xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 42bb9b630c4c6c0964cddca98d9d30aa992826de)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 
409 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 		struct kfd_process_device *pdd;
411 		struct kfd_process *p;
412 		struct mm_struct *mm;
413 
414 		mm = svm_bo->eviction_fence->mm;
415 		/*
416 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 		 * released after parent process is gone.
418 		 */
419 		p = kfd_lookup_process_by_mm(mm);
420 		if (p) {
421 			pdd = kfd_get_process_device_data(svm_bo->node, p);
422 			if (pdd)
423 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 			kfd_unref_process(p);
425 		}
426 		mmput(mm);
427 	}
428 
429 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 		/* We're not in the eviction worker. Signal the fence. */
431 		dma_fence_signal(&svm_bo->eviction_fence->base);
432 	dma_fence_put(&svm_bo->eviction_fence->base);
433 	amdgpu_bo_unref(&svm_bo->bo);
434 	kfree(svm_bo);
435 }
436 
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 	struct svm_range_bo *svm_bo;
440 
441 	svm_bo = container_of(work, struct svm_range_bo, release_work);
442 	svm_range_bo_release(&svm_bo->kref);
443 }
444 
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 	struct svm_range_bo *svm_bo;
448 
449 	svm_bo = container_of(kref, struct svm_range_bo, kref);
450 	pr_debug("svm_bo 0x%p\n", svm_bo);
451 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 	schedule_work(&svm_bo->release_work);
453 }
454 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459 
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 	if (svm_bo)
463 		kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465 
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 	mutex_lock(&prange->lock);
470 	if (!prange->svm_bo) {
471 		mutex_unlock(&prange->lock);
472 		return false;
473 	}
474 	if (prange->ttm_res) {
475 		/* We still have a reference, all is well */
476 		mutex_unlock(&prange->lock);
477 		return true;
478 	}
479 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 		/*
481 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 		 * range list, and return false to allocate svm_bo from destination
483 		 * node.
484 		 */
485 		if (prange->svm_bo->node != node) {
486 			mutex_unlock(&prange->lock);
487 
488 			spin_lock(&prange->svm_bo->list_lock);
489 			list_del_init(&prange->svm_bo_list);
490 			spin_unlock(&prange->svm_bo->list_lock);
491 
492 			svm_range_bo_unref(prange->svm_bo);
493 			return false;
494 		}
495 		if (READ_ONCE(prange->svm_bo->evicting)) {
496 			struct dma_fence *f;
497 			struct svm_range_bo *svm_bo;
498 			/* The BO is getting evicted,
499 			 * we need to get a new one
500 			 */
501 			mutex_unlock(&prange->lock);
502 			svm_bo = prange->svm_bo;
503 			f = dma_fence_get(&svm_bo->eviction_fence->base);
504 			svm_range_bo_unref(prange->svm_bo);
505 			/* wait for the fence to avoid long spin-loop
506 			 * at list_empty_careful
507 			 */
508 			dma_fence_wait(f, false);
509 			dma_fence_put(f);
510 		} else {
511 			/* The BO was still around and we got
512 			 * a new reference to it
513 			 */
514 			mutex_unlock(&prange->lock);
515 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 				 prange->svms, prange->start, prange->last);
517 
518 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 			return true;
520 		}
521 
522 	} else {
523 		mutex_unlock(&prange->lock);
524 	}
525 
526 	/* We need a new svm_bo. Spin-loop to wait for concurrent
527 	 * svm_range_bo_release to finish removing this range from
528 	 * its range list and set prange->svm_bo to null. After this,
529 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 	 */
531 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 		cond_resched();
533 
534 	return false;
535 }
536 
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 	struct svm_range_bo *svm_bo;
540 
541 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 	if (!svm_bo)
543 		return NULL;
544 
545 	kref_init(&svm_bo->kref);
546 	INIT_LIST_HEAD(&svm_bo->range_list);
547 	spin_lock_init(&svm_bo->list_lock);
548 
549 	return svm_bo;
550 }
551 
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 			bool clear)
555 {
556 	struct kfd_process_device *pdd;
557 	struct amdgpu_bo_param bp;
558 	struct svm_range_bo *svm_bo;
559 	struct amdgpu_bo_user *ubo;
560 	struct amdgpu_bo *bo;
561 	struct kfd_process *p;
562 	struct mm_struct *mm;
563 	int r;
564 
565 	p = container_of(prange->svms, struct kfd_process, svms);
566 	pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 		 p->lead_thread->pid, prange->svms,
568 		 prange->start, prange->last);
569 
570 	if (svm_range_validate_svm_bo(node, prange))
571 		return 0;
572 
573 	svm_bo = svm_range_bo_new();
574 	if (!svm_bo) {
575 		pr_debug("failed to alloc svm bo\n");
576 		return -ENOMEM;
577 	}
578 	mm = get_task_mm(p->lead_thread);
579 	if (!mm) {
580 		pr_debug("failed to get mm\n");
581 		kfree(svm_bo);
582 		return -ESRCH;
583 	}
584 	svm_bo->node = node;
585 	svm_bo->eviction_fence =
586 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 					   mm,
588 					   svm_bo);
589 	mmput(mm);
590 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 	svm_bo->evicting = 0;
592 	memset(&bp, 0, sizeof(bp));
593 	bp.size = prange->npages * PAGE_SIZE;
594 	bp.byte_align = PAGE_SIZE;
595 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 	bp.type = ttm_bo_type_device;
600 	bp.resv = NULL;
601 	if (node->xcp)
602 		bp.xcp_id_plus1 = node->xcp->id + 1;
603 
604 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 	if (r) {
606 		pr_debug("failed %d to create bo\n", r);
607 		goto create_bo_failed;
608 	}
609 	bo = &ubo->bo;
610 
611 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 		 bp.xcp_id_plus1 - 1);
614 
615 	r = amdgpu_bo_reserve(bo, true);
616 	if (r) {
617 		pr_debug("failed %d to reserve bo\n", r);
618 		goto reserve_bo_failed;
619 	}
620 
621 	if (clear) {
622 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 		if (r) {
624 			pr_debug("failed %d to sync bo\n", r);
625 			amdgpu_bo_unreserve(bo);
626 			goto reserve_bo_failed;
627 		}
628 	}
629 
630 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 	if (r) {
632 		pr_debug("failed %d to reserve bo\n", r);
633 		amdgpu_bo_unreserve(bo);
634 		goto reserve_bo_failed;
635 	}
636 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637 
638 	amdgpu_bo_unreserve(bo);
639 
640 	svm_bo->bo = bo;
641 	prange->svm_bo = svm_bo;
642 	prange->ttm_res = bo->tbo.resource;
643 	prange->offset = 0;
644 
645 	spin_lock(&svm_bo->list_lock);
646 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 	spin_unlock(&svm_bo->list_lock);
648 
649 	pdd = svm_range_get_pdd_by_node(prange, node);
650 	if (pdd)
651 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652 
653 	return 0;
654 
655 reserve_bo_failed:
656 	amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 	dma_fence_put(&svm_bo->eviction_fence->base);
659 	kfree(svm_bo);
660 	prange->ttm_res = NULL;
661 
662 	return r;
663 }
664 
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 	/* serialize prange->svm_bo unref */
668 	mutex_lock(&prange->lock);
669 	/* prange->svm_bo has not been unref */
670 	if (prange->ttm_res) {
671 		prange->ttm_res = NULL;
672 		mutex_unlock(&prange->lock);
673 		svm_range_bo_unref(prange->svm_bo);
674 	} else
675 		mutex_unlock(&prange->lock);
676 }
677 
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 	struct kfd_process *p;
682 	struct kfd_process_device *pdd;
683 
684 	p = container_of(prange->svms, struct kfd_process, svms);
685 	pdd = kfd_process_device_data_by_id(p, gpu_id);
686 	if (!pdd) {
687 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 		return NULL;
689 	}
690 
691 	return pdd->dev;
692 }
693 
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 	struct kfd_process *p;
698 
699 	p = container_of(prange->svms, struct kfd_process, svms);
700 
701 	return kfd_get_process_device_data(node, p);
702 }
703 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 	struct ttm_operation_ctx ctx = { false, false };
707 
708 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709 
710 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712 
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 	uint32_t i;
718 
719 	for (i = 0; i < nattr; i++) {
720 		uint32_t val = attrs[i].value;
721 		int gpuidx = MAX_GPU_INSTANCE;
722 
723 		switch (attrs[i].type) {
724 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 			break;
729 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 			break;
733 		case KFD_IOCTL_SVM_ATTR_ACCESS:
734 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 			break;
738 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 			break;
740 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 			break;
742 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 			break;
744 		default:
745 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 			return -EINVAL;
747 		}
748 
749 		if (gpuidx < 0) {
750 			pr_debug("no GPU 0x%x found\n", val);
751 			return -EINVAL;
752 		} else if (gpuidx < MAX_GPU_INSTANCE &&
753 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 			pr_debug("GPU 0x%x not supported\n", val);
755 			return -EINVAL;
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 		      bool *update_mapping)
766 {
767 	uint32_t i;
768 	int gpuidx;
769 
770 	for (i = 0; i < nattr; i++) {
771 		switch (attrs[i].type) {
772 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 			prange->preferred_loc = attrs[i].value;
774 			break;
775 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 			prange->prefetch_loc = attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_ACCESS:
779 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 			if (!p->xnack_enabled)
782 				*update_mapping = true;
783 
784 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 							       attrs[i].value);
786 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 				bitmap_set(prange->bitmap_access, gpuidx, 1);
791 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 			} else {
793 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 			}
796 			break;
797 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 			*update_mapping = true;
799 			prange->flags |= attrs[i].value;
800 			break;
801 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 			*update_mapping = true;
803 			prange->flags &= ~attrs[i].value;
804 			break;
805 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 			break;
808 		default:
809 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 		}
811 	}
812 }
813 
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 	uint32_t i;
819 	int gpuidx;
820 
821 	for (i = 0; i < nattr; i++) {
822 		switch (attrs[i].type) {
823 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 			if (prange->preferred_loc != attrs[i].value)
825 				return false;
826 			break;
827 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 			/* Prefetch should always trigger a migration even
829 			 * if the value of the attribute didn't change.
830 			 */
831 			return false;
832 		case KFD_IOCTL_SVM_ATTR_ACCESS:
833 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 							       attrs[i].value);
837 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 				if (test_bit(gpuidx, prange->bitmap_access) ||
839 				    test_bit(gpuidx, prange->bitmap_aip))
840 					return false;
841 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 				if (!test_bit(gpuidx, prange->bitmap_access))
843 					return false;
844 			} else {
845 				if (!test_bit(gpuidx, prange->bitmap_aip))
846 					return false;
847 			}
848 			break;
849 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 			if ((prange->flags & attrs[i].value) != attrs[i].value)
851 				return false;
852 			break;
853 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 			if ((prange->flags & attrs[i].value) != 0)
855 				return false;
856 			break;
857 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 			if (prange->granularity != attrs[i].value)
859 				return false;
860 			break;
861 		default:
862 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 		}
864 	}
865 
866 	return true;
867 }
868 
869 /**
870  * svm_range_debug_dump - print all range information from svms
871  * @svms: svm range list header
872  *
873  * debug output svm range start, end, prefetch location from svms
874  * interval tree and link list
875  *
876  * Context: The caller must hold svms->lock
877  */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 	struct interval_tree_node *node;
881 	struct svm_range *prange;
882 
883 	pr_debug("dump svms 0x%p list\n", svms);
884 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885 
886 	list_for_each_entry(prange, &svms->list, list) {
887 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 			 prange, prange->start, prange->npages,
889 			 prange->start + prange->npages - 1,
890 			 prange->actual_loc);
891 	}
892 
893 	pr_debug("dump svms 0x%p interval tree\n", svms);
894 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 	while (node) {
897 		prange = container_of(node, struct svm_range, it_node);
898 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 			 prange, prange->start, prange->npages,
900 			 prange->start + prange->npages - 1,
901 			 prange->actual_loc);
902 		node = interval_tree_iter_next(node, 0, ~0ULL);
903 	}
904 }
905 
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 		     uint64_t offset, uint64_t *vram_pages)
909 {
910 	unsigned char *src = (unsigned char *)psrc + offset;
911 	unsigned char *dst;
912 	uint64_t i;
913 
914 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 	if (!dst)
916 		return NULL;
917 
918 	if (!vram_pages) {
919 		memcpy(dst, src, num_elements * size);
920 		return (void *)dst;
921 	}
922 
923 	*vram_pages = 0;
924 	for (i = 0; i < num_elements; i++) {
925 		dma_addr_t *temp;
926 		temp = (dma_addr_t *)dst + i;
927 		*temp = *((dma_addr_t *)src + i);
928 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 			(*vram_pages)++;
930 	}
931 
932 	return (void *)dst;
933 }
934 
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 	int i;
939 
940 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 		if (!src->dma_addr[i])
942 			continue;
943 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 		if (!dst->dma_addr[i])
946 			return -ENOMEM;
947 	}
948 
949 	return 0;
950 }
951 
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 		      uint64_t old_start, uint64_t old_n,
955 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 	unsigned char *new, *old, *pold;
958 	uint64_t d;
959 
960 	if (!ppold)
961 		return 0;
962 	pold = *(unsigned char **)ppold;
963 	if (!pold)
964 		return 0;
965 
966 	d = (new_start - old_start) * size;
967 	/* get dma addr array for new range and calculte its vram page number */
968 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 	if (!new)
970 		return -ENOMEM;
971 	d = (new_start == old_start) ? new_n * size : 0;
972 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 	if (!old) {
974 		kvfree(new);
975 		return -ENOMEM;
976 	}
977 	kvfree(pold);
978 	*(void **)ppold = old;
979 	*(void **)ppnew = new;
980 
981 	return 0;
982 }
983 
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 		      uint64_t start, uint64_t last)
987 {
988 	uint64_t npages = last - start + 1;
989 	int i, r;
990 
991 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 					  sizeof(*old->dma_addr[i]), old->start,
994 					  npages, new->start, new->npages,
995 					  old->actual_loc ? &new->vram_pages : NULL);
996 		if (r)
997 			return r;
998 	}
999 	if (old->actual_loc)
1000 		old->vram_pages -= new->vram_pages;
1001 
1002 	return 0;
1003 }
1004 
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 		      uint64_t start, uint64_t last)
1008 {
1009 	uint64_t npages = last - start + 1;
1010 
1011 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 		 new->svms, new, new->start, start, last);
1013 
1014 	if (new->start == old->start) {
1015 		new->offset = old->offset;
1016 		old->offset += new->npages;
1017 	} else {
1018 		new->offset = old->offset + npages;
1019 	}
1020 
1021 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 	new->ttm_res = old->ttm_res;
1023 
1024 	spin_lock(&new->svm_bo->list_lock);
1025 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 	spin_unlock(&new->svm_bo->list_lock);
1027 
1028 	return 0;
1029 }
1030 
1031 /**
1032  * svm_range_split_adjust - split range and adjust
1033  *
1034  * @new: new range
1035  * @old: the old range
1036  * @start: the old range adjust to start address in pages
1037  * @last: the old range adjust to last address in pages
1038  *
1039  * Copy system memory dma_addr or vram ttm_res in old range to new
1040  * range from new_start up to size new->npages, the remaining old range is from
1041  * start to last
1042  *
1043  * Return:
1044  * 0 - OK, -ENOMEM - out of memory
1045  */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 		      uint64_t start, uint64_t last)
1049 {
1050 	int r;
1051 
1052 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 		 new->svms, new->start, old->start, old->last, start, last);
1054 
1055 	if (new->start < old->start ||
1056 	    new->last > old->last) {
1057 		WARN_ONCE(1, "invalid new range start or last\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	r = svm_range_split_pages(new, old, start, last);
1062 	if (r)
1063 		return r;
1064 
1065 	if (old->actual_loc && old->ttm_res) {
1066 		r = svm_range_split_nodes(new, old, start, last);
1067 		if (r)
1068 			return r;
1069 	}
1070 
1071 	old->npages = last - start + 1;
1072 	old->start = start;
1073 	old->last = last;
1074 	new->flags = old->flags;
1075 	new->preferred_loc = old->preferred_loc;
1076 	new->prefetch_loc = old->prefetch_loc;
1077 	new->actual_loc = old->actual_loc;
1078 	new->granularity = old->granularity;
1079 	new->mapped_to_gpu = old->mapped_to_gpu;
1080 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083 
1084 	return 0;
1085 }
1086 
1087 /**
1088  * svm_range_split - split a range in 2 ranges
1089  *
1090  * @prange: the svm range to split
1091  * @start: the remaining range start address in pages
1092  * @last: the remaining range last address in pages
1093  * @new: the result new range generated
1094  *
1095  * Two cases only:
1096  * case 1: if start == prange->start
1097  *         prange ==> prange[start, last]
1098  *         new range [last + 1, prange->last]
1099  *
1100  * case 2: if last == prange->last
1101  *         prange ==> prange[start, last]
1102  *         new range [prange->start, start - 1]
1103  *
1104  * Return:
1105  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106  */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 		struct svm_range **new)
1110 {
1111 	uint64_t old_start = prange->start;
1112 	uint64_t old_last = prange->last;
1113 	struct svm_range_list *svms;
1114 	int r = 0;
1115 
1116 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 		 old_start, old_last, start, last);
1118 
1119 	if (old_start != start && old_last != last)
1120 		return -EINVAL;
1121 	if (start < old_start || last > old_last)
1122 		return -EINVAL;
1123 
1124 	svms = prange->svms;
1125 	if (old_start == start)
1126 		*new = svm_range_new(svms, last + 1, old_last, false);
1127 	else
1128 		*new = svm_range_new(svms, old_start, start - 1, false);
1129 	if (!*new)
1130 		return -ENOMEM;
1131 
1132 	r = svm_range_split_adjust(*new, prange, start, last);
1133 	if (r) {
1134 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 			 r, old_start, old_last, start, last);
1136 		svm_range_free(*new, false);
1137 		*new = NULL;
1138 	}
1139 
1140 	return r;
1141 }
1142 
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 		     struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 	struct svm_range *tail = NULL;
1148 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1149 
1150 	if (!r) {
1151 		list_add(&tail->list, insert_list);
1152 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1153 			list_add(&tail->update_list, remap_list);
1154 	}
1155 	return r;
1156 }
1157 
1158 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1159 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1160 		     struct list_head *insert_list, struct list_head *remap_list)
1161 {
1162 	struct svm_range *head = NULL;
1163 	int r = svm_range_split(prange, new_start, prange->last, &head);
1164 
1165 	if (!r) {
1166 		list_add(&head->list, insert_list);
1167 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1168 			list_add(&head->update_list, remap_list);
1169 	}
1170 	return r;
1171 }
1172 
1173 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1174 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 		 pchild, pchild->start, pchild->last, prange, op);
1178 
1179 	pchild->work_item.mm = NULL;
1180 	pchild->work_item.op = op;
1181 	list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183 
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 	return (node_a->adev == node_b->adev ||
1188 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190 
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node,
1193 			struct svm_range *prange, int domain)
1194 {
1195 	struct kfd_node *bo_node;
1196 	uint32_t flags = prange->flags;
1197 	uint32_t mapping_flags = 0;
1198 	uint32_t gc_ip_version = KFD_GC_VERSION(node);
1199 	uint64_t pte_flags;
1200 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1201 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1202 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1203 	unsigned int mtype_local;
1204 
1205 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1206 		bo_node = prange->svm_bo->node;
1207 
1208 	switch (gc_ip_version) {
1209 	case IP_VERSION(9, 4, 1):
1210 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1211 			if (bo_node == node) {
1212 				mapping_flags |= coherent ?
1213 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1214 			} else {
1215 				mapping_flags |= coherent ?
1216 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1217 				if (svm_nodes_in_same_hive(node, bo_node))
1218 					snoop = true;
1219 			}
1220 		} else {
1221 			mapping_flags |= coherent ?
1222 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1223 		}
1224 		break;
1225 	case IP_VERSION(9, 4, 2):
1226 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1227 			if (bo_node == node) {
1228 				mapping_flags |= coherent ?
1229 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1230 				if (node->adev->gmc.xgmi.connected_to_cpu)
1231 					snoop = true;
1232 			} else {
1233 				mapping_flags |= coherent ?
1234 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 				if (svm_nodes_in_same_hive(node, bo_node))
1236 					snoop = true;
1237 			}
1238 		} else {
1239 			mapping_flags |= coherent ?
1240 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 		}
1242 		break;
1243 	case IP_VERSION(9, 4, 3):
1244 	case IP_VERSION(9, 4, 4):
1245 	case IP_VERSION(9, 5, 0):
1246 		if (ext_coherent)
1247 			mtype_local = AMDGPU_VM_MTYPE_CC;
1248 		else
1249 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1250 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1251 		snoop = true;
1252 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1253 			/* local HBM region close to partition */
1254 			if (bo_node->adev == node->adev &&
1255 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1256 				mapping_flags |= mtype_local;
1257 			/* local HBM region far from partition or remote XGMI GPU
1258 			 * with regular system scope coherence
1259 			 */
1260 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1261 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1262 			/* PCIe P2P on GPUs pre-9.5.0 */
1263 			else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1264 				 !svm_nodes_in_same_hive(bo_node, node))
1265 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1266 			/* Other remote memory */
1267 			else
1268 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1269 		/* system memory accessed by the APU */
1270 		} else if (node->adev->flags & AMD_IS_APU) {
1271 			/* On NUMA systems, locality is determined per-page
1272 			 * in amdgpu_gmc_override_vm_pte_flags
1273 			 */
1274 			if (num_possible_nodes() <= 1)
1275 				mapping_flags |= mtype_local;
1276 			else
1277 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1278 		/* system memory accessed by the dGPU */
1279 		} else {
1280 			if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1281 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1282 			else
1283 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1284 		}
1285 		break;
1286 	case IP_VERSION(12, 0, 0):
1287 	case IP_VERSION(12, 0, 1):
1288 		mapping_flags |= AMDGPU_VM_MTYPE_NC;
1289 		break;
1290 	default:
1291 		mapping_flags |= coherent ?
1292 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1293 	}
1294 
1295 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1296 
1297 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1298 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1299 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1300 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1301 
1302 	pte_flags = AMDGPU_PTE_VALID;
1303 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1304 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1305 	if (gc_ip_version >= IP_VERSION(12, 0, 0))
1306 		pte_flags |= AMDGPU_PTE_IS_PTE;
1307 
1308 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1309 	return pte_flags;
1310 }
1311 
1312 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1313 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1314 			 uint64_t start, uint64_t last,
1315 			 struct dma_fence **fence)
1316 {
1317 	uint64_t init_pte_value = 0;
1318 
1319 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1320 
1321 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1322 				      last, init_pte_value, 0, 0, NULL, NULL,
1323 				      fence);
1324 }
1325 
1326 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1327 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1328 			  unsigned long last, uint32_t trigger)
1329 {
1330 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1331 	struct kfd_process_device *pdd;
1332 	struct dma_fence *fence = NULL;
1333 	struct kfd_process *p;
1334 	uint32_t gpuidx;
1335 	int r = 0;
1336 
1337 	if (!prange->mapped_to_gpu) {
1338 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1339 			 prange, prange->start, prange->last);
1340 		return 0;
1341 	}
1342 
1343 	if (prange->start == start && prange->last == last) {
1344 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1345 		prange->mapped_to_gpu = false;
1346 	}
1347 
1348 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1349 		  MAX_GPU_INSTANCE);
1350 	p = container_of(prange->svms, struct kfd_process, svms);
1351 
1352 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1353 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1354 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1355 		if (!pdd) {
1356 			pr_debug("failed to find device idx %d\n", gpuidx);
1357 			return -EINVAL;
1358 		}
1359 
1360 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1361 					     start, last, trigger);
1362 
1363 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1364 					     drm_priv_to_vm(pdd->drm_priv),
1365 					     start, last, &fence);
1366 		if (r)
1367 			break;
1368 
1369 		if (fence) {
1370 			r = dma_fence_wait(fence, false);
1371 			dma_fence_put(fence);
1372 			fence = NULL;
1373 			if (r)
1374 				break;
1375 		}
1376 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1377 	}
1378 
1379 	return r;
1380 }
1381 
1382 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1383 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1384 		     unsigned long offset, unsigned long npages, bool readonly,
1385 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1386 		     struct dma_fence **fence, bool flush_tlb)
1387 {
1388 	struct amdgpu_device *adev = pdd->dev->adev;
1389 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1390 	uint64_t pte_flags;
1391 	unsigned long last_start;
1392 	int last_domain;
1393 	int r = 0;
1394 	int64_t i, j;
1395 
1396 	last_start = prange->start + offset;
1397 
1398 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1399 		 last_start, last_start + npages - 1, readonly);
1400 
1401 	for (i = offset; i < offset + npages; i++) {
1402 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1403 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1404 
1405 		/* Collect all pages in the same address range and memory domain
1406 		 * that can be mapped with a single call to update mapping.
1407 		 */
1408 		if (i < offset + npages - 1 &&
1409 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1410 			continue;
1411 
1412 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1413 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1414 
1415 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1416 		if (readonly)
1417 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1418 
1419 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1420 			 prange->svms, last_start, prange->start + i,
1421 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1422 			 pte_flags);
1423 
1424 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1425 		 * different memory partition based on fpfn/lpfn, we should use
1426 		 * same vm_manager.vram_base_offset regardless memory partition.
1427 		 */
1428 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1429 					   NULL, last_start, prange->start + i,
1430 					   pte_flags,
1431 					   (last_start - prange->start) << PAGE_SHIFT,
1432 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1433 					   NULL, dma_addr, &vm->last_update);
1434 
1435 		for (j = last_start - prange->start; j <= i; j++)
1436 			dma_addr[j] |= last_domain;
1437 
1438 		if (r) {
1439 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1440 			goto out;
1441 		}
1442 		last_start = prange->start + i + 1;
1443 	}
1444 
1445 	r = amdgpu_vm_update_pdes(adev, vm, false);
1446 	if (r) {
1447 		pr_debug("failed %d to update directories 0x%lx\n", r,
1448 			 prange->start);
1449 		goto out;
1450 	}
1451 
1452 	if (fence)
1453 		*fence = dma_fence_get(vm->last_update);
1454 
1455 out:
1456 	return r;
1457 }
1458 
1459 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1460 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1461 		      unsigned long npages, bool readonly,
1462 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1463 {
1464 	struct kfd_process_device *pdd;
1465 	struct amdgpu_device *bo_adev = NULL;
1466 	struct kfd_process *p;
1467 	struct dma_fence *fence = NULL;
1468 	uint32_t gpuidx;
1469 	int r = 0;
1470 
1471 	if (prange->svm_bo && prange->ttm_res)
1472 		bo_adev = prange->svm_bo->node->adev;
1473 
1474 	p = container_of(prange->svms, struct kfd_process, svms);
1475 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1476 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1477 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1478 		if (!pdd) {
1479 			pr_debug("failed to find device idx %d\n", gpuidx);
1480 			return -EINVAL;
1481 		}
1482 
1483 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1484 		if (IS_ERR(pdd))
1485 			return -EINVAL;
1486 
1487 		if (bo_adev && pdd->dev->adev != bo_adev &&
1488 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1489 			pr_debug("cannot map to device idx %d\n", gpuidx);
1490 			continue;
1491 		}
1492 
1493 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1494 					 prange->dma_addr[gpuidx],
1495 					 bo_adev, wait ? &fence : NULL,
1496 					 flush_tlb);
1497 		if (r)
1498 			break;
1499 
1500 		if (fence) {
1501 			r = dma_fence_wait(fence, false);
1502 			dma_fence_put(fence);
1503 			fence = NULL;
1504 			if (r) {
1505 				pr_debug("failed %d to dma fence wait\n", r);
1506 				break;
1507 			}
1508 		}
1509 
1510 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1511 	}
1512 
1513 	return r;
1514 }
1515 
1516 struct svm_validate_context {
1517 	struct kfd_process *process;
1518 	struct svm_range *prange;
1519 	bool intr;
1520 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1521 	struct drm_exec exec;
1522 };
1523 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1524 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1525 {
1526 	struct kfd_process_device *pdd;
1527 	struct amdgpu_vm *vm;
1528 	uint32_t gpuidx;
1529 	int r;
1530 
1531 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1532 	drm_exec_until_all_locked(&ctx->exec) {
1533 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1534 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1535 			if (!pdd) {
1536 				pr_debug("failed to find device idx %d\n", gpuidx);
1537 				r = -EINVAL;
1538 				goto unreserve_out;
1539 			}
1540 			vm = drm_priv_to_vm(pdd->drm_priv);
1541 
1542 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1543 			drm_exec_retry_on_contention(&ctx->exec);
1544 			if (unlikely(r)) {
1545 				pr_debug("failed %d to reserve bo\n", r);
1546 				goto unreserve_out;
1547 			}
1548 		}
1549 	}
1550 
1551 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1552 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1553 		if (!pdd) {
1554 			pr_debug("failed to find device idx %d\n", gpuidx);
1555 			r = -EINVAL;
1556 			goto unreserve_out;
1557 		}
1558 
1559 		r = amdgpu_vm_validate(pdd->dev->adev,
1560 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1561 				       svm_range_bo_validate, NULL);
1562 		if (r) {
1563 			pr_debug("failed %d validate pt bos\n", r);
1564 			goto unreserve_out;
1565 		}
1566 	}
1567 
1568 	return 0;
1569 
1570 unreserve_out:
1571 	drm_exec_fini(&ctx->exec);
1572 	return r;
1573 }
1574 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1575 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1576 {
1577 	drm_exec_fini(&ctx->exec);
1578 }
1579 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1580 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1581 {
1582 	struct kfd_process_device *pdd;
1583 
1584 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1585 	if (!pdd)
1586 		return NULL;
1587 
1588 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1589 }
1590 
1591 /*
1592  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1593  *
1594  * To prevent concurrent destruction or change of range attributes, the
1595  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1596  * because that would block concurrent evictions and lead to deadlocks. To
1597  * serialize concurrent migrations or validations of the same range, the
1598  * prange->migrate_mutex must be held.
1599  *
1600  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1601  * eviction fence.
1602  *
1603  * The following sequence ensures race-free validation and GPU mapping:
1604  *
1605  * 1. Reserve page table (and SVM BO if range is in VRAM)
1606  * 2. hmm_range_fault to get page addresses (if system memory)
1607  * 3. DMA-map pages (if system memory)
1608  * 4-a. Take notifier lock
1609  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1610  * 4-c. Check that the range was not split or otherwise invalidated
1611  * 4-d. Update GPU page table
1612  * 4.e. Release notifier lock
1613  * 5. Release page table (and SVM BO) reservation
1614  */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1615 static int svm_range_validate_and_map(struct mm_struct *mm,
1616 				      unsigned long map_start, unsigned long map_last,
1617 				      struct svm_range *prange, int32_t gpuidx,
1618 				      bool intr, bool wait, bool flush_tlb)
1619 {
1620 	struct svm_validate_context *ctx;
1621 	unsigned long start, end, addr;
1622 	struct kfd_process *p;
1623 	void *owner;
1624 	int32_t idx;
1625 	int r = 0;
1626 
1627 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1628 	if (!ctx)
1629 		return -ENOMEM;
1630 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1631 	ctx->prange = prange;
1632 	ctx->intr = intr;
1633 
1634 	if (gpuidx < MAX_GPU_INSTANCE) {
1635 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1636 		bitmap_set(ctx->bitmap, gpuidx, 1);
1637 	} else if (ctx->process->xnack_enabled) {
1638 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1639 
1640 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1641 		 * GPU, which has ACCESS attribute to the range, create mapping
1642 		 * on that GPU.
1643 		 */
1644 		if (prange->actual_loc) {
1645 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1646 							prange->actual_loc);
1647 			if (gpuidx < 0) {
1648 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1649 					 prange->actual_loc);
1650 				r = -EINVAL;
1651 				goto free_ctx;
1652 			}
1653 			if (test_bit(gpuidx, prange->bitmap_access))
1654 				bitmap_set(ctx->bitmap, gpuidx, 1);
1655 		}
1656 
1657 		/*
1658 		 * If prange is already mapped or with always mapped flag,
1659 		 * update mapping on GPUs with ACCESS attribute
1660 		 */
1661 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662 			if (prange->mapped_to_gpu ||
1663 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1664 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1665 		}
1666 	} else {
1667 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1668 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1669 	}
1670 
1671 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1672 		r = 0;
1673 		goto free_ctx;
1674 	}
1675 
1676 	if (prange->actual_loc && !prange->ttm_res) {
1677 		/* This should never happen. actual_loc gets set by
1678 		 * svm_migrate_ram_to_vram after allocating a BO.
1679 		 */
1680 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1681 		r = -EINVAL;
1682 		goto free_ctx;
1683 	}
1684 
1685 	r = svm_range_reserve_bos(ctx, intr);
1686 	if (r)
1687 		goto free_ctx;
1688 
1689 	p = container_of(prange->svms, struct kfd_process, svms);
1690 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1691 						MAX_GPU_INSTANCE));
1692 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1693 		if (kfd_svm_page_owner(p, idx) != owner) {
1694 			owner = NULL;
1695 			break;
1696 		}
1697 	}
1698 
1699 	start = map_start << PAGE_SHIFT;
1700 	end = (map_last + 1) << PAGE_SHIFT;
1701 	for (addr = start; !r && addr < end; ) {
1702 		struct hmm_range *hmm_range = NULL;
1703 		unsigned long map_start_vma;
1704 		unsigned long map_last_vma;
1705 		struct vm_area_struct *vma;
1706 		unsigned long next = 0;
1707 		unsigned long offset;
1708 		unsigned long npages;
1709 		bool readonly;
1710 
1711 		vma = vma_lookup(mm, addr);
1712 		if (vma) {
1713 			readonly = !(vma->vm_flags & VM_WRITE);
1714 
1715 			next = min(vma->vm_end, end);
1716 			npages = (next - addr) >> PAGE_SHIFT;
1717 			WRITE_ONCE(p->svms.faulting_task, current);
1718 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1719 						       readonly, owner, NULL,
1720 						       &hmm_range);
1721 			WRITE_ONCE(p->svms.faulting_task, NULL);
1722 			if (r)
1723 				pr_debug("failed %d to get svm range pages\n", r);
1724 		} else {
1725 			r = -EFAULT;
1726 		}
1727 
1728 		if (!r) {
1729 			offset = (addr >> PAGE_SHIFT) - prange->start;
1730 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1731 					      hmm_range->hmm_pfns);
1732 			if (r)
1733 				pr_debug("failed %d to dma map range\n", r);
1734 		}
1735 
1736 		svm_range_lock(prange);
1737 
1738 		/* Free backing memory of hmm_range if it was initialized
1739 		 * Overrride return value to TRY AGAIN only if prior returns
1740 		 * were successful
1741 		 */
1742 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1743 			pr_debug("hmm update the range, need validate again\n");
1744 			r = -EAGAIN;
1745 		}
1746 
1747 		if (!r && !list_empty(&prange->child_list)) {
1748 			pr_debug("range split by unmap in parallel, validate again\n");
1749 			r = -EAGAIN;
1750 		}
1751 
1752 		if (!r) {
1753 			map_start_vma = max(map_start, prange->start + offset);
1754 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1755 			if (map_start_vma <= map_last_vma) {
1756 				offset = map_start_vma - prange->start;
1757 				npages = map_last_vma - map_start_vma + 1;
1758 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1759 							  ctx->bitmap, wait, flush_tlb);
1760 			}
1761 		}
1762 
1763 		if (!r && next == end)
1764 			prange->mapped_to_gpu = true;
1765 
1766 		svm_range_unlock(prange);
1767 
1768 		addr = next;
1769 	}
1770 
1771 	svm_range_unreserve_bos(ctx);
1772 	if (!r)
1773 		prange->validate_timestamp = ktime_get_boottime();
1774 
1775 free_ctx:
1776 	kfree(ctx);
1777 
1778 	return r;
1779 }
1780 
1781 /**
1782  * svm_range_list_lock_and_flush_work - flush pending deferred work
1783  *
1784  * @svms: the svm range list
1785  * @mm: the mm structure
1786  *
1787  * Context: Returns with mmap write lock held, pending deferred work flushed
1788  *
1789  */
1790 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1791 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1792 				   struct mm_struct *mm)
1793 {
1794 retry_flush_work:
1795 	flush_work(&svms->deferred_list_work);
1796 	mmap_write_lock(mm);
1797 
1798 	if (list_empty(&svms->deferred_range_list))
1799 		return;
1800 	mmap_write_unlock(mm);
1801 	pr_debug("retry flush\n");
1802 	goto retry_flush_work;
1803 }
1804 
svm_range_restore_work(struct work_struct * work)1805 static void svm_range_restore_work(struct work_struct *work)
1806 {
1807 	struct delayed_work *dwork = to_delayed_work(work);
1808 	struct amdkfd_process_info *process_info;
1809 	struct svm_range_list *svms;
1810 	struct svm_range *prange;
1811 	struct kfd_process *p;
1812 	struct mm_struct *mm;
1813 	int evicted_ranges;
1814 	int invalid;
1815 	int r;
1816 
1817 	svms = container_of(dwork, struct svm_range_list, restore_work);
1818 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1819 	if (!evicted_ranges)
1820 		return;
1821 
1822 	pr_debug("restore svm ranges\n");
1823 
1824 	p = container_of(svms, struct kfd_process, svms);
1825 	process_info = p->kgd_process_info;
1826 
1827 	/* Keep mm reference when svm_range_validate_and_map ranges */
1828 	mm = get_task_mm(p->lead_thread);
1829 	if (!mm) {
1830 		pr_debug("svms 0x%p process mm gone\n", svms);
1831 		return;
1832 	}
1833 
1834 	mutex_lock(&process_info->lock);
1835 	svm_range_list_lock_and_flush_work(svms, mm);
1836 	mutex_lock(&svms->lock);
1837 
1838 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1839 
1840 	list_for_each_entry(prange, &svms->list, list) {
1841 		invalid = atomic_read(&prange->invalid);
1842 		if (!invalid)
1843 			continue;
1844 
1845 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1846 			 prange->svms, prange, prange->start, prange->last,
1847 			 invalid);
1848 
1849 		/*
1850 		 * If range is migrating, wait for migration is done.
1851 		 */
1852 		mutex_lock(&prange->migrate_mutex);
1853 
1854 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1855 					       MAX_GPU_INSTANCE, false, true, false);
1856 		if (r)
1857 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1858 				 prange->start);
1859 
1860 		mutex_unlock(&prange->migrate_mutex);
1861 		if (r)
1862 			goto out_reschedule;
1863 
1864 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1865 			goto out_reschedule;
1866 	}
1867 
1868 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1869 	    evicted_ranges)
1870 		goto out_reschedule;
1871 
1872 	evicted_ranges = 0;
1873 
1874 	r = kgd2kfd_resume_mm(mm);
1875 	if (r) {
1876 		/* No recovery from this failure. Probably the CP is
1877 		 * hanging. No point trying again.
1878 		 */
1879 		pr_debug("failed %d to resume KFD\n", r);
1880 	}
1881 
1882 	pr_debug("restore svm ranges successfully\n");
1883 
1884 out_reschedule:
1885 	mutex_unlock(&svms->lock);
1886 	mmap_write_unlock(mm);
1887 	mutex_unlock(&process_info->lock);
1888 
1889 	/* If validation failed, reschedule another attempt */
1890 	if (evicted_ranges) {
1891 		pr_debug("reschedule to restore svm range\n");
1892 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1893 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1894 
1895 		kfd_smi_event_queue_restore_rescheduled(mm);
1896 	}
1897 	mmput(mm);
1898 }
1899 
1900 /**
1901  * svm_range_evict - evict svm range
1902  * @prange: svm range structure
1903  * @mm: current process mm_struct
1904  * @start: starting process queue number
1905  * @last: last process queue number
1906  * @event: mmu notifier event when range is evicted or migrated
1907  *
1908  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1909  * return to let CPU evict the buffer and proceed CPU pagetable update.
1910  *
1911  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1912  * If invalidation happens while restore work is running, restore work will
1913  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1914  * the queues.
1915  */
1916 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1917 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1918 		unsigned long start, unsigned long last,
1919 		enum mmu_notifier_event event)
1920 {
1921 	struct svm_range_list *svms = prange->svms;
1922 	struct svm_range *pchild;
1923 	struct kfd_process *p;
1924 	int r = 0;
1925 
1926 	p = container_of(svms, struct kfd_process, svms);
1927 
1928 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1929 		 svms, prange->start, prange->last, start, last);
1930 
1931 	if (!p->xnack_enabled ||
1932 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1933 		int evicted_ranges;
1934 		bool mapped = prange->mapped_to_gpu;
1935 
1936 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1937 			if (!pchild->mapped_to_gpu)
1938 				continue;
1939 			mapped = true;
1940 			mutex_lock_nested(&pchild->lock, 1);
1941 			if (pchild->start <= last && pchild->last >= start) {
1942 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1943 					 pchild->start, pchild->last);
1944 				atomic_inc(&pchild->invalid);
1945 			}
1946 			mutex_unlock(&pchild->lock);
1947 		}
1948 
1949 		if (!mapped)
1950 			return r;
1951 
1952 		if (prange->start <= last && prange->last >= start)
1953 			atomic_inc(&prange->invalid);
1954 
1955 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1956 		if (evicted_ranges != 1)
1957 			return r;
1958 
1959 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1960 			 prange->svms, prange->start, prange->last);
1961 
1962 		/* First eviction, stop the queues */
1963 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1964 		if (r)
1965 			pr_debug("failed to quiesce KFD\n");
1966 
1967 		pr_debug("schedule to restore svm %p ranges\n", svms);
1968 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1969 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1970 	} else {
1971 		unsigned long s, l;
1972 		uint32_t trigger;
1973 
1974 		if (event == MMU_NOTIFY_MIGRATE)
1975 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1976 		else
1977 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1978 
1979 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1980 			 prange->svms, start, last);
1981 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1982 			mutex_lock_nested(&pchild->lock, 1);
1983 			s = max(start, pchild->start);
1984 			l = min(last, pchild->last);
1985 			if (l >= s)
1986 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1987 			mutex_unlock(&pchild->lock);
1988 		}
1989 		s = max(start, prange->start);
1990 		l = min(last, prange->last);
1991 		if (l >= s)
1992 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1993 	}
1994 
1995 	return r;
1996 }
1997 
svm_range_clone(struct svm_range * old)1998 static struct svm_range *svm_range_clone(struct svm_range *old)
1999 {
2000 	struct svm_range *new;
2001 
2002 	new = svm_range_new(old->svms, old->start, old->last, false);
2003 	if (!new)
2004 		return NULL;
2005 	if (svm_range_copy_dma_addrs(new, old)) {
2006 		svm_range_free(new, false);
2007 		return NULL;
2008 	}
2009 	if (old->svm_bo) {
2010 		new->ttm_res = old->ttm_res;
2011 		new->offset = old->offset;
2012 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2013 		spin_lock(&new->svm_bo->list_lock);
2014 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2015 		spin_unlock(&new->svm_bo->list_lock);
2016 	}
2017 	new->flags = old->flags;
2018 	new->preferred_loc = old->preferred_loc;
2019 	new->prefetch_loc = old->prefetch_loc;
2020 	new->actual_loc = old->actual_loc;
2021 	new->granularity = old->granularity;
2022 	new->mapped_to_gpu = old->mapped_to_gpu;
2023 	new->vram_pages = old->vram_pages;
2024 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2025 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2026 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2027 
2028 	return new;
2029 }
2030 
svm_range_set_max_pages(struct amdgpu_device * adev)2031 void svm_range_set_max_pages(struct amdgpu_device *adev)
2032 {
2033 	uint64_t max_pages;
2034 	uint64_t pages, _pages;
2035 	uint64_t min_pages = 0;
2036 	int i, id;
2037 
2038 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2039 		if (adev->kfd.dev->nodes[i]->xcp)
2040 			id = adev->kfd.dev->nodes[i]->xcp->id;
2041 		else
2042 			id = -1;
2043 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2044 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2045 		pages = rounddown_pow_of_two(pages);
2046 		min_pages = min_not_zero(min_pages, pages);
2047 	}
2048 
2049 	do {
2050 		max_pages = READ_ONCE(max_svm_range_pages);
2051 		_pages = min_not_zero(max_pages, min_pages);
2052 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2053 }
2054 
2055 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2056 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2057 		    uint64_t max_pages, struct list_head *insert_list,
2058 		    struct list_head *update_list)
2059 {
2060 	struct svm_range *prange;
2061 	uint64_t l;
2062 
2063 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2064 		 max_pages, start, last);
2065 
2066 	while (last >= start) {
2067 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2068 
2069 		prange = svm_range_new(svms, start, l, true);
2070 		if (!prange)
2071 			return -ENOMEM;
2072 		list_add(&prange->list, insert_list);
2073 		list_add(&prange->update_list, update_list);
2074 
2075 		start = l + 1;
2076 	}
2077 	return 0;
2078 }
2079 
2080 /**
2081  * svm_range_add - add svm range and handle overlap
2082  * @p: the range add to this process svms
2083  * @start: page size aligned
2084  * @size: page size aligned
2085  * @nattr: number of attributes
2086  * @attrs: array of attributes
2087  * @update_list: output, the ranges need validate and update GPU mapping
2088  * @insert_list: output, the ranges need insert to svms
2089  * @remove_list: output, the ranges are replaced and need remove from svms
2090  * @remap_list: output, remap unaligned svm ranges
2091  *
2092  * Check if the virtual address range has overlap with any existing ranges,
2093  * split partly overlapping ranges and add new ranges in the gaps. All changes
2094  * should be applied to the range_list and interval tree transactionally. If
2095  * any range split or allocation fails, the entire update fails. Therefore any
2096  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2097  * unchanged.
2098  *
2099  * If the transaction succeeds, the caller can update and insert clones and
2100  * new ranges, then free the originals.
2101  *
2102  * Otherwise the caller can free the clones and new ranges, while the old
2103  * svm_ranges remain unchanged.
2104  *
2105  * Context: Process context, caller must hold svms->lock
2106  *
2107  * Return:
2108  * 0 - OK, otherwise error code
2109  */
2110 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2111 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2112 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2113 	      struct list_head *update_list, struct list_head *insert_list,
2114 	      struct list_head *remove_list, struct list_head *remap_list)
2115 {
2116 	unsigned long last = start + size - 1UL;
2117 	struct svm_range_list *svms = &p->svms;
2118 	struct interval_tree_node *node;
2119 	struct svm_range *prange;
2120 	struct svm_range *tmp;
2121 	struct list_head new_list;
2122 	int r = 0;
2123 
2124 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2125 
2126 	INIT_LIST_HEAD(update_list);
2127 	INIT_LIST_HEAD(insert_list);
2128 	INIT_LIST_HEAD(remove_list);
2129 	INIT_LIST_HEAD(&new_list);
2130 	INIT_LIST_HEAD(remap_list);
2131 
2132 	node = interval_tree_iter_first(&svms->objects, start, last);
2133 	while (node) {
2134 		struct interval_tree_node *next;
2135 		unsigned long next_start;
2136 
2137 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2138 			 node->last);
2139 
2140 		prange = container_of(node, struct svm_range, it_node);
2141 		next = interval_tree_iter_next(node, start, last);
2142 		next_start = min(node->last, last) + 1;
2143 
2144 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2145 		    prange->mapped_to_gpu) {
2146 			/* nothing to do */
2147 		} else if (node->start < start || node->last > last) {
2148 			/* node intersects the update range and its attributes
2149 			 * will change. Clone and split it, apply updates only
2150 			 * to the overlapping part
2151 			 */
2152 			struct svm_range *old = prange;
2153 
2154 			prange = svm_range_clone(old);
2155 			if (!prange) {
2156 				r = -ENOMEM;
2157 				goto out;
2158 			}
2159 
2160 			list_add(&old->update_list, remove_list);
2161 			list_add(&prange->list, insert_list);
2162 			list_add(&prange->update_list, update_list);
2163 
2164 			if (node->start < start) {
2165 				pr_debug("change old range start\n");
2166 				r = svm_range_split_head(prange, start,
2167 							 insert_list, remap_list);
2168 				if (r)
2169 					goto out;
2170 			}
2171 			if (node->last > last) {
2172 				pr_debug("change old range last\n");
2173 				r = svm_range_split_tail(prange, last,
2174 							 insert_list, remap_list);
2175 				if (r)
2176 					goto out;
2177 			}
2178 		} else {
2179 			/* The node is contained within start..last,
2180 			 * just update it
2181 			 */
2182 			list_add(&prange->update_list, update_list);
2183 		}
2184 
2185 		/* insert a new node if needed */
2186 		if (node->start > start) {
2187 			r = svm_range_split_new(svms, start, node->start - 1,
2188 						READ_ONCE(max_svm_range_pages),
2189 						&new_list, update_list);
2190 			if (r)
2191 				goto out;
2192 		}
2193 
2194 		node = next;
2195 		start = next_start;
2196 	}
2197 
2198 	/* add a final range at the end if needed */
2199 	if (start <= last)
2200 		r = svm_range_split_new(svms, start, last,
2201 					READ_ONCE(max_svm_range_pages),
2202 					&new_list, update_list);
2203 
2204 out:
2205 	if (r) {
2206 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2207 			svm_range_free(prange, false);
2208 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2209 			svm_range_free(prange, true);
2210 	} else {
2211 		list_splice(&new_list, insert_list);
2212 	}
2213 
2214 	return r;
2215 }
2216 
2217 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2218 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2219 					    struct svm_range *prange)
2220 {
2221 	unsigned long start;
2222 	unsigned long last;
2223 
2224 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2225 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2226 
2227 	if (prange->start == start && prange->last == last)
2228 		return;
2229 
2230 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2231 		  prange->svms, prange, start, last, prange->start,
2232 		  prange->last);
2233 
2234 	if (start != 0 && last != 0) {
2235 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2236 		svm_range_remove_notifier(prange);
2237 	}
2238 	prange->it_node.start = prange->start;
2239 	prange->it_node.last = prange->last;
2240 
2241 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2242 	svm_range_add_notifier_locked(mm, prange);
2243 }
2244 
2245 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2246 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2247 			 struct mm_struct *mm)
2248 {
2249 	switch (prange->work_item.op) {
2250 	case SVM_OP_NULL:
2251 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2252 			 svms, prange, prange->start, prange->last);
2253 		break;
2254 	case SVM_OP_UNMAP_RANGE:
2255 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2256 			 svms, prange, prange->start, prange->last);
2257 		svm_range_unlink(prange);
2258 		svm_range_remove_notifier(prange);
2259 		svm_range_free(prange, true);
2260 		break;
2261 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2262 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2263 			 svms, prange, prange->start, prange->last);
2264 		svm_range_update_notifier_and_interval_tree(mm, prange);
2265 		break;
2266 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2267 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2268 			 svms, prange, prange->start, prange->last);
2269 		svm_range_update_notifier_and_interval_tree(mm, prange);
2270 		/* TODO: implement deferred validation and mapping */
2271 		break;
2272 	case SVM_OP_ADD_RANGE:
2273 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2274 			 prange->start, prange->last);
2275 		svm_range_add_to_svms(prange);
2276 		svm_range_add_notifier_locked(mm, prange);
2277 		break;
2278 	case SVM_OP_ADD_RANGE_AND_MAP:
2279 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2280 			 prange, prange->start, prange->last);
2281 		svm_range_add_to_svms(prange);
2282 		svm_range_add_notifier_locked(mm, prange);
2283 		/* TODO: implement deferred validation and mapping */
2284 		break;
2285 	default:
2286 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2287 			 prange->work_item.op);
2288 	}
2289 }
2290 
svm_range_drain_retry_fault(struct svm_range_list * svms)2291 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2292 {
2293 	struct kfd_process_device *pdd;
2294 	struct kfd_process *p;
2295 	uint32_t i;
2296 
2297 	p = container_of(svms, struct kfd_process, svms);
2298 
2299 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2300 		pdd = p->pdds[i];
2301 		if (!pdd)
2302 			continue;
2303 
2304 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2305 
2306 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2307 				pdd->dev->adev->irq.retry_cam_enabled ?
2308 				&pdd->dev->adev->irq.ih :
2309 				&pdd->dev->adev->irq.ih1);
2310 
2311 		if (pdd->dev->adev->irq.retry_cam_enabled)
2312 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2313 				&pdd->dev->adev->irq.ih_soft);
2314 
2315 
2316 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2317 	}
2318 }
2319 
svm_range_deferred_list_work(struct work_struct * work)2320 static void svm_range_deferred_list_work(struct work_struct *work)
2321 {
2322 	struct svm_range_list *svms;
2323 	struct svm_range *prange;
2324 	struct mm_struct *mm;
2325 
2326 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2327 	pr_debug("enter svms 0x%p\n", svms);
2328 
2329 	spin_lock(&svms->deferred_list_lock);
2330 	while (!list_empty(&svms->deferred_range_list)) {
2331 		prange = list_first_entry(&svms->deferred_range_list,
2332 					  struct svm_range, deferred_list);
2333 		spin_unlock(&svms->deferred_list_lock);
2334 
2335 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2336 			 prange->start, prange->last, prange->work_item.op);
2337 
2338 		mm = prange->work_item.mm;
2339 
2340 		mmap_write_lock(mm);
2341 
2342 		/* Remove from deferred_list must be inside mmap write lock, for
2343 		 * two race cases:
2344 		 * 1. unmap_from_cpu may change work_item.op and add the range
2345 		 *    to deferred_list again, cause use after free bug.
2346 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2347 		 *    lock and continue because deferred_list is empty, but
2348 		 *    deferred_list work is actually waiting for mmap lock.
2349 		 */
2350 		spin_lock(&svms->deferred_list_lock);
2351 		list_del_init(&prange->deferred_list);
2352 		spin_unlock(&svms->deferred_list_lock);
2353 
2354 		mutex_lock(&svms->lock);
2355 		mutex_lock(&prange->migrate_mutex);
2356 		while (!list_empty(&prange->child_list)) {
2357 			struct svm_range *pchild;
2358 
2359 			pchild = list_first_entry(&prange->child_list,
2360 						struct svm_range, child_list);
2361 			pr_debug("child prange 0x%p op %d\n", pchild,
2362 				 pchild->work_item.op);
2363 			list_del_init(&pchild->child_list);
2364 			svm_range_handle_list_op(svms, pchild, mm);
2365 		}
2366 		mutex_unlock(&prange->migrate_mutex);
2367 
2368 		svm_range_handle_list_op(svms, prange, mm);
2369 		mutex_unlock(&svms->lock);
2370 		mmap_write_unlock(mm);
2371 
2372 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2373 		 * last mm refcount, schedule release work to avoid circular locking
2374 		 */
2375 		mmput_async(mm);
2376 
2377 		spin_lock(&svms->deferred_list_lock);
2378 	}
2379 	spin_unlock(&svms->deferred_list_lock);
2380 	pr_debug("exit svms 0x%p\n", svms);
2381 }
2382 
2383 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2384 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2385 			struct mm_struct *mm, enum svm_work_list_ops op)
2386 {
2387 	spin_lock(&svms->deferred_list_lock);
2388 	/* if prange is on the deferred list */
2389 	if (!list_empty(&prange->deferred_list)) {
2390 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2391 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2392 		if (op != SVM_OP_NULL &&
2393 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2394 			prange->work_item.op = op;
2395 	} else {
2396 		/* Pairs with mmput in deferred_list_work.
2397 		 * If process is exiting and mm is gone, don't update mmu notifier.
2398 		 */
2399 		if (mmget_not_zero(mm)) {
2400 			prange->work_item.mm = mm;
2401 			prange->work_item.op = op;
2402 			list_add_tail(&prange->deferred_list,
2403 				      &prange->svms->deferred_range_list);
2404 			pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2405 				 prange, prange->start, prange->last, op);
2406 		}
2407 	}
2408 	spin_unlock(&svms->deferred_list_lock);
2409 }
2410 
schedule_deferred_list_work(struct svm_range_list * svms)2411 void schedule_deferred_list_work(struct svm_range_list *svms)
2412 {
2413 	spin_lock(&svms->deferred_list_lock);
2414 	if (!list_empty(&svms->deferred_range_list))
2415 		schedule_work(&svms->deferred_list_work);
2416 	spin_unlock(&svms->deferred_list_lock);
2417 }
2418 
2419 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2420 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2421 		      unsigned long last)
2422 {
2423 	struct svm_range *head;
2424 	struct svm_range *tail;
2425 
2426 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2427 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2428 			 prange->start, prange->last);
2429 		return;
2430 	}
2431 	if (start > prange->last || last < prange->start)
2432 		return;
2433 
2434 	head = tail = prange;
2435 	if (start > prange->start)
2436 		svm_range_split(prange, prange->start, start - 1, &tail);
2437 	if (last < tail->last)
2438 		svm_range_split(tail, last + 1, tail->last, &head);
2439 
2440 	if (head != prange && tail != prange) {
2441 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2442 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2443 	} else if (tail != prange) {
2444 		svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2445 	} else if (head != prange) {
2446 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2447 	} else if (parent != prange) {
2448 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2449 	}
2450 }
2451 
2452 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2453 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2454 			 unsigned long start, unsigned long last)
2455 {
2456 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2457 	struct svm_range_list *svms;
2458 	struct svm_range *pchild;
2459 	struct kfd_process *p;
2460 	unsigned long s, l;
2461 	bool unmap_parent;
2462 	uint32_t i;
2463 
2464 	if (atomic_read(&prange->queue_refcount)) {
2465 		int r;
2466 
2467 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2468 			prange->start << PAGE_SHIFT);
2469 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2470 		if (r)
2471 			pr_debug("failed %d to quiesce KFD queues\n", r);
2472 	}
2473 
2474 	p = kfd_lookup_process_by_mm(mm);
2475 	if (!p)
2476 		return;
2477 	svms = &p->svms;
2478 
2479 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2480 		 prange, prange->start, prange->last, start, last);
2481 
2482 	/* calculate time stamps that are used to decide which page faults need be
2483 	 * dropped or handled before unmap pages from gpu vm
2484 	 */
2485 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2486 		struct kfd_process_device *pdd;
2487 		struct amdgpu_device *adev;
2488 		struct amdgpu_ih_ring *ih;
2489 		uint32_t checkpoint_wptr;
2490 
2491 		pdd = p->pdds[i];
2492 		if (!pdd)
2493 			continue;
2494 
2495 		adev = pdd->dev->adev;
2496 
2497 		/* Check and drain ih1 ring if cam not available */
2498 		if (adev->irq.ih1.ring_size) {
2499 			ih = &adev->irq.ih1;
2500 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2501 			if (ih->rptr != checkpoint_wptr) {
2502 				svms->checkpoint_ts[i] =
2503 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2504 				continue;
2505 			}
2506 		}
2507 
2508 		/* check if dev->irq.ih_soft is not empty */
2509 		ih = &adev->irq.ih_soft;
2510 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2511 		if (ih->rptr != checkpoint_wptr)
2512 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2513 	}
2514 
2515 	unmap_parent = start <= prange->start && last >= prange->last;
2516 
2517 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2518 		mutex_lock_nested(&pchild->lock, 1);
2519 		s = max(start, pchild->start);
2520 		l = min(last, pchild->last);
2521 		if (l >= s)
2522 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2523 		svm_range_unmap_split(prange, pchild, start, last);
2524 		mutex_unlock(&pchild->lock);
2525 	}
2526 	s = max(start, prange->start);
2527 	l = min(last, prange->last);
2528 	if (l >= s)
2529 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2530 	svm_range_unmap_split(prange, prange, start, last);
2531 
2532 	if (unmap_parent)
2533 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2534 	else
2535 		svm_range_add_list_work(svms, prange, mm,
2536 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2537 	schedule_deferred_list_work(svms);
2538 
2539 	kfd_unref_process(p);
2540 }
2541 
2542 /**
2543  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2544  * @mni: mmu_interval_notifier struct
2545  * @range: mmu_notifier_range struct
2546  * @cur_seq: value to pass to mmu_interval_set_seq()
2547  *
2548  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2549  * is from migration, or CPU page invalidation callback.
2550  *
2551  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2552  * work thread, and split prange if only part of prange is unmapped.
2553  *
2554  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2555  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2556  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2557  * update GPU mapping to recover.
2558  *
2559  * Context: mmap lock, notifier_invalidate_start lock are held
2560  *          for invalidate event, prange lock is held if this is from migration
2561  */
2562 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2563 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2564 				    const struct mmu_notifier_range *range,
2565 				    unsigned long cur_seq)
2566 {
2567 	struct svm_range *prange;
2568 	unsigned long start;
2569 	unsigned long last;
2570 
2571 	if (range->event == MMU_NOTIFY_RELEASE)
2572 		return true;
2573 
2574 	start = mni->interval_tree.start;
2575 	last = mni->interval_tree.last;
2576 	start = max(start, range->start) >> PAGE_SHIFT;
2577 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2578 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2579 		 start, last, range->start >> PAGE_SHIFT,
2580 		 (range->end - 1) >> PAGE_SHIFT,
2581 		 mni->interval_tree.start >> PAGE_SHIFT,
2582 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2583 
2584 	prange = container_of(mni, struct svm_range, notifier);
2585 
2586 	svm_range_lock(prange);
2587 	mmu_interval_set_seq(mni, cur_seq);
2588 
2589 	switch (range->event) {
2590 	case MMU_NOTIFY_UNMAP:
2591 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2592 		break;
2593 	default:
2594 		svm_range_evict(prange, mni->mm, start, last, range->event);
2595 		break;
2596 	}
2597 
2598 	svm_range_unlock(prange);
2599 
2600 	return true;
2601 }
2602 
2603 /**
2604  * svm_range_from_addr - find svm range from fault address
2605  * @svms: svm range list header
2606  * @addr: address to search range interval tree, in pages
2607  * @parent: parent range if range is on child list
2608  *
2609  * Context: The caller must hold svms->lock
2610  *
2611  * Return: the svm_range found or NULL
2612  */
2613 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2614 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2615 		    struct svm_range **parent)
2616 {
2617 	struct interval_tree_node *node;
2618 	struct svm_range *prange;
2619 	struct svm_range *pchild;
2620 
2621 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2622 	if (!node)
2623 		return NULL;
2624 
2625 	prange = container_of(node, struct svm_range, it_node);
2626 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2627 		 addr, prange->start, prange->last, node->start, node->last);
2628 
2629 	if (addr >= prange->start && addr <= prange->last) {
2630 		if (parent)
2631 			*parent = prange;
2632 		return prange;
2633 	}
2634 	list_for_each_entry(pchild, &prange->child_list, child_list)
2635 		if (addr >= pchild->start && addr <= pchild->last) {
2636 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2637 				 addr, pchild->start, pchild->last);
2638 			if (parent)
2639 				*parent = prange;
2640 			return pchild;
2641 		}
2642 
2643 	return NULL;
2644 }
2645 
2646 /* svm_range_best_restore_location - decide the best fault restore location
2647  * @prange: svm range structure
2648  * @adev: the GPU on which vm fault happened
2649  *
2650  * This is only called when xnack is on, to decide the best location to restore
2651  * the range mapping after GPU vm fault. Caller uses the best location to do
2652  * migration if actual loc is not best location, then update GPU page table
2653  * mapping to the best location.
2654  *
2655  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2656  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2657  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2658  *    if range actual loc is cpu, best_loc is cpu
2659  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2660  *    range actual loc.
2661  * Otherwise, GPU no access, best_loc is -1.
2662  *
2663  * Return:
2664  * -1 means vm fault GPU no access
2665  * 0 for CPU or GPU id
2666  */
2667 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2668 svm_range_best_restore_location(struct svm_range *prange,
2669 				struct kfd_node *node,
2670 				int32_t *gpuidx)
2671 {
2672 	struct kfd_node *bo_node, *preferred_node;
2673 	struct kfd_process *p;
2674 	uint32_t gpuid;
2675 	int r;
2676 
2677 	p = container_of(prange->svms, struct kfd_process, svms);
2678 
2679 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2680 	if (r < 0) {
2681 		pr_debug("failed to get gpuid from kgd\n");
2682 		return -1;
2683 	}
2684 
2685 	if (node->adev->apu_prefer_gtt)
2686 		return 0;
2687 
2688 	if (prange->preferred_loc == gpuid ||
2689 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2690 		return prange->preferred_loc;
2691 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2692 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2693 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2694 			return prange->preferred_loc;
2695 		/* fall through */
2696 	}
2697 
2698 	if (test_bit(*gpuidx, prange->bitmap_access))
2699 		return gpuid;
2700 
2701 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2702 		if (!prange->actual_loc)
2703 			return 0;
2704 
2705 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2706 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2707 			return prange->actual_loc;
2708 		else
2709 			return 0;
2710 	}
2711 
2712 	return -1;
2713 }
2714 
2715 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2716 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2717 			       unsigned long *start, unsigned long *last,
2718 			       bool *is_heap_stack)
2719 {
2720 	struct vm_area_struct *vma;
2721 	struct interval_tree_node *node;
2722 	struct rb_node *rb_node;
2723 	unsigned long start_limit, end_limit;
2724 
2725 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2726 	if (!vma) {
2727 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2728 		return -EFAULT;
2729 	}
2730 
2731 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2732 
2733 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2734 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2735 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2736 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2737 
2738 	/* First range that starts after the fault address */
2739 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2740 	if (node) {
2741 		end_limit = min(end_limit, node->start);
2742 		/* Last range that ends before the fault address */
2743 		rb_node = rb_prev(&node->rb);
2744 	} else {
2745 		/* Last range must end before addr because
2746 		 * there was no range after addr
2747 		 */
2748 		rb_node = rb_last(&p->svms.objects.rb_root);
2749 	}
2750 	if (rb_node) {
2751 		node = container_of(rb_node, struct interval_tree_node, rb);
2752 		if (node->last >= addr) {
2753 			WARN(1, "Overlap with prev node and page fault addr\n");
2754 			return -EFAULT;
2755 		}
2756 		start_limit = max(start_limit, node->last + 1);
2757 	}
2758 
2759 	*start = start_limit;
2760 	*last = end_limit - 1;
2761 
2762 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2763 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2764 		 *start, *last, *is_heap_stack);
2765 
2766 	return 0;
2767 }
2768 
2769 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2770 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2771 			   uint64_t *bo_s, uint64_t *bo_l)
2772 {
2773 	struct amdgpu_bo_va_mapping *mapping;
2774 	struct interval_tree_node *node;
2775 	struct amdgpu_bo *bo = NULL;
2776 	unsigned long userptr;
2777 	uint32_t i;
2778 	int r;
2779 
2780 	for (i = 0; i < p->n_pdds; i++) {
2781 		struct amdgpu_vm *vm;
2782 
2783 		if (!p->pdds[i]->drm_priv)
2784 			continue;
2785 
2786 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2787 		r = amdgpu_bo_reserve(vm->root.bo, false);
2788 		if (r)
2789 			return r;
2790 
2791 		/* Check userptr by searching entire vm->va interval tree */
2792 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2793 		while (node) {
2794 			mapping = container_of((struct rb_node *)node,
2795 					       struct amdgpu_bo_va_mapping, rb);
2796 			bo = mapping->bo_va->base.bo;
2797 
2798 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2799 							 start << PAGE_SHIFT,
2800 							 last << PAGE_SHIFT,
2801 							 &userptr)) {
2802 				node = interval_tree_iter_next(node, 0, ~0ULL);
2803 				continue;
2804 			}
2805 
2806 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2807 				 start, last);
2808 			if (bo_s && bo_l) {
2809 				*bo_s = userptr >> PAGE_SHIFT;
2810 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2811 			}
2812 			amdgpu_bo_unreserve(vm->root.bo);
2813 			return -EADDRINUSE;
2814 		}
2815 		amdgpu_bo_unreserve(vm->root.bo);
2816 	}
2817 	return 0;
2818 }
2819 
2820 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2821 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2822 						struct kfd_process *p,
2823 						struct mm_struct *mm,
2824 						int64_t addr)
2825 {
2826 	struct svm_range *prange = NULL;
2827 	unsigned long start, last;
2828 	uint32_t gpuid, gpuidx;
2829 	bool is_heap_stack;
2830 	uint64_t bo_s = 0;
2831 	uint64_t bo_l = 0;
2832 	int r;
2833 
2834 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2835 					   &is_heap_stack))
2836 		return NULL;
2837 
2838 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2839 	if (r != -EADDRINUSE)
2840 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2841 
2842 	if (r == -EADDRINUSE) {
2843 		if (addr >= bo_s && addr <= bo_l)
2844 			return NULL;
2845 
2846 		/* Create one page svm range if 2MB range overlapping */
2847 		start = addr;
2848 		last = addr;
2849 	}
2850 
2851 	prange = svm_range_new(&p->svms, start, last, true);
2852 	if (!prange) {
2853 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2854 		return NULL;
2855 	}
2856 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2857 		pr_debug("failed to get gpuid from kgd\n");
2858 		svm_range_free(prange, true);
2859 		return NULL;
2860 	}
2861 
2862 	if (is_heap_stack)
2863 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2864 
2865 	svm_range_add_to_svms(prange);
2866 	svm_range_add_notifier_locked(mm, prange);
2867 
2868 	return prange;
2869 }
2870 
2871 /* svm_range_skip_recover - decide if prange can be recovered
2872  * @prange: svm range structure
2873  *
2874  * GPU vm retry fault handle skip recover the range for cases:
2875  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2876  *    deferred list work will drain the stale fault before free the prange.
2877  * 2. prange is on deferred list to add interval notifier after split, or
2878  * 3. prange is child range, it is split from parent prange, recover later
2879  *    after interval notifier is added.
2880  *
2881  * Return: true to skip recover, false to recover
2882  */
svm_range_skip_recover(struct svm_range * prange)2883 static bool svm_range_skip_recover(struct svm_range *prange)
2884 {
2885 	struct svm_range_list *svms = prange->svms;
2886 
2887 	spin_lock(&svms->deferred_list_lock);
2888 	if (list_empty(&prange->deferred_list) &&
2889 	    list_empty(&prange->child_list)) {
2890 		spin_unlock(&svms->deferred_list_lock);
2891 		return false;
2892 	}
2893 	spin_unlock(&svms->deferred_list_lock);
2894 
2895 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2896 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2897 			 svms, prange, prange->start, prange->last);
2898 		return true;
2899 	}
2900 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2901 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2902 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2903 			 svms, prange, prange->start, prange->last);
2904 		return true;
2905 	}
2906 	return false;
2907 }
2908 
2909 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2910 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2911 		      int32_t gpuidx)
2912 {
2913 	struct kfd_process_device *pdd;
2914 
2915 	/* fault is on different page of same range
2916 	 * or fault is skipped to recover later
2917 	 * or fault is on invalid virtual address
2918 	 */
2919 	if (gpuidx == MAX_GPU_INSTANCE) {
2920 		uint32_t gpuid;
2921 		int r;
2922 
2923 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2924 		if (r < 0)
2925 			return;
2926 	}
2927 
2928 	/* fault is recovered
2929 	 * or fault cannot recover because GPU no access on the range
2930 	 */
2931 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2932 	if (pdd)
2933 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2934 }
2935 
2936 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2937 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2938 {
2939 	unsigned long requested = VM_READ;
2940 
2941 	if (write_fault)
2942 		requested |= VM_WRITE;
2943 
2944 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2945 		vma->vm_flags);
2946 	return (vma->vm_flags & requested) == requested;
2947 }
2948 
2949 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2950 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2951 			uint32_t vmid, uint32_t node_id,
2952 			uint64_t addr, uint64_t ts, bool write_fault)
2953 {
2954 	unsigned long start, last, size;
2955 	struct mm_struct *mm = NULL;
2956 	struct svm_range_list *svms;
2957 	struct svm_range *prange;
2958 	struct kfd_process *p;
2959 	ktime_t timestamp = ktime_get_boottime();
2960 	struct kfd_node *node;
2961 	int32_t best_loc;
2962 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2963 	bool write_locked = false;
2964 	struct vm_area_struct *vma;
2965 	bool migration = false;
2966 	int r = 0;
2967 
2968 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2969 		pr_debug("device does not support SVM\n");
2970 		return -EFAULT;
2971 	}
2972 
2973 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2974 	if (!p) {
2975 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2976 		return 0;
2977 	}
2978 	svms = &p->svms;
2979 
2980 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2981 
2982 	if (atomic_read(&svms->drain_pagefaults)) {
2983 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2984 		r = 0;
2985 		goto out;
2986 	}
2987 
2988 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2989 	if (!node) {
2990 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2991 			 vmid);
2992 		r = -EFAULT;
2993 		goto out;
2994 	}
2995 
2996 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2997 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2998 		r = -EFAULT;
2999 		goto out;
3000 	}
3001 
3002 	if (!p->xnack_enabled) {
3003 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3004 		r = -EFAULT;
3005 		goto out;
3006 	}
3007 
3008 	/* p->lead_thread is available as kfd_process_wq_release flush the work
3009 	 * before releasing task ref.
3010 	 */
3011 	mm = get_task_mm(p->lead_thread);
3012 	if (!mm) {
3013 		pr_debug("svms 0x%p failed to get mm\n", svms);
3014 		r = 0;
3015 		goto out;
3016 	}
3017 
3018 	mmap_read_lock(mm);
3019 retry_write_locked:
3020 	mutex_lock(&svms->lock);
3021 
3022 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3023 	if (svms->checkpoint_ts[gpuidx] != 0) {
3024 		if (amdgpu_ih_ts_after_or_equal(ts,  svms->checkpoint_ts[gpuidx])) {
3025 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3026 			r = -EAGAIN;
3027 			goto out_unlock_svms;
3028 		} else {
3029 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3030 			 * to zero to avoid following ts wrap around give wrong comparing
3031 			 */
3032 			svms->checkpoint_ts[gpuidx] = 0;
3033 		}
3034 	}
3035 
3036 	prange = svm_range_from_addr(svms, addr, NULL);
3037 	if (!prange) {
3038 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3039 			 svms, addr);
3040 		if (!write_locked) {
3041 			/* Need the write lock to create new range with MMU notifier.
3042 			 * Also flush pending deferred work to make sure the interval
3043 			 * tree is up to date before we add a new range
3044 			 */
3045 			mutex_unlock(&svms->lock);
3046 			mmap_read_unlock(mm);
3047 			mmap_write_lock(mm);
3048 			write_locked = true;
3049 			goto retry_write_locked;
3050 		}
3051 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3052 		if (!prange) {
3053 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3054 				 svms, addr);
3055 			mmap_write_downgrade(mm);
3056 			r = -EFAULT;
3057 			goto out_unlock_svms;
3058 		}
3059 	}
3060 	if (write_locked)
3061 		mmap_write_downgrade(mm);
3062 
3063 	mutex_lock(&prange->migrate_mutex);
3064 
3065 	if (svm_range_skip_recover(prange)) {
3066 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3067 		r = 0;
3068 		goto out_unlock_range;
3069 	}
3070 
3071 	/* skip duplicate vm fault on different pages of same range */
3072 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3073 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3074 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3075 			 svms, prange->start, prange->last);
3076 		r = 0;
3077 		goto out_unlock_range;
3078 	}
3079 
3080 	/* __do_munmap removed VMA, return success as we are handling stale
3081 	 * retry fault.
3082 	 */
3083 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3084 	if (!vma) {
3085 		pr_debug("address 0x%llx VMA is removed\n", addr);
3086 		r = 0;
3087 		goto out_unlock_range;
3088 	}
3089 
3090 	if (!svm_fault_allowed(vma, write_fault)) {
3091 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3092 			write_fault ? "write" : "read");
3093 		r = -EPERM;
3094 		goto out_unlock_range;
3095 	}
3096 
3097 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3098 	if (best_loc == -1) {
3099 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3100 			 svms, prange->start, prange->last);
3101 		r = -EACCES;
3102 		goto out_unlock_range;
3103 	}
3104 
3105 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3106 		 svms, prange->start, prange->last, best_loc,
3107 		 prange->actual_loc);
3108 
3109 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3110 				       write_fault, timestamp);
3111 
3112 	/* Align migration range start and size to granularity size */
3113 	size = 1UL << prange->granularity;
3114 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3115 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3116 	if (prange->actual_loc != 0 || best_loc != 0) {
3117 		if (best_loc) {
3118 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3119 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3120 			if (r) {
3121 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3122 					 r, addr);
3123 				/* Fallback to system memory if migration to
3124 				 * VRAM failed
3125 				 */
3126 				if (prange->actual_loc && prange->actual_loc != best_loc)
3127 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3128 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3129 				else
3130 					r = 0;
3131 			}
3132 		} else {
3133 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3134 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3135 		}
3136 		if (r) {
3137 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3138 				 r, svms, start, last);
3139 			goto out_migrate_fail;
3140 		} else {
3141 			migration = true;
3142 		}
3143 	}
3144 
3145 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3146 				       false, false);
3147 	if (r)
3148 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3149 			 r, svms, start, last);
3150 
3151 out_migrate_fail:
3152 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3153 				     migration);
3154 
3155 out_unlock_range:
3156 	mutex_unlock(&prange->migrate_mutex);
3157 out_unlock_svms:
3158 	mutex_unlock(&svms->lock);
3159 	mmap_read_unlock(mm);
3160 
3161 	if (r != -EAGAIN)
3162 		svm_range_count_fault(node, p, gpuidx);
3163 
3164 	mmput(mm);
3165 out:
3166 	kfd_unref_process(p);
3167 
3168 	if (r == -EAGAIN) {
3169 		pr_debug("recover vm fault later\n");
3170 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3171 		r = 0;
3172 	}
3173 	return r;
3174 }
3175 
3176 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3177 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3178 {
3179 	struct svm_range *prange, *pchild;
3180 	uint64_t reserved_size = 0;
3181 	uint64_t size;
3182 	int r = 0;
3183 
3184 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3185 
3186 	mutex_lock(&p->svms.lock);
3187 
3188 	list_for_each_entry(prange, &p->svms.list, list) {
3189 		svm_range_lock(prange);
3190 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3191 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3192 			if (xnack_enabled) {
3193 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3194 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3195 			} else {
3196 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3197 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3198 				if (r)
3199 					goto out_unlock;
3200 				reserved_size += size;
3201 			}
3202 		}
3203 
3204 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3205 		if (xnack_enabled) {
3206 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3207 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3208 		} else {
3209 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3210 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3211 			if (r)
3212 				goto out_unlock;
3213 			reserved_size += size;
3214 		}
3215 out_unlock:
3216 		svm_range_unlock(prange);
3217 		if (r)
3218 			break;
3219 	}
3220 
3221 	if (r)
3222 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3223 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3224 	else
3225 		/* Change xnack mode must be inside svms lock, to avoid race with
3226 		 * svm_range_deferred_list_work unreserve memory in parallel.
3227 		 */
3228 		p->xnack_enabled = xnack_enabled;
3229 
3230 	mutex_unlock(&p->svms.lock);
3231 	return r;
3232 }
3233 
svm_range_list_fini(struct kfd_process * p)3234 void svm_range_list_fini(struct kfd_process *p)
3235 {
3236 	struct svm_range *prange;
3237 	struct svm_range *next;
3238 
3239 	pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3240 		 &p->svms);
3241 
3242 	cancel_delayed_work_sync(&p->svms.restore_work);
3243 
3244 	/* Ensure list work is finished before process is destroyed */
3245 	flush_work(&p->svms.deferred_list_work);
3246 
3247 	/*
3248 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3249 	 * not find kfd process and take mm lock to recover fault.
3250 	 * stop kfd page fault handing, then wait pending page faults got drained
3251 	 */
3252 	atomic_set(&p->svms.drain_pagefaults, 1);
3253 	svm_range_drain_retry_fault(&p->svms);
3254 
3255 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3256 		svm_range_unlink(prange);
3257 		svm_range_remove_notifier(prange);
3258 		svm_range_free(prange, true);
3259 	}
3260 
3261 	mutex_destroy(&p->svms.lock);
3262 
3263 	pr_debug("process pid %d svms 0x%p done\n",
3264 		p->lead_thread->pid, &p->svms);
3265 }
3266 
svm_range_list_init(struct kfd_process * p)3267 int svm_range_list_init(struct kfd_process *p)
3268 {
3269 	struct svm_range_list *svms = &p->svms;
3270 	int i;
3271 
3272 	svms->objects = RB_ROOT_CACHED;
3273 	mutex_init(&svms->lock);
3274 	INIT_LIST_HEAD(&svms->list);
3275 	atomic_set(&svms->evicted_ranges, 0);
3276 	atomic_set(&svms->drain_pagefaults, 0);
3277 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3278 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3279 	INIT_LIST_HEAD(&svms->deferred_range_list);
3280 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3281 	spin_lock_init(&svms->deferred_list_lock);
3282 
3283 	for (i = 0; i < p->n_pdds; i++)
3284 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3285 			bitmap_set(svms->bitmap_supported, i, 1);
3286 
3287 	 /* Value of default granularity cannot exceed 0x1B, the
3288 	  * number of pages supported by a 4-level paging table
3289 	  */
3290 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3291 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3292 
3293 	return 0;
3294 }
3295 
3296 /**
3297  * svm_range_check_vm - check if virtual address range mapped already
3298  * @p: current kfd_process
3299  * @start: range start address, in pages
3300  * @last: range last address, in pages
3301  * @bo_s: mapping start address in pages if address range already mapped
3302  * @bo_l: mapping last address in pages if address range already mapped
3303  *
3304  * The purpose is to avoid virtual address ranges already allocated by
3305  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3306  * It looks for each pdd in the kfd_process.
3307  *
3308  * Context: Process context
3309  *
3310  * Return 0 - OK, if the range is not mapped.
3311  * Otherwise error code:
3312  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3313  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3314  * a signal. Release all buffer reservations and return to user-space.
3315  */
3316 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3317 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3318 		   uint64_t *bo_s, uint64_t *bo_l)
3319 {
3320 	struct amdgpu_bo_va_mapping *mapping;
3321 	struct interval_tree_node *node;
3322 	uint32_t i;
3323 	int r;
3324 
3325 	for (i = 0; i < p->n_pdds; i++) {
3326 		struct amdgpu_vm *vm;
3327 
3328 		if (!p->pdds[i]->drm_priv)
3329 			continue;
3330 
3331 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3332 		r = amdgpu_bo_reserve(vm->root.bo, false);
3333 		if (r)
3334 			return r;
3335 
3336 		node = interval_tree_iter_first(&vm->va, start, last);
3337 		if (node) {
3338 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3339 				 start, last);
3340 			mapping = container_of((struct rb_node *)node,
3341 					       struct amdgpu_bo_va_mapping, rb);
3342 			if (bo_s && bo_l) {
3343 				*bo_s = mapping->start;
3344 				*bo_l = mapping->last;
3345 			}
3346 			amdgpu_bo_unreserve(vm->root.bo);
3347 			return -EADDRINUSE;
3348 		}
3349 		amdgpu_bo_unreserve(vm->root.bo);
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 /**
3356  * svm_range_is_valid - check if virtual address range is valid
3357  * @p: current kfd_process
3358  * @start: range start address, in pages
3359  * @size: range size, in pages
3360  *
3361  * Valid virtual address range means it belongs to one or more VMAs
3362  *
3363  * Context: Process context
3364  *
3365  * Return:
3366  *  0 - OK, otherwise error code
3367  */
3368 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3369 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3370 {
3371 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3372 	struct vm_area_struct *vma;
3373 	unsigned long end;
3374 	unsigned long start_unchg = start;
3375 
3376 	start <<= PAGE_SHIFT;
3377 	end = start + (size << PAGE_SHIFT);
3378 	do {
3379 		vma = vma_lookup(p->mm, start);
3380 		if (!vma || (vma->vm_flags & device_vma))
3381 			return -EFAULT;
3382 		start = min(end, vma->vm_end);
3383 	} while (start < end);
3384 
3385 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3386 				  NULL);
3387 }
3388 
3389 /**
3390  * svm_range_best_prefetch_location - decide the best prefetch location
3391  * @prange: svm range structure
3392  *
3393  * For xnack off:
3394  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3395  * can be CPU or GPU.
3396  *
3397  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3398  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3399  * the best prefetch location is always CPU, because GPU can not have coherent
3400  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3401  *
3402  * For xnack on:
3403  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3404  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3405  *
3406  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3407  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3408  * prefetch location is always CPU.
3409  *
3410  * Context: Process context
3411  *
3412  * Return:
3413  * 0 for CPU or GPU id
3414  */
3415 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3416 svm_range_best_prefetch_location(struct svm_range *prange)
3417 {
3418 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3419 	uint32_t best_loc = prange->prefetch_loc;
3420 	struct kfd_process_device *pdd;
3421 	struct kfd_node *bo_node;
3422 	struct kfd_process *p;
3423 	uint32_t gpuidx;
3424 
3425 	p = container_of(prange->svms, struct kfd_process, svms);
3426 
3427 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3428 		goto out;
3429 
3430 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3431 	if (!bo_node) {
3432 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3433 		best_loc = 0;
3434 		goto out;
3435 	}
3436 
3437 	if (bo_node->adev->apu_prefer_gtt) {
3438 		best_loc = 0;
3439 		goto out;
3440 	}
3441 
3442 	if (p->xnack_enabled)
3443 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3444 	else
3445 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3446 			  MAX_GPU_INSTANCE);
3447 
3448 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3449 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3450 		if (!pdd) {
3451 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3452 			continue;
3453 		}
3454 
3455 		if (pdd->dev->adev == bo_node->adev)
3456 			continue;
3457 
3458 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3459 			best_loc = 0;
3460 			break;
3461 		}
3462 	}
3463 
3464 out:
3465 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3466 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3467 		 best_loc);
3468 
3469 	return best_loc;
3470 }
3471 
3472 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3473  * @mm: current process mm_struct
3474  * @prange: svm range structure
3475  * @migrated: output, true if migration is triggered
3476  *
3477  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3478  * from ram to vram.
3479  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3480  * from vram to ram.
3481  *
3482  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3483  * and restore work:
3484  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3485  *    stops all queues, schedule restore work
3486  * 2. svm_range_restore_work wait for migration is done by
3487  *    a. svm_range_validate_vram takes prange->migrate_mutex
3488  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3489  * 3. restore work update mappings of GPU, resume all queues.
3490  *
3491  * Context: Process context
3492  *
3493  * Return:
3494  * 0 - OK, otherwise - error code of migration
3495  */
3496 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3497 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3498 			    bool *migrated)
3499 {
3500 	uint32_t best_loc;
3501 	int r = 0;
3502 
3503 	*migrated = false;
3504 	best_loc = svm_range_best_prefetch_location(prange);
3505 
3506 	/* when best_loc is a gpu node and same as prange->actual_loc
3507 	 * we still need do migration as prange->actual_loc !=0 does
3508 	 * not mean all pages in prange are vram. hmm migrate will pick
3509 	 * up right pages during migration.
3510 	 */
3511 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3512 	    (best_loc == 0 && prange->actual_loc == 0))
3513 		return 0;
3514 
3515 	if (!best_loc) {
3516 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3517 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3518 		*migrated = !r;
3519 		return r;
3520 	}
3521 
3522 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3523 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3524 	*migrated = !r;
3525 
3526 	return 0;
3527 }
3528 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3529 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3530 {
3531 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3532 	 * signaled yet and we're under the protection of the fence->lock.
3533 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3534 	 * here any more.
3535 	 *
3536 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3537 	 */
3538 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3539 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3540 		schedule_work(&fence->svm_bo->eviction_work);
3541 	}
3542 
3543 	return 0;
3544 }
3545 
svm_range_evict_svm_bo_worker(struct work_struct * work)3546 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3547 {
3548 	struct svm_range_bo *svm_bo;
3549 	struct mm_struct *mm;
3550 	int r = 0;
3551 
3552 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3553 
3554 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3555 		mm = svm_bo->eviction_fence->mm;
3556 	} else {
3557 		svm_range_bo_unref(svm_bo);
3558 		return;
3559 	}
3560 
3561 	mmap_read_lock(mm);
3562 	spin_lock(&svm_bo->list_lock);
3563 	while (!list_empty(&svm_bo->range_list) && !r) {
3564 		struct svm_range *prange =
3565 				list_first_entry(&svm_bo->range_list,
3566 						struct svm_range, svm_bo_list);
3567 		int retries = 3;
3568 
3569 		list_del_init(&prange->svm_bo_list);
3570 		spin_unlock(&svm_bo->list_lock);
3571 
3572 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3573 			 prange->start, prange->last);
3574 
3575 		mutex_lock(&prange->migrate_mutex);
3576 		do {
3577 			/* migrate all vram pages in this prange to sys ram
3578 			 * after that prange->actual_loc should be zero
3579 			 */
3580 			r = svm_migrate_vram_to_ram(prange, mm,
3581 					prange->start, prange->last,
3582 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3583 		} while (!r && prange->actual_loc && --retries);
3584 
3585 		if (!r && prange->actual_loc)
3586 			pr_info_once("Migration failed during eviction");
3587 
3588 		if (!prange->actual_loc) {
3589 			mutex_lock(&prange->lock);
3590 			prange->svm_bo = NULL;
3591 			mutex_unlock(&prange->lock);
3592 		}
3593 		mutex_unlock(&prange->migrate_mutex);
3594 
3595 		spin_lock(&svm_bo->list_lock);
3596 	}
3597 	spin_unlock(&svm_bo->list_lock);
3598 	mmap_read_unlock(mm);
3599 	mmput(mm);
3600 
3601 	dma_fence_signal(&svm_bo->eviction_fence->base);
3602 
3603 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3604 	 * has been called in svm_migrate_vram_to_ram
3605 	 */
3606 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3607 	svm_range_bo_unref(svm_bo);
3608 }
3609 
3610 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3611 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3612 		   uint64_t start, uint64_t size, uint32_t nattr,
3613 		   struct kfd_ioctl_svm_attribute *attrs)
3614 {
3615 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3616 	struct list_head update_list;
3617 	struct list_head insert_list;
3618 	struct list_head remove_list;
3619 	struct list_head remap_list;
3620 	struct svm_range_list *svms;
3621 	struct svm_range *prange;
3622 	struct svm_range *next;
3623 	bool update_mapping = false;
3624 	bool flush_tlb;
3625 	int r, ret = 0;
3626 
3627 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3628 		 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3629 
3630 	r = svm_range_check_attr(p, nattr, attrs);
3631 	if (r)
3632 		return r;
3633 
3634 	svms = &p->svms;
3635 
3636 	mutex_lock(&process_info->lock);
3637 
3638 	svm_range_list_lock_and_flush_work(svms, mm);
3639 
3640 	r = svm_range_is_valid(p, start, size);
3641 	if (r) {
3642 		pr_debug("invalid range r=%d\n", r);
3643 		mmap_write_unlock(mm);
3644 		goto out;
3645 	}
3646 
3647 	mutex_lock(&svms->lock);
3648 
3649 	/* Add new range and split existing ranges as needed */
3650 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3651 			  &insert_list, &remove_list, &remap_list);
3652 	if (r) {
3653 		mutex_unlock(&svms->lock);
3654 		mmap_write_unlock(mm);
3655 		goto out;
3656 	}
3657 	/* Apply changes as a transaction */
3658 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3659 		svm_range_add_to_svms(prange);
3660 		svm_range_add_notifier_locked(mm, prange);
3661 	}
3662 	list_for_each_entry(prange, &update_list, update_list) {
3663 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3664 		/* TODO: unmap ranges from GPU that lost access */
3665 	}
3666 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3667 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3668 			 prange->svms, prange, prange->start,
3669 			 prange->last);
3670 		svm_range_unlink(prange);
3671 		svm_range_remove_notifier(prange);
3672 		svm_range_free(prange, false);
3673 	}
3674 
3675 	mmap_write_downgrade(mm);
3676 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3677 	 * this fails we may be left with partially completed actions. There
3678 	 * is no clean way of rolling back to the previous state in such a
3679 	 * case because the rollback wouldn't be guaranteed to work either.
3680 	 */
3681 	list_for_each_entry(prange, &update_list, update_list) {
3682 		bool migrated;
3683 
3684 		mutex_lock(&prange->migrate_mutex);
3685 
3686 		r = svm_range_trigger_migration(mm, prange, &migrated);
3687 		if (r)
3688 			goto out_unlock_range;
3689 
3690 		if (migrated && (!p->xnack_enabled ||
3691 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3692 		    prange->mapped_to_gpu) {
3693 			pr_debug("restore_work will update mappings of GPUs\n");
3694 			mutex_unlock(&prange->migrate_mutex);
3695 			continue;
3696 		}
3697 
3698 		if (!migrated && !update_mapping) {
3699 			mutex_unlock(&prange->migrate_mutex);
3700 			continue;
3701 		}
3702 
3703 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3704 
3705 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3706 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3707 		if (r)
3708 			pr_debug("failed %d to map svm range\n", r);
3709 
3710 out_unlock_range:
3711 		mutex_unlock(&prange->migrate_mutex);
3712 		if (r)
3713 			ret = r;
3714 	}
3715 
3716 	list_for_each_entry(prange, &remap_list, update_list) {
3717 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3718 			 prange, prange->start, prange->last);
3719 		mutex_lock(&prange->migrate_mutex);
3720 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3721 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3722 		if (r)
3723 			pr_debug("failed %d on remap svm range\n", r);
3724 		mutex_unlock(&prange->migrate_mutex);
3725 		if (r)
3726 			ret = r;
3727 	}
3728 
3729 	dynamic_svm_range_dump(svms);
3730 
3731 	mutex_unlock(&svms->lock);
3732 	mmap_read_unlock(mm);
3733 out:
3734 	mutex_unlock(&process_info->lock);
3735 
3736 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3737 		 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3738 
3739 	return ret ? ret : r;
3740 }
3741 
3742 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3743 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3744 		   uint64_t start, uint64_t size, uint32_t nattr,
3745 		   struct kfd_ioctl_svm_attribute *attrs)
3746 {
3747 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3748 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3749 	bool get_preferred_loc = false;
3750 	bool get_prefetch_loc = false;
3751 	bool get_granularity = false;
3752 	bool get_accessible = false;
3753 	bool get_flags = false;
3754 	uint64_t last = start + size - 1UL;
3755 	uint8_t granularity = 0xff;
3756 	struct interval_tree_node *node;
3757 	struct svm_range_list *svms;
3758 	struct svm_range *prange;
3759 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3760 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3761 	uint32_t flags_and = 0xffffffff;
3762 	uint32_t flags_or = 0;
3763 	int gpuidx;
3764 	uint32_t i;
3765 	int r = 0;
3766 
3767 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3768 		 start + size - 1, nattr);
3769 
3770 	/* Flush pending deferred work to avoid racing with deferred actions from
3771 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3772 	 * can still race with get_attr because we don't hold the mmap lock. But that
3773 	 * would be a race condition in the application anyway, and undefined
3774 	 * behaviour is acceptable in that case.
3775 	 */
3776 	flush_work(&p->svms.deferred_list_work);
3777 
3778 	mmap_read_lock(mm);
3779 	r = svm_range_is_valid(p, start, size);
3780 	mmap_read_unlock(mm);
3781 	if (r) {
3782 		pr_debug("invalid range r=%d\n", r);
3783 		return r;
3784 	}
3785 
3786 	for (i = 0; i < nattr; i++) {
3787 		switch (attrs[i].type) {
3788 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3789 			get_preferred_loc = true;
3790 			break;
3791 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3792 			get_prefetch_loc = true;
3793 			break;
3794 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3795 			get_accessible = true;
3796 			break;
3797 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3798 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3799 			get_flags = true;
3800 			break;
3801 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3802 			get_granularity = true;
3803 			break;
3804 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3805 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3806 			fallthrough;
3807 		default:
3808 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3809 			return -EINVAL;
3810 		}
3811 	}
3812 
3813 	svms = &p->svms;
3814 
3815 	mutex_lock(&svms->lock);
3816 
3817 	node = interval_tree_iter_first(&svms->objects, start, last);
3818 	if (!node) {
3819 		pr_debug("range attrs not found return default values\n");
3820 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3821 						 &granularity, &flags_and);
3822 		flags_or = flags_and;
3823 		if (p->xnack_enabled)
3824 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3825 				    MAX_GPU_INSTANCE);
3826 		else
3827 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3828 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3829 		goto fill_values;
3830 	}
3831 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3832 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3833 
3834 	while (node) {
3835 		struct interval_tree_node *next;
3836 
3837 		prange = container_of(node, struct svm_range, it_node);
3838 		next = interval_tree_iter_next(node, start, last);
3839 
3840 		if (get_preferred_loc) {
3841 			if (prange->preferred_loc ==
3842 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3843 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3844 			     location != prange->preferred_loc)) {
3845 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3846 				get_preferred_loc = false;
3847 			} else {
3848 				location = prange->preferred_loc;
3849 			}
3850 		}
3851 		if (get_prefetch_loc) {
3852 			if (prange->prefetch_loc ==
3853 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3854 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3855 			     prefetch_loc != prange->prefetch_loc)) {
3856 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3857 				get_prefetch_loc = false;
3858 			} else {
3859 				prefetch_loc = prange->prefetch_loc;
3860 			}
3861 		}
3862 		if (get_accessible) {
3863 			bitmap_and(bitmap_access, bitmap_access,
3864 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3865 			bitmap_and(bitmap_aip, bitmap_aip,
3866 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3867 		}
3868 		if (get_flags) {
3869 			flags_and &= prange->flags;
3870 			flags_or |= prange->flags;
3871 		}
3872 
3873 		if (get_granularity && prange->granularity < granularity)
3874 			granularity = prange->granularity;
3875 
3876 		node = next;
3877 	}
3878 fill_values:
3879 	mutex_unlock(&svms->lock);
3880 
3881 	for (i = 0; i < nattr; i++) {
3882 		switch (attrs[i].type) {
3883 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3884 			attrs[i].value = location;
3885 			break;
3886 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3887 			attrs[i].value = prefetch_loc;
3888 			break;
3889 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3890 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3891 							       attrs[i].value);
3892 			if (gpuidx < 0) {
3893 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3894 				return -EINVAL;
3895 			}
3896 			if (test_bit(gpuidx, bitmap_access))
3897 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3898 			else if (test_bit(gpuidx, bitmap_aip))
3899 				attrs[i].type =
3900 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3901 			else
3902 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3903 			break;
3904 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3905 			attrs[i].value = flags_and;
3906 			break;
3907 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3908 			attrs[i].value = ~flags_or;
3909 			break;
3910 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3911 			attrs[i].value = (uint32_t)granularity;
3912 			break;
3913 		}
3914 	}
3915 
3916 	return 0;
3917 }
3918 
kfd_criu_resume_svm(struct kfd_process * p)3919 int kfd_criu_resume_svm(struct kfd_process *p)
3920 {
3921 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3922 	int nattr_common = 4, nattr_accessibility = 1;
3923 	struct criu_svm_metadata *criu_svm_md = NULL;
3924 	struct svm_range_list *svms = &p->svms;
3925 	struct criu_svm_metadata *next = NULL;
3926 	uint32_t set_flags = 0xffffffff;
3927 	int i, j, num_attrs, ret = 0;
3928 	uint64_t set_attr_size;
3929 	struct mm_struct *mm;
3930 
3931 	if (list_empty(&svms->criu_svm_metadata_list)) {
3932 		pr_debug("No SVM data from CRIU restore stage 2\n");
3933 		return ret;
3934 	}
3935 
3936 	mm = get_task_mm(p->lead_thread);
3937 	if (!mm) {
3938 		pr_err("failed to get mm for the target process\n");
3939 		return -ESRCH;
3940 	}
3941 
3942 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3943 
3944 	i = j = 0;
3945 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3946 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3947 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3948 
3949 		for (j = 0; j < num_attrs; j++) {
3950 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3951 				 i, j, criu_svm_md->data.attrs[j].type,
3952 				 i, j, criu_svm_md->data.attrs[j].value);
3953 			switch (criu_svm_md->data.attrs[j].type) {
3954 			/* During Checkpoint operation, the query for
3955 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3956 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3957 			 * not used by the range which was checkpointed. Care
3958 			 * must be taken to not restore with an invalid value
3959 			 * otherwise the gpuidx value will be invalid and
3960 			 * set_attr would eventually fail so just replace those
3961 			 * with another dummy attribute such as
3962 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3963 			 */
3964 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3965 				if (criu_svm_md->data.attrs[j].value ==
3966 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3967 					criu_svm_md->data.attrs[j].type =
3968 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3969 					criu_svm_md->data.attrs[j].value = 0;
3970 				}
3971 				break;
3972 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3973 				set_flags = criu_svm_md->data.attrs[j].value;
3974 				break;
3975 			default:
3976 				break;
3977 			}
3978 		}
3979 
3980 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3981 		 * it needs to be inserted before restoring the ranges so
3982 		 * allocate extra space for it before calling set_attr
3983 		 */
3984 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3985 						(num_attrs + 1);
3986 		set_attr_new = krealloc(set_attr, set_attr_size,
3987 					    GFP_KERNEL);
3988 		if (!set_attr_new) {
3989 			ret = -ENOMEM;
3990 			goto exit;
3991 		}
3992 		set_attr = set_attr_new;
3993 
3994 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3995 					sizeof(struct kfd_ioctl_svm_attribute));
3996 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3997 		set_attr[num_attrs].value = ~set_flags;
3998 
3999 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4000 					 criu_svm_md->data.size, num_attrs + 1,
4001 					 set_attr);
4002 		if (ret) {
4003 			pr_err("CRIU: failed to set range attributes\n");
4004 			goto exit;
4005 		}
4006 
4007 		i++;
4008 	}
4009 exit:
4010 	kfree(set_attr);
4011 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4012 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4013 						criu_svm_md->data.start_addr);
4014 		kfree(criu_svm_md);
4015 	}
4016 
4017 	mmput(mm);
4018 	return ret;
4019 
4020 }
4021 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4022 int kfd_criu_restore_svm(struct kfd_process *p,
4023 			 uint8_t __user *user_priv_ptr,
4024 			 uint64_t *priv_data_offset,
4025 			 uint64_t max_priv_data_size)
4026 {
4027 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4028 	int nattr_common = 4, nattr_accessibility = 1;
4029 	struct criu_svm_metadata *criu_svm_md = NULL;
4030 	struct svm_range_list *svms = &p->svms;
4031 	uint32_t num_devices;
4032 	int ret = 0;
4033 
4034 	num_devices = p->n_pdds;
4035 	/* Handle one SVM range object at a time, also the number of gpus are
4036 	 * assumed to be same on the restore node, checking must be done while
4037 	 * evaluating the topology earlier
4038 	 */
4039 
4040 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4041 		(nattr_common + nattr_accessibility * num_devices);
4042 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4043 
4044 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4045 								svm_attrs_size;
4046 
4047 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4048 	if (!criu_svm_md) {
4049 		pr_err("failed to allocate memory to store svm metadata\n");
4050 		return -ENOMEM;
4051 	}
4052 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4053 		ret = -EINVAL;
4054 		goto exit;
4055 	}
4056 
4057 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4058 			     svm_priv_data_size);
4059 	if (ret) {
4060 		ret = -EFAULT;
4061 		goto exit;
4062 	}
4063 	*priv_data_offset += svm_priv_data_size;
4064 
4065 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4066 
4067 	return 0;
4068 
4069 
4070 exit:
4071 	kfree(criu_svm_md);
4072 	return ret;
4073 }
4074 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4075 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4076 			uint64_t *svm_priv_data_size)
4077 {
4078 	uint64_t total_size, accessibility_size, common_attr_size;
4079 	int nattr_common = 4, nattr_accessibility = 1;
4080 	int num_devices = p->n_pdds;
4081 	struct svm_range_list *svms;
4082 	struct svm_range *prange;
4083 	uint32_t count = 0;
4084 
4085 	*svm_priv_data_size = 0;
4086 
4087 	svms = &p->svms;
4088 
4089 	mutex_lock(&svms->lock);
4090 	list_for_each_entry(prange, &svms->list, list) {
4091 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4092 			 prange, prange->start, prange->npages,
4093 			 prange->start + prange->npages - 1);
4094 		count++;
4095 	}
4096 	mutex_unlock(&svms->lock);
4097 
4098 	*num_svm_ranges = count;
4099 	/* Only the accessbility attributes need to be queried for all the gpus
4100 	 * individually, remaining ones are spanned across the entire process
4101 	 * regardless of the various gpu nodes. Of the remaining attributes,
4102 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4103 	 *
4104 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4105 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4106 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4107 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4108 	 *
4109 	 * ** ACCESSBILITY ATTRIBUTES **
4110 	 * (Considered as one, type is altered during query, value is gpuid)
4111 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4112 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4113 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4114 	 */
4115 	if (*num_svm_ranges > 0) {
4116 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4117 			nattr_common;
4118 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4119 			nattr_accessibility * num_devices;
4120 
4121 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4122 			common_attr_size + accessibility_size;
4123 
4124 		*svm_priv_data_size = *num_svm_ranges * total_size;
4125 	}
4126 
4127 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4128 		 *svm_priv_data_size);
4129 }
4130 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4131 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4132 			    uint8_t __user *user_priv_data,
4133 			    uint64_t *priv_data_offset)
4134 {
4135 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4136 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4137 	uint64_t svm_priv_data_size, query_attr_size = 0;
4138 	int index, nattr_common = 4, ret = 0;
4139 	struct svm_range_list *svms;
4140 	int num_devices = p->n_pdds;
4141 	struct svm_range *prange;
4142 	struct mm_struct *mm;
4143 
4144 	svms = &p->svms;
4145 
4146 	mm = get_task_mm(p->lead_thread);
4147 	if (!mm) {
4148 		pr_err("failed to get mm for the target process\n");
4149 		return -ESRCH;
4150 	}
4151 
4152 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4153 				(nattr_common + num_devices);
4154 
4155 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4156 	if (!query_attr) {
4157 		ret = -ENOMEM;
4158 		goto exit;
4159 	}
4160 
4161 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4162 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4163 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4164 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4165 
4166 	for (index = 0; index < num_devices; index++) {
4167 		struct kfd_process_device *pdd = p->pdds[index];
4168 
4169 		query_attr[index + nattr_common].type =
4170 			KFD_IOCTL_SVM_ATTR_ACCESS;
4171 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4172 	}
4173 
4174 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4175 
4176 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4177 	if (!svm_priv) {
4178 		ret = -ENOMEM;
4179 		goto exit_query;
4180 	}
4181 
4182 	index = 0;
4183 	list_for_each_entry(prange, &svms->list, list) {
4184 
4185 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4186 		svm_priv->start_addr = prange->start;
4187 		svm_priv->size = prange->npages;
4188 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4189 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4190 			 prange, prange->start, prange->npages,
4191 			 prange->start + prange->npages - 1,
4192 			 prange->npages * PAGE_SIZE);
4193 
4194 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4195 					 svm_priv->size,
4196 					 (nattr_common + num_devices),
4197 					 svm_priv->attrs);
4198 		if (ret) {
4199 			pr_err("CRIU: failed to obtain range attributes\n");
4200 			goto exit_priv;
4201 		}
4202 
4203 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4204 				 svm_priv_data_size)) {
4205 			pr_err("Failed to copy svm priv to user\n");
4206 			ret = -EFAULT;
4207 			goto exit_priv;
4208 		}
4209 
4210 		*priv_data_offset += svm_priv_data_size;
4211 
4212 	}
4213 
4214 
4215 exit_priv:
4216 	kfree(svm_priv);
4217 exit_query:
4218 	kfree(query_attr);
4219 exit:
4220 	mmput(mm);
4221 	return ret;
4222 }
4223 
4224 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4225 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4226 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4227 {
4228 	struct mm_struct *mm = current->mm;
4229 	int r;
4230 
4231 	start >>= PAGE_SHIFT;
4232 	size >>= PAGE_SHIFT;
4233 
4234 	switch (op) {
4235 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4236 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4237 		break;
4238 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4239 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4240 		break;
4241 	default:
4242 		r = EINVAL;
4243 		break;
4244 	}
4245 
4246 	return r;
4247 }
4248