1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/rwsem.h> 19 #include <linux/list.h> 20 #include <linux/spinlock.h> 21 #include <linux/notifier.h> 22 23 /* 24 * All voltages, currents, charges, energies, time and temperatures in uV, 25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 26 * stated. It's driver's job to convert its raw values to units in which 27 * this class operates. 28 */ 29 30 /* 31 * For systems where the charger determines the maximum battery capacity 32 * the min and max fields should be used to present these values to user 33 * space. Unused/unknown fields will not appear in sysfs. 34 */ 35 36 enum { 37 POWER_SUPPLY_STATUS_UNKNOWN = 0, 38 POWER_SUPPLY_STATUS_CHARGING, 39 POWER_SUPPLY_STATUS_DISCHARGING, 40 POWER_SUPPLY_STATUS_NOT_CHARGING, 41 POWER_SUPPLY_STATUS_FULL, 42 }; 43 44 /* What algorithm is the charger using? */ 45 enum power_supply_charge_type { 46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 47 POWER_SUPPLY_CHARGE_TYPE_NONE, 48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 55 }; 56 57 enum { 58 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 59 POWER_SUPPLY_HEALTH_GOOD, 60 POWER_SUPPLY_HEALTH_OVERHEAT, 61 POWER_SUPPLY_HEALTH_DEAD, 62 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE, 64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 65 POWER_SUPPLY_HEALTH_COLD, 66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 68 POWER_SUPPLY_HEALTH_OVERCURRENT, 69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 70 POWER_SUPPLY_HEALTH_WARM, 71 POWER_SUPPLY_HEALTH_COOL, 72 POWER_SUPPLY_HEALTH_HOT, 73 POWER_SUPPLY_HEALTH_NO_BATTERY, 74 POWER_SUPPLY_HEALTH_BLOWN_FUSE, 75 POWER_SUPPLY_HEALTH_CELL_IMBALANCE, 76 }; 77 78 enum { 79 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 80 POWER_SUPPLY_TECHNOLOGY_NiMH, 81 POWER_SUPPLY_TECHNOLOGY_LION, 82 POWER_SUPPLY_TECHNOLOGY_LIPO, 83 POWER_SUPPLY_TECHNOLOGY_LiFe, 84 POWER_SUPPLY_TECHNOLOGY_NiCd, 85 POWER_SUPPLY_TECHNOLOGY_LiMn, 86 }; 87 88 enum { 89 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 90 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 91 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 92 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 93 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 94 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 95 }; 96 97 enum { 98 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 99 POWER_SUPPLY_SCOPE_SYSTEM, 100 POWER_SUPPLY_SCOPE_DEVICE, 101 }; 102 103 enum power_supply_property { 104 /* Properties of type `int' */ 105 POWER_SUPPLY_PROP_STATUS = 0, 106 POWER_SUPPLY_PROP_CHARGE_TYPE, 107 POWER_SUPPLY_PROP_CHARGE_TYPES, 108 POWER_SUPPLY_PROP_HEALTH, 109 POWER_SUPPLY_PROP_PRESENT, 110 POWER_SUPPLY_PROP_ONLINE, 111 POWER_SUPPLY_PROP_AUTHENTIC, 112 POWER_SUPPLY_PROP_TECHNOLOGY, 113 POWER_SUPPLY_PROP_CYCLE_COUNT, 114 POWER_SUPPLY_PROP_VOLTAGE_MAX, 115 POWER_SUPPLY_PROP_VOLTAGE_MIN, 116 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 117 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 118 POWER_SUPPLY_PROP_VOLTAGE_NOW, 119 POWER_SUPPLY_PROP_VOLTAGE_AVG, 120 POWER_SUPPLY_PROP_VOLTAGE_OCV, 121 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 122 POWER_SUPPLY_PROP_CURRENT_MAX, 123 POWER_SUPPLY_PROP_CURRENT_NOW, 124 POWER_SUPPLY_PROP_CURRENT_AVG, 125 POWER_SUPPLY_PROP_CURRENT_BOOT, 126 POWER_SUPPLY_PROP_POWER_NOW, 127 POWER_SUPPLY_PROP_POWER_AVG, 128 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 129 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 130 POWER_SUPPLY_PROP_CHARGE_FULL, 131 POWER_SUPPLY_PROP_CHARGE_EMPTY, 132 POWER_SUPPLY_PROP_CHARGE_NOW, 133 POWER_SUPPLY_PROP_CHARGE_AVG, 134 POWER_SUPPLY_PROP_CHARGE_COUNTER, 135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 137 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 138 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 139 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 140 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 141 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 142 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 143 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 144 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 145 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 146 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 147 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 148 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 149 POWER_SUPPLY_PROP_ENERGY_FULL, 150 POWER_SUPPLY_PROP_ENERGY_EMPTY, 151 POWER_SUPPLY_PROP_ENERGY_NOW, 152 POWER_SUPPLY_PROP_ENERGY_AVG, 153 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 154 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 155 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 156 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 157 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 158 POWER_SUPPLY_PROP_TEMP, 159 POWER_SUPPLY_PROP_TEMP_MAX, 160 POWER_SUPPLY_PROP_TEMP_MIN, 161 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 162 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 163 POWER_SUPPLY_PROP_TEMP_AMBIENT, 164 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 165 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 166 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 167 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 168 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 169 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 170 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 171 POWER_SUPPLY_PROP_USB_TYPE, 172 POWER_SUPPLY_PROP_SCOPE, 173 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 174 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 175 POWER_SUPPLY_PROP_CALIBRATE, 176 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 177 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 178 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 179 /* Properties of type `const char *' */ 180 POWER_SUPPLY_PROP_MODEL_NAME, 181 POWER_SUPPLY_PROP_MANUFACTURER, 182 POWER_SUPPLY_PROP_SERIAL_NUMBER, 183 }; 184 185 enum power_supply_type { 186 POWER_SUPPLY_TYPE_UNKNOWN = 0, 187 POWER_SUPPLY_TYPE_BATTERY, 188 POWER_SUPPLY_TYPE_UPS, 189 POWER_SUPPLY_TYPE_MAINS, 190 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 191 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 192 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 193 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 194 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 195 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 196 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 197 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 198 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 199 }; 200 201 enum power_supply_usb_type { 202 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 203 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 204 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 205 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 206 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 207 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 208 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 209 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 210 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 211 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 212 }; 213 214 enum power_supply_charge_behaviour { 215 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 216 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 217 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE, 218 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 219 }; 220 221 enum power_supply_notifier_events { 222 PSY_EVENT_PROP_CHANGED, 223 }; 224 225 union power_supply_propval { 226 int intval; 227 const char *strval; 228 }; 229 230 struct device_node; 231 struct power_supply; 232 233 /* Run-time specific power supply configuration */ 234 struct power_supply_config { 235 struct fwnode_handle *fwnode; 236 237 /* Driver private data */ 238 void *drv_data; 239 240 /* Device specific sysfs attributes */ 241 const struct attribute_group **attr_grp; 242 243 char **supplied_to; 244 size_t num_supplicants; 245 246 bool no_wakeup_source; 247 }; 248 249 /* Description of power supply */ 250 struct power_supply_desc { 251 const char *name; 252 enum power_supply_type type; 253 u8 charge_behaviours; 254 u32 charge_types; 255 u32 usb_types; 256 const enum power_supply_property *properties; 257 size_t num_properties; 258 259 /* 260 * Functions for drivers implementing power supply class. 261 * These shouldn't be called directly by other drivers for accessing 262 * this power supply. Instead use power_supply_*() functions (for 263 * example power_supply_get_property()). 264 */ 265 int (*get_property)(struct power_supply *psy, 266 enum power_supply_property psp, 267 union power_supply_propval *val); 268 int (*set_property)(struct power_supply *psy, 269 enum power_supply_property psp, 270 const union power_supply_propval *val); 271 /* 272 * property_is_writeable() will be called during registration 273 * of power supply. If this happens during device probe then it must 274 * not access internal data of device (because probe did not end). 275 */ 276 int (*property_is_writeable)(struct power_supply *psy, 277 enum power_supply_property psp); 278 void (*external_power_changed)(struct power_supply *psy); 279 280 /* 281 * Set if thermal zone should not be created for this power supply. 282 * For example for virtual supplies forwarding calls to actual 283 * sensors or other supplies. 284 */ 285 bool no_thermal; 286 /* For APM emulation, think legacy userspace. */ 287 int use_for_apm; 288 }; 289 290 struct power_supply_ext { 291 const char *const name; 292 u8 charge_behaviours; 293 u32 charge_types; 294 const enum power_supply_property *properties; 295 size_t num_properties; 296 297 int (*get_property)(struct power_supply *psy, 298 const struct power_supply_ext *ext, 299 void *data, 300 enum power_supply_property psp, 301 union power_supply_propval *val); 302 int (*set_property)(struct power_supply *psy, 303 const struct power_supply_ext *ext, 304 void *data, 305 enum power_supply_property psp, 306 const union power_supply_propval *val); 307 int (*property_is_writeable)(struct power_supply *psy, 308 const struct power_supply_ext *ext, 309 void *data, 310 enum power_supply_property psp); 311 }; 312 313 struct power_supply { 314 const struct power_supply_desc *desc; 315 316 char **supplied_to; 317 size_t num_supplicants; 318 319 char **supplied_from; 320 size_t num_supplies; 321 322 /* Driver private data */ 323 void *drv_data; 324 325 /* private */ 326 struct device dev; 327 struct work_struct changed_work; 328 struct delayed_work deferred_register_work; 329 spinlock_t changed_lock; 330 bool changed; 331 bool update_groups; 332 bool initialized; 333 bool removing; 334 atomic_t use_cnt; 335 struct power_supply_battery_info *battery_info; 336 struct rw_semaphore extensions_sem; /* protects "extensions" */ 337 struct list_head extensions; 338 #ifdef CONFIG_THERMAL 339 struct thermal_zone_device *tzd; 340 struct thermal_cooling_device *tcd; 341 #endif 342 343 #ifdef CONFIG_LEDS_TRIGGERS 344 struct led_trigger *trig; 345 struct led_trigger *charging_trig; 346 struct led_trigger *full_trig; 347 struct led_trigger *charging_blink_full_solid_trig; 348 struct led_trigger *charging_orange_full_green_trig; 349 #endif 350 }; 351 352 #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev) 353 354 /* 355 * This is recommended structure to specify static power supply parameters. 356 * Generic one, parametrizable for different power supplies. Power supply 357 * class itself does not use it, but that's what implementing most platform 358 * drivers, should try reuse for consistency. 359 */ 360 361 struct power_supply_info { 362 const char *name; 363 int technology; 364 int voltage_max_design; 365 int voltage_min_design; 366 int charge_full_design; 367 int charge_empty_design; 368 int energy_full_design; 369 int energy_empty_design; 370 int use_for_apm; 371 }; 372 373 struct power_supply_battery_ocv_table { 374 int ocv; /* microVolts */ 375 int capacity; /* percent */ 376 }; 377 378 struct power_supply_resistance_temp_table { 379 int temp; /* celsius */ 380 int resistance; /* internal resistance percent */ 381 }; 382 383 struct power_supply_vbat_ri_table { 384 int vbat_uv; /* Battery voltage in microvolt */ 385 int ri_uohm; /* Internal resistance in microohm */ 386 }; 387 388 /** 389 * struct power_supply_maintenance_charge_table - setting for maintenace charging 390 * @charge_current_max_ua: maintenance charging current that is used to keep 391 * the charge of the battery full as current is consumed after full charging. 392 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 393 * reach this voltage the maintenance charging current is turned off. It is 394 * turned back on if we fall below this voltage. 395 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 396 * lower than the constant_charge_voltage_max_uv. We can apply this settings 397 * charge_current_max_ua until we get back up to this voltage. 398 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 399 * time in minutes. We will only use maintenance charging in this setting 400 * for a certain amount of time, then we will first move to the next 401 * maintenance charge current and voltage pair in respective array and wait 402 * for the next safety timer timeout, or, if we reached the last maintencance 403 * charging setting, disable charging until we reach 404 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 405 * These timers should be chosen to align with the typical discharge curve 406 * for the battery. 407 * 408 * Ordinary CC/CV charging will stop charging when the charge current goes 409 * below charge_term_current_ua, and then restart it (if the device is still 410 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 411 * consumer products because the power usage while connected to a charger is 412 * not zero, and devices are not manufactured to draw power directly from the 413 * charger: instead they will at all times dissipate the battery a little, like 414 * the power used in standby mode. This will over time give a charge graph 415 * such as this: 416 * 417 * Energy 418 * ^ ... ... ... ... ... ... ... 419 * | . . . . . . . . . . . . . 420 * | .. . .. . .. . .. . .. . .. . .. 421 * |. .. .. .. .. .. .. 422 * +-------------------------------------------------------------------> t 423 * 424 * Practically this means that the Li-ions are wandering back and forth in the 425 * battery and this causes degeneration of the battery anode and cathode. 426 * To prolong the life of the battery, maintenance charging is applied after 427 * reaching charge_term_current_ua to hold up the charge in the battery while 428 * consuming power, thus lowering the wear on the battery: 429 * 430 * Energy 431 * ^ ....................................... 432 * | . ...................... 433 * | .. 434 * |. 435 * +-------------------------------------------------------------------> t 436 * 437 * Maintenance charging uses the voltages from this table: a table of settings 438 * is traversed using a slightly lower current and voltage than what is used for 439 * CC/CV charging. The maintenance charging will for safety reasons not go on 440 * indefinately: we lower the current and voltage with successive maintenance 441 * settings, then disable charging completely after we reach the last one, 442 * and after that we do not restart charging until we reach 443 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 444 * ordinary CC/CV charging from there. 445 * 446 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 447 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 448 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 449 * After this the charge cycle is restarted waiting for 450 * charge_restart_voltage_uv. 451 * 452 * For most mobile electronics this type of maintenance charging is enough for 453 * the user to disconnect the device and make use of it before both maintenance 454 * charging cycles are complete, if the current and voltage has been chosen 455 * appropriately. These need to be determined from battery discharge curves 456 * and expected standby current. 457 * 458 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 459 * charging, ordinary CC/CV charging is restarted. This can happen if the 460 * device is e.g. actively used during charging, so more current is drawn than 461 * the expected stand-by current. Also overvoltage protection will be applied 462 * as usual. 463 */ 464 struct power_supply_maintenance_charge_table { 465 int charge_current_max_ua; 466 int charge_voltage_max_uv; 467 int charge_safety_timer_minutes; 468 }; 469 470 #define POWER_SUPPLY_OCV_TEMP_MAX 20 471 472 /** 473 * struct power_supply_battery_info - information about batteries 474 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 475 * @energy_full_design_uwh: energy content when fully charged in microwatt 476 * hours 477 * @charge_full_design_uah: charge content when fully charged in microampere 478 * hours 479 * @voltage_min_design_uv: minimum voltage across the poles when the battery 480 * is at minimum voltage level in microvolts. If the voltage drops below this 481 * level the battery will need precharging when using CC/CV charging. 482 * @voltage_max_design_uv: voltage across the poles when the battery is fully 483 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 484 * printed on the label of the battery. 485 * @tricklecharge_current_ua: the tricklecharge current used when trickle 486 * charging the battery in microamperes. This is the charging phase when the 487 * battery is completely empty and we need to carefully trickle in some 488 * charge until we reach the precharging voltage. 489 * @precharge_current_ua: current to use in the precharge phase in microamperes, 490 * the precharge rate is limited by limiting the current to this value. 491 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 492 * microvolts. When we pass this voltage we will nominally switch over to the 493 * CC (constant current) charging phase defined by constant_charge_current_ua 494 * and constant_charge_voltage_max_uv. 495 * @charge_term_current_ua: when the current in the CV (constant voltage) 496 * charging phase drops below this value in microamperes the charging will 497 * terminate completely and not restart until the voltage over the battery 498 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 499 * @charge_restart_voltage_uv: when the battery has been fully charged by 500 * CC/CV charging and charging has been disabled, and the voltage subsequently 501 * drops below this value in microvolts, the charging will be restarted 502 * (typically using CV charging). 503 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 504 * voltage_max_design_uv and we reach this voltage level, all charging must 505 * stop and emergency procedures take place, such as shutting down the system 506 * in some cases. 507 * @constant_charge_current_max_ua: current in microamperes to use in the CC 508 * (constant current) charging phase. The charging rate is limited 509 * by this current. This is the main charging phase and as the current is 510 * constant into the battery the voltage slowly ascends to 511 * constant_charge_voltage_max_uv. 512 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 513 * the CC (constant current) charging phase and the beginning of the CV 514 * (constant voltage) charging phase. 515 * @maintenance_charge: an array of maintenance charging settings to be used 516 * after the main CC/CV charging phase is complete. 517 * @maintenance_charge_size: the number of maintenance charging settings in 518 * maintenance_charge. 519 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 520 * enters low alert temperature, i.e. if the internal temperature is between 521 * temp_alert_min and temp_min. No matter the charging phase, this 522 * and alert_high_temp_charge_voltage_uv will be applied. 523 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 524 * but for the charging voltage. 525 * @alert_high_temp_charge_current_ua: The charging current to use if the 526 * battery enters high alert temperature, i.e. if the internal temperature is 527 * between temp_alert_max and temp_max. No matter the charging phase, this 528 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 529 * the charging current as an evasive manouver. 530 * @alert_high_temp_charge_voltage_uv: Same as 531 * alert_high_temp_charge_current_ua, but for the charging voltage. 532 * @factory_internal_resistance_uohm: the internal resistance of the battery 533 * at fabrication time, expressed in microohms. This resistance will vary 534 * depending on the lifetime and charge of the battery, so this is just a 535 * nominal ballpark figure. This internal resistance is given for the state 536 * when the battery is discharging. 537 * @factory_internal_resistance_charging_uohm: the internal resistance of the 538 * battery at fabrication time while charging, expressed in microohms. 539 * The charging process will affect the internal resistance of the battery 540 * so this value provides a better resistance under these circumstances. 541 * This resistance will vary depending on the lifetime and charge of the 542 * battery, so this is just a nominal ballpark figure. 543 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 544 * temperature indices. This is an array of temperatures in degrees Celsius 545 * indicating which capacity table to use for a certain temperature, since 546 * the capacity for reasons of chemistry will be different at different 547 * temperatures. Determining capacity is a multivariate problem and the 548 * temperature is the first variable we determine. 549 * @temp_ambient_alert_min: the battery will go outside of operating conditions 550 * when the ambient temperature goes below this temperature in degrees 551 * Celsius. 552 * @temp_ambient_alert_max: the battery will go outside of operating conditions 553 * when the ambient temperature goes above this temperature in degrees 554 * Celsius. 555 * @temp_alert_min: the battery should issue an alert if the internal 556 * temperature goes below this temperature in degrees Celsius. 557 * @temp_alert_max: the battery should issue an alert if the internal 558 * temperature goes above this temperature in degrees Celsius. 559 * @temp_min: the battery will go outside of operating conditions when 560 * the internal temperature goes below this temperature in degrees Celsius. 561 * Normally this means the system should shut down. 562 * @temp_max: the battery will go outside of operating conditions when 563 * the internal temperature goes above this temperature in degrees Celsius. 564 * Normally this means the system should shut down. 565 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 566 * ocv_table and a size for each entry in ocv_table_size. These arrays 567 * determine the capacity in percent in relation to the voltage in microvolts 568 * at the indexed temperature. 569 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 570 * each entry in the array of capacity arrays in ocv_table. 571 * @resist_table: this is a table that correlates a battery temperature to the 572 * expected internal resistance at this temperature. The resistance is given 573 * as a percentage of factory_internal_resistance_uohm. Knowing the 574 * resistance of the battery is usually necessary for calculating the open 575 * circuit voltage (OCV) that is then used with the ocv_table to calculate 576 * the capacity of the battery. The resist_table must be ordered descending 577 * by temperature: highest temperature with lowest resistance first, lowest 578 * temperature with highest resistance last. 579 * @resist_table_size: the number of items in the resist_table. 580 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 581 * to internal resistance (Ri). The resistance is given in microohm for the 582 * corresponding voltage in microvolts. The internal resistance is used to 583 * determine the open circuit voltage so that we can determine the capacity 584 * of the battery. These voltages to resistance tables apply when the battery 585 * is discharging. The table must be ordered descending by voltage: highest 586 * voltage first. 587 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 588 * table. 589 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 590 * when the battery is charging. Being under charge changes the battery's 591 * internal resistance characteristics so a separate table is needed.* 592 * The table must be ordered descending by voltage: highest voltage first. 593 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 594 * table. 595 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 596 * in ohms for this battery, if an identification resistor is mounted 597 * between a third battery terminal and ground. This scheme is used by a lot 598 * of mobile device batteries. 599 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 600 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 601 * tolerance is 10% we will detect a proper battery if the BTI resistance 602 * is between 6300 and 7700 Ohm. 603 * 604 * This is the recommended struct to manage static battery parameters, 605 * populated by power_supply_get_battery_info(). Most platform drivers should 606 * use these for consistency. 607 * 608 * Its field names must correspond to elements in enum power_supply_property. 609 * The default field value is -EINVAL or NULL for pointers. 610 * 611 * CC/CV CHARGING: 612 * 613 * The charging parameters here assume a CC/CV charging scheme. This method 614 * is most common with Lithium Ion batteries (other methods are possible) and 615 * looks as follows: 616 * 617 * ^ Battery voltage 618 * | --- overvoltage_limit_uv 619 * | 620 * | ................................................... 621 * | .. constant_charge_voltage_max_uv 622 * | .. 623 * | . 624 * | . 625 * | . 626 * | . 627 * | . 628 * | .. precharge_voltage_max_uv 629 * | .. 630 * |. (trickle charging) 631 * +------------------------------------------------------------------> time 632 * 633 * ^ Current into the battery 634 * | 635 * | ............. constant_charge_current_max_ua 636 * | . . 637 * | . . 638 * | . . 639 * | . . 640 * | . .. 641 * | . .... 642 * | . ..... 643 * | ... precharge_current_ua ....... charge_term_current_ua 644 * | . . 645 * | . . 646 * |.... tricklecharge_current_ua . 647 * | . 648 * +-----------------------------------------------------------------> time 649 * 650 * These diagrams are synchronized on time and the voltage and current 651 * follow each other. 652 * 653 * With CC/CV charging commence over time like this for an empty battery: 654 * 655 * 1. When the battery is completely empty it may need to be charged with 656 * an especially small current so that electrons just "trickle in", 657 * this is the tricklecharge_current_ua. 658 * 659 * 2. Next a small initial pre-charge current (precharge_current_ua) 660 * is applied if the voltage is below precharge_voltage_max_uv until we 661 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 662 * to as "trickle charging" but the use in the Linux kernel is different 663 * see below! 664 * 665 * 3. Then the main charging current is applied, which is called the constant 666 * current (CC) phase. A current regulator is set up to allow 667 * constant_charge_current_max_ua of current to flow into the battery. 668 * The chemical reaction in the battery will make the voltage go up as 669 * charge goes into the battery. This current is applied until we reach 670 * the constant_charge_voltage_max_uv voltage. 671 * 672 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 673 * means we allow current to go into the battery, but we keep the voltage 674 * fixed. This current will continue to charge the battery while keeping 675 * the voltage the same. A chemical reaction in the battery goes on 676 * storing energy without affecting the voltage. Over time the current 677 * will slowly drop and when we reach charge_term_current_ua we will 678 * end the constant voltage phase. 679 * 680 * After this the battery is fully charged, and if we do not support maintenance 681 * charging, the charging will not restart until power dissipation makes the 682 * voltage fall so that we reach charge_restart_voltage_uv and at this point 683 * we restart charging at the appropriate phase, usually this will be inside 684 * the CV phase. 685 * 686 * If we support maintenance charging the voltage is however kept high after 687 * the CV phase with a very low current. This is meant to let the same charge 688 * go in for usage while the charger is still connected, mainly for 689 * dissipation for the power consuming entity while connected to the 690 * charger. 691 * 692 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 693 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 694 * explosions. 695 * 696 * DETERMINING BATTERY CAPACITY: 697 * 698 * Several members of the struct deal with trying to determine the remaining 699 * capacity in the battery, usually as a percentage of charge. In practice 700 * many chargers uses a so-called fuel gauge or coloumb counter that measure 701 * how much charge goes into the battery and how much goes out (+/- leak 702 * consumption). This does not help if we do not know how much capacity the 703 * battery has to begin with, such as when it is first used or was taken out 704 * and charged in a separate charger. Therefore many capacity algorithms use 705 * the open circuit voltage with a look-up table to determine the rough 706 * capacity of the battery. The open circuit voltage can be conceptualized 707 * with an ideal voltage source (V) in series with an internal resistance (Ri) 708 * like this: 709 * 710 * +-------> IBAT >----------------+ 711 * | ^ | 712 * [ ] Ri | | 713 * | | VBAT | 714 * o <---------- | | 715 * +| ^ | [ ] Rload 716 * .---. | | | 717 * | V | | OCV | | 718 * '---' | | | 719 * | | | | 720 * GND +-------------------------------+ 721 * 722 * If we disconnect the load (here simplified as a fixed resistance Rload) 723 * and measure VBAT with a infinite impedance voltage meter we will get 724 * VBAT = OCV and this assumption is sometimes made even under load, assuming 725 * Rload is insignificant. However this will be of dubious quality because the 726 * load is rarely that small and Ri is strongly nonlinear depending on 727 * temperature and how much capacity is left in the battery due to the 728 * chemistry involved. 729 * 730 * In many practical applications we cannot just disconnect the battery from 731 * the load, so instead we often try to measure the instantaneous IBAT (the 732 * current out from the battery), estimate the Ri and thus calculate the 733 * voltage drop over Ri and compensate like this: 734 * 735 * OCV = VBAT - (IBAT * Ri) 736 * 737 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 738 * (by interpolation) the Ri from the VBAT under load. These curves are highly 739 * nonlinear and may need many datapoints but can be found in datasheets for 740 * some batteries. This gives the compensated open circuit voltage (OCV) for 741 * the battery even under load. Using this method will also compensate for 742 * temperature changes in the environment: this will also make the internal 743 * resistance change, and it will affect the VBAT under load, so correlating 744 * VBAT to Ri takes both remaining capacity and temperature into consideration. 745 * 746 * Alternatively a manufacturer can specify how the capacity of the battery 747 * is dependent on the battery temperature which is the main factor affecting 748 * Ri. As we know all checmical reactions are faster when it is warm and slower 749 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 750 * voltage drops too low for example. This effect is also highly nonlinear and 751 * the purpose of the table resist_table: this will take a temperature and 752 * tell us how big percentage of Ri the specified temperature correlates to. 753 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 754 * Celsius. 755 * 756 * The power supply class itself doesn't use this struct as of now. 757 */ 758 759 struct power_supply_battery_info { 760 unsigned int technology; 761 int energy_full_design_uwh; 762 int charge_full_design_uah; 763 int voltage_min_design_uv; 764 int voltage_max_design_uv; 765 int tricklecharge_current_ua; 766 int precharge_current_ua; 767 int precharge_voltage_max_uv; 768 int charge_term_current_ua; 769 int charge_restart_voltage_uv; 770 int overvoltage_limit_uv; 771 int constant_charge_current_max_ua; 772 int constant_charge_voltage_max_uv; 773 const struct power_supply_maintenance_charge_table *maintenance_charge; 774 int maintenance_charge_size; 775 int alert_low_temp_charge_current_ua; 776 int alert_low_temp_charge_voltage_uv; 777 int alert_high_temp_charge_current_ua; 778 int alert_high_temp_charge_voltage_uv; 779 int factory_internal_resistance_uohm; 780 int factory_internal_resistance_charging_uohm; 781 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 782 int temp_ambient_alert_min; 783 int temp_ambient_alert_max; 784 int temp_alert_min; 785 int temp_alert_max; 786 int temp_min; 787 int temp_max; 788 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 789 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 790 const struct power_supply_resistance_temp_table *resist_table; 791 int resist_table_size; 792 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 793 int vbat2ri_discharging_size; 794 const struct power_supply_vbat_ri_table *vbat2ri_charging; 795 int vbat2ri_charging_size; 796 int bti_resistance_ohm; 797 int bti_resistance_tolerance; 798 }; 799 800 extern int power_supply_reg_notifier(struct notifier_block *nb); 801 extern void power_supply_unreg_notifier(struct notifier_block *nb); 802 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 803 extern struct power_supply *power_supply_get_by_name(const char *name); 804 extern void power_supply_put(struct power_supply *psy); 805 #else 806 static inline void power_supply_put(struct power_supply *psy) {} 807 static inline struct power_supply *power_supply_get_by_name(const char *name) 808 { return NULL; } 809 #endif 810 extern struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode, 811 const char *property); 812 extern struct power_supply *devm_power_supply_get_by_reference( 813 struct device *dev, const char *property); 814 815 extern const enum power_supply_property power_supply_battery_info_properties[]; 816 extern const size_t power_supply_battery_info_properties_size; 817 extern int power_supply_get_battery_info(struct power_supply *psy, 818 struct power_supply_battery_info **info_out); 819 extern void power_supply_put_battery_info(struct power_supply *psy, 820 struct power_supply_battery_info *info); 821 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 822 enum power_supply_property psp); 823 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 824 enum power_supply_property psp, 825 union power_supply_propval *val); 826 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 827 int table_len, int ocv); 828 extern const struct power_supply_battery_ocv_table * 829 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 830 int temp, int *table_len); 831 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 832 int ocv, int temp); 833 extern int 834 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 835 int table_len, int temp); 836 extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 837 int vbat_uv, bool charging); 838 extern const struct power_supply_maintenance_charge_table * 839 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 840 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 841 int resistance); 842 extern void power_supply_changed(struct power_supply *psy); 843 extern int power_supply_am_i_supplied(struct power_supply *psy); 844 int power_supply_get_property_from_supplier(struct power_supply *psy, 845 enum power_supply_property psp, 846 union power_supply_propval *val); 847 848 static inline bool 849 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 850 { 851 const struct power_supply_maintenance_charge_table *mt; 852 853 mt = power_supply_get_maintenance_charging_setting(info, 0); 854 855 return (mt != NULL); 856 } 857 858 static inline bool 859 power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 860 { 861 return ((info->vbat2ri_discharging != NULL) && 862 info->vbat2ri_discharging_size > 0); 863 } 864 865 static inline bool 866 power_supply_supports_temp2ri(struct power_supply_battery_info *info) 867 { 868 return ((info->resist_table != NULL) && 869 info->resist_table_size > 0); 870 } 871 872 #ifdef CONFIG_POWER_SUPPLY 873 extern int power_supply_is_system_supplied(void); 874 #else 875 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 876 #endif 877 878 extern int power_supply_get_property(struct power_supply *psy, 879 enum power_supply_property psp, 880 union power_supply_propval *val); 881 int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp, 882 union power_supply_propval *val); 883 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 884 extern int power_supply_set_property(struct power_supply *psy, 885 enum power_supply_property psp, 886 const union power_supply_propval *val); 887 int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp, 888 const union power_supply_propval *val); 889 #else 890 static inline int power_supply_set_property(struct power_supply *psy, 891 enum power_supply_property psp, 892 const union power_supply_propval *val) 893 { return 0; } 894 static inline int power_supply_set_property_direct(struct power_supply *psy, 895 enum power_supply_property psp, 896 const union power_supply_propval *val) 897 { return 0; } 898 #endif 899 extern void power_supply_external_power_changed(struct power_supply *psy); 900 901 extern struct power_supply *__must_check 902 power_supply_register(struct device *parent, 903 const struct power_supply_desc *desc, 904 const struct power_supply_config *cfg); 905 extern struct power_supply *__must_check 906 devm_power_supply_register(struct device *parent, 907 const struct power_supply_desc *desc, 908 const struct power_supply_config *cfg); 909 extern void power_supply_unregister(struct power_supply *psy); 910 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 911 912 extern int __must_check 913 power_supply_register_extension(struct power_supply *psy, 914 const struct power_supply_ext *ext, 915 struct device *dev, 916 void *data); 917 extern void power_supply_unregister_extension(struct power_supply *psy, 918 const struct power_supply_ext *ext); 919 920 #define to_power_supply(device) container_of(device, struct power_supply, dev) 921 922 extern void *power_supply_get_drvdata(struct power_supply *psy); 923 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)); 924 925 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 926 { 927 switch (psp) { 928 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 929 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 930 case POWER_SUPPLY_PROP_CHARGE_FULL: 931 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 932 case POWER_SUPPLY_PROP_CHARGE_NOW: 933 case POWER_SUPPLY_PROP_CHARGE_AVG: 934 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 935 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 936 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 937 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 939 case POWER_SUPPLY_PROP_CURRENT_MAX: 940 case POWER_SUPPLY_PROP_CURRENT_NOW: 941 case POWER_SUPPLY_PROP_CURRENT_AVG: 942 case POWER_SUPPLY_PROP_CURRENT_BOOT: 943 return true; 944 default: 945 break; 946 } 947 948 return false; 949 } 950 951 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 952 { 953 switch (psp) { 954 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 955 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 956 case POWER_SUPPLY_PROP_ENERGY_FULL: 957 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 958 case POWER_SUPPLY_PROP_ENERGY_NOW: 959 case POWER_SUPPLY_PROP_ENERGY_AVG: 960 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 961 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 962 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 963 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 964 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 965 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 966 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 967 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 968 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 969 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 970 case POWER_SUPPLY_PROP_POWER_NOW: 971 return true; 972 default: 973 break; 974 } 975 976 return false; 977 } 978 979 #ifdef CONFIG_SYSFS 980 ssize_t power_supply_charge_behaviour_show(struct device *dev, 981 unsigned int available_behaviours, 982 enum power_supply_charge_behaviour behaviour, 983 char *buf); 984 985 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 986 ssize_t power_supply_charge_types_show(struct device *dev, 987 unsigned int available_types, 988 enum power_supply_charge_type current_type, 989 char *buf); 990 int power_supply_charge_types_parse(unsigned int available_types, const char *buf); 991 #else 992 static inline 993 ssize_t power_supply_charge_behaviour_show(struct device *dev, 994 unsigned int available_behaviours, 995 enum power_supply_charge_behaviour behaviour, 996 char *buf) 997 { 998 return -EOPNOTSUPP; 999 } 1000 1001 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 1002 const char *buf) 1003 { 1004 return -EOPNOTSUPP; 1005 } 1006 1007 static inline 1008 ssize_t power_supply_charge_types_show(struct device *dev, 1009 unsigned int available_types, 1010 enum power_supply_charge_type current_type, 1011 char *buf) 1012 { 1013 return -EOPNOTSUPP; 1014 } 1015 1016 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf) 1017 { 1018 return -EOPNOTSUPP; 1019 } 1020 #endif 1021 1022 #endif /* __LINUX_POWER_SUPPLY_H__ */ 1023