1 //===- FunctionInfo.h -------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H 10 #define LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H 11 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/DebugInfo/GSYM/ExtractRanges.h" 14 #include "llvm/DebugInfo/GSYM/InlineInfo.h" 15 #include "llvm/DebugInfo/GSYM/LineTable.h" 16 #include "llvm/DebugInfo/GSYM/LookupResult.h" 17 #include "llvm/DebugInfo/GSYM/StringTable.h" 18 #include <cstdint> 19 20 namespace llvm { 21 class raw_ostream; 22 23 namespace gsym { 24 25 class GsymReader; 26 /// Function information in GSYM files encodes information for one contiguous 27 /// address range. If a function has discontiguous address ranges, they will 28 /// need to be encoded using multiple FunctionInfo objects. 29 /// 30 /// ENCODING 31 /// 32 /// The function information gets the function start address as an argument 33 /// to the FunctionInfo::decode(...) function. This information is calculated 34 /// from the GSYM header and an address offset from the GSYM address offsets 35 /// table. The encoded FunctionInfo information must be aligned to a 4 byte 36 /// boundary. 37 /// 38 /// The encoded data for a FunctionInfo starts with fixed data that all 39 /// function info objects have: 40 /// 41 /// ENCODING NAME DESCRIPTION 42 /// ========= =========== ==================================================== 43 /// uint32_t Size The size in bytes of this function. 44 /// uint32_t Name The string table offset of the function name. 45 /// 46 /// The optional data in a FunctionInfo object follows this fixed information 47 /// and consists of a stream of tuples that consist of: 48 /// 49 /// ENCODING NAME DESCRIPTION 50 /// ========= =========== ==================================================== 51 /// uint32_t InfoType An "InfoType" enumeration that describes the type 52 /// of optional data that is encoded. 53 /// uint32_t InfoLength The size in bytes of the encoded data that 54 /// immediately follows this length if this value is 55 /// greater than zero. 56 /// uint8_t[] InfoData Encoded bytes that represent the data for the 57 /// "InfoType". These bytes are only present if 58 /// "InfoLength" is greater than zero. 59 /// 60 /// The "InfoType" is an enumeration: 61 /// 62 /// enum InfoType { 63 /// EndOfList = 0u, 64 /// LineTableInfo = 1u, 65 /// InlineInfo = 2u 66 /// }; 67 /// 68 /// This stream of tuples is terminated by a "InfoType" whose value is 69 /// InfoType::EndOfList and a zero for "InfoLength". This signifies the end of 70 /// the optional information list. This format allows us to add new optional 71 /// information data to a FunctionInfo object over time and allows older 72 /// clients to still parse the format and skip over any data that they don't 73 /// understand or want to parse. 74 /// 75 /// So the function information encoding essientially looks like: 76 /// 77 /// struct { 78 /// uint32_t Size; 79 /// uint32_t Name; 80 /// struct { 81 /// uint32_t InfoType; 82 /// uint32_t InfoLength; 83 /// uint8_t InfoData[InfoLength]; 84 /// }[N]; 85 /// } 86 /// 87 /// Where "N" is the number of tuples. 88 struct FunctionInfo { 89 AddressRange Range; 90 uint32_t Name; ///< String table offset in the string table. 91 std::optional<LineTable> OptLineTable; 92 std::optional<InlineInfo> Inline; 93 /// If we encode a FunctionInfo during segmenting so we know its size, we can 94 /// cache that encoding here so we don't need to re-encode it when saving the 95 /// GSYM file. 96 SmallString<32> EncodingCache; 97 98 FunctionInfo(uint64_t Addr = 0, uint64_t Size = 0, uint32_t N = 0) 99 : Range(Addr, Addr + Size), Name(N) {} 100 101 /// Query if a FunctionInfo has rich debug info. 102 /// 103 /// \returns A bool that indicates if this object has something else than 104 /// range and name. When converting information from a symbol table and from 105 /// debug info, we might end up with multiple FunctionInfo objects for the 106 /// same range and we need to be able to tell which one is the better object 107 /// to use. 108 bool hasRichInfo() const { return OptLineTable || Inline; } 109 110 /// Query if a FunctionInfo object is valid. 111 /// 112 /// Address and size can be zero and there can be no line entries for a 113 /// symbol so the only indication this entry is valid is if the name is 114 /// not zero. This can happen when extracting information from symbol 115 /// tables that do not encode symbol sizes. In that case only the 116 /// address and name will be filled in. 117 /// 118 /// \returns A boolean indicating if this FunctionInfo is valid. 119 bool isValid() const { 120 return Name != 0; 121 } 122 123 /// Decode an object from a binary data stream. 124 /// 125 /// \param Data The binary stream to read the data from. This object must 126 /// have the data for the object starting at offset zero. The data 127 /// can contain more data than needed. 128 /// 129 /// \param BaseAddr The FunctionInfo's start address and will be used as the 130 /// base address when decoding any contained information like the line table 131 /// and the inline info. 132 /// 133 /// \returns An FunctionInfo or an error describing the issue that was 134 /// encountered during decoding. 135 static llvm::Expected<FunctionInfo> decode(DataExtractor &Data, 136 uint64_t BaseAddr); 137 138 /// Encode this object into FileWriter stream. 139 /// 140 /// \param O The binary stream to write the data to at the current file 141 /// position. 142 /// 143 /// \returns An error object that indicates failure or the offset of the 144 /// function info that was successfully written into the stream. 145 llvm::Expected<uint64_t> encode(FileWriter &O) const; 146 147 /// Encode this function info into the internal byte cache and return the size 148 /// in bytes. 149 /// 150 /// When segmenting GSYM files we need to know how big each FunctionInfo will 151 /// encode into so we can generate segments of the right size. We don't want 152 /// to have to encode a FunctionInfo twice, so we can cache the encoded bytes 153 /// and re-use then when calling FunctionInfo::encode(...). 154 /// 155 /// \returns The size in bytes of the FunctionInfo if it were to be encoded 156 /// into a byte stream. 157 uint64_t cacheEncoding(); 158 159 /// Lookup an address within a FunctionInfo object's data stream. 160 /// 161 /// Instead of decoding an entire FunctionInfo object when doing lookups, 162 /// we can decode only the information we need from the FunctionInfo's data 163 /// for the specific address. The lookup result information is returned as 164 /// a LookupResult. 165 /// 166 /// \param Data The binary stream to read the data from. This object must 167 /// have the data for the object starting at offset zero. The data 168 /// can contain more data than needed. 169 /// 170 /// \param GR The GSYM reader that contains the string and file table that 171 /// will be used to fill in information in the returned result. 172 /// 173 /// \param FuncAddr The function start address decoded from the GsymReader. 174 /// 175 /// \param Addr The address to lookup. 176 /// 177 /// \returns An LookupResult or an error describing the issue that was 178 /// encountered during decoding. An error should only be returned if the 179 /// address is not contained in the FunctionInfo or if the data is corrupted. 180 static llvm::Expected<LookupResult> lookup(DataExtractor &Data, 181 const GsymReader &GR, 182 uint64_t FuncAddr, 183 uint64_t Addr); 184 185 uint64_t startAddress() const { return Range.start(); } 186 uint64_t endAddress() const { return Range.end(); } 187 uint64_t size() const { return Range.size(); } 188 189 void clear() { 190 Range = {0, 0}; 191 Name = 0; 192 OptLineTable = std::nullopt; 193 Inline = std::nullopt; 194 } 195 }; 196 197 inline bool operator==(const FunctionInfo &LHS, const FunctionInfo &RHS) { 198 return LHS.Range == RHS.Range && LHS.Name == RHS.Name && 199 LHS.OptLineTable == RHS.OptLineTable && LHS.Inline == RHS.Inline; 200 } 201 inline bool operator!=(const FunctionInfo &LHS, const FunctionInfo &RHS) { 202 return !(LHS == RHS); 203 } 204 /// This sorting will order things consistently by address range first, but 205 /// then followed by increasing levels of debug info like inline information 206 /// and line tables. We might end up with a FunctionInfo from debug info that 207 /// will have the same range as one from the symbol table, but we want to 208 /// quickly be able to sort and use the best version when creating the final 209 /// GSYM file. This function compares the inline information as we have seen 210 /// cases where LTO can generate a wide array of differing inline information, 211 /// mostly due to messing up the address ranges for inlined functions, so the 212 /// inline information with the most entries will appeear last. If the inline 213 /// information match, either by both function infos not having any or both 214 /// being exactly the same, we will then compare line tables. Comparing line 215 /// tables allows the entry with the most line entries to appear last. This 216 /// ensures we are able to save the FunctionInfo with the most debug info into 217 /// the GSYM file. 218 inline bool operator<(const FunctionInfo &LHS, const FunctionInfo &RHS) { 219 // First sort by address range 220 if (LHS.Range != RHS.Range) 221 return LHS.Range < RHS.Range; 222 if (LHS.Inline == RHS.Inline) 223 return LHS.OptLineTable < RHS.OptLineTable; 224 return LHS.Inline < RHS.Inline; 225 } 226 227 raw_ostream &operator<<(raw_ostream &OS, const FunctionInfo &R); 228 229 } // namespace gsym 230 } // namespace llvm 231 232 #endif // LLVM_DEBUGINFO_GSYM_FUNCTIONINFO_H 233