1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28 * All Rights Reserved
29 */
30
31 /*
32 * Portions of this source code were derived from Berkeley 4.3 BSD
33 * under license from the Regents of the University of California.
34 */
35
36
37 /*
38 * Implements a kernel based, client side RPC.
39 */
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/systm.h>
44 #include <sys/sysmacros.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/ddi.h>
48 #include <sys/tiuser.h>
49 #include <sys/tihdr.h>
50 #include <sys/t_kuser.h>
51 #include <sys/errno.h>
52 #include <sys/kmem.h>
53 #include <sys/debug.h>
54 #include <sys/kstat.h>
55 #include <sys/t_lock.h>
56 #include <sys/cmn_err.h>
57 #include <sys/conf.h>
58 #include <sys/disp.h>
59 #include <sys/taskq.h>
60 #include <sys/list.h>
61 #include <sys/atomic.h>
62 #include <sys/zone.h>
63 #include <netinet/in.h>
64 #include <rpc/types.h>
65 #include <rpc/xdr.h>
66 #include <rpc/auth.h>
67 #include <rpc/clnt.h>
68 #include <rpc/rpc_msg.h>
69
70 #include <sys/sdt.h>
71
72 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
73 caddr_t, xdrproc_t, caddr_t, struct timeval);
74 static void clnt_clts_kabort(CLIENT *);
75 static void clnt_clts_kerror(CLIENT *, struct rpc_err *);
76 static bool_t clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
77 static bool_t clnt_clts_kcontrol(CLIENT *, int, char *);
78 static void clnt_clts_kdestroy(CLIENT *);
79 static int clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
80 struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
81
82 /*
83 * Operations vector for CLTS based RPC
84 */
85 static struct clnt_ops clts_ops = {
86 clnt_clts_kcallit, /* do rpc call */
87 clnt_clts_kabort, /* abort call */
88 clnt_clts_kerror, /* return error status */
89 clnt_clts_kfreeres, /* free results */
90 clnt_clts_kdestroy, /* destroy rpc handle */
91 clnt_clts_kcontrol, /* the ioctl() of rpc */
92 clnt_clts_ksettimers /* set retry timers */
93 };
94
95 /*
96 * Endpoint for CLTS (INET, INET6, loopback, etc.)
97 */
98 typedef struct endpnt_type {
99 struct endpnt_type *e_next; /* pointer to next endpoint type */
100 list_t e_pool; /* list of available endpoints */
101 list_t e_ilist; /* list of idle endpoints */
102 struct endpnt *e_pcurr; /* pointer to current endpoint */
103 char e_protofmly[KNC_STRSIZE]; /* protocol family */
104 dev_t e_rdev; /* device */
105 kmutex_t e_plock; /* pool lock */
106 kmutex_t e_ilock; /* idle list lock */
107 timeout_id_t e_itimer; /* timer to dispatch the taskq */
108 uint_t e_cnt; /* number of endpoints in the pool */
109 zoneid_t e_zoneid; /* zoneid of endpoint type */
110 kcondvar_t e_async_cv; /* cv for asynchronous reap threads */
111 uint_t e_async_count; /* count of asynchronous reap threads */
112 } endpnt_type_t;
113
114 typedef struct endpnt {
115 list_node_t e_node; /* link to the pool */
116 list_node_t e_idle; /* link to the idle list */
117 endpnt_type_t *e_type; /* back pointer to endpoint type */
118 TIUSER *e_tiptr; /* pointer to transport endpoint */
119 queue_t *e_wq; /* write queue */
120 uint_t e_flags; /* endpoint flags */
121 uint_t e_ref; /* ref count on endpoint */
122 kcondvar_t e_cv; /* condition variable */
123 kmutex_t e_lock; /* protects cv and flags */
124 time_t e_itime; /* time when rele'd */
125 } endpnt_t;
126
127 #define ENDPNT_ESTABLISHED 0x1 /* endpoint is established */
128 #define ENDPNT_WAITING 0x2 /* thread waiting for endpoint */
129 #define ENDPNT_BOUND 0x4 /* endpoint is bound */
130 #define ENDPNT_STALE 0x8 /* endpoint is dead */
131 #define ENDPNT_ONIDLE 0x10 /* endpoint is on the idle list */
132
133 static krwlock_t endpnt_type_lock; /* protects endpnt_type_list */
134 static endpnt_type_t *endpnt_type_list = NULL; /* list of CLTS endpoints */
135 static struct kmem_cache *endpnt_cache; /* cache of endpnt_t's */
136 static taskq_t *endpnt_taskq; /* endpnt_t reaper thread */
137 static bool_t taskq_created; /* flag for endpnt_taskq */
138 static kmutex_t endpnt_taskq_lock; /* taskq lock */
139 static zone_key_t endpnt_destructor_key;
140
141 #define DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
142 #define DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
143
144 /*
145 * Endpoint tunables
146 */
147 static int clnt_clts_max_endpoints = -1;
148 static int clnt_clts_hash_size = DEFAULT_HASH_SIZE;
149 static time_t clnt_clts_endpoint_reap_interval = -1;
150 static clock_t clnt_clts_taskq_dispatch_interval;
151
152 /*
153 * Response completion hash queue
154 */
155 static call_table_t *clts_call_ht;
156
157 /*
158 * Routines for the endpoint manager
159 */
160 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
161 static void endpnt_type_free(struct endpnt_type *);
162 static int check_endpnt(struct endpnt *, struct endpnt **);
163 static struct endpnt *endpnt_get(struct knetconfig *, int);
164 static void endpnt_rele(struct endpnt *);
165 static void endpnt_reap_settimer(endpnt_type_t *);
166 static void endpnt_reap(endpnt_type_t *);
167 static void endpnt_reap_dispatch(void *);
168 static void endpnt_reclaim(zoneid_t);
169
170
171 /*
172 * Request dipatching function.
173 */
174 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
175 calllist_t *, uint_t, cred_t *);
176
177 /*
178 * The size of the preserialized RPC header information.
179 */
180 #define CKU_HDRSIZE 20
181 /*
182 * The initial allocation size. It is small to reduce space requirements.
183 */
184 #define CKU_INITSIZE 2048
185 /*
186 * The size of additional allocations, if required. It is larger to
187 * reduce the number of actual allocations.
188 */
189 #define CKU_ALLOCSIZE 8192
190
191 /*
192 * Private data per rpc handle. This structure is allocated by
193 * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
194 */
195 struct cku_private {
196 CLIENT cku_client; /* client handle */
197 int cku_retrys; /* request retrys */
198 calllist_t cku_call;
199 struct endpnt *cku_endpnt; /* open end point */
200 struct knetconfig cku_config;
201 struct netbuf cku_addr; /* remote address */
202 struct rpc_err cku_err; /* error status */
203 XDR cku_outxdr; /* xdr stream for output */
204 XDR cku_inxdr; /* xdr stream for input */
205 char cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
206 struct cred *cku_cred; /* credentials */
207 struct rpc_timers *cku_timers; /* for estimating RTT */
208 struct rpc_timers *cku_timeall; /* for estimating RTT */
209 void (*cku_feedback)(int, int, caddr_t);
210 /* ptr to feedback rtn */
211 caddr_t cku_feedarg; /* argument for feedback func */
212 uint32_t cku_xid; /* current XID */
213 bool_t cku_bcast; /* RPC broadcast hint */
214 int cku_useresvport; /* Use reserved port */
215 struct rpc_clts_client *cku_stats; /* counters for the zone */
216 };
217
218 static const struct rpc_clts_client {
219 kstat_named_t rccalls;
220 kstat_named_t rcbadcalls;
221 kstat_named_t rcretrans;
222 kstat_named_t rcbadxids;
223 kstat_named_t rctimeouts;
224 kstat_named_t rcnewcreds;
225 kstat_named_t rcbadverfs;
226 kstat_named_t rctimers;
227 kstat_named_t rcnomem;
228 kstat_named_t rccantsend;
229 } clts_rcstat_tmpl = {
230 { "calls", KSTAT_DATA_UINT64 },
231 { "badcalls", KSTAT_DATA_UINT64 },
232 { "retrans", KSTAT_DATA_UINT64 },
233 { "badxids", KSTAT_DATA_UINT64 },
234 { "timeouts", KSTAT_DATA_UINT64 },
235 { "newcreds", KSTAT_DATA_UINT64 },
236 { "badverfs", KSTAT_DATA_UINT64 },
237 { "timers", KSTAT_DATA_UINT64 },
238 { "nomem", KSTAT_DATA_UINT64 },
239 { "cantsend", KSTAT_DATA_UINT64 },
240 };
241
242 static uint_t clts_rcstat_ndata =
243 sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
244
245 #define RCSTAT_INCR(s, x) \
246 atomic_inc_64(&(s)->x.value.ui64)
247
248 #define ptoh(p) (&((p)->cku_client))
249 #define htop(h) ((struct cku_private *)((h)->cl_private))
250
251 /*
252 * Times to retry
253 */
254 #define SNDTRIES 4
255 #define REFRESHES 2 /* authentication refreshes */
256
257 /*
258 * The following is used to determine the global default behavior for
259 * CLTS when binding to a local port.
260 *
261 * If the value is set to 1 the default will be to select a reserved
262 * (aka privileged) port, if the value is zero the default will be to
263 * use non-reserved ports. Users of kRPC may override this by using
264 * CLNT_CONTROL() and CLSET_BINDRESVPORT.
265 */
266 static int clnt_clts_do_bindresvport = 1;
267
268 #define BINDRESVPORT_RETRIES 5
269
270 void
clnt_clts_stats_init(zoneid_t zoneid,struct rpc_clts_client ** statsp)271 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
272 {
273 kstat_t *ksp;
274 kstat_named_t *knp;
275
276 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
277 (const kstat_named_t *)&clts_rcstat_tmpl,
278 sizeof (clts_rcstat_tmpl));
279 /*
280 * Backwards compatibility for old kstat clients
281 */
282 ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
283 KSTAT_TYPE_NAMED, clts_rcstat_ndata,
284 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
285 if (ksp) {
286 ksp->ks_data = knp;
287 kstat_install(ksp);
288 }
289 *statsp = (struct rpc_clts_client *)knp;
290 }
291
292 void
clnt_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_client ** statsp)293 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
294 {
295 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
296 kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
297 kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
298 }
299
300 /*
301 * Create an rpc handle for a clts rpc connection.
302 * Allocates space for the handle structure and the private data.
303 */
304 /* ARGSUSED */
305 int
clnt_clts_kcreate(struct knetconfig * config,struct netbuf * addr,rpcprog_t pgm,rpcvers_t vers,int retrys,struct cred * cred,CLIENT ** cl)306 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
307 rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
308 CLIENT **cl)
309 {
310 CLIENT *h;
311 struct cku_private *p;
312 struct rpc_msg call_msg;
313 int error;
314 int plen;
315
316 if (cl == NULL)
317 return (EINVAL);
318
319 *cl = NULL;
320 error = 0;
321
322 p = kmem_zalloc(sizeof (*p), KM_SLEEP);
323
324 h = ptoh(p);
325
326 /* handle */
327 h->cl_ops = &clts_ops;
328 h->cl_private = (caddr_t)p;
329 h->cl_auth = authkern_create();
330
331 /* call message, just used to pre-serialize below */
332 call_msg.rm_xid = 0;
333 call_msg.rm_direction = CALL;
334 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
335 call_msg.rm_call.cb_prog = pgm;
336 call_msg.rm_call.cb_vers = vers;
337
338 /* private */
339 clnt_clts_kinit(h, addr, retrys, cred);
340
341 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
342
343 /* pre-serialize call message header */
344 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
345 error = EINVAL; /* XXX */
346 goto bad;
347 }
348
349 p->cku_config.knc_rdev = config->knc_rdev;
350 p->cku_config.knc_semantics = config->knc_semantics;
351 plen = strlen(config->knc_protofmly) + 1;
352 p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
353 bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
354 p->cku_useresvport = -1; /* value is has not been set */
355
356 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
357 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
358
359 *cl = h;
360 return (0);
361
362 bad:
363 auth_destroy(h->cl_auth);
364 kmem_free(p->cku_addr.buf, addr->maxlen);
365 kmem_free(p, sizeof (struct cku_private));
366
367 return (error);
368 }
369
370 void
clnt_clts_kinit(CLIENT * h,struct netbuf * addr,int retrys,cred_t * cred)371 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
372 {
373 /* LINTED pointer alignment */
374 struct cku_private *p = htop(h);
375 struct rpcstat *rsp;
376
377 rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
378 ASSERT(rsp != NULL);
379
380 p->cku_retrys = retrys;
381
382 if (p->cku_addr.maxlen < addr->len) {
383 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
384 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
385
386 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
387 p->cku_addr.maxlen = addr->maxlen;
388 }
389
390 p->cku_addr.len = addr->len;
391 bcopy(addr->buf, p->cku_addr.buf, addr->len);
392
393 p->cku_cred = cred;
394 p->cku_xid = 0;
395 p->cku_timers = NULL;
396 p->cku_timeall = NULL;
397 p->cku_feedback = NULL;
398 p->cku_bcast = FALSE;
399 p->cku_call.call_xid = 0;
400 p->cku_call.call_hash = 0;
401 p->cku_call.call_notified = FALSE;
402 p->cku_call.call_next = NULL;
403 p->cku_call.call_prev = NULL;
404 p->cku_call.call_reply = NULL;
405 p->cku_call.call_wq = NULL;
406 p->cku_stats = rsp->rpc_clts_client;
407 }
408
409 /*
410 * set the timers. Return current retransmission timeout.
411 */
412 static int
clnt_clts_ksettimers(CLIENT * h,struct rpc_timers * t,struct rpc_timers * all,int minimum,void (* feedback)(int,int,caddr_t),caddr_t arg,uint32_t xid)413 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
414 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
415 uint32_t xid)
416 {
417 /* LINTED pointer alignment */
418 struct cku_private *p = htop(h);
419 int value;
420
421 p->cku_feedback = feedback;
422 p->cku_feedarg = arg;
423 p->cku_timers = t;
424 p->cku_timeall = all;
425 if (xid)
426 p->cku_xid = xid;
427 value = all->rt_rtxcur;
428 value += t->rt_rtxcur;
429 if (value < minimum)
430 return (minimum);
431 RCSTAT_INCR(p->cku_stats, rctimers);
432 return (value);
433 }
434
435 /*
436 * Time out back off function. tim is in HZ
437 */
438 #define MAXTIMO (20 * hz)
439 #define backoff(tim) (((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
440 #define dobackoff(tim) ((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
441
442 #define RETRY_POLL_TIMO 30
443
444 /*
445 * Call remote procedure.
446 * Most of the work of rpc is done here. We serialize what is left
447 * of the header (some was pre-serialized in the handle), serialize
448 * the arguments, and send it off. We wait for a reply or a time out.
449 * Timeout causes an immediate return, other packet problems may cause
450 * a retry on the receive. When a good packet is received we deserialize
451 * it, and check verification. A bad reply code will cause one retry
452 * with full (longhand) credentials.
453 */
454 enum clnt_stat
clnt_clts_kcallit_addr(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait,struct netbuf * sin)455 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
456 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
457 struct timeval wait, struct netbuf *sin)
458 {
459 /* LINTED pointer alignment */
460 struct cku_private *p = htop(h);
461 XDR *xdrs;
462 int stries = p->cku_retrys;
463 int refreshes = REFRESHES; /* number of times to refresh cred */
464 int round_trip; /* time the RPC */
465 int error;
466 mblk_t *mp;
467 mblk_t *mpdup;
468 mblk_t *resp = NULL;
469 mblk_t *tmp;
470 calllist_t *call = &p->cku_call;
471 clock_t ori_timout, timout;
472 bool_t interrupted;
473 enum clnt_stat status;
474 struct rpc_msg reply_msg;
475 enum clnt_stat re_status;
476 endpnt_t *endpt;
477
478 RCSTAT_INCR(p->cku_stats, rccalls);
479
480 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
481 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
482
483 timout = TIMEVAL_TO_TICK(&wait);
484 ori_timout = timout;
485
486 if (p->cku_xid == 0) {
487 p->cku_xid = alloc_xid();
488 if (p->cku_endpnt != NULL)
489 endpnt_rele(p->cku_endpnt);
490 p->cku_endpnt = NULL;
491 }
492 call->call_zoneid = rpc_zoneid();
493
494 mpdup = NULL;
495 call_again:
496
497 if (mpdup == NULL) {
498
499 while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
500 if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
501 p->cku_err.re_status = RPC_SYSTEMERROR;
502 p->cku_err.re_errno = ENOSR;
503 goto done;
504 }
505 }
506
507 xdrs = &p->cku_outxdr;
508 xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
509
510 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
511 /*
512 * Copy in the preserialized RPC header
513 * information.
514 */
515 bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
516
517 /*
518 * transaction id is the 1st thing in the output
519 * buffer.
520 */
521 /* LINTED pointer alignment */
522 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
523
524 /* Skip the preserialized stuff. */
525 XDR_SETPOS(xdrs, CKU_HDRSIZE);
526
527 /* Serialize dynamic stuff into the output buffer. */
528 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
529 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
530 (!(*xdr_args)(xdrs, argsp))) {
531 freemsg(mp);
532 p->cku_err.re_status = RPC_CANTENCODEARGS;
533 p->cku_err.re_errno = EIO;
534 goto done;
535 }
536 } else {
537 uint32_t *uproc = (uint32_t *)
538 &p->cku_rpchdr[CKU_HDRSIZE];
539 IXDR_PUT_U_INT32(uproc, procnum);
540
541 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
542 XDR_SETPOS(xdrs, 0);
543
544 /* Serialize the procedure number and the arguments. */
545 if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
546 CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
547 freemsg(mp);
548 p->cku_err.re_status = RPC_CANTENCODEARGS;
549 p->cku_err.re_errno = EIO;
550 goto done;
551 }
552 }
553 } else
554 mp = mpdup;
555
556 mpdup = dupmsg(mp);
557 if (mpdup == NULL) {
558 freemsg(mp);
559 p->cku_err.re_status = RPC_SYSTEMERROR;
560 p->cku_err.re_errno = ENOSR;
561 goto done;
562 }
563
564 /*
565 * Grab an endpnt only if the endpoint is NULL. We could be retrying
566 * the request and in this case we want to go through the same
567 * source port, so that the duplicate request cache may detect a
568 * retry.
569 */
570
571 if (p->cku_endpnt == NULL)
572 p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
573
574 if (p->cku_endpnt == NULL) {
575 freemsg(mp);
576 p->cku_err.re_status = RPC_SYSTEMERROR;
577 p->cku_err.re_errno = ENOSR;
578 goto done;
579 }
580
581 round_trip = ddi_get_lbolt();
582
583 error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
584 &p->cku_addr, call, p->cku_xid, p->cku_cred);
585
586 if (error != 0) {
587 freemsg(mp);
588 p->cku_err.re_status = RPC_CANTSEND;
589 p->cku_err.re_errno = error;
590 RCSTAT_INCR(p->cku_stats, rccantsend);
591 goto done1;
592 }
593
594 RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
595 p->cku_xid);
596
597 /*
598 * There are two reasons for which we go back to to tryread.
599 *
600 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
601 * broadcast we should not get any invalid messages with the
602 * RPC_PROCUNAVAIL error back. Some broken RPC implementations
603 * send them and for this we have to ignore them ( as we would
604 * have never received them ) and look for another message
605 * which might contain the valid response because we don't know
606 * how many broken implementations are in the network. So we are
607 * going to loop until
608 * - we received a valid response
609 * - we have processed all invalid responses and
610 * got a time out when we try to receive again a
611 * message.
612 *
613 * b) We will jump back to tryread also in case we failed
614 * within the AUTH_VALIDATE. In this case we should move
615 * on and loop until we received a valid response or we
616 * have processed all responses with broken authentication
617 * and we got a time out when we try to receive a message.
618 */
619 tryread:
620 mutex_enter(&call->call_lock);
621 interrupted = FALSE;
622 if (call->call_notified == FALSE) {
623 klwp_t *lwp = ttolwp(curthread);
624 clock_t cv_wait_ret = 1; /* init to > 0 */
625 clock_t cv_timout = timout;
626
627 if (lwp != NULL)
628 lwp->lwp_nostop++;
629
630 cv_timout += ddi_get_lbolt();
631
632 if (h->cl_nosignal)
633 while ((cv_wait_ret =
634 cv_timedwait(&call->call_cv,
635 &call->call_lock, cv_timout)) > 0 &&
636 call->call_notified == FALSE)
637 ;
638 else
639 while ((cv_wait_ret =
640 cv_timedwait_sig(&call->call_cv,
641 &call->call_lock, cv_timout)) > 0 &&
642 call->call_notified == FALSE)
643 ;
644
645 if (cv_wait_ret == 0)
646 interrupted = TRUE;
647
648 if (lwp != NULL)
649 lwp->lwp_nostop--;
650 }
651 resp = call->call_reply;
652 call->call_reply = NULL;
653 status = call->call_status;
654 /*
655 * We have to reset the call_notified here. In case we have
656 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
657 * error ) we need to set this to false to ensure that
658 * we will wait for the next message. When the next message
659 * is going to arrive the function clnt_clts_dispatch_notify
660 * will set this to true again.
661 */
662 call->call_notified = FALSE;
663 call->call_status = RPC_TIMEDOUT;
664 mutex_exit(&call->call_lock);
665
666 if (status == RPC_TIMEDOUT) {
667 if (interrupted) {
668 /*
669 * We got interrupted, bail out
670 */
671 p->cku_err.re_status = RPC_INTR;
672 p->cku_err.re_errno = EINTR;
673 goto done1;
674 } else {
675 RPCLOG(8, "clnt_clts_kcallit_addr: "
676 "request w/xid 0x%x timedout "
677 "waiting for reply\n", p->cku_xid);
678 #if 0 /* XXX not yet */
679 /*
680 * Timeout may be due to a dead gateway. Send
681 * an ioctl downstream advising deletion of
682 * route when we reach the half-way point to
683 * timing out.
684 */
685 if (stries == p->cku_retrys/2) {
686 t_kadvise(p->cku_endpnt->e_tiptr,
687 (uchar_t *)p->cku_addr.buf,
688 p->cku_addr.len);
689 }
690 #endif /* not yet */
691 p->cku_err.re_status = RPC_TIMEDOUT;
692 p->cku_err.re_errno = ETIMEDOUT;
693 RCSTAT_INCR(p->cku_stats, rctimeouts);
694 goto done1;
695 }
696 }
697
698 ASSERT(resp != NULL);
699
700 /*
701 * Prepare the message for further processing. We need to remove
702 * the datagram header and copy the source address if necessary. No
703 * need to verify the header since rpcmod took care of that.
704 */
705 /*
706 * Copy the source address if the caller has supplied a netbuf.
707 */
708 if (sin != NULL) {
709 union T_primitives *pptr;
710
711 pptr = (union T_primitives *)resp->b_rptr;
712 bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
713 pptr->unitdata_ind.SRC_length);
714 sin->len = pptr->unitdata_ind.SRC_length;
715 }
716
717 /*
718 * Pop off the datagram header.
719 * It was retained in rpcmodrput().
720 */
721 tmp = resp;
722 resp = resp->b_cont;
723 tmp->b_cont = NULL;
724 freeb(tmp);
725
726 round_trip = ddi_get_lbolt() - round_trip;
727 /*
728 * Van Jacobson timer algorithm here, only if NOT a retransmission.
729 */
730 if (p->cku_timers != NULL && stries == p->cku_retrys) {
731 int rt;
732
733 rt = round_trip;
734 rt -= (p->cku_timers->rt_srtt >> 3);
735 p->cku_timers->rt_srtt += rt;
736 if (rt < 0)
737 rt = - rt;
738 rt -= (p->cku_timers->rt_deviate >> 2);
739 p->cku_timers->rt_deviate += rt;
740 p->cku_timers->rt_rtxcur =
741 (clock_t)((p->cku_timers->rt_srtt >> 2) +
742 p->cku_timers->rt_deviate) >> 1;
743
744 rt = round_trip;
745 rt -= (p->cku_timeall->rt_srtt >> 3);
746 p->cku_timeall->rt_srtt += rt;
747 if (rt < 0)
748 rt = - rt;
749 rt -= (p->cku_timeall->rt_deviate >> 2);
750 p->cku_timeall->rt_deviate += rt;
751 p->cku_timeall->rt_rtxcur =
752 (clock_t)((p->cku_timeall->rt_srtt >> 2) +
753 p->cku_timeall->rt_deviate) >> 1;
754 if (p->cku_feedback != NULL) {
755 (*p->cku_feedback)(FEEDBACK_OK, procnum,
756 p->cku_feedarg);
757 }
758 }
759
760 /*
761 * Process reply
762 */
763 xdrs = &(p->cku_inxdr);
764 xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
765
766 reply_msg.rm_direction = REPLY;
767 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
768 reply_msg.acpted_rply.ar_stat = SUCCESS;
769 reply_msg.acpted_rply.ar_verf = _null_auth;
770 /*
771 * xdr_results will be done in AUTH_UNWRAP.
772 */
773 reply_msg.acpted_rply.ar_results.where = NULL;
774 reply_msg.acpted_rply.ar_results.proc = xdr_void;
775
776 /*
777 * Decode and validate the response.
778 */
779 if (!xdr_replymsg(xdrs, &reply_msg)) {
780 p->cku_err.re_status = RPC_CANTDECODERES;
781 p->cku_err.re_errno = EIO;
782 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
783 goto done1;
784 }
785
786 _seterr_reply(&reply_msg, &(p->cku_err));
787
788 re_status = p->cku_err.re_status;
789 if (re_status == RPC_SUCCESS) {
790 /*
791 * Reply is good, check auth.
792 */
793 if (!AUTH_VALIDATE(h->cl_auth,
794 &reply_msg.acpted_rply.ar_verf)) {
795 p->cku_err.re_status = RPC_AUTHERROR;
796 p->cku_err.re_why = AUTH_INVALIDRESP;
797 RCSTAT_INCR(p->cku_stats, rcbadverfs);
798 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
799 goto tryread;
800 }
801 if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
802 p->cku_err.re_status = RPC_CANTDECODERES;
803 p->cku_err.re_errno = EIO;
804 }
805 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
806 goto done1;
807 }
808 /* set errno in case we can't recover */
809 if (re_status != RPC_VERSMISMATCH &&
810 re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
811 p->cku_err.re_errno = EIO;
812 /*
813 * Determine whether or not we're doing an RPC
814 * broadcast. Some server implementations don't
815 * follow RFC 1050, section 7.4.2 in that they
816 * don't remain silent when they see a proc
817 * they don't support. Therefore we keep trying
818 * to receive on RPC_PROCUNAVAIL, hoping to get
819 * a valid response from a compliant server.
820 */
821 if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
822 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
823 goto tryread;
824 }
825 if (re_status == RPC_AUTHERROR) {
826
827 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
828 call_table_remove(call);
829 if (call->call_reply != NULL) {
830 freemsg(call->call_reply);
831 call->call_reply = NULL;
832 }
833
834 /*
835 * Maybe our credential need to be refreshed
836 */
837 if (refreshes > 0 &&
838 AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
839 /*
840 * The credential is refreshed. Try the request again.
841 * Even if stries == 0, we still retry as long as
842 * refreshes > 0. This prevents a soft authentication
843 * error turning into a hard one at an upper level.
844 */
845 refreshes--;
846 RCSTAT_INCR(p->cku_stats, rcbadcalls);
847 RCSTAT_INCR(p->cku_stats, rcnewcreds);
848
849 freemsg(mpdup);
850 mpdup = NULL;
851 freemsg(resp);
852 resp = NULL;
853 goto call_again;
854 }
855 /*
856 * We have used the client handle to do an AUTH_REFRESH
857 * and the RPC status may be set to RPC_SUCCESS;
858 * Let's make sure to set it to RPC_AUTHERROR.
859 */
860 p->cku_err.re_status = RPC_CANTDECODERES;
861
862 /*
863 * Map recoverable and unrecoverable
864 * authentication errors to appropriate errno
865 */
866 switch (p->cku_err.re_why) {
867 case AUTH_TOOWEAK:
868 /*
869 * Could be an nfsportmon failure, set
870 * useresvport and try again.
871 */
872 if (p->cku_useresvport != 1) {
873 p->cku_useresvport = 1;
874
875 freemsg(mpdup);
876 mpdup = NULL;
877 freemsg(resp);
878 resp = NULL;
879
880 endpt = p->cku_endpnt;
881 if (endpt->e_tiptr != NULL) {
882 mutex_enter(&endpt->e_lock);
883 endpt->e_flags &= ~ENDPNT_BOUND;
884 (void) t_kclose(endpt->e_tiptr, 1);
885 endpt->e_tiptr = NULL;
886 mutex_exit(&endpt->e_lock);
887
888 }
889
890 p->cku_xid = alloc_xid();
891 endpnt_rele(p->cku_endpnt);
892 p->cku_endpnt = NULL;
893 goto call_again;
894 }
895 /* FALLTHRU */
896 case AUTH_BADCRED:
897 case AUTH_BADVERF:
898 case AUTH_INVALIDRESP:
899 case AUTH_FAILED:
900 case RPCSEC_GSS_NOCRED:
901 case RPCSEC_GSS_FAILED:
902 p->cku_err.re_errno = EACCES;
903 break;
904 case AUTH_REJECTEDCRED:
905 case AUTH_REJECTEDVERF:
906 default:
907 p->cku_err.re_errno = EIO;
908 break;
909 }
910 RPCLOG(1, "clnt_clts_kcallit : authentication failed "
911 "with RPC_AUTHERROR of type %d\n",
912 p->cku_err.re_why);
913 goto done;
914 }
915
916 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
917
918 done1:
919 call_table_remove(call);
920 if (call->call_reply != NULL) {
921 freemsg(call->call_reply);
922 call->call_reply = NULL;
923 }
924 RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
925 p->cku_xid);
926
927 done:
928 if (resp != NULL) {
929 freemsg(resp);
930 resp = NULL;
931 }
932
933 if ((p->cku_err.re_status != RPC_SUCCESS) &&
934 (p->cku_err.re_status != RPC_INTR) &&
935 (p->cku_err.re_status != RPC_UDERROR) &&
936 !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
937 if (p->cku_feedback != NULL && stries == p->cku_retrys) {
938 (*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
939 p->cku_feedarg);
940 }
941
942 timout = backoff(timout);
943 if (p->cku_timeall != (struct rpc_timers *)0)
944 p->cku_timeall->rt_rtxcur = timout;
945
946 if (p->cku_err.re_status == RPC_SYSTEMERROR ||
947 p->cku_err.re_status == RPC_CANTSEND) {
948 /*
949 * Errors due to lack of resources, wait a bit
950 * and try again.
951 */
952 (void) delay(hz/10);
953 }
954 if (stries-- > 0) {
955 RCSTAT_INCR(p->cku_stats, rcretrans);
956 goto call_again;
957 }
958 }
959
960 if (mpdup != NULL)
961 freemsg(mpdup);
962
963 if (p->cku_err.re_status != RPC_SUCCESS) {
964 RCSTAT_INCR(p->cku_stats, rcbadcalls);
965 }
966
967 /*
968 * Allow the endpoint to be held by the client handle in case this
969 * RPC was not successful. A retry may occur at a higher level and
970 * in this case we may want to send the request over the same
971 * source port.
972 * Endpoint is also released for one-way RPC: no reply, nor retransmit
973 * is expected.
974 */
975 if ((p->cku_err.re_status == RPC_SUCCESS ||
976 (p->cku_err.re_status == RPC_TIMEDOUT && ori_timout == 0)) &&
977 p->cku_endpnt != NULL) {
978 endpnt_rele(p->cku_endpnt);
979 p->cku_endpnt = NULL;
980 } else {
981 DTRACE_PROBE2(clnt_clts_kcallit_done, int, p->cku_err.re_status,
982 struct endpnt *, p->cku_endpnt);
983 }
984
985 return (p->cku_err.re_status);
986 }
987
988 static enum clnt_stat
clnt_clts_kcallit(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait)989 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
990 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
991 struct timeval wait)
992 {
993 return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
994 xdr_results, resultsp, wait, NULL));
995 }
996
997 /*
998 * Return error info on this handle.
999 */
1000 static void
clnt_clts_kerror(CLIENT * h,struct rpc_err * err)1001 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1002 {
1003 /* LINTED pointer alignment */
1004 struct cku_private *p = htop(h);
1005
1006 *err = p->cku_err;
1007 }
1008
1009 static bool_t
clnt_clts_kfreeres(CLIENT * h,xdrproc_t xdr_res,caddr_t res_ptr)1010 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1011 {
1012 /* LINTED pointer alignment */
1013 struct cku_private *p = htop(h);
1014 XDR *xdrs;
1015
1016 xdrs = &(p->cku_outxdr);
1017 xdrs->x_op = XDR_FREE;
1018 return ((*xdr_res)(xdrs, res_ptr));
1019 }
1020
1021 /*ARGSUSED*/
1022 static void
clnt_clts_kabort(CLIENT * h)1023 clnt_clts_kabort(CLIENT *h)
1024 {
1025 }
1026
1027 static bool_t
clnt_clts_kcontrol(CLIENT * h,int cmd,char * arg)1028 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1029 {
1030 /* LINTED pointer alignment */
1031 struct cku_private *p = htop(h);
1032
1033 switch (cmd) {
1034 case CLSET_XID:
1035 p->cku_xid = *((uint32_t *)arg);
1036 return (TRUE);
1037
1038 case CLGET_XID:
1039 *((uint32_t *)arg) = p->cku_xid;
1040 return (TRUE);
1041
1042 case CLSET_BCAST:
1043 p->cku_bcast = *((uint32_t *)arg);
1044 return (TRUE);
1045
1046 case CLGET_BCAST:
1047 *((uint32_t *)arg) = p->cku_bcast;
1048 return (TRUE);
1049 case CLSET_BINDRESVPORT:
1050 if (arg == NULL)
1051 return (FALSE);
1052
1053 if (*(int *)arg != 1 && *(int *)arg != 0)
1054 return (FALSE);
1055
1056 p->cku_useresvport = *(int *)arg;
1057
1058 return (TRUE);
1059
1060 case CLGET_BINDRESVPORT:
1061 if (arg == NULL)
1062 return (FALSE);
1063
1064 *(int *)arg = p->cku_useresvport;
1065
1066 return (TRUE);
1067
1068 default:
1069 return (FALSE);
1070 }
1071 }
1072
1073 /*
1074 * Destroy rpc handle.
1075 * Frees the space used for output buffer, private data, and handle
1076 * structure, and the file pointer/TLI data on last reference.
1077 */
1078 static void
clnt_clts_kdestroy(CLIENT * h)1079 clnt_clts_kdestroy(CLIENT *h)
1080 {
1081 /* LINTED pointer alignment */
1082 struct cku_private *p = htop(h);
1083 calllist_t *call = &p->cku_call;
1084
1085 int plen;
1086
1087 RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1088 RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1089
1090 if (p->cku_endpnt != NULL)
1091 endpnt_rele(p->cku_endpnt);
1092
1093 cv_destroy(&call->call_cv);
1094 mutex_destroy(&call->call_lock);
1095
1096 plen = strlen(p->cku_config.knc_protofmly) + 1;
1097 kmem_free(p->cku_config.knc_protofmly, plen);
1098 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1099 kmem_free(p, sizeof (*p));
1100 }
1101
1102 /*
1103 * The connectionless (CLTS) kRPC endpoint management subsystem.
1104 *
1105 * Because endpoints are potentially shared among threads making RPC calls,
1106 * they are managed in a pool according to type (endpnt_type_t). Each
1107 * endpnt_type_t points to a list of usable endpoints through the e_pool
1108 * field, which is of type list_t. list_t is a doubly-linked list.
1109 * The number of endpoints in the pool is stored in the e_cnt field of
1110 * endpnt_type_t and the endpoints are reference counted using the e_ref field
1111 * in the endpnt_t structure.
1112 *
1113 * As an optimization, endpoints that have no references are also linked
1114 * to an idle list via e_ilist which is also of type list_t. When a thread
1115 * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1116 * consulted and if such an endpoint exists, it is removed from the idle list
1117 * and returned to the caller.
1118 *
1119 * If the idle list is empty, then a check is made to see if more endpoints
1120 * can be created. If so, we proceed and create a new endpoint which is added
1121 * to the pool and returned to the caller. If we have reached the limit and
1122 * cannot make a new endpoint then one is returned to the caller via round-
1123 * robin policy.
1124 *
1125 * When an endpoint is placed on the idle list by a thread calling
1126 * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1127 * be dispatched if one hasn't already been. When the timer fires, the
1128 * taskq traverses the idle list and checks to see which endpoints are
1129 * eligible to be closed. It determines this by checking if the timestamp
1130 * when the endpoint was released has exceeded the the threshold for how long
1131 * it should stay alive.
1132 *
1133 * endpnt_t structures remain persistent until the memory reclaim callback,
1134 * endpnt_reclaim(), is invoked.
1135 *
1136 * Here is an example of how the data structures would be laid out by the
1137 * subsystem:
1138 *
1139 * endpnt_type_t
1140 *
1141 * loopback inet
1142 * _______________ ______________
1143 * | e_next |----------------------->| e_next |---->>
1144 * | e_pool |<---+ | e_pool |<----+
1145 * | e_ilist |<---+--+ | e_ilist |<----+--+
1146 * +->| e_pcurr |----+--+--+ +->| e_pcurr |-----+--+--+
1147 * | | ... | | | | | | ... | | | |
1148 * | | e_itimer (90) | | | | | | e_itimer (0) | | | |
1149 * | | e_cnt (1) | | | | | | e_cnt (3) | | | |
1150 * | +---------------+ | | | | +--------------+ | | |
1151 * | | | | | | | |
1152 * | endpnt_t | | | | | | |
1153 * | ____________ | | | | ____________ | | |
1154 * | | e_node |<------+ | | | | e_node |<------+ | |
1155 * | | e_idle |<---------+ | | | e_idle | | | |
1156 * +--| e_type |<------------+ +--| e_type | | | |
1157 * | e_tiptr | | | e_tiptr | | | |
1158 * | ... | | | ... | | | |
1159 * | e_lock | | | e_lock | | | |
1160 * | ... | | | ... | | | |
1161 * | e_ref (0) | | | e_ref (2) | | | |
1162 * | e_itime | | | e_itime | | | |
1163 * +------------+ | +------------+ | | |
1164 * | | | |
1165 * | | | |
1166 * | ____________ | | |
1167 * | | e_node |<------+ | |
1168 * | | e_idle |<------+--+ |
1169 * +--| e_type | | |
1170 * | | e_tiptr | | |
1171 * | | ... | | |
1172 * | | e_lock | | |
1173 * | | ... | | |
1174 * | | e_ref (0) | | |
1175 * | | e_itime | | |
1176 * | +------------+ | |
1177 * | | |
1178 * | | |
1179 * | ____________ | |
1180 * | | e_node |<------+ |
1181 * | | e_idle | |
1182 * +--| e_type |<------------+
1183 * | e_tiptr |
1184 * | ... |
1185 * | e_lock |
1186 * | ... |
1187 * | e_ref (1) |
1188 * | e_itime |
1189 * +------------+
1190 *
1191 * Endpoint locking strategy:
1192 *
1193 * The following functions manipulate lists which hold the endpoint and the
1194 * endpoints themselves:
1195 *
1196 * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1197 *
1198 * Lock description follows:
1199 *
1200 * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1201 * endpnt_type_list.
1202 *
1203 * e_plock: Lock defined in the endpnt_type_t. It is intended to
1204 * protect accesses to the pool of endopints (e_pool) for a given
1205 * endpnt_type_t.
1206 *
1207 * e_ilock: Lock defined in endpnt_type_t. It is intended to protect accesses
1208 * to the idle list (e_ilist) of available endpoints for a given
1209 * endpnt_type_t. It also protects access to the e_itimer, e_async_cv,
1210 * and e_async_count fields in endpnt_type_t.
1211 *
1212 * e_lock: Lock defined in the endpnt structure. It is intended to protect
1213 * flags, cv, and ref count.
1214 *
1215 * The order goes as follows so as not to induce deadlock.
1216 *
1217 * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1218 *
1219 * Interaction with Zones and shutting down:
1220 *
1221 * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1222 * tuple, which means that a zone may not reuse another zone's idle endpoints
1223 * without first doing a t_kclose().
1224 *
1225 * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1226 * and e_async_count are used to keep track of the threads in endpnt_taskq
1227 * trying to reap endpnt_ts in the endpnt_type_t.
1228 */
1229
1230 /*
1231 * Allocate and initialize an endpnt_type_t
1232 */
1233 static struct endpnt_type *
endpnt_type_create(struct knetconfig * config)1234 endpnt_type_create(struct knetconfig *config)
1235 {
1236 struct endpnt_type *etype;
1237
1238 /*
1239 * Allocate a new endpoint type to hang a list of
1240 * endpoints off of it.
1241 */
1242 etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1243 etype->e_next = NULL;
1244 etype->e_pcurr = NULL;
1245 etype->e_itimer = 0;
1246 etype->e_cnt = 0;
1247
1248 (void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1249 mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1250 mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1251 etype->e_rdev = config->knc_rdev;
1252 etype->e_zoneid = rpc_zoneid();
1253 etype->e_async_count = 0;
1254 cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1255
1256 list_create(&etype->e_pool, sizeof (endpnt_t),
1257 offsetof(endpnt_t, e_node));
1258 list_create(&etype->e_ilist, sizeof (endpnt_t),
1259 offsetof(endpnt_t, e_idle));
1260
1261 /*
1262 * Check to see if we need to create a taskq for endpoint
1263 * reaping
1264 */
1265 mutex_enter(&endpnt_taskq_lock);
1266 if (taskq_created == FALSE) {
1267 taskq_created = TRUE;
1268 mutex_exit(&endpnt_taskq_lock);
1269 ASSERT(endpnt_taskq == NULL);
1270 endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1271 minclsyspri, 200, INT_MAX, 0);
1272 } else
1273 mutex_exit(&endpnt_taskq_lock);
1274
1275 return (etype);
1276 }
1277
1278 /*
1279 * Free an endpnt_type_t
1280 */
1281 static void
endpnt_type_free(struct endpnt_type * etype)1282 endpnt_type_free(struct endpnt_type *etype)
1283 {
1284 mutex_destroy(&etype->e_plock);
1285 mutex_destroy(&etype->e_ilock);
1286 list_destroy(&etype->e_pool);
1287 list_destroy(&etype->e_ilist);
1288 kmem_free(etype, sizeof (endpnt_type_t));
1289 }
1290
1291 /*
1292 * Check the endpoint to ensure that it is suitable for use.
1293 *
1294 * Possible return values:
1295 *
1296 * return (1) - Endpoint is established, but needs to be re-opened.
1297 * return (0) && *newp == NULL - Endpoint is established, but unusable.
1298 * return (0) && *newp != NULL - Endpoint is established and usable.
1299 */
1300 static int
check_endpnt(struct endpnt * endp,struct endpnt ** newp)1301 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1302 {
1303 *newp = endp;
1304
1305 mutex_enter(&endp->e_lock);
1306 ASSERT(endp->e_ref >= 1);
1307
1308 /*
1309 * The first condition we check for is if the endpoint has been
1310 * allocated, but is unusable either because it has been closed or
1311 * has been marked stale. Only *one* thread will be allowed to
1312 * execute the then clause. This is enforced because the first thread
1313 * to check this condition will clear the flags, so that subsequent
1314 * thread(s) checking this endpoint will move on.
1315 */
1316 if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1317 (!(endp->e_flags & ENDPNT_BOUND) ||
1318 (endp->e_flags & ENDPNT_STALE))) {
1319 /*
1320 * Clear the flags here since they will be
1321 * set again by this thread. They need to be
1322 * individually cleared because we want to maintain
1323 * the state for ENDPNT_ONIDLE.
1324 */
1325 endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1326 ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1327 mutex_exit(&endp->e_lock);
1328 return (1);
1329 }
1330
1331 /*
1332 * The second condition is meant for any thread that is waiting for
1333 * an endpoint to become established. It will cv_wait() until
1334 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1335 * ENDPNT_STALE.
1336 */
1337 while (!(endp->e_flags & ENDPNT_BOUND) &&
1338 !(endp->e_flags & ENDPNT_STALE)) {
1339 endp->e_flags |= ENDPNT_WAITING;
1340 cv_wait(&endp->e_cv, &endp->e_lock);
1341 }
1342
1343 ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1344
1345 /*
1346 * The last case we check for is if the endpoint has been marked stale.
1347 * If this is the case then set *newp to NULL and return, so that the
1348 * caller is notified of the error and can take appropriate action.
1349 */
1350 if (endp->e_flags & ENDPNT_STALE) {
1351 endp->e_ref--;
1352 *newp = NULL;
1353 }
1354 mutex_exit(&endp->e_lock);
1355 return (0);
1356 }
1357
1358 #ifdef DEBUG
1359 /*
1360 * Provide a fault injection setting to test error conditions.
1361 */
1362 static int endpnt_get_return_null = 0;
1363 #endif
1364
1365 /*
1366 * Returns a handle (struct endpnt *) to an open and bound endpoint
1367 * specified by the knetconfig passed in. Returns NULL if no valid endpoint
1368 * can be obtained.
1369 */
1370 static struct endpnt *
endpnt_get(struct knetconfig * config,int useresvport)1371 endpnt_get(struct knetconfig *config, int useresvport)
1372 {
1373 struct endpnt_type *n_etype = NULL;
1374 struct endpnt_type *np = NULL;
1375 struct endpnt *new = NULL;
1376 struct endpnt *endp = NULL;
1377 struct endpnt *next = NULL;
1378 TIUSER *tiptr = NULL;
1379 int rtries = BINDRESVPORT_RETRIES;
1380 int i = 0;
1381 int error;
1382 int retval;
1383 zoneid_t zoneid = rpc_zoneid();
1384 cred_t *cr;
1385
1386 RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1387 RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1388
1389 #ifdef DEBUG
1390 /*
1391 * Inject fault if desired. Pretend we have a stale endpoint
1392 * and return NULL.
1393 */
1394 if (endpnt_get_return_null > 0) {
1395 endpnt_get_return_null--;
1396 return (NULL);
1397 }
1398 #endif
1399 rw_enter(&endpnt_type_lock, RW_READER);
1400
1401 top:
1402 for (np = endpnt_type_list; np != NULL; np = np->e_next)
1403 if ((np->e_zoneid == zoneid) &&
1404 (np->e_rdev == config->knc_rdev) &&
1405 (strcmp(np->e_protofmly,
1406 config->knc_protofmly) == 0))
1407 break;
1408
1409 if (np == NULL && n_etype != NULL) {
1410 ASSERT(rw_write_held(&endpnt_type_lock));
1411
1412 /*
1413 * Link the endpoint type onto the list
1414 */
1415 n_etype->e_next = endpnt_type_list;
1416 endpnt_type_list = n_etype;
1417 np = n_etype;
1418 n_etype = NULL;
1419 }
1420
1421 if (np == NULL) {
1422 /*
1423 * The logic here is that we were unable to find an
1424 * endpnt_type_t that matched our criteria, so we allocate a
1425 * new one. Because kmem_alloc() needs to be called with
1426 * KM_SLEEP, we drop our locks so that we don't induce
1427 * deadlock. After allocating and initializing the
1428 * endpnt_type_t, we reaquire the lock and go back to check
1429 * if this entry needs to be added to the list. Since we do
1430 * some operations without any locking other threads may
1431 * have been looking for the same endpnt_type_t and gone
1432 * through this code path. We check for this case and allow
1433 * one thread to link its endpnt_type_t to the list and the
1434 * other threads will simply free theirs.
1435 */
1436 rw_exit(&endpnt_type_lock);
1437 n_etype = endpnt_type_create(config);
1438
1439 /*
1440 * We need to reaquire the lock with RW_WRITER here so that
1441 * we can safely link the new endpoint type onto the list.
1442 */
1443 rw_enter(&endpnt_type_lock, RW_WRITER);
1444 goto top;
1445 }
1446
1447 rw_exit(&endpnt_type_lock);
1448 /*
1449 * If n_etype is not NULL, then another thread was able to
1450 * insert an endpnt_type_t of this type onto the list before
1451 * we did. Go ahead and free ours.
1452 */
1453 if (n_etype != NULL)
1454 endpnt_type_free(n_etype);
1455
1456 mutex_enter(&np->e_ilock);
1457 /*
1458 * The algorithm to hand out endpoints is to first
1459 * give out those that are idle if such endpoints
1460 * exist. Otherwise, create a new one if we haven't
1461 * reached the max threshold. Finally, we give out
1462 * endpoints in a pseudo LRU fashion (round-robin).
1463 *
1464 * Note: The idle list is merely a hint of those endpoints
1465 * that should be idle. There exists a window after the
1466 * endpoint is released and before it is linked back onto the
1467 * idle list where a thread could get a reference to it and
1468 * use it. This is okay, since the reference counts will
1469 * still be consistent.
1470 */
1471 if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1472 timeout_id_t t_id = 0;
1473
1474 mutex_enter(&endp->e_lock);
1475 endp->e_ref++;
1476 endp->e_itime = 0;
1477 endp->e_flags &= ~ENDPNT_ONIDLE;
1478 mutex_exit(&endp->e_lock);
1479
1480 /*
1481 * Pop the endpoint off the idle list and hand it off
1482 */
1483 list_remove(&np->e_ilist, endp);
1484
1485 if (np->e_itimer != 0) {
1486 t_id = np->e_itimer;
1487 np->e_itimer = 0;
1488 }
1489 mutex_exit(&np->e_ilock);
1490 /*
1491 * Reset the idle timer if it has been set
1492 */
1493 if (t_id != (timeout_id_t)0)
1494 (void) untimeout(t_id);
1495
1496 if (check_endpnt(endp, &new) == 0)
1497 return (new);
1498 } else if (np->e_cnt >= clnt_clts_max_endpoints) {
1499 /*
1500 * There are no idle endpoints currently, so
1501 * create a new one if we have not reached the maximum or
1502 * hand one out in round-robin.
1503 */
1504 mutex_exit(&np->e_ilock);
1505 mutex_enter(&np->e_plock);
1506 endp = np->e_pcurr;
1507 mutex_enter(&endp->e_lock);
1508 endp->e_ref++;
1509 mutex_exit(&endp->e_lock);
1510
1511 ASSERT(endp != NULL);
1512 /*
1513 * Advance the pointer to the next eligible endpoint, if
1514 * necessary.
1515 */
1516 if (np->e_cnt > 1) {
1517 next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1518 if (next == NULL)
1519 next = (endpnt_t *)list_head(&np->e_pool);
1520 np->e_pcurr = next;
1521 }
1522
1523 mutex_exit(&np->e_plock);
1524
1525 /*
1526 * We need to check to see if this endpoint is bound or
1527 * not. If it is in progress then just wait until
1528 * the set up is complete
1529 */
1530 if (check_endpnt(endp, &new) == 0)
1531 return (new);
1532 } else {
1533 mutex_exit(&np->e_ilock);
1534 mutex_enter(&np->e_plock);
1535
1536 /*
1537 * Allocate a new endpoint to use. If we can't allocate any
1538 * more memory then use one that is already established if any
1539 * such endpoints exist.
1540 */
1541 new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1542 if (new == NULL) {
1543 RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1544 /*
1545 * Try to recover by using an existing endpoint.
1546 */
1547 if (np->e_cnt <= 0) {
1548 mutex_exit(&np->e_plock);
1549 return (NULL);
1550 }
1551 endp = np->e_pcurr;
1552 if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1553 NULL)
1554 np->e_pcurr = next;
1555 ASSERT(endp != NULL);
1556 mutex_enter(&endp->e_lock);
1557 endp->e_ref++;
1558 mutex_exit(&endp->e_lock);
1559 mutex_exit(&np->e_plock);
1560
1561 if (check_endpnt(endp, &new) == 0)
1562 return (new);
1563 } else {
1564 /*
1565 * Partially init an endpoint structure and put
1566 * it on the list, so that other interested threads
1567 * know that one is being created
1568 */
1569 bzero(new, sizeof (struct endpnt));
1570
1571 cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1572 mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1573 new->e_ref = 1;
1574 new->e_type = np;
1575
1576 /*
1577 * Link the endpoint into the pool.
1578 */
1579 list_insert_head(&np->e_pool, new);
1580 np->e_cnt++;
1581 if (np->e_pcurr == NULL)
1582 np->e_pcurr = new;
1583 mutex_exit(&np->e_plock);
1584 }
1585 }
1586
1587 /*
1588 * The transport should be opened with sufficient privs
1589 */
1590 cr = zone_kcred();
1591 error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1592 cr);
1593 if (error) {
1594 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1595 goto bad;
1596 }
1597
1598 new->e_tiptr = tiptr;
1599 rpc_poptimod(tiptr->fp->f_vnode);
1600
1601 /*
1602 * Allow the kernel to push the module on behalf of the user.
1603 */
1604 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1605 K_TO_K, cr, &retval);
1606 if (error) {
1607 RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1608 goto bad;
1609 }
1610
1611 error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1612 cr, &retval);
1613 if (error) {
1614 RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1615 goto bad;
1616 }
1617
1618 /*
1619 * Connectionless data flow should bypass the stream head.
1620 */
1621 new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1622
1623 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1624 K_TO_K, cr, &retval);
1625 if (error) {
1626 RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1627 goto bad;
1628 }
1629
1630 /*
1631 * Attempt to bind the endpoint. If we fail then propogate
1632 * error back to calling subsystem, so that it can be handled
1633 * appropriately.
1634 * If the caller has not specified reserved port usage then
1635 * take the system default.
1636 */
1637 if (useresvport == -1)
1638 useresvport = clnt_clts_do_bindresvport;
1639
1640 if (useresvport &&
1641 (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1642 strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1643
1644 while ((error =
1645 bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1646 RPCLOG(1,
1647 "endpnt_get: bindresvport error %d\n", error);
1648 if (error != EPROTO) {
1649 if (rtries-- <= 0)
1650 goto bad;
1651
1652 delay(hz << i++);
1653 continue;
1654 }
1655
1656 (void) t_kclose(new->e_tiptr, 1);
1657 /*
1658 * reopen with all privileges
1659 */
1660 error = t_kopen(NULL, config->knc_rdev,
1661 FREAD|FWRITE|FNDELAY,
1662 &new->e_tiptr, cr);
1663 if (error) {
1664 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1665 new->e_tiptr = NULL;
1666 goto bad;
1667 }
1668 }
1669 } else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1670 RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1671 goto bad;
1672 }
1673
1674 /*
1675 * Set the flags and notify and waiters that we have an established
1676 * endpoint.
1677 */
1678 mutex_enter(&new->e_lock);
1679 new->e_flags |= ENDPNT_ESTABLISHED;
1680 new->e_flags |= ENDPNT_BOUND;
1681 if (new->e_flags & ENDPNT_WAITING) {
1682 cv_broadcast(&new->e_cv);
1683 new->e_flags &= ~ENDPNT_WAITING;
1684 }
1685 mutex_exit(&new->e_lock);
1686
1687 return (new);
1688
1689 bad:
1690 ASSERT(new != NULL);
1691 /*
1692 * mark this endpoint as stale and notify any threads waiting
1693 * on this endpoint that it will be going away.
1694 */
1695 mutex_enter(&new->e_lock);
1696 if (new->e_ref > 0) {
1697 new->e_flags |= ENDPNT_ESTABLISHED;
1698 new->e_flags |= ENDPNT_STALE;
1699 if (new->e_flags & ENDPNT_WAITING) {
1700 cv_broadcast(&new->e_cv);
1701 new->e_flags &= ~ENDPNT_WAITING;
1702 }
1703 }
1704 new->e_ref--;
1705 new->e_tiptr = NULL;
1706 mutex_exit(&new->e_lock);
1707
1708 /*
1709 * If there was a transport endopoint opened, then close it.
1710 */
1711 if (tiptr != NULL)
1712 (void) t_kclose(tiptr, 1);
1713
1714 return (NULL);
1715 }
1716
1717 /*
1718 * Release a referece to the endpoint
1719 */
1720 static void
endpnt_rele(struct endpnt * sp)1721 endpnt_rele(struct endpnt *sp)
1722 {
1723 mutex_enter(&sp->e_lock);
1724 ASSERT(sp->e_ref > 0);
1725 sp->e_ref--;
1726 /*
1727 * If the ref count is zero, then start the idle timer and link
1728 * the endpoint onto the idle list.
1729 */
1730 if (sp->e_ref == 0) {
1731 sp->e_itime = gethrestime_sec();
1732
1733 /*
1734 * Check to see if the endpoint is already linked to the idle
1735 * list, so that we don't try to reinsert it.
1736 */
1737 if (sp->e_flags & ENDPNT_ONIDLE) {
1738 mutex_exit(&sp->e_lock);
1739 mutex_enter(&sp->e_type->e_ilock);
1740 endpnt_reap_settimer(sp->e_type);
1741 mutex_exit(&sp->e_type->e_ilock);
1742 return;
1743 }
1744
1745 sp->e_flags |= ENDPNT_ONIDLE;
1746 mutex_exit(&sp->e_lock);
1747 mutex_enter(&sp->e_type->e_ilock);
1748 list_insert_tail(&sp->e_type->e_ilist, sp);
1749 endpnt_reap_settimer(sp->e_type);
1750 mutex_exit(&sp->e_type->e_ilock);
1751 } else
1752 mutex_exit(&sp->e_lock);
1753 }
1754
1755 static void
endpnt_reap_settimer(endpnt_type_t * etp)1756 endpnt_reap_settimer(endpnt_type_t *etp)
1757 {
1758 if (etp->e_itimer == (timeout_id_t)0)
1759 etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1760 clnt_clts_taskq_dispatch_interval);
1761 }
1762
1763 static void
endpnt_reap_dispatch(void * a)1764 endpnt_reap_dispatch(void *a)
1765 {
1766 endpnt_type_t *etp = a;
1767
1768 /*
1769 * The idle timer has fired, so dispatch the taskq to close the
1770 * endpoint.
1771 */
1772 if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1773 TQ_NOSLEEP) == NULL)
1774 return;
1775 mutex_enter(&etp->e_ilock);
1776 etp->e_async_count++;
1777 mutex_exit(&etp->e_ilock);
1778 }
1779
1780 /*
1781 * Traverse the idle list and close those endpoints that have reached their
1782 * timeout interval.
1783 */
1784 static void
endpnt_reap(endpnt_type_t * etp)1785 endpnt_reap(endpnt_type_t *etp)
1786 {
1787 struct endpnt *e;
1788 struct endpnt *next_node = NULL;
1789
1790 mutex_enter(&etp->e_ilock);
1791 e = list_head(&etp->e_ilist);
1792 while (e != NULL) {
1793 next_node = list_next(&etp->e_ilist, e);
1794
1795 mutex_enter(&e->e_lock);
1796 if (e->e_ref > 0) {
1797 mutex_exit(&e->e_lock);
1798 e = next_node;
1799 continue;
1800 }
1801
1802 ASSERT(e->e_ref == 0);
1803 if (e->e_itime > 0 &&
1804 (e->e_itime + clnt_clts_endpoint_reap_interval) <
1805 gethrestime_sec()) {
1806 e->e_flags &= ~ENDPNT_BOUND;
1807 (void) t_kclose(e->e_tiptr, 1);
1808 e->e_tiptr = NULL;
1809 e->e_itime = 0;
1810 }
1811 mutex_exit(&e->e_lock);
1812 e = next_node;
1813 }
1814 etp->e_itimer = 0;
1815 if (--etp->e_async_count == 0)
1816 cv_signal(&etp->e_async_cv);
1817 mutex_exit(&etp->e_ilock);
1818 }
1819
1820 static void
endpnt_reclaim(zoneid_t zoneid)1821 endpnt_reclaim(zoneid_t zoneid)
1822 {
1823 struct endpnt_type *np;
1824 struct endpnt *e;
1825 struct endpnt *next_node = NULL;
1826 list_t free_list;
1827 int rcnt = 0;
1828
1829 list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1830
1831 RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1832 rw_enter(&endpnt_type_lock, RW_READER);
1833 for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1834 if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1835 continue;
1836
1837 mutex_enter(&np->e_plock);
1838 RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1839 np->e_protofmly);
1840 RPCLOG(1, "rdev %ld\n", np->e_rdev);
1841 RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1842 np->e_cnt);
1843
1844 if (np->e_cnt == 0) {
1845 mutex_exit(&np->e_plock);
1846 continue;
1847 }
1848
1849 /*
1850 * The nice thing about maintaining an idle list is that if
1851 * there are any endpoints to reclaim, they are going to be
1852 * on this list. Just go through and reap the one's that
1853 * have ref counts of zero.
1854 */
1855 mutex_enter(&np->e_ilock);
1856 e = list_head(&np->e_ilist);
1857 while (e != NULL) {
1858 next_node = list_next(&np->e_ilist, e);
1859 mutex_enter(&e->e_lock);
1860 if (e->e_ref > 0) {
1861 mutex_exit(&e->e_lock);
1862 e = next_node;
1863 continue;
1864 }
1865 ASSERT(e->e_ref == 0);
1866 mutex_exit(&e->e_lock);
1867
1868 list_remove(&np->e_ilist, e);
1869 list_remove(&np->e_pool, e);
1870 list_insert_head(&free_list, e);
1871
1872 rcnt++;
1873 np->e_cnt--;
1874 e = next_node;
1875 }
1876 mutex_exit(&np->e_ilock);
1877 /*
1878 * Reset the current pointer to be safe
1879 */
1880 if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1881 np->e_pcurr = e;
1882 else {
1883 ASSERT(np->e_cnt == 0);
1884 np->e_pcurr = NULL;
1885 }
1886
1887 mutex_exit(&np->e_plock);
1888 }
1889 rw_exit(&endpnt_type_lock);
1890
1891 while ((e = list_head(&free_list)) != NULL) {
1892 list_remove(&free_list, e);
1893 if (e->e_tiptr != NULL)
1894 (void) t_kclose(e->e_tiptr, 1);
1895
1896 cv_destroy(&e->e_cv);
1897 mutex_destroy(&e->e_lock);
1898 kmem_cache_free(endpnt_cache, e);
1899 }
1900 list_destroy(&free_list);
1901 RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1902 }
1903
1904 /*
1905 * Endpoint reclaim zones destructor callback routine.
1906 *
1907 * After reclaiming any cached entries, we basically go through the endpnt_type
1908 * list, canceling outstanding timeouts and free'ing data structures.
1909 */
1910 /* ARGSUSED */
1911 static void
endpnt_destructor(zoneid_t zoneid,void * a)1912 endpnt_destructor(zoneid_t zoneid, void *a)
1913 {
1914 struct endpnt_type **npp;
1915 struct endpnt_type *np;
1916 struct endpnt_type *free_list = NULL;
1917 timeout_id_t t_id = 0;
1918 extern void clcleanup_zone(zoneid_t);
1919 extern void clcleanup4_zone(zoneid_t);
1920
1921 /* Make sure NFS client handles are released. */
1922 clcleanup_zone(zoneid);
1923 clcleanup4_zone(zoneid);
1924
1925 endpnt_reclaim(zoneid);
1926 /*
1927 * We don't need to be holding on to any locks across the call to
1928 * endpnt_reclaim() and the code below; we know that no-one can
1929 * be holding open connections for this zone (all processes and kernel
1930 * threads are gone), so nothing could be adding anything to the list.
1931 */
1932 rw_enter(&endpnt_type_lock, RW_WRITER);
1933 npp = &endpnt_type_list;
1934 while ((np = *npp) != NULL) {
1935 if (np->e_zoneid != zoneid) {
1936 npp = &np->e_next;
1937 continue;
1938 }
1939 mutex_enter(&np->e_plock);
1940 mutex_enter(&np->e_ilock);
1941 if (np->e_itimer != 0) {
1942 t_id = np->e_itimer;
1943 np->e_itimer = 0;
1944 }
1945 ASSERT(np->e_cnt == 0);
1946 ASSERT(list_head(&np->e_pool) == NULL);
1947 ASSERT(list_head(&np->e_ilist) == NULL);
1948
1949 mutex_exit(&np->e_ilock);
1950 mutex_exit(&np->e_plock);
1951
1952 /*
1953 * untimeout() any outstanding timers that have not yet fired.
1954 */
1955 if (t_id != (timeout_id_t)0)
1956 (void) untimeout(t_id);
1957 *npp = np->e_next;
1958 np->e_next = free_list;
1959 free_list = np;
1960 }
1961 rw_exit(&endpnt_type_lock);
1962
1963 while (free_list != NULL) {
1964 np = free_list;
1965 free_list = free_list->e_next;
1966 /*
1967 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
1968 * the endpnt_type_t.
1969 */
1970 mutex_enter(&np->e_ilock);
1971 while (np->e_async_count > 0)
1972 cv_wait(&np->e_async_cv, &np->e_ilock);
1973 cv_destroy(&np->e_async_cv);
1974 mutex_destroy(&np->e_plock);
1975 mutex_destroy(&np->e_ilock);
1976 list_destroy(&np->e_pool);
1977 list_destroy(&np->e_ilist);
1978 kmem_free(np, sizeof (endpnt_type_t));
1979 }
1980 }
1981
1982 /*
1983 * Endpoint reclaim kmem callback routine.
1984 */
1985 /* ARGSUSED */
1986 static void
endpnt_repossess(void * a)1987 endpnt_repossess(void *a)
1988 {
1989 /*
1990 * Reclaim idle endpnt's from all zones.
1991 */
1992 if (endpnt_taskq != NULL)
1993 (void) taskq_dispatch(endpnt_taskq,
1994 (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
1995 TQ_NOSLEEP);
1996 }
1997
1998 /*
1999 * RPC request dispatch routine. Constructs a datagram message and wraps it
2000 * around the RPC request to pass downstream.
2001 */
2002 static int
clnt_clts_dispatch_send(queue_t * q,mblk_t * mp,struct netbuf * addr,calllist_t * cp,uint_t xid,cred_t * cr)2003 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2004 calllist_t *cp, uint_t xid, cred_t *cr)
2005 {
2006 mblk_t *bp;
2007 int msgsz;
2008 struct T_unitdata_req *udreq;
2009
2010 /*
2011 * Set up the call record.
2012 */
2013 cp->call_wq = q;
2014 cp->call_xid = xid;
2015 cp->call_status = RPC_TIMEDOUT;
2016 cp->call_notified = FALSE;
2017 RPCLOG(64,
2018 "clnt_clts_dispatch_send: putting xid 0x%x on "
2019 "dispatch list\n", xid);
2020 cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2021 cp->call_bucket = &clts_call_ht[cp->call_hash];
2022 call_table_enter(cp);
2023
2024 /*
2025 * Construct the datagram
2026 */
2027 msgsz = (int)TUNITDATAREQSZ;
2028 /*
2029 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will
2030 * appear as -1.
2031 */
2032 while (!(bp = allocb_cred(msgsz + addr->len, cr, NOPID))) {
2033 if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2034 return (ENOSR);
2035 }
2036
2037 udreq = (struct T_unitdata_req *)bp->b_wptr;
2038 udreq->PRIM_type = T_UNITDATA_REQ;
2039 udreq->DEST_length = addr->len;
2040
2041 if (addr->len) {
2042 bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2043 udreq->DEST_offset = (t_scalar_t)msgsz;
2044 msgsz += addr->len;
2045 } else
2046 udreq->DEST_offset = 0;
2047 udreq->OPT_length = 0;
2048 udreq->OPT_offset = 0;
2049
2050 bp->b_datap->db_type = M_PROTO;
2051 bp->b_wptr += msgsz;
2052
2053 /*
2054 * Link the datagram header with the actual data
2055 */
2056 linkb(bp, mp);
2057
2058 /*
2059 * Send downstream.
2060 */
2061 if (canput(cp->call_wq)) {
2062 put(cp->call_wq, bp);
2063 return (0);
2064 }
2065
2066 return (EIO);
2067 }
2068
2069 /*
2070 * RPC response delivery routine. Deliver the response to the waiting
2071 * thread by matching the xid.
2072 */
2073 void
clnt_clts_dispatch_notify(mblk_t * mp,int resp_off,zoneid_t zoneid)2074 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2075 {
2076 calllist_t *e = NULL;
2077 call_table_t *chtp;
2078 uint32_t xid;
2079 uint_t hash;
2080 unsigned char *hdr_offset;
2081 mblk_t *resp;
2082
2083 /*
2084 * If the RPC response is not contained in the same mblk as the
2085 * datagram header, then move to the next mblk.
2086 */
2087 hdr_offset = mp->b_rptr;
2088 resp = mp;
2089 if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2090 resp = mp->b_cont;
2091 else
2092 resp->b_rptr += resp_off;
2093
2094 ASSERT(resp != NULL);
2095
2096 if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2097 (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2098 xid = *((uint32_t *)resp->b_rptr);
2099 else {
2100 int i = 0;
2101 unsigned char *p = (unsigned char *)&xid;
2102 unsigned char *rptr;
2103 mblk_t *tmp = resp;
2104
2105 /*
2106 * Copy the xid, byte-by-byte into xid.
2107 */
2108 while (tmp) {
2109 rptr = tmp->b_rptr;
2110 while (rptr < tmp->b_wptr) {
2111 *p++ = *rptr++;
2112 if (++i >= sizeof (xid))
2113 goto done_xid_copy;
2114 }
2115 tmp = tmp->b_cont;
2116 }
2117
2118 /*
2119 * If we got here, we ran out of mblk space before the
2120 * xid could be copied.
2121 */
2122 ASSERT(tmp == NULL && i < sizeof (xid));
2123
2124 RPCLOG0(1,
2125 "clnt_dispatch_notify(clts): message less than "
2126 "size of xid\n");
2127
2128 freemsg(mp);
2129 return;
2130 }
2131
2132 done_xid_copy:
2133
2134 /*
2135 * Reset the read pointer back to the beginning of the protocol
2136 * header if we moved it.
2137 */
2138 if (mp->b_rptr != hdr_offset)
2139 mp->b_rptr = hdr_offset;
2140
2141 hash = call_hash(xid, clnt_clts_hash_size);
2142 chtp = &clts_call_ht[hash];
2143 /* call_table_find returns with the hash bucket locked */
2144 call_table_find(chtp, xid, e);
2145
2146 if (e != NULL) {
2147 mutex_enter(&e->call_lock);
2148
2149 /*
2150 * verify that the reply is coming in on
2151 * the same zone that it was sent from.
2152 */
2153 if (e->call_zoneid != zoneid) {
2154 mutex_exit(&e->call_lock);
2155 mutex_exit(&chtp->ct_lock);
2156 RPCLOG0(8, "clnt_dispatch_notify (clts): incorrect "
2157 "zoneid\n");
2158 freemsg(mp);
2159 return;
2160 }
2161
2162 /*
2163 * found thread waiting for this reply.
2164 */
2165 if (e->call_reply) {
2166 RPCLOG(8,
2167 "clnt_dispatch_notify (clts): discarding old "
2168 "reply for xid 0x%x\n",
2169 xid);
2170 freemsg(e->call_reply);
2171 }
2172 e->call_notified = TRUE;
2173 e->call_reply = mp;
2174 e->call_status = RPC_SUCCESS;
2175 cv_signal(&e->call_cv);
2176 mutex_exit(&e->call_lock);
2177 mutex_exit(&chtp->ct_lock);
2178 } else {
2179 zone_t *zone;
2180 struct rpcstat *rpcstat;
2181
2182 mutex_exit(&chtp->ct_lock);
2183 RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2184 "0x%x\n", xid);
2185 freemsg(mp);
2186 /*
2187 * This is unfortunate, but we need to lookup the zone so we
2188 * can increment its "rcbadxids" counter.
2189 */
2190 zone = zone_find_by_id(zoneid);
2191 if (zone == NULL) {
2192 /*
2193 * The zone went away...
2194 */
2195 return;
2196 }
2197 rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2198 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2199 /*
2200 * Not interested
2201 */
2202 zone_rele(zone);
2203 return;
2204 }
2205 RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2206 zone_rele(zone);
2207 }
2208 }
2209
2210 /*
2211 * Init routine. Called when rpcmod is loaded.
2212 */
2213 void
clnt_clts_init(void)2214 clnt_clts_init(void)
2215 {
2216 endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2217 sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2218 NULL, 0);
2219
2220 rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2221
2222 /*
2223 * Perform simple bounds checking to make sure that the setting is
2224 * reasonable
2225 */
2226 if (clnt_clts_max_endpoints <= 0) {
2227 if (clnt_clts_do_bindresvport)
2228 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2229 else
2230 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2231 }
2232
2233 if (clnt_clts_do_bindresvport &&
2234 clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2235 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2236 else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2237 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2238
2239 if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2240 clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2241
2242 /*
2243 * Defer creating the taskq until rpcmod gets pushed. If we are
2244 * in diskless boot mode, rpcmod will get loaded early even before
2245 * thread_create() is available.
2246 */
2247 endpnt_taskq = NULL;
2248 taskq_created = FALSE;
2249 mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2250
2251 if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2252 clnt_clts_endpoint_reap_interval =
2253 DEFAULT_ENDPOINT_REAP_INTERVAL;
2254
2255 /*
2256 * Dispatch the taskq at an interval which is offset from the
2257 * interval that the endpoints should be reaped.
2258 */
2259 clnt_clts_taskq_dispatch_interval =
2260 (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2261
2262 /*
2263 * Initialize the completion queue
2264 */
2265 clts_call_ht = call_table_init(clnt_clts_hash_size);
2266 /*
2267 * Initialize the zone destructor callback.
2268 */
2269 zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2270 }
2271
2272 void
clnt_clts_fini(void)2273 clnt_clts_fini(void)
2274 {
2275 (void) zone_key_delete(endpnt_destructor_key);
2276 }
2277