user.
698 */
699 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
700 if (!dma->lock_cap &&
701 mm->locked_vm + lock_acct + 1 > limit) {
702 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
703 __func__, limit << PAGE_SHIFT);
704 ret = -ENOMEM;
705 goto unpin_out;
706 }
707 lock_acct++;
708 }
709
710 pinned++;
711 npage--;
712 vaddr += PAGE_SIZE;
713 iova += PAGE_SIZE;
714 batch->offset++;
715 batch->size--;
716
717 if (!batch->size)
718 break;
719
720 pfn = page_to_pfn(batch->pages[batch->offset]);
721 }
722 }
723
724 out:
725 ret = vfio_lock_acct(dma, lock_acct, false);
726
727 unpin_out:
728 if (ret < 0) {
729 if (pinned && !rsvd) {
730 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
731 put_pfn(pfn, dma->prot);
732 }
733 vfio_batch_unpin(batch, dma);
734
735 return ret;
736 }
737
738 return pinned;
739 }
740
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,unsigned long npage,bool do_accounting)741 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
742 unsigned long pfn, unsigned long npage,
743 bool do_accounting)
744 {
745 long unlocked = 0, locked = 0;
746 long i;
747
748 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
749 if (put_pfn(pfn++, dma->prot)) {
750 unlocked++;
751 if (vfio_find_vpfn(dma, iova))
752 locked++;
753 }
754 }
755
756 if (do_accounting)
757 vfio_lock_acct(dma, locked - unlocked, true);
758
759 return unlocked;
760 }
761
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)762 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
763 unsigned long *pfn_base, bool do_accounting)
764 {
765 struct vfio_batch batch;
766 struct mm_struct *mm;
767 int ret;
768
769 mm = dma->mm;
770 if (!mmget_not_zero(mm))
771 return -ENODEV;
772
773 vfio_batch_init_single(&batch);
774
775 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, &batch);
776 if (ret != 1)
777 goto out;
778
779 ret = 0;
780
781 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
782 ret = vfio_lock_acct(dma, 1, false);
783 if (ret) {
784 put_pfn(*pfn_base, dma->prot);
785 if (ret == -ENOMEM)
786 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
787 "(%ld) exceeded\n", __func__,
788 dma->task->comm, task_pid_nr(dma->task),
789 task_rlimit(dma->task, RLIMIT_MEMLOCK));
790 }
791 }
792
793 out:
794 vfio_batch_fini(&batch);
795 mmput(mm);
796 return ret;
797 }
798
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)799 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
800 bool do_accounting)
801 {
802 int unlocked;
803 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
804
805 if (!vpfn)
806 return 0;
807
808 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
809
810 if (do_accounting)
811 vfio_lock_acct(dma, -unlocked, true);
812
813 return unlocked;
814 }
815
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)816 static int vfio_iommu_type1_pin_pages(void *iommu_data,
817 struct iommu_group *iommu_group,
818 dma_addr_t user_iova,
819 int npage, int prot,
820 struct page **pages)
821 {
822 struct vfio_iommu *iommu = iommu_data;
823 struct vfio_iommu_group *group;
824 int i, j, ret;
825 unsigned long remote_vaddr;
826 struct vfio_dma *dma;
827 bool do_accounting;
828
829 if (!iommu || !pages)
830 return -EINVAL;
831
832 /* Supported for v2 version only */
833 if (!iommu->v2)
834 return -EACCES;
835
836 mutex_lock(&iommu->lock);
837
838 if (WARN_ONCE(iommu->vaddr_invalid_count,
839 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
840 ret = -EBUSY;
841 goto pin_done;
842 }
843
844 /* Fail if no dma_umap notifier is registered */
845 if (list_empty(&iommu->device_list)) {
846 ret = -EINVAL;
847 goto pin_done;
848 }
849
850 /*
851 * If iommu capable domain exist in the container then all pages are
852 * already pinned and accounted. Accounting should be done if there is no
853 * iommu capable domain in the container.
854 */
855 do_accounting = list_empty(&iommu->domain_list);
856
857 for (i = 0; i < npage; i++) {
858 unsigned long phys_pfn;
859 dma_addr_t iova;
860 struct vfio_pfn *vpfn;
861
862 iova = user_iova + PAGE_SIZE * i;
863 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
864 if (!dma) {
865 ret = -EINVAL;
866 goto pin_unwind;
867 }
868
869 if ((dma->prot & prot) != prot) {
870 ret = -EPERM;
871 goto pin_unwind;
872 }
873
874 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
875 if (vpfn) {
876 pages[i] = pfn_to_page(vpfn->pfn);
877 continue;
878 }
879
880 remote_vaddr = dma->vaddr + (iova - dma->iova);
881 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
882 do_accounting);
883 if (ret)
884 goto pin_unwind;
885
886 if (!pfn_valid(phys_pfn)) {
887 ret = -EINVAL;
888 goto pin_unwind;
889 }
890
891 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
892 if (ret) {
893 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
894 vfio_lock_acct(dma, -1, true);
895 goto pin_unwind;
896 }
897
898 pages[i] = pfn_to_page(phys_pfn);
899
900 if (iommu->dirty_page_tracking) {
901 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
902
903 /*
904 * Bitmap populated with the smallest supported page
905 * size
906 */
907 bitmap_set(dma->bitmap,
908 (iova - dma->iova) >> pgshift, 1);
909 }
910 }
911 ret = i;
912
913 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
914 if (!group->pinned_page_dirty_scope) {
915 group->pinned_page_dirty_scope = true;
916 iommu->num_non_pinned_groups--;
917 }
918
919 goto pin_done;
920
921 pin_unwind:
922 pages[i] = NULL;
923 for (j = 0; j < i; j++) {
924 dma_addr_t iova;
925
926 iova = user_iova + PAGE_SIZE * j;
927 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
928 vfio_unpin_page_external(dma, iova, do_accounting);
929 pages[j] = NULL;
930 }
931 pin_done:
932 mutex_unlock(&iommu->lock);
933 return ret;
934 }
935
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)936 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
937 dma_addr_t user_iova, int npage)
938 {
939 struct vfio_iommu *iommu = iommu_data;
940 bool do_accounting;
941 int i;
942
943 /* Supported for v2 version only */
944 if (WARN_ON(!iommu->v2))
945 return;
946
947 mutex_lock(&iommu->lock);
948
949 do_accounting = list_empty(&iommu->domain_list);
950 for (i = 0; i < npage; i++) {
951 dma_addr_t iova = user_iova + PAGE_SIZE * i;
952 struct vfio_dma *dma;
953
954 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
955 if (!dma)
956 break;
957
958 vfio_unpin_page_external(dma, iova, do_accounting);
959 }
960
961 mutex_unlock(&iommu->lock);
962
963 WARN_ON(i != npage);
964 }
965
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)966 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
967 struct list_head *regions,
968 struct iommu_iotlb_gather *iotlb_gather)
969 {
970 long unlocked = 0;
971 struct vfio_regions *entry, *next;
972
973 iommu_iotlb_sync(domain->domain, iotlb_gather);
974
975 list_for_each_entry_safe(entry, next, regions, list) {
976 unlocked += vfio_unpin_pages_remote(dma,
977 entry->iova,
978 entry->phys >> PAGE_SHIFT,
979 entry->len >> PAGE_SHIFT,
980 false);
981 list_del(&entry->list);
982 kfree(entry);
983 }
984
985 cond_resched();
986
987 return unlocked;
988 }
989
990 /*
991 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
992 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
993 * of these regions (currently using a list).
994 *
995 * This value specifies maximum number of regions for each IOTLB flush sync.
996 */
997 #define VFIO_IOMMU_TLB_SYNC_MAX 512
998
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)999 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1000 struct vfio_dma *dma, dma_addr_t *iova,
1001 size_t len, phys_addr_t phys, long *unlocked,
1002 struct list_head *unmapped_list,
1003 int *unmapped_cnt,
1004 struct iommu_iotlb_gather *iotlb_gather)
1005 {
1006 size_t unmapped = 0;
1007 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1008
1009 if (entry) {
1010 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1011 iotlb_gather);
1012
1013 if (!unmapped) {
1014 kfree(entry);
1015 } else {
1016 entry->iova = *iova;
1017 entry->phys = phys;
1018 entry->len = unmapped;
1019 list_add_tail(&entry->list, unmapped_list);
1020
1021 *iova += unmapped;
1022 (*unmapped_cnt)++;
1023 }
1024 }
1025
1026 /*
1027 * Sync if the number of fast-unmap regions hits the limit
1028 * or in case of errors.
1029 */
1030 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1031 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1032 iotlb_gather);
1033 *unmapped_cnt = 0;
1034 }
1035
1036 return unmapped;
1037 }
1038
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)1039 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1040 struct vfio_dma *dma, dma_addr_t *iova,
1041 size_t len, phys_addr_t phys,
1042 long *unlocked)
1043 {
1044 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1045
1046 if (unmapped) {
1047 *unlocked += vfio_unpin_pages_remote(dma, *iova,
1048 phys >> PAGE_SHIFT,
1049 unmapped >> PAGE_SHIFT,
1050 false);
1051 *iova += unmapped;
1052 cond_resched();
1053 }
1054 return unmapped;
1055 }
1056
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1057 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1058 bool do_accounting)
1059 {
1060 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1061 struct vfio_domain *domain, *d;
1062 LIST_HEAD(unmapped_region_list);
1063 struct iommu_iotlb_gather iotlb_gather;
1064 int unmapped_region_cnt = 0;
1065 long unlocked = 0;
1066
1067 if (!dma->size)
1068 return 0;
1069
1070 if (list_empty(&iommu->domain_list))
1071 return 0;
1072
1073 /*
1074 * We use the IOMMU to track the physical addresses, otherwise we'd
1075 * need a much more complicated tracking system. Unfortunately that
1076 * means we need to use one of the iommu domains to figure out the
1077 * pfns to unpin. The rest need to be unmapped in advance so we have
1078 * no iommu translations remaining when the pages are unpinned.
1079 */
1080 domain = d = list_first_entry(&iommu->domain_list,
1081 struct vfio_domain, next);
1082
1083 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1084 iommu_unmap(d->domain, dma->iova, dma->size);
1085 cond_resched();
1086 }
1087
1088 iommu_iotlb_gather_init(&iotlb_gather);
1089 while (iova < end) {
1090 size_t unmapped, len;
1091 phys_addr_t phys, next;
1092
1093 phys = iommu_iova_to_phys(domain->domain, iova);
1094 if (WARN_ON(!phys)) {
1095 iova += PAGE_SIZE;
1096 continue;
1097 }
1098
1099 /*
1100 * To optimize for fewer iommu_unmap() calls, each of which
1101 * may require hardware cache flushing, try to find the
1102 * largest contiguous physical memory chunk to unmap.
1103 */
1104 for (len = PAGE_SIZE; iova + len < end; len += PAGE_SIZE) {
1105 next = iommu_iova_to_phys(domain->domain, iova + len);
1106 if (next != phys + len)
1107 break;
1108 }
1109
1110 /*
1111 * First, try to use fast unmap/unpin. In case of failure,
1112 * switch to slow unmap/unpin path.
1113 */
1114 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1115 &unlocked, &unmapped_region_list,
1116 &unmapped_region_cnt,
1117 &iotlb_gather);
1118 if (!unmapped) {
1119 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1120 phys, &unlocked);
1121 if (WARN_ON(!unmapped))
1122 break;
1123 }
1124 }
1125
1126 dma->iommu_mapped = false;
1127
1128 if (unmapped_region_cnt) {
1129 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1130 &iotlb_gather);
1131 }
1132
1133 if (do_accounting) {
1134 vfio_lock_acct(dma, -unlocked, true);
1135 return 0;
1136 }
1137 return unlocked;
1138 }
1139
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1140 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1141 {
1142 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1143 vfio_unmap_unpin(iommu, dma, true);
1144 vfio_unlink_dma(iommu, dma);
1145 put_task_struct(dma->task);
1146 mmdrop(dma->mm);
1147 vfio_dma_bitmap_free(dma);
1148 if (dma->vaddr_invalid)
1149 iommu->vaddr_invalid_count--;
1150 kfree(dma);
1151 iommu->dma_avail++;
1152 }
1153
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1154 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1155 {
1156 struct vfio_domain *domain;
1157
1158 iommu->pgsize_bitmap = ULONG_MAX;
1159
1160 list_for_each_entry(domain, &iommu->domain_list, next)
1161 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1162
1163 /*
1164 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1165 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1166 * That way the user will be able to map/unmap buffers whose size/
1167 * start address is aligned with PAGE_SIZE. Pinning code uses that
1168 * granularity while iommu driver can use the sub-PAGE_SIZE size
1169 * to map the buffer.
1170 */
1171 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1172 iommu->pgsize_bitmap &= PAGE_MASK;
1173 iommu->pgsize_bitmap |= PAGE_SIZE;
1174 }
1175 }
1176
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1177 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1178 struct vfio_dma *dma, dma_addr_t base_iova,
1179 size_t pgsize)
1180 {
1181 unsigned long pgshift = __ffs(pgsize);
1182 unsigned long nbits = dma->size >> pgshift;
1183 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1184 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1185 unsigned long shift = bit_offset % BITS_PER_LONG;
1186 unsigned long leftover;
1187
1188 /*
1189 * mark all pages dirty if any IOMMU capable device is not able
1190 * to report dirty pages and all pages are pinned and mapped.
1191 */
1192 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1193 bitmap_set(dma->bitmap, 0, nbits);
1194
1195 if (shift) {
1196 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1197 nbits + shift);
1198
1199 if (copy_from_user(&leftover,
1200 (void __user *)(bitmap + copy_offset),
1201 sizeof(leftover)))
1202 return -EFAULT;
1203
1204 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1205 }
1206
1207 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1208 DIRTY_BITMAP_BYTES(nbits + shift)))
1209 return -EFAULT;
1210
1211 return 0;
1212 }
1213
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1214 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1215 dma_addr_t iova, size_t size, size_t pgsize)
1216 {
1217 struct vfio_dma *dma;
1218 struct rb_node *n;
1219 unsigned long pgshift = __ffs(pgsize);
1220 int ret;
1221
1222 /*
1223 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1224 * vfio_dma mappings may be clubbed by specifying large ranges, but
1225 * there must not be any previous mappings bisected by the range.
1226 * An error will be returned if these conditions are not met.
1227 */
1228 dma = vfio_find_dma(iommu, iova, 1);
1229 if (dma && dma->iova != iova)
1230 return -EINVAL;
1231
1232 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1233 if (dma && dma->iova + dma->size != iova + size)
1234 return -EINVAL;
1235
1236 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1237 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1238
1239 if (dma->iova < iova)
1240 continue;
1241
1242 if (dma->iova > iova + size - 1)
1243 break;
1244
1245 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1246 if (ret)
1247 return ret;
1248
1249 /*
1250 * Re-populate bitmap to include all pinned pages which are
1251 * considered as dirty but exclude pages which are unpinned and
1252 * pages which are marked dirty by vfio_dma_rw()
1253 */
1254 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1255 vfio_dma_populate_bitmap(dma, pgsize);
1256 }
1257 return 0;
1258 }
1259
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1260 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1261 {
1262 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1263 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1264 return -EINVAL;
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1271 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1272 * pages in response to an invalidation.
1273 */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1274 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1275 struct vfio_dma *dma)
1276 {
1277 struct vfio_device *device;
1278
1279 if (list_empty(&iommu->device_list))
1280 return;
1281
1282 /*
1283 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1284 * pinned within the range. Since vfio_unpin_pages() will eventually
1285 * call back down to this code and try to obtain the iommu->lock we must
1286 * drop it.
1287 */
1288 mutex_lock(&iommu->device_list_lock);
1289 mutex_unlock(&iommu->lock);
1290
1291 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1292 device->ops->dma_unmap(device, dma->iova, dma->size);
1293
1294 mutex_unlock(&iommu->device_list_lock);
1295 mutex_lock(&iommu->lock);
1296 }
1297
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1298 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1299 struct vfio_iommu_type1_dma_unmap *unmap,
1300 struct vfio_bitmap *bitmap)
1301 {
1302 struct vfio_dma *dma, *dma_last = NULL;
1303 size_t unmapped = 0, pgsize;
1304 int ret = -EINVAL, retries = 0;
1305 unsigned long pgshift;
1306 dma_addr_t iova = unmap->iova;
1307 u64 size = unmap->size;
1308 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1309 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1310 struct rb_node *n, *first_n;
1311
1312 mutex_lock(&iommu->lock);
1313
1314 /* Cannot update vaddr if mdev is present. */
1315 if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1316 ret = -EBUSY;
1317 goto unlock;
1318 }
1319
1320 pgshift = __ffs(iommu->pgsize_bitmap);
1321 pgsize = (size_t)1 << pgshift;
1322
1323 if (iova & (pgsize - 1))
1324 goto unlock;
1325
1326 if (unmap_all) {
1327 if (iova || size)
1328 goto unlock;
1329 size = U64_MAX;
1330 } else if (!size || size & (pgsize - 1) ||
1331 iova + size - 1 < iova || size > SIZE_MAX) {
1332 goto unlock;
1333 }
1334
1335 /* When dirty tracking is enabled, allow only min supported pgsize */
1336 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1337 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1338 goto unlock;
1339 }
1340
1341 WARN_ON((pgsize - 1) & PAGE_MASK);
1342 again:
1343 /*
1344 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1345 * avoid tracking individual mappings. This means that the granularity
1346 * of the original mapping was lost and the user was allowed to attempt
1347 * to unmap any range. Depending on the contiguousness of physical
1348 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1349 * or may not have worked. We only guaranteed unmap granularity
1350 * matching the original mapping; even though it was untracked here,
1351 * the original mappings are reflected in IOMMU mappings. This
1352 * resulted in a couple unusual behaviors. First, if a range is not
1353 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1354 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1355 * a zero sized unmap. Also, if an unmap request overlaps the first
1356 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1357 * This also returns success and the returned unmap size reflects the
1358 * actual size unmapped.
1359 *
1360 * We attempt to maintain compatibility with this "v1" interface, but
1361 * we take control out of the hands of the IOMMU. Therefore, an unmap
1362 * request offset from the beginning of the original mapping will
1363 * return success with zero sized unmap. And an unmap request covering
1364 * the first iova of mapping will unmap the entire range.
1365 *
1366 * The v2 version of this interface intends to be more deterministic.
1367 * Unmap requests must fully cover previous mappings. Multiple
1368 * mappings may still be unmaped by specifying large ranges, but there
1369 * must not be any previous mappings bisected by the range. An error
1370 * will be returned if these conditions are not met. The v2 interface
1371 * will only return success and a size of zero if there were no
1372 * mappings within the range.
1373 */
1374 if (iommu->v2 && !unmap_all) {
1375 dma = vfio_find_dma(iommu, iova, 1);
1376 if (dma && dma->iova != iova)
1377 goto unlock;
1378
1379 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1380 if (dma && dma->iova + dma->size != iova + size)
1381 goto unlock;
1382 }
1383
1384 ret = 0;
1385 n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1386
1387 while (n) {
1388 dma = rb_entry(n, struct vfio_dma, node);
1389 if (dma->iova >= iova + size)
1390 break;
1391
1392 if (!iommu->v2 && iova > dma->iova)
1393 break;
1394
1395 if (invalidate_vaddr) {
1396 if (dma->vaddr_invalid) {
1397 struct rb_node *last_n = n;
1398
1399 for (n = first_n; n != last_n; n = rb_next(n)) {
1400 dma = rb_entry(n,
1401 struct vfio_dma, node);
1402 dma->vaddr_invalid = false;
1403 iommu->vaddr_invalid_count--;
1404 }
1405 ret = -EINVAL;
1406 unmapped = 0;
1407 break;
1408 }
1409 dma->vaddr_invalid = true;
1410 iommu->vaddr_invalid_count++;
1411 unmapped += dma->size;
1412 n = rb_next(n);
1413 continue;
1414 }
1415
1416 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1417 if (dma_last == dma) {
1418 BUG_ON(++retries > 10);
1419 } else {
1420 dma_last = dma;
1421 retries = 0;
1422 }
1423
1424 vfio_notify_dma_unmap(iommu, dma);
1425 goto again;
1426 }
1427
1428 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1429 ret = update_user_bitmap(bitmap->data, iommu, dma,
1430 iova, pgsize);
1431 if (ret)
1432 break;
1433 }
1434
1435 unmapped += dma->size;
1436 n = rb_next(n);
1437 vfio_remove_dma(iommu, dma);
1438 }
1439
1440 unlock:
1441 mutex_unlock(&iommu->lock);
1442
1443 /* Report how much was unmapped */
1444 unmap->size = unmapped;
1445
1446 return ret;
1447 }
1448
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1449 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1450 unsigned long pfn, long npage, int prot)
1451 {
1452 struct vfio_domain *d;
1453 int ret;
1454
1455 list_for_each_entry(d, &iommu->domain_list, next) {
1456 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1457 npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1458 GFP_KERNEL_ACCOUNT);
1459 if (ret)
1460 goto unwind;
1461
1462 cond_resched();
1463 }
1464
1465 return 0;
1466
1467 unwind:
1468 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1469 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1470 cond_resched();
1471 }
1472
1473 return ret;
1474 }
1475
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1476 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1477 size_t map_size)
1478 {
1479 dma_addr_t iova = dma->iova;
1480 unsigned long vaddr = dma->vaddr;
1481 struct vfio_batch batch;
1482 size_t size = map_size;
1483 long npage;
1484 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1485 int ret = 0;
1486
1487 vfio_batch_init(&batch);
1488
1489 while (size) {
1490 /* Pin a contiguous chunk of memory */
1491 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1492 size >> PAGE_SHIFT, &pfn, limit,
1493 &batch);
1494 if (npage <= 0) {
1495 WARN_ON(!npage);
1496 ret = (int)npage;
1497 break;
1498 }
1499
1500 /* Map it! */
1501 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1502 dma->prot);
1503 if (ret) {
1504 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1505 npage, true);
1506 vfio_batch_unpin(&batch, dma);
1507 break;
1508 }
1509
1510 size -= npage << PAGE_SHIFT;
1511 dma->size += npage << PAGE_SHIFT;
1512 }
1513
1514 vfio_batch_fini(&batch);
1515 dma->iommu_mapped = true;
1516
1517 if (ret)
1518 vfio_remove_dma(iommu, dma);
1519
1520 return ret;
1521 }
1522
1523 /*
1524 * Check dma map request is within a valid iova range
1525 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1526 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1527 dma_addr_t start, dma_addr_t end)
1528 {
1529 struct list_head *iova = &iommu->iova_list;
1530 struct vfio_iova *node;
1531
1532 list_for_each_entry(node, iova, list) {
1533 if (start >= node->start && end <= node->end)
1534 return true;
1535 }
1536
1537 /*
1538 * Check for list_empty() as well since a container with
1539 * a single mdev device will have an empty list.
1540 */
1541 return list_empty(iova);
1542 }
1543
vfio_change_dma_owner(struct vfio_dma * dma)1544 static int vfio_change_dma_owner(struct vfio_dma *dma)
1545 {
1546 struct task_struct *task = current->group_leader;
1547 struct mm_struct *mm = current->mm;
1548 long npage = dma->locked_vm;
1549 bool lock_cap;
1550 int ret;
1551
1552 if (mm == dma->mm)
1553 return 0;
1554
1555 lock_cap = capable(CAP_IPC_LOCK);
1556 ret = mm_lock_acct(task, mm, lock_cap, npage);
1557 if (ret)
1558 return ret;
1559
1560 if (mmget_not_zero(dma->mm)) {
1561 mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1562 mmput(dma->mm);
1563 }
1564
1565 if (dma->task != task) {
1566 put_task_struct(dma->task);
1567 dma->task = get_task_struct(task);
1568 }
1569 mmdrop(dma->mm);
1570 dma->mm = mm;
1571 mmgrab(dma->mm);
1572 dma->lock_cap = lock_cap;
1573 return 0;
1574 }
1575
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1576 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1577 struct vfio_iommu_type1_dma_map *map)
1578 {
1579 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1580 dma_addr_t iova = map->iova;
1581 unsigned long vaddr = map->vaddr;
1582 size_t size = map->size;
1583 int ret = 0, prot = 0;
1584 size_t pgsize;
1585 struct vfio_dma *dma;
1586
1587 /* Verify that none of our __u64 fields overflow */
1588 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1589 return -EINVAL;
1590
1591 /* READ/WRITE from device perspective */
1592 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1593 prot |= IOMMU_WRITE;
1594 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1595 prot |= IOMMU_READ;
1596
1597 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1598 return -EINVAL;
1599
1600 mutex_lock(&iommu->lock);
1601
1602 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1603
1604 WARN_ON((pgsize - 1) & PAGE_MASK);
1605
1606 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1607 ret = -EINVAL;
1608 goto out_unlock;
1609 }
1610
1611 /* Don't allow IOVA or virtual address wrap */
1612 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1613 ret = -EINVAL;
1614 goto out_unlock;
1615 }
1616
1617 dma = vfio_find_dma(iommu, iova, size);
1618 if (set_vaddr) {
1619 if (!dma) {
1620 ret = -ENOENT;
1621 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1622 dma->size != size) {
1623 ret = -EINVAL;
1624 } else {
1625 ret = vfio_change_dma_owner(dma);
1626 if (ret)
1627 goto out_unlock;
1628 dma->vaddr = vaddr;
1629 dma->vaddr_invalid = false;
1630 iommu->vaddr_invalid_count--;
1631 }
1632 goto out_unlock;
1633 } else if (dma) {
1634 ret = -EEXIST;
1635 goto out_unlock;
1636 }
1637
1638 if (!iommu->dma_avail) {
1639 ret = -ENOSPC;
1640 goto out_unlock;
1641 }
1642
1643 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1644 ret = -EINVAL;
1645 goto out_unlock;
1646 }
1647
1648 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1649 if (!dma) {
1650 ret = -ENOMEM;
1651 goto out_unlock;
1652 }
1653
1654 iommu->dma_avail--;
1655 dma->iova = iova;
1656 dma->vaddr = vaddr;
1657 dma->prot = prot;
1658
1659 /*
1660 * We need to be able to both add to a task's locked memory and test
1661 * against the locked memory limit and we need to be able to do both
1662 * outside of this call path as pinning can be asynchronous via the
1663 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1664 * task_struct. Save the group_leader so that all DMA tracking uses
1665 * the same task, to make debugging easier. VM locked pages requires
1666 * an mm_struct, so grab the mm in case the task dies.
1667 */
1668 get_task_struct(current->group_leader);
1669 dma->task = current->group_leader;
1670 dma->lock_cap = capable(CAP_IPC_LOCK);
1671 dma->mm = current->mm;
1672 mmgrab(dma->mm);
1673
1674 dma->pfn_list = RB_ROOT;
1675
1676 /* Insert zero-sized and grow as we map chunks of it */
1677 vfio_link_dma(iommu, dma);
1678
1679 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1680 if (list_empty(&iommu->domain_list))
1681 dma->size = size;
1682 else
1683 ret = vfio_pin_map_dma(iommu, dma, size);
1684
1685 if (!ret && iommu->dirty_page_tracking) {
1686 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1687 if (ret)
1688 vfio_remove_dma(iommu, dma);
1689 }
1690
1691 out_unlock:
1692 mutex_unlock(&iommu->lock);
1693 return ret;
1694 }
1695
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1696 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1697 struct vfio_domain *domain)
1698 {
1699 struct vfio_batch batch;
1700 struct vfio_domain *d = NULL;
1701 struct rb_node *n;
1702 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1703 int ret;
1704
1705 /* Arbitrarily pick the first domain in the list for lookups */
1706 if (!list_empty(&iommu->domain_list))
1707 d = list_first_entry(&iommu->domain_list,
1708 struct vfio_domain, next);
1709
1710 vfio_batch_init(&batch);
1711
1712 n = rb_first(&iommu->dma_list);
1713
1714 for (; n; n = rb_next(n)) {
1715 struct vfio_dma *dma;
1716 dma_addr_t iova;
1717
1718 dma = rb_entry(n, struct vfio_dma, node);
1719 iova = dma->iova;
1720
1721 while (iova < dma->iova + dma->size) {
1722 phys_addr_t phys;
1723 size_t size;
1724
1725 if (dma->iommu_mapped) {
1726 phys_addr_t p;
1727 dma_addr_t i;
1728
1729 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1730 ret = -EINVAL;
1731 goto unwind;
1732 }
1733
1734 phys = iommu_iova_to_phys(d->domain, iova);
1735
1736 if (WARN_ON(!phys)) {
1737 iova += PAGE_SIZE;
1738 continue;
1739 }
1740
1741 size = PAGE_SIZE;
1742 p = phys + size;
1743 i = iova + size;
1744 while (i < dma->iova + dma->size &&
1745 p == iommu_iova_to_phys(d->domain, i)) {
1746 size += PAGE_SIZE;
1747 p += PAGE_SIZE;
1748 i += PAGE_SIZE;
1749 }
1750 } else {
1751 unsigned long pfn;
1752 unsigned long vaddr = dma->vaddr +
1753 (iova - dma->iova);
1754 size_t n = dma->iova + dma->size - iova;
1755 long npage;
1756
1757 npage = vfio_pin_pages_remote(dma, vaddr,
1758 n >> PAGE_SHIFT,
1759 &pfn, limit,
1760 &batch);
1761 if (npage <= 0) {
1762 WARN_ON(!npage);
1763 ret = (int)npage;
1764 goto unwind;
1765 }
1766
1767 phys = pfn << PAGE_SHIFT;
1768 size = npage << PAGE_SHIFT;
1769 }
1770
1771 ret = iommu_map(domain->domain, iova, phys, size,
1772 dma->prot | IOMMU_CACHE,
1773 GFP_KERNEL_ACCOUNT);
1774 if (ret) {
1775 if (!dma->iommu_mapped) {
1776 vfio_unpin_pages_remote(dma, iova,
1777 phys >> PAGE_SHIFT,
1778 size >> PAGE_SHIFT,
1779 true);
1780 vfio_batch_unpin(&batch, dma);
1781 }
1782 goto unwind;
1783 }
1784
1785 iova += size;
1786 }
1787 }
1788
1789 /* All dmas are now mapped, defer to second tree walk for unwind */
1790 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1791 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1792
1793 dma->iommu_mapped = true;
1794 }
1795
1796 vfio_batch_fini(&batch);
1797 return 0;
1798
1799 unwind:
1800 for (; n; n = rb_prev(n)) {
1801 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1802 dma_addr_t iova;
1803
1804 if (dma->iommu_mapped) {
1805 iommu_unmap(domain->domain, dma->iova, dma->size);
1806 continue;
1807 }
1808
1809 iova = dma->iova;
1810 while (iova < dma->iova + dma->size) {
1811 phys_addr_t phys, p;
1812 size_t size;
1813 dma_addr_t i;
1814
1815 phys = iommu_iova_to_phys(domain->domain, iova);
1816 if (!phys) {
1817 iova += PAGE_SIZE;
1818 continue;
1819 }
1820
1821 size = PAGE_SIZE;
1822 p = phys + size;
1823 i = iova + size;
1824 while (i < dma->iova + dma->size &&
1825 p == iommu_iova_to_phys(domain->domain, i)) {
1826 size += PAGE_SIZE;
1827 p += PAGE_SIZE;
1828 i += PAGE_SIZE;
1829 }
1830
1831 iommu_unmap(domain->domain, iova, size);
1832 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1833 size >> PAGE_SHIFT, true);
1834 }
1835 }
1836
1837 vfio_batch_fini(&batch);
1838 return ret;
1839 }
1840
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1841 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1842 struct iommu_group *iommu_group)
1843 {
1844 struct vfio_iommu_group *g;
1845
1846 list_for_each_entry(g, &domain->group_list, next) {
1847 if (g->iommu_group == iommu_group)
1848 return g;
1849 }
1850
1851 return NULL;
1852 }
1853
1854 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1855 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1856 struct iommu_group *iommu_group)
1857 {
1858 struct vfio_iommu_group *group;
1859 struct vfio_domain *domain;
1860
1861 list_for_each_entry(domain, &iommu->domain_list, next) {
1862 group = find_iommu_group(domain, iommu_group);
1863 if (group)
1864 return group;
1865 }
1866
1867 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1868 if (group->iommu_group == iommu_group)
1869 return group;
1870 return NULL;
1871 }
1872
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1873 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1874 phys_addr_t *base)
1875 {
1876 struct iommu_resv_region *region;
1877 bool ret = false;
1878
1879 list_for_each_entry(region, group_resv_regions, list) {
1880 /*
1881 * The presence of any 'real' MSI regions should take
1882 * precedence over the software-managed one if the
1883 * IOMMU driver happens to advertise both types.
1884 */
1885 if (region->type == IOMMU_RESV_MSI) {
1886 ret = false;
1887 break;
1888 }
1889
1890 if (region->type == IOMMU_RESV_SW_MSI) {
1891 *base = region->start;
1892 ret = true;
1893 }
1894 }
1895
1896 return ret;
1897 }
1898
1899 /*
1900 * This is a helper function to insert an address range to iova list.
1901 * The list is initially created with a single entry corresponding to
1902 * the IOMMU domain geometry to which the device group is attached.
1903 * The list aperture gets modified when a new domain is added to the
1904 * container if the new aperture doesn't conflict with the current one
1905 * or with any existing dma mappings. The list is also modified to
1906 * exclude any reserved regions associated with the device group.
1907 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1908 static int vfio_iommu_iova_insert(struct list_head *head,
1909 dma_addr_t start, dma_addr_t end)
1910 {
1911 struct vfio_iova *region;
1912
1913 region = kmalloc(sizeof(*region), GFP_KERNEL);
1914 if (!region)
1915 return -ENOMEM;
1916
1917 INIT_LIST_HEAD(®ion->list);
1918 region->start = start;
1919 region->end = end;
1920
1921 list_add_tail(®ion->list, head);
1922 return 0;
1923 }
1924
1925 /*
1926 * Check the new iommu aperture conflicts with existing aper or with any
1927 * existing dma mappings.
1928 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1929 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1930 dma_addr_t start, dma_addr_t end)
1931 {
1932 struct vfio_iova *first, *last;
1933 struct list_head *iova = &iommu->iova_list;
1934
1935 if (list_empty(iova))
1936 return false;
1937
1938 /* Disjoint sets, return conflict */
1939 first = list_first_entry(iova, struct vfio_iova, list);
1940 last = list_last_entry(iova, struct vfio_iova, list);
1941 if (start > last->end || end < first->start)
1942 return true;
1943
1944 /* Check for any existing dma mappings below the new start */
1945 if (start > first->start) {
1946 if (vfio_find_dma(iommu, first->start, start - first->start))
1947 return true;
1948 }
1949
1950 /* Check for any existing dma mappings beyond the new end */
1951 if (end < last->end) {
1952 if (vfio_find_dma(iommu, end + 1, last->end - end))
1953 return true;
1954 }
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Resize iommu iova aperture window. This is called only if the new
1961 * aperture has no conflict with existing aperture and dma mappings.
1962 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1963 static int vfio_iommu_aper_resize(struct list_head *iova,
1964 dma_addr_t start, dma_addr_t end)
1965 {
1966 struct vfio_iova *node, *next;
1967
1968 if (list_empty(iova))
1969 return vfio_iommu_iova_insert(iova, start, end);
1970
1971 /* Adjust iova list start */
1972 list_for_each_entry_safe(node, next, iova, list) {
1973 if (start < node->start)
1974 break;
1975 if (start >= node->start && start < node->end) {
1976 node->start = start;
1977 break;
1978 }
1979 /* Delete nodes before new start */
1980 list_del(&node->list);
1981 kfree(node);
1982 }
1983
1984 /* Adjust iova list end */
1985 list_for_each_entry_safe(node, next, iova, list) {
1986 if (end > node->end)
1987 continue;
1988 if (end > node->start && end <= node->end) {
1989 node->end = end;
1990 continue;
1991 }
1992 /* Delete nodes after new end */
1993 list_del(&node->list);
1994 kfree(node);
1995 }
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * Check reserved region conflicts with existing dma mappings
2002 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2003 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2004 struct list_head *resv_regions)
2005 {
2006 struct iommu_resv_region *region;
2007
2008 /* Check for conflict with existing dma mappings */
2009 list_for_each_entry(region, resv_regions, list) {
2010 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2011 continue;
2012
2013 if (vfio_find_dma(iommu, region->start, region->length))
2014 return true;
2015 }
2016
2017 return false;
2018 }
2019
2020 /*
2021 * Check iova region overlap with reserved regions and
2022 * exclude them from the iommu iova range
2023 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2024 static int vfio_iommu_resv_exclude(struct list_head *iova,
2025 struct list_head *resv_regions)
2026 {
2027 struct iommu_resv_region *resv;
2028 struct vfio_iova *n, *next;
2029
2030 list_for_each_entry(resv, resv_regions, list) {
2031 phys_addr_t start, end;
2032
2033 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2034 continue;
2035
2036 start = resv->start;
2037 end = resv->start + resv->length - 1;
2038
2039 list_for_each_entry_safe(n, next, iova, list) {
2040 int ret = 0;
2041
2042 /* No overlap */
2043 if (start > n->end || end < n->start)
2044 continue;
2045 /*
2046 * Insert a new node if current node overlaps with the
2047 * reserve region to exclude that from valid iova range.
2048 * Note that, new node is inserted before the current
2049 * node and finally the current node is deleted keeping
2050 * the list updated and sorted.
2051 */
2052 if (start > n->start)
2053 ret = vfio_iommu_iova_insert(&n->list, n->start,
2054 start - 1);
2055 if (!ret && end < n->end)
2056 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2057 n->end);
2058 if (ret)
2059 return ret;
2060
2061 list_del(&n->list);
2062 kfree(n);
2063 }
2064 }
2065
2066 if (list_empty(iova))
2067 return -EINVAL;
2068
2069 return 0;
2070 }
2071
vfio_iommu_resv_free(struct list_head * resv_regions)2072 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2073 {
2074 struct iommu_resv_region *n, *next;
2075
2076 list_for_each_entry_safe(n, next, resv_regions, list) {
2077 list_del(&n->list);
2078 kfree(n);
2079 }
2080 }
2081
vfio_iommu_iova_free(struct list_head * iova)2082 static void vfio_iommu_iova_free(struct list_head *iova)
2083 {
2084 struct vfio_iova *n, *next;
2085
2086 list_for_each_entry_safe(n, next, iova, list) {
2087 list_del(&n->list);
2088 kfree(n);
2089 }
2090 }
2091
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2092 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2093 struct list_head *iova_copy)
2094 {
2095 struct list_head *iova = &iommu->iova_list;
2096 struct vfio_iova *n;
2097 int ret;
2098
2099 list_for_each_entry(n, iova, list) {
2100 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2101 if (ret)
2102 goto out_free;
2103 }
2104
2105 return 0;
2106
2107 out_free:
2108 vfio_iommu_iova_free(iova_copy);
2109 return ret;
2110 }
2111
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2112 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2113 struct list_head *iova_copy)
2114 {
2115 struct list_head *iova = &iommu->iova_list;
2116
2117 vfio_iommu_iova_free(iova);
2118
2119 list_splice_tail(iova_copy, iova);
2120 }
2121
vfio_iommu_domain_alloc(struct device * dev,void * data)2122 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2123 {
2124 struct iommu_domain **domain = data;
2125
2126 *domain = iommu_paging_domain_alloc(dev);
2127 return 1; /* Don't iterate */
2128 }
2129
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2130 static int vfio_iommu_type1_attach_group(void *iommu_data,
2131 struct iommu_group *iommu_group, enum vfio_group_type type)
2132 {
2133 struct vfio_iommu *iommu = iommu_data;
2134 struct vfio_iommu_group *group;
2135 struct vfio_domain *domain, *d;
2136 bool resv_msi;
2137 phys_addr_t resv_msi_base = 0;
2138 struct iommu_domain_geometry *geo;
2139 LIST_HEAD(iova_copy);
2140 LIST_HEAD(group_resv_regions);
2141 int ret = -EBUSY;
2142
2143 mutex_lock(&iommu->lock);
2144
2145 /* Attach could require pinning, so disallow while vaddr is invalid. */
2146 if (iommu->vaddr_invalid_count)
2147 goto out_unlock;
2148
2149 /* Check for duplicates */
2150 ret = -EINVAL;
2151 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2152 goto out_unlock;
2153
2154 ret = -ENOMEM;
2155 group = kzalloc(sizeof(*group), GFP_KERNEL);
2156 if (!group)
2157 goto out_unlock;
2158 group->iommu_group = iommu_group;
2159
2160 if (type == VFIO_EMULATED_IOMMU) {
2161 list_add(&group->next, &iommu->emulated_iommu_groups);
2162 /*
2163 * An emulated IOMMU group cannot dirty memory directly, it can
2164 * only use interfaces that provide dirty tracking.
2165 * The iommu scope can only be promoted with the addition of a
2166 * dirty tracking group.
2167 */
2168 group->pinned_page_dirty_scope = true;
2169 ret = 0;
2170 goto out_unlock;
2171 }
2172
2173 ret = -ENOMEM;
2174 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2175 if (!domain)
2176 goto out_free_group;
2177
2178 /*
2179 * Going via the iommu_group iterator avoids races, and trivially gives
2180 * us a representative device for the IOMMU API call. We don't actually
2181 * want to iterate beyond the first device (if any).
2182 */
2183 iommu_group_for_each_dev(iommu_group, &domain->domain,
2184 vfio_iommu_domain_alloc);
2185 if (IS_ERR(domain->domain)) {
2186 ret = PTR_ERR(domain->domain);
2187 goto out_free_domain;
2188 }
2189
2190 ret = iommu_attach_group(domain->domain, group->iommu_group);
2191 if (ret)
2192 goto out_domain;
2193
2194 /* Get aperture info */
2195 geo = &domain->domain->geometry;
2196 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2197 geo->aperture_end)) {
2198 ret = -EINVAL;
2199 goto out_detach;
2200 }
2201
2202 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2203 if (ret)
2204 goto out_detach;
2205
2206 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2207 ret = -EINVAL;
2208 goto out_detach;
2209 }
2210
2211 /*
2212 * We don't want to work on the original iova list as the list
2213 * gets modified and in case of failure we have to retain the
2214 * original list. Get a copy here.
2215 */
2216 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2217 if (ret)
2218 goto out_detach;
2219
2220 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2221 geo->aperture_end);
2222 if (ret)
2223 goto out_detach;
2224
2225 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2226 if (ret)
2227 goto out_detach;
2228
2229 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2230
2231 INIT_LIST_HEAD(&domain->group_list);
2232 list_add(&group->next, &domain->group_list);
2233
2234 if (!allow_unsafe_interrupts &&
2235 !iommu_group_has_isolated_msi(iommu_group)) {
2236 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2237 __func__);
2238 ret = -EPERM;
2239 goto out_detach;
2240 }
2241
2242 /*
2243 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2244 * no-snoop set) then VFIO always turns this feature on because on Intel
2245 * platforms it optimizes KVM to disable wbinvd emulation.
2246 */
2247 if (domain->domain->ops->enforce_cache_coherency)
2248 domain->enforce_cache_coherency =
2249 domain->domain->ops->enforce_cache_coherency(
2250 domain->domain);
2251
2252 /*
2253 * Try to match an existing compatible domain. We don't want to
2254 * preclude an IOMMU driver supporting multiple bus_types and being
2255 * able to include different bus_types in the same IOMMU domain, so
2256 * we test whether the domains use the same iommu_ops rather than
2257 * testing if they're on the same bus_type.
2258 */
2259 list_for_each_entry(d, &iommu->domain_list, next) {
2260 if (d->domain->ops == domain->domain->ops &&
2261 d->enforce_cache_coherency ==
2262 domain->enforce_cache_coherency) {
2263 iommu_detach_group(domain->domain, group->iommu_group);
2264 if (!iommu_attach_group(d->domain,
2265 group->iommu_group)) {
2266 list_add(&group->next, &d->group_list);
2267 iommu_domain_free(domain->domain);
2268 kfree(domain);
2269 goto done;
2270 }
2271
2272 ret = iommu_attach_group(domain->domain,
2273 group->iommu_group);
2274 if (ret)
2275 goto out_domain;
2276 }
2277 }
2278
2279 /* replay mappings on new domains */
2280 ret = vfio_iommu_replay(iommu, domain);
2281 if (ret)
2282 goto out_detach;
2283
2284 if (resv_msi) {
2285 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2286 if (ret && ret != -ENODEV)
2287 goto out_detach;
2288 }
2289
2290 list_add(&domain->next, &iommu->domain_list);
2291 vfio_update_pgsize_bitmap(iommu);
2292 done:
2293 /* Delete the old one and insert new iova list */
2294 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2295
2296 /*
2297 * An iommu backed group can dirty memory directly and therefore
2298 * demotes the iommu scope until it declares itself dirty tracking
2299 * capable via the page pinning interface.
2300 */
2301 iommu->num_non_pinned_groups++;
2302 mutex_unlock(&iommu->lock);
2303 vfio_iommu_resv_free(&group_resv_regions);
2304
2305 return 0;
2306
2307 out_detach:
2308 iommu_detach_group(domain->domain, group->iommu_group);
2309 out_domain:
2310 iommu_domain_free(domain->domain);
2311 vfio_iommu_iova_free(&iova_copy);
2312 vfio_iommu_resv_free(&group_resv_regions);
2313 out_free_domain:
2314 kfree(domain);
2315 out_free_group:
2316 kfree(group);
2317 out_unlock:
2318 mutex_unlock(&iommu->lock);
2319 return ret;
2320 }
2321
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2322 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2323 {
2324 struct rb_node *node;
2325
2326 while ((node = rb_first(&iommu->dma_list)))
2327 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2328 }
2329
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2330 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2331 {
2332 struct rb_node *n, *p;
2333
2334 n = rb_first(&iommu->dma_list);
2335 for (; n; n = rb_next(n)) {
2336 struct vfio_dma *dma;
2337 long locked = 0, unlocked = 0;
2338
2339 dma = rb_entry(n, struct vfio_dma, node);
2340 unlocked += vfio_unmap_unpin(iommu, dma, false);
2341 p = rb_first(&dma->pfn_list);
2342 for (; p; p = rb_next(p)) {
2343 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2344 node);
2345
2346 if (!is_invalid_reserved_pfn(vpfn->pfn))
2347 locked++;
2348 }
2349 vfio_lock_acct(dma, locked - unlocked, true);
2350 }
2351 }
2352
2353 /*
2354 * Called when a domain is removed in detach. It is possible that
2355 * the removed domain decided the iova aperture window. Modify the
2356 * iova aperture with the smallest window among existing domains.
2357 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2358 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2359 struct list_head *iova_copy)
2360 {
2361 struct vfio_domain *domain;
2362 struct vfio_iova *node;
2363 dma_addr_t start = 0;
2364 dma_addr_t end = (dma_addr_t)~0;
2365
2366 if (list_empty(iova_copy))
2367 return;
2368
2369 list_for_each_entry(domain, &iommu->domain_list, next) {
2370 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2371
2372 if (geo->aperture_start > start)
2373 start = geo->aperture_start;
2374 if (geo->aperture_end < end)
2375 end = geo->aperture_end;
2376 }
2377
2378 /* Modify aperture limits. The new aper is either same or bigger */
2379 node = list_first_entry(iova_copy, struct vfio_iova, list);
2380 node->start = start;
2381 node = list_last_entry(iova_copy, struct vfio_iova, list);
2382 node->end = end;
2383 }
2384
2385 /*
2386 * Called when a group is detached. The reserved regions for that
2387 * group can be part of valid iova now. But since reserved regions
2388 * may be duplicated among groups, populate the iova valid regions
2389 * list again.
2390 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2391 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2392 struct list_head *iova_copy)
2393 {
2394 struct vfio_domain *d;
2395 struct vfio_iommu_group *g;
2396 struct vfio_iova *node;
2397 dma_addr_t start, end;
2398 LIST_HEAD(resv_regions);
2399 int ret;
2400
2401 if (list_empty(iova_copy))
2402 return -EINVAL;
2403
2404 list_for_each_entry(d, &iommu->domain_list, next) {
2405 list_for_each_entry(g, &d->group_list, next) {
2406 ret = iommu_get_group_resv_regions(g->iommu_group,
2407 &resv_regions);
2408 if (ret)
2409 goto done;
2410 }
2411 }
2412
2413 node = list_first_entry(iova_copy, struct vfio_iova, list);
2414 start = node->start;
2415 node = list_last_entry(iova_copy, struct vfio_iova, list);
2416 end = node->end;
2417
2418 /* purge the iova list and create new one */
2419 vfio_iommu_iova_free(iova_copy);
2420
2421 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2422 if (ret)
2423 goto done;
2424
2425 /* Exclude current reserved regions from iova ranges */
2426 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2427 done:
2428 vfio_iommu_resv_free(&resv_regions);
2429 return ret;
2430 }
2431
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2432 static void vfio_iommu_type1_detach_group(void *iommu_data,
2433 struct iommu_group *iommu_group)
2434 {
2435 struct vfio_iommu *iommu = iommu_data;
2436 struct vfio_domain *domain;
2437 struct vfio_iommu_group *group;
2438 bool update_dirty_scope = false;
2439 LIST_HEAD(iova_copy);
2440
2441 mutex_lock(&iommu->lock);
2442 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2443 if (group->iommu_group != iommu_group)
2444 continue;
2445 update_dirty_scope = !group->pinned_page_dirty_scope;
2446 list_del(&group->next);
2447 kfree(group);
2448
2449 if (list_empty(&iommu->emulated_iommu_groups) &&
2450 list_empty(&iommu->domain_list)) {
2451 WARN_ON(!list_empty(&iommu->device_list));
2452 vfio_iommu_unmap_unpin_all(iommu);
2453 }
2454 goto detach_group_done;
2455 }
2456
2457 /*
2458 * Get a copy of iova list. This will be used to update
2459 * and to replace the current one later. Please note that
2460 * we will leave the original list as it is if update fails.
2461 */
2462 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2463
2464 list_for_each_entry(domain, &iommu->domain_list, next) {
2465 group = find_iommu_group(domain, iommu_group);
2466 if (!group)
2467 continue;
2468
2469 iommu_detach_group(domain->domain, group->iommu_group);
2470 update_dirty_scope = !group->pinned_page_dirty_scope;
2471 list_del(&group->next);
2472 kfree(group);
2473 /*
2474 * Group ownership provides privilege, if the group list is
2475 * empty, the domain goes away. If it's the last domain with
2476 * iommu and external domain doesn't exist, then all the
2477 * mappings go away too. If it's the last domain with iommu and
2478 * external domain exist, update accounting
2479 */
2480 if (list_empty(&domain->group_list)) {
2481 if (list_is_singular(&iommu->domain_list)) {
2482 if (list_empty(&iommu->emulated_iommu_groups)) {
2483 WARN_ON(!list_empty(
2484 &iommu->device_list));
2485 vfio_iommu_unmap_unpin_all(iommu);
2486 } else {
2487 vfio_iommu_unmap_unpin_reaccount(iommu);
2488 }
2489 }
2490 iommu_domain_free(domain->domain);
2491 list_del(&domain->next);
2492 kfree(domain);
2493 vfio_iommu_aper_expand(iommu, &iova_copy);
2494 vfio_update_pgsize_bitmap(iommu);
2495 }
2496 break;
2497 }
2498
2499 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2500 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2501 else
2502 vfio_iommu_iova_free(&iova_copy);
2503
2504 detach_group_done:
2505 /*
2506 * Removal of a group without dirty tracking may allow the iommu scope
2507 * to be promoted.
2508 */
2509 if (update_dirty_scope) {
2510 iommu->num_non_pinned_groups--;
2511 if (iommu->dirty_page_tracking)
2512 vfio_iommu_populate_bitmap_full(iommu);
2513 }
2514 mutex_unlock(&iommu->lock);
2515 }
2516
vfio_iommu_type1_open(unsigned long arg)2517 static void *vfio_iommu_type1_open(unsigned long arg)
2518 {
2519 struct vfio_iommu *iommu;
2520
2521 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2522 if (!iommu)
2523 return ERR_PTR(-ENOMEM);
2524
2525 switch (arg) {
2526 case VFIO_TYPE1_IOMMU:
2527 break;
2528 case __VFIO_RESERVED_TYPE1_NESTING_IOMMU:
2529 case VFIO_TYPE1v2_IOMMU:
2530 iommu->v2 = true;
2531 break;
2532 default:
2533 kfree(iommu);
2534 return ERR_PTR(-EINVAL);
2535 }
2536
2537 INIT_LIST_HEAD(&iommu->domain_list);
2538 INIT_LIST_HEAD(&iommu->iova_list);
2539 iommu->dma_list = RB_ROOT;
2540 iommu->dma_avail = dma_entry_limit;
2541 mutex_init(&iommu->lock);
2542 mutex_init(&iommu->device_list_lock);
2543 INIT_LIST_HEAD(&iommu->device_list);
2544 iommu->pgsize_bitmap = PAGE_MASK;
2545 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2546
2547 return iommu;
2548 }
2549
vfio_release_domain(struct vfio_domain * domain)2550 static void vfio_release_domain(struct vfio_domain *domain)
2551 {
2552 struct vfio_iommu_group *group, *group_tmp;
2553
2554 list_for_each_entry_safe(group, group_tmp,
2555 &domain->group_list, next) {
2556 iommu_detach_group(domain->domain, group->iommu_group);
2557 list_del(&group->next);
2558 kfree(group);
2559 }
2560
2561 iommu_domain_free(domain->domain);
2562 }
2563
vfio_iommu_type1_release(void * iommu_data)2564 static void vfio_iommu_type1_release(void *iommu_data)
2565 {
2566 struct vfio_iommu *iommu = iommu_data;
2567 struct vfio_domain *domain, *domain_tmp;
2568 struct vfio_iommu_group *group, *next_group;
2569
2570 list_for_each_entry_safe(group, next_group,
2571 &iommu->emulated_iommu_groups, next) {
2572 list_del(&group->next);
2573 kfree(group);
2574 }
2575
2576 vfio_iommu_unmap_unpin_all(iommu);
2577
2578 list_for_each_entry_safe(domain, domain_tmp,
2579 &iommu->domain_list, next) {
2580 vfio_release_domain(domain);
2581 list_del(&domain->next);
2582 kfree(domain);
2583 }
2584
2585 vfio_iommu_iova_free(&iommu->iova_list);
2586
2587 kfree(iommu);
2588 }
2589
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2590 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2591 {
2592 struct vfio_domain *domain;
2593 int ret = 1;
2594
2595 mutex_lock(&iommu->lock);
2596 list_for_each_entry(domain, &iommu->domain_list, next) {
2597 if (!(domain->enforce_cache_coherency)) {
2598 ret = 0;
2599 break;
2600 }
2601 }
2602 mutex_unlock(&iommu->lock);
2603
2604 return ret;
2605 }
2606
vfio_iommu_has_emulated(struct vfio_iommu * iommu)2607 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2608 {
2609 bool ret;
2610
2611 mutex_lock(&iommu->lock);
2612 ret = !list_empty(&iommu->emulated_iommu_groups);
2613 mutex_unlock(&iommu->lock);
2614 return ret;
2615 }
2616
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2617 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2618 unsigned long arg)
2619 {
2620 switch (arg) {
2621 case VFIO_TYPE1_IOMMU:
2622 case VFIO_TYPE1v2_IOMMU:
2623 case VFIO_UNMAP_ALL:
2624 return 1;
2625 case VFIO_UPDATE_VADDR:
2626 /*
2627 * Disable this feature if mdevs are present. They cannot
2628 * safely pin/unpin/rw while vaddrs are being updated.
2629 */
2630 return iommu && !vfio_iommu_has_emulated(iommu);
2631 case VFIO_DMA_CC_IOMMU:
2632 if (!iommu)
2633 return 0;
2634 return vfio_domains_have_enforce_cache_coherency(iommu);
2635 default:
2636 return 0;
2637 }
2638 }
2639
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2640 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2641 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2642 size_t size)
2643 {
2644 struct vfio_info_cap_header *header;
2645 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2646
2647 header = vfio_info_cap_add(caps, size,
2648 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2649 if (IS_ERR(header))
2650 return PTR_ERR(header);
2651
2652 iova_cap = container_of(header,
2653 struct vfio_iommu_type1_info_cap_iova_range,
2654 header);
2655 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2656 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2657 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2658 return 0;
2659 }
2660
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2661 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2662 struct vfio_info_cap *caps)
2663 {
2664 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2665 struct vfio_iova *iova;
2666 size_t size;
2667 int iovas = 0, i = 0, ret;
2668
2669 list_for_each_entry(iova, &iommu->iova_list, list)
2670 iovas++;
2671
2672 if (!iovas) {
2673 /*
2674 * Return 0 as a container with a single mdev device
2675 * will have an empty list
2676 */
2677 return 0;
2678 }
2679
2680 size = struct_size(cap_iovas, iova_ranges, iovas);
2681
2682 cap_iovas = kzalloc(size, GFP_KERNEL);
2683 if (!cap_iovas)
2684 return -ENOMEM;
2685
2686 cap_iovas->nr_iovas = iovas;
2687
2688 list_for_each_entry(iova, &iommu->iova_list, list) {
2689 cap_iovas->iova_ranges[i].start = iova->start;
2690 cap_iovas->iova_ranges[i].end = iova->end;
2691 i++;
2692 }
2693
2694 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2695
2696 kfree(cap_iovas);
2697 return ret;
2698 }
2699
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2700 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2701 struct vfio_info_cap *caps)
2702 {
2703 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2704
2705 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2706 cap_mig.header.version = 1;
2707
2708 cap_mig.flags = 0;
2709 /* support minimum pgsize */
2710 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2711 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2712
2713 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2714 }
2715
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2716 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2717 struct vfio_info_cap *caps)
2718 {
2719 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2720
2721 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2722 cap_dma_avail.header.version = 1;
2723
2724 cap_dma_avail.avail = iommu->dma_avail;
2725
2726 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2727 sizeof(cap_dma_avail));
2728 }
2729
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2730 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2731 unsigned long arg)
2732 {
2733 struct vfio_iommu_type1_info info = {};
2734 unsigned long minsz;
2735 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2736 int ret;
2737
2738 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2739
2740 if (copy_from_user(&info, (void __user *)arg, minsz))
2741 return -EFAULT;
2742
2743 if (info.argsz < minsz)
2744 return -EINVAL;
2745
2746 minsz = min_t(size_t, info.argsz, sizeof(info));
2747
2748 mutex_lock(&iommu->lock);
2749 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2750
2751 info.iova_pgsizes = iommu->pgsize_bitmap;
2752
2753 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2754
2755 if (!ret)
2756 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2757
2758 if (!ret)
2759 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2760
2761 mutex_unlock(&iommu->lock);
2762
2763 if (ret)
2764 return ret;
2765
2766 if (caps.size) {
2767 info.flags |= VFIO_IOMMU_INFO_CAPS;
2768
2769 if (info.argsz < sizeof(info) + caps.size) {
2770 info.argsz = sizeof(info) + caps.size;
2771 } else {
2772 vfio_info_cap_shift(&caps, sizeof(info));
2773 if (copy_to_user((void __user *)arg +
2774 sizeof(info), caps.buf,
2775 caps.size)) {
2776 kfree(caps.buf);
2777 return -EFAULT;
2778 }
2779 info.cap_offset = sizeof(info);
2780 }
2781
2782 kfree(caps.buf);
2783 }
2784
2785 return copy_to_user((void __user *)arg, &info, minsz) ?
2786 -EFAULT : 0;
2787 }
2788
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2789 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2790 unsigned long arg)
2791 {
2792 struct vfio_iommu_type1_dma_map map;
2793 unsigned long minsz;
2794 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2795 VFIO_DMA_MAP_FLAG_VADDR;
2796
2797 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2798
2799 if (copy_from_user(&map, (void __user *)arg, minsz))
2800 return -EFAULT;
2801
2802 if (map.argsz < minsz || map.flags & ~mask)
2803 return -EINVAL;
2804
2805 return vfio_dma_do_map(iommu, &map);
2806 }
2807
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2808 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2809 unsigned long arg)
2810 {
2811 struct vfio_iommu_type1_dma_unmap unmap;
2812 struct vfio_bitmap bitmap = { 0 };
2813 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2814 VFIO_DMA_UNMAP_FLAG_VADDR |
2815 VFIO_DMA_UNMAP_FLAG_ALL;
2816 unsigned long minsz;
2817 int ret;
2818
2819 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2820
2821 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2822 return -EFAULT;
2823
2824 if (unmap.argsz < minsz || unmap.flags & ~mask)
2825 return -EINVAL;
2826
2827 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2828 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2829 VFIO_DMA_UNMAP_FLAG_VADDR)))
2830 return -EINVAL;
2831
2832 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2833 unsigned long pgshift;
2834
2835 if (unmap.argsz < (minsz + sizeof(bitmap)))
2836 return -EINVAL;
2837
2838 if (copy_from_user(&bitmap,
2839 (void __user *)(arg + minsz),
2840 sizeof(bitmap)))
2841 return -EFAULT;
2842
2843 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2844 return -EINVAL;
2845
2846 pgshift = __ffs(bitmap.pgsize);
2847 ret = verify_bitmap_size(unmap.size >> pgshift,
2848 bitmap.size);
2849 if (ret)
2850 return ret;
2851 }
2852
2853 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2854 if (ret)
2855 return ret;
2856
2857 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2858 -EFAULT : 0;
2859 }
2860
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2861 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2862 unsigned long arg)
2863 {
2864 struct vfio_iommu_type1_dirty_bitmap dirty;
2865 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2866 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2867 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2868 unsigned long minsz;
2869 int ret = 0;
2870
2871 if (!iommu->v2)
2872 return -EACCES;
2873
2874 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2875
2876 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2877 return -EFAULT;
2878
2879 if (dirty.argsz < minsz || dirty.flags & ~mask)
2880 return -EINVAL;
2881
2882 /* only one flag should be set at a time */
2883 if (__ffs(dirty.flags) != __fls(dirty.flags))
2884 return -EINVAL;
2885
2886 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2887 size_t pgsize;
2888
2889 mutex_lock(&iommu->lock);
2890 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2891 if (!iommu->dirty_page_tracking) {
2892 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2893 if (!ret)
2894 iommu->dirty_page_tracking = true;
2895 }
2896 mutex_unlock(&iommu->lock);
2897 return ret;
2898 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2899 mutex_lock(&iommu->lock);
2900 if (iommu->dirty_page_tracking) {
2901 iommu->dirty_page_tracking = false;
2902 vfio_dma_bitmap_free_all(iommu);
2903 }
2904 mutex_unlock(&iommu->lock);
2905 return 0;
2906 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2907 struct vfio_iommu_type1_dirty_bitmap_get range;
2908 unsigned long pgshift;
2909 size_t data_size = dirty.argsz - minsz;
2910 size_t iommu_pgsize;
2911
2912 if (!data_size || data_size < sizeof(range))
2913 return -EINVAL;
2914
2915 if (copy_from_user(&range, (void __user *)(arg + minsz),
2916 sizeof(range)))
2917 return -EFAULT;
2918
2919 if (range.iova + range.size < range.iova)
2920 return -EINVAL;
2921 if (!access_ok((void __user *)range.bitmap.data,
2922 range.bitmap.size))
2923 return -EINVAL;
2924
2925 pgshift = __ffs(range.bitmap.pgsize);
2926 ret = verify_bitmap_size(range.size >> pgshift,
2927 range.bitmap.size);
2928 if (ret)
2929 return ret;
2930
2931 mutex_lock(&iommu->lock);
2932
2933 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2934
2935 /* allow only smallest supported pgsize */
2936 if (range.bitmap.pgsize != iommu_pgsize) {
2937 ret = -EINVAL;
2938 goto out_unlock;
2939 }
2940 if (range.iova & (iommu_pgsize - 1)) {
2941 ret = -EINVAL;
2942 goto out_unlock;
2943 }
2944 if (!range.size || range.size & (iommu_pgsize - 1)) {
2945 ret = -EINVAL;
2946 goto out_unlock;
2947 }
2948
2949 if (iommu->dirty_page_tracking)
2950 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2951 iommu, range.iova,
2952 range.size,
2953 range.bitmap.pgsize);
2954 else
2955 ret = -EINVAL;
2956 out_unlock:
2957 mutex_unlock(&iommu->lock);
2958
2959 return ret;
2960 }
2961
2962 return -EINVAL;
2963 }
2964
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2965 static long vfio_iommu_type1_ioctl(void *iommu_data,
2966 unsigned int cmd, unsigned long arg)
2967 {
2968 struct vfio_iommu *iommu = iommu_data;
2969
2970 switch (cmd) {
2971 case VFIO_CHECK_EXTENSION:
2972 return vfio_iommu_type1_check_extension(iommu, arg);
2973 case VFIO_IOMMU_GET_INFO:
2974 return vfio_iommu_type1_get_info(iommu, arg);
2975 case VFIO_IOMMU_MAP_DMA:
2976 return vfio_iommu_type1_map_dma(iommu, arg);
2977 case VFIO_IOMMU_UNMAP_DMA:
2978 return vfio_iommu_type1_unmap_dma(iommu, arg);
2979 case VFIO_IOMMU_DIRTY_PAGES:
2980 return vfio_iommu_type1_dirty_pages(iommu, arg);
2981 default:
2982 return -ENOTTY;
2983 }
2984 }
2985
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)2986 static void vfio_iommu_type1_register_device(void *iommu_data,
2987 struct vfio_device *vdev)
2988 {
2989 struct vfio_iommu *iommu = iommu_data;
2990
2991 if (!vdev->ops->dma_unmap)
2992 return;
2993
2994 /*
2995 * list_empty(&iommu->device_list) is tested under the iommu->lock while
2996 * iteration for dma_unmap must be done under the device_list_lock.
2997 * Holding both locks here allows avoiding the device_list_lock in
2998 * several fast paths. See vfio_notify_dma_unmap()
2999 */
3000 mutex_lock(&iommu->lock);
3001 mutex_lock(&iommu->device_list_lock);
3002 list_add(&vdev->iommu_entry, &iommu->device_list);
3003 mutex_unlock(&iommu->device_list_lock);
3004 mutex_unlock(&iommu->lock);
3005 }
3006
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3007 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3008 struct vfio_device *vdev)
3009 {
3010 struct vfio_iommu *iommu = iommu_data;
3011
3012 if (!vdev->ops->dma_unmap)
3013 return;
3014
3015 mutex_lock(&iommu->lock);
3016 mutex_lock(&iommu->device_list_lock);
3017 list_del(&vdev->iommu_entry);
3018 mutex_unlock(&iommu->device_list_lock);
3019 mutex_unlock(&iommu->lock);
3020 }
3021
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3022 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3023 dma_addr_t user_iova, void *data,
3024 size_t count, bool write,
3025 size_t *copied)
3026 {
3027 struct mm_struct *mm;
3028 unsigned long vaddr;
3029 struct vfio_dma *dma;
3030 bool kthread = current->mm == NULL;
3031 size_t offset;
3032
3033 *copied = 0;
3034
3035 dma = vfio_find_dma(iommu, user_iova, 1);
3036 if (!dma)
3037 return -EINVAL;
3038
3039 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3040 !(dma->prot & IOMMU_READ))
3041 return -EPERM;
3042
3043 mm = dma->mm;
3044 if (!mmget_not_zero(mm))
3045 return -EPERM;
3046
3047 if (kthread)
3048 kthread_use_mm(mm);
3049 else if (current->mm != mm)
3050 goto out;
3051
3052 offset = user_iova - dma->iova;
3053
3054 if (count > dma->size - offset)
3055 count = dma->size - offset;
3056
3057 vaddr = dma->vaddr + offset;
3058
3059 if (write) {
3060 *copied = copy_to_user((void __user *)vaddr, data,
3061 count) ? 0 : count;
3062 if (*copied && iommu->dirty_page_tracking) {
3063 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3064 /*
3065 * Bitmap populated with the smallest supported page
3066 * size
3067 */
3068 bitmap_set(dma->bitmap, offset >> pgshift,
3069 ((offset + *copied - 1) >> pgshift) -
3070 (offset >> pgshift) + 1);
3071 }
3072 } else
3073 *copied = copy_from_user(data, (void __user *)vaddr,
3074 count) ? 0 : count;
3075 if (kthread)
3076 kthread_unuse_mm(mm);
3077 out:
3078 mmput(mm);
3079 return *copied ? 0 : -EFAULT;
3080 }
3081
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3082 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3083 void *data, size_t count, bool write)
3084 {
3085 struct vfio_iommu *iommu = iommu_data;
3086 int ret = 0;
3087 size_t done;
3088
3089 mutex_lock(&iommu->lock);
3090
3091 if (WARN_ONCE(iommu->vaddr_invalid_count,
3092 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3093 ret = -EBUSY;
3094 goto out;
3095 }
3096
3097 while (count > 0) {
3098 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3099 count, write, &done);
3100 if (ret)
3101 break;
3102
3103 count -= done;
3104 data += done;
3105 user_iova += done;
3106 }
3107
3108 out:
3109 mutex_unlock(&iommu->lock);
3110 return ret;
3111 }
3112
3113 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3114 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3115 struct iommu_group *iommu_group)
3116 {
3117 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3118 struct vfio_iommu *iommu = iommu_data;
3119 struct vfio_domain *d;
3120
3121 if (!iommu || !iommu_group)
3122 return ERR_PTR(-EINVAL);
3123
3124 mutex_lock(&iommu->lock);
3125 list_for_each_entry(d, &iommu->domain_list, next) {
3126 if (find_iommu_group(d, iommu_group)) {
3127 domain = d->domain;
3128 break;
3129 }
3130 }
3131 mutex_unlock(&iommu->lock);
3132
3133 return domain;
3134 }
3135
3136 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3137 .name = "vfio-iommu-type1",
3138 .owner = THIS_MODULE,
3139 .open = vfio_iommu_type1_open,
3140 .release = vfio_iommu_type1_release,
3141 .ioctl = vfio_iommu_type1_ioctl,
3142 .attach_group = vfio_iommu_type1_attach_group,
3143 .detach_group = vfio_iommu_type1_detach_group,
3144 .pin_pages = vfio_iommu_type1_pin_pages,
3145 .unpin_pages = vfio_iommu_type1_unpin_pages,
3146 .register_device = vfio_iommu_type1_register_device,
3147 .unregister_device = vfio_iommu_type1_unregister_device,
3148 .dma_rw = vfio_iommu_type1_dma_rw,
3149 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3150 };
3151
vfio_iommu_type1_init(void)3152 static int __init vfio_iommu_type1_init(void)
3153 {
3154 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3155 }
3156
vfio_iommu_type1_cleanup(void)3157 static void __exit vfio_iommu_type1_cleanup(void)
3158 {
3159 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3160 }
3161
3162 module_init(vfio_iommu_type1_init);
3163 module_exit(vfio_iommu_type1_cleanup);
3164
3165 MODULE_VERSION(DRIVER_VERSION);
3166 MODULE_LICENSE("GPL v2");
3167 MODULE_AUTHOR(DRIVER_AUTHOR);
3168 MODULE_DESCRIPTION(DRIVER_DESC);
3169