1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 p->lead_thread->pid, prange->svms,
568 prange->start, prange->last);
569
570 if (svm_range_validate_svm_bo(node, prange))
571 return 0;
572
573 svm_bo = svm_range_bo_new();
574 if (!svm_bo) {
575 pr_debug("failed to alloc svm bo\n");
576 return -ENOMEM;
577 }
578 mm = get_task_mm(p->lead_thread);
579 if (!mm) {
580 pr_debug("failed to get mm\n");
581 kfree(svm_bo);
582 return -ESRCH;
583 }
584 svm_bo->node = node;
585 svm_bo->eviction_fence =
586 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 mm,
588 svm_bo);
589 mmput(mm);
590 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 svm_bo->evicting = 0;
592 memset(&bp, 0, sizeof(bp));
593 bp.size = prange->npages * PAGE_SIZE;
594 bp.byte_align = PAGE_SIZE;
595 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 bp.type = ttm_bo_type_device;
600 bp.resv = NULL;
601 if (node->xcp)
602 bp.xcp_id_plus1 = node->xcp->id + 1;
603
604 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 if (r) {
606 pr_debug("failed %d to create bo\n", r);
607 goto create_bo_failed;
608 }
609 bo = &ubo->bo;
610
611 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 bp.xcp_id_plus1 - 1);
614
615 r = amdgpu_bo_reserve(bo, true);
616 if (r) {
617 pr_debug("failed %d to reserve bo\n", r);
618 goto reserve_bo_failed;
619 }
620
621 if (clear) {
622 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 if (r) {
624 pr_debug("failed %d to sync bo\n", r);
625 amdgpu_bo_unreserve(bo);
626 goto reserve_bo_failed;
627 }
628 }
629
630 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 if (r) {
632 pr_debug("failed %d to reserve bo\n", r);
633 amdgpu_bo_unreserve(bo);
634 goto reserve_bo_failed;
635 }
636 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637
638 amdgpu_bo_unreserve(bo);
639
640 svm_bo->bo = bo;
641 prange->svm_bo = svm_bo;
642 prange->ttm_res = bo->tbo.resource;
643 prange->offset = 0;
644
645 spin_lock(&svm_bo->list_lock);
646 list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 spin_unlock(&svm_bo->list_lock);
648
649 pdd = svm_range_get_pdd_by_node(prange, node);
650 if (pdd)
651 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652
653 return 0;
654
655 reserve_bo_failed:
656 amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 dma_fence_put(&svm_bo->eviction_fence->base);
659 kfree(svm_bo);
660 prange->ttm_res = NULL;
661
662 return r;
663 }
664
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 /* serialize prange->svm_bo unref */
668 mutex_lock(&prange->lock);
669 /* prange->svm_bo has not been unref */
670 if (prange->ttm_res) {
671 prange->ttm_res = NULL;
672 mutex_unlock(&prange->lock);
673 svm_range_bo_unref(prange->svm_bo);
674 } else
675 mutex_unlock(&prange->lock);
676 }
677
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 struct kfd_process *p;
682 struct kfd_process_device *pdd;
683
684 p = container_of(prange->svms, struct kfd_process, svms);
685 pdd = kfd_process_device_data_by_id(p, gpu_id);
686 if (!pdd) {
687 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 return NULL;
689 }
690
691 return pdd->dev;
692 }
693
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 struct kfd_process *p;
698
699 p = container_of(prange->svms, struct kfd_process, svms);
700
701 return kfd_get_process_device_data(node, p);
702 }
703
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 struct ttm_operation_ctx ctx = { false, false };
707
708 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709
710 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 uint32_t i;
718
719 for (i = 0; i < nattr; i++) {
720 uint32_t val = attrs[i].value;
721 int gpuidx = MAX_GPU_INSTANCE;
722
723 switch (attrs[i].type) {
724 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 break;
729 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 break;
733 case KFD_IOCTL_SVM_ATTR_ACCESS:
734 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 break;
738 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 break;
740 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 break;
742 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 break;
744 default:
745 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 return -EINVAL;
747 }
748
749 if (gpuidx < 0) {
750 pr_debug("no GPU 0x%x found\n", val);
751 return -EINVAL;
752 } else if (gpuidx < MAX_GPU_INSTANCE &&
753 !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 pr_debug("GPU 0x%x not supported\n", val);
755 return -EINVAL;
756 }
757 }
758
759 return 0;
760 }
761
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 bool *update_mapping)
766 {
767 uint32_t i;
768 int gpuidx;
769
770 for (i = 0; i < nattr; i++) {
771 switch (attrs[i].type) {
772 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 prange->preferred_loc = attrs[i].value;
774 break;
775 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 prange->prefetch_loc = attrs[i].value;
777 break;
778 case KFD_IOCTL_SVM_ATTR_ACCESS:
779 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 if (!p->xnack_enabled)
782 *update_mapping = true;
783
784 gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 attrs[i].value);
786 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 bitmap_set(prange->bitmap_access, gpuidx, 1);
791 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 } else {
793 bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 }
796 break;
797 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 *update_mapping = true;
799 prange->flags |= attrs[i].value;
800 break;
801 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 *update_mapping = true;
803 prange->flags &= ~attrs[i].value;
804 break;
805 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 break;
808 default:
809 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 }
811 }
812 }
813
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 uint32_t i;
819 int gpuidx;
820
821 for (i = 0; i < nattr; i++) {
822 switch (attrs[i].type) {
823 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 if (prange->preferred_loc != attrs[i].value)
825 return false;
826 break;
827 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 /* Prefetch should always trigger a migration even
829 * if the value of the attribute didn't change.
830 */
831 return false;
832 case KFD_IOCTL_SVM_ATTR_ACCESS:
833 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 attrs[i].value);
837 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 if (test_bit(gpuidx, prange->bitmap_access) ||
839 test_bit(gpuidx, prange->bitmap_aip))
840 return false;
841 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 if (!test_bit(gpuidx, prange->bitmap_access))
843 return false;
844 } else {
845 if (!test_bit(gpuidx, prange->bitmap_aip))
846 return false;
847 }
848 break;
849 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 if ((prange->flags & attrs[i].value) != attrs[i].value)
851 return false;
852 break;
853 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 if ((prange->flags & attrs[i].value) != 0)
855 return false;
856 break;
857 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 if (prange->granularity != attrs[i].value)
859 return false;
860 break;
861 default:
862 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 }
864 }
865
866 return true;
867 }
868
869 /**
870 * svm_range_debug_dump - print all range information from svms
871 * @svms: svm range list header
872 *
873 * debug output svm range start, end, prefetch location from svms
874 * interval tree and link list
875 *
876 * Context: The caller must hold svms->lock
877 */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 struct interval_tree_node *node;
881 struct svm_range *prange;
882
883 pr_debug("dump svms 0x%p list\n", svms);
884 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885
886 list_for_each_entry(prange, &svms->list, list) {
887 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 prange, prange->start, prange->npages,
889 prange->start + prange->npages - 1,
890 prange->actual_loc);
891 }
892
893 pr_debug("dump svms 0x%p interval tree\n", svms);
894 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 while (node) {
897 prange = container_of(node, struct svm_range, it_node);
898 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 prange, prange->start, prange->npages,
900 prange->start + prange->npages - 1,
901 prange->actual_loc);
902 node = interval_tree_iter_next(node, 0, ~0ULL);
903 }
904 }
905
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 uint64_t offset, uint64_t *vram_pages)
909 {
910 unsigned char *src = (unsigned char *)psrc + offset;
911 unsigned char *dst;
912 uint64_t i;
913
914 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 if (!dst)
916 return NULL;
917
918 if (!vram_pages) {
919 memcpy(dst, src, num_elements * size);
920 return (void *)dst;
921 }
922
923 *vram_pages = 0;
924 for (i = 0; i < num_elements; i++) {
925 dma_addr_t *temp;
926 temp = (dma_addr_t *)dst + i;
927 *temp = *((dma_addr_t *)src + i);
928 if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 (*vram_pages)++;
930 }
931
932 return (void *)dst;
933 }
934
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 int i;
939
940 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 if (!src->dma_addr[i])
942 continue;
943 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 if (!dst->dma_addr[i])
946 return -ENOMEM;
947 }
948
949 return 0;
950 }
951
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 uint64_t old_start, uint64_t old_n,
955 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 unsigned char *new, *old, *pold;
958 uint64_t d;
959
960 if (!ppold)
961 return 0;
962 pold = *(unsigned char **)ppold;
963 if (!pold)
964 return 0;
965
966 d = (new_start - old_start) * size;
967 /* get dma addr array for new range and calculte its vram page number */
968 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 if (!new)
970 return -ENOMEM;
971 d = (new_start == old_start) ? new_n * size : 0;
972 old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 if (!old) {
974 kvfree(new);
975 return -ENOMEM;
976 }
977 kvfree(pold);
978 *(void **)ppold = old;
979 *(void **)ppnew = new;
980
981 return 0;
982 }
983
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 uint64_t start, uint64_t last)
987 {
988 uint64_t npages = last - start + 1;
989 int i, r;
990
991 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 sizeof(*old->dma_addr[i]), old->start,
994 npages, new->start, new->npages,
995 old->actual_loc ? &new->vram_pages : NULL);
996 if (r)
997 return r;
998 }
999 if (old->actual_loc)
1000 old->vram_pages -= new->vram_pages;
1001
1002 return 0;
1003 }
1004
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 uint64_t start, uint64_t last)
1008 {
1009 uint64_t npages = last - start + 1;
1010
1011 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 new->svms, new, new->start, start, last);
1013
1014 if (new->start == old->start) {
1015 new->offset = old->offset;
1016 old->offset += new->npages;
1017 } else {
1018 new->offset = old->offset + npages;
1019 }
1020
1021 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 new->ttm_res = old->ttm_res;
1023
1024 spin_lock(&new->svm_bo->list_lock);
1025 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 spin_unlock(&new->svm_bo->list_lock);
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * svm_range_split_adjust - split range and adjust
1033 *
1034 * @new: new range
1035 * @old: the old range
1036 * @start: the old range adjust to start address in pages
1037 * @last: the old range adjust to last address in pages
1038 *
1039 * Copy system memory dma_addr or vram ttm_res in old range to new
1040 * range from new_start up to size new->npages, the remaining old range is from
1041 * start to last
1042 *
1043 * Return:
1044 * 0 - OK, -ENOMEM - out of memory
1045 */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 uint64_t start, uint64_t last)
1049 {
1050 int r;
1051
1052 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 new->svms, new->start, old->start, old->last, start, last);
1054
1055 if (new->start < old->start ||
1056 new->last > old->last) {
1057 WARN_ONCE(1, "invalid new range start or last\n");
1058 return -EINVAL;
1059 }
1060
1061 r = svm_range_split_pages(new, old, start, last);
1062 if (r)
1063 return r;
1064
1065 if (old->actual_loc && old->ttm_res) {
1066 r = svm_range_split_nodes(new, old, start, last);
1067 if (r)
1068 return r;
1069 }
1070
1071 old->npages = last - start + 1;
1072 old->start = start;
1073 old->last = last;
1074 new->flags = old->flags;
1075 new->preferred_loc = old->preferred_loc;
1076 new->prefetch_loc = old->prefetch_loc;
1077 new->actual_loc = old->actual_loc;
1078 new->granularity = old->granularity;
1079 new->mapped_to_gpu = old->mapped_to_gpu;
1080 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * svm_range_split - split a range in 2 ranges
1089 *
1090 * @prange: the svm range to split
1091 * @start: the remaining range start address in pages
1092 * @last: the remaining range last address in pages
1093 * @new: the result new range generated
1094 *
1095 * Two cases only:
1096 * case 1: if start == prange->start
1097 * prange ==> prange[start, last]
1098 * new range [last + 1, prange->last]
1099 *
1100 * case 2: if last == prange->last
1101 * prange ==> prange[start, last]
1102 * new range [prange->start, start - 1]
1103 *
1104 * Return:
1105 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106 */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 struct svm_range **new)
1110 {
1111 uint64_t old_start = prange->start;
1112 uint64_t old_last = prange->last;
1113 struct svm_range_list *svms;
1114 int r = 0;
1115
1116 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 old_start, old_last, start, last);
1118
1119 if (old_start != start && old_last != last)
1120 return -EINVAL;
1121 if (start < old_start || last > old_last)
1122 return -EINVAL;
1123
1124 svms = prange->svms;
1125 if (old_start == start)
1126 *new = svm_range_new(svms, last + 1, old_last, false);
1127 else
1128 *new = svm_range_new(svms, old_start, start - 1, false);
1129 if (!*new)
1130 return -ENOMEM;
1131
1132 r = svm_range_split_adjust(*new, prange, start, last);
1133 if (r) {
1134 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 r, old_start, old_last, start, last);
1136 svm_range_free(*new, false);
1137 *new = NULL;
1138 }
1139
1140 return r;
1141 }
1142
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 struct svm_range *tail = NULL;
1148 int r = svm_range_split(prange, prange->start, new_last, &tail);
1149
1150 if (!r) {
1151 list_add(&tail->list, insert_list);
1152 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1153 list_add(&tail->update_list, remap_list);
1154 }
1155 return r;
1156 }
1157
1158 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1159 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1160 struct list_head *insert_list, struct list_head *remap_list)
1161 {
1162 struct svm_range *head = NULL;
1163 int r = svm_range_split(prange, new_start, prange->last, &head);
1164
1165 if (!r) {
1166 list_add(&head->list, insert_list);
1167 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1168 list_add(&head->update_list, remap_list);
1169 }
1170 return r;
1171 }
1172
1173 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1174 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 pchild, pchild->start, pchild->last, prange, op);
1178
1179 pchild->work_item.mm = NULL;
1180 pchild->work_item.op = op;
1181 list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 return (node_a->adev == node_b->adev ||
1188 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node,
1193 struct svm_range *prange, int domain)
1194 {
1195 struct kfd_node *bo_node;
1196 uint32_t flags = prange->flags;
1197 uint32_t mapping_flags = 0;
1198 uint32_t gc_ip_version = KFD_GC_VERSION(node);
1199 uint64_t pte_flags;
1200 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1201 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1202 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1203 unsigned int mtype_local;
1204
1205 if (domain == SVM_RANGE_VRAM_DOMAIN)
1206 bo_node = prange->svm_bo->node;
1207
1208 switch (gc_ip_version) {
1209 case IP_VERSION(9, 4, 1):
1210 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1211 if (bo_node == node) {
1212 mapping_flags |= coherent ?
1213 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1214 } else {
1215 mapping_flags |= coherent ?
1216 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1217 if (svm_nodes_in_same_hive(node, bo_node))
1218 snoop = true;
1219 }
1220 } else {
1221 mapping_flags |= coherent ?
1222 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1223 }
1224 break;
1225 case IP_VERSION(9, 4, 2):
1226 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1227 if (bo_node == node) {
1228 mapping_flags |= coherent ?
1229 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1230 if (node->adev->gmc.xgmi.connected_to_cpu)
1231 snoop = true;
1232 } else {
1233 mapping_flags |= coherent ?
1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 if (svm_nodes_in_same_hive(node, bo_node))
1236 snoop = true;
1237 }
1238 } else {
1239 mapping_flags |= coherent ?
1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 }
1242 break;
1243 case IP_VERSION(9, 4, 3):
1244 case IP_VERSION(9, 4, 4):
1245 case IP_VERSION(9, 5, 0):
1246 if (ext_coherent)
1247 mtype_local = AMDGPU_VM_MTYPE_CC;
1248 else
1249 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1250 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1251 snoop = true;
1252 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1253 /* local HBM region close to partition */
1254 if (bo_node->adev == node->adev &&
1255 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1256 mapping_flags |= mtype_local;
1257 /* local HBM region far from partition or remote XGMI GPU
1258 * with regular system scope coherence
1259 */
1260 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1261 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1262 /* PCIe P2P on GPUs pre-9.5.0 */
1263 else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1264 !svm_nodes_in_same_hive(bo_node, node))
1265 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1266 /* Other remote memory */
1267 else
1268 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1269 /* system memory accessed by the APU */
1270 } else if (node->adev->flags & AMD_IS_APU) {
1271 /* On NUMA systems, locality is determined per-page
1272 * in amdgpu_gmc_override_vm_pte_flags
1273 */
1274 if (num_possible_nodes() <= 1)
1275 mapping_flags |= mtype_local;
1276 else
1277 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1278 /* system memory accessed by the dGPU */
1279 } else {
1280 if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1281 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1282 else
1283 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1284 }
1285 break;
1286 case IP_VERSION(12, 0, 0):
1287 case IP_VERSION(12, 0, 1):
1288 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1289 break;
1290 default:
1291 mapping_flags |= coherent ?
1292 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1293 }
1294
1295 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1296
1297 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1298 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1299 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1300 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1301
1302 pte_flags = AMDGPU_PTE_VALID;
1303 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1304 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1305 if (gc_ip_version >= IP_VERSION(12, 0, 0))
1306 pte_flags |= AMDGPU_PTE_IS_PTE;
1307
1308 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1309 return pte_flags;
1310 }
1311
1312 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1313 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1314 uint64_t start, uint64_t last,
1315 struct dma_fence **fence)
1316 {
1317 uint64_t init_pte_value = 0;
1318
1319 pr_debug("[0x%llx 0x%llx]\n", start, last);
1320
1321 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1322 last, init_pte_value, 0, 0, NULL, NULL,
1323 fence);
1324 }
1325
1326 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1327 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1328 unsigned long last, uint32_t trigger)
1329 {
1330 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1331 struct kfd_process_device *pdd;
1332 struct dma_fence *fence = NULL;
1333 struct kfd_process *p;
1334 uint32_t gpuidx;
1335 int r = 0;
1336
1337 if (!prange->mapped_to_gpu) {
1338 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1339 prange, prange->start, prange->last);
1340 return 0;
1341 }
1342
1343 if (prange->start == start && prange->last == last) {
1344 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1345 prange->mapped_to_gpu = false;
1346 }
1347
1348 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1349 MAX_GPU_INSTANCE);
1350 p = container_of(prange->svms, struct kfd_process, svms);
1351
1352 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1353 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1354 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1355 if (!pdd) {
1356 pr_debug("failed to find device idx %d\n", gpuidx);
1357 return -EINVAL;
1358 }
1359
1360 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1361 start, last, trigger);
1362
1363 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1364 drm_priv_to_vm(pdd->drm_priv),
1365 start, last, &fence);
1366 if (r)
1367 break;
1368
1369 if (fence) {
1370 r = dma_fence_wait(fence, false);
1371 dma_fence_put(fence);
1372 fence = NULL;
1373 if (r)
1374 break;
1375 }
1376 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1377 }
1378
1379 return r;
1380 }
1381
1382 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1383 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1384 unsigned long offset, unsigned long npages, bool readonly,
1385 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1386 struct dma_fence **fence, bool flush_tlb)
1387 {
1388 struct amdgpu_device *adev = pdd->dev->adev;
1389 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1390 uint64_t pte_flags;
1391 unsigned long last_start;
1392 int last_domain;
1393 int r = 0;
1394 int64_t i, j;
1395
1396 last_start = prange->start + offset;
1397
1398 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1399 last_start, last_start + npages - 1, readonly);
1400
1401 for (i = offset; i < offset + npages; i++) {
1402 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1403 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1404
1405 /* Collect all pages in the same address range and memory domain
1406 * that can be mapped with a single call to update mapping.
1407 */
1408 if (i < offset + npages - 1 &&
1409 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1410 continue;
1411
1412 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1413 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1414
1415 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1416 if (readonly)
1417 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1418
1419 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1420 prange->svms, last_start, prange->start + i,
1421 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1422 pte_flags);
1423
1424 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1425 * different memory partition based on fpfn/lpfn, we should use
1426 * same vm_manager.vram_base_offset regardless memory partition.
1427 */
1428 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1429 NULL, last_start, prange->start + i,
1430 pte_flags,
1431 (last_start - prange->start) << PAGE_SHIFT,
1432 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1433 NULL, dma_addr, &vm->last_update);
1434
1435 for (j = last_start - prange->start; j <= i; j++)
1436 dma_addr[j] |= last_domain;
1437
1438 if (r) {
1439 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1440 goto out;
1441 }
1442 last_start = prange->start + i + 1;
1443 }
1444
1445 r = amdgpu_vm_update_pdes(adev, vm, false);
1446 if (r) {
1447 pr_debug("failed %d to update directories 0x%lx\n", r,
1448 prange->start);
1449 goto out;
1450 }
1451
1452 if (fence)
1453 *fence = dma_fence_get(vm->last_update);
1454
1455 out:
1456 return r;
1457 }
1458
1459 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1460 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1461 unsigned long npages, bool readonly,
1462 unsigned long *bitmap, bool wait, bool flush_tlb)
1463 {
1464 struct kfd_process_device *pdd;
1465 struct amdgpu_device *bo_adev = NULL;
1466 struct kfd_process *p;
1467 struct dma_fence *fence = NULL;
1468 uint32_t gpuidx;
1469 int r = 0;
1470
1471 if (prange->svm_bo && prange->ttm_res)
1472 bo_adev = prange->svm_bo->node->adev;
1473
1474 p = container_of(prange->svms, struct kfd_process, svms);
1475 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1476 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1477 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1478 if (!pdd) {
1479 pr_debug("failed to find device idx %d\n", gpuidx);
1480 return -EINVAL;
1481 }
1482
1483 pdd = kfd_bind_process_to_device(pdd->dev, p);
1484 if (IS_ERR(pdd))
1485 return -EINVAL;
1486
1487 if (bo_adev && pdd->dev->adev != bo_adev &&
1488 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1489 pr_debug("cannot map to device idx %d\n", gpuidx);
1490 continue;
1491 }
1492
1493 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1494 prange->dma_addr[gpuidx],
1495 bo_adev, wait ? &fence : NULL,
1496 flush_tlb);
1497 if (r)
1498 break;
1499
1500 if (fence) {
1501 r = dma_fence_wait(fence, false);
1502 dma_fence_put(fence);
1503 fence = NULL;
1504 if (r) {
1505 pr_debug("failed %d to dma fence wait\n", r);
1506 break;
1507 }
1508 }
1509
1510 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1511 }
1512
1513 return r;
1514 }
1515
1516 struct svm_validate_context {
1517 struct kfd_process *process;
1518 struct svm_range *prange;
1519 bool intr;
1520 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1521 struct drm_exec exec;
1522 };
1523
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1524 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1525 {
1526 struct kfd_process_device *pdd;
1527 struct amdgpu_vm *vm;
1528 uint32_t gpuidx;
1529 int r;
1530
1531 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1532 drm_exec_until_all_locked(&ctx->exec) {
1533 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1534 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1535 if (!pdd) {
1536 pr_debug("failed to find device idx %d\n", gpuidx);
1537 r = -EINVAL;
1538 goto unreserve_out;
1539 }
1540 vm = drm_priv_to_vm(pdd->drm_priv);
1541
1542 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1543 drm_exec_retry_on_contention(&ctx->exec);
1544 if (unlikely(r)) {
1545 pr_debug("failed %d to reserve bo\n", r);
1546 goto unreserve_out;
1547 }
1548 }
1549 }
1550
1551 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1552 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1553 if (!pdd) {
1554 pr_debug("failed to find device idx %d\n", gpuidx);
1555 r = -EINVAL;
1556 goto unreserve_out;
1557 }
1558
1559 r = amdgpu_vm_validate(pdd->dev->adev,
1560 drm_priv_to_vm(pdd->drm_priv), NULL,
1561 svm_range_bo_validate, NULL);
1562 if (r) {
1563 pr_debug("failed %d validate pt bos\n", r);
1564 goto unreserve_out;
1565 }
1566 }
1567
1568 return 0;
1569
1570 unreserve_out:
1571 drm_exec_fini(&ctx->exec);
1572 return r;
1573 }
1574
svm_range_unreserve_bos(struct svm_validate_context * ctx)1575 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1576 {
1577 drm_exec_fini(&ctx->exec);
1578 }
1579
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1580 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1581 {
1582 struct kfd_process_device *pdd;
1583
1584 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1585 if (!pdd)
1586 return NULL;
1587
1588 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1589 }
1590
1591 /*
1592 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1593 *
1594 * To prevent concurrent destruction or change of range attributes, the
1595 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1596 * because that would block concurrent evictions and lead to deadlocks. To
1597 * serialize concurrent migrations or validations of the same range, the
1598 * prange->migrate_mutex must be held.
1599 *
1600 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1601 * eviction fence.
1602 *
1603 * The following sequence ensures race-free validation and GPU mapping:
1604 *
1605 * 1. Reserve page table (and SVM BO if range is in VRAM)
1606 * 2. hmm_range_fault to get page addresses (if system memory)
1607 * 3. DMA-map pages (if system memory)
1608 * 4-a. Take notifier lock
1609 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1610 * 4-c. Check that the range was not split or otherwise invalidated
1611 * 4-d. Update GPU page table
1612 * 4.e. Release notifier lock
1613 * 5. Release page table (and SVM BO) reservation
1614 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1615 static int svm_range_validate_and_map(struct mm_struct *mm,
1616 unsigned long map_start, unsigned long map_last,
1617 struct svm_range *prange, int32_t gpuidx,
1618 bool intr, bool wait, bool flush_tlb)
1619 {
1620 struct svm_validate_context *ctx;
1621 unsigned long start, end, addr;
1622 struct kfd_process *p;
1623 void *owner;
1624 int32_t idx;
1625 int r = 0;
1626
1627 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1628 if (!ctx)
1629 return -ENOMEM;
1630 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1631 ctx->prange = prange;
1632 ctx->intr = intr;
1633
1634 if (gpuidx < MAX_GPU_INSTANCE) {
1635 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1636 bitmap_set(ctx->bitmap, gpuidx, 1);
1637 } else if (ctx->process->xnack_enabled) {
1638 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1639
1640 /* If prefetch range to GPU, or GPU retry fault migrate range to
1641 * GPU, which has ACCESS attribute to the range, create mapping
1642 * on that GPU.
1643 */
1644 if (prange->actual_loc) {
1645 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1646 prange->actual_loc);
1647 if (gpuidx < 0) {
1648 WARN_ONCE(1, "failed get device by id 0x%x\n",
1649 prange->actual_loc);
1650 r = -EINVAL;
1651 goto free_ctx;
1652 }
1653 if (test_bit(gpuidx, prange->bitmap_access))
1654 bitmap_set(ctx->bitmap, gpuidx, 1);
1655 }
1656
1657 /*
1658 * If prange is already mapped or with always mapped flag,
1659 * update mapping on GPUs with ACCESS attribute
1660 */
1661 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662 if (prange->mapped_to_gpu ||
1663 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1664 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1665 }
1666 } else {
1667 bitmap_or(ctx->bitmap, prange->bitmap_access,
1668 prange->bitmap_aip, MAX_GPU_INSTANCE);
1669 }
1670
1671 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1672 r = 0;
1673 goto free_ctx;
1674 }
1675
1676 if (prange->actual_loc && !prange->ttm_res) {
1677 /* This should never happen. actual_loc gets set by
1678 * svm_migrate_ram_to_vram after allocating a BO.
1679 */
1680 WARN_ONCE(1, "VRAM BO missing during validation\n");
1681 r = -EINVAL;
1682 goto free_ctx;
1683 }
1684
1685 r = svm_range_reserve_bos(ctx, intr);
1686 if (r)
1687 goto free_ctx;
1688
1689 p = container_of(prange->svms, struct kfd_process, svms);
1690 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1691 MAX_GPU_INSTANCE));
1692 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1693 if (kfd_svm_page_owner(p, idx) != owner) {
1694 owner = NULL;
1695 break;
1696 }
1697 }
1698
1699 start = map_start << PAGE_SHIFT;
1700 end = (map_last + 1) << PAGE_SHIFT;
1701 for (addr = start; !r && addr < end; ) {
1702 struct hmm_range *hmm_range = NULL;
1703 unsigned long map_start_vma;
1704 unsigned long map_last_vma;
1705 struct vm_area_struct *vma;
1706 unsigned long next = 0;
1707 unsigned long offset;
1708 unsigned long npages;
1709 bool readonly;
1710
1711 vma = vma_lookup(mm, addr);
1712 if (vma) {
1713 readonly = !(vma->vm_flags & VM_WRITE);
1714
1715 next = min(vma->vm_end, end);
1716 npages = (next - addr) >> PAGE_SHIFT;
1717 WRITE_ONCE(p->svms.faulting_task, current);
1718 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1719 readonly, owner, NULL,
1720 &hmm_range);
1721 WRITE_ONCE(p->svms.faulting_task, NULL);
1722 if (r)
1723 pr_debug("failed %d to get svm range pages\n", r);
1724 } else {
1725 r = -EFAULT;
1726 }
1727
1728 if (!r) {
1729 offset = (addr >> PAGE_SHIFT) - prange->start;
1730 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1731 hmm_range->hmm_pfns);
1732 if (r)
1733 pr_debug("failed %d to dma map range\n", r);
1734 }
1735
1736 svm_range_lock(prange);
1737
1738 /* Free backing memory of hmm_range if it was initialized
1739 * Overrride return value to TRY AGAIN only if prior returns
1740 * were successful
1741 */
1742 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1743 pr_debug("hmm update the range, need validate again\n");
1744 r = -EAGAIN;
1745 }
1746
1747 if (!r && !list_empty(&prange->child_list)) {
1748 pr_debug("range split by unmap in parallel, validate again\n");
1749 r = -EAGAIN;
1750 }
1751
1752 if (!r) {
1753 map_start_vma = max(map_start, prange->start + offset);
1754 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1755 if (map_start_vma <= map_last_vma) {
1756 offset = map_start_vma - prange->start;
1757 npages = map_last_vma - map_start_vma + 1;
1758 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1759 ctx->bitmap, wait, flush_tlb);
1760 }
1761 }
1762
1763 if (!r && next == end)
1764 prange->mapped_to_gpu = true;
1765
1766 svm_range_unlock(prange);
1767
1768 addr = next;
1769 }
1770
1771 svm_range_unreserve_bos(ctx);
1772 if (!r)
1773 prange->validate_timestamp = ktime_get_boottime();
1774
1775 free_ctx:
1776 kfree(ctx);
1777
1778 return r;
1779 }
1780
1781 /**
1782 * svm_range_list_lock_and_flush_work - flush pending deferred work
1783 *
1784 * @svms: the svm range list
1785 * @mm: the mm structure
1786 *
1787 * Context: Returns with mmap write lock held, pending deferred work flushed
1788 *
1789 */
1790 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1791 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1792 struct mm_struct *mm)
1793 {
1794 retry_flush_work:
1795 flush_work(&svms->deferred_list_work);
1796 mmap_write_lock(mm);
1797
1798 if (list_empty(&svms->deferred_range_list))
1799 return;
1800 mmap_write_unlock(mm);
1801 pr_debug("retry flush\n");
1802 goto retry_flush_work;
1803 }
1804
svm_range_restore_work(struct work_struct * work)1805 static void svm_range_restore_work(struct work_struct *work)
1806 {
1807 struct delayed_work *dwork = to_delayed_work(work);
1808 struct amdkfd_process_info *process_info;
1809 struct svm_range_list *svms;
1810 struct svm_range *prange;
1811 struct kfd_process *p;
1812 struct mm_struct *mm;
1813 int evicted_ranges;
1814 int invalid;
1815 int r;
1816
1817 svms = container_of(dwork, struct svm_range_list, restore_work);
1818 evicted_ranges = atomic_read(&svms->evicted_ranges);
1819 if (!evicted_ranges)
1820 return;
1821
1822 pr_debug("restore svm ranges\n");
1823
1824 p = container_of(svms, struct kfd_process, svms);
1825 process_info = p->kgd_process_info;
1826
1827 /* Keep mm reference when svm_range_validate_and_map ranges */
1828 mm = get_task_mm(p->lead_thread);
1829 if (!mm) {
1830 pr_debug("svms 0x%p process mm gone\n", svms);
1831 return;
1832 }
1833
1834 mutex_lock(&process_info->lock);
1835 svm_range_list_lock_and_flush_work(svms, mm);
1836 mutex_lock(&svms->lock);
1837
1838 evicted_ranges = atomic_read(&svms->evicted_ranges);
1839
1840 list_for_each_entry(prange, &svms->list, list) {
1841 invalid = atomic_read(&prange->invalid);
1842 if (!invalid)
1843 continue;
1844
1845 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1846 prange->svms, prange, prange->start, prange->last,
1847 invalid);
1848
1849 /*
1850 * If range is migrating, wait for migration is done.
1851 */
1852 mutex_lock(&prange->migrate_mutex);
1853
1854 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1855 MAX_GPU_INSTANCE, false, true, false);
1856 if (r)
1857 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1858 prange->start);
1859
1860 mutex_unlock(&prange->migrate_mutex);
1861 if (r)
1862 goto out_reschedule;
1863
1864 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1865 goto out_reschedule;
1866 }
1867
1868 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1869 evicted_ranges)
1870 goto out_reschedule;
1871
1872 evicted_ranges = 0;
1873
1874 r = kgd2kfd_resume_mm(mm);
1875 if (r) {
1876 /* No recovery from this failure. Probably the CP is
1877 * hanging. No point trying again.
1878 */
1879 pr_debug("failed %d to resume KFD\n", r);
1880 }
1881
1882 pr_debug("restore svm ranges successfully\n");
1883
1884 out_reschedule:
1885 mutex_unlock(&svms->lock);
1886 mmap_write_unlock(mm);
1887 mutex_unlock(&process_info->lock);
1888
1889 /* If validation failed, reschedule another attempt */
1890 if (evicted_ranges) {
1891 pr_debug("reschedule to restore svm range\n");
1892 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1893 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1894
1895 kfd_smi_event_queue_restore_rescheduled(mm);
1896 }
1897 mmput(mm);
1898 }
1899
1900 /**
1901 * svm_range_evict - evict svm range
1902 * @prange: svm range structure
1903 * @mm: current process mm_struct
1904 * @start: starting process queue number
1905 * @last: last process queue number
1906 * @event: mmu notifier event when range is evicted or migrated
1907 *
1908 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1909 * return to let CPU evict the buffer and proceed CPU pagetable update.
1910 *
1911 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1912 * If invalidation happens while restore work is running, restore work will
1913 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1914 * the queues.
1915 */
1916 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1917 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1918 unsigned long start, unsigned long last,
1919 enum mmu_notifier_event event)
1920 {
1921 struct svm_range_list *svms = prange->svms;
1922 struct svm_range *pchild;
1923 struct kfd_process *p;
1924 int r = 0;
1925
1926 p = container_of(svms, struct kfd_process, svms);
1927
1928 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1929 svms, prange->start, prange->last, start, last);
1930
1931 if (!p->xnack_enabled ||
1932 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1933 int evicted_ranges;
1934 bool mapped = prange->mapped_to_gpu;
1935
1936 list_for_each_entry(pchild, &prange->child_list, child_list) {
1937 if (!pchild->mapped_to_gpu)
1938 continue;
1939 mapped = true;
1940 mutex_lock_nested(&pchild->lock, 1);
1941 if (pchild->start <= last && pchild->last >= start) {
1942 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1943 pchild->start, pchild->last);
1944 atomic_inc(&pchild->invalid);
1945 }
1946 mutex_unlock(&pchild->lock);
1947 }
1948
1949 if (!mapped)
1950 return r;
1951
1952 if (prange->start <= last && prange->last >= start)
1953 atomic_inc(&prange->invalid);
1954
1955 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1956 if (evicted_ranges != 1)
1957 return r;
1958
1959 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1960 prange->svms, prange->start, prange->last);
1961
1962 /* First eviction, stop the queues */
1963 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1964 if (r)
1965 pr_debug("failed to quiesce KFD\n");
1966
1967 pr_debug("schedule to restore svm %p ranges\n", svms);
1968 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1969 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1970 } else {
1971 unsigned long s, l;
1972 uint32_t trigger;
1973
1974 if (event == MMU_NOTIFY_MIGRATE)
1975 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1976 else
1977 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1978
1979 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1980 prange->svms, start, last);
1981 list_for_each_entry(pchild, &prange->child_list, child_list) {
1982 mutex_lock_nested(&pchild->lock, 1);
1983 s = max(start, pchild->start);
1984 l = min(last, pchild->last);
1985 if (l >= s)
1986 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1987 mutex_unlock(&pchild->lock);
1988 }
1989 s = max(start, prange->start);
1990 l = min(last, prange->last);
1991 if (l >= s)
1992 svm_range_unmap_from_gpus(prange, s, l, trigger);
1993 }
1994
1995 return r;
1996 }
1997
svm_range_clone(struct svm_range * old)1998 static struct svm_range *svm_range_clone(struct svm_range *old)
1999 {
2000 struct svm_range *new;
2001
2002 new = svm_range_new(old->svms, old->start, old->last, false);
2003 if (!new)
2004 return NULL;
2005 if (svm_range_copy_dma_addrs(new, old)) {
2006 svm_range_free(new, false);
2007 return NULL;
2008 }
2009 if (old->svm_bo) {
2010 new->ttm_res = old->ttm_res;
2011 new->offset = old->offset;
2012 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2013 spin_lock(&new->svm_bo->list_lock);
2014 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2015 spin_unlock(&new->svm_bo->list_lock);
2016 }
2017 new->flags = old->flags;
2018 new->preferred_loc = old->preferred_loc;
2019 new->prefetch_loc = old->prefetch_loc;
2020 new->actual_loc = old->actual_loc;
2021 new->granularity = old->granularity;
2022 new->mapped_to_gpu = old->mapped_to_gpu;
2023 new->vram_pages = old->vram_pages;
2024 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2025 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2026 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2027
2028 return new;
2029 }
2030
svm_range_set_max_pages(struct amdgpu_device * adev)2031 void svm_range_set_max_pages(struct amdgpu_device *adev)
2032 {
2033 uint64_t max_pages;
2034 uint64_t pages, _pages;
2035 uint64_t min_pages = 0;
2036 int i, id;
2037
2038 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2039 if (adev->kfd.dev->nodes[i]->xcp)
2040 id = adev->kfd.dev->nodes[i]->xcp->id;
2041 else
2042 id = -1;
2043 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2044 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2045 pages = rounddown_pow_of_two(pages);
2046 min_pages = min_not_zero(min_pages, pages);
2047 }
2048
2049 do {
2050 max_pages = READ_ONCE(max_svm_range_pages);
2051 _pages = min_not_zero(max_pages, min_pages);
2052 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2053 }
2054
2055 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2056 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2057 uint64_t max_pages, struct list_head *insert_list,
2058 struct list_head *update_list)
2059 {
2060 struct svm_range *prange;
2061 uint64_t l;
2062
2063 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2064 max_pages, start, last);
2065
2066 while (last >= start) {
2067 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2068
2069 prange = svm_range_new(svms, start, l, true);
2070 if (!prange)
2071 return -ENOMEM;
2072 list_add(&prange->list, insert_list);
2073 list_add(&prange->update_list, update_list);
2074
2075 start = l + 1;
2076 }
2077 return 0;
2078 }
2079
2080 /**
2081 * svm_range_add - add svm range and handle overlap
2082 * @p: the range add to this process svms
2083 * @start: page size aligned
2084 * @size: page size aligned
2085 * @nattr: number of attributes
2086 * @attrs: array of attributes
2087 * @update_list: output, the ranges need validate and update GPU mapping
2088 * @insert_list: output, the ranges need insert to svms
2089 * @remove_list: output, the ranges are replaced and need remove from svms
2090 * @remap_list: output, remap unaligned svm ranges
2091 *
2092 * Check if the virtual address range has overlap with any existing ranges,
2093 * split partly overlapping ranges and add new ranges in the gaps. All changes
2094 * should be applied to the range_list and interval tree transactionally. If
2095 * any range split or allocation fails, the entire update fails. Therefore any
2096 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2097 * unchanged.
2098 *
2099 * If the transaction succeeds, the caller can update and insert clones and
2100 * new ranges, then free the originals.
2101 *
2102 * Otherwise the caller can free the clones and new ranges, while the old
2103 * svm_ranges remain unchanged.
2104 *
2105 * Context: Process context, caller must hold svms->lock
2106 *
2107 * Return:
2108 * 0 - OK, otherwise error code
2109 */
2110 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2111 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2112 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2113 struct list_head *update_list, struct list_head *insert_list,
2114 struct list_head *remove_list, struct list_head *remap_list)
2115 {
2116 unsigned long last = start + size - 1UL;
2117 struct svm_range_list *svms = &p->svms;
2118 struct interval_tree_node *node;
2119 struct svm_range *prange;
2120 struct svm_range *tmp;
2121 struct list_head new_list;
2122 int r = 0;
2123
2124 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2125
2126 INIT_LIST_HEAD(update_list);
2127 INIT_LIST_HEAD(insert_list);
2128 INIT_LIST_HEAD(remove_list);
2129 INIT_LIST_HEAD(&new_list);
2130 INIT_LIST_HEAD(remap_list);
2131
2132 node = interval_tree_iter_first(&svms->objects, start, last);
2133 while (node) {
2134 struct interval_tree_node *next;
2135 unsigned long next_start;
2136
2137 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2138 node->last);
2139
2140 prange = container_of(node, struct svm_range, it_node);
2141 next = interval_tree_iter_next(node, start, last);
2142 next_start = min(node->last, last) + 1;
2143
2144 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2145 prange->mapped_to_gpu) {
2146 /* nothing to do */
2147 } else if (node->start < start || node->last > last) {
2148 /* node intersects the update range and its attributes
2149 * will change. Clone and split it, apply updates only
2150 * to the overlapping part
2151 */
2152 struct svm_range *old = prange;
2153
2154 prange = svm_range_clone(old);
2155 if (!prange) {
2156 r = -ENOMEM;
2157 goto out;
2158 }
2159
2160 list_add(&old->update_list, remove_list);
2161 list_add(&prange->list, insert_list);
2162 list_add(&prange->update_list, update_list);
2163
2164 if (node->start < start) {
2165 pr_debug("change old range start\n");
2166 r = svm_range_split_head(prange, start,
2167 insert_list, remap_list);
2168 if (r)
2169 goto out;
2170 }
2171 if (node->last > last) {
2172 pr_debug("change old range last\n");
2173 r = svm_range_split_tail(prange, last,
2174 insert_list, remap_list);
2175 if (r)
2176 goto out;
2177 }
2178 } else {
2179 /* The node is contained within start..last,
2180 * just update it
2181 */
2182 list_add(&prange->update_list, update_list);
2183 }
2184
2185 /* insert a new node if needed */
2186 if (node->start > start) {
2187 r = svm_range_split_new(svms, start, node->start - 1,
2188 READ_ONCE(max_svm_range_pages),
2189 &new_list, update_list);
2190 if (r)
2191 goto out;
2192 }
2193
2194 node = next;
2195 start = next_start;
2196 }
2197
2198 /* add a final range at the end if needed */
2199 if (start <= last)
2200 r = svm_range_split_new(svms, start, last,
2201 READ_ONCE(max_svm_range_pages),
2202 &new_list, update_list);
2203
2204 out:
2205 if (r) {
2206 list_for_each_entry_safe(prange, tmp, insert_list, list)
2207 svm_range_free(prange, false);
2208 list_for_each_entry_safe(prange, tmp, &new_list, list)
2209 svm_range_free(prange, true);
2210 } else {
2211 list_splice(&new_list, insert_list);
2212 }
2213
2214 return r;
2215 }
2216
2217 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2218 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2219 struct svm_range *prange)
2220 {
2221 unsigned long start;
2222 unsigned long last;
2223
2224 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2225 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2226
2227 if (prange->start == start && prange->last == last)
2228 return;
2229
2230 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2231 prange->svms, prange, start, last, prange->start,
2232 prange->last);
2233
2234 if (start != 0 && last != 0) {
2235 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2236 svm_range_remove_notifier(prange);
2237 }
2238 prange->it_node.start = prange->start;
2239 prange->it_node.last = prange->last;
2240
2241 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2242 svm_range_add_notifier_locked(mm, prange);
2243 }
2244
2245 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2246 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2247 struct mm_struct *mm)
2248 {
2249 switch (prange->work_item.op) {
2250 case SVM_OP_NULL:
2251 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2252 svms, prange, prange->start, prange->last);
2253 break;
2254 case SVM_OP_UNMAP_RANGE:
2255 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2256 svms, prange, prange->start, prange->last);
2257 svm_range_unlink(prange);
2258 svm_range_remove_notifier(prange);
2259 svm_range_free(prange, true);
2260 break;
2261 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2262 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2263 svms, prange, prange->start, prange->last);
2264 svm_range_update_notifier_and_interval_tree(mm, prange);
2265 break;
2266 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2267 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2268 svms, prange, prange->start, prange->last);
2269 svm_range_update_notifier_and_interval_tree(mm, prange);
2270 /* TODO: implement deferred validation and mapping */
2271 break;
2272 case SVM_OP_ADD_RANGE:
2273 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2274 prange->start, prange->last);
2275 svm_range_add_to_svms(prange);
2276 svm_range_add_notifier_locked(mm, prange);
2277 break;
2278 case SVM_OP_ADD_RANGE_AND_MAP:
2279 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2280 prange, prange->start, prange->last);
2281 svm_range_add_to_svms(prange);
2282 svm_range_add_notifier_locked(mm, prange);
2283 /* TODO: implement deferred validation and mapping */
2284 break;
2285 default:
2286 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2287 prange->work_item.op);
2288 }
2289 }
2290
svm_range_drain_retry_fault(struct svm_range_list * svms)2291 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2292 {
2293 struct kfd_process_device *pdd;
2294 struct kfd_process *p;
2295 uint32_t i;
2296
2297 p = container_of(svms, struct kfd_process, svms);
2298
2299 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2300 pdd = p->pdds[i];
2301 if (!pdd)
2302 continue;
2303
2304 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2305
2306 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2307 pdd->dev->adev->irq.retry_cam_enabled ?
2308 &pdd->dev->adev->irq.ih :
2309 &pdd->dev->adev->irq.ih1);
2310
2311 if (pdd->dev->adev->irq.retry_cam_enabled)
2312 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2313 &pdd->dev->adev->irq.ih_soft);
2314
2315
2316 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2317 }
2318 }
2319
svm_range_deferred_list_work(struct work_struct * work)2320 static void svm_range_deferred_list_work(struct work_struct *work)
2321 {
2322 struct svm_range_list *svms;
2323 struct svm_range *prange;
2324 struct mm_struct *mm;
2325
2326 svms = container_of(work, struct svm_range_list, deferred_list_work);
2327 pr_debug("enter svms 0x%p\n", svms);
2328
2329 spin_lock(&svms->deferred_list_lock);
2330 while (!list_empty(&svms->deferred_range_list)) {
2331 prange = list_first_entry(&svms->deferred_range_list,
2332 struct svm_range, deferred_list);
2333 spin_unlock(&svms->deferred_list_lock);
2334
2335 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2336 prange->start, prange->last, prange->work_item.op);
2337
2338 mm = prange->work_item.mm;
2339
2340 mmap_write_lock(mm);
2341
2342 /* Remove from deferred_list must be inside mmap write lock, for
2343 * two race cases:
2344 * 1. unmap_from_cpu may change work_item.op and add the range
2345 * to deferred_list again, cause use after free bug.
2346 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2347 * lock and continue because deferred_list is empty, but
2348 * deferred_list work is actually waiting for mmap lock.
2349 */
2350 spin_lock(&svms->deferred_list_lock);
2351 list_del_init(&prange->deferred_list);
2352 spin_unlock(&svms->deferred_list_lock);
2353
2354 mutex_lock(&svms->lock);
2355 mutex_lock(&prange->migrate_mutex);
2356 while (!list_empty(&prange->child_list)) {
2357 struct svm_range *pchild;
2358
2359 pchild = list_first_entry(&prange->child_list,
2360 struct svm_range, child_list);
2361 pr_debug("child prange 0x%p op %d\n", pchild,
2362 pchild->work_item.op);
2363 list_del_init(&pchild->child_list);
2364 svm_range_handle_list_op(svms, pchild, mm);
2365 }
2366 mutex_unlock(&prange->migrate_mutex);
2367
2368 svm_range_handle_list_op(svms, prange, mm);
2369 mutex_unlock(&svms->lock);
2370 mmap_write_unlock(mm);
2371
2372 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2373 * last mm refcount, schedule release work to avoid circular locking
2374 */
2375 mmput_async(mm);
2376
2377 spin_lock(&svms->deferred_list_lock);
2378 }
2379 spin_unlock(&svms->deferred_list_lock);
2380 pr_debug("exit svms 0x%p\n", svms);
2381 }
2382
2383 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2384 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2385 struct mm_struct *mm, enum svm_work_list_ops op)
2386 {
2387 spin_lock(&svms->deferred_list_lock);
2388 /* if prange is on the deferred list */
2389 if (!list_empty(&prange->deferred_list)) {
2390 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2391 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2392 if (op != SVM_OP_NULL &&
2393 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2394 prange->work_item.op = op;
2395 } else {
2396 /* Pairs with mmput in deferred_list_work.
2397 * If process is exiting and mm is gone, don't update mmu notifier.
2398 */
2399 if (mmget_not_zero(mm)) {
2400 prange->work_item.mm = mm;
2401 prange->work_item.op = op;
2402 list_add_tail(&prange->deferred_list,
2403 &prange->svms->deferred_range_list);
2404 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2405 prange, prange->start, prange->last, op);
2406 }
2407 }
2408 spin_unlock(&svms->deferred_list_lock);
2409 }
2410
schedule_deferred_list_work(struct svm_range_list * svms)2411 void schedule_deferred_list_work(struct svm_range_list *svms)
2412 {
2413 spin_lock(&svms->deferred_list_lock);
2414 if (!list_empty(&svms->deferred_range_list))
2415 schedule_work(&svms->deferred_list_work);
2416 spin_unlock(&svms->deferred_list_lock);
2417 }
2418
2419 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2420 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2421 unsigned long last)
2422 {
2423 struct svm_range *head;
2424 struct svm_range *tail;
2425
2426 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2427 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2428 prange->start, prange->last);
2429 return;
2430 }
2431 if (start > prange->last || last < prange->start)
2432 return;
2433
2434 head = tail = prange;
2435 if (start > prange->start)
2436 svm_range_split(prange, prange->start, start - 1, &tail);
2437 if (last < tail->last)
2438 svm_range_split(tail, last + 1, tail->last, &head);
2439
2440 if (head != prange && tail != prange) {
2441 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2442 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2443 } else if (tail != prange) {
2444 svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2445 } else if (head != prange) {
2446 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2447 } else if (parent != prange) {
2448 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2449 }
2450 }
2451
2452 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2453 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2454 unsigned long start, unsigned long last)
2455 {
2456 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2457 struct svm_range_list *svms;
2458 struct svm_range *pchild;
2459 struct kfd_process *p;
2460 unsigned long s, l;
2461 bool unmap_parent;
2462 uint32_t i;
2463
2464 if (atomic_read(&prange->queue_refcount)) {
2465 int r;
2466
2467 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2468 prange->start << PAGE_SHIFT);
2469 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2470 if (r)
2471 pr_debug("failed %d to quiesce KFD queues\n", r);
2472 }
2473
2474 p = kfd_lookup_process_by_mm(mm);
2475 if (!p)
2476 return;
2477 svms = &p->svms;
2478
2479 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2480 prange, prange->start, prange->last, start, last);
2481
2482 /* calculate time stamps that are used to decide which page faults need be
2483 * dropped or handled before unmap pages from gpu vm
2484 */
2485 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2486 struct kfd_process_device *pdd;
2487 struct amdgpu_device *adev;
2488 struct amdgpu_ih_ring *ih;
2489 uint32_t checkpoint_wptr;
2490
2491 pdd = p->pdds[i];
2492 if (!pdd)
2493 continue;
2494
2495 adev = pdd->dev->adev;
2496
2497 /* Check and drain ih1 ring if cam not available */
2498 if (adev->irq.ih1.ring_size) {
2499 ih = &adev->irq.ih1;
2500 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2501 if (ih->rptr != checkpoint_wptr) {
2502 svms->checkpoint_ts[i] =
2503 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2504 continue;
2505 }
2506 }
2507
2508 /* check if dev->irq.ih_soft is not empty */
2509 ih = &adev->irq.ih_soft;
2510 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2511 if (ih->rptr != checkpoint_wptr)
2512 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2513 }
2514
2515 unmap_parent = start <= prange->start && last >= prange->last;
2516
2517 list_for_each_entry(pchild, &prange->child_list, child_list) {
2518 mutex_lock_nested(&pchild->lock, 1);
2519 s = max(start, pchild->start);
2520 l = min(last, pchild->last);
2521 if (l >= s)
2522 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2523 svm_range_unmap_split(prange, pchild, start, last);
2524 mutex_unlock(&pchild->lock);
2525 }
2526 s = max(start, prange->start);
2527 l = min(last, prange->last);
2528 if (l >= s)
2529 svm_range_unmap_from_gpus(prange, s, l, trigger);
2530 svm_range_unmap_split(prange, prange, start, last);
2531
2532 if (unmap_parent)
2533 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2534 else
2535 svm_range_add_list_work(svms, prange, mm,
2536 SVM_OP_UPDATE_RANGE_NOTIFIER);
2537 schedule_deferred_list_work(svms);
2538
2539 kfd_unref_process(p);
2540 }
2541
2542 /**
2543 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2544 * @mni: mmu_interval_notifier struct
2545 * @range: mmu_notifier_range struct
2546 * @cur_seq: value to pass to mmu_interval_set_seq()
2547 *
2548 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2549 * is from migration, or CPU page invalidation callback.
2550 *
2551 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2552 * work thread, and split prange if only part of prange is unmapped.
2553 *
2554 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2555 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2556 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2557 * update GPU mapping to recover.
2558 *
2559 * Context: mmap lock, notifier_invalidate_start lock are held
2560 * for invalidate event, prange lock is held if this is from migration
2561 */
2562 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2563 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2564 const struct mmu_notifier_range *range,
2565 unsigned long cur_seq)
2566 {
2567 struct svm_range *prange;
2568 unsigned long start;
2569 unsigned long last;
2570
2571 if (range->event == MMU_NOTIFY_RELEASE)
2572 return true;
2573
2574 start = mni->interval_tree.start;
2575 last = mni->interval_tree.last;
2576 start = max(start, range->start) >> PAGE_SHIFT;
2577 last = min(last, range->end - 1) >> PAGE_SHIFT;
2578 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2579 start, last, range->start >> PAGE_SHIFT,
2580 (range->end - 1) >> PAGE_SHIFT,
2581 mni->interval_tree.start >> PAGE_SHIFT,
2582 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2583
2584 prange = container_of(mni, struct svm_range, notifier);
2585
2586 svm_range_lock(prange);
2587 mmu_interval_set_seq(mni, cur_seq);
2588
2589 switch (range->event) {
2590 case MMU_NOTIFY_UNMAP:
2591 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2592 break;
2593 default:
2594 svm_range_evict(prange, mni->mm, start, last, range->event);
2595 break;
2596 }
2597
2598 svm_range_unlock(prange);
2599
2600 return true;
2601 }
2602
2603 /**
2604 * svm_range_from_addr - find svm range from fault address
2605 * @svms: svm range list header
2606 * @addr: address to search range interval tree, in pages
2607 * @parent: parent range if range is on child list
2608 *
2609 * Context: The caller must hold svms->lock
2610 *
2611 * Return: the svm_range found or NULL
2612 */
2613 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2614 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2615 struct svm_range **parent)
2616 {
2617 struct interval_tree_node *node;
2618 struct svm_range *prange;
2619 struct svm_range *pchild;
2620
2621 node = interval_tree_iter_first(&svms->objects, addr, addr);
2622 if (!node)
2623 return NULL;
2624
2625 prange = container_of(node, struct svm_range, it_node);
2626 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2627 addr, prange->start, prange->last, node->start, node->last);
2628
2629 if (addr >= prange->start && addr <= prange->last) {
2630 if (parent)
2631 *parent = prange;
2632 return prange;
2633 }
2634 list_for_each_entry(pchild, &prange->child_list, child_list)
2635 if (addr >= pchild->start && addr <= pchild->last) {
2636 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2637 addr, pchild->start, pchild->last);
2638 if (parent)
2639 *parent = prange;
2640 return pchild;
2641 }
2642
2643 return NULL;
2644 }
2645
2646 /* svm_range_best_restore_location - decide the best fault restore location
2647 * @prange: svm range structure
2648 * @adev: the GPU on which vm fault happened
2649 *
2650 * This is only called when xnack is on, to decide the best location to restore
2651 * the range mapping after GPU vm fault. Caller uses the best location to do
2652 * migration if actual loc is not best location, then update GPU page table
2653 * mapping to the best location.
2654 *
2655 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2656 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2657 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2658 * if range actual loc is cpu, best_loc is cpu
2659 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2660 * range actual loc.
2661 * Otherwise, GPU no access, best_loc is -1.
2662 *
2663 * Return:
2664 * -1 means vm fault GPU no access
2665 * 0 for CPU or GPU id
2666 */
2667 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2668 svm_range_best_restore_location(struct svm_range *prange,
2669 struct kfd_node *node,
2670 int32_t *gpuidx)
2671 {
2672 struct kfd_node *bo_node, *preferred_node;
2673 struct kfd_process *p;
2674 uint32_t gpuid;
2675 int r;
2676
2677 p = container_of(prange->svms, struct kfd_process, svms);
2678
2679 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2680 if (r < 0) {
2681 pr_debug("failed to get gpuid from kgd\n");
2682 return -1;
2683 }
2684
2685 if (node->adev->apu_prefer_gtt)
2686 return 0;
2687
2688 if (prange->preferred_loc == gpuid ||
2689 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2690 return prange->preferred_loc;
2691 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2692 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2693 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2694 return prange->preferred_loc;
2695 /* fall through */
2696 }
2697
2698 if (test_bit(*gpuidx, prange->bitmap_access))
2699 return gpuid;
2700
2701 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2702 if (!prange->actual_loc)
2703 return 0;
2704
2705 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2706 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2707 return prange->actual_loc;
2708 else
2709 return 0;
2710 }
2711
2712 return -1;
2713 }
2714
2715 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2716 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2717 unsigned long *start, unsigned long *last,
2718 bool *is_heap_stack)
2719 {
2720 struct vm_area_struct *vma;
2721 struct interval_tree_node *node;
2722 struct rb_node *rb_node;
2723 unsigned long start_limit, end_limit;
2724
2725 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2726 if (!vma) {
2727 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2728 return -EFAULT;
2729 }
2730
2731 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2732
2733 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2734 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2735 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2736 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2737
2738 /* First range that starts after the fault address */
2739 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2740 if (node) {
2741 end_limit = min(end_limit, node->start);
2742 /* Last range that ends before the fault address */
2743 rb_node = rb_prev(&node->rb);
2744 } else {
2745 /* Last range must end before addr because
2746 * there was no range after addr
2747 */
2748 rb_node = rb_last(&p->svms.objects.rb_root);
2749 }
2750 if (rb_node) {
2751 node = container_of(rb_node, struct interval_tree_node, rb);
2752 if (node->last >= addr) {
2753 WARN(1, "Overlap with prev node and page fault addr\n");
2754 return -EFAULT;
2755 }
2756 start_limit = max(start_limit, node->last + 1);
2757 }
2758
2759 *start = start_limit;
2760 *last = end_limit - 1;
2761
2762 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2763 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2764 *start, *last, *is_heap_stack);
2765
2766 return 0;
2767 }
2768
2769 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2770 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2771 uint64_t *bo_s, uint64_t *bo_l)
2772 {
2773 struct amdgpu_bo_va_mapping *mapping;
2774 struct interval_tree_node *node;
2775 struct amdgpu_bo *bo = NULL;
2776 unsigned long userptr;
2777 uint32_t i;
2778 int r;
2779
2780 for (i = 0; i < p->n_pdds; i++) {
2781 struct amdgpu_vm *vm;
2782
2783 if (!p->pdds[i]->drm_priv)
2784 continue;
2785
2786 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2787 r = amdgpu_bo_reserve(vm->root.bo, false);
2788 if (r)
2789 return r;
2790
2791 /* Check userptr by searching entire vm->va interval tree */
2792 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2793 while (node) {
2794 mapping = container_of((struct rb_node *)node,
2795 struct amdgpu_bo_va_mapping, rb);
2796 bo = mapping->bo_va->base.bo;
2797
2798 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2799 start << PAGE_SHIFT,
2800 last << PAGE_SHIFT,
2801 &userptr)) {
2802 node = interval_tree_iter_next(node, 0, ~0ULL);
2803 continue;
2804 }
2805
2806 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2807 start, last);
2808 if (bo_s && bo_l) {
2809 *bo_s = userptr >> PAGE_SHIFT;
2810 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2811 }
2812 amdgpu_bo_unreserve(vm->root.bo);
2813 return -EADDRINUSE;
2814 }
2815 amdgpu_bo_unreserve(vm->root.bo);
2816 }
2817 return 0;
2818 }
2819
2820 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2821 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2822 struct kfd_process *p,
2823 struct mm_struct *mm,
2824 int64_t addr)
2825 {
2826 struct svm_range *prange = NULL;
2827 unsigned long start, last;
2828 uint32_t gpuid, gpuidx;
2829 bool is_heap_stack;
2830 uint64_t bo_s = 0;
2831 uint64_t bo_l = 0;
2832 int r;
2833
2834 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2835 &is_heap_stack))
2836 return NULL;
2837
2838 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2839 if (r != -EADDRINUSE)
2840 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2841
2842 if (r == -EADDRINUSE) {
2843 if (addr >= bo_s && addr <= bo_l)
2844 return NULL;
2845
2846 /* Create one page svm range if 2MB range overlapping */
2847 start = addr;
2848 last = addr;
2849 }
2850
2851 prange = svm_range_new(&p->svms, start, last, true);
2852 if (!prange) {
2853 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2854 return NULL;
2855 }
2856 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2857 pr_debug("failed to get gpuid from kgd\n");
2858 svm_range_free(prange, true);
2859 return NULL;
2860 }
2861
2862 if (is_heap_stack)
2863 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2864
2865 svm_range_add_to_svms(prange);
2866 svm_range_add_notifier_locked(mm, prange);
2867
2868 return prange;
2869 }
2870
2871 /* svm_range_skip_recover - decide if prange can be recovered
2872 * @prange: svm range structure
2873 *
2874 * GPU vm retry fault handle skip recover the range for cases:
2875 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2876 * deferred list work will drain the stale fault before free the prange.
2877 * 2. prange is on deferred list to add interval notifier after split, or
2878 * 3. prange is child range, it is split from parent prange, recover later
2879 * after interval notifier is added.
2880 *
2881 * Return: true to skip recover, false to recover
2882 */
svm_range_skip_recover(struct svm_range * prange)2883 static bool svm_range_skip_recover(struct svm_range *prange)
2884 {
2885 struct svm_range_list *svms = prange->svms;
2886
2887 spin_lock(&svms->deferred_list_lock);
2888 if (list_empty(&prange->deferred_list) &&
2889 list_empty(&prange->child_list)) {
2890 spin_unlock(&svms->deferred_list_lock);
2891 return false;
2892 }
2893 spin_unlock(&svms->deferred_list_lock);
2894
2895 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2896 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2897 svms, prange, prange->start, prange->last);
2898 return true;
2899 }
2900 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2901 prange->work_item.op == SVM_OP_ADD_RANGE) {
2902 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2903 svms, prange, prange->start, prange->last);
2904 return true;
2905 }
2906 return false;
2907 }
2908
2909 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2910 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2911 int32_t gpuidx)
2912 {
2913 struct kfd_process_device *pdd;
2914
2915 /* fault is on different page of same range
2916 * or fault is skipped to recover later
2917 * or fault is on invalid virtual address
2918 */
2919 if (gpuidx == MAX_GPU_INSTANCE) {
2920 uint32_t gpuid;
2921 int r;
2922
2923 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2924 if (r < 0)
2925 return;
2926 }
2927
2928 /* fault is recovered
2929 * or fault cannot recover because GPU no access on the range
2930 */
2931 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2932 if (pdd)
2933 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2934 }
2935
2936 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2937 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2938 {
2939 unsigned long requested = VM_READ;
2940
2941 if (write_fault)
2942 requested |= VM_WRITE;
2943
2944 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2945 vma->vm_flags);
2946 return (vma->vm_flags & requested) == requested;
2947 }
2948
2949 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2950 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2951 uint32_t vmid, uint32_t node_id,
2952 uint64_t addr, uint64_t ts, bool write_fault)
2953 {
2954 unsigned long start, last, size;
2955 struct mm_struct *mm = NULL;
2956 struct svm_range_list *svms;
2957 struct svm_range *prange;
2958 struct kfd_process *p;
2959 ktime_t timestamp = ktime_get_boottime();
2960 struct kfd_node *node;
2961 int32_t best_loc;
2962 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2963 bool write_locked = false;
2964 struct vm_area_struct *vma;
2965 bool migration = false;
2966 int r = 0;
2967
2968 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2969 pr_debug("device does not support SVM\n");
2970 return -EFAULT;
2971 }
2972
2973 p = kfd_lookup_process_by_pasid(pasid, NULL);
2974 if (!p) {
2975 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2976 return 0;
2977 }
2978 svms = &p->svms;
2979
2980 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2981
2982 if (atomic_read(&svms->drain_pagefaults)) {
2983 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2984 r = 0;
2985 goto out;
2986 }
2987
2988 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2989 if (!node) {
2990 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2991 vmid);
2992 r = -EFAULT;
2993 goto out;
2994 }
2995
2996 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2997 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2998 r = -EFAULT;
2999 goto out;
3000 }
3001
3002 if (!p->xnack_enabled) {
3003 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3004 r = -EFAULT;
3005 goto out;
3006 }
3007
3008 /* p->lead_thread is available as kfd_process_wq_release flush the work
3009 * before releasing task ref.
3010 */
3011 mm = get_task_mm(p->lead_thread);
3012 if (!mm) {
3013 pr_debug("svms 0x%p failed to get mm\n", svms);
3014 r = 0;
3015 goto out;
3016 }
3017
3018 mmap_read_lock(mm);
3019 retry_write_locked:
3020 mutex_lock(&svms->lock);
3021
3022 /* check if this page fault time stamp is before svms->checkpoint_ts */
3023 if (svms->checkpoint_ts[gpuidx] != 0) {
3024 if (amdgpu_ih_ts_after_or_equal(ts, svms->checkpoint_ts[gpuidx])) {
3025 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3026 r = -EAGAIN;
3027 goto out_unlock_svms;
3028 } else {
3029 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3030 * to zero to avoid following ts wrap around give wrong comparing
3031 */
3032 svms->checkpoint_ts[gpuidx] = 0;
3033 }
3034 }
3035
3036 prange = svm_range_from_addr(svms, addr, NULL);
3037 if (!prange) {
3038 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3039 svms, addr);
3040 if (!write_locked) {
3041 /* Need the write lock to create new range with MMU notifier.
3042 * Also flush pending deferred work to make sure the interval
3043 * tree is up to date before we add a new range
3044 */
3045 mutex_unlock(&svms->lock);
3046 mmap_read_unlock(mm);
3047 mmap_write_lock(mm);
3048 write_locked = true;
3049 goto retry_write_locked;
3050 }
3051 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3052 if (!prange) {
3053 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3054 svms, addr);
3055 mmap_write_downgrade(mm);
3056 r = -EFAULT;
3057 goto out_unlock_svms;
3058 }
3059 }
3060 if (write_locked)
3061 mmap_write_downgrade(mm);
3062
3063 mutex_lock(&prange->migrate_mutex);
3064
3065 if (svm_range_skip_recover(prange)) {
3066 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3067 r = 0;
3068 goto out_unlock_range;
3069 }
3070
3071 /* skip duplicate vm fault on different pages of same range */
3072 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3073 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3074 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3075 svms, prange->start, prange->last);
3076 r = 0;
3077 goto out_unlock_range;
3078 }
3079
3080 /* __do_munmap removed VMA, return success as we are handling stale
3081 * retry fault.
3082 */
3083 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3084 if (!vma) {
3085 pr_debug("address 0x%llx VMA is removed\n", addr);
3086 r = 0;
3087 goto out_unlock_range;
3088 }
3089
3090 if (!svm_fault_allowed(vma, write_fault)) {
3091 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3092 write_fault ? "write" : "read");
3093 r = -EPERM;
3094 goto out_unlock_range;
3095 }
3096
3097 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3098 if (best_loc == -1) {
3099 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3100 svms, prange->start, prange->last);
3101 r = -EACCES;
3102 goto out_unlock_range;
3103 }
3104
3105 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3106 svms, prange->start, prange->last, best_loc,
3107 prange->actual_loc);
3108
3109 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3110 write_fault, timestamp);
3111
3112 /* Align migration range start and size to granularity size */
3113 size = 1UL << prange->granularity;
3114 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3115 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3116 if (prange->actual_loc != 0 || best_loc != 0) {
3117 if (best_loc) {
3118 r = svm_migrate_to_vram(prange, best_loc, start, last,
3119 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3120 if (r) {
3121 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3122 r, addr);
3123 /* Fallback to system memory if migration to
3124 * VRAM failed
3125 */
3126 if (prange->actual_loc && prange->actual_loc != best_loc)
3127 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3128 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3129 else
3130 r = 0;
3131 }
3132 } else {
3133 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3134 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3135 }
3136 if (r) {
3137 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3138 r, svms, start, last);
3139 goto out_migrate_fail;
3140 } else {
3141 migration = true;
3142 }
3143 }
3144
3145 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3146 false, false);
3147 if (r)
3148 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3149 r, svms, start, last);
3150
3151 out_migrate_fail:
3152 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3153 migration);
3154
3155 out_unlock_range:
3156 mutex_unlock(&prange->migrate_mutex);
3157 out_unlock_svms:
3158 mutex_unlock(&svms->lock);
3159 mmap_read_unlock(mm);
3160
3161 if (r != -EAGAIN)
3162 svm_range_count_fault(node, p, gpuidx);
3163
3164 mmput(mm);
3165 out:
3166 kfd_unref_process(p);
3167
3168 if (r == -EAGAIN) {
3169 pr_debug("recover vm fault later\n");
3170 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3171 r = 0;
3172 }
3173 return r;
3174 }
3175
3176 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3177 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3178 {
3179 struct svm_range *prange, *pchild;
3180 uint64_t reserved_size = 0;
3181 uint64_t size;
3182 int r = 0;
3183
3184 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3185
3186 mutex_lock(&p->svms.lock);
3187
3188 list_for_each_entry(prange, &p->svms.list, list) {
3189 svm_range_lock(prange);
3190 list_for_each_entry(pchild, &prange->child_list, child_list) {
3191 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3192 if (xnack_enabled) {
3193 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3194 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3195 } else {
3196 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3197 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3198 if (r)
3199 goto out_unlock;
3200 reserved_size += size;
3201 }
3202 }
3203
3204 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3205 if (xnack_enabled) {
3206 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3207 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3208 } else {
3209 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3210 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3211 if (r)
3212 goto out_unlock;
3213 reserved_size += size;
3214 }
3215 out_unlock:
3216 svm_range_unlock(prange);
3217 if (r)
3218 break;
3219 }
3220
3221 if (r)
3222 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3223 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3224 else
3225 /* Change xnack mode must be inside svms lock, to avoid race with
3226 * svm_range_deferred_list_work unreserve memory in parallel.
3227 */
3228 p->xnack_enabled = xnack_enabled;
3229
3230 mutex_unlock(&p->svms.lock);
3231 return r;
3232 }
3233
svm_range_list_fini(struct kfd_process * p)3234 void svm_range_list_fini(struct kfd_process *p)
3235 {
3236 struct svm_range *prange;
3237 struct svm_range *next;
3238
3239 pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3240 &p->svms);
3241
3242 cancel_delayed_work_sync(&p->svms.restore_work);
3243
3244 /* Ensure list work is finished before process is destroyed */
3245 flush_work(&p->svms.deferred_list_work);
3246
3247 /*
3248 * Ensure no retry fault comes in afterwards, as page fault handler will
3249 * not find kfd process and take mm lock to recover fault.
3250 * stop kfd page fault handing, then wait pending page faults got drained
3251 */
3252 atomic_set(&p->svms.drain_pagefaults, 1);
3253 svm_range_drain_retry_fault(&p->svms);
3254
3255 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3256 svm_range_unlink(prange);
3257 svm_range_remove_notifier(prange);
3258 svm_range_free(prange, true);
3259 }
3260
3261 mutex_destroy(&p->svms.lock);
3262
3263 pr_debug("process pid %d svms 0x%p done\n",
3264 p->lead_thread->pid, &p->svms);
3265 }
3266
svm_range_list_init(struct kfd_process * p)3267 int svm_range_list_init(struct kfd_process *p)
3268 {
3269 struct svm_range_list *svms = &p->svms;
3270 int i;
3271
3272 svms->objects = RB_ROOT_CACHED;
3273 mutex_init(&svms->lock);
3274 INIT_LIST_HEAD(&svms->list);
3275 atomic_set(&svms->evicted_ranges, 0);
3276 atomic_set(&svms->drain_pagefaults, 0);
3277 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3278 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3279 INIT_LIST_HEAD(&svms->deferred_range_list);
3280 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3281 spin_lock_init(&svms->deferred_list_lock);
3282
3283 for (i = 0; i < p->n_pdds; i++)
3284 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3285 bitmap_set(svms->bitmap_supported, i, 1);
3286
3287 /* Value of default granularity cannot exceed 0x1B, the
3288 * number of pages supported by a 4-level paging table
3289 */
3290 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3291 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3292
3293 return 0;
3294 }
3295
3296 /**
3297 * svm_range_check_vm - check if virtual address range mapped already
3298 * @p: current kfd_process
3299 * @start: range start address, in pages
3300 * @last: range last address, in pages
3301 * @bo_s: mapping start address in pages if address range already mapped
3302 * @bo_l: mapping last address in pages if address range already mapped
3303 *
3304 * The purpose is to avoid virtual address ranges already allocated by
3305 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3306 * It looks for each pdd in the kfd_process.
3307 *
3308 * Context: Process context
3309 *
3310 * Return 0 - OK, if the range is not mapped.
3311 * Otherwise error code:
3312 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3313 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3314 * a signal. Release all buffer reservations and return to user-space.
3315 */
3316 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3317 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3318 uint64_t *bo_s, uint64_t *bo_l)
3319 {
3320 struct amdgpu_bo_va_mapping *mapping;
3321 struct interval_tree_node *node;
3322 uint32_t i;
3323 int r;
3324
3325 for (i = 0; i < p->n_pdds; i++) {
3326 struct amdgpu_vm *vm;
3327
3328 if (!p->pdds[i]->drm_priv)
3329 continue;
3330
3331 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3332 r = amdgpu_bo_reserve(vm->root.bo, false);
3333 if (r)
3334 return r;
3335
3336 node = interval_tree_iter_first(&vm->va, start, last);
3337 if (node) {
3338 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3339 start, last);
3340 mapping = container_of((struct rb_node *)node,
3341 struct amdgpu_bo_va_mapping, rb);
3342 if (bo_s && bo_l) {
3343 *bo_s = mapping->start;
3344 *bo_l = mapping->last;
3345 }
3346 amdgpu_bo_unreserve(vm->root.bo);
3347 return -EADDRINUSE;
3348 }
3349 amdgpu_bo_unreserve(vm->root.bo);
3350 }
3351
3352 return 0;
3353 }
3354
3355 /**
3356 * svm_range_is_valid - check if virtual address range is valid
3357 * @p: current kfd_process
3358 * @start: range start address, in pages
3359 * @size: range size, in pages
3360 *
3361 * Valid virtual address range means it belongs to one or more VMAs
3362 *
3363 * Context: Process context
3364 *
3365 * Return:
3366 * 0 - OK, otherwise error code
3367 */
3368 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3369 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3370 {
3371 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3372 struct vm_area_struct *vma;
3373 unsigned long end;
3374 unsigned long start_unchg = start;
3375
3376 start <<= PAGE_SHIFT;
3377 end = start + (size << PAGE_SHIFT);
3378 do {
3379 vma = vma_lookup(p->mm, start);
3380 if (!vma || (vma->vm_flags & device_vma))
3381 return -EFAULT;
3382 start = min(end, vma->vm_end);
3383 } while (start < end);
3384
3385 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3386 NULL);
3387 }
3388
3389 /**
3390 * svm_range_best_prefetch_location - decide the best prefetch location
3391 * @prange: svm range structure
3392 *
3393 * For xnack off:
3394 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3395 * can be CPU or GPU.
3396 *
3397 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3398 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3399 * the best prefetch location is always CPU, because GPU can not have coherent
3400 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3401 *
3402 * For xnack on:
3403 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3404 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3405 *
3406 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3407 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3408 * prefetch location is always CPU.
3409 *
3410 * Context: Process context
3411 *
3412 * Return:
3413 * 0 for CPU or GPU id
3414 */
3415 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3416 svm_range_best_prefetch_location(struct svm_range *prange)
3417 {
3418 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3419 uint32_t best_loc = prange->prefetch_loc;
3420 struct kfd_process_device *pdd;
3421 struct kfd_node *bo_node;
3422 struct kfd_process *p;
3423 uint32_t gpuidx;
3424
3425 p = container_of(prange->svms, struct kfd_process, svms);
3426
3427 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3428 goto out;
3429
3430 bo_node = svm_range_get_node_by_id(prange, best_loc);
3431 if (!bo_node) {
3432 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3433 best_loc = 0;
3434 goto out;
3435 }
3436
3437 if (bo_node->adev->apu_prefer_gtt) {
3438 best_loc = 0;
3439 goto out;
3440 }
3441
3442 if (p->xnack_enabled)
3443 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3444 else
3445 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3446 MAX_GPU_INSTANCE);
3447
3448 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3449 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3450 if (!pdd) {
3451 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3452 continue;
3453 }
3454
3455 if (pdd->dev->adev == bo_node->adev)
3456 continue;
3457
3458 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3459 best_loc = 0;
3460 break;
3461 }
3462 }
3463
3464 out:
3465 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3466 p->xnack_enabled, &p->svms, prange->start, prange->last,
3467 best_loc);
3468
3469 return best_loc;
3470 }
3471
3472 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3473 * @mm: current process mm_struct
3474 * @prange: svm range structure
3475 * @migrated: output, true if migration is triggered
3476 *
3477 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3478 * from ram to vram.
3479 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3480 * from vram to ram.
3481 *
3482 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3483 * and restore work:
3484 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3485 * stops all queues, schedule restore work
3486 * 2. svm_range_restore_work wait for migration is done by
3487 * a. svm_range_validate_vram takes prange->migrate_mutex
3488 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3489 * 3. restore work update mappings of GPU, resume all queues.
3490 *
3491 * Context: Process context
3492 *
3493 * Return:
3494 * 0 - OK, otherwise - error code of migration
3495 */
3496 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3497 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3498 bool *migrated)
3499 {
3500 uint32_t best_loc;
3501 int r = 0;
3502
3503 *migrated = false;
3504 best_loc = svm_range_best_prefetch_location(prange);
3505
3506 /* when best_loc is a gpu node and same as prange->actual_loc
3507 * we still need do migration as prange->actual_loc !=0 does
3508 * not mean all pages in prange are vram. hmm migrate will pick
3509 * up right pages during migration.
3510 */
3511 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3512 (best_loc == 0 && prange->actual_loc == 0))
3513 return 0;
3514
3515 if (!best_loc) {
3516 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3517 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3518 *migrated = !r;
3519 return r;
3520 }
3521
3522 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3523 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3524 *migrated = !r;
3525
3526 return 0;
3527 }
3528
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3529 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3530 {
3531 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3532 * signaled yet and we're under the protection of the fence->lock.
3533 * After the fence is signaled in svm_range_bo_release, we cannot get
3534 * here any more.
3535 *
3536 * Reference is dropped in svm_range_evict_svm_bo_worker.
3537 */
3538 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3539 WRITE_ONCE(fence->svm_bo->evicting, 1);
3540 schedule_work(&fence->svm_bo->eviction_work);
3541 }
3542
3543 return 0;
3544 }
3545
svm_range_evict_svm_bo_worker(struct work_struct * work)3546 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3547 {
3548 struct svm_range_bo *svm_bo;
3549 struct mm_struct *mm;
3550 int r = 0;
3551
3552 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3553
3554 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3555 mm = svm_bo->eviction_fence->mm;
3556 } else {
3557 svm_range_bo_unref(svm_bo);
3558 return;
3559 }
3560
3561 mmap_read_lock(mm);
3562 spin_lock(&svm_bo->list_lock);
3563 while (!list_empty(&svm_bo->range_list) && !r) {
3564 struct svm_range *prange =
3565 list_first_entry(&svm_bo->range_list,
3566 struct svm_range, svm_bo_list);
3567 int retries = 3;
3568
3569 list_del_init(&prange->svm_bo_list);
3570 spin_unlock(&svm_bo->list_lock);
3571
3572 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3573 prange->start, prange->last);
3574
3575 mutex_lock(&prange->migrate_mutex);
3576 do {
3577 /* migrate all vram pages in this prange to sys ram
3578 * after that prange->actual_loc should be zero
3579 */
3580 r = svm_migrate_vram_to_ram(prange, mm,
3581 prange->start, prange->last,
3582 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3583 } while (!r && prange->actual_loc && --retries);
3584
3585 if (!r && prange->actual_loc)
3586 pr_info_once("Migration failed during eviction");
3587
3588 if (!prange->actual_loc) {
3589 mutex_lock(&prange->lock);
3590 prange->svm_bo = NULL;
3591 mutex_unlock(&prange->lock);
3592 }
3593 mutex_unlock(&prange->migrate_mutex);
3594
3595 spin_lock(&svm_bo->list_lock);
3596 }
3597 spin_unlock(&svm_bo->list_lock);
3598 mmap_read_unlock(mm);
3599 mmput(mm);
3600
3601 dma_fence_signal(&svm_bo->eviction_fence->base);
3602
3603 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3604 * has been called in svm_migrate_vram_to_ram
3605 */
3606 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3607 svm_range_bo_unref(svm_bo);
3608 }
3609
3610 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3611 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3612 uint64_t start, uint64_t size, uint32_t nattr,
3613 struct kfd_ioctl_svm_attribute *attrs)
3614 {
3615 struct amdkfd_process_info *process_info = p->kgd_process_info;
3616 struct list_head update_list;
3617 struct list_head insert_list;
3618 struct list_head remove_list;
3619 struct list_head remap_list;
3620 struct svm_range_list *svms;
3621 struct svm_range *prange;
3622 struct svm_range *next;
3623 bool update_mapping = false;
3624 bool flush_tlb;
3625 int r, ret = 0;
3626
3627 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3628 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3629
3630 r = svm_range_check_attr(p, nattr, attrs);
3631 if (r)
3632 return r;
3633
3634 svms = &p->svms;
3635
3636 mutex_lock(&process_info->lock);
3637
3638 svm_range_list_lock_and_flush_work(svms, mm);
3639
3640 r = svm_range_is_valid(p, start, size);
3641 if (r) {
3642 pr_debug("invalid range r=%d\n", r);
3643 mmap_write_unlock(mm);
3644 goto out;
3645 }
3646
3647 mutex_lock(&svms->lock);
3648
3649 /* Add new range and split existing ranges as needed */
3650 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3651 &insert_list, &remove_list, &remap_list);
3652 if (r) {
3653 mutex_unlock(&svms->lock);
3654 mmap_write_unlock(mm);
3655 goto out;
3656 }
3657 /* Apply changes as a transaction */
3658 list_for_each_entry_safe(prange, next, &insert_list, list) {
3659 svm_range_add_to_svms(prange);
3660 svm_range_add_notifier_locked(mm, prange);
3661 }
3662 list_for_each_entry(prange, &update_list, update_list) {
3663 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3664 /* TODO: unmap ranges from GPU that lost access */
3665 }
3666 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3667 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3668 prange->svms, prange, prange->start,
3669 prange->last);
3670 svm_range_unlink(prange);
3671 svm_range_remove_notifier(prange);
3672 svm_range_free(prange, false);
3673 }
3674
3675 mmap_write_downgrade(mm);
3676 /* Trigger migrations and revalidate and map to GPUs as needed. If
3677 * this fails we may be left with partially completed actions. There
3678 * is no clean way of rolling back to the previous state in such a
3679 * case because the rollback wouldn't be guaranteed to work either.
3680 */
3681 list_for_each_entry(prange, &update_list, update_list) {
3682 bool migrated;
3683
3684 mutex_lock(&prange->migrate_mutex);
3685
3686 r = svm_range_trigger_migration(mm, prange, &migrated);
3687 if (r)
3688 goto out_unlock_range;
3689
3690 if (migrated && (!p->xnack_enabled ||
3691 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3692 prange->mapped_to_gpu) {
3693 pr_debug("restore_work will update mappings of GPUs\n");
3694 mutex_unlock(&prange->migrate_mutex);
3695 continue;
3696 }
3697
3698 if (!migrated && !update_mapping) {
3699 mutex_unlock(&prange->migrate_mutex);
3700 continue;
3701 }
3702
3703 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3704
3705 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3706 MAX_GPU_INSTANCE, true, true, flush_tlb);
3707 if (r)
3708 pr_debug("failed %d to map svm range\n", r);
3709
3710 out_unlock_range:
3711 mutex_unlock(&prange->migrate_mutex);
3712 if (r)
3713 ret = r;
3714 }
3715
3716 list_for_each_entry(prange, &remap_list, update_list) {
3717 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3718 prange, prange->start, prange->last);
3719 mutex_lock(&prange->migrate_mutex);
3720 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3721 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3722 if (r)
3723 pr_debug("failed %d on remap svm range\n", r);
3724 mutex_unlock(&prange->migrate_mutex);
3725 if (r)
3726 ret = r;
3727 }
3728
3729 dynamic_svm_range_dump(svms);
3730
3731 mutex_unlock(&svms->lock);
3732 mmap_read_unlock(mm);
3733 out:
3734 mutex_unlock(&process_info->lock);
3735
3736 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3737 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3738
3739 return ret ? ret : r;
3740 }
3741
3742 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3743 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3744 uint64_t start, uint64_t size, uint32_t nattr,
3745 struct kfd_ioctl_svm_attribute *attrs)
3746 {
3747 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3748 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3749 bool get_preferred_loc = false;
3750 bool get_prefetch_loc = false;
3751 bool get_granularity = false;
3752 bool get_accessible = false;
3753 bool get_flags = false;
3754 uint64_t last = start + size - 1UL;
3755 uint8_t granularity = 0xff;
3756 struct interval_tree_node *node;
3757 struct svm_range_list *svms;
3758 struct svm_range *prange;
3759 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3760 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3761 uint32_t flags_and = 0xffffffff;
3762 uint32_t flags_or = 0;
3763 int gpuidx;
3764 uint32_t i;
3765 int r = 0;
3766
3767 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3768 start + size - 1, nattr);
3769
3770 /* Flush pending deferred work to avoid racing with deferred actions from
3771 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3772 * can still race with get_attr because we don't hold the mmap lock. But that
3773 * would be a race condition in the application anyway, and undefined
3774 * behaviour is acceptable in that case.
3775 */
3776 flush_work(&p->svms.deferred_list_work);
3777
3778 mmap_read_lock(mm);
3779 r = svm_range_is_valid(p, start, size);
3780 mmap_read_unlock(mm);
3781 if (r) {
3782 pr_debug("invalid range r=%d\n", r);
3783 return r;
3784 }
3785
3786 for (i = 0; i < nattr; i++) {
3787 switch (attrs[i].type) {
3788 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3789 get_preferred_loc = true;
3790 break;
3791 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3792 get_prefetch_loc = true;
3793 break;
3794 case KFD_IOCTL_SVM_ATTR_ACCESS:
3795 get_accessible = true;
3796 break;
3797 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3798 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3799 get_flags = true;
3800 break;
3801 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3802 get_granularity = true;
3803 break;
3804 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3805 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3806 fallthrough;
3807 default:
3808 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3809 return -EINVAL;
3810 }
3811 }
3812
3813 svms = &p->svms;
3814
3815 mutex_lock(&svms->lock);
3816
3817 node = interval_tree_iter_first(&svms->objects, start, last);
3818 if (!node) {
3819 pr_debug("range attrs not found return default values\n");
3820 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3821 &granularity, &flags_and);
3822 flags_or = flags_and;
3823 if (p->xnack_enabled)
3824 bitmap_copy(bitmap_access, svms->bitmap_supported,
3825 MAX_GPU_INSTANCE);
3826 else
3827 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3828 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3829 goto fill_values;
3830 }
3831 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3832 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3833
3834 while (node) {
3835 struct interval_tree_node *next;
3836
3837 prange = container_of(node, struct svm_range, it_node);
3838 next = interval_tree_iter_next(node, start, last);
3839
3840 if (get_preferred_loc) {
3841 if (prange->preferred_loc ==
3842 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3843 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3844 location != prange->preferred_loc)) {
3845 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3846 get_preferred_loc = false;
3847 } else {
3848 location = prange->preferred_loc;
3849 }
3850 }
3851 if (get_prefetch_loc) {
3852 if (prange->prefetch_loc ==
3853 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3854 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3855 prefetch_loc != prange->prefetch_loc)) {
3856 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3857 get_prefetch_loc = false;
3858 } else {
3859 prefetch_loc = prange->prefetch_loc;
3860 }
3861 }
3862 if (get_accessible) {
3863 bitmap_and(bitmap_access, bitmap_access,
3864 prange->bitmap_access, MAX_GPU_INSTANCE);
3865 bitmap_and(bitmap_aip, bitmap_aip,
3866 prange->bitmap_aip, MAX_GPU_INSTANCE);
3867 }
3868 if (get_flags) {
3869 flags_and &= prange->flags;
3870 flags_or |= prange->flags;
3871 }
3872
3873 if (get_granularity && prange->granularity < granularity)
3874 granularity = prange->granularity;
3875
3876 node = next;
3877 }
3878 fill_values:
3879 mutex_unlock(&svms->lock);
3880
3881 for (i = 0; i < nattr; i++) {
3882 switch (attrs[i].type) {
3883 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3884 attrs[i].value = location;
3885 break;
3886 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3887 attrs[i].value = prefetch_loc;
3888 break;
3889 case KFD_IOCTL_SVM_ATTR_ACCESS:
3890 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3891 attrs[i].value);
3892 if (gpuidx < 0) {
3893 pr_debug("invalid gpuid %x\n", attrs[i].value);
3894 return -EINVAL;
3895 }
3896 if (test_bit(gpuidx, bitmap_access))
3897 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3898 else if (test_bit(gpuidx, bitmap_aip))
3899 attrs[i].type =
3900 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3901 else
3902 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3903 break;
3904 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3905 attrs[i].value = flags_and;
3906 break;
3907 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3908 attrs[i].value = ~flags_or;
3909 break;
3910 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3911 attrs[i].value = (uint32_t)granularity;
3912 break;
3913 }
3914 }
3915
3916 return 0;
3917 }
3918
kfd_criu_resume_svm(struct kfd_process * p)3919 int kfd_criu_resume_svm(struct kfd_process *p)
3920 {
3921 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3922 int nattr_common = 4, nattr_accessibility = 1;
3923 struct criu_svm_metadata *criu_svm_md = NULL;
3924 struct svm_range_list *svms = &p->svms;
3925 struct criu_svm_metadata *next = NULL;
3926 uint32_t set_flags = 0xffffffff;
3927 int i, j, num_attrs, ret = 0;
3928 uint64_t set_attr_size;
3929 struct mm_struct *mm;
3930
3931 if (list_empty(&svms->criu_svm_metadata_list)) {
3932 pr_debug("No SVM data from CRIU restore stage 2\n");
3933 return ret;
3934 }
3935
3936 mm = get_task_mm(p->lead_thread);
3937 if (!mm) {
3938 pr_err("failed to get mm for the target process\n");
3939 return -ESRCH;
3940 }
3941
3942 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3943
3944 i = j = 0;
3945 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3946 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3947 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3948
3949 for (j = 0; j < num_attrs; j++) {
3950 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3951 i, j, criu_svm_md->data.attrs[j].type,
3952 i, j, criu_svm_md->data.attrs[j].value);
3953 switch (criu_svm_md->data.attrs[j].type) {
3954 /* During Checkpoint operation, the query for
3955 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3956 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3957 * not used by the range which was checkpointed. Care
3958 * must be taken to not restore with an invalid value
3959 * otherwise the gpuidx value will be invalid and
3960 * set_attr would eventually fail so just replace those
3961 * with another dummy attribute such as
3962 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3963 */
3964 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3965 if (criu_svm_md->data.attrs[j].value ==
3966 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3967 criu_svm_md->data.attrs[j].type =
3968 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3969 criu_svm_md->data.attrs[j].value = 0;
3970 }
3971 break;
3972 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3973 set_flags = criu_svm_md->data.attrs[j].value;
3974 break;
3975 default:
3976 break;
3977 }
3978 }
3979
3980 /* CLR_FLAGS is not available via get_attr during checkpoint but
3981 * it needs to be inserted before restoring the ranges so
3982 * allocate extra space for it before calling set_attr
3983 */
3984 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3985 (num_attrs + 1);
3986 set_attr_new = krealloc(set_attr, set_attr_size,
3987 GFP_KERNEL);
3988 if (!set_attr_new) {
3989 ret = -ENOMEM;
3990 goto exit;
3991 }
3992 set_attr = set_attr_new;
3993
3994 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3995 sizeof(struct kfd_ioctl_svm_attribute));
3996 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3997 set_attr[num_attrs].value = ~set_flags;
3998
3999 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4000 criu_svm_md->data.size, num_attrs + 1,
4001 set_attr);
4002 if (ret) {
4003 pr_err("CRIU: failed to set range attributes\n");
4004 goto exit;
4005 }
4006
4007 i++;
4008 }
4009 exit:
4010 kfree(set_attr);
4011 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4012 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4013 criu_svm_md->data.start_addr);
4014 kfree(criu_svm_md);
4015 }
4016
4017 mmput(mm);
4018 return ret;
4019
4020 }
4021
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4022 int kfd_criu_restore_svm(struct kfd_process *p,
4023 uint8_t __user *user_priv_ptr,
4024 uint64_t *priv_data_offset,
4025 uint64_t max_priv_data_size)
4026 {
4027 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4028 int nattr_common = 4, nattr_accessibility = 1;
4029 struct criu_svm_metadata *criu_svm_md = NULL;
4030 struct svm_range_list *svms = &p->svms;
4031 uint32_t num_devices;
4032 int ret = 0;
4033
4034 num_devices = p->n_pdds;
4035 /* Handle one SVM range object at a time, also the number of gpus are
4036 * assumed to be same on the restore node, checking must be done while
4037 * evaluating the topology earlier
4038 */
4039
4040 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4041 (nattr_common + nattr_accessibility * num_devices);
4042 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4043
4044 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4045 svm_attrs_size;
4046
4047 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4048 if (!criu_svm_md) {
4049 pr_err("failed to allocate memory to store svm metadata\n");
4050 return -ENOMEM;
4051 }
4052 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4053 ret = -EINVAL;
4054 goto exit;
4055 }
4056
4057 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4058 svm_priv_data_size);
4059 if (ret) {
4060 ret = -EFAULT;
4061 goto exit;
4062 }
4063 *priv_data_offset += svm_priv_data_size;
4064
4065 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4066
4067 return 0;
4068
4069
4070 exit:
4071 kfree(criu_svm_md);
4072 return ret;
4073 }
4074
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4075 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4076 uint64_t *svm_priv_data_size)
4077 {
4078 uint64_t total_size, accessibility_size, common_attr_size;
4079 int nattr_common = 4, nattr_accessibility = 1;
4080 int num_devices = p->n_pdds;
4081 struct svm_range_list *svms;
4082 struct svm_range *prange;
4083 uint32_t count = 0;
4084
4085 *svm_priv_data_size = 0;
4086
4087 svms = &p->svms;
4088
4089 mutex_lock(&svms->lock);
4090 list_for_each_entry(prange, &svms->list, list) {
4091 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4092 prange, prange->start, prange->npages,
4093 prange->start + prange->npages - 1);
4094 count++;
4095 }
4096 mutex_unlock(&svms->lock);
4097
4098 *num_svm_ranges = count;
4099 /* Only the accessbility attributes need to be queried for all the gpus
4100 * individually, remaining ones are spanned across the entire process
4101 * regardless of the various gpu nodes. Of the remaining attributes,
4102 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4103 *
4104 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4105 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4106 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4107 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4108 *
4109 * ** ACCESSBILITY ATTRIBUTES **
4110 * (Considered as one, type is altered during query, value is gpuid)
4111 * KFD_IOCTL_SVM_ATTR_ACCESS
4112 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4113 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4114 */
4115 if (*num_svm_ranges > 0) {
4116 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4117 nattr_common;
4118 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4119 nattr_accessibility * num_devices;
4120
4121 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4122 common_attr_size + accessibility_size;
4123
4124 *svm_priv_data_size = *num_svm_ranges * total_size;
4125 }
4126
4127 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4128 *svm_priv_data_size);
4129 }
4130
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4131 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4132 uint8_t __user *user_priv_data,
4133 uint64_t *priv_data_offset)
4134 {
4135 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4136 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4137 uint64_t svm_priv_data_size, query_attr_size = 0;
4138 int index, nattr_common = 4, ret = 0;
4139 struct svm_range_list *svms;
4140 int num_devices = p->n_pdds;
4141 struct svm_range *prange;
4142 struct mm_struct *mm;
4143
4144 svms = &p->svms;
4145
4146 mm = get_task_mm(p->lead_thread);
4147 if (!mm) {
4148 pr_err("failed to get mm for the target process\n");
4149 return -ESRCH;
4150 }
4151
4152 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4153 (nattr_common + num_devices);
4154
4155 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4156 if (!query_attr) {
4157 ret = -ENOMEM;
4158 goto exit;
4159 }
4160
4161 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4162 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4163 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4164 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4165
4166 for (index = 0; index < num_devices; index++) {
4167 struct kfd_process_device *pdd = p->pdds[index];
4168
4169 query_attr[index + nattr_common].type =
4170 KFD_IOCTL_SVM_ATTR_ACCESS;
4171 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4172 }
4173
4174 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4175
4176 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4177 if (!svm_priv) {
4178 ret = -ENOMEM;
4179 goto exit_query;
4180 }
4181
4182 index = 0;
4183 list_for_each_entry(prange, &svms->list, list) {
4184
4185 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4186 svm_priv->start_addr = prange->start;
4187 svm_priv->size = prange->npages;
4188 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4189 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4190 prange, prange->start, prange->npages,
4191 prange->start + prange->npages - 1,
4192 prange->npages * PAGE_SIZE);
4193
4194 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4195 svm_priv->size,
4196 (nattr_common + num_devices),
4197 svm_priv->attrs);
4198 if (ret) {
4199 pr_err("CRIU: failed to obtain range attributes\n");
4200 goto exit_priv;
4201 }
4202
4203 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4204 svm_priv_data_size)) {
4205 pr_err("Failed to copy svm priv to user\n");
4206 ret = -EFAULT;
4207 goto exit_priv;
4208 }
4209
4210 *priv_data_offset += svm_priv_data_size;
4211
4212 }
4213
4214
4215 exit_priv:
4216 kfree(svm_priv);
4217 exit_query:
4218 kfree(query_attr);
4219 exit:
4220 mmput(mm);
4221 return ret;
4222 }
4223
4224 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4225 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4226 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4227 {
4228 struct mm_struct *mm = current->mm;
4229 int r;
4230
4231 start >>= PAGE_SHIFT;
4232 size >>= PAGE_SHIFT;
4233
4234 switch (op) {
4235 case KFD_IOCTL_SVM_OP_SET_ATTR:
4236 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4237 break;
4238 case KFD_IOCTL_SVM_OP_GET_ATTR:
4239 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4240 break;
4241 default:
4242 r = EINVAL;
4243 break;
4244 }
4245
4246 return r;
4247 }
4248