1 /*
2 * Copyright 2023 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "priv.h"
23
24 #include <core/pci.h>
25 #include <subdev/timer.h>
26 #include <subdev/vfn.h>
27 #include <engine/fifo/chan.h>
28 #include <engine/sec2.h>
29 #include <nvif/log.h>
30
31 #include <nvfw/fw.h>
32
33 #include <nvrm/nvtypes.h>
34 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0000.h>
35 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0005.h>
36 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0080.h>
37 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080.h>
38 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080event.h>
39 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h>
40 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h>
41 #include <nvrm/535.113.01/common/sdk/nvidia/inc/nvos.h>
42 #include <nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h>
43 #include <nvrm/535.113.01/common/uproc/os/common/include/libos_init_args.h>
44 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_sr_meta.h>
45 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_wpr_meta.h>
46 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmRiscvUcode.h>
47 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmgspseq.h>
48 #include <nvrm/535.113.01/nvidia/generated/g_allclasses.h>
49 #include <nvrm/535.113.01/nvidia/generated/g_os_nvoc.h>
50 #include <nvrm/535.113.01/nvidia/generated/g_rpc-structures.h>
51 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_fw_heap.h>
52 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_init_args.h>
53 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_static_config.h>
54 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/intr/engine_idx.h>
55 #include <nvrm/535.113.01/nvidia/kernel/inc/vgpu/rpc_global_enums.h>
56
57 #include <linux/acpi.h>
58 #include <linux/ctype.h>
59 #include <linux/parser.h>
60
61 extern struct dentry *nouveau_debugfs_root;
62
63 #define GSP_MSG_MIN_SIZE GSP_PAGE_SIZE
64 #define GSP_MSG_MAX_SIZE GSP_PAGE_MIN_SIZE * 16
65
66 struct r535_gsp_msg {
67 u8 auth_tag_buffer[16];
68 u8 aad_buffer[16];
69 u32 checksum;
70 u32 sequence;
71 u32 elem_count;
72 u32 pad;
73 u8 data[];
74 };
75
76 #define GSP_MSG_HDR_SIZE offsetof(struct r535_gsp_msg, data)
77
78 static int
r535_rpc_status_to_errno(uint32_t rpc_status)79 r535_rpc_status_to_errno(uint32_t rpc_status)
80 {
81 switch (rpc_status) {
82 case 0x55: /* NV_ERR_NOT_READY */
83 case 0x66: /* NV_ERR_TIMEOUT_RETRY */
84 return -EBUSY;
85 case 0x51: /* NV_ERR_NO_MEMORY */
86 return -ENOMEM;
87 default:
88 return -EINVAL;
89 }
90 }
91
92 static void *
r535_gsp_msgq_wait(struct nvkm_gsp * gsp,u32 repc,u32 * prepc,int * ptime)93 r535_gsp_msgq_wait(struct nvkm_gsp *gsp, u32 repc, u32 *prepc, int *ptime)
94 {
95 struct r535_gsp_msg *mqe;
96 u32 size, rptr = *gsp->msgq.rptr;
97 int used;
98 u8 *msg;
99 u32 len;
100
101 size = DIV_ROUND_UP(GSP_MSG_HDR_SIZE + repc, GSP_PAGE_SIZE);
102 if (WARN_ON(!size || size >= gsp->msgq.cnt))
103 return ERR_PTR(-EINVAL);
104
105 do {
106 u32 wptr = *gsp->msgq.wptr;
107
108 used = wptr + gsp->msgq.cnt - rptr;
109 if (used >= gsp->msgq.cnt)
110 used -= gsp->msgq.cnt;
111 if (used >= size)
112 break;
113
114 usleep_range(1, 2);
115 } while (--(*ptime));
116
117 if (WARN_ON(!*ptime))
118 return ERR_PTR(-ETIMEDOUT);
119
120 mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + rptr * 0x1000);
121
122 if (prepc) {
123 *prepc = (used * GSP_PAGE_SIZE) - sizeof(*mqe);
124 return mqe->data;
125 }
126
127 size = ALIGN(repc + GSP_MSG_HDR_SIZE, GSP_PAGE_SIZE);
128
129 msg = kvmalloc(repc, GFP_KERNEL);
130 if (!msg)
131 return ERR_PTR(-ENOMEM);
132
133 len = ((gsp->msgq.cnt - rptr) * GSP_PAGE_SIZE) - sizeof(*mqe);
134 len = min_t(u32, repc, len);
135 memcpy(msg, mqe->data, len);
136
137 repc -= len;
138
139 if (repc) {
140 mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + 0 * 0x1000);
141 memcpy(msg + len, mqe, repc);
142 }
143
144 rptr = (rptr + DIV_ROUND_UP(size, GSP_PAGE_SIZE)) % gsp->msgq.cnt;
145
146 mb();
147 (*gsp->msgq.rptr) = rptr;
148 return msg;
149 }
150
151 static void *
r535_gsp_msgq_recv(struct nvkm_gsp * gsp,u32 repc,int * ptime)152 r535_gsp_msgq_recv(struct nvkm_gsp *gsp, u32 repc, int *ptime)
153 {
154 return r535_gsp_msgq_wait(gsp, repc, NULL, ptime);
155 }
156
157 static int
r535_gsp_cmdq_push(struct nvkm_gsp * gsp,void * argv)158 r535_gsp_cmdq_push(struct nvkm_gsp *gsp, void *argv)
159 {
160 struct r535_gsp_msg *cmd = container_of(argv, typeof(*cmd), data);
161 struct r535_gsp_msg *cqe;
162 u32 argc = cmd->checksum;
163 u64 *ptr = (void *)cmd;
164 u64 *end;
165 u64 csum = 0;
166 int free, time = 1000000;
167 u32 wptr, size, step;
168 u32 off = 0;
169
170 argc = ALIGN(GSP_MSG_HDR_SIZE + argc, GSP_PAGE_SIZE);
171
172 end = (u64 *)((char *)ptr + argc);
173 cmd->pad = 0;
174 cmd->checksum = 0;
175 cmd->sequence = gsp->cmdq.seq++;
176 cmd->elem_count = DIV_ROUND_UP(argc, 0x1000);
177
178 while (ptr < end)
179 csum ^= *ptr++;
180
181 cmd->checksum = upper_32_bits(csum) ^ lower_32_bits(csum);
182
183 wptr = *gsp->cmdq.wptr;
184 do {
185 do {
186 free = *gsp->cmdq.rptr + gsp->cmdq.cnt - wptr - 1;
187 if (free >= gsp->cmdq.cnt)
188 free -= gsp->cmdq.cnt;
189 if (free >= 1)
190 break;
191
192 usleep_range(1, 2);
193 } while(--time);
194
195 if (WARN_ON(!time)) {
196 kvfree(cmd);
197 return -ETIMEDOUT;
198 }
199
200 cqe = (void *)((u8 *)gsp->shm.cmdq.ptr + 0x1000 + wptr * 0x1000);
201 step = min_t(u32, free, (gsp->cmdq.cnt - wptr));
202 size = min_t(u32, argc, step * GSP_PAGE_SIZE);
203
204 memcpy(cqe, (u8 *)cmd + off, size);
205
206 wptr += DIV_ROUND_UP(size, 0x1000);
207 if (wptr == gsp->cmdq.cnt)
208 wptr = 0;
209
210 off += size;
211 argc -= size;
212 } while(argc);
213
214 nvkm_trace(&gsp->subdev, "cmdq: wptr %d\n", wptr);
215 wmb();
216 (*gsp->cmdq.wptr) = wptr;
217 mb();
218
219 nvkm_falcon_wr32(&gsp->falcon, 0xc00, 0x00000000);
220
221 kvfree(cmd);
222 return 0;
223 }
224
225 static void *
r535_gsp_cmdq_get(struct nvkm_gsp * gsp,u32 argc)226 r535_gsp_cmdq_get(struct nvkm_gsp *gsp, u32 argc)
227 {
228 struct r535_gsp_msg *cmd;
229 u32 size = GSP_MSG_HDR_SIZE + argc;
230
231 size = ALIGN(size, GSP_MSG_MIN_SIZE);
232 cmd = kvzalloc(size, GFP_KERNEL);
233 if (!cmd)
234 return ERR_PTR(-ENOMEM);
235
236 cmd->checksum = argc;
237 return cmd->data;
238 }
239
240 struct nvfw_gsp_rpc {
241 u32 header_version;
242 u32 signature;
243 u32 length;
244 u32 function;
245 u32 rpc_result;
246 u32 rpc_result_private;
247 u32 sequence;
248 union {
249 u32 spare;
250 u32 cpuRmGfid;
251 };
252 u8 data[];
253 };
254
255 static void
r535_gsp_msg_done(struct nvkm_gsp * gsp,struct nvfw_gsp_rpc * msg)256 r535_gsp_msg_done(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg)
257 {
258 kvfree(msg);
259 }
260
261 static void
r535_gsp_msg_dump(struct nvkm_gsp * gsp,struct nvfw_gsp_rpc * msg,int lvl)262 r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl)
263 {
264 if (gsp->subdev.debug >= lvl) {
265 nvkm_printk__(&gsp->subdev, lvl, info,
266 "msg fn:%d len:0x%x/0x%zx res:0x%x resp:0x%x\n",
267 msg->function, msg->length, msg->length - sizeof(*msg),
268 msg->rpc_result, msg->rpc_result_private);
269 print_hex_dump(KERN_INFO, "msg: ", DUMP_PREFIX_OFFSET, 16, 1,
270 msg->data, msg->length - sizeof(*msg), true);
271 }
272 }
273
274 static struct nvfw_gsp_rpc *
r535_gsp_msg_recv(struct nvkm_gsp * gsp,int fn,u32 repc)275 r535_gsp_msg_recv(struct nvkm_gsp *gsp, int fn, u32 repc)
276 {
277 struct nvkm_subdev *subdev = &gsp->subdev;
278 struct nvfw_gsp_rpc *msg;
279 int time = 4000000, i;
280 u32 size;
281
282 retry:
283 msg = r535_gsp_msgq_wait(gsp, sizeof(*msg), &size, &time);
284 if (IS_ERR_OR_NULL(msg))
285 return msg;
286
287 msg = r535_gsp_msgq_recv(gsp, msg->length, &time);
288 if (IS_ERR_OR_NULL(msg))
289 return msg;
290
291 if (msg->rpc_result) {
292 r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR);
293 r535_gsp_msg_done(gsp, msg);
294 return ERR_PTR(-EINVAL);
295 }
296
297 r535_gsp_msg_dump(gsp, msg, NV_DBG_TRACE);
298
299 if (fn && msg->function == fn) {
300 if (repc) {
301 if (msg->length < sizeof(*msg) + repc) {
302 nvkm_error(subdev, "msg len %d < %zd\n",
303 msg->length, sizeof(*msg) + repc);
304 r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR);
305 r535_gsp_msg_done(gsp, msg);
306 return ERR_PTR(-EIO);
307 }
308
309 return msg;
310 }
311
312 r535_gsp_msg_done(gsp, msg);
313 return NULL;
314 }
315
316 for (i = 0; i < gsp->msgq.ntfy_nr; i++) {
317 struct nvkm_gsp_msgq_ntfy *ntfy = &gsp->msgq.ntfy[i];
318
319 if (ntfy->fn == msg->function) {
320 if (ntfy->func)
321 ntfy->func(ntfy->priv, ntfy->fn, msg->data, msg->length - sizeof(*msg));
322 break;
323 }
324 }
325
326 if (i == gsp->msgq.ntfy_nr)
327 r535_gsp_msg_dump(gsp, msg, NV_DBG_WARN);
328
329 r535_gsp_msg_done(gsp, msg);
330 if (fn)
331 goto retry;
332
333 if (*gsp->msgq.rptr != *gsp->msgq.wptr)
334 goto retry;
335
336 return NULL;
337 }
338
339 static int
r535_gsp_msg_ntfy_add(struct nvkm_gsp * gsp,u32 fn,nvkm_gsp_msg_ntfy_func func,void * priv)340 r535_gsp_msg_ntfy_add(struct nvkm_gsp *gsp, u32 fn, nvkm_gsp_msg_ntfy_func func, void *priv)
341 {
342 int ret = 0;
343
344 mutex_lock(&gsp->msgq.mutex);
345 if (WARN_ON(gsp->msgq.ntfy_nr >= ARRAY_SIZE(gsp->msgq.ntfy))) {
346 ret = -ENOSPC;
347 } else {
348 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].fn = fn;
349 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].func = func;
350 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].priv = priv;
351 gsp->msgq.ntfy_nr++;
352 }
353 mutex_unlock(&gsp->msgq.mutex);
354 return ret;
355 }
356
357 static int
r535_gsp_rpc_poll(struct nvkm_gsp * gsp,u32 fn)358 r535_gsp_rpc_poll(struct nvkm_gsp *gsp, u32 fn)
359 {
360 void *repv;
361
362 mutex_lock(&gsp->cmdq.mutex);
363 repv = r535_gsp_msg_recv(gsp, fn, 0);
364 mutex_unlock(&gsp->cmdq.mutex);
365 if (IS_ERR(repv))
366 return PTR_ERR(repv);
367
368 return 0;
369 }
370
371 static void *
r535_gsp_rpc_send(struct nvkm_gsp * gsp,void * argv,bool wait,u32 repc)372 r535_gsp_rpc_send(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc)
373 {
374 struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data);
375 struct nvfw_gsp_rpc *msg;
376 u32 fn = rpc->function;
377 void *repv = NULL;
378 int ret;
379
380 if (gsp->subdev.debug >= NV_DBG_TRACE) {
381 nvkm_trace(&gsp->subdev, "rpc fn:%d len:0x%x/0x%zx\n", rpc->function,
382 rpc->length, rpc->length - sizeof(*rpc));
383 print_hex_dump(KERN_INFO, "rpc: ", DUMP_PREFIX_OFFSET, 16, 1,
384 rpc->data, rpc->length - sizeof(*rpc), true);
385 }
386
387 ret = r535_gsp_cmdq_push(gsp, rpc);
388 if (ret)
389 return ERR_PTR(ret);
390
391 if (wait) {
392 msg = r535_gsp_msg_recv(gsp, fn, repc);
393 if (!IS_ERR_OR_NULL(msg))
394 repv = msg->data;
395 else
396 repv = msg;
397 }
398
399 return repv;
400 }
401
402 static void
r535_gsp_event_dtor(struct nvkm_gsp_event * event)403 r535_gsp_event_dtor(struct nvkm_gsp_event *event)
404 {
405 struct nvkm_gsp_device *device = event->device;
406 struct nvkm_gsp_client *client = device->object.client;
407 struct nvkm_gsp *gsp = client->gsp;
408
409 mutex_lock(&gsp->client_id.mutex);
410 if (event->func) {
411 list_del(&event->head);
412 event->func = NULL;
413 }
414 mutex_unlock(&gsp->client_id.mutex);
415
416 nvkm_gsp_rm_free(&event->object);
417 event->device = NULL;
418 }
419
420 static int
r535_gsp_device_event_get(struct nvkm_gsp_event * event)421 r535_gsp_device_event_get(struct nvkm_gsp_event *event)
422 {
423 struct nvkm_gsp_device *device = event->device;
424 NV2080_CTRL_EVENT_SET_NOTIFICATION_PARAMS *ctrl;
425
426 ctrl = nvkm_gsp_rm_ctrl_get(&device->subdevice,
427 NV2080_CTRL_CMD_EVENT_SET_NOTIFICATION, sizeof(*ctrl));
428 if (IS_ERR(ctrl))
429 return PTR_ERR(ctrl);
430
431 ctrl->event = event->id;
432 ctrl->action = NV2080_CTRL_EVENT_SET_NOTIFICATION_ACTION_REPEAT;
433 return nvkm_gsp_rm_ctrl_wr(&device->subdevice, ctrl);
434 }
435
436 static int
r535_gsp_device_event_ctor(struct nvkm_gsp_device * device,u32 handle,u32 id,nvkm_gsp_event_func func,struct nvkm_gsp_event * event)437 r535_gsp_device_event_ctor(struct nvkm_gsp_device *device, u32 handle, u32 id,
438 nvkm_gsp_event_func func, struct nvkm_gsp_event *event)
439 {
440 struct nvkm_gsp_client *client = device->object.client;
441 struct nvkm_gsp *gsp = client->gsp;
442 NV0005_ALLOC_PARAMETERS *args;
443 int ret;
444
445 args = nvkm_gsp_rm_alloc_get(&device->subdevice, handle,
446 NV01_EVENT_KERNEL_CALLBACK_EX, sizeof(*args),
447 &event->object);
448 if (IS_ERR(args))
449 return PTR_ERR(args);
450
451 args->hParentClient = client->object.handle;
452 args->hSrcResource = 0;
453 args->hClass = NV01_EVENT_KERNEL_CALLBACK_EX;
454 args->notifyIndex = NV01_EVENT_CLIENT_RM | id;
455 args->data = NULL;
456
457 ret = nvkm_gsp_rm_alloc_wr(&event->object, args);
458 if (ret)
459 return ret;
460
461 event->device = device;
462 event->id = id;
463
464 ret = r535_gsp_device_event_get(event);
465 if (ret) {
466 nvkm_gsp_event_dtor(event);
467 return ret;
468 }
469
470 mutex_lock(&gsp->client_id.mutex);
471 event->func = func;
472 list_add(&event->head, &client->events);
473 mutex_unlock(&gsp->client_id.mutex);
474 return 0;
475 }
476
477 static void
r535_gsp_device_dtor(struct nvkm_gsp_device * device)478 r535_gsp_device_dtor(struct nvkm_gsp_device *device)
479 {
480 nvkm_gsp_rm_free(&device->subdevice);
481 nvkm_gsp_rm_free(&device->object);
482 }
483
484 static int
r535_gsp_subdevice_ctor(struct nvkm_gsp_device * device)485 r535_gsp_subdevice_ctor(struct nvkm_gsp_device *device)
486 {
487 NV2080_ALLOC_PARAMETERS *args;
488
489 return nvkm_gsp_rm_alloc(&device->object, 0x5d1d0000, NV20_SUBDEVICE_0, sizeof(*args),
490 &device->subdevice);
491 }
492
493 static int
r535_gsp_device_ctor(struct nvkm_gsp_client * client,struct nvkm_gsp_device * device)494 r535_gsp_device_ctor(struct nvkm_gsp_client *client, struct nvkm_gsp_device *device)
495 {
496 NV0080_ALLOC_PARAMETERS *args;
497 int ret;
498
499 args = nvkm_gsp_rm_alloc_get(&client->object, 0xde1d0000, NV01_DEVICE_0, sizeof(*args),
500 &device->object);
501 if (IS_ERR(args))
502 return PTR_ERR(args);
503
504 args->hClientShare = client->object.handle;
505
506 ret = nvkm_gsp_rm_alloc_wr(&device->object, args);
507 if (ret)
508 return ret;
509
510 ret = r535_gsp_subdevice_ctor(device);
511 if (ret)
512 nvkm_gsp_rm_free(&device->object);
513
514 return ret;
515 }
516
517 static void
r535_gsp_client_dtor(struct nvkm_gsp_client * client)518 r535_gsp_client_dtor(struct nvkm_gsp_client *client)
519 {
520 struct nvkm_gsp *gsp = client->gsp;
521
522 nvkm_gsp_rm_free(&client->object);
523
524 mutex_lock(&gsp->client_id.mutex);
525 idr_remove(&gsp->client_id.idr, client->object.handle & 0xffff);
526 mutex_unlock(&gsp->client_id.mutex);
527
528 client->gsp = NULL;
529 }
530
531 static int
r535_gsp_client_ctor(struct nvkm_gsp * gsp,struct nvkm_gsp_client * client)532 r535_gsp_client_ctor(struct nvkm_gsp *gsp, struct nvkm_gsp_client *client)
533 {
534 NV0000_ALLOC_PARAMETERS *args;
535 int ret;
536
537 mutex_lock(&gsp->client_id.mutex);
538 ret = idr_alloc(&gsp->client_id.idr, client, 0, 0xffff + 1, GFP_KERNEL);
539 mutex_unlock(&gsp->client_id.mutex);
540 if (ret < 0)
541 return ret;
542
543 client->gsp = gsp;
544 client->object.client = client;
545 INIT_LIST_HEAD(&client->events);
546
547 args = nvkm_gsp_rm_alloc_get(&client->object, 0xc1d00000 | ret, NV01_ROOT, sizeof(*args),
548 &client->object);
549 if (IS_ERR(args)) {
550 r535_gsp_client_dtor(client);
551 return ret;
552 }
553
554 args->hClient = client->object.handle;
555 args->processID = ~0;
556
557 ret = nvkm_gsp_rm_alloc_wr(&client->object, args);
558 if (ret) {
559 r535_gsp_client_dtor(client);
560 return ret;
561 }
562
563 return 0;
564 }
565
566 static int
r535_gsp_rpc_rm_free(struct nvkm_gsp_object * object)567 r535_gsp_rpc_rm_free(struct nvkm_gsp_object *object)
568 {
569 struct nvkm_gsp_client *client = object->client;
570 struct nvkm_gsp *gsp = client->gsp;
571 rpc_free_v03_00 *rpc;
572
573 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x free\n",
574 client->object.handle, object->handle);
575
576 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_FREE, sizeof(*rpc));
577 if (WARN_ON(IS_ERR_OR_NULL(rpc)))
578 return -EIO;
579
580 rpc->params.hRoot = client->object.handle;
581 rpc->params.hObjectParent = 0;
582 rpc->params.hObjectOld = object->handle;
583 return nvkm_gsp_rpc_wr(gsp, rpc, true);
584 }
585
586 static void
r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object * object,void * repv)587 r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object *object, void *repv)
588 {
589 rpc_gsp_rm_alloc_v03_00 *rpc = container_of(repv, typeof(*rpc), params);
590
591 nvkm_gsp_rpc_done(object->client->gsp, rpc);
592 }
593
594 static void *
r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object * object,void * argv,u32 repc)595 r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object *object, void *argv, u32 repc)
596 {
597 rpc_gsp_rm_alloc_v03_00 *rpc = container_of(argv, typeof(*rpc), params);
598 struct nvkm_gsp *gsp = object->client->gsp;
599 void *ret;
600
601 rpc = nvkm_gsp_rpc_push(gsp, rpc, true, sizeof(*rpc) + repc);
602 if (IS_ERR_OR_NULL(rpc))
603 return rpc;
604
605 if (rpc->status) {
606 ret = ERR_PTR(r535_rpc_status_to_errno(rpc->status));
607 if (PTR_ERR(ret) != -EAGAIN && PTR_ERR(ret) != -EBUSY)
608 nvkm_error(&gsp->subdev, "RM_ALLOC: 0x%x\n", rpc->status);
609 } else {
610 ret = repc ? rpc->params : NULL;
611 }
612
613 nvkm_gsp_rpc_done(gsp, rpc);
614
615 return ret;
616 }
617
618 static void *
r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object * object,u32 oclass,u32 argc)619 r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object *object, u32 oclass, u32 argc)
620 {
621 struct nvkm_gsp_client *client = object->client;
622 struct nvkm_gsp *gsp = client->gsp;
623 rpc_gsp_rm_alloc_v03_00 *rpc;
624
625 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x new obj:0x%08x cls:0x%08x argc:%d\n",
626 client->object.handle, object->parent->handle, object->handle, oclass, argc);
627
628 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_ALLOC, sizeof(*rpc) + argc);
629 if (IS_ERR(rpc))
630 return rpc;
631
632 rpc->hClient = client->object.handle;
633 rpc->hParent = object->parent->handle;
634 rpc->hObject = object->handle;
635 rpc->hClass = oclass;
636 rpc->status = 0;
637 rpc->paramsSize = argc;
638 return rpc->params;
639 }
640
641 static void
r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object * object,void * repv)642 r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object *object, void *repv)
643 {
644 rpc_gsp_rm_control_v03_00 *rpc = container_of(repv, typeof(*rpc), params);
645
646 if (!repv)
647 return;
648 nvkm_gsp_rpc_done(object->client->gsp, rpc);
649 }
650
651 static int
r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object * object,void ** argv,u32 repc)652 r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object *object, void **argv, u32 repc)
653 {
654 rpc_gsp_rm_control_v03_00 *rpc = container_of((*argv), typeof(*rpc), params);
655 struct nvkm_gsp *gsp = object->client->gsp;
656 int ret = 0;
657
658 rpc = nvkm_gsp_rpc_push(gsp, rpc, true, repc);
659 if (IS_ERR_OR_NULL(rpc)) {
660 *argv = NULL;
661 return PTR_ERR(rpc);
662 }
663
664 if (rpc->status) {
665 ret = r535_rpc_status_to_errno(rpc->status);
666 if (ret != -EAGAIN && ret != -EBUSY)
667 nvkm_error(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x failed: 0x%08x\n",
668 object->client->object.handle, object->handle, rpc->cmd, rpc->status);
669 }
670
671 if (repc)
672 *argv = rpc->params;
673 else
674 nvkm_gsp_rpc_done(gsp, rpc);
675
676 return ret;
677 }
678
679 static void *
r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object * object,u32 cmd,u32 argc)680 r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object *object, u32 cmd, u32 argc)
681 {
682 struct nvkm_gsp_client *client = object->client;
683 struct nvkm_gsp *gsp = client->gsp;
684 rpc_gsp_rm_control_v03_00 *rpc;
685
686 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x argc:%d\n",
687 client->object.handle, object->handle, cmd, argc);
688
689 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_CONTROL, sizeof(*rpc) + argc);
690 if (IS_ERR(rpc))
691 return rpc;
692
693 rpc->hClient = client->object.handle;
694 rpc->hObject = object->handle;
695 rpc->cmd = cmd;
696 rpc->status = 0;
697 rpc->paramsSize = argc;
698 return rpc->params;
699 }
700
701 static void
r535_gsp_rpc_done(struct nvkm_gsp * gsp,void * repv)702 r535_gsp_rpc_done(struct nvkm_gsp *gsp, void *repv)
703 {
704 struct nvfw_gsp_rpc *rpc = container_of(repv, typeof(*rpc), data);
705
706 r535_gsp_msg_done(gsp, rpc);
707 }
708
709 static void *
r535_gsp_rpc_get(struct nvkm_gsp * gsp,u32 fn,u32 argc)710 r535_gsp_rpc_get(struct nvkm_gsp *gsp, u32 fn, u32 argc)
711 {
712 struct nvfw_gsp_rpc *rpc;
713
714 rpc = r535_gsp_cmdq_get(gsp, ALIGN(sizeof(*rpc) + argc, sizeof(u64)));
715 if (IS_ERR(rpc))
716 return ERR_CAST(rpc);
717
718 rpc->header_version = 0x03000000;
719 rpc->signature = ('C' << 24) | ('P' << 16) | ('R' << 8) | 'V';
720 rpc->function = fn;
721 rpc->rpc_result = 0xffffffff;
722 rpc->rpc_result_private = 0xffffffff;
723 rpc->length = sizeof(*rpc) + argc;
724 return rpc->data;
725 }
726
727 static void *
r535_gsp_rpc_push(struct nvkm_gsp * gsp,void * argv,bool wait,u32 repc)728 r535_gsp_rpc_push(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc)
729 {
730 struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data);
731 struct r535_gsp_msg *cmd = container_of((void *)rpc, typeof(*cmd), data);
732 const u32 max_msg_size = (16 * 0x1000) - sizeof(struct r535_gsp_msg);
733 const u32 max_rpc_size = max_msg_size - sizeof(*rpc);
734 u32 rpc_size = rpc->length - sizeof(*rpc);
735 void *repv;
736
737 mutex_lock(&gsp->cmdq.mutex);
738 if (rpc_size > max_rpc_size) {
739 const u32 fn = rpc->function;
740
741 /* Adjust length, and send initial RPC. */
742 rpc->length = sizeof(*rpc) + max_rpc_size;
743 cmd->checksum = rpc->length;
744
745 repv = r535_gsp_rpc_send(gsp, argv, false, 0);
746 if (IS_ERR(repv))
747 goto done;
748
749 argv += max_rpc_size;
750 rpc_size -= max_rpc_size;
751
752 /* Remaining chunks sent as CONTINUATION_RECORD RPCs. */
753 while (rpc_size) {
754 u32 size = min(rpc_size, max_rpc_size);
755 void *next;
756
757 next = r535_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD, size);
758 if (IS_ERR(next)) {
759 repv = next;
760 goto done;
761 }
762
763 memcpy(next, argv, size);
764
765 repv = r535_gsp_rpc_send(gsp, next, false, 0);
766 if (IS_ERR(repv))
767 goto done;
768
769 argv += size;
770 rpc_size -= size;
771 }
772
773 /* Wait for reply. */
774 if (wait) {
775 rpc = r535_gsp_msg_recv(gsp, fn, repc);
776 if (!IS_ERR_OR_NULL(rpc))
777 repv = rpc->data;
778 else
779 repv = rpc;
780 } else {
781 repv = NULL;
782 }
783 } else {
784 repv = r535_gsp_rpc_send(gsp, argv, wait, repc);
785 }
786
787 done:
788 mutex_unlock(&gsp->cmdq.mutex);
789 return repv;
790 }
791
792 const struct nvkm_gsp_rm
793 r535_gsp_rm = {
794 .rpc_get = r535_gsp_rpc_get,
795 .rpc_push = r535_gsp_rpc_push,
796 .rpc_done = r535_gsp_rpc_done,
797
798 .rm_ctrl_get = r535_gsp_rpc_rm_ctrl_get,
799 .rm_ctrl_push = r535_gsp_rpc_rm_ctrl_push,
800 .rm_ctrl_done = r535_gsp_rpc_rm_ctrl_done,
801
802 .rm_alloc_get = r535_gsp_rpc_rm_alloc_get,
803 .rm_alloc_push = r535_gsp_rpc_rm_alloc_push,
804 .rm_alloc_done = r535_gsp_rpc_rm_alloc_done,
805
806 .rm_free = r535_gsp_rpc_rm_free,
807
808 .client_ctor = r535_gsp_client_ctor,
809 .client_dtor = r535_gsp_client_dtor,
810
811 .device_ctor = r535_gsp_device_ctor,
812 .device_dtor = r535_gsp_device_dtor,
813
814 .event_ctor = r535_gsp_device_event_ctor,
815 .event_dtor = r535_gsp_event_dtor,
816 };
817
818 static void
r535_gsp_msgq_work(struct work_struct * work)819 r535_gsp_msgq_work(struct work_struct *work)
820 {
821 struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work);
822
823 mutex_lock(&gsp->cmdq.mutex);
824 if (*gsp->msgq.rptr != *gsp->msgq.wptr)
825 r535_gsp_msg_recv(gsp, 0, 0);
826 mutex_unlock(&gsp->cmdq.mutex);
827 }
828
829 static irqreturn_t
r535_gsp_intr(struct nvkm_inth * inth)830 r535_gsp_intr(struct nvkm_inth *inth)
831 {
832 struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth);
833 struct nvkm_subdev *subdev = &gsp->subdev;
834 u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008);
835 u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 +
836 gsp->falcon.func->riscv_irqmask);
837 u32 stat = intr & inte;
838
839 if (!stat) {
840 nvkm_debug(subdev, "inte %08x %08x\n", intr, inte);
841 return IRQ_NONE;
842 }
843
844 if (stat & 0x00000040) {
845 nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040);
846 schedule_work(&gsp->msgq.work);
847 stat &= ~0x00000040;
848 }
849
850 if (stat) {
851 nvkm_error(subdev, "intr %08x\n", stat);
852 nvkm_falcon_wr32(&gsp->falcon, 0x014, stat);
853 nvkm_falcon_wr32(&gsp->falcon, 0x004, stat);
854 }
855
856 nvkm_falcon_intr_retrigger(&gsp->falcon);
857 return IRQ_HANDLED;
858 }
859
860 static int
r535_gsp_intr_get_table(struct nvkm_gsp * gsp)861 r535_gsp_intr_get_table(struct nvkm_gsp *gsp)
862 {
863 NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl;
864 int ret = 0;
865
866 ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice,
867 NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl));
868 if (IS_ERR(ctrl))
869 return PTR_ERR(ctrl);
870
871 ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl));
872 if (WARN_ON(ret)) {
873 nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
874 return ret;
875 }
876
877 for (unsigned i = 0; i < ctrl->tableLen; i++) {
878 enum nvkm_subdev_type type;
879 int inst;
880
881 nvkm_debug(&gsp->subdev,
882 "%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i,
883 ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask,
884 ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall);
885
886 switch (ctrl->table[i].engineIdx) {
887 case MC_ENGINE_IDX_GSP:
888 type = NVKM_SUBDEV_GSP;
889 inst = 0;
890 break;
891 case MC_ENGINE_IDX_DISP:
892 type = NVKM_ENGINE_DISP;
893 inst = 0;
894 break;
895 case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9:
896 type = NVKM_ENGINE_CE;
897 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_CE0;
898 break;
899 case MC_ENGINE_IDX_GR0:
900 type = NVKM_ENGINE_GR;
901 inst = 0;
902 break;
903 case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7:
904 type = NVKM_ENGINE_NVDEC;
905 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVDEC0;
906 break;
907 case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2:
908 type = NVKM_ENGINE_NVENC;
909 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_MSENC;
910 break;
911 case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7:
912 type = NVKM_ENGINE_NVJPG;
913 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVJPEG0;
914 break;
915 case MC_ENGINE_IDX_OFA0:
916 type = NVKM_ENGINE_OFA;
917 inst = 0;
918 break;
919 default:
920 continue;
921 }
922
923 if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) {
924 ret = -ENOSPC;
925 break;
926 }
927
928 gsp->intr[gsp->intr_nr].type = type;
929 gsp->intr[gsp->intr_nr].inst = inst;
930 gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall;
931 gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall;
932 gsp->intr_nr++;
933 }
934
935 nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
936 return ret;
937 }
938
939 static int
r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp * gsp)940 r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp *gsp)
941 {
942 GspStaticConfigInfo *rpc;
943 int last_usable = -1;
944
945 rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc));
946 if (IS_ERR(rpc))
947 return PTR_ERR(rpc);
948
949 gsp->internal.client.object.client = &gsp->internal.client;
950 gsp->internal.client.object.parent = NULL;
951 gsp->internal.client.object.handle = rpc->hInternalClient;
952 gsp->internal.client.gsp = gsp;
953
954 gsp->internal.device.object.client = &gsp->internal.client;
955 gsp->internal.device.object.parent = &gsp->internal.client.object;
956 gsp->internal.device.object.handle = rpc->hInternalDevice;
957
958 gsp->internal.device.subdevice.client = &gsp->internal.client;
959 gsp->internal.device.subdevice.parent = &gsp->internal.device.object;
960 gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice;
961
962 gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase;
963 gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase;
964
965 for (int i = 0; i < rpc->fbRegionInfoParams.numFBRegions; i++) {
966 NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg =
967 &rpc->fbRegionInfoParams.fbRegion[i];
968
969 nvkm_debug(&gsp->subdev, "fb region %d: "
970 "%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i,
971 reg->base, reg->limit, reg->reserved, reg->performance,
972 reg->supportCompressed, reg->supportISO, reg->bProtected);
973
974 if (!reg->reserved && !reg->bProtected) {
975 if (reg->supportCompressed && reg->supportISO &&
976 !WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) {
977 const u64 size = (reg->limit + 1) - reg->base;
978
979 gsp->fb.region[gsp->fb.region_nr].addr = reg->base;
980 gsp->fb.region[gsp->fb.region_nr].size = size;
981 gsp->fb.region_nr++;
982 }
983
984 last_usable = i;
985 }
986 }
987
988 if (last_usable >= 0) {
989 u32 rsvd_base = rpc->fbRegionInfoParams.fbRegion[last_usable].limit + 1;
990
991 gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base;
992 }
993
994 for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) {
995 if (rpc->gpcInfo.gpcMask & BIT(gpc)) {
996 gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask);
997 gsp->gr.gpcs++;
998 }
999 }
1000
1001 nvkm_gsp_rpc_done(gsp, rpc);
1002 return 0;
1003 }
1004
1005 static void
nvkm_gsp_mem_dtor(struct nvkm_gsp_mem * mem)1006 nvkm_gsp_mem_dtor(struct nvkm_gsp_mem *mem)
1007 {
1008 if (mem->data) {
1009 /*
1010 * Poison the buffer to catch any unexpected access from
1011 * GSP-RM if the buffer was prematurely freed.
1012 */
1013 memset(mem->data, 0xFF, mem->size);
1014
1015 dma_free_coherent(mem->dev, mem->size, mem->data, mem->addr);
1016 put_device(mem->dev);
1017
1018 memset(mem, 0, sizeof(*mem));
1019 }
1020 }
1021
1022 /**
1023 * nvkm_gsp_mem_ctor - constructor for nvkm_gsp_mem objects
1024 * @gsp: gsp pointer
1025 * @size: number of bytes to allocate
1026 * @mem: nvkm_gsp_mem object to initialize
1027 *
1028 * Allocates a block of memory for use with GSP.
1029 *
1030 * This memory block can potentially out-live the driver's remove() callback,
1031 * so we take a device reference to ensure its lifetime. The reference is
1032 * dropped in the destructor.
1033 */
1034 static int
nvkm_gsp_mem_ctor(struct nvkm_gsp * gsp,size_t size,struct nvkm_gsp_mem * mem)1035 nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem)
1036 {
1037 mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL);
1038 if (WARN_ON(!mem->data))
1039 return -ENOMEM;
1040
1041 mem->size = size;
1042 mem->dev = get_device(gsp->subdev.device->dev);
1043
1044 return 0;
1045 }
1046
1047 static int
r535_gsp_postinit(struct nvkm_gsp * gsp)1048 r535_gsp_postinit(struct nvkm_gsp *gsp)
1049 {
1050 struct nvkm_device *device = gsp->subdev.device;
1051 int ret;
1052
1053 ret = r535_gsp_rpc_get_gsp_static_info(gsp);
1054 if (WARN_ON(ret))
1055 return ret;
1056
1057 INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work);
1058
1059 ret = r535_gsp_intr_get_table(gsp);
1060 if (WARN_ON(ret))
1061 return ret;
1062
1063 ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst);
1064 if (WARN_ON(ret < 0))
1065 return ret;
1066
1067 ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev,
1068 r535_gsp_intr, &gsp->subdev.inth);
1069 if (WARN_ON(ret))
1070 return ret;
1071
1072 nvkm_inth_allow(&gsp->subdev.inth);
1073 nvkm_wr32(device, 0x110004, 0x00000040);
1074
1075 /* Release the DMA buffers that were needed only for boot and init */
1076 nvkm_gsp_mem_dtor(&gsp->boot.fw);
1077 nvkm_gsp_mem_dtor(&gsp->libos);
1078
1079 return ret;
1080 }
1081
1082 static int
r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp * gsp,bool suspend)1083 r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend)
1084 {
1085 rpc_unloading_guest_driver_v1F_07 *rpc;
1086
1087 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc));
1088 if (IS_ERR(rpc))
1089 return PTR_ERR(rpc);
1090
1091 if (suspend) {
1092 rpc->bInPMTransition = 1;
1093 rpc->bGc6Entering = 0;
1094 rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
1095 } else {
1096 rpc->bInPMTransition = 0;
1097 rpc->bGc6Entering = 0;
1098 rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0;
1099 }
1100
1101 return nvkm_gsp_rpc_wr(gsp, rpc, true);
1102 }
1103
1104 enum registry_type {
1105 REGISTRY_TABLE_ENTRY_TYPE_DWORD = 1, /* 32-bit unsigned integer */
1106 REGISTRY_TABLE_ENTRY_TYPE_BINARY = 2, /* Binary blob */
1107 REGISTRY_TABLE_ENTRY_TYPE_STRING = 3, /* Null-terminated string */
1108 };
1109
1110 /* An arbitrary limit to the length of a registry key */
1111 #define REGISTRY_MAX_KEY_LENGTH 64
1112
1113 /**
1114 * registry_list_entry - linked list member for a registry key/value
1115 * @head: list_head struct
1116 * @type: dword, binary, or string
1117 * @klen: the length of name of the key
1118 * @vlen: the length of the value
1119 * @key: the key name
1120 * @dword: the data, if REGISTRY_TABLE_ENTRY_TYPE_DWORD
1121 * @binary: the data, if TYPE_BINARY or TYPE_STRING
1122 *
1123 * Every registry key/value is represented internally by this struct.
1124 *
1125 * Type DWORD is a simple 32-bit unsigned integer, and its value is stored in
1126 * @dword.
1127 *
1128 * Types BINARY and STRING are variable-length binary blobs. The only real
1129 * difference between BINARY and STRING is that STRING is null-terminated and
1130 * is expected to contain only printable characters.
1131 *
1132 * Note: it is technically possible to have multiple keys with the same name
1133 * but different types, but this is not useful since GSP-RM expects keys to
1134 * have only one specific type.
1135 */
1136 struct registry_list_entry {
1137 struct list_head head;
1138 enum registry_type type;
1139 size_t klen;
1140 char key[REGISTRY_MAX_KEY_LENGTH];
1141 size_t vlen;
1142 u32 dword; /* TYPE_DWORD */
1143 u8 binary[] __counted_by(vlen); /* TYPE_BINARY or TYPE_STRING */
1144 };
1145
1146 /**
1147 * add_registry -- adds a registry entry
1148 * @gsp: gsp pointer
1149 * @key: name of the registry key
1150 * @type: type of data
1151 * @data: pointer to value
1152 * @length: size of data, in bytes
1153 *
1154 * Adds a registry key/value pair to the registry database.
1155 *
1156 * This function collects the registry information in a linked list. After
1157 * all registry keys have been added, build_registry() is used to create the
1158 * RPC data structure.
1159 *
1160 * registry_rpc_size is a running total of the size of all registry keys.
1161 * It's used to avoid an O(n) calculation of the size when the RPC is built.
1162 *
1163 * Returns 0 on success, or negative error code on error.
1164 */
add_registry(struct nvkm_gsp * gsp,const char * key,enum registry_type type,const void * data,size_t length)1165 static int add_registry(struct nvkm_gsp *gsp, const char *key,
1166 enum registry_type type, const void *data, size_t length)
1167 {
1168 struct registry_list_entry *reg;
1169 const size_t nlen = strnlen(key, REGISTRY_MAX_KEY_LENGTH) + 1;
1170 size_t alloc_size; /* extra bytes to alloc for binary or string value */
1171
1172 if (nlen > REGISTRY_MAX_KEY_LENGTH)
1173 return -EINVAL;
1174
1175 alloc_size = (type == REGISTRY_TABLE_ENTRY_TYPE_DWORD) ? 0 : length;
1176
1177 reg = kmalloc(sizeof(*reg) + alloc_size, GFP_KERNEL);
1178 if (!reg)
1179 return -ENOMEM;
1180
1181 switch (type) {
1182 case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
1183 reg->dword = *(const u32 *)(data);
1184 break;
1185 case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
1186 case REGISTRY_TABLE_ENTRY_TYPE_STRING:
1187 memcpy(reg->binary, data, alloc_size);
1188 break;
1189 default:
1190 nvkm_error(&gsp->subdev, "unrecognized registry type %u for '%s'\n",
1191 type, key);
1192 kfree(reg);
1193 return -EINVAL;
1194 }
1195
1196 memcpy(reg->key, key, nlen);
1197 reg->klen = nlen;
1198 reg->vlen = length;
1199 reg->type = type;
1200
1201 list_add_tail(®->head, &gsp->registry_list);
1202 gsp->registry_rpc_size += sizeof(PACKED_REGISTRY_ENTRY) + nlen + alloc_size;
1203
1204 return 0;
1205 }
1206
add_registry_num(struct nvkm_gsp * gsp,const char * key,u32 value)1207 static int add_registry_num(struct nvkm_gsp *gsp, const char *key, u32 value)
1208 {
1209 return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_DWORD,
1210 &value, sizeof(u32));
1211 }
1212
add_registry_string(struct nvkm_gsp * gsp,const char * key,const char * value)1213 static int add_registry_string(struct nvkm_gsp *gsp, const char *key, const char *value)
1214 {
1215 return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_STRING,
1216 value, strlen(value) + 1);
1217 }
1218
1219 /**
1220 * build_registry -- create the registry RPC data
1221 * @gsp: gsp pointer
1222 * @registry: pointer to the RPC payload to fill
1223 *
1224 * After all registry key/value pairs have been added, call this function to
1225 * build the RPC.
1226 *
1227 * The registry RPC looks like this:
1228 *
1229 * +-----------------+
1230 * |NvU32 size; |
1231 * |NvU32 numEntries;|
1232 * +-----------------+
1233 * +----------------------------------------+
1234 * |PACKED_REGISTRY_ENTRY |
1235 * +----------------------------------------+
1236 * |Null-terminated key (string) for entry 0|
1237 * +----------------------------------------+
1238 * |Binary/string data value for entry 0 | (only if necessary)
1239 * +----------------------------------------+
1240 *
1241 * +----------------------------------------+
1242 * |PACKED_REGISTRY_ENTRY |
1243 * +----------------------------------------+
1244 * |Null-terminated key (string) for entry 1|
1245 * +----------------------------------------+
1246 * |Binary/string data value for entry 1 | (only if necessary)
1247 * +----------------------------------------+
1248 * ... (and so on, one copy for each entry)
1249 *
1250 *
1251 * The 'data' field of an entry is either a 32-bit integer (for type DWORD)
1252 * or an offset into the PACKED_REGISTRY_TABLE (for types BINARY and STRING).
1253 *
1254 * All memory allocated by add_registry() is released.
1255 */
build_registry(struct nvkm_gsp * gsp,PACKED_REGISTRY_TABLE * registry)1256 static void build_registry(struct nvkm_gsp *gsp, PACKED_REGISTRY_TABLE *registry)
1257 {
1258 struct registry_list_entry *reg, *n;
1259 size_t str_offset;
1260 unsigned int i = 0;
1261
1262 registry->numEntries = list_count_nodes(&gsp->registry_list);
1263 str_offset = struct_size(registry, entries, registry->numEntries);
1264
1265 list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
1266 registry->entries[i].type = reg->type;
1267 registry->entries[i].length = reg->vlen;
1268
1269 /* Append the key name to the table */
1270 registry->entries[i].nameOffset = str_offset;
1271 memcpy((void *)registry + str_offset, reg->key, reg->klen);
1272 str_offset += reg->klen;
1273
1274 switch (reg->type) {
1275 case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
1276 registry->entries[i].data = reg->dword;
1277 break;
1278 case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
1279 case REGISTRY_TABLE_ENTRY_TYPE_STRING:
1280 /* If the type is binary or string, also append the value */
1281 memcpy((void *)registry + str_offset, reg->binary, reg->vlen);
1282 registry->entries[i].data = str_offset;
1283 str_offset += reg->vlen;
1284 break;
1285 default:
1286 break;
1287 }
1288
1289 i++;
1290 list_del(®->head);
1291 kfree(reg);
1292 }
1293
1294 /* Double-check that we calculated the sizes correctly */
1295 WARN_ON(gsp->registry_rpc_size != str_offset);
1296
1297 registry->size = gsp->registry_rpc_size;
1298 }
1299
1300 /**
1301 * clean_registry -- clean up registry memory in case of error
1302 * @gsp: gsp pointer
1303 *
1304 * Call this function to clean up all memory allocated by add_registry()
1305 * in case of error and build_registry() is not called.
1306 */
clean_registry(struct nvkm_gsp * gsp)1307 static void clean_registry(struct nvkm_gsp *gsp)
1308 {
1309 struct registry_list_entry *reg, *n;
1310
1311 list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
1312 list_del(®->head);
1313 kfree(reg);
1314 }
1315
1316 gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
1317 }
1318
1319 MODULE_PARM_DESC(NVreg_RegistryDwords,
1320 "A semicolon-separated list of key=integer pairs of GSP-RM registry keys");
1321 static char *NVreg_RegistryDwords;
1322 module_param(NVreg_RegistryDwords, charp, 0400);
1323
1324 /* dword only */
1325 struct nv_gsp_registry_entries {
1326 const char *name;
1327 u32 value;
1328 };
1329
1330 /**
1331 * r535_registry_entries - required registry entries for GSP-RM
1332 *
1333 * This array lists registry entries that are required for GSP-RM to
1334 * function correctly.
1335 *
1336 * RMSecBusResetEnable - enables PCI secondary bus reset
1337 * RMForcePcieConfigSave - forces GSP-RM to preserve PCI configuration
1338 * registers on any PCI reset.
1339 */
1340 static const struct nv_gsp_registry_entries r535_registry_entries[] = {
1341 { "RMSecBusResetEnable", 1 },
1342 { "RMForcePcieConfigSave", 1 },
1343 };
1344 #define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries)
1345
1346 /**
1347 * strip - strips all characters in 'reject' from 's'
1348 * @s: string to strip
1349 * @reject: string of characters to remove
1350 *
1351 * 's' is modified.
1352 *
1353 * Returns the length of the new string.
1354 */
strip(char * s,const char * reject)1355 static size_t strip(char *s, const char *reject)
1356 {
1357 char *p = s, *p2 = s;
1358 size_t length = 0;
1359 char c;
1360
1361 do {
1362 while ((c = *p2) && strchr(reject, c))
1363 p2++;
1364
1365 *p++ = c = *p2++;
1366 length++;
1367 } while (c);
1368
1369 return length;
1370 }
1371
1372 /**
1373 * r535_gsp_rpc_set_registry - build registry RPC and call GSP-RM
1374 * @gsp: gsp pointer
1375 *
1376 * The GSP-RM registry is a set of key/value pairs that configure some aspects
1377 * of GSP-RM. The keys are strings, and the values are 32-bit integers.
1378 *
1379 * The registry is built from a combination of a static hard-coded list (see
1380 * above) and entries passed on the driver's command line.
1381 */
1382 static int
r535_gsp_rpc_set_registry(struct nvkm_gsp * gsp)1383 r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp)
1384 {
1385 PACKED_REGISTRY_TABLE *rpc;
1386 unsigned int i;
1387 int ret;
1388
1389 INIT_LIST_HEAD(&gsp->registry_list);
1390 gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
1391
1392 for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) {
1393 ret = add_registry_num(gsp, r535_registry_entries[i].name,
1394 r535_registry_entries[i].value);
1395 if (ret)
1396 goto fail;
1397 }
1398
1399 /*
1400 * The NVreg_RegistryDwords parameter is a string of key=value
1401 * pairs separated by semicolons. We need to extract and trim each
1402 * substring, and then parse the substring to extract the key and
1403 * value.
1404 */
1405 if (NVreg_RegistryDwords) {
1406 char *p = kstrdup(NVreg_RegistryDwords, GFP_KERNEL);
1407 char *start, *next = p, *equal;
1408
1409 if (!p) {
1410 ret = -ENOMEM;
1411 goto fail;
1412 }
1413
1414 /* Remove any whitespace from the parameter string */
1415 strip(p, " \t\n");
1416
1417 while ((start = strsep(&next, ";"))) {
1418 long value;
1419
1420 equal = strchr(start, '=');
1421 if (!equal || equal == start || equal[1] == 0) {
1422 nvkm_error(&gsp->subdev,
1423 "ignoring invalid registry string '%s'\n",
1424 start);
1425 continue;
1426 }
1427
1428 /* Truncate the key=value string to just key */
1429 *equal = 0;
1430
1431 ret = kstrtol(equal + 1, 0, &value);
1432 if (!ret) {
1433 ret = add_registry_num(gsp, start, value);
1434 } else {
1435 /* Not a number, so treat it as a string */
1436 ret = add_registry_string(gsp, start, equal + 1);
1437 }
1438
1439 if (ret) {
1440 nvkm_error(&gsp->subdev,
1441 "ignoring invalid registry key/value '%s=%s'\n",
1442 start, equal + 1);
1443 continue;
1444 }
1445 }
1446
1447 kfree(p);
1448 }
1449
1450 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, gsp->registry_rpc_size);
1451 if (IS_ERR(rpc)) {
1452 ret = PTR_ERR(rpc);
1453 goto fail;
1454 }
1455
1456 build_registry(gsp, rpc);
1457
1458 return nvkm_gsp_rpc_wr(gsp, rpc, false);
1459
1460 fail:
1461 clean_registry(gsp);
1462 return ret;
1463 }
1464
1465 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1466 static void
r535_gsp_acpi_caps(acpi_handle handle,CAPS_METHOD_DATA * caps)1467 r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps)
1468 {
1469 const guid_t NVOP_DSM_GUID =
1470 GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
1471 0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
1472 u64 NVOP_DSM_REV = 0x00000100;
1473 union acpi_object argv4 = {
1474 .buffer.type = ACPI_TYPE_BUFFER,
1475 .buffer.length = 4,
1476 .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1477 }, *obj;
1478
1479 caps->status = 0xffff;
1480
1481 if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a)))
1482 return;
1483
1484 obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4);
1485 if (!obj)
1486 return;
1487
1488 if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1489 WARN_ON(obj->buffer.length != 4))
1490 return;
1491
1492 caps->status = 0;
1493 caps->optimusCaps = *(u32 *)obj->buffer.pointer;
1494
1495 ACPI_FREE(obj);
1496
1497 kfree(argv4.buffer.pointer);
1498 }
1499
1500 static void
r535_gsp_acpi_jt(acpi_handle handle,JT_METHOD_DATA * jt)1501 r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt)
1502 {
1503 const guid_t JT_DSM_GUID =
1504 GUID_INIT(0xCBECA351L, 0x067B, 0x4924,
1505 0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34);
1506 u64 JT_DSM_REV = 0x00000103;
1507 u32 caps;
1508 union acpi_object argv4 = {
1509 .buffer.type = ACPI_TYPE_BUFFER,
1510 .buffer.length = sizeof(caps),
1511 .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1512 }, *obj;
1513
1514 jt->status = 0xffff;
1515
1516 obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4);
1517 if (!obj)
1518 return;
1519
1520 if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1521 WARN_ON(obj->buffer.length != 4))
1522 return;
1523
1524 jt->status = 0;
1525 jt->jtCaps = *(u32 *)obj->buffer.pointer;
1526 jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20;
1527 jt->bSBIOSCaps = 0;
1528
1529 ACPI_FREE(obj);
1530
1531 kfree(argv4.buffer.pointer);
1532 }
1533
1534 static void
r535_gsp_acpi_mux_id(acpi_handle handle,u32 id,MUX_METHOD_DATA_ELEMENT * mode,MUX_METHOD_DATA_ELEMENT * part)1535 r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode,
1536 MUX_METHOD_DATA_ELEMENT *part)
1537 {
1538 union acpi_object mux_arg = { ACPI_TYPE_INTEGER };
1539 struct acpi_object_list input = { 1, &mux_arg };
1540 acpi_handle iter = NULL, handle_mux = NULL;
1541 acpi_status status;
1542 unsigned long long value;
1543
1544 mode->status = 0xffff;
1545 part->status = 0xffff;
1546
1547 do {
1548 status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter);
1549 if (ACPI_FAILURE(status) || !iter)
1550 return;
1551
1552 status = acpi_evaluate_integer(iter, "_ADR", NULL, &value);
1553 if (ACPI_FAILURE(status) || value != id)
1554 continue;
1555
1556 handle_mux = iter;
1557 } while (!handle_mux);
1558
1559 if (!handle_mux)
1560 return;
1561
1562 /* I -think- 0 means "acquire" according to nvidia's driver source */
1563 input.pointer->integer.type = ACPI_TYPE_INTEGER;
1564 input.pointer->integer.value = 0;
1565
1566 status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value);
1567 if (ACPI_SUCCESS(status)) {
1568 mode->acpiId = id;
1569 mode->mode = value;
1570 mode->status = 0;
1571 }
1572
1573 status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value);
1574 if (ACPI_SUCCESS(status)) {
1575 part->acpiId = id;
1576 part->mode = value;
1577 part->status = 0;
1578 }
1579 }
1580
1581 static void
r535_gsp_acpi_mux(acpi_handle handle,DOD_METHOD_DATA * dod,MUX_METHOD_DATA * mux)1582 r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux)
1583 {
1584 mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]);
1585
1586 for (int i = 0; i < mux->tableLen; i++) {
1587 r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i],
1588 &mux->acpiIdMuxPartTable[i]);
1589 }
1590 }
1591
1592 static void
r535_gsp_acpi_dod(acpi_handle handle,DOD_METHOD_DATA * dod)1593 r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod)
1594 {
1595 acpi_status status;
1596 struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
1597 union acpi_object *_DOD;
1598
1599 dod->status = 0xffff;
1600
1601 status = acpi_evaluate_object(handle, "_DOD", NULL, &output);
1602 if (ACPI_FAILURE(status))
1603 return;
1604
1605 _DOD = output.pointer;
1606
1607 if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) ||
1608 WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList)))
1609 return;
1610
1611 for (int i = 0; i < _DOD->package.count; i++) {
1612 if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER))
1613 return;
1614
1615 dod->acpiIdList[i] = _DOD->package.elements[i].integer.value;
1616 dod->acpiIdListLen += sizeof(dod->acpiIdList[0]);
1617 }
1618
1619 dod->status = 0;
1620 kfree(output.pointer);
1621 }
1622 #endif
1623
1624 static void
r535_gsp_acpi_info(struct nvkm_gsp * gsp,ACPI_METHOD_DATA * acpi)1625 r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi)
1626 {
1627 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1628 acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev);
1629
1630 if (!handle)
1631 return;
1632
1633 acpi->bValid = 1;
1634
1635 r535_gsp_acpi_dod(handle, &acpi->dodMethodData);
1636 if (acpi->dodMethodData.status == 0)
1637 r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData);
1638
1639 r535_gsp_acpi_jt(handle, &acpi->jtMethodData);
1640 r535_gsp_acpi_caps(handle, &acpi->capsMethodData);
1641 #endif
1642 }
1643
1644 static int
r535_gsp_rpc_set_system_info(struct nvkm_gsp * gsp)1645 r535_gsp_rpc_set_system_info(struct nvkm_gsp *gsp)
1646 {
1647 struct nvkm_device *device = gsp->subdev.device;
1648 struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device);
1649 GspSystemInfo *info;
1650
1651 if (WARN_ON(device->type == NVKM_DEVICE_TEGRA))
1652 return -ENOSYS;
1653
1654 info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info));
1655 if (IS_ERR(info))
1656 return PTR_ERR(info);
1657
1658 info->gpuPhysAddr = device->func->resource_addr(device, 0);
1659 info->gpuPhysFbAddr = device->func->resource_addr(device, 1);
1660 info->gpuPhysInstAddr = device->func->resource_addr(device, 3);
1661 info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev);
1662 info->maxUserVa = TASK_SIZE;
1663 info->pciConfigMirrorBase = 0x088000;
1664 info->pciConfigMirrorSize = 0x001000;
1665 r535_gsp_acpi_info(gsp, &info->acpiMethodData);
1666
1667 return nvkm_gsp_rpc_wr(gsp, info, false);
1668 }
1669
1670 static int
r535_gsp_msg_os_error_log(void * priv,u32 fn,void * repv,u32 repc)1671 r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc)
1672 {
1673 struct nvkm_gsp *gsp = priv;
1674 struct nvkm_subdev *subdev = &gsp->subdev;
1675 rpc_os_error_log_v17_00 *msg = repv;
1676
1677 if (WARN_ON(repc < sizeof(*msg)))
1678 return -EINVAL;
1679
1680 nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString);
1681 return 0;
1682 }
1683
1684 static int
r535_gsp_msg_rc_triggered(void * priv,u32 fn,void * repv,u32 repc)1685 r535_gsp_msg_rc_triggered(void *priv, u32 fn, void *repv, u32 repc)
1686 {
1687 rpc_rc_triggered_v17_02 *msg = repv;
1688 struct nvkm_gsp *gsp = priv;
1689 struct nvkm_subdev *subdev = &gsp->subdev;
1690 struct nvkm_chan *chan;
1691 unsigned long flags;
1692
1693 if (WARN_ON(repc < sizeof(*msg)))
1694 return -EINVAL;
1695
1696 nvkm_error(subdev, "rc engn:%08x chid:%d type:%d scope:%d part:%d\n",
1697 msg->nv2080EngineType, msg->chid, msg->exceptType, msg->scope,
1698 msg->partitionAttributionId);
1699
1700 chan = nvkm_chan_get_chid(&subdev->device->fifo->engine, msg->chid / 8, &flags);
1701 if (!chan) {
1702 nvkm_error(subdev, "rc chid:%d not found!\n", msg->chid);
1703 return 0;
1704 }
1705
1706 nvkm_chan_error(chan, false);
1707 nvkm_chan_put(&chan, flags);
1708 return 0;
1709 }
1710
1711 static int
r535_gsp_msg_mmu_fault_queued(void * priv,u32 fn,void * repv,u32 repc)1712 r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc)
1713 {
1714 struct nvkm_gsp *gsp = priv;
1715 struct nvkm_subdev *subdev = &gsp->subdev;
1716
1717 WARN_ON(repc != 0);
1718
1719 nvkm_error(subdev, "mmu fault queued\n");
1720 return 0;
1721 }
1722
1723 static int
r535_gsp_msg_post_event(void * priv,u32 fn,void * repv,u32 repc)1724 r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
1725 {
1726 struct nvkm_gsp *gsp = priv;
1727 struct nvkm_gsp_client *client;
1728 struct nvkm_subdev *subdev = &gsp->subdev;
1729 rpc_post_event_v17_00 *msg = repv;
1730
1731 if (WARN_ON(repc < sizeof(*msg)))
1732 return -EINVAL;
1733 if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize))
1734 return -EINVAL;
1735
1736 nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n",
1737 msg->hClient, msg->hEvent, msg->notifyIndex, msg->data,
1738 msg->status, msg->eventDataSize, msg->bNotifyList);
1739
1740 mutex_lock(&gsp->client_id.mutex);
1741 client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff);
1742 if (client) {
1743 struct nvkm_gsp_event *event;
1744 bool handled = false;
1745
1746 list_for_each_entry(event, &client->events, head) {
1747 if (event->object.handle == msg->hEvent) {
1748 event->func(event, msg->eventData, msg->eventDataSize);
1749 handled = true;
1750 }
1751 }
1752
1753 if (!handled) {
1754 nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n",
1755 msg->hClient, msg->hEvent);
1756 }
1757 } else {
1758 nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient);
1759 }
1760 mutex_unlock(&gsp->client_id.mutex);
1761 return 0;
1762 }
1763
1764 /**
1765 * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
1766 * @priv: gsp pointer
1767 * @fn: function number (ignored)
1768 * @repv: pointer to libos print RPC
1769 * @repc: message size
1770 *
1771 * The GSP sequencer is a list of I/O commands that the GSP can send to
1772 * the driver to perform for various purposes. The most common usage is to
1773 * perform a special mid-initialization reset.
1774 */
1775 static int
r535_gsp_msg_run_cpu_sequencer(void * priv,u32 fn,void * repv,u32 repc)1776 r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
1777 {
1778 struct nvkm_gsp *gsp = priv;
1779 struct nvkm_subdev *subdev = &gsp->subdev;
1780 struct nvkm_device *device = subdev->device;
1781 rpc_run_cpu_sequencer_v17_00 *seq = repv;
1782 int ptr = 0, ret;
1783
1784 nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex);
1785
1786 while (ptr < seq->cmdIndex) {
1787 GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr];
1788
1789 ptr += 1;
1790 ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode);
1791
1792 switch (cmd->opCode) {
1793 case GSP_SEQ_BUF_OPCODE_REG_WRITE: {
1794 u32 addr = cmd->payload.regWrite.addr;
1795 u32 data = cmd->payload.regWrite.val;
1796
1797 nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data);
1798 nvkm_wr32(device, addr, data);
1799 }
1800 break;
1801 case GSP_SEQ_BUF_OPCODE_REG_MODIFY: {
1802 u32 addr = cmd->payload.regModify.addr;
1803 u32 mask = cmd->payload.regModify.mask;
1804 u32 data = cmd->payload.regModify.val;
1805
1806 nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data);
1807 nvkm_mask(device, addr, mask, data);
1808 }
1809 break;
1810 case GSP_SEQ_BUF_OPCODE_REG_POLL: {
1811 u32 addr = cmd->payload.regPoll.addr;
1812 u32 mask = cmd->payload.regPoll.mask;
1813 u32 data = cmd->payload.regPoll.val;
1814 u32 usec = cmd->payload.regPoll.timeout ?: 4000000;
1815 //u32 error = cmd->payload.regPoll.error;
1816
1817 nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec);
1818 nvkm_rd32(device, addr);
1819 nvkm_usec(device, usec,
1820 if ((nvkm_rd32(device, addr) & mask) == data)
1821 break;
1822 );
1823 }
1824 break;
1825 case GSP_SEQ_BUF_OPCODE_DELAY_US: {
1826 u32 usec = cmd->payload.delayUs.val;
1827
1828 nvkm_trace(subdev, "seq usec %d\n", usec);
1829 udelay(usec);
1830 }
1831 break;
1832 case GSP_SEQ_BUF_OPCODE_REG_STORE: {
1833 u32 addr = cmd->payload.regStore.addr;
1834 u32 slot = cmd->payload.regStore.index;
1835
1836 seq->regSaveArea[slot] = nvkm_rd32(device, addr);
1837 nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot,
1838 seq->regSaveArea[slot]);
1839 }
1840 break;
1841 case GSP_SEQ_BUF_OPCODE_CORE_RESET:
1842 nvkm_trace(subdev, "seq core reset\n");
1843 nvkm_falcon_reset(&gsp->falcon);
1844 nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080);
1845 nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000);
1846 break;
1847 case GSP_SEQ_BUF_OPCODE_CORE_START:
1848 nvkm_trace(subdev, "seq core start\n");
1849 if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040)
1850 nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002);
1851 else
1852 nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002);
1853 break;
1854 case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT:
1855 nvkm_trace(subdev, "seq core wait halt\n");
1856 nvkm_msec(device, 2000,
1857 if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010)
1858 break;
1859 );
1860 break;
1861 case GSP_SEQ_BUF_OPCODE_CORE_RESUME: {
1862 struct nvkm_sec2 *sec2 = device->sec2;
1863 u32 mbox0;
1864
1865 nvkm_trace(subdev, "seq core resume\n");
1866
1867 ret = gsp->func->reset(gsp);
1868 if (WARN_ON(ret))
1869 return ret;
1870
1871 nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
1872 nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
1873
1874 nvkm_falcon_start(&sec2->falcon);
1875
1876 if (nvkm_msec(device, 2000,
1877 if (nvkm_rd32(device, 0x1180f8) & 0x04000000)
1878 break;
1879 ) < 0)
1880 return -ETIMEDOUT;
1881
1882 mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040);
1883 if (WARN_ON(mbox0)) {
1884 nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0);
1885 return -EIO;
1886 }
1887
1888 nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1889
1890 if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1891 return -EIO;
1892 }
1893 break;
1894 default:
1895 nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode);
1896 return -EINVAL;
1897 }
1898 }
1899
1900 return 0;
1901 }
1902
1903 static int
r535_gsp_booter_unload(struct nvkm_gsp * gsp,u32 mbox0,u32 mbox1)1904 r535_gsp_booter_unload(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
1905 {
1906 struct nvkm_subdev *subdev = &gsp->subdev;
1907 struct nvkm_device *device = subdev->device;
1908 u32 wpr2_hi;
1909 int ret;
1910
1911 wpr2_hi = nvkm_rd32(device, 0x1fa828);
1912 if (!wpr2_hi) {
1913 nvkm_debug(subdev, "WPR2 not set - skipping booter unload\n");
1914 return 0;
1915 }
1916
1917 ret = nvkm_falcon_fw_boot(&gsp->booter.unload, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
1918 if (WARN_ON(ret))
1919 return ret;
1920
1921 wpr2_hi = nvkm_rd32(device, 0x1fa828);
1922 if (WARN_ON(wpr2_hi))
1923 return -EIO;
1924
1925 return 0;
1926 }
1927
1928 static int
r535_gsp_booter_load(struct nvkm_gsp * gsp,u32 mbox0,u32 mbox1)1929 r535_gsp_booter_load(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
1930 {
1931 int ret;
1932
1933 ret = nvkm_falcon_fw_boot(&gsp->booter.load, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
1934 if (ret)
1935 return ret;
1936
1937 nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1938
1939 if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1940 return -EIO;
1941
1942 return 0;
1943 }
1944
1945 static int
r535_gsp_wpr_meta_init(struct nvkm_gsp * gsp)1946 r535_gsp_wpr_meta_init(struct nvkm_gsp *gsp)
1947 {
1948 GspFwWprMeta *meta;
1949 int ret;
1950
1951 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->wpr_meta);
1952 if (ret)
1953 return ret;
1954
1955 meta = gsp->wpr_meta.data;
1956
1957 meta->magic = GSP_FW_WPR_META_MAGIC;
1958 meta->revision = GSP_FW_WPR_META_REVISION;
1959
1960 meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr;
1961 meta->sizeOfRadix3Elf = gsp->fb.wpr2.elf.size;
1962
1963 meta->sysmemAddrOfBootloader = gsp->boot.fw.addr;
1964 meta->sizeOfBootloader = gsp->boot.fw.size;
1965 meta->bootloaderCodeOffset = gsp->boot.code_offset;
1966 meta->bootloaderDataOffset = gsp->boot.data_offset;
1967 meta->bootloaderManifestOffset = gsp->boot.manifest_offset;
1968
1969 meta->sysmemAddrOfSignature = gsp->sig.addr;
1970 meta->sizeOfSignature = gsp->sig.size;
1971
1972 meta->gspFwRsvdStart = gsp->fb.heap.addr;
1973 meta->nonWprHeapOffset = gsp->fb.heap.addr;
1974 meta->nonWprHeapSize = gsp->fb.heap.size;
1975 meta->gspFwWprStart = gsp->fb.wpr2.addr;
1976 meta->gspFwHeapOffset = gsp->fb.wpr2.heap.addr;
1977 meta->gspFwHeapSize = gsp->fb.wpr2.heap.size;
1978 meta->gspFwOffset = gsp->fb.wpr2.elf.addr;
1979 meta->bootBinOffset = gsp->fb.wpr2.boot.addr;
1980 meta->frtsOffset = gsp->fb.wpr2.frts.addr;
1981 meta->frtsSize = gsp->fb.wpr2.frts.size;
1982 meta->gspFwWprEnd = ALIGN_DOWN(gsp->fb.bios.vga_workspace.addr, 0x20000);
1983 meta->fbSize = gsp->fb.size;
1984 meta->vgaWorkspaceOffset = gsp->fb.bios.vga_workspace.addr;
1985 meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size;
1986 meta->bootCount = 0;
1987 meta->partitionRpcAddr = 0;
1988 meta->partitionRpcRequestOffset = 0;
1989 meta->partitionRpcReplyOffset = 0;
1990 meta->verified = 0;
1991 return 0;
1992 }
1993
1994 static int
r535_gsp_shared_init(struct nvkm_gsp * gsp)1995 r535_gsp_shared_init(struct nvkm_gsp *gsp)
1996 {
1997 struct {
1998 msgqTxHeader tx;
1999 msgqRxHeader rx;
2000 } *cmdq, *msgq;
2001 int ret, i;
2002
2003 gsp->shm.cmdq.size = 0x40000;
2004 gsp->shm.msgq.size = 0x40000;
2005
2006 gsp->shm.ptes.nr = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT;
2007 gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
2008 gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
2009
2010 ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size +
2011 gsp->shm.cmdq.size +
2012 gsp->shm.msgq.size,
2013 &gsp->shm.mem);
2014 if (ret)
2015 return ret;
2016
2017 gsp->shm.ptes.ptr = gsp->shm.mem.data;
2018 gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size;
2019 gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size;
2020
2021 for (i = 0; i < gsp->shm.ptes.nr; i++)
2022 gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT);
2023
2024 cmdq = gsp->shm.cmdq.ptr;
2025 cmdq->tx.version = 0;
2026 cmdq->tx.size = gsp->shm.cmdq.size;
2027 cmdq->tx.entryOff = GSP_PAGE_SIZE;
2028 cmdq->tx.msgSize = GSP_PAGE_SIZE;
2029 cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize;
2030 cmdq->tx.writePtr = 0;
2031 cmdq->tx.flags = 1;
2032 cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr);
2033
2034 msgq = gsp->shm.msgq.ptr;
2035
2036 gsp->cmdq.cnt = cmdq->tx.msgCount;
2037 gsp->cmdq.wptr = &cmdq->tx.writePtr;
2038 gsp->cmdq.rptr = &msgq->rx.readPtr;
2039 gsp->msgq.cnt = cmdq->tx.msgCount;
2040 gsp->msgq.wptr = &msgq->tx.writePtr;
2041 gsp->msgq.rptr = &cmdq->rx.readPtr;
2042 return 0;
2043 }
2044
2045 static int
r535_gsp_rmargs_init(struct nvkm_gsp * gsp,bool resume)2046 r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume)
2047 {
2048 GSP_ARGUMENTS_CACHED *args;
2049 int ret;
2050
2051 if (!resume) {
2052 ret = r535_gsp_shared_init(gsp);
2053 if (ret)
2054 return ret;
2055
2056 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs);
2057 if (ret)
2058 return ret;
2059 }
2060
2061 args = gsp->rmargs.data;
2062 args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr;
2063 args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr;
2064 args->messageQueueInitArguments.cmdQueueOffset =
2065 (u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data;
2066 args->messageQueueInitArguments.statQueueOffset =
2067 (u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data;
2068
2069 if (!resume) {
2070 args->srInitArguments.oldLevel = 0;
2071 args->srInitArguments.flags = 0;
2072 args->srInitArguments.bInPMTransition = 0;
2073 } else {
2074 args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
2075 args->srInitArguments.flags = 0;
2076 args->srInitArguments.bInPMTransition = 1;
2077 }
2078
2079 return 0;
2080 }
2081
2082 #ifdef CONFIG_DEBUG_FS
2083
2084 /*
2085 * If GSP-RM load fails, then the GSP nvkm object will be deleted, the logging
2086 * debugfs entries will be deleted, and it will not be possible to debug the
2087 * load failure. The keep_gsp_logging parameter tells Nouveau to copy the
2088 * logging buffers to new debugfs entries, and these entries are retained
2089 * until the driver unloads.
2090 */
2091 static bool keep_gsp_logging;
2092 module_param(keep_gsp_logging, bool, 0444);
2093 MODULE_PARM_DESC(keep_gsp_logging,
2094 "Migrate the GSP-RM logging debugfs entries upon exit");
2095
2096 /*
2097 * GSP-RM uses a pseudo-class mechanism to define of a variety of per-"engine"
2098 * data structures, and each engine has a "class ID" genererated by a
2099 * pre-processor. This is the class ID for the PMU.
2100 */
2101 #define NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU 0xf3d722
2102
2103 /**
2104 * rpc_ucode_libos_print_v1E_08 - RPC payload for libos print buffers
2105 * @ucode_eng_desc: the engine descriptor
2106 * @libos_print_buf_size: the size of the libos_print_buf[]
2107 * @libos_print_buf: the actual buffer
2108 *
2109 * The engine descriptor is divided into 31:8 "class ID" and 7:0 "instance
2110 * ID". We only care about messages from PMU.
2111 */
2112 struct rpc_ucode_libos_print_v1e_08 {
2113 u32 ucode_eng_desc;
2114 u32 libos_print_buf_size;
2115 u8 libos_print_buf[];
2116 };
2117
2118 /**
2119 * r535_gsp_msg_libos_print - capture log message from the PMU
2120 * @priv: gsp pointer
2121 * @fn: function number (ignored)
2122 * @repv: pointer to libos print RPC
2123 * @repc: message size
2124 *
2125 * Called when we receive a UCODE_LIBOS_PRINT event RPC from GSP-RM. This RPC
2126 * contains the contents of the libos print buffer from PMU. It is typically
2127 * only written to when PMU encounters an error.
2128 *
2129 * Technically this RPC can be used to pass print buffers from any number of
2130 * GSP-RM engines, but we only expect to receive them for the PMU.
2131 *
2132 * For the PMU, the buffer is 4K in size and the RPC always contains the full
2133 * contents.
2134 */
2135 static int
r535_gsp_msg_libos_print(void * priv,u32 fn,void * repv,u32 repc)2136 r535_gsp_msg_libos_print(void *priv, u32 fn, void *repv, u32 repc)
2137 {
2138 struct nvkm_gsp *gsp = priv;
2139 struct nvkm_subdev *subdev = &gsp->subdev;
2140 struct rpc_ucode_libos_print_v1e_08 *rpc = repv;
2141 unsigned int class = rpc->ucode_eng_desc >> 8;
2142
2143 nvkm_debug(subdev, "received libos print from class 0x%x for %u bytes\n",
2144 class, rpc->libos_print_buf_size);
2145
2146 if (class != NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU) {
2147 nvkm_warn(subdev,
2148 "received libos print from unknown class 0x%x\n",
2149 class);
2150 return -ENOMSG;
2151 }
2152
2153 if (rpc->libos_print_buf_size > GSP_PAGE_SIZE) {
2154 nvkm_error(subdev, "libos print is too large (%u bytes)\n",
2155 rpc->libos_print_buf_size);
2156 return -E2BIG;
2157 }
2158
2159 memcpy(gsp->blob_pmu.data, rpc->libos_print_buf, rpc->libos_print_buf_size);
2160
2161 return 0;
2162 }
2163
2164 /**
2165 * create_debufgs - create a blob debugfs entry
2166 * @gsp: gsp pointer
2167 * @name: name of this dentry
2168 * @blob: blob wrapper
2169 *
2170 * Creates a debugfs entry for a logging buffer with the name 'name'.
2171 */
create_debugfs(struct nvkm_gsp * gsp,const char * name,struct debugfs_blob_wrapper * blob)2172 static struct dentry *create_debugfs(struct nvkm_gsp *gsp, const char *name,
2173 struct debugfs_blob_wrapper *blob)
2174 {
2175 struct dentry *dent;
2176
2177 dent = debugfs_create_blob(name, 0444, gsp->debugfs.parent, blob);
2178 if (IS_ERR(dent)) {
2179 nvkm_error(&gsp->subdev,
2180 "failed to create %s debugfs entry\n", name);
2181 return NULL;
2182 }
2183
2184 /*
2185 * For some reason, debugfs_create_blob doesn't set the size of the
2186 * dentry, so do that here. See [1]
2187 *
2188 * [1] https://lore.kernel.org/r/linux-fsdevel/20240207200619.3354549-1-ttabi@nvidia.com/
2189 */
2190 i_size_write(d_inode(dent), blob->size);
2191
2192 return dent;
2193 }
2194
2195 /**
2196 * r535_gsp_libos_debugfs_init - create logging debugfs entries
2197 * @gsp: gsp pointer
2198 *
2199 * Create the debugfs entries. This exposes the log buffers to userspace so
2200 * that an external tool can parse it.
2201 *
2202 * The 'logpmu' contains exception dumps from the PMU. It is written via an
2203 * RPC sent from GSP-RM and must be only 4KB. We create it here because it's
2204 * only useful if there is a debugfs entry to expose it. If we get the PMU
2205 * logging RPC and there is no debugfs entry, the RPC is just ignored.
2206 *
2207 * The blob_init, blob_rm, and blob_pmu objects can't be transient
2208 * because debugfs_create_blob doesn't copy them.
2209 *
2210 * NOTE: OpenRM loads the logging elf image and prints the log messages
2211 * in real-time. We may add that capability in the future, but that
2212 * requires loading ELF images that are not distributed with the driver and
2213 * adding the parsing code to Nouveau.
2214 *
2215 * Ideally, this should be part of nouveau_debugfs_init(), but that function
2216 * is called too late. We really want to create these debugfs entries before
2217 * r535_gsp_booter_load() is called, so that if GSP-RM fails to initialize,
2218 * there could still be a log to capture.
2219 */
2220 static void
r535_gsp_libos_debugfs_init(struct nvkm_gsp * gsp)2221 r535_gsp_libos_debugfs_init(struct nvkm_gsp *gsp)
2222 {
2223 struct device *dev = gsp->subdev.device->dev;
2224
2225 /* Create a new debugfs directory with a name unique to this GPU. */
2226 gsp->debugfs.parent = debugfs_create_dir(dev_name(dev), nouveau_debugfs_root);
2227 if (IS_ERR(gsp->debugfs.parent)) {
2228 nvkm_error(&gsp->subdev,
2229 "failed to create %s debugfs root\n", dev_name(dev));
2230 return;
2231 }
2232
2233 gsp->blob_init.data = gsp->loginit.data;
2234 gsp->blob_init.size = gsp->loginit.size;
2235 gsp->blob_intr.data = gsp->logintr.data;
2236 gsp->blob_intr.size = gsp->logintr.size;
2237 gsp->blob_rm.data = gsp->logrm.data;
2238 gsp->blob_rm.size = gsp->logrm.size;
2239
2240 gsp->debugfs.init = create_debugfs(gsp, "loginit", &gsp->blob_init);
2241 if (!gsp->debugfs.init)
2242 goto error;
2243
2244 gsp->debugfs.intr = create_debugfs(gsp, "logintr", &gsp->blob_intr);
2245 if (!gsp->debugfs.intr)
2246 goto error;
2247
2248 gsp->debugfs.rm = create_debugfs(gsp, "logrm", &gsp->blob_rm);
2249 if (!gsp->debugfs.rm)
2250 goto error;
2251
2252 /*
2253 * Since the PMU buffer is copied from an RPC, it doesn't need to be
2254 * a DMA buffer.
2255 */
2256 gsp->blob_pmu.size = GSP_PAGE_SIZE;
2257 gsp->blob_pmu.data = kzalloc(gsp->blob_pmu.size, GFP_KERNEL);
2258 if (!gsp->blob_pmu.data)
2259 goto error;
2260
2261 gsp->debugfs.pmu = create_debugfs(gsp, "logpmu", &gsp->blob_pmu);
2262 if (!gsp->debugfs.pmu) {
2263 kfree(gsp->blob_pmu.data);
2264 goto error;
2265 }
2266
2267 i_size_write(d_inode(gsp->debugfs.init), gsp->blob_init.size);
2268 i_size_write(d_inode(gsp->debugfs.intr), gsp->blob_intr.size);
2269 i_size_write(d_inode(gsp->debugfs.rm), gsp->blob_rm.size);
2270 i_size_write(d_inode(gsp->debugfs.pmu), gsp->blob_pmu.size);
2271
2272 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT,
2273 r535_gsp_msg_libos_print, gsp);
2274
2275 nvkm_debug(&gsp->subdev, "created debugfs GSP-RM logging entries\n");
2276
2277 if (keep_gsp_logging) {
2278 nvkm_info(&gsp->subdev,
2279 "logging buffers will be retained on failure\n");
2280 }
2281
2282 return;
2283
2284 error:
2285 debugfs_remove(gsp->debugfs.parent);
2286 gsp->debugfs.parent = NULL;
2287 }
2288
2289 #endif
2290
2291 static inline u64
r535_gsp_libos_id8(const char * name)2292 r535_gsp_libos_id8(const char *name)
2293 {
2294 u64 id = 0;
2295
2296 for (int i = 0; i < sizeof(id) && *name; i++, name++)
2297 id = (id << 8) | *name;
2298
2299 return id;
2300 }
2301
2302 /**
2303 * create_pte_array() - creates a PTE array of a physically contiguous buffer
2304 * @ptes: pointer to the array
2305 * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
2306 * @size: size of the buffer
2307 *
2308 * GSP-RM sometimes expects physically-contiguous buffers to have an array of
2309 * "PTEs" for each page in that buffer. Although in theory that allows for
2310 * the buffer to be physically discontiguous, GSP-RM does not currently
2311 * support that.
2312 *
2313 * In this case, the PTEs are DMA addresses of each page of the buffer. Since
2314 * the buffer is physically contiguous, calculating all the PTEs is simple
2315 * math.
2316 *
2317 * See memdescGetPhysAddrsForGpu()
2318 */
create_pte_array(u64 * ptes,dma_addr_t addr,size_t size)2319 static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
2320 {
2321 unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
2322 unsigned int i;
2323
2324 for (i = 0; i < num_pages; i++)
2325 ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
2326 }
2327
2328 /**
2329 * r535_gsp_libos_init() -- create the libos arguments structure
2330 * @gsp: gsp pointer
2331 *
2332 * The logging buffers are byte queues that contain encoded printf-like
2333 * messages from GSP-RM. They need to be decoded by a special application
2334 * that can parse the buffers.
2335 *
2336 * The 'loginit' buffer contains logs from early GSP-RM init and
2337 * exception dumps. The 'logrm' buffer contains the subsequent logs. Both are
2338 * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
2339 *
2340 * The physical address map for the log buffer is stored in the buffer
2341 * itself, starting with offset 1. Offset 0 contains the "put" pointer (pp).
2342 * Initially, pp is equal to 0. If the buffer has valid logging data in it,
2343 * then pp points to index into the buffer where the next logging entry will
2344 * be written. Therefore, the logging data is valid if:
2345 * 1 <= pp < sizeof(buffer)/sizeof(u64)
2346 *
2347 * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
2348 * configured for a larger page size (e.g. 64K pages), we need to give
2349 * the GSP an array of 4K pages. Fortunately, since the buffer is
2350 * physically contiguous, it's simple math to calculate the addresses.
2351 *
2352 * The buffers must be a multiple of GSP_PAGE_SIZE. GSP-RM also currently
2353 * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
2354 * buffers to be physically contiguous anyway.
2355 *
2356 * The memory allocated for the arguments must remain until the GSP sends the
2357 * init_done RPC.
2358 *
2359 * See _kgspInitLibosLoggingStructures (allocates memory for buffers)
2360 * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
2361 */
2362 static int
r535_gsp_libos_init(struct nvkm_gsp * gsp)2363 r535_gsp_libos_init(struct nvkm_gsp *gsp)
2364 {
2365 LibosMemoryRegionInitArgument *args;
2366 int ret;
2367
2368 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos);
2369 if (ret)
2370 return ret;
2371
2372 args = gsp->libos.data;
2373
2374 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit);
2375 if (ret)
2376 return ret;
2377
2378 args[0].id8 = r535_gsp_libos_id8("LOGINIT");
2379 args[0].pa = gsp->loginit.addr;
2380 args[0].size = gsp->loginit.size;
2381 args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2382 args[0].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2383 create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size);
2384
2385 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr);
2386 if (ret)
2387 return ret;
2388
2389 args[1].id8 = r535_gsp_libos_id8("LOGINTR");
2390 args[1].pa = gsp->logintr.addr;
2391 args[1].size = gsp->logintr.size;
2392 args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2393 args[1].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2394 create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size);
2395
2396 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm);
2397 if (ret)
2398 return ret;
2399
2400 args[2].id8 = r535_gsp_libos_id8("LOGRM");
2401 args[2].pa = gsp->logrm.addr;
2402 args[2].size = gsp->logrm.size;
2403 args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2404 args[2].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2405 create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size);
2406
2407 ret = r535_gsp_rmargs_init(gsp, false);
2408 if (ret)
2409 return ret;
2410
2411 args[3].id8 = r535_gsp_libos_id8("RMARGS");
2412 args[3].pa = gsp->rmargs.addr;
2413 args[3].size = gsp->rmargs.size;
2414 args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2415 args[3].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2416
2417 #ifdef CONFIG_DEBUG_FS
2418 r535_gsp_libos_debugfs_init(gsp);
2419 #endif
2420
2421 return 0;
2422 }
2423
2424 void
nvkm_gsp_sg_free(struct nvkm_device * device,struct sg_table * sgt)2425 nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt)
2426 {
2427 struct scatterlist *sgl;
2428 int i;
2429
2430 dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
2431
2432 for_each_sgtable_sg(sgt, sgl, i) {
2433 struct page *page = sg_page(sgl);
2434
2435 __free_page(page);
2436 }
2437
2438 sg_free_table(sgt);
2439 }
2440
2441 int
nvkm_gsp_sg(struct nvkm_device * device,u64 size,struct sg_table * sgt)2442 nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt)
2443 {
2444 const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE);
2445 struct scatterlist *sgl;
2446 int ret, i;
2447
2448 ret = sg_alloc_table(sgt, pages, GFP_KERNEL);
2449 if (ret)
2450 return ret;
2451
2452 for_each_sgtable_sg(sgt, sgl, i) {
2453 struct page *page = alloc_page(GFP_KERNEL);
2454
2455 if (!page) {
2456 nvkm_gsp_sg_free(device, sgt);
2457 return -ENOMEM;
2458 }
2459
2460 sg_set_page(sgl, page, PAGE_SIZE, 0);
2461 }
2462
2463 ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
2464 if (ret)
2465 nvkm_gsp_sg_free(device, sgt);
2466
2467 return ret;
2468 }
2469
2470 static void
nvkm_gsp_radix3_dtor(struct nvkm_gsp * gsp,struct nvkm_gsp_radix3 * rx3)2471 nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
2472 {
2473 nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2);
2474 nvkm_gsp_mem_dtor(&rx3->lvl1);
2475 nvkm_gsp_mem_dtor(&rx3->lvl0);
2476 }
2477
2478 /**
2479 * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
2480 * @gsp: gsp pointer
2481 * @sgt: S/G list to traverse
2482 * @size: size of the image, in bytes
2483 * @rx3: radix3 array to update
2484 *
2485 * The GSP uses a three-level page table, called radix3, to map the firmware.
2486 * Each 64-bit "pointer" in the table is either the bus address of an entry in
2487 * the next table (for levels 0 and 1) or the bus address of the next page in
2488 * the GSP firmware image itself.
2489 *
2490 * Level 0 contains a single entry in one page that points to the first page
2491 * of level 1.
2492 *
2493 * Level 1, since it's also only one page in size, contains up to 512 entries,
2494 * one for each page in Level 2.
2495 *
2496 * Level 2 can be up to 512 pages in size, and each of those entries points to
2497 * the next page of the firmware image. Since there can be up to 512*512
2498 * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
2499 *
2500 * Internally, the GSP has its window into system memory, but the base
2501 * physical address of the aperture is not 0. In fact, it varies depending on
2502 * the GPU architecture. Since the GPU is a PCI device, this window is
2503 * accessed via DMA and is therefore bound by IOMMU translation. The end
2504 * result is that GSP-RM must translate the bus addresses in the table to GSP
2505 * physical addresses. All this should happen transparently.
2506 *
2507 * Returns 0 on success, or negative error code
2508 *
2509 * See kgspCreateRadix3_IMPL
2510 */
2511 static int
nvkm_gsp_radix3_sg(struct nvkm_gsp * gsp,struct sg_table * sgt,u64 size,struct nvkm_gsp_radix3 * rx3)2512 nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size,
2513 struct nvkm_gsp_radix3 *rx3)
2514 {
2515 struct sg_dma_page_iter sg_dma_iter;
2516 struct scatterlist *sg;
2517 size_t bufsize;
2518 u64 *pte;
2519 int ret, i, page_idx = 0;
2520
2521 ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0);
2522 if (ret)
2523 return ret;
2524
2525 ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1);
2526 if (ret)
2527 goto lvl1_fail;
2528
2529 // Allocate level 2
2530 bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE);
2531 ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2);
2532 if (ret)
2533 goto lvl2_fail;
2534
2535 // Write the bus address of level 1 to level 0
2536 pte = rx3->lvl0.data;
2537 *pte = rx3->lvl1.addr;
2538
2539 // Write the bus address of each page in level 2 to level 1
2540 pte = rx3->lvl1.data;
2541 for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0)
2542 *pte++ = sg_page_iter_dma_address(&sg_dma_iter);
2543
2544 // Finally, write the bus address of each page in sgt to level 2
2545 for_each_sgtable_sg(&rx3->lvl2, sg, i) {
2546 void *sgl_end;
2547
2548 pte = sg_virt(sg);
2549 sgl_end = (void *)pte + sg->length;
2550
2551 for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) {
2552 *pte++ = sg_page_iter_dma_address(&sg_dma_iter);
2553 page_idx++;
2554
2555 // Go to the next scatterlist for level 2 if we've reached the end
2556 if ((void *)pte >= sgl_end)
2557 break;
2558 }
2559 }
2560
2561 if (ret) {
2562 lvl2_fail:
2563 nvkm_gsp_mem_dtor(&rx3->lvl1);
2564 lvl1_fail:
2565 nvkm_gsp_mem_dtor(&rx3->lvl0);
2566 }
2567
2568 return ret;
2569 }
2570
2571 int
r535_gsp_fini(struct nvkm_gsp * gsp,bool suspend)2572 r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
2573 {
2574 u32 mbox0 = 0xff, mbox1 = 0xff;
2575 int ret;
2576
2577 if (!gsp->running)
2578 return 0;
2579
2580 if (suspend) {
2581 GspFwWprMeta *meta = gsp->wpr_meta.data;
2582 u64 len = meta->gspFwWprEnd - meta->gspFwWprStart;
2583 GspFwSRMeta *sr;
2584
2585 ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt);
2586 if (ret)
2587 return ret;
2588
2589 ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3);
2590 if (ret)
2591 return ret;
2592
2593 ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta);
2594 if (ret)
2595 return ret;
2596
2597 sr = gsp->sr.meta.data;
2598 sr->magic = GSP_FW_SR_META_MAGIC;
2599 sr->revision = GSP_FW_SR_META_REVISION;
2600 sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr;
2601 sr->sizeOfSuspendResumeData = len;
2602
2603 mbox0 = lower_32_bits(gsp->sr.meta.addr);
2604 mbox1 = upper_32_bits(gsp->sr.meta.addr);
2605 }
2606
2607 ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend);
2608 if (WARN_ON(ret))
2609 return ret;
2610
2611 nvkm_msec(gsp->subdev.device, 2000,
2612 if (nvkm_falcon_rd32(&gsp->falcon, 0x040) & 0x80000000)
2613 break;
2614 );
2615
2616 nvkm_falcon_reset(&gsp->falcon);
2617
2618 ret = nvkm_gsp_fwsec_sb(gsp);
2619 WARN_ON(ret);
2620
2621 ret = r535_gsp_booter_unload(gsp, mbox0, mbox1);
2622 WARN_ON(ret);
2623
2624 gsp->running = false;
2625 return 0;
2626 }
2627
2628 int
r535_gsp_init(struct nvkm_gsp * gsp)2629 r535_gsp_init(struct nvkm_gsp *gsp)
2630 {
2631 u32 mbox0, mbox1;
2632 int ret;
2633
2634 if (!gsp->sr.meta.data) {
2635 mbox0 = lower_32_bits(gsp->wpr_meta.addr);
2636 mbox1 = upper_32_bits(gsp->wpr_meta.addr);
2637 } else {
2638 r535_gsp_rmargs_init(gsp, true);
2639
2640 mbox0 = lower_32_bits(gsp->sr.meta.addr);
2641 mbox1 = upper_32_bits(gsp->sr.meta.addr);
2642 }
2643
2644 /* Execute booter to handle (eventually...) booting GSP-RM. */
2645 ret = r535_gsp_booter_load(gsp, mbox0, mbox1);
2646 if (WARN_ON(ret))
2647 goto done;
2648
2649 ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE);
2650 if (ret)
2651 goto done;
2652
2653 gsp->running = true;
2654
2655 done:
2656 if (gsp->sr.meta.data) {
2657 nvkm_gsp_mem_dtor(&gsp->sr.meta);
2658 nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
2659 nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
2660 return ret;
2661 }
2662
2663 if (ret == 0)
2664 ret = r535_gsp_postinit(gsp);
2665
2666 return ret;
2667 }
2668
2669 static int
r535_gsp_rm_boot_ctor(struct nvkm_gsp * gsp)2670 r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp)
2671 {
2672 const struct firmware *fw = gsp->fws.bl;
2673 const struct nvfw_bin_hdr *hdr;
2674 RM_RISCV_UCODE_DESC *desc;
2675 int ret;
2676
2677 hdr = nvfw_bin_hdr(&gsp->subdev, fw->data);
2678 desc = (void *)fw->data + hdr->header_offset;
2679
2680 ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw);
2681 if (ret)
2682 return ret;
2683
2684 memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size);
2685
2686 gsp->boot.code_offset = desc->monitorCodeOffset;
2687 gsp->boot.data_offset = desc->monitorDataOffset;
2688 gsp->boot.manifest_offset = desc->manifestOffset;
2689 gsp->boot.app_version = desc->appVersion;
2690 return 0;
2691 }
2692
2693 static const struct nvkm_firmware_func
2694 r535_gsp_fw = {
2695 .type = NVKM_FIRMWARE_IMG_SGT,
2696 };
2697
2698 static int
r535_gsp_elf_section(struct nvkm_gsp * gsp,const char * name,const u8 ** pdata,u64 * psize)2699 r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize)
2700 {
2701 const u8 *img = gsp->fws.rm->data;
2702 const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img;
2703 const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff];
2704 const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset];
2705
2706 for (int i = 0; i < ehdr->e_shnum; i++, shdr++) {
2707 if (!strcmp(&names[shdr->sh_name], name)) {
2708 *pdata = &img[shdr->sh_offset];
2709 *psize = shdr->sh_size;
2710 return 0;
2711 }
2712 }
2713
2714 nvkm_error(&gsp->subdev, "section '%s' not found\n", name);
2715 return -ENOENT;
2716 }
2717
2718 static void
r535_gsp_dtor_fws(struct nvkm_gsp * gsp)2719 r535_gsp_dtor_fws(struct nvkm_gsp *gsp)
2720 {
2721 nvkm_firmware_put(gsp->fws.bl);
2722 gsp->fws.bl = NULL;
2723 nvkm_firmware_put(gsp->fws.booter.unload);
2724 gsp->fws.booter.unload = NULL;
2725 nvkm_firmware_put(gsp->fws.booter.load);
2726 gsp->fws.booter.load = NULL;
2727 nvkm_firmware_put(gsp->fws.rm);
2728 gsp->fws.rm = NULL;
2729 }
2730
2731 #ifdef CONFIG_DEBUG_FS
2732
2733 struct r535_gsp_log {
2734 struct nvif_log log;
2735
2736 /*
2737 * Logging buffers in debugfs. The wrapper objects need to remain
2738 * in memory until the dentry is deleted.
2739 */
2740 struct dentry *debugfs_logging_dir;
2741 struct debugfs_blob_wrapper blob_init;
2742 struct debugfs_blob_wrapper blob_intr;
2743 struct debugfs_blob_wrapper blob_rm;
2744 struct debugfs_blob_wrapper blob_pmu;
2745 };
2746
2747 /**
2748 * r535_debugfs_shutdown - delete GSP-RM logging buffers for one GPU
2749 * @_log: nvif_log struct for this GPU
2750 *
2751 * Called when the driver is shutting down, to clean up the retained GSP-RM
2752 * logging buffers.
2753 */
r535_debugfs_shutdown(struct nvif_log * _log)2754 static void r535_debugfs_shutdown(struct nvif_log *_log)
2755 {
2756 struct r535_gsp_log *log = container_of(_log, struct r535_gsp_log, log);
2757
2758 debugfs_remove(log->debugfs_logging_dir);
2759
2760 kfree(log->blob_init.data);
2761 kfree(log->blob_intr.data);
2762 kfree(log->blob_rm.data);
2763 kfree(log->blob_pmu.data);
2764
2765 /* We also need to delete the list object */
2766 kfree(log);
2767 }
2768
2769 /**
2770 * is_empty - return true if the logging buffer was never written to
2771 * @b: blob wrapper with ->data field pointing to logging buffer
2772 *
2773 * The first 64-bit field of loginit, and logintr, and logrm is the 'put'
2774 * pointer, and it is initialized to 0. It's a dword-based index into the
2775 * circular buffer, indicating where the next printf write will be made.
2776 *
2777 * If the pointer is still 0 when GSP-RM is shut down, that means that the
2778 * buffer was never written to, so it can be ignored.
2779 *
2780 * This test also works for logpmu, even though it doesn't have a put pointer.
2781 */
is_empty(const struct debugfs_blob_wrapper * b)2782 static bool is_empty(const struct debugfs_blob_wrapper *b)
2783 {
2784 u64 *put = b->data;
2785
2786 return put ? (*put == 0) : true;
2787 }
2788
2789 /**
2790 * r535_gsp_copy_log - preserve the logging buffers in a blob
2791 *
2792 * When GSP shuts down, the nvkm_gsp object and all its memory is deleted.
2793 * To preserve the logging buffers, the buffers need to be copied, but only
2794 * if they actually have data.
2795 */
r535_gsp_copy_log(struct dentry * parent,const char * name,const struct debugfs_blob_wrapper * s,struct debugfs_blob_wrapper * t)2796 static int r535_gsp_copy_log(struct dentry *parent,
2797 const char *name,
2798 const struct debugfs_blob_wrapper *s,
2799 struct debugfs_blob_wrapper *t)
2800 {
2801 struct dentry *dent;
2802 void *p;
2803
2804 if (is_empty(s))
2805 return 0;
2806
2807 /* The original buffers will be deleted */
2808 p = kmemdup(s->data, s->size, GFP_KERNEL);
2809 if (!p)
2810 return -ENOMEM;
2811
2812 t->data = p;
2813 t->size = s->size;
2814
2815 dent = debugfs_create_blob(name, 0444, parent, t);
2816 if (IS_ERR(dent)) {
2817 kfree(p);
2818 memset(t, 0, sizeof(*t));
2819 return PTR_ERR(dent);
2820 }
2821
2822 i_size_write(d_inode(dent), t->size);
2823
2824 return 0;
2825 }
2826
2827 /**
2828 * r535_gsp_retain_logging - copy logging buffers to new debugfs root
2829 * @gsp: gsp pointer
2830 *
2831 * If keep_gsp_logging is enabled, then we want to preserve the GSP-RM logging
2832 * buffers and their debugfs entries, but all those objects would normally
2833 * deleted if GSP-RM fails to load.
2834 *
2835 * To preserve the logging buffers, we need to:
2836 *
2837 * 1) Allocate new buffers and copy the logs into them, so that the original
2838 * DMA buffers can be released.
2839 *
2840 * 2) Preserve the directories. We don't need to save single dentries because
2841 * we're going to delete the parent when the
2842 *
2843 * If anything fails in this process, then all the dentries need to be
2844 * deleted. We don't need to deallocate the original logging buffers because
2845 * the caller will do that regardless.
2846 */
r535_gsp_retain_logging(struct nvkm_gsp * gsp)2847 static void r535_gsp_retain_logging(struct nvkm_gsp *gsp)
2848 {
2849 struct device *dev = gsp->subdev.device->dev;
2850 struct r535_gsp_log *log = NULL;
2851 int ret;
2852
2853 if (!keep_gsp_logging || !gsp->debugfs.parent) {
2854 /* Nothing to do */
2855 goto exit;
2856 }
2857
2858 /* Check to make sure at least one buffer has data. */
2859 if (is_empty(&gsp->blob_init) && is_empty(&gsp->blob_intr) &&
2860 is_empty(&gsp->blob_rm) && is_empty(&gsp->blob_rm)) {
2861 nvkm_warn(&gsp->subdev, "all logging buffers are empty\n");
2862 goto exit;
2863 }
2864
2865 log = kzalloc(sizeof(*log), GFP_KERNEL);
2866 if (!log)
2867 goto error;
2868
2869 /*
2870 * Since the nvkm_gsp object is going away, the debugfs_blob_wrapper
2871 * objects are also being deleted, which means the dentries will no
2872 * longer be valid. Delete the existing entries so that we can create
2873 * new ones with the same name.
2874 */
2875 debugfs_remove(gsp->debugfs.init);
2876 debugfs_remove(gsp->debugfs.intr);
2877 debugfs_remove(gsp->debugfs.rm);
2878 debugfs_remove(gsp->debugfs.pmu);
2879
2880 ret = r535_gsp_copy_log(gsp->debugfs.parent, "loginit", &gsp->blob_init, &log->blob_init);
2881 if (ret)
2882 goto error;
2883
2884 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logintr", &gsp->blob_intr, &log->blob_intr);
2885 if (ret)
2886 goto error;
2887
2888 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logrm", &gsp->blob_rm, &log->blob_rm);
2889 if (ret)
2890 goto error;
2891
2892 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logpmu", &gsp->blob_pmu, &log->blob_pmu);
2893 if (ret)
2894 goto error;
2895
2896 /* The nvkm_gsp object is going away, so save the dentry */
2897 log->debugfs_logging_dir = gsp->debugfs.parent;
2898
2899 log->log.shutdown = r535_debugfs_shutdown;
2900 list_add(&log->log.entry, &gsp_logs.head);
2901
2902 nvkm_warn(&gsp->subdev,
2903 "logging buffers migrated to /sys/kernel/debug/nouveau/%s\n",
2904 dev_name(dev));
2905
2906 return;
2907
2908 error:
2909 nvkm_warn(&gsp->subdev, "failed to migrate logging buffers\n");
2910
2911 exit:
2912 debugfs_remove(gsp->debugfs.parent);
2913
2914 if (log) {
2915 kfree(log->blob_init.data);
2916 kfree(log->blob_intr.data);
2917 kfree(log->blob_rm.data);
2918 kfree(log->blob_pmu.data);
2919 kfree(log);
2920 }
2921 }
2922
2923 #endif
2924
2925 /**
2926 * r535_gsp_libos_debugfs_fini - cleanup/retain log buffers on shutdown
2927 * @gsp: gsp pointer
2928 *
2929 * If the log buffers are exposed via debugfs, the data for those entries
2930 * needs to be cleaned up when the GSP device shuts down.
2931 */
2932 static void
r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused * gsp)2933 r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused *gsp)
2934 {
2935 #ifdef CONFIG_DEBUG_FS
2936 r535_gsp_retain_logging(gsp);
2937
2938 /*
2939 * Unlike the other buffers, the PMU blob is a kmalloc'd buffer that
2940 * exists only if the debugfs entries were created.
2941 */
2942 kfree(gsp->blob_pmu.data);
2943 gsp->blob_pmu.data = NULL;
2944 #endif
2945 }
2946
2947 void
r535_gsp_dtor(struct nvkm_gsp * gsp)2948 r535_gsp_dtor(struct nvkm_gsp *gsp)
2949 {
2950 idr_destroy(&gsp->client_id.idr);
2951 mutex_destroy(&gsp->client_id.mutex);
2952
2953 nvkm_gsp_radix3_dtor(gsp, &gsp->radix3);
2954 nvkm_gsp_mem_dtor(&gsp->sig);
2955 nvkm_firmware_dtor(&gsp->fw);
2956
2957 nvkm_falcon_fw_dtor(&gsp->booter.unload);
2958 nvkm_falcon_fw_dtor(&gsp->booter.load);
2959
2960 mutex_destroy(&gsp->msgq.mutex);
2961 mutex_destroy(&gsp->cmdq.mutex);
2962
2963 r535_gsp_dtor_fws(gsp);
2964
2965 nvkm_gsp_mem_dtor(&gsp->rmargs);
2966 nvkm_gsp_mem_dtor(&gsp->wpr_meta);
2967 nvkm_gsp_mem_dtor(&gsp->shm.mem);
2968
2969 r535_gsp_libos_debugfs_fini(gsp);
2970
2971 nvkm_gsp_mem_dtor(&gsp->loginit);
2972 nvkm_gsp_mem_dtor(&gsp->logintr);
2973 nvkm_gsp_mem_dtor(&gsp->logrm);
2974 }
2975
2976 int
r535_gsp_oneinit(struct nvkm_gsp * gsp)2977 r535_gsp_oneinit(struct nvkm_gsp *gsp)
2978 {
2979 struct nvkm_device *device = gsp->subdev.device;
2980 const u8 *data;
2981 u64 size;
2982 int ret;
2983
2984 mutex_init(&gsp->cmdq.mutex);
2985 mutex_init(&gsp->msgq.mutex);
2986
2987 ret = gsp->func->booter.ctor(gsp, "booter-load", gsp->fws.booter.load,
2988 &device->sec2->falcon, &gsp->booter.load);
2989 if (ret)
2990 return ret;
2991
2992 ret = gsp->func->booter.ctor(gsp, "booter-unload", gsp->fws.booter.unload,
2993 &device->sec2->falcon, &gsp->booter.unload);
2994 if (ret)
2995 return ret;
2996
2997 /* Load GSP firmware from ELF image into DMA-accessible memory. */
2998 ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size);
2999 if (ret)
3000 return ret;
3001
3002 ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw);
3003 if (ret)
3004 return ret;
3005
3006 /* Load relevant signature from ELF image. */
3007 ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size);
3008 if (ret)
3009 return ret;
3010
3011 ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig);
3012 if (ret)
3013 return ret;
3014
3015 memcpy(gsp->sig.data, data, size);
3016
3017 /* Build radix3 page table for ELF image. */
3018 ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3);
3019 if (ret)
3020 return ret;
3021
3022 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER,
3023 r535_gsp_msg_run_cpu_sequencer, gsp);
3024 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp);
3025 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED,
3026 r535_gsp_msg_rc_triggered, gsp);
3027 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED,
3028 r535_gsp_msg_mmu_fault_queued, gsp);
3029 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp);
3030 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL);
3031 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL);
3032 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL);
3033 ret = r535_gsp_rm_boot_ctor(gsp);
3034 if (ret)
3035 return ret;
3036
3037 /* Release FW images - we've copied them to DMA buffers now. */
3038 r535_gsp_dtor_fws(gsp);
3039
3040 /* Calculate FB layout. */
3041 gsp->fb.wpr2.frts.size = 0x100000;
3042 gsp->fb.wpr2.frts.addr = ALIGN_DOWN(gsp->fb.bios.addr, 0x20000) - gsp->fb.wpr2.frts.size;
3043
3044 gsp->fb.wpr2.boot.size = gsp->boot.fw.size;
3045 gsp->fb.wpr2.boot.addr = ALIGN_DOWN(gsp->fb.wpr2.frts.addr - gsp->fb.wpr2.boot.size, 0x1000);
3046
3047 gsp->fb.wpr2.elf.size = gsp->fw.len;
3048 gsp->fb.wpr2.elf.addr = ALIGN_DOWN(gsp->fb.wpr2.boot.addr - gsp->fb.wpr2.elf.size, 0x10000);
3049
3050 {
3051 u32 fb_size_gb = DIV_ROUND_UP_ULL(gsp->fb.size, 1 << 30);
3052
3053 gsp->fb.wpr2.heap.size =
3054 gsp->func->wpr_heap.os_carveout_size +
3055 gsp->func->wpr_heap.base_size +
3056 ALIGN(GSP_FW_HEAP_PARAM_SIZE_PER_GB_FB * fb_size_gb, 1 << 20) +
3057 ALIGN(GSP_FW_HEAP_PARAM_CLIENT_ALLOC_SIZE, 1 << 20);
3058
3059 gsp->fb.wpr2.heap.size = max(gsp->fb.wpr2.heap.size, gsp->func->wpr_heap.min_size);
3060 }
3061
3062 gsp->fb.wpr2.heap.addr = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.size, 0x100000);
3063 gsp->fb.wpr2.heap.size = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.addr, 0x100000);
3064
3065 gsp->fb.wpr2.addr = ALIGN_DOWN(gsp->fb.wpr2.heap.addr - sizeof(GspFwWprMeta), 0x100000);
3066 gsp->fb.wpr2.size = gsp->fb.wpr2.frts.addr + gsp->fb.wpr2.frts.size - gsp->fb.wpr2.addr;
3067
3068 gsp->fb.heap.size = 0x100000;
3069 gsp->fb.heap.addr = gsp->fb.wpr2.addr - gsp->fb.heap.size;
3070
3071 ret = nvkm_gsp_fwsec_frts(gsp);
3072 if (WARN_ON(ret))
3073 return ret;
3074
3075 ret = r535_gsp_libos_init(gsp);
3076 if (WARN_ON(ret))
3077 return ret;
3078
3079 ret = r535_gsp_wpr_meta_init(gsp);
3080 if (WARN_ON(ret))
3081 return ret;
3082
3083 ret = r535_gsp_rpc_set_system_info(gsp);
3084 if (WARN_ON(ret))
3085 return ret;
3086
3087 ret = r535_gsp_rpc_set_registry(gsp);
3088 if (WARN_ON(ret))
3089 return ret;
3090
3091 /* Reset GSP into RISC-V mode. */
3092 ret = gsp->func->reset(gsp);
3093 if (WARN_ON(ret))
3094 return ret;
3095
3096 nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
3097 nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
3098
3099 mutex_init(&gsp->client_id.mutex);
3100 idr_init(&gsp->client_id.idr);
3101 return 0;
3102 }
3103
3104 static int
r535_gsp_load_fw(struct nvkm_gsp * gsp,const char * name,const char * ver,const struct firmware ** pfw)3105 r535_gsp_load_fw(struct nvkm_gsp *gsp, const char *name, const char *ver,
3106 const struct firmware **pfw)
3107 {
3108 char fwname[64];
3109
3110 snprintf(fwname, sizeof(fwname), "gsp/%s-%s", name, ver);
3111 return nvkm_firmware_get(&gsp->subdev, fwname, 0, pfw);
3112 }
3113
3114 int
r535_gsp_load(struct nvkm_gsp * gsp,int ver,const struct nvkm_gsp_fwif * fwif)3115 r535_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif)
3116 {
3117 struct nvkm_subdev *subdev = &gsp->subdev;
3118 int ret;
3119 bool enable_gsp = fwif->enable;
3120
3121 #if IS_ENABLED(CONFIG_DRM_NOUVEAU_GSP_DEFAULT)
3122 enable_gsp = true;
3123 #endif
3124 if (!nvkm_boolopt(subdev->device->cfgopt, "NvGspRm", enable_gsp))
3125 return -EINVAL;
3126
3127 if ((ret = r535_gsp_load_fw(gsp, "gsp", fwif->ver, &gsp->fws.rm)) ||
3128 (ret = r535_gsp_load_fw(gsp, "booter_load", fwif->ver, &gsp->fws.booter.load)) ||
3129 (ret = r535_gsp_load_fw(gsp, "booter_unload", fwif->ver, &gsp->fws.booter.unload)) ||
3130 (ret = r535_gsp_load_fw(gsp, "bootloader", fwif->ver, &gsp->fws.bl))) {
3131 r535_gsp_dtor_fws(gsp);
3132 return ret;
3133 }
3134
3135 return 0;
3136 }
3137
3138 #define NVKM_GSP_FIRMWARE(chip) \
3139 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_load-535.113.01.bin"); \
3140 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_unload-535.113.01.bin"); \
3141 MODULE_FIRMWARE("nvidia/"#chip"/gsp/bootloader-535.113.01.bin"); \
3142 MODULE_FIRMWARE("nvidia/"#chip"/gsp/gsp-535.113.01.bin")
3143
3144 NVKM_GSP_FIRMWARE(tu102);
3145 NVKM_GSP_FIRMWARE(tu104);
3146 NVKM_GSP_FIRMWARE(tu106);
3147
3148 NVKM_GSP_FIRMWARE(tu116);
3149 NVKM_GSP_FIRMWARE(tu117);
3150
3151 NVKM_GSP_FIRMWARE(ga100);
3152
3153 NVKM_GSP_FIRMWARE(ga102);
3154 NVKM_GSP_FIRMWARE(ga103);
3155 NVKM_GSP_FIRMWARE(ga104);
3156 NVKM_GSP_FIRMWARE(ga106);
3157 NVKM_GSP_FIRMWARE(ga107);
3158
3159 NVKM_GSP_FIRMWARE(ad102);
3160 NVKM_GSP_FIRMWARE(ad103);
3161 NVKM_GSP_FIRMWARE(ad104);
3162 NVKM_GSP_FIRMWARE(ad106);
3163 NVKM_GSP_FIRMWARE(ad107);
3164