1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */
28 /*
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
31 */
32
33 /*
34 * VM - Hardware Address Translation management for i386 and amd64
35 *
36 * Implementation of the interfaces described in <common/vm/hat.h>
37 *
38 * Nearly all the details of how the hardware is managed should not be
39 * visible outside this layer except for misc. machine specific functions
40 * that work in conjunction with this code.
41 *
42 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
43 */
44
45 #include <sys/machparam.h>
46 #include <sys/machsystm.h>
47 #include <sys/mman.h>
48 #include <sys/types.h>
49 #include <sys/systm.h>
50 #include <sys/cpuvar.h>
51 #include <sys/thread.h>
52 #include <sys/proc.h>
53 #include <sys/cpu.h>
54 #include <sys/kmem.h>
55 #include <sys/disp.h>
56 #include <sys/shm.h>
57 #include <sys/sysmacros.h>
58 #include <sys/machparam.h>
59 #include <sys/vmem.h>
60 #include <sys/vmsystm.h>
61 #include <sys/promif.h>
62 #include <sys/var.h>
63 #include <sys/x86_archext.h>
64 #include <sys/atomic.h>
65 #include <sys/bitmap.h>
66 #include <sys/controlregs.h>
67 #include <sys/bootconf.h>
68 #include <sys/bootsvcs.h>
69 #include <sys/bootinfo.h>
70 #include <sys/archsystm.h>
71
72 #include <vm/seg_kmem.h>
73 #include <vm/hat_i86.h>
74 #include <vm/as.h>
75 #include <vm/seg.h>
76 #include <vm/page.h>
77 #include <vm/seg_kp.h>
78 #include <vm/seg_kpm.h>
79 #include <vm/vm_dep.h>
80 #ifdef __xpv
81 #include <sys/hypervisor.h>
82 #endif
83 #include <vm/kboot_mmu.h>
84 #include <vm/seg_spt.h>
85
86 #include <sys/cmn_err.h>
87
88 /*
89 * Basic parameters for hat operation.
90 */
91 struct hat_mmu_info mmu;
92
93 /*
94 * The page that is the kernel's top level pagetable.
95 *
96 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
97 * on this 4K page for its top level page table. The remaining groups of
98 * 4 entries are used for per processor copies of user VLP pagetables for
99 * running threads. See hat_switch() and reload_pae32() for details.
100 *
101 * vlp_page[0..3] - level==2 PTEs for kernel HAT
102 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
103 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1
104 * etc...
105 */
106 static x86pte_t *vlp_page;
107
108 /*
109 * forward declaration of internal utility routines
110 */
111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
112 x86pte_t new);
113
114 /*
115 * The kernel address space exists in all HATs. To implement this the
116 * kernel reserves a fixed number of entries in the topmost level(s) of page
117 * tables. The values are setup during startup and then copied to every user
118 * hat created by hat_alloc(). This means that kernelbase must be:
119 *
120 * 4Meg aligned for 32 bit kernels
121 * 512Gig aligned for x86_64 64 bit kernel
122 *
123 * The hat_kernel_range_ts describe what needs to be copied from kernel hat
124 * to each user hat.
125 */
126 typedef struct hat_kernel_range {
127 level_t hkr_level;
128 uintptr_t hkr_start_va;
129 uintptr_t hkr_end_va; /* zero means to end of memory */
130 } hat_kernel_range_t;
131 #define NUM_KERNEL_RANGE 2
132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
133 static int num_kernel_ranges;
134
135 uint_t use_boot_reserve = 1; /* cleared after early boot process */
136 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */
137
138 /*
139 * enable_1gpg: controls 1g page support for user applications.
140 * By default, 1g pages are exported to user applications. enable_1gpg can
141 * be set to 0 to not export.
142 */
143 int enable_1gpg = 1;
144
145 /*
146 * AMD shanghai processors provide better management of 1gb ptes in its tlb.
147 * By default, 1g page support will be disabled for pre-shanghai AMD
148 * processors that don't have optimal tlb support for the 1g page size.
149 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
150 * processors.
151 */
152 int chk_optimal_1gtlb = 1;
153
154
155 #ifdef DEBUG
156 uint_t map1gcnt;
157 #endif
158
159
160 /*
161 * A cpuset for all cpus. This is used for kernel address cross calls, since
162 * the kernel addresses apply to all cpus.
163 */
164 cpuset_t khat_cpuset;
165
166 /*
167 * management stuff for hat structures
168 */
169 kmutex_t hat_list_lock;
170 kcondvar_t hat_list_cv;
171 kmem_cache_t *hat_cache;
172 kmem_cache_t *hat_hash_cache;
173 kmem_cache_t *vlp_hash_cache;
174
175 /*
176 * Simple statistics
177 */
178 struct hatstats hatstat;
179
180 /*
181 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
182 * correctly. For such hypervisors we must set PT_USER for kernel
183 * entries ourselves (normally the emulation would set PT_USER for
184 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is
185 * thus set appropriately. Note that dboot/kbm is OK, as only the full
186 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
187 * incorrect.
188 */
189 int pt_kern;
190
191 /*
192 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
193 */
194 extern void atomic_orb(uchar_t *addr, uchar_t val);
195 extern void atomic_andb(uchar_t *addr, uchar_t val);
196
197 #ifndef __xpv
198 extern pfn_t memseg_get_start(struct memseg *);
199 #endif
200
201 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask)
202 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD)
203 #define PP_ISREF(pp) PP_GETRM(pp, P_REF)
204 #define PP_ISRO(pp) PP_GETRM(pp, P_RO)
205
206 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm)
207 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD)
208 #define PP_SETREF(pp) PP_SETRM(pp, P_REF)
209 #define PP_SETRO(pp) PP_SETRM(pp, P_RO)
210
211 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm))
212 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD)
213 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF)
214 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO)
215 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO)
216
217 /*
218 * kmem cache constructor for struct hat
219 */
220 /*ARGSUSED*/
221 static int
hati_constructor(void * buf,void * handle,int kmflags)222 hati_constructor(void *buf, void *handle, int kmflags)
223 {
224 hat_t *hat = buf;
225
226 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
227 bzero(hat->hat_pages_mapped,
228 sizeof (pgcnt_t) * (mmu.max_page_level + 1));
229 hat->hat_ism_pgcnt = 0;
230 hat->hat_stats = 0;
231 hat->hat_flags = 0;
232 CPUSET_ZERO(hat->hat_cpus);
233 hat->hat_htable = NULL;
234 hat->hat_ht_hash = NULL;
235 return (0);
236 }
237
238 /*
239 * Allocate a hat structure for as. We also create the top level
240 * htable and initialize it to contain the kernel hat entries.
241 */
242 hat_t *
hat_alloc(struct as * as)243 hat_alloc(struct as *as)
244 {
245 hat_t *hat;
246 htable_t *ht; /* top level htable */
247 uint_t use_vlp;
248 uint_t r;
249 hat_kernel_range_t *rp;
250 uintptr_t va;
251 uintptr_t eva;
252 uint_t start;
253 uint_t cnt;
254 htable_t *src;
255
256 /*
257 * Once we start creating user process HATs we can enable
258 * the htable_steal() code.
259 */
260 if (can_steal_post_boot == 0)
261 can_steal_post_boot = 1;
262
263 ASSERT(AS_WRITE_HELD(as));
264 hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
265 hat->hat_as = as;
266 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
267 ASSERT(hat->hat_flags == 0);
268
269 #if defined(__xpv)
270 /*
271 * No VLP stuff on the hypervisor due to the 64-bit split top level
272 * page tables. On 32-bit it's not needed as the hypervisor takes
273 * care of copying the top level PTEs to a below 4Gig page.
274 */
275 use_vlp = 0;
276 #else /* __xpv */
277 /* 32 bit processes uses a VLP style hat when running with PAE */
278 #if defined(__amd64)
279 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
280 #elif defined(__i386)
281 use_vlp = mmu.pae_hat;
282 #endif
283 #endif /* __xpv */
284 if (use_vlp) {
285 hat->hat_flags = HAT_VLP;
286 bzero(hat->hat_vlp_ptes, VLP_SIZE);
287 }
288
289 /*
290 * Allocate the htable hash
291 */
292 if ((hat->hat_flags & HAT_VLP)) {
293 hat->hat_num_hash = mmu.vlp_hash_cnt;
294 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
295 } else {
296 hat->hat_num_hash = mmu.hash_cnt;
297 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
298 }
299 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
300
301 /*
302 * Initialize Kernel HAT entries at the top of the top level page
303 * tables for the new hat.
304 */
305 hat->hat_htable = NULL;
306 hat->hat_ht_cached = NULL;
307 XPV_DISALLOW_MIGRATE();
308 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
309 hat->hat_htable = ht;
310
311 #if defined(__amd64)
312 if (hat->hat_flags & HAT_VLP)
313 goto init_done;
314 #endif
315
316 for (r = 0; r < num_kernel_ranges; ++r) {
317 rp = &kernel_ranges[r];
318 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
319 va += cnt * LEVEL_SIZE(rp->hkr_level)) {
320
321 if (rp->hkr_level == TOP_LEVEL(hat))
322 ht = hat->hat_htable;
323 else
324 ht = htable_create(hat, va, rp->hkr_level,
325 NULL);
326
327 start = htable_va2entry(va, ht);
328 cnt = HTABLE_NUM_PTES(ht) - start;
329 eva = va +
330 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
331 if (rp->hkr_end_va != 0 &&
332 (eva > rp->hkr_end_va || eva == 0))
333 cnt = htable_va2entry(rp->hkr_end_va, ht) -
334 start;
335
336 #if defined(__i386) && !defined(__xpv)
337 if (ht->ht_flags & HTABLE_VLP) {
338 bcopy(&vlp_page[start],
339 &hat->hat_vlp_ptes[start],
340 cnt * sizeof (x86pte_t));
341 continue;
342 }
343 #endif
344 src = htable_lookup(kas.a_hat, va, rp->hkr_level);
345 ASSERT(src != NULL);
346 x86pte_copy(src, ht, start, cnt);
347 htable_release(src);
348 }
349 }
350
351 init_done:
352
353 #if defined(__xpv)
354 /*
355 * Pin top level page tables after initializing them
356 */
357 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
358 #if defined(__amd64)
359 xen_pin(hat->hat_user_ptable, mmu.max_level);
360 #endif
361 #endif
362 XPV_ALLOW_MIGRATE();
363
364 /*
365 * Put it at the start of the global list of all hats (used by stealing)
366 *
367 * kas.a_hat is not in the list but is instead used to find the
368 * first and last items in the list.
369 *
370 * - kas.a_hat->hat_next points to the start of the user hats.
371 * The list ends where hat->hat_next == NULL
372 *
373 * - kas.a_hat->hat_prev points to the last of the user hats.
374 * The list begins where hat->hat_prev == NULL
375 */
376 mutex_enter(&hat_list_lock);
377 hat->hat_prev = NULL;
378 hat->hat_next = kas.a_hat->hat_next;
379 if (hat->hat_next)
380 hat->hat_next->hat_prev = hat;
381 else
382 kas.a_hat->hat_prev = hat;
383 kas.a_hat->hat_next = hat;
384 mutex_exit(&hat_list_lock);
385
386 return (hat);
387 }
388
389 /*
390 * process has finished executing but as has not been cleaned up yet.
391 */
392 /*ARGSUSED*/
393 void
hat_free_start(hat_t * hat)394 hat_free_start(hat_t *hat)
395 {
396 ASSERT(AS_WRITE_HELD(hat->hat_as));
397
398 /*
399 * If the hat is currently a stealing victim, wait for the stealing
400 * to finish. Once we mark it as HAT_FREEING, htable_steal()
401 * won't look at its pagetables anymore.
402 */
403 mutex_enter(&hat_list_lock);
404 while (hat->hat_flags & HAT_VICTIM)
405 cv_wait(&hat_list_cv, &hat_list_lock);
406 hat->hat_flags |= HAT_FREEING;
407 mutex_exit(&hat_list_lock);
408 }
409
410 /*
411 * An address space is being destroyed, so we destroy the associated hat.
412 */
413 void
hat_free_end(hat_t * hat)414 hat_free_end(hat_t *hat)
415 {
416 kmem_cache_t *cache;
417
418 ASSERT(hat->hat_flags & HAT_FREEING);
419
420 /*
421 * must not be running on the given hat
422 */
423 ASSERT(CPU->cpu_current_hat != hat);
424
425 /*
426 * Remove it from the list of HATs
427 */
428 mutex_enter(&hat_list_lock);
429 if (hat->hat_prev)
430 hat->hat_prev->hat_next = hat->hat_next;
431 else
432 kas.a_hat->hat_next = hat->hat_next;
433 if (hat->hat_next)
434 hat->hat_next->hat_prev = hat->hat_prev;
435 else
436 kas.a_hat->hat_prev = hat->hat_prev;
437 mutex_exit(&hat_list_lock);
438 hat->hat_next = hat->hat_prev = NULL;
439
440 #if defined(__xpv)
441 /*
442 * On the hypervisor, unpin top level page table(s)
443 */
444 xen_unpin(hat->hat_htable->ht_pfn);
445 #if defined(__amd64)
446 xen_unpin(hat->hat_user_ptable);
447 #endif
448 #endif
449
450 /*
451 * Make a pass through the htables freeing them all up.
452 */
453 htable_purge_hat(hat);
454
455 /*
456 * Decide which kmem cache the hash table came from, then free it.
457 */
458 if (hat->hat_flags & HAT_VLP)
459 cache = vlp_hash_cache;
460 else
461 cache = hat_hash_cache;
462 kmem_cache_free(cache, hat->hat_ht_hash);
463 hat->hat_ht_hash = NULL;
464
465 hat->hat_flags = 0;
466 kmem_cache_free(hat_cache, hat);
467 }
468
469 /*
470 * round kernelbase down to a supported value to use for _userlimit
471 *
472 * userlimit must be aligned down to an entry in the top level htable.
473 * The one exception is for 32 bit HAT's running PAE.
474 */
475 uintptr_t
hat_kernelbase(uintptr_t va)476 hat_kernelbase(uintptr_t va)
477 {
478 #if defined(__i386)
479 va &= LEVEL_MASK(1);
480 #endif
481 if (IN_VA_HOLE(va))
482 panic("_userlimit %p will fall in VA hole\n", (void *)va);
483 return (va);
484 }
485
486 /*
487 *
488 */
489 static void
set_max_page_level()490 set_max_page_level()
491 {
492 level_t lvl;
493
494 if (!kbm_largepage_support) {
495 lvl = 0;
496 } else {
497 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
498 lvl = 2;
499 if (chk_optimal_1gtlb &&
500 cpuid_opteron_erratum(CPU, 6671130)) {
501 lvl = 1;
502 }
503 if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
504 LEVEL_SHIFT(0))) {
505 lvl = 1;
506 }
507 } else {
508 lvl = 1;
509 }
510 }
511 mmu.max_page_level = lvl;
512
513 if ((lvl == 2) && (enable_1gpg == 0))
514 mmu.umax_page_level = 1;
515 else
516 mmu.umax_page_level = lvl;
517 }
518
519 /*
520 * Initialize hat data structures based on processor MMU information.
521 */
522 void
mmu_init(void)523 mmu_init(void)
524 {
525 uint_t max_htables;
526 uint_t pa_bits;
527 uint_t va_bits;
528 int i;
529
530 /*
531 * If CPU enabled the page table global bit, use it for the kernel
532 * This is bit 7 in CR4 (PGE - Page Global Enable).
533 */
534 if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
535 (getcr4() & CR4_PGE) != 0)
536 mmu.pt_global = PT_GLOBAL;
537
538 /*
539 * Detect NX and PAE usage.
540 */
541 mmu.pae_hat = kbm_pae_support;
542 if (kbm_nx_support)
543 mmu.pt_nx = PT_NX;
544 else
545 mmu.pt_nx = 0;
546
547 /*
548 * Use CPU info to set various MMU parameters
549 */
550 cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
551
552 if (va_bits < sizeof (void *) * NBBY) {
553 mmu.hole_start = (1ul << (va_bits - 1));
554 mmu.hole_end = 0ul - mmu.hole_start - 1;
555 } else {
556 mmu.hole_end = 0;
557 mmu.hole_start = mmu.hole_end - 1;
558 }
559 #if defined(OPTERON_ERRATUM_121)
560 /*
561 * If erratum 121 has already been detected at this time, hole_start
562 * contains the value to be subtracted from mmu.hole_start.
563 */
564 ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
565 hole_start = mmu.hole_start - hole_start;
566 #else
567 hole_start = mmu.hole_start;
568 #endif
569 hole_end = mmu.hole_end;
570
571 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
572 if (mmu.pae_hat == 0 && pa_bits > 32)
573 mmu.highest_pfn = PFN_4G - 1;
574
575 if (mmu.pae_hat) {
576 mmu.pte_size = 8; /* 8 byte PTEs */
577 mmu.pte_size_shift = 3;
578 } else {
579 mmu.pte_size = 4; /* 4 byte PTEs */
580 mmu.pte_size_shift = 2;
581 }
582
583 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
584 panic("Processor does not support PAE");
585
586 if (!is_x86_feature(x86_featureset, X86FSET_CX8))
587 panic("Processor does not support cmpxchg8b instruction");
588
589 #if defined(__amd64)
590
591 mmu.num_level = 4;
592 mmu.max_level = 3;
593 mmu.ptes_per_table = 512;
594 mmu.top_level_count = 512;
595
596 mmu.level_shift[0] = 12;
597 mmu.level_shift[1] = 21;
598 mmu.level_shift[2] = 30;
599 mmu.level_shift[3] = 39;
600
601 #elif defined(__i386)
602
603 if (mmu.pae_hat) {
604 mmu.num_level = 3;
605 mmu.max_level = 2;
606 mmu.ptes_per_table = 512;
607 mmu.top_level_count = 4;
608
609 mmu.level_shift[0] = 12;
610 mmu.level_shift[1] = 21;
611 mmu.level_shift[2] = 30;
612
613 } else {
614 mmu.num_level = 2;
615 mmu.max_level = 1;
616 mmu.ptes_per_table = 1024;
617 mmu.top_level_count = 1024;
618
619 mmu.level_shift[0] = 12;
620 mmu.level_shift[1] = 22;
621 }
622
623 #endif /* __i386 */
624
625 for (i = 0; i < mmu.num_level; ++i) {
626 mmu.level_size[i] = 1UL << mmu.level_shift[i];
627 mmu.level_offset[i] = mmu.level_size[i] - 1;
628 mmu.level_mask[i] = ~mmu.level_offset[i];
629 }
630
631 set_max_page_level();
632
633 mmu_page_sizes = mmu.max_page_level + 1;
634 mmu_exported_page_sizes = mmu.umax_page_level + 1;
635
636 /* restrict legacy applications from using pagesizes 1g and above */
637 mmu_legacy_page_sizes =
638 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
639
640
641 for (i = 0; i <= mmu.max_page_level; ++i) {
642 mmu.pte_bits[i] = PT_VALID | pt_kern;
643 if (i > 0)
644 mmu.pte_bits[i] |= PT_PAGESIZE;
645 }
646
647 /*
648 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
649 */
650 for (i = 1; i < mmu.num_level; ++i)
651 mmu.ptp_bits[i] = PT_PTPBITS;
652
653 #if defined(__i386)
654 mmu.ptp_bits[2] = PT_VALID;
655 #endif
656
657 /*
658 * Compute how many hash table entries to have per process for htables.
659 * We start with 1 page's worth of entries.
660 *
661 * If physical memory is small, reduce the amount need to cover it.
662 */
663 max_htables = physmax / mmu.ptes_per_table;
664 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
665 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
666 mmu.hash_cnt >>= 1;
667 mmu.vlp_hash_cnt = mmu.hash_cnt;
668
669 #if defined(__amd64)
670 /*
671 * If running in 64 bits and physical memory is large,
672 * increase the size of the cache to cover all of memory for
673 * a 64 bit process.
674 */
675 #define HASH_MAX_LENGTH 4
676 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
677 mmu.hash_cnt <<= 1;
678 #endif
679 }
680
681
682 /*
683 * initialize hat data structures
684 */
685 void
hat_init()686 hat_init()
687 {
688 #if defined(__i386)
689 /*
690 * _userlimit must be aligned correctly
691 */
692 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
693 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
694 (void *)_userlimit, (void *)LEVEL_SIZE(1));
695 halt("hat_init(): Unable to continue");
696 }
697 #endif
698
699 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
700
701 /*
702 * initialize kmem caches
703 */
704 htable_init();
705 hment_init();
706
707 hat_cache = kmem_cache_create("hat_t",
708 sizeof (hat_t), 0, hati_constructor, NULL, NULL,
709 NULL, 0, 0);
710
711 hat_hash_cache = kmem_cache_create("HatHash",
712 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
713 NULL, 0, 0);
714
715 /*
716 * VLP hats can use a smaller hash table size on large memroy machines
717 */
718 if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
719 vlp_hash_cache = hat_hash_cache;
720 } else {
721 vlp_hash_cache = kmem_cache_create("HatVlpHash",
722 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
723 NULL, 0, 0);
724 }
725
726 /*
727 * Set up the kernel's hat
728 */
729 AS_LOCK_ENTER(&kas, RW_WRITER);
730 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
731 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
732 kas.a_hat->hat_as = &kas;
733 kas.a_hat->hat_flags = 0;
734 AS_LOCK_EXIT(&kas);
735
736 CPUSET_ZERO(khat_cpuset);
737 CPUSET_ADD(khat_cpuset, CPU->cpu_id);
738
739 /*
740 * The kernel hat's next pointer serves as the head of the hat list .
741 * The kernel hat's prev pointer tracks the last hat on the list for
742 * htable_steal() to use.
743 */
744 kas.a_hat->hat_next = NULL;
745 kas.a_hat->hat_prev = NULL;
746
747 /*
748 * Allocate an htable hash bucket for the kernel
749 * XX64 - tune for 64 bit procs
750 */
751 kas.a_hat->hat_num_hash = mmu.hash_cnt;
752 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
753 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
754
755 /*
756 * zero out the top level and cached htable pointers
757 */
758 kas.a_hat->hat_ht_cached = NULL;
759 kas.a_hat->hat_htable = NULL;
760
761 /*
762 * Pre-allocate hrm_hashtab before enabling the collection of
763 * refmod statistics. Allocating on the fly would mean us
764 * running the risk of suffering recursive mutex enters or
765 * deadlocks.
766 */
767 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
768 KM_SLEEP);
769 }
770
771 /*
772 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
773 *
774 * Each CPU has a set of 2 pagetables that are reused for any 32 bit
775 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
776 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
777 */
778 /*ARGSUSED*/
779 static void
hat_vlp_setup(struct cpu * cpu)780 hat_vlp_setup(struct cpu *cpu)
781 {
782 #if defined(__amd64) && !defined(__xpv)
783 struct hat_cpu_info *hci = cpu->cpu_hat_info;
784 pfn_t pfn;
785
786 /*
787 * allocate the level==2 page table for the bottom most
788 * 512Gig of address space (this is where 32 bit apps live)
789 */
790 ASSERT(hci != NULL);
791 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
792
793 /*
794 * Allocate a top level pagetable and copy the kernel's
795 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
796 */
797 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
798 hci->hci_vlp_pfn =
799 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
800 ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
801 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
802
803 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
804 ASSERT(pfn != PFN_INVALID);
805 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
806 #endif /* __amd64 && !__xpv */
807 }
808
809 /*ARGSUSED*/
810 static void
hat_vlp_teardown(cpu_t * cpu)811 hat_vlp_teardown(cpu_t *cpu)
812 {
813 #if defined(__amd64) && !defined(__xpv)
814 struct hat_cpu_info *hci;
815
816 if ((hci = cpu->cpu_hat_info) == NULL)
817 return;
818 if (hci->hci_vlp_l2ptes)
819 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
820 if (hci->hci_vlp_l3ptes)
821 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
822 #endif
823 }
824
825 #define NEXT_HKR(r, l, s, e) { \
826 kernel_ranges[r].hkr_level = l; \
827 kernel_ranges[r].hkr_start_va = s; \
828 kernel_ranges[r].hkr_end_va = e; \
829 ++r; \
830 }
831
832 /*
833 * Finish filling in the kernel hat.
834 * Pre fill in all top level kernel page table entries for the kernel's
835 * part of the address range. From this point on we can't use any new
836 * kernel large pages if they need PTE's at max_level
837 *
838 * create the kmap mappings.
839 */
840 void
hat_init_finish(void)841 hat_init_finish(void)
842 {
843 size_t size;
844 uint_t r = 0;
845 uintptr_t va;
846 hat_kernel_range_t *rp;
847
848
849 /*
850 * We are now effectively running on the kernel hat.
851 * Clearing use_boot_reserve shuts off using the pre-allocated boot
852 * reserve for all HAT allocations. From here on, the reserves are
853 * only used when avoiding recursion in kmem_alloc().
854 */
855 use_boot_reserve = 0;
856 htable_adjust_reserve();
857
858 /*
859 * User HATs are initialized with copies of all kernel mappings in
860 * higher level page tables. Ensure that those entries exist.
861 */
862 #if defined(__amd64)
863
864 NEXT_HKR(r, 3, kernelbase, 0);
865 #if defined(__xpv)
866 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
867 #endif
868
869 #elif defined(__i386)
870
871 #if !defined(__xpv)
872 if (mmu.pae_hat) {
873 va = kernelbase;
874 if ((va & LEVEL_MASK(2)) != va) {
875 va = P2ROUNDUP(va, LEVEL_SIZE(2));
876 NEXT_HKR(r, 1, kernelbase, va);
877 }
878 if (va != 0)
879 NEXT_HKR(r, 2, va, 0);
880 } else
881 #endif /* __xpv */
882 NEXT_HKR(r, 1, kernelbase, 0);
883
884 #endif /* __i386 */
885
886 num_kernel_ranges = r;
887
888 /*
889 * Create all the kernel pagetables that will have entries
890 * shared to user HATs.
891 */
892 for (r = 0; r < num_kernel_ranges; ++r) {
893 rp = &kernel_ranges[r];
894 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
895 va += LEVEL_SIZE(rp->hkr_level)) {
896 htable_t *ht;
897
898 if (IN_HYPERVISOR_VA(va))
899 continue;
900
901 /* can/must skip if a page mapping already exists */
902 if (rp->hkr_level <= mmu.max_page_level &&
903 (ht = htable_getpage(kas.a_hat, va, NULL)) !=
904 NULL) {
905 htable_release(ht);
906 continue;
907 }
908
909 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
910 NULL);
911 }
912 }
913
914 /*
915 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
916 * page holding the top level pagetable. We use the remainder for
917 * the "per CPU" page tables for VLP processes.
918 * Map the top level kernel pagetable into the kernel to make
919 * it easy to use bcopy access these tables.
920 */
921 if (mmu.pae_hat) {
922 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
923 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
924 kas.a_hat->hat_htable->ht_pfn,
925 #if !defined(__xpv)
926 PROT_WRITE |
927 #endif
928 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
929 HAT_LOAD | HAT_LOAD_NOCONSIST);
930 }
931 hat_vlp_setup(CPU);
932
933 /*
934 * Create kmap (cached mappings of kernel PTEs)
935 * for 32 bit we map from segmap_start .. ekernelheap
936 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
937 */
938 #if defined(__i386)
939 size = (uintptr_t)ekernelheap - segmap_start;
940 #elif defined(__amd64)
941 size = segmapsize;
942 #endif
943 hat_kmap_init((uintptr_t)segmap_start, size);
944 }
945
946 /*
947 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
948 * are 32 bit, so for safety we must use atomic_cas_64() to install these.
949 */
950 #ifdef __i386
951 static void
reload_pae32(hat_t * hat,cpu_t * cpu)952 reload_pae32(hat_t *hat, cpu_t *cpu)
953 {
954 x86pte_t *src;
955 x86pte_t *dest;
956 x86pte_t pte;
957 int i;
958
959 /*
960 * Load the 4 entries of the level 2 page table into this
961 * cpu's range of the vlp_page and point cr3 at them.
962 */
963 ASSERT(mmu.pae_hat);
964 src = hat->hat_vlp_ptes;
965 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
966 for (i = 0; i < VLP_NUM_PTES; ++i) {
967 for (;;) {
968 pte = dest[i];
969 if (pte == src[i])
970 break;
971 if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
972 break;
973 }
974 }
975 }
976 #endif
977
978 /*
979 * Switch to a new active hat, maintaining bit masks to track active CPUs.
980 *
981 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
982 * remains a 32-bit value.
983 */
984 void
hat_switch(hat_t * hat)985 hat_switch(hat_t *hat)
986 {
987 uint64_t newcr3;
988 cpu_t *cpu = CPU;
989 hat_t *old = cpu->cpu_current_hat;
990
991 /*
992 * set up this information first, so we don't miss any cross calls
993 */
994 if (old != NULL) {
995 if (old == hat)
996 return;
997 if (old != kas.a_hat)
998 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
999 }
1000
1001 /*
1002 * Add this CPU to the active set for this HAT.
1003 */
1004 if (hat != kas.a_hat) {
1005 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1006 }
1007 cpu->cpu_current_hat = hat;
1008
1009 /*
1010 * now go ahead and load cr3
1011 */
1012 if (hat->hat_flags & HAT_VLP) {
1013 #if defined(__amd64)
1014 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1015
1016 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1017 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1018 #elif defined(__i386)
1019 reload_pae32(hat, cpu);
1020 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1021 (cpu->cpu_id + 1) * VLP_SIZE;
1022 #endif
1023 } else {
1024 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1025 }
1026 #ifdef __xpv
1027 {
1028 struct mmuext_op t[2];
1029 uint_t retcnt;
1030 uint_t opcnt = 1;
1031
1032 t[0].cmd = MMUEXT_NEW_BASEPTR;
1033 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1034 #if defined(__amd64)
1035 /*
1036 * There's an interesting problem here, as to what to
1037 * actually specify when switching to the kernel hat.
1038 * For now we'll reuse the kernel hat again.
1039 */
1040 t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1041 if (hat == kas.a_hat)
1042 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1043 else
1044 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1045 ++opcnt;
1046 #endif /* __amd64 */
1047 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1048 panic("HYPERVISOR_mmu_update() failed");
1049 ASSERT(retcnt == opcnt);
1050
1051 }
1052 #else
1053 setcr3(newcr3);
1054 #endif
1055 ASSERT(cpu == CPU);
1056 }
1057
1058 /*
1059 * Utility to return a valid x86pte_t from protections, pfn, and level number
1060 */
1061 static x86pte_t
hati_mkpte(pfn_t pfn,uint_t attr,level_t level,uint_t flags)1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1063 {
1064 x86pte_t pte;
1065 uint_t cache_attr = attr & HAT_ORDER_MASK;
1066
1067 pte = MAKEPTE(pfn, level);
1068
1069 if (attr & PROT_WRITE)
1070 PTE_SET(pte, PT_WRITABLE);
1071
1072 if (attr & PROT_USER)
1073 PTE_SET(pte, PT_USER);
1074
1075 if (!(attr & PROT_EXEC))
1076 PTE_SET(pte, mmu.pt_nx);
1077
1078 /*
1079 * Set the software bits used track ref/mod sync's and hments.
1080 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1081 */
1082 if (flags & HAT_LOAD_NOCONSIST)
1083 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1084 else if (attr & HAT_NOSYNC)
1085 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1086
1087 /*
1088 * Set the caching attributes in the PTE. The combination
1089 * of attributes are poorly defined, so we pay attention
1090 * to them in the given order.
1091 *
1092 * The test for HAT_STRICTORDER is different because it's defined
1093 * as "0" - which was a stupid thing to do, but is too late to change!
1094 */
1095 if (cache_attr == HAT_STRICTORDER) {
1096 PTE_SET(pte, PT_NOCACHE);
1097 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1098 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1099 /* nothing to set */;
1100 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1101 PTE_SET(pte, PT_NOCACHE);
1102 if (is_x86_feature(x86_featureset, X86FSET_PAT))
1103 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1104 else
1105 PTE_SET(pte, PT_WRITETHRU);
1106 } else {
1107 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1108 }
1109
1110 return (pte);
1111 }
1112
1113 /*
1114 * Duplicate address translations of the parent to the child.
1115 * This function really isn't used anymore.
1116 */
1117 /*ARGSUSED*/
1118 int
hat_dup(hat_t * old,hat_t * new,caddr_t addr,size_t len,uint_t flag)1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1120 {
1121 ASSERT((uintptr_t)addr < kernelbase);
1122 ASSERT(new != kas.a_hat);
1123 ASSERT(old != kas.a_hat);
1124 return (0);
1125 }
1126
1127 /*
1128 * Allocate any hat resources required for a process being swapped in.
1129 */
1130 /*ARGSUSED*/
1131 void
hat_swapin(hat_t * hat)1132 hat_swapin(hat_t *hat)
1133 {
1134 /* do nothing - we let everything fault back in */
1135 }
1136
1137 /*
1138 * Unload all translations associated with an address space of a process
1139 * that is being swapped out.
1140 */
1141 void
hat_swapout(hat_t * hat)1142 hat_swapout(hat_t *hat)
1143 {
1144 uintptr_t vaddr = (uintptr_t)0;
1145 uintptr_t eaddr = _userlimit;
1146 htable_t *ht = NULL;
1147 level_t l;
1148
1149 XPV_DISALLOW_MIGRATE();
1150 /*
1151 * We can't just call hat_unload(hat, 0, _userlimit...) here, because
1152 * seg_spt and shared pagetables can't be swapped out.
1153 * Take a look at segspt_shmswapout() - it's a big no-op.
1154 *
1155 * Instead we'll walk through all the address space and unload
1156 * any mappings which we are sure are not shared, not locked.
1157 */
1158 ASSERT(IS_PAGEALIGNED(vaddr));
1159 ASSERT(IS_PAGEALIGNED(eaddr));
1160 ASSERT(AS_LOCK_HELD(hat->hat_as));
1161 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1162 eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1163
1164 while (vaddr < eaddr) {
1165 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1166 if (ht == NULL)
1167 break;
1168
1169 ASSERT(!IN_VA_HOLE(vaddr));
1170
1171 /*
1172 * If the page table is shared skip its entire range.
1173 */
1174 l = ht->ht_level;
1175 if (ht->ht_flags & HTABLE_SHARED_PFN) {
1176 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1177 htable_release(ht);
1178 ht = NULL;
1179 continue;
1180 }
1181
1182 /*
1183 * If the page table has no locked entries, unload this one.
1184 */
1185 if (ht->ht_lock_cnt == 0)
1186 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1187 HAT_UNLOAD_UNMAP);
1188
1189 /*
1190 * If we have a level 0 page table with locked entries,
1191 * skip the entire page table, otherwise skip just one entry.
1192 */
1193 if (ht->ht_lock_cnt > 0 && l == 0)
1194 vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1195 else
1196 vaddr += LEVEL_SIZE(l);
1197 }
1198 if (ht)
1199 htable_release(ht);
1200
1201 /*
1202 * We're in swapout because the system is low on memory, so
1203 * go back and flush all the htables off the cached list.
1204 */
1205 htable_purge_hat(hat);
1206 XPV_ALLOW_MIGRATE();
1207 }
1208
1209 /*
1210 * returns number of bytes that have valid mappings in hat.
1211 */
1212 size_t
hat_get_mapped_size(hat_t * hat)1213 hat_get_mapped_size(hat_t *hat)
1214 {
1215 size_t total = 0;
1216 int l;
1217
1218 for (l = 0; l <= mmu.max_page_level; l++)
1219 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1220 total += hat->hat_ism_pgcnt;
1221
1222 return (total);
1223 }
1224
1225 /*
1226 * enable/disable collection of stats for hat.
1227 */
1228 int
hat_stats_enable(hat_t * hat)1229 hat_stats_enable(hat_t *hat)
1230 {
1231 atomic_inc_32(&hat->hat_stats);
1232 return (1);
1233 }
1234
1235 void
hat_stats_disable(hat_t * hat)1236 hat_stats_disable(hat_t *hat)
1237 {
1238 atomic_dec_32(&hat->hat_stats);
1239 }
1240
1241 /*
1242 * Utility to sync the ref/mod bits from a page table entry to the page_t
1243 * We must be holding the mapping list lock when this is called.
1244 */
1245 static void
hati_sync_pte_to_page(page_t * pp,x86pte_t pte,level_t level)1246 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1247 {
1248 uint_t rm = 0;
1249 pgcnt_t pgcnt;
1250
1251 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1252 return;
1253
1254 if (PTE_GET(pte, PT_REF))
1255 rm |= P_REF;
1256
1257 if (PTE_GET(pte, PT_MOD))
1258 rm |= P_MOD;
1259
1260 if (rm == 0)
1261 return;
1262
1263 /*
1264 * sync to all constituent pages of a large page
1265 */
1266 ASSERT(x86_hm_held(pp));
1267 pgcnt = page_get_pagecnt(level);
1268 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1269 for (; pgcnt > 0; --pgcnt) {
1270 /*
1271 * hat_page_demote() can't decrease
1272 * pszc below this mapping size
1273 * since this large mapping existed after we
1274 * took mlist lock.
1275 */
1276 ASSERT(pp->p_szc >= level);
1277 hat_page_setattr(pp, rm);
1278 ++pp;
1279 }
1280 }
1281
1282 /*
1283 * This the set of PTE bits for PFN, permissions and caching
1284 * that are allowed to change on a HAT_LOAD_REMAP
1285 */
1286 #define PT_REMAP_BITS \
1287 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \
1288 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1289
1290 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX)
1291 /*
1292 * Do the low-level work to get a mapping entered into a HAT's pagetables
1293 * and in the mapping list of the associated page_t.
1294 */
1295 static int
hati_pte_map(htable_t * ht,uint_t entry,page_t * pp,x86pte_t pte,int flags,void * pte_ptr)1296 hati_pte_map(
1297 htable_t *ht,
1298 uint_t entry,
1299 page_t *pp,
1300 x86pte_t pte,
1301 int flags,
1302 void *pte_ptr)
1303 {
1304 hat_t *hat = ht->ht_hat;
1305 x86pte_t old_pte;
1306 level_t l = ht->ht_level;
1307 hment_t *hm;
1308 uint_t is_consist;
1309 uint_t is_locked;
1310 int rv = 0;
1311
1312 /*
1313 * Is this a consistent (ie. need mapping list lock) mapping?
1314 */
1315 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1316
1317 /*
1318 * Track locked mapping count in the htable. Do this first,
1319 * as we track locking even if there already is a mapping present.
1320 */
1321 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1322 if (is_locked)
1323 HTABLE_LOCK_INC(ht);
1324
1325 /*
1326 * Acquire the page's mapping list lock and get an hment to use.
1327 * Note that hment_prepare() might return NULL.
1328 */
1329 if (is_consist) {
1330 x86_hm_enter(pp);
1331 hm = hment_prepare(ht, entry, pp);
1332 }
1333
1334 /*
1335 * Set the new pte, retrieving the old one at the same time.
1336 */
1337 old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1338
1339 /*
1340 * Did we get a large page / page table collision?
1341 */
1342 if (old_pte == LPAGE_ERROR) {
1343 if (is_locked)
1344 HTABLE_LOCK_DEC(ht);
1345 rv = -1;
1346 goto done;
1347 }
1348
1349 /*
1350 * If the mapping didn't change there is nothing more to do.
1351 */
1352 if (PTE_EQUIV(pte, old_pte))
1353 goto done;
1354
1355 /*
1356 * Install a new mapping in the page's mapping list
1357 */
1358 if (!PTE_ISVALID(old_pte)) {
1359 if (is_consist) {
1360 hment_assign(ht, entry, pp, hm);
1361 x86_hm_exit(pp);
1362 } else {
1363 ASSERT(flags & HAT_LOAD_NOCONSIST);
1364 }
1365 #if defined(__amd64)
1366 if (ht->ht_flags & HTABLE_VLP) {
1367 cpu_t *cpu = CPU;
1368 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1369 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1370 }
1371 #endif
1372 HTABLE_INC(ht->ht_valid_cnt);
1373 PGCNT_INC(hat, l);
1374 return (rv);
1375 }
1376
1377 /*
1378 * Remap's are more complicated:
1379 * - HAT_LOAD_REMAP must be specified if changing the pfn.
1380 * We also require that NOCONSIST be specified.
1381 * - Otherwise only permission or caching bits may change.
1382 */
1383 if (!PTE_ISPAGE(old_pte, l))
1384 panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1385
1386 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1387 REMAPASSERT(flags & HAT_LOAD_REMAP);
1388 REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1389 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1390 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1391 pf_is_memory(PTE2PFN(pte, l)));
1392 REMAPASSERT(!is_consist);
1393 }
1394
1395 /*
1396 * We only let remaps change the certain bits in the PTE.
1397 */
1398 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1399 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1400 old_pte, pte);
1401
1402 /*
1403 * We don't create any mapping list entries on a remap, so release
1404 * any allocated hment after we drop the mapping list lock.
1405 */
1406 done:
1407 if (is_consist) {
1408 x86_hm_exit(pp);
1409 if (hm != NULL)
1410 hment_free(hm);
1411 }
1412 return (rv);
1413 }
1414
1415 /*
1416 * Internal routine to load a single page table entry. This only fails if
1417 * we attempt to overwrite a page table link with a large page.
1418 */
1419 static int
hati_load_common(hat_t * hat,uintptr_t va,page_t * pp,uint_t attr,uint_t flags,level_t level,pfn_t pfn)1420 hati_load_common(
1421 hat_t *hat,
1422 uintptr_t va,
1423 page_t *pp,
1424 uint_t attr,
1425 uint_t flags,
1426 level_t level,
1427 pfn_t pfn)
1428 {
1429 htable_t *ht;
1430 uint_t entry;
1431 x86pte_t pte;
1432 int rv = 0;
1433
1434 /*
1435 * The number 16 is arbitrary and here to catch a recursion problem
1436 * early before we blow out the kernel stack.
1437 */
1438 ++curthread->t_hatdepth;
1439 ASSERT(curthread->t_hatdepth < 16);
1440
1441 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1442
1443 if (flags & HAT_LOAD_SHARE)
1444 hat->hat_flags |= HAT_SHARED;
1445
1446 /*
1447 * Find the page table that maps this page if it already exists.
1448 */
1449 ht = htable_lookup(hat, va, level);
1450
1451 /*
1452 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1453 */
1454 if (pp == NULL)
1455 flags |= HAT_LOAD_NOCONSIST;
1456
1457 if (ht == NULL) {
1458 ht = htable_create(hat, va, level, NULL);
1459 ASSERT(ht != NULL);
1460 }
1461 entry = htable_va2entry(va, ht);
1462
1463 /*
1464 * a bunch of paranoid error checking
1465 */
1466 ASSERT(ht->ht_busy > 0);
1467 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1468 panic("hati_load_common: bad htable %p, va %p",
1469 (void *)ht, (void *)va);
1470 ASSERT(ht->ht_level == level);
1471
1472 /*
1473 * construct the new PTE
1474 */
1475 if (hat == kas.a_hat)
1476 attr &= ~PROT_USER;
1477 pte = hati_mkpte(pfn, attr, level, flags);
1478 if (hat == kas.a_hat && va >= kernelbase)
1479 PTE_SET(pte, mmu.pt_global);
1480
1481 /*
1482 * establish the mapping
1483 */
1484 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1485
1486 /*
1487 * release the htable and any reserves
1488 */
1489 htable_release(ht);
1490 --curthread->t_hatdepth;
1491 return (rv);
1492 }
1493
1494 /*
1495 * special case of hat_memload to deal with some kernel addrs for performance
1496 */
1497 static void
hat_kmap_load(caddr_t addr,page_t * pp,uint_t attr,uint_t flags)1498 hat_kmap_load(
1499 caddr_t addr,
1500 page_t *pp,
1501 uint_t attr,
1502 uint_t flags)
1503 {
1504 uintptr_t va = (uintptr_t)addr;
1505 x86pte_t pte;
1506 pfn_t pfn = page_pptonum(pp);
1507 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr);
1508 htable_t *ht;
1509 uint_t entry;
1510 void *pte_ptr;
1511
1512 /*
1513 * construct the requested PTE
1514 */
1515 attr &= ~PROT_USER;
1516 attr |= HAT_STORECACHING_OK;
1517 pte = hati_mkpte(pfn, attr, 0, flags);
1518 PTE_SET(pte, mmu.pt_global);
1519
1520 /*
1521 * Figure out the pte_ptr and htable and use common code to finish up
1522 */
1523 if (mmu.pae_hat)
1524 pte_ptr = mmu.kmap_ptes + pg_off;
1525 else
1526 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1527 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1528 LEVEL_SHIFT(1)];
1529 entry = htable_va2entry(va, ht);
1530 ++curthread->t_hatdepth;
1531 ASSERT(curthread->t_hatdepth < 16);
1532 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1533 --curthread->t_hatdepth;
1534 }
1535
1536 /*
1537 * hat_memload() - load a translation to the given page struct
1538 *
1539 * Flags for hat_memload/hat_devload/hat_*attr.
1540 *
1541 * HAT_LOAD Default flags to load a translation to the page.
1542 *
1543 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(),
1544 * and hat_devload().
1545 *
1546 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1547 * sets PT_NOCONSIST
1548 *
1549 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables
1550 * that map some user pages (not kas) is shared by more
1551 * than one process (eg. ISM).
1552 *
1553 * HAT_LOAD_REMAP Reload a valid pte with a different page frame.
1554 *
1555 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this
1556 * point, it's setting up mapping to allocate internal
1557 * hat layer data structures. This flag forces hat layer
1558 * to tap its reserves in order to prevent infinite
1559 * recursion.
1560 *
1561 * The following is a protection attribute (like PROT_READ, etc.)
1562 *
1563 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits
1564 * are never cleared.
1565 *
1566 * Installing new valid PTE's and creation of the mapping list
1567 * entry are controlled under the same lock. It's derived from the
1568 * page_t being mapped.
1569 */
1570 static uint_t supported_memload_flags =
1571 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1572 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1573
1574 void
hat_memload(hat_t * hat,caddr_t addr,page_t * pp,uint_t attr,uint_t flags)1575 hat_memload(
1576 hat_t *hat,
1577 caddr_t addr,
1578 page_t *pp,
1579 uint_t attr,
1580 uint_t flags)
1581 {
1582 uintptr_t va = (uintptr_t)addr;
1583 level_t level = 0;
1584 pfn_t pfn = page_pptonum(pp);
1585
1586 XPV_DISALLOW_MIGRATE();
1587 ASSERT(IS_PAGEALIGNED(va));
1588 ASSERT(hat == kas.a_hat || va < _userlimit);
1589 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1590 ASSERT((flags & supported_memload_flags) == flags);
1591
1592 ASSERT(!IN_VA_HOLE(va));
1593 ASSERT(!PP_ISFREE(pp));
1594
1595 /*
1596 * kernel address special case for performance.
1597 */
1598 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1599 ASSERT(hat == kas.a_hat);
1600 hat_kmap_load(addr, pp, attr, flags);
1601 XPV_ALLOW_MIGRATE();
1602 return;
1603 }
1604
1605 /*
1606 * This is used for memory with normal caching enabled, so
1607 * always set HAT_STORECACHING_OK.
1608 */
1609 attr |= HAT_STORECACHING_OK;
1610 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1611 panic("unexpected hati_load_common() failure");
1612 XPV_ALLOW_MIGRATE();
1613 }
1614
1615 /* ARGSUSED */
1616 void
hat_memload_region(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)1617 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1618 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1619 {
1620 hat_memload(hat, addr, pp, attr, flags);
1621 }
1622
1623 /*
1624 * Load the given array of page structs using large pages when possible
1625 */
1626 void
hat_memload_array(hat_t * hat,caddr_t addr,size_t len,page_t ** pages,uint_t attr,uint_t flags)1627 hat_memload_array(
1628 hat_t *hat,
1629 caddr_t addr,
1630 size_t len,
1631 page_t **pages,
1632 uint_t attr,
1633 uint_t flags)
1634 {
1635 uintptr_t va = (uintptr_t)addr;
1636 uintptr_t eaddr = va + len;
1637 level_t level;
1638 size_t pgsize;
1639 pgcnt_t pgindx = 0;
1640 pfn_t pfn;
1641 pgcnt_t i;
1642
1643 XPV_DISALLOW_MIGRATE();
1644 ASSERT(IS_PAGEALIGNED(va));
1645 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1646 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1647 ASSERT((flags & supported_memload_flags) == flags);
1648
1649 /*
1650 * memload is used for memory with full caching enabled, so
1651 * set HAT_STORECACHING_OK.
1652 */
1653 attr |= HAT_STORECACHING_OK;
1654
1655 /*
1656 * handle all pages using largest possible pagesize
1657 */
1658 while (va < eaddr) {
1659 /*
1660 * decide what level mapping to use (ie. pagesize)
1661 */
1662 pfn = page_pptonum(pages[pgindx]);
1663 for (level = mmu.max_page_level; ; --level) {
1664 pgsize = LEVEL_SIZE(level);
1665 if (level == 0)
1666 break;
1667
1668 if (!IS_P2ALIGNED(va, pgsize) ||
1669 (eaddr - va) < pgsize ||
1670 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1671 continue;
1672
1673 /*
1674 * To use a large mapping of this size, all the
1675 * pages we are passed must be sequential subpages
1676 * of the large page.
1677 * hat_page_demote() can't change p_szc because
1678 * all pages are locked.
1679 */
1680 if (pages[pgindx]->p_szc >= level) {
1681 for (i = 0; i < mmu_btop(pgsize); ++i) {
1682 if (pfn + i !=
1683 page_pptonum(pages[pgindx + i]))
1684 break;
1685 ASSERT(pages[pgindx + i]->p_szc >=
1686 level);
1687 ASSERT(pages[pgindx] + i ==
1688 pages[pgindx + i]);
1689 }
1690 if (i == mmu_btop(pgsize)) {
1691 #ifdef DEBUG
1692 if (level == 2)
1693 map1gcnt++;
1694 #endif
1695 break;
1696 }
1697 }
1698 }
1699
1700 /*
1701 * Load this page mapping. If the load fails, try a smaller
1702 * pagesize.
1703 */
1704 ASSERT(!IN_VA_HOLE(va));
1705 while (hati_load_common(hat, va, pages[pgindx], attr,
1706 flags, level, pfn) != 0) {
1707 if (level == 0)
1708 panic("unexpected hati_load_common() failure");
1709 --level;
1710 pgsize = LEVEL_SIZE(level);
1711 }
1712
1713 /*
1714 * move to next page
1715 */
1716 va += pgsize;
1717 pgindx += mmu_btop(pgsize);
1718 }
1719 XPV_ALLOW_MIGRATE();
1720 }
1721
1722 /* ARGSUSED */
1723 void
hat_memload_array_region(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)1724 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1725 struct page **pps, uint_t attr, uint_t flags,
1726 hat_region_cookie_t rcookie)
1727 {
1728 hat_memload_array(hat, addr, len, pps, attr, flags);
1729 }
1730
1731 /*
1732 * void hat_devload(hat, addr, len, pf, attr, flags)
1733 * load/lock the given page frame number
1734 *
1735 * Advisory ordering attributes. Apply only to device mappings.
1736 *
1737 * HAT_STRICTORDER: the CPU must issue the references in order, as the
1738 * programmer specified. This is the default.
1739 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1740 * of reordering; store or load with store or load).
1741 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1742 * to consecutive locations (for example, turn two consecutive byte
1743 * stores into one halfword store), and it may batch individual loads
1744 * (for example, turn two consecutive byte loads into one halfword load).
1745 * This also implies re-ordering.
1746 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1747 * until another store occurs. The default is to fetch new data
1748 * on every load. This also implies merging.
1749 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1750 * the device (perhaps with other data) at a later time. The default is
1751 * to push the data right away. This also implies load caching.
1752 *
1753 * Equivalent of hat_memload(), but can be used for device memory where
1754 * there are no page_t's and we support additional flags (write merging, etc).
1755 * Note that we can have large page mappings with this interface.
1756 */
1757 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1758 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1759 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1760
1761 void
hat_devload(hat_t * hat,caddr_t addr,size_t len,pfn_t pfn,uint_t attr,int flags)1762 hat_devload(
1763 hat_t *hat,
1764 caddr_t addr,
1765 size_t len,
1766 pfn_t pfn,
1767 uint_t attr,
1768 int flags)
1769 {
1770 uintptr_t va = ALIGN2PAGE(addr);
1771 uintptr_t eva = va + len;
1772 level_t level;
1773 size_t pgsize;
1774 page_t *pp;
1775 int f; /* per PTE copy of flags - maybe modified */
1776 uint_t a; /* per PTE copy of attr */
1777
1778 XPV_DISALLOW_MIGRATE();
1779 ASSERT(IS_PAGEALIGNED(va));
1780 ASSERT(hat == kas.a_hat || eva <= _userlimit);
1781 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1782 ASSERT((flags & supported_devload_flags) == flags);
1783
1784 /*
1785 * handle all pages
1786 */
1787 while (va < eva) {
1788
1789 /*
1790 * decide what level mapping to use (ie. pagesize)
1791 */
1792 for (level = mmu.max_page_level; ; --level) {
1793 pgsize = LEVEL_SIZE(level);
1794 if (level == 0)
1795 break;
1796 if (IS_P2ALIGNED(va, pgsize) &&
1797 (eva - va) >= pgsize &&
1798 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1799 #ifdef DEBUG
1800 if (level == 2)
1801 map1gcnt++;
1802 #endif
1803 break;
1804 }
1805 }
1806
1807 /*
1808 * If this is just memory then allow caching (this happens
1809 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1810 * to override that. If we don't have a page_t then make sure
1811 * NOCONSIST is set.
1812 */
1813 a = attr;
1814 f = flags;
1815 if (!pf_is_memory(pfn))
1816 f |= HAT_LOAD_NOCONSIST;
1817 else if (!(a & HAT_PLAT_NOCACHE))
1818 a |= HAT_STORECACHING_OK;
1819
1820 if (f & HAT_LOAD_NOCONSIST)
1821 pp = NULL;
1822 else
1823 pp = page_numtopp_nolock(pfn);
1824
1825 /*
1826 * Check to make sure we are really trying to map a valid
1827 * memory page. The caller wishing to intentionally map
1828 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1829 * flag, then pp will be NULL.
1830 */
1831 if (pp != NULL) {
1832 if (PP_ISFREE(pp)) {
1833 panic("hat_devload: loading "
1834 "a mapping to free page %p", (void *)pp);
1835 }
1836
1837 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1838 panic("hat_devload: loading a mapping "
1839 "to an unlocked page %p",
1840 (void *)pp);
1841 }
1842 }
1843
1844 /*
1845 * load this page mapping
1846 */
1847 ASSERT(!IN_VA_HOLE(va));
1848 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1849 if (level == 0)
1850 panic("unexpected hati_load_common() failure");
1851 --level;
1852 pgsize = LEVEL_SIZE(level);
1853 }
1854
1855 /*
1856 * move to next page
1857 */
1858 va += pgsize;
1859 pfn += mmu_btop(pgsize);
1860 }
1861 XPV_ALLOW_MIGRATE();
1862 }
1863
1864 /*
1865 * void hat_unlock(hat, addr, len)
1866 * unlock the mappings to a given range of addresses
1867 *
1868 * Locks are tracked by ht_lock_cnt in the htable.
1869 */
1870 void
hat_unlock(hat_t * hat,caddr_t addr,size_t len)1871 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1872 {
1873 uintptr_t vaddr = (uintptr_t)addr;
1874 uintptr_t eaddr = vaddr + len;
1875 htable_t *ht = NULL;
1876
1877 /*
1878 * kernel entries are always locked, we don't track lock counts
1879 */
1880 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1881 ASSERT(IS_PAGEALIGNED(vaddr));
1882 ASSERT(IS_PAGEALIGNED(eaddr));
1883 if (hat == kas.a_hat)
1884 return;
1885 if (eaddr > _userlimit)
1886 panic("hat_unlock() address out of range - above _userlimit");
1887
1888 XPV_DISALLOW_MIGRATE();
1889 ASSERT(AS_LOCK_HELD(hat->hat_as));
1890 while (vaddr < eaddr) {
1891 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1892 if (ht == NULL)
1893 break;
1894
1895 ASSERT(!IN_VA_HOLE(vaddr));
1896
1897 if (ht->ht_lock_cnt < 1)
1898 panic("hat_unlock(): lock_cnt < 1, "
1899 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1900 HTABLE_LOCK_DEC(ht);
1901
1902 vaddr += LEVEL_SIZE(ht->ht_level);
1903 }
1904 if (ht)
1905 htable_release(ht);
1906 XPV_ALLOW_MIGRATE();
1907 }
1908
1909 /* ARGSUSED */
1910 void
hat_unlock_region(struct hat * hat,caddr_t addr,size_t len,hat_region_cookie_t rcookie)1911 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1912 hat_region_cookie_t rcookie)
1913 {
1914 panic("No shared region support on x86");
1915 }
1916
1917 #if !defined(__xpv)
1918 /*
1919 * Cross call service routine to demap a virtual page on
1920 * the current CPU or flush all mappings in TLB.
1921 */
1922 /*ARGSUSED*/
1923 static int
hati_demap_func(xc_arg_t a1,xc_arg_t a2,xc_arg_t a3)1924 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1925 {
1926 hat_t *hat = (hat_t *)a1;
1927 caddr_t addr = (caddr_t)a2;
1928 size_t len = (size_t)a3;
1929
1930 /*
1931 * If the target hat isn't the kernel and this CPU isn't operating
1932 * in the target hat, we can ignore the cross call.
1933 */
1934 if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1935 return (0);
1936
1937 /*
1938 * For a normal address, we flush a range of contiguous mappings
1939 */
1940 if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1941 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
1942 mmu_tlbflush_entry(addr + i);
1943 return (0);
1944 }
1945
1946 /*
1947 * Otherwise we reload cr3 to effect a complete TLB flush.
1948 *
1949 * A reload of cr3 on a VLP process also means we must also recopy in
1950 * the pte values from the struct hat
1951 */
1952 if (hat->hat_flags & HAT_VLP) {
1953 #if defined(__amd64)
1954 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1955
1956 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1957 #elif defined(__i386)
1958 reload_pae32(hat, CPU);
1959 #endif
1960 }
1961 reload_cr3();
1962 return (0);
1963 }
1964
1965 /*
1966 * Flush all TLB entries, including global (ie. kernel) ones.
1967 */
1968 static void
flush_all_tlb_entries(void)1969 flush_all_tlb_entries(void)
1970 {
1971 ulong_t cr4 = getcr4();
1972
1973 if (cr4 & CR4_PGE) {
1974 setcr4(cr4 & ~(ulong_t)CR4_PGE);
1975 setcr4(cr4);
1976
1977 /*
1978 * 32 bit PAE also needs to always reload_cr3()
1979 */
1980 if (mmu.max_level == 2)
1981 reload_cr3();
1982 } else {
1983 reload_cr3();
1984 }
1985 }
1986
1987 #define TLB_CPU_HALTED (01ul)
1988 #define TLB_INVAL_ALL (02ul)
1989 #define CAS_TLB_INFO(cpu, old, new) \
1990 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1991
1992 /*
1993 * Record that a CPU is going idle
1994 */
1995 void
tlb_going_idle(void)1996 tlb_going_idle(void)
1997 {
1998 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1999 }
2000
2001 /*
2002 * Service a delayed TLB flush if coming out of being idle.
2003 * It will be called from cpu idle notification with interrupt disabled.
2004 */
2005 void
tlb_service(void)2006 tlb_service(void)
2007 {
2008 ulong_t tlb_info;
2009 ulong_t found;
2010
2011 /*
2012 * We only have to do something if coming out of being idle.
2013 */
2014 tlb_info = CPU->cpu_m.mcpu_tlb_info;
2015 if (tlb_info & TLB_CPU_HALTED) {
2016 ASSERT(CPU->cpu_current_hat == kas.a_hat);
2017
2018 /*
2019 * Atomic clear and fetch of old state.
2020 */
2021 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2022 ASSERT(found & TLB_CPU_HALTED);
2023 tlb_info = found;
2024 SMT_PAUSE();
2025 }
2026 if (tlb_info & TLB_INVAL_ALL)
2027 flush_all_tlb_entries();
2028 }
2029 }
2030 #endif /* !__xpv */
2031
2032 /*
2033 * Internal routine to do cross calls to invalidate a range of pages on
2034 * all CPUs using a given hat.
2035 */
2036 void
hat_tlb_inval_range(hat_t * hat,uintptr_t va,size_t len)2037 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len)
2038 {
2039 extern int flushes_require_xcalls; /* from mp_startup.c */
2040 cpuset_t justme;
2041 cpuset_t cpus_to_shootdown;
2042 #ifndef __xpv
2043 cpuset_t check_cpus;
2044 cpu_t *cpup;
2045 int c;
2046 #endif
2047
2048 /*
2049 * If the hat is being destroyed, there are no more users, so
2050 * demap need not do anything.
2051 */
2052 if (hat->hat_flags & HAT_FREEING)
2053 return;
2054
2055 /*
2056 * If demapping from a shared pagetable, we best demap the
2057 * entire set of user TLBs, since we don't know what addresses
2058 * these were shared at.
2059 */
2060 if (hat->hat_flags & HAT_SHARED) {
2061 hat = kas.a_hat;
2062 va = DEMAP_ALL_ADDR;
2063 }
2064
2065 /*
2066 * if not running with multiple CPUs, don't use cross calls
2067 */
2068 if (panicstr || !flushes_require_xcalls) {
2069 #ifdef __xpv
2070 if (va == DEMAP_ALL_ADDR) {
2071 xen_flush_tlb();
2072 } else {
2073 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2074 xen_flush_va((caddr_t)(va + i));
2075 }
2076 #else
2077 (void) hati_demap_func((xc_arg_t)hat,
2078 (xc_arg_t)va, (xc_arg_t)len);
2079 #endif
2080 return;
2081 }
2082
2083
2084 /*
2085 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2086 * Otherwise it's just CPUs currently executing in this hat.
2087 */
2088 kpreempt_disable();
2089 CPUSET_ONLY(justme, CPU->cpu_id);
2090 if (hat == kas.a_hat)
2091 cpus_to_shootdown = khat_cpuset;
2092 else
2093 cpus_to_shootdown = hat->hat_cpus;
2094
2095 #ifndef __xpv
2096 /*
2097 * If any CPUs in the set are idle, just request a delayed flush
2098 * and avoid waking them up.
2099 */
2100 check_cpus = cpus_to_shootdown;
2101 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2102 ulong_t tlb_info;
2103
2104 if (!CPU_IN_SET(check_cpus, c))
2105 continue;
2106 CPUSET_DEL(check_cpus, c);
2107 cpup = cpu[c];
2108 if (cpup == NULL)
2109 continue;
2110
2111 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2112 while (tlb_info == TLB_CPU_HALTED) {
2113 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2114 TLB_CPU_HALTED | TLB_INVAL_ALL);
2115 SMT_PAUSE();
2116 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2117 }
2118 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2119 HATSTAT_INC(hs_tlb_inval_delayed);
2120 CPUSET_DEL(cpus_to_shootdown, c);
2121 }
2122 }
2123 #endif
2124
2125 if (CPUSET_ISNULL(cpus_to_shootdown) ||
2126 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2127
2128 #ifdef __xpv
2129 if (va == DEMAP_ALL_ADDR) {
2130 xen_flush_tlb();
2131 } else {
2132 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2133 xen_flush_va((caddr_t)(va + i));
2134 }
2135 #else
2136 (void) hati_demap_func((xc_arg_t)hat,
2137 (xc_arg_t)va, (xc_arg_t)len);
2138 #endif
2139
2140 } else {
2141
2142 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2143 #ifdef __xpv
2144 if (va == DEMAP_ALL_ADDR) {
2145 xen_gflush_tlb(cpus_to_shootdown);
2146 } else {
2147 for (size_t i = 0; i < len; i += MMU_PAGESIZE) {
2148 xen_gflush_va((caddr_t)(va + i),
2149 cpus_to_shootdown);
2150 }
2151 }
2152 #else
2153 xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len,
2154 CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2155 #endif
2156
2157 }
2158 kpreempt_enable();
2159 }
2160
2161 void
hat_tlb_inval(hat_t * hat,uintptr_t va)2162 hat_tlb_inval(hat_t *hat, uintptr_t va)
2163 {
2164 hat_tlb_inval_range(hat, va, MMU_PAGESIZE);
2165 }
2166
2167 /*
2168 * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2169 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't
2170 * handle releasing of the htables.
2171 */
2172 void
hat_pte_unmap(htable_t * ht,uint_t entry,uint_t flags,x86pte_t old_pte,void * pte_ptr,boolean_t tlb)2173 hat_pte_unmap(
2174 htable_t *ht,
2175 uint_t entry,
2176 uint_t flags,
2177 x86pte_t old_pte,
2178 void *pte_ptr,
2179 boolean_t tlb)
2180 {
2181 hat_t *hat = ht->ht_hat;
2182 hment_t *hm = NULL;
2183 page_t *pp = NULL;
2184 level_t l = ht->ht_level;
2185 pfn_t pfn;
2186
2187 /*
2188 * We always track the locking counts, even if nothing is unmapped
2189 */
2190 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2191 ASSERT(ht->ht_lock_cnt > 0);
2192 HTABLE_LOCK_DEC(ht);
2193 }
2194
2195 /*
2196 * Figure out which page's mapping list lock to acquire using the PFN
2197 * passed in "old" PTE. We then attempt to invalidate the PTE.
2198 * If another thread, probably a hat_pageunload, has asynchronously
2199 * unmapped/remapped this address we'll loop here.
2200 */
2201 ASSERT(ht->ht_busy > 0);
2202 while (PTE_ISVALID(old_pte)) {
2203 pfn = PTE2PFN(old_pte, l);
2204 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2205 pp = NULL;
2206 } else {
2207 #ifdef __xpv
2208 if (pfn == PFN_INVALID)
2209 panic("Invalid PFN, but not PT_NOCONSIST");
2210 #endif
2211 pp = page_numtopp_nolock(pfn);
2212 if (pp == NULL) {
2213 panic("no page_t, not NOCONSIST: old_pte="
2214 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2215 old_pte, (uintptr_t)ht, entry,
2216 (uintptr_t)pte_ptr);
2217 }
2218 x86_hm_enter(pp);
2219 }
2220
2221 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb);
2222
2223 /*
2224 * If the page hadn't changed we've unmapped it and can proceed
2225 */
2226 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2227 break;
2228
2229 /*
2230 * Otherwise, we'll have to retry with the current old_pte.
2231 * Drop the hment lock, since the pfn may have changed.
2232 */
2233 if (pp != NULL) {
2234 x86_hm_exit(pp);
2235 pp = NULL;
2236 } else {
2237 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2238 }
2239 }
2240
2241 /*
2242 * If the old mapping wasn't valid, there's nothing more to do
2243 */
2244 if (!PTE_ISVALID(old_pte)) {
2245 if (pp != NULL)
2246 x86_hm_exit(pp);
2247 return;
2248 }
2249
2250 /*
2251 * Take care of syncing any MOD/REF bits and removing the hment.
2252 */
2253 if (pp != NULL) {
2254 if (!(flags & HAT_UNLOAD_NOSYNC))
2255 hati_sync_pte_to_page(pp, old_pte, l);
2256 hm = hment_remove(pp, ht, entry);
2257 x86_hm_exit(pp);
2258 if (hm != NULL)
2259 hment_free(hm);
2260 }
2261
2262 /*
2263 * Handle book keeping in the htable and hat
2264 */
2265 ASSERT(ht->ht_valid_cnt > 0);
2266 HTABLE_DEC(ht->ht_valid_cnt);
2267 PGCNT_DEC(hat, l);
2268 }
2269
2270 /*
2271 * very cheap unload implementation to special case some kernel addresses
2272 */
2273 static void
hat_kmap_unload(caddr_t addr,size_t len,uint_t flags)2274 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2275 {
2276 uintptr_t va = (uintptr_t)addr;
2277 uintptr_t eva = va + len;
2278 pgcnt_t pg_index;
2279 htable_t *ht;
2280 uint_t entry;
2281 x86pte_t *pte_ptr;
2282 x86pte_t old_pte;
2283
2284 for (; va < eva; va += MMU_PAGESIZE) {
2285 /*
2286 * Get the PTE
2287 */
2288 pg_index = mmu_btop(va - mmu.kmap_addr);
2289 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2290 old_pte = GET_PTE(pte_ptr);
2291
2292 /*
2293 * get the htable / entry
2294 */
2295 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2296 >> LEVEL_SHIFT(1)];
2297 entry = htable_va2entry(va, ht);
2298
2299 /*
2300 * use mostly common code to unmap it.
2301 */
2302 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE);
2303 }
2304 }
2305
2306
2307 /*
2308 * unload a range of virtual address space (no callback)
2309 */
2310 void
hat_unload(hat_t * hat,caddr_t addr,size_t len,uint_t flags)2311 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2312 {
2313 uintptr_t va = (uintptr_t)addr;
2314
2315 XPV_DISALLOW_MIGRATE();
2316 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2317
2318 /*
2319 * special case for performance.
2320 */
2321 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2322 ASSERT(hat == kas.a_hat);
2323 hat_kmap_unload(addr, len, flags);
2324 } else {
2325 hat_unload_callback(hat, addr, len, flags, NULL);
2326 }
2327 XPV_ALLOW_MIGRATE();
2328 }
2329
2330 /*
2331 * Do the callbacks for ranges being unloaded.
2332 */
2333 typedef struct range_info {
2334 uintptr_t rng_va;
2335 ulong_t rng_cnt;
2336 level_t rng_level;
2337 } range_info_t;
2338
2339 /*
2340 * Invalidate the TLB, and perform the callback to the upper level VM system,
2341 * for the specified ranges of contiguous pages.
2342 */
2343 static void
handle_ranges(hat_t * hat,hat_callback_t * cb,uint_t cnt,range_info_t * range)2344 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range)
2345 {
2346 while (cnt > 0) {
2347 size_t len;
2348
2349 --cnt;
2350 len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level);
2351 hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len);
2352
2353 if (cb != NULL) {
2354 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2355 cb->hcb_end_addr = cb->hcb_start_addr;
2356 cb->hcb_end_addr += len;
2357 cb->hcb_function(cb);
2358 }
2359 }
2360 }
2361
2362 /*
2363 * Unload a given range of addresses (has optional callback)
2364 *
2365 * Flags:
2366 * define HAT_UNLOAD 0x00
2367 * define HAT_UNLOAD_NOSYNC 0x02
2368 * define HAT_UNLOAD_UNLOCK 0x04
2369 * define HAT_UNLOAD_OTHER 0x08 - not used
2370 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD
2371 */
2372 #define MAX_UNLOAD_CNT (8)
2373 void
hat_unload_callback(hat_t * hat,caddr_t addr,size_t len,uint_t flags,hat_callback_t * cb)2374 hat_unload_callback(
2375 hat_t *hat,
2376 caddr_t addr,
2377 size_t len,
2378 uint_t flags,
2379 hat_callback_t *cb)
2380 {
2381 uintptr_t vaddr = (uintptr_t)addr;
2382 uintptr_t eaddr = vaddr + len;
2383 htable_t *ht = NULL;
2384 uint_t entry;
2385 uintptr_t contig_va = (uintptr_t)-1L;
2386 range_info_t r[MAX_UNLOAD_CNT];
2387 uint_t r_cnt = 0;
2388 x86pte_t old_pte;
2389
2390 XPV_DISALLOW_MIGRATE();
2391 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2392 ASSERT(IS_PAGEALIGNED(vaddr));
2393 ASSERT(IS_PAGEALIGNED(eaddr));
2394
2395 /*
2396 * Special case a single page being unloaded for speed. This happens
2397 * quite frequently, COW faults after a fork() for example.
2398 */
2399 if (cb == NULL && len == MMU_PAGESIZE) {
2400 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2401 if (ht != NULL) {
2402 if (PTE_ISVALID(old_pte)) {
2403 hat_pte_unmap(ht, entry, flags, old_pte,
2404 NULL, B_TRUE);
2405 }
2406 htable_release(ht);
2407 }
2408 XPV_ALLOW_MIGRATE();
2409 return;
2410 }
2411
2412 while (vaddr < eaddr) {
2413 old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2414 if (ht == NULL)
2415 break;
2416
2417 ASSERT(!IN_VA_HOLE(vaddr));
2418
2419 if (vaddr < (uintptr_t)addr)
2420 panic("hat_unload_callback(): unmap inside large page");
2421
2422 /*
2423 * We'll do the call backs for contiguous ranges
2424 */
2425 if (vaddr != contig_va ||
2426 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2427 if (r_cnt == MAX_UNLOAD_CNT) {
2428 handle_ranges(hat, cb, r_cnt, r);
2429 r_cnt = 0;
2430 }
2431 r[r_cnt].rng_va = vaddr;
2432 r[r_cnt].rng_cnt = 0;
2433 r[r_cnt].rng_level = ht->ht_level;
2434 ++r_cnt;
2435 }
2436
2437 /*
2438 * Unload one mapping (for a single page) from the page tables.
2439 * Note that we do not remove the mapping from the TLB yet,
2440 * as indicated by the tlb=FALSE argument to hat_pte_unmap().
2441 * handle_ranges() will clear the TLB entries with one call to
2442 * hat_tlb_inval_range() per contiguous range. This is
2443 * safe because the page can not be reused until the
2444 * callback is made (or we return).
2445 */
2446 entry = htable_va2entry(vaddr, ht);
2447 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE);
2448 ASSERT(ht->ht_level <= mmu.max_page_level);
2449 vaddr += LEVEL_SIZE(ht->ht_level);
2450 contig_va = vaddr;
2451 ++r[r_cnt - 1].rng_cnt;
2452 }
2453 if (ht)
2454 htable_release(ht);
2455
2456 /*
2457 * handle last range for callbacks
2458 */
2459 if (r_cnt > 0)
2460 handle_ranges(hat, cb, r_cnt, r);
2461 XPV_ALLOW_MIGRATE();
2462 }
2463
2464 /*
2465 * Invalidate a virtual address translation on a slave CPU during
2466 * panic() dumps.
2467 */
2468 void
hat_flush_range(hat_t * hat,caddr_t va,size_t size)2469 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2470 {
2471 ssize_t sz;
2472 caddr_t endva = va + size;
2473
2474 while (va < endva) {
2475 sz = hat_getpagesize(hat, va);
2476 if (sz < 0) {
2477 #ifdef __xpv
2478 xen_flush_tlb();
2479 #else
2480 flush_all_tlb_entries();
2481 #endif
2482 break;
2483 }
2484 #ifdef __xpv
2485 xen_flush_va(va);
2486 #else
2487 mmu_tlbflush_entry(va);
2488 #endif
2489 va += sz;
2490 }
2491 }
2492
2493 /*
2494 * synchronize mapping with software data structures
2495 *
2496 * This interface is currently only used by the working set monitor
2497 * driver.
2498 */
2499 /*ARGSUSED*/
2500 void
hat_sync(hat_t * hat,caddr_t addr,size_t len,uint_t flags)2501 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2502 {
2503 uintptr_t vaddr = (uintptr_t)addr;
2504 uintptr_t eaddr = vaddr + len;
2505 htable_t *ht = NULL;
2506 uint_t entry;
2507 x86pte_t pte;
2508 x86pte_t save_pte;
2509 x86pte_t new;
2510 page_t *pp;
2511
2512 ASSERT(!IN_VA_HOLE(vaddr));
2513 ASSERT(IS_PAGEALIGNED(vaddr));
2514 ASSERT(IS_PAGEALIGNED(eaddr));
2515 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2516
2517 XPV_DISALLOW_MIGRATE();
2518 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2519 try_again:
2520 pte = htable_walk(hat, &ht, &vaddr, eaddr);
2521 if (ht == NULL)
2522 break;
2523 entry = htable_va2entry(vaddr, ht);
2524
2525 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2526 PTE_GET(pte, PT_REF | PT_MOD) == 0)
2527 continue;
2528
2529 /*
2530 * We need to acquire the mapping list lock to protect
2531 * against hat_pageunload(), hat_unload(), etc.
2532 */
2533 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2534 if (pp == NULL)
2535 break;
2536 x86_hm_enter(pp);
2537 save_pte = pte;
2538 pte = x86pte_get(ht, entry);
2539 if (pte != save_pte) {
2540 x86_hm_exit(pp);
2541 goto try_again;
2542 }
2543 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2544 PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2545 x86_hm_exit(pp);
2546 continue;
2547 }
2548
2549 /*
2550 * Need to clear ref or mod bits. We may compete with
2551 * hardware updating the R/M bits and have to try again.
2552 */
2553 if (flags == HAT_SYNC_ZERORM) {
2554 new = pte;
2555 PTE_CLR(new, PT_REF | PT_MOD);
2556 pte = hati_update_pte(ht, entry, pte, new);
2557 if (pte != 0) {
2558 x86_hm_exit(pp);
2559 goto try_again;
2560 }
2561 } else {
2562 /*
2563 * sync the PTE to the page_t
2564 */
2565 hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2566 }
2567 x86_hm_exit(pp);
2568 }
2569 if (ht)
2570 htable_release(ht);
2571 XPV_ALLOW_MIGRATE();
2572 }
2573
2574 /*
2575 * void hat_map(hat, addr, len, flags)
2576 */
2577 /*ARGSUSED*/
2578 void
hat_map(hat_t * hat,caddr_t addr,size_t len,uint_t flags)2579 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2580 {
2581 /* does nothing */
2582 }
2583
2584 /*
2585 * uint_t hat_getattr(hat, addr, *attr)
2586 * returns attr for <hat,addr> in *attr. returns 0 if there was a
2587 * mapping and *attr is valid, nonzero if there was no mapping and
2588 * *attr is not valid.
2589 */
2590 uint_t
hat_getattr(hat_t * hat,caddr_t addr,uint_t * attr)2591 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2592 {
2593 uintptr_t vaddr = ALIGN2PAGE(addr);
2594 htable_t *ht = NULL;
2595 x86pte_t pte;
2596
2597 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2598
2599 if (IN_VA_HOLE(vaddr))
2600 return ((uint_t)-1);
2601
2602 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2603 if (ht == NULL)
2604 return ((uint_t)-1);
2605
2606 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2607 htable_release(ht);
2608 return ((uint_t)-1);
2609 }
2610
2611 *attr = PROT_READ;
2612 if (PTE_GET(pte, PT_WRITABLE))
2613 *attr |= PROT_WRITE;
2614 if (PTE_GET(pte, PT_USER))
2615 *attr |= PROT_USER;
2616 if (!PTE_GET(pte, mmu.pt_nx))
2617 *attr |= PROT_EXEC;
2618 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2619 *attr |= HAT_NOSYNC;
2620 htable_release(ht);
2621 return (0);
2622 }
2623
2624 /*
2625 * hat_updateattr() applies the given attribute change to an existing mapping
2626 */
2627 #define HAT_LOAD_ATTR 1
2628 #define HAT_SET_ATTR 2
2629 #define HAT_CLR_ATTR 3
2630
2631 static void
hat_updateattr(hat_t * hat,caddr_t addr,size_t len,uint_t attr,int what)2632 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2633 {
2634 uintptr_t vaddr = (uintptr_t)addr;
2635 uintptr_t eaddr = (uintptr_t)addr + len;
2636 htable_t *ht = NULL;
2637 uint_t entry;
2638 x86pte_t oldpte, newpte;
2639 page_t *pp;
2640
2641 XPV_DISALLOW_MIGRATE();
2642 ASSERT(IS_PAGEALIGNED(vaddr));
2643 ASSERT(IS_PAGEALIGNED(eaddr));
2644 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2645 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2646 try_again:
2647 oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2648 if (ht == NULL)
2649 break;
2650 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2651 continue;
2652
2653 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2654 if (pp == NULL)
2655 continue;
2656 x86_hm_enter(pp);
2657
2658 newpte = oldpte;
2659 /*
2660 * We found a page table entry in the desired range,
2661 * figure out the new attributes.
2662 */
2663 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2664 if ((attr & PROT_WRITE) &&
2665 !PTE_GET(oldpte, PT_WRITABLE))
2666 newpte |= PT_WRITABLE;
2667
2668 if ((attr & HAT_NOSYNC) &&
2669 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2670 newpte |= PT_NOSYNC;
2671
2672 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2673 newpte &= ~mmu.pt_nx;
2674 }
2675
2676 if (what == HAT_LOAD_ATTR) {
2677 if (!(attr & PROT_WRITE) &&
2678 PTE_GET(oldpte, PT_WRITABLE))
2679 newpte &= ~PT_WRITABLE;
2680
2681 if (!(attr & HAT_NOSYNC) &&
2682 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2683 newpte &= ~PT_SOFTWARE;
2684
2685 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2686 newpte |= mmu.pt_nx;
2687 }
2688
2689 if (what == HAT_CLR_ATTR) {
2690 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2691 newpte &= ~PT_WRITABLE;
2692
2693 if ((attr & HAT_NOSYNC) &&
2694 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2695 newpte &= ~PT_SOFTWARE;
2696
2697 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2698 newpte |= mmu.pt_nx;
2699 }
2700
2701 /*
2702 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2703 * x86pte_set() depends on this.
2704 */
2705 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2706 newpte |= PT_REF | PT_MOD;
2707
2708 /*
2709 * what about PROT_READ or others? this code only handles:
2710 * EXEC, WRITE, NOSYNC
2711 */
2712
2713 /*
2714 * If new PTE really changed, update the table.
2715 */
2716 if (newpte != oldpte) {
2717 entry = htable_va2entry(vaddr, ht);
2718 oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2719 if (oldpte != 0) {
2720 x86_hm_exit(pp);
2721 goto try_again;
2722 }
2723 }
2724 x86_hm_exit(pp);
2725 }
2726 if (ht)
2727 htable_release(ht);
2728 XPV_ALLOW_MIGRATE();
2729 }
2730
2731 /*
2732 * Various wrappers for hat_updateattr()
2733 */
2734 void
hat_setattr(hat_t * hat,caddr_t addr,size_t len,uint_t attr)2735 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2736 {
2737 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2738 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2739 }
2740
2741 void
hat_clrattr(hat_t * hat,caddr_t addr,size_t len,uint_t attr)2742 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2743 {
2744 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2745 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2746 }
2747
2748 void
hat_chgattr(hat_t * hat,caddr_t addr,size_t len,uint_t attr)2749 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2750 {
2751 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2752 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2753 }
2754
2755 void
hat_chgprot(hat_t * hat,caddr_t addr,size_t len,uint_t vprot)2756 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2757 {
2758 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2759 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2760 }
2761
2762 /*
2763 * size_t hat_getpagesize(hat, addr)
2764 * returns pagesize in bytes for <hat, addr>. returns -1 of there is
2765 * no mapping. This is an advisory call.
2766 */
2767 ssize_t
hat_getpagesize(hat_t * hat,caddr_t addr)2768 hat_getpagesize(hat_t *hat, caddr_t addr)
2769 {
2770 uintptr_t vaddr = ALIGN2PAGE(addr);
2771 htable_t *ht;
2772 size_t pagesize;
2773
2774 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2775 if (IN_VA_HOLE(vaddr))
2776 return (-1);
2777 ht = htable_getpage(hat, vaddr, NULL);
2778 if (ht == NULL)
2779 return (-1);
2780 pagesize = LEVEL_SIZE(ht->ht_level);
2781 htable_release(ht);
2782 return (pagesize);
2783 }
2784
2785
2786
2787 /*
2788 * pfn_t hat_getpfnum(hat, addr)
2789 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2790 */
2791 pfn_t
hat_getpfnum(hat_t * hat,caddr_t addr)2792 hat_getpfnum(hat_t *hat, caddr_t addr)
2793 {
2794 uintptr_t vaddr = ALIGN2PAGE(addr);
2795 htable_t *ht;
2796 uint_t entry;
2797 pfn_t pfn = PFN_INVALID;
2798
2799 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2800 if (khat_running == 0)
2801 return (PFN_INVALID);
2802
2803 if (IN_VA_HOLE(vaddr))
2804 return (PFN_INVALID);
2805
2806 XPV_DISALLOW_MIGRATE();
2807 /*
2808 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2809 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2810 * this up.
2811 */
2812 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2813 x86pte_t pte;
2814 pgcnt_t pg_index;
2815
2816 pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2817 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2818 if (PTE_ISVALID(pte))
2819 /*LINTED [use of constant 0 causes a lint warning] */
2820 pfn = PTE2PFN(pte, 0);
2821 XPV_ALLOW_MIGRATE();
2822 return (pfn);
2823 }
2824
2825 ht = htable_getpage(hat, vaddr, &entry);
2826 if (ht == NULL) {
2827 XPV_ALLOW_MIGRATE();
2828 return (PFN_INVALID);
2829 }
2830 ASSERT(vaddr >= ht->ht_vaddr);
2831 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2832 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2833 if (ht->ht_level > 0)
2834 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2835 htable_release(ht);
2836 XPV_ALLOW_MIGRATE();
2837 return (pfn);
2838 }
2839
2840 /*
2841 * int hat_probe(hat, addr)
2842 * return 0 if no valid mapping is present. Faster version
2843 * of hat_getattr in certain architectures.
2844 */
2845 int
hat_probe(hat_t * hat,caddr_t addr)2846 hat_probe(hat_t *hat, caddr_t addr)
2847 {
2848 uintptr_t vaddr = ALIGN2PAGE(addr);
2849 uint_t entry;
2850 htable_t *ht;
2851 pgcnt_t pg_off;
2852
2853 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2854 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2855 if (IN_VA_HOLE(vaddr))
2856 return (0);
2857
2858 /*
2859 * Most common use of hat_probe is from segmap. We special case it
2860 * for performance.
2861 */
2862 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2863 pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2864 if (mmu.pae_hat)
2865 return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2866 else
2867 return (PTE_ISVALID(
2868 ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2869 }
2870
2871 ht = htable_getpage(hat, vaddr, &entry);
2872 htable_release(ht);
2873 return (ht != NULL);
2874 }
2875
2876 /*
2877 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2878 */
2879 static int
is_it_dism(hat_t * hat,caddr_t va)2880 is_it_dism(hat_t *hat, caddr_t va)
2881 {
2882 struct seg *seg;
2883 struct shm_data *shmd;
2884 struct spt_data *sptd;
2885
2886 seg = as_findseg(hat->hat_as, va, 0);
2887 ASSERT(seg != NULL);
2888 ASSERT(seg->s_base <= va);
2889 shmd = (struct shm_data *)seg->s_data;
2890 ASSERT(shmd != NULL);
2891 sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2892 ASSERT(sptd != NULL);
2893 if (sptd->spt_flags & SHM_PAGEABLE)
2894 return (1);
2895 return (0);
2896 }
2897
2898 /*
2899 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2900 * except that we use the ism_hat's existing mappings to determine the pages
2901 * and protections to use for this hat. If we find a full properly aligned
2902 * and sized pagetable, we will attempt to share the pagetable itself.
2903 */
2904 /*ARGSUSED*/
2905 int
hat_share(hat_t * hat,caddr_t addr,hat_t * ism_hat,caddr_t src_addr,size_t len,uint_t ismszc)2906 hat_share(
2907 hat_t *hat,
2908 caddr_t addr,
2909 hat_t *ism_hat,
2910 caddr_t src_addr,
2911 size_t len, /* almost useless value, see below.. */
2912 uint_t ismszc)
2913 {
2914 uintptr_t vaddr_start = (uintptr_t)addr;
2915 uintptr_t vaddr;
2916 uintptr_t eaddr = vaddr_start + len;
2917 uintptr_t ism_addr_start = (uintptr_t)src_addr;
2918 uintptr_t ism_addr = ism_addr_start;
2919 uintptr_t e_ism_addr = ism_addr + len;
2920 htable_t *ism_ht = NULL;
2921 htable_t *ht;
2922 x86pte_t pte;
2923 page_t *pp;
2924 pfn_t pfn;
2925 level_t l;
2926 pgcnt_t pgcnt;
2927 uint_t prot;
2928 int is_dism;
2929 int flags;
2930
2931 /*
2932 * We might be asked to share an empty DISM hat by as_dup()
2933 */
2934 ASSERT(hat != kas.a_hat);
2935 ASSERT(eaddr <= _userlimit);
2936 if (!(ism_hat->hat_flags & HAT_SHARED)) {
2937 ASSERT(hat_get_mapped_size(ism_hat) == 0);
2938 return (0);
2939 }
2940 XPV_DISALLOW_MIGRATE();
2941
2942 /*
2943 * The SPT segment driver often passes us a size larger than there are
2944 * valid mappings. That's because it rounds the segment size up to a
2945 * large pagesize, even if the actual memory mapped by ism_hat is less.
2946 */
2947 ASSERT(IS_PAGEALIGNED(vaddr_start));
2948 ASSERT(IS_PAGEALIGNED(ism_addr_start));
2949 ASSERT(ism_hat->hat_flags & HAT_SHARED);
2950 is_dism = is_it_dism(hat, addr);
2951 while (ism_addr < e_ism_addr) {
2952 /*
2953 * use htable_walk to get the next valid ISM mapping
2954 */
2955 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2956 if (ism_ht == NULL)
2957 break;
2958
2959 /*
2960 * First check to see if we already share the page table.
2961 */
2962 l = ism_ht->ht_level;
2963 vaddr = vaddr_start + (ism_addr - ism_addr_start);
2964 ht = htable_lookup(hat, vaddr, l);
2965 if (ht != NULL) {
2966 if (ht->ht_flags & HTABLE_SHARED_PFN)
2967 goto shared;
2968 htable_release(ht);
2969 goto not_shared;
2970 }
2971
2972 /*
2973 * Can't ever share top table.
2974 */
2975 if (l == mmu.max_level)
2976 goto not_shared;
2977
2978 /*
2979 * Avoid level mismatches later due to DISM faults.
2980 */
2981 if (is_dism && l > 0)
2982 goto not_shared;
2983
2984 /*
2985 * addresses and lengths must align
2986 * table must be fully populated
2987 * no lower level page tables
2988 */
2989 if (ism_addr != ism_ht->ht_vaddr ||
2990 (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2991 goto not_shared;
2992
2993 /*
2994 * The range of address space must cover a full table.
2995 */
2996 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2997 goto not_shared;
2998
2999 /*
3000 * All entries in the ISM page table must be leaf PTEs.
3001 */
3002 if (l > 0) {
3003 int e;
3004
3005 /*
3006 * We know the 0th is from htable_walk() above.
3007 */
3008 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
3009 x86pte_t pte;
3010 pte = x86pte_get(ism_ht, e);
3011 if (!PTE_ISPAGE(pte, l))
3012 goto not_shared;
3013 }
3014 }
3015
3016 /*
3017 * share the page table
3018 */
3019 ht = htable_create(hat, vaddr, l, ism_ht);
3020 shared:
3021 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3022 ASSERT(ht->ht_shares == ism_ht);
3023 hat->hat_ism_pgcnt +=
3024 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3025 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3026 ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3027 htable_release(ht);
3028 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3029 htable_release(ism_ht);
3030 ism_ht = NULL;
3031 continue;
3032
3033 not_shared:
3034 /*
3035 * Unable to share the page table. Instead we will
3036 * create new mappings from the values in the ISM mappings.
3037 * Figure out what level size mappings to use;
3038 */
3039 for (l = ism_ht->ht_level; l > 0; --l) {
3040 if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3041 (vaddr & LEVEL_OFFSET(l)) == 0)
3042 break;
3043 }
3044
3045 /*
3046 * The ISM mapping might be larger than the share area,
3047 * be careful to truncate it if needed.
3048 */
3049 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3050 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3051 } else {
3052 pgcnt = mmu_btop(eaddr - vaddr);
3053 l = 0;
3054 }
3055
3056 pfn = PTE2PFN(pte, ism_ht->ht_level);
3057 ASSERT(pfn != PFN_INVALID);
3058 while (pgcnt > 0) {
3059 /*
3060 * Make a new pte for the PFN for this level.
3061 * Copy protections for the pte from the ISM pte.
3062 */
3063 pp = page_numtopp_nolock(pfn);
3064 ASSERT(pp != NULL);
3065
3066 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3067 if (PTE_GET(pte, PT_WRITABLE))
3068 prot |= PROT_WRITE;
3069 if (!PTE_GET(pte, PT_NX))
3070 prot |= PROT_EXEC;
3071
3072 flags = HAT_LOAD;
3073 if (!is_dism)
3074 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3075 while (hati_load_common(hat, vaddr, pp, prot, flags,
3076 l, pfn) != 0) {
3077 if (l == 0)
3078 panic("hati_load_common() failure");
3079 --l;
3080 }
3081
3082 vaddr += LEVEL_SIZE(l);
3083 ism_addr += LEVEL_SIZE(l);
3084 pfn += mmu_btop(LEVEL_SIZE(l));
3085 pgcnt -= mmu_btop(LEVEL_SIZE(l));
3086 }
3087 }
3088 if (ism_ht != NULL)
3089 htable_release(ism_ht);
3090 XPV_ALLOW_MIGRATE();
3091 return (0);
3092 }
3093
3094
3095 /*
3096 * hat_unshare() is similar to hat_unload_callback(), but
3097 * we have to look for empty shared pagetables. Note that
3098 * hat_unshare() is always invoked against an entire segment.
3099 */
3100 /*ARGSUSED*/
3101 void
hat_unshare(hat_t * hat,caddr_t addr,size_t len,uint_t ismszc)3102 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3103 {
3104 uint64_t vaddr = (uintptr_t)addr;
3105 uintptr_t eaddr = vaddr + len;
3106 htable_t *ht = NULL;
3107 uint_t need_demaps = 0;
3108 int flags = HAT_UNLOAD_UNMAP;
3109 level_t l;
3110
3111 ASSERT(hat != kas.a_hat);
3112 ASSERT(eaddr <= _userlimit);
3113 ASSERT(IS_PAGEALIGNED(vaddr));
3114 ASSERT(IS_PAGEALIGNED(eaddr));
3115 XPV_DISALLOW_MIGRATE();
3116
3117 /*
3118 * First go through and remove any shared pagetables.
3119 *
3120 * Note that it's ok to delay the TLB shootdown till the entire range is
3121 * finished, because if hat_pageunload() were to unload a shared
3122 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3123 */
3124 l = mmu.max_page_level;
3125 if (l == mmu.max_level)
3126 --l;
3127 for (; l >= 0; --l) {
3128 for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3129 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3130 ASSERT(!IN_VA_HOLE(vaddr));
3131 /*
3132 * find a pagetable that maps the current address
3133 */
3134 ht = htable_lookup(hat, vaddr, l);
3135 if (ht == NULL)
3136 continue;
3137 if (ht->ht_flags & HTABLE_SHARED_PFN) {
3138 /*
3139 * clear page count, set valid_cnt to 0,
3140 * let htable_release() finish the job
3141 */
3142 hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3143 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3144 ht->ht_valid_cnt = 0;
3145 need_demaps = 1;
3146 }
3147 htable_release(ht);
3148 }
3149 }
3150
3151 /*
3152 * flush the TLBs - since we're probably dealing with MANY mappings
3153 * we do just one CR3 reload.
3154 */
3155 if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3156 hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3157
3158 /*
3159 * Now go back and clean up any unaligned mappings that
3160 * couldn't share pagetables.
3161 */
3162 if (!is_it_dism(hat, addr))
3163 flags |= HAT_UNLOAD_UNLOCK;
3164 hat_unload(hat, addr, len, flags);
3165 XPV_ALLOW_MIGRATE();
3166 }
3167
3168
3169 /*
3170 * hat_reserve() does nothing
3171 */
3172 /*ARGSUSED*/
3173 void
hat_reserve(struct as * as,caddr_t addr,size_t len)3174 hat_reserve(struct as *as, caddr_t addr, size_t len)
3175 {
3176 }
3177
3178
3179 /*
3180 * Called when all mappings to a page should have write permission removed.
3181 * Mostly stolen from hat_pagesync()
3182 */
3183 static void
hati_page_clrwrt(struct page * pp)3184 hati_page_clrwrt(struct page *pp)
3185 {
3186 hment_t *hm = NULL;
3187 htable_t *ht;
3188 uint_t entry;
3189 x86pte_t old;
3190 x86pte_t new;
3191 uint_t pszc = 0;
3192
3193 XPV_DISALLOW_MIGRATE();
3194 next_size:
3195 /*
3196 * walk thru the mapping list clearing write permission
3197 */
3198 x86_hm_enter(pp);
3199 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3200 if (ht->ht_level < pszc)
3201 continue;
3202 old = x86pte_get(ht, entry);
3203
3204 for (;;) {
3205 /*
3206 * Is this mapping of interest?
3207 */
3208 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3209 PTE_GET(old, PT_WRITABLE) == 0)
3210 break;
3211
3212 /*
3213 * Clear ref/mod writable bits. This requires cross
3214 * calls to ensure any executing TLBs see cleared bits.
3215 */
3216 new = old;
3217 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3218 old = hati_update_pte(ht, entry, old, new);
3219 if (old != 0)
3220 continue;
3221
3222 break;
3223 }
3224 }
3225 x86_hm_exit(pp);
3226 while (pszc < pp->p_szc) {
3227 page_t *tpp;
3228 pszc++;
3229 tpp = PP_GROUPLEADER(pp, pszc);
3230 if (pp != tpp) {
3231 pp = tpp;
3232 goto next_size;
3233 }
3234 }
3235 XPV_ALLOW_MIGRATE();
3236 }
3237
3238 /*
3239 * void hat_page_setattr(pp, flag)
3240 * void hat_page_clrattr(pp, flag)
3241 * used to set/clr ref/mod bits.
3242 */
3243 void
hat_page_setattr(struct page * pp,uint_t flag)3244 hat_page_setattr(struct page *pp, uint_t flag)
3245 {
3246 vnode_t *vp = pp->p_vnode;
3247 kmutex_t *vphm = NULL;
3248 page_t **listp;
3249 int noshuffle;
3250
3251 noshuffle = flag & P_NSH;
3252 flag &= ~P_NSH;
3253
3254 if (PP_GETRM(pp, flag) == flag)
3255 return;
3256
3257 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3258 !noshuffle) {
3259 vphm = page_vnode_mutex(vp);
3260 mutex_enter(vphm);
3261 }
3262
3263 PP_SETRM(pp, flag);
3264
3265 if (vphm != NULL) {
3266
3267 /*
3268 * Some File Systems examine v_pages for NULL w/o
3269 * grabbing the vphm mutex. Must not let it become NULL when
3270 * pp is the only page on the list.
3271 */
3272 if (pp->p_vpnext != pp) {
3273 page_vpsub(&vp->v_pages, pp);
3274 if (vp->v_pages != NULL)
3275 listp = &vp->v_pages->p_vpprev->p_vpnext;
3276 else
3277 listp = &vp->v_pages;
3278 page_vpadd(listp, pp);
3279 }
3280 mutex_exit(vphm);
3281 }
3282 }
3283
3284 void
hat_page_clrattr(struct page * pp,uint_t flag)3285 hat_page_clrattr(struct page *pp, uint_t flag)
3286 {
3287 vnode_t *vp = pp->p_vnode;
3288 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3289
3290 /*
3291 * Caller is expected to hold page's io lock for VMODSORT to work
3292 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3293 * bit is cleared.
3294 * We don't have assert to avoid tripping some existing third party
3295 * code. The dirty page is moved back to top of the v_page list
3296 * after IO is done in pvn_write_done().
3297 */
3298 PP_CLRRM(pp, flag);
3299
3300 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3301
3302 /*
3303 * VMODSORT works by removing write permissions and getting
3304 * a fault when a page is made dirty. At this point
3305 * we need to remove write permission from all mappings
3306 * to this page.
3307 */
3308 hati_page_clrwrt(pp);
3309 }
3310 }
3311
3312 /*
3313 * If flag is specified, returns 0 if attribute is disabled
3314 * and non zero if enabled. If flag specifes multiple attributes
3315 * then returns 0 if ALL attributes are disabled. This is an advisory
3316 * call.
3317 */
3318 uint_t
hat_page_getattr(struct page * pp,uint_t flag)3319 hat_page_getattr(struct page *pp, uint_t flag)
3320 {
3321 return (PP_GETRM(pp, flag));
3322 }
3323
3324
3325 /*
3326 * common code used by hat_pageunload() and hment_steal()
3327 */
3328 hment_t *
hati_page_unmap(page_t * pp,htable_t * ht,uint_t entry)3329 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3330 {
3331 x86pte_t old_pte;
3332 pfn_t pfn = pp->p_pagenum;
3333 hment_t *hm;
3334
3335 /*
3336 * We need to acquire a hold on the htable in order to
3337 * do the invalidate. We know the htable must exist, since
3338 * unmap's don't release the htable until after removing any
3339 * hment. Having x86_hm_enter() keeps that from proceeding.
3340 */
3341 htable_acquire(ht);
3342
3343 /*
3344 * Invalidate the PTE and remove the hment.
3345 */
3346 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE);
3347 if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3348 panic("x86pte_inval() failure found PTE = " FMT_PTE
3349 " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3350 old_pte, pfn, (uintptr_t)ht, entry);
3351 }
3352
3353 /*
3354 * Clean up all the htable information for this mapping
3355 */
3356 ASSERT(ht->ht_valid_cnt > 0);
3357 HTABLE_DEC(ht->ht_valid_cnt);
3358 PGCNT_DEC(ht->ht_hat, ht->ht_level);
3359
3360 /*
3361 * sync ref/mod bits to the page_t
3362 */
3363 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3364 hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3365
3366 /*
3367 * Remove the mapping list entry for this page.
3368 */
3369 hm = hment_remove(pp, ht, entry);
3370
3371 /*
3372 * drop the mapping list lock so that we might free the
3373 * hment and htable.
3374 */
3375 x86_hm_exit(pp);
3376 htable_release(ht);
3377 return (hm);
3378 }
3379
3380 extern int vpm_enable;
3381 /*
3382 * Unload all translations to a page. If the page is a subpage of a large
3383 * page, the large page mappings are also removed.
3384 *
3385 * The forceflags are unused.
3386 */
3387
3388 /*ARGSUSED*/
3389 static int
hati_pageunload(struct page * pp,uint_t pg_szcd,uint_t forceflag)3390 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3391 {
3392 page_t *cur_pp = pp;
3393 hment_t *hm;
3394 hment_t *prev;
3395 htable_t *ht;
3396 uint_t entry;
3397 level_t level;
3398
3399 XPV_DISALLOW_MIGRATE();
3400
3401 /*
3402 * prevent recursion due to kmem_free()
3403 */
3404 ++curthread->t_hatdepth;
3405 ASSERT(curthread->t_hatdepth < 16);
3406
3407 #if defined(__amd64)
3408 /*
3409 * clear the vpm ref.
3410 */
3411 if (vpm_enable) {
3412 pp->p_vpmref = 0;
3413 }
3414 #endif
3415 /*
3416 * The loop with next_size handles pages with multiple pagesize mappings
3417 */
3418 next_size:
3419 for (;;) {
3420
3421 /*
3422 * Get a mapping list entry
3423 */
3424 x86_hm_enter(cur_pp);
3425 for (prev = NULL; ; prev = hm) {
3426 hm = hment_walk(cur_pp, &ht, &entry, prev);
3427 if (hm == NULL) {
3428 x86_hm_exit(cur_pp);
3429
3430 /*
3431 * If not part of a larger page, we're done.
3432 */
3433 if (cur_pp->p_szc <= pg_szcd) {
3434 ASSERT(curthread->t_hatdepth > 0);
3435 --curthread->t_hatdepth;
3436 XPV_ALLOW_MIGRATE();
3437 return (0);
3438 }
3439
3440 /*
3441 * Else check the next larger page size.
3442 * hat_page_demote() may decrease p_szc
3443 * but that's ok we'll just take an extra
3444 * trip discover there're no larger mappings
3445 * and return.
3446 */
3447 ++pg_szcd;
3448 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3449 goto next_size;
3450 }
3451
3452 /*
3453 * If this mapping size matches, remove it.
3454 */
3455 level = ht->ht_level;
3456 if (level == pg_szcd)
3457 break;
3458 }
3459
3460 /*
3461 * Remove the mapping list entry for this page.
3462 * Note this does the x86_hm_exit() for us.
3463 */
3464 hm = hati_page_unmap(cur_pp, ht, entry);
3465 if (hm != NULL)
3466 hment_free(hm);
3467 }
3468 }
3469
3470 int
hat_pageunload(struct page * pp,uint_t forceflag)3471 hat_pageunload(struct page *pp, uint_t forceflag)
3472 {
3473 ASSERT(PAGE_EXCL(pp));
3474 return (hati_pageunload(pp, 0, forceflag));
3475 }
3476
3477 /*
3478 * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3479 * page level that included pp.
3480 *
3481 * pp must be locked EXCL. Even though no other constituent pages are locked
3482 * it's legal to unload large mappings to pp because all constituent pages of
3483 * large locked mappings have to be locked SHARED. therefore if we have EXCL
3484 * lock on one of constituent pages none of the large mappings to pp are
3485 * locked.
3486 *
3487 * Change (always decrease) p_szc field starting from the last constituent
3488 * page and ending with root constituent page so that root's pszc always shows
3489 * the area where hat_page_demote() may be active.
3490 *
3491 * This mechanism is only used for file system pages where it's not always
3492 * possible to get EXCL locks on all constituent pages to demote the size code
3493 * (as is done for anonymous or kernel large pages).
3494 */
3495 void
hat_page_demote(page_t * pp)3496 hat_page_demote(page_t *pp)
3497 {
3498 uint_t pszc;
3499 uint_t rszc;
3500 uint_t szc;
3501 page_t *rootpp;
3502 page_t *firstpp;
3503 page_t *lastpp;
3504 pgcnt_t pgcnt;
3505
3506 ASSERT(PAGE_EXCL(pp));
3507 ASSERT(!PP_ISFREE(pp));
3508 ASSERT(page_szc_lock_assert(pp));
3509
3510 if (pp->p_szc == 0)
3511 return;
3512
3513 rootpp = PP_GROUPLEADER(pp, 1);
3514 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3515
3516 /*
3517 * all large mappings to pp are gone
3518 * and no new can be setup since pp is locked exclusively.
3519 *
3520 * Lock the root to make sure there's only one hat_page_demote()
3521 * outstanding within the area of this root's pszc.
3522 *
3523 * Second potential hat_page_demote() is already eliminated by upper
3524 * VM layer via page_szc_lock() but we don't rely on it and use our
3525 * own locking (so that upper layer locking can be changed without
3526 * assumptions that hat depends on upper layer VM to prevent multiple
3527 * hat_page_demote() to be issued simultaneously to the same large
3528 * page).
3529 */
3530 again:
3531 pszc = pp->p_szc;
3532 if (pszc == 0)
3533 return;
3534 rootpp = PP_GROUPLEADER(pp, pszc);
3535 x86_hm_enter(rootpp);
3536 /*
3537 * If root's p_szc is different from pszc we raced with another
3538 * hat_page_demote(). Drop the lock and try to find the root again.
3539 * If root's p_szc is greater than pszc previous hat_page_demote() is
3540 * not done yet. Take and release mlist lock of root's root to wait
3541 * for previous hat_page_demote() to complete.
3542 */
3543 if ((rszc = rootpp->p_szc) != pszc) {
3544 x86_hm_exit(rootpp);
3545 if (rszc > pszc) {
3546 /* p_szc of a locked non free page can't increase */
3547 ASSERT(pp != rootpp);
3548
3549 rootpp = PP_GROUPLEADER(rootpp, rszc);
3550 x86_hm_enter(rootpp);
3551 x86_hm_exit(rootpp);
3552 }
3553 goto again;
3554 }
3555 ASSERT(pp->p_szc == pszc);
3556
3557 /*
3558 * Decrement by 1 p_szc of every constituent page of a region that
3559 * covered pp. For example if original szc is 3 it gets changed to 2
3560 * everywhere except in region 2 that covered pp. Region 2 that
3561 * covered pp gets demoted to 1 everywhere except in region 1 that
3562 * covered pp. The region 1 that covered pp is demoted to region
3563 * 0. It's done this way because from region 3 we removed level 3
3564 * mappings, from region 2 that covered pp we removed level 2 mappings
3565 * and from region 1 that covered pp we removed level 1 mappings. All
3566 * changes are done from from high pfn's to low pfn's so that roots
3567 * are changed last allowing one to know the largest region where
3568 * hat_page_demote() is stil active by only looking at the root page.
3569 *
3570 * This algorithm is implemented in 2 while loops. First loop changes
3571 * p_szc of pages to the right of pp's level 1 region and second
3572 * loop changes p_szc of pages of level 1 region that covers pp
3573 * and all pages to the left of level 1 region that covers pp.
3574 * In the first loop p_szc keeps dropping with every iteration
3575 * and in the second loop it keeps increasing with every iteration.
3576 *
3577 * First loop description: Demote pages to the right of pp outside of
3578 * level 1 region that covers pp. In every iteration of the while
3579 * loop below find the last page of szc region and the first page of
3580 * (szc - 1) region that is immediately to the right of (szc - 1)
3581 * region that covers pp. From last such page to first such page
3582 * change every page's szc to szc - 1. Decrement szc and continue
3583 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3584 * of szc region skip to the next iteration.
3585 */
3586 szc = pszc;
3587 while (szc > 1) {
3588 lastpp = PP_GROUPLEADER(pp, szc);
3589 pgcnt = page_get_pagecnt(szc);
3590 lastpp += pgcnt - 1;
3591 firstpp = PP_GROUPLEADER(pp, (szc - 1));
3592 pgcnt = page_get_pagecnt(szc - 1);
3593 if (lastpp - firstpp < pgcnt) {
3594 szc--;
3595 continue;
3596 }
3597 firstpp += pgcnt;
3598 while (lastpp != firstpp) {
3599 ASSERT(lastpp->p_szc == pszc);
3600 lastpp->p_szc = szc - 1;
3601 lastpp--;
3602 }
3603 firstpp->p_szc = szc - 1;
3604 szc--;
3605 }
3606
3607 /*
3608 * Second loop description:
3609 * First iteration changes p_szc to 0 of every
3610 * page of level 1 region that covers pp.
3611 * Subsequent iterations find last page of szc region
3612 * immediately to the left of szc region that covered pp
3613 * and first page of (szc + 1) region that covers pp.
3614 * From last to first page change p_szc of every page to szc.
3615 * Increment szc and continue looping until szc is pszc.
3616 * If pp belongs to the fist szc region of (szc + 1) region
3617 * skip to the next iteration.
3618 *
3619 */
3620 szc = 0;
3621 while (szc < pszc) {
3622 firstpp = PP_GROUPLEADER(pp, (szc + 1));
3623 if (szc == 0) {
3624 pgcnt = page_get_pagecnt(1);
3625 lastpp = firstpp + (pgcnt - 1);
3626 } else {
3627 lastpp = PP_GROUPLEADER(pp, szc);
3628 if (firstpp == lastpp) {
3629 szc++;
3630 continue;
3631 }
3632 lastpp--;
3633 pgcnt = page_get_pagecnt(szc);
3634 }
3635 while (lastpp != firstpp) {
3636 ASSERT(lastpp->p_szc == pszc);
3637 lastpp->p_szc = szc;
3638 lastpp--;
3639 }
3640 firstpp->p_szc = szc;
3641 if (firstpp == rootpp)
3642 break;
3643 szc++;
3644 }
3645 x86_hm_exit(rootpp);
3646 }
3647
3648 /*
3649 * get hw stats from hardware into page struct and reset hw stats
3650 * returns attributes of page
3651 * Flags for hat_pagesync, hat_getstat, hat_sync
3652 *
3653 * define HAT_SYNC_ZERORM 0x01
3654 *
3655 * Additional flags for hat_pagesync
3656 *
3657 * define HAT_SYNC_STOPON_REF 0x02
3658 * define HAT_SYNC_STOPON_MOD 0x04
3659 * define HAT_SYNC_STOPON_RM 0x06
3660 * define HAT_SYNC_STOPON_SHARED 0x08
3661 */
3662 uint_t
hat_pagesync(struct page * pp,uint_t flags)3663 hat_pagesync(struct page *pp, uint_t flags)
3664 {
3665 hment_t *hm = NULL;
3666 htable_t *ht;
3667 uint_t entry;
3668 x86pte_t old, save_old;
3669 x86pte_t new;
3670 uchar_t nrmbits = P_REF|P_MOD|P_RO;
3671 extern ulong_t po_share;
3672 page_t *save_pp = pp;
3673 uint_t pszc = 0;
3674
3675 ASSERT(PAGE_LOCKED(pp) || panicstr);
3676
3677 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3678 return (pp->p_nrm & nrmbits);
3679
3680 if ((flags & HAT_SYNC_ZERORM) == 0) {
3681
3682 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3683 return (pp->p_nrm & nrmbits);
3684
3685 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3686 return (pp->p_nrm & nrmbits);
3687
3688 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3689 hat_page_getshare(pp) > po_share) {
3690 if (PP_ISRO(pp))
3691 PP_SETREF(pp);
3692 return (pp->p_nrm & nrmbits);
3693 }
3694 }
3695
3696 XPV_DISALLOW_MIGRATE();
3697 next_size:
3698 /*
3699 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3700 */
3701 x86_hm_enter(pp);
3702 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3703 if (ht->ht_level < pszc)
3704 continue;
3705 old = x86pte_get(ht, entry);
3706 try_again:
3707
3708 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3709
3710 if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3711 continue;
3712
3713 save_old = old;
3714 if ((flags & HAT_SYNC_ZERORM) != 0) {
3715
3716 /*
3717 * Need to clear ref or mod bits. Need to demap
3718 * to make sure any executing TLBs see cleared bits.
3719 */
3720 new = old;
3721 PTE_CLR(new, PT_REF | PT_MOD);
3722 old = hati_update_pte(ht, entry, old, new);
3723 if (old != 0)
3724 goto try_again;
3725
3726 old = save_old;
3727 }
3728
3729 /*
3730 * Sync the PTE
3731 */
3732 if (!(flags & HAT_SYNC_ZERORM) &&
3733 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3734 hati_sync_pte_to_page(pp, old, ht->ht_level);
3735
3736 /*
3737 * can stop short if we found a ref'd or mod'd page
3738 */
3739 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3740 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3741 x86_hm_exit(pp);
3742 goto done;
3743 }
3744 }
3745 x86_hm_exit(pp);
3746 while (pszc < pp->p_szc) {
3747 page_t *tpp;
3748 pszc++;
3749 tpp = PP_GROUPLEADER(pp, pszc);
3750 if (pp != tpp) {
3751 pp = tpp;
3752 goto next_size;
3753 }
3754 }
3755 done:
3756 XPV_ALLOW_MIGRATE();
3757 return (save_pp->p_nrm & nrmbits);
3758 }
3759
3760 /*
3761 * returns approx number of mappings to this pp. A return of 0 implies
3762 * there are no mappings to the page.
3763 */
3764 ulong_t
hat_page_getshare(page_t * pp)3765 hat_page_getshare(page_t *pp)
3766 {
3767 uint_t cnt;
3768 cnt = hment_mapcnt(pp);
3769 #if defined(__amd64)
3770 if (vpm_enable && pp->p_vpmref) {
3771 cnt += 1;
3772 }
3773 #endif
3774 return (cnt);
3775 }
3776
3777 /*
3778 * Return 1 the number of mappings exceeds sh_thresh. Return 0
3779 * otherwise.
3780 */
3781 int
hat_page_checkshare(page_t * pp,ulong_t sh_thresh)3782 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3783 {
3784 return (hat_page_getshare(pp) > sh_thresh);
3785 }
3786
3787 /*
3788 * hat_softlock isn't supported anymore
3789 */
3790 /*ARGSUSED*/
3791 faultcode_t
hat_softlock(hat_t * hat,caddr_t addr,size_t * len,struct page ** page_array,uint_t flags)3792 hat_softlock(
3793 hat_t *hat,
3794 caddr_t addr,
3795 size_t *len,
3796 struct page **page_array,
3797 uint_t flags)
3798 {
3799 return (FC_NOSUPPORT);
3800 }
3801
3802
3803
3804 /*
3805 * Routine to expose supported HAT features to platform independent code.
3806 */
3807 /*ARGSUSED*/
3808 int
hat_supported(enum hat_features feature,void * arg)3809 hat_supported(enum hat_features feature, void *arg)
3810 {
3811 switch (feature) {
3812
3813 case HAT_SHARED_PT: /* this is really ISM */
3814 return (1);
3815
3816 case HAT_DYNAMIC_ISM_UNMAP:
3817 return (0);
3818
3819 case HAT_VMODSORT:
3820 return (1);
3821
3822 case HAT_SHARED_REGIONS:
3823 return (0);
3824
3825 default:
3826 panic("hat_supported() - unknown feature");
3827 }
3828 return (0);
3829 }
3830
3831 /*
3832 * Called when a thread is exiting and has been switched to the kernel AS
3833 */
3834 void
hat_thread_exit(kthread_t * thd)3835 hat_thread_exit(kthread_t *thd)
3836 {
3837 ASSERT(thd->t_procp->p_as == &kas);
3838 XPV_DISALLOW_MIGRATE();
3839 hat_switch(thd->t_procp->p_as->a_hat);
3840 XPV_ALLOW_MIGRATE();
3841 }
3842
3843 /*
3844 * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3845 */
3846 /*ARGSUSED*/
3847 void
hat_setup(hat_t * hat,int flags)3848 hat_setup(hat_t *hat, int flags)
3849 {
3850 XPV_DISALLOW_MIGRATE();
3851 kpreempt_disable();
3852
3853 hat_switch(hat);
3854
3855 kpreempt_enable();
3856 XPV_ALLOW_MIGRATE();
3857 }
3858
3859 /*
3860 * Prepare for a CPU private mapping for the given address.
3861 *
3862 * The address can only be used from a single CPU and can be remapped
3863 * using hat_mempte_remap(). Return the address of the PTE.
3864 *
3865 * We do the htable_create() if necessary and increment the valid count so
3866 * the htable can't disappear. We also hat_devload() the page table into
3867 * kernel so that the PTE is quickly accessed.
3868 */
3869 hat_mempte_t
hat_mempte_setup(caddr_t addr)3870 hat_mempte_setup(caddr_t addr)
3871 {
3872 uintptr_t va = (uintptr_t)addr;
3873 htable_t *ht;
3874 uint_t entry;
3875 x86pte_t oldpte;
3876 hat_mempte_t p;
3877
3878 ASSERT(IS_PAGEALIGNED(va));
3879 ASSERT(!IN_VA_HOLE(va));
3880 ++curthread->t_hatdepth;
3881 XPV_DISALLOW_MIGRATE();
3882 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3883 if (ht == NULL) {
3884 ht = htable_create(kas.a_hat, va, 0, NULL);
3885 entry = htable_va2entry(va, ht);
3886 ASSERT(ht->ht_level == 0);
3887 oldpte = x86pte_get(ht, entry);
3888 }
3889 if (PTE_ISVALID(oldpte))
3890 panic("hat_mempte_setup(): address already mapped"
3891 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3892
3893 /*
3894 * increment ht_valid_cnt so that the pagetable can't disappear
3895 */
3896 HTABLE_INC(ht->ht_valid_cnt);
3897
3898 /*
3899 * return the PTE physical address to the caller.
3900 */
3901 htable_release(ht);
3902 XPV_ALLOW_MIGRATE();
3903 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3904 --curthread->t_hatdepth;
3905 return (p);
3906 }
3907
3908 /*
3909 * Release a CPU private mapping for the given address.
3910 * We decrement the htable valid count so it might be destroyed.
3911 */
3912 /*ARGSUSED1*/
3913 void
hat_mempte_release(caddr_t addr,hat_mempte_t pte_pa)3914 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3915 {
3916 htable_t *ht;
3917
3918 XPV_DISALLOW_MIGRATE();
3919 /*
3920 * invalidate any left over mapping and decrement the htable valid count
3921 */
3922 #ifdef __xpv
3923 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3924 UVMF_INVLPG | UVMF_LOCAL))
3925 panic("HYPERVISOR_update_va_mapping() failed");
3926 #else
3927 {
3928 x86pte_t *pteptr;
3929
3930 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3931 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3932 if (mmu.pae_hat)
3933 *pteptr = 0;
3934 else
3935 *(x86pte32_t *)pteptr = 0;
3936 mmu_tlbflush_entry(addr);
3937 x86pte_mapout();
3938 }
3939 #endif
3940
3941 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3942 if (ht == NULL)
3943 panic("hat_mempte_release(): invalid address");
3944 ASSERT(ht->ht_level == 0);
3945 HTABLE_DEC(ht->ht_valid_cnt);
3946 htable_release(ht);
3947 XPV_ALLOW_MIGRATE();
3948 }
3949
3950 /*
3951 * Apply a temporary CPU private mapping to a page. We flush the TLB only
3952 * on this CPU, so this ought to have been called with preemption disabled.
3953 */
3954 void
hat_mempte_remap(pfn_t pfn,caddr_t addr,hat_mempte_t pte_pa,uint_t attr,uint_t flags)3955 hat_mempte_remap(
3956 pfn_t pfn,
3957 caddr_t addr,
3958 hat_mempte_t pte_pa,
3959 uint_t attr,
3960 uint_t flags)
3961 {
3962 uintptr_t va = (uintptr_t)addr;
3963 x86pte_t pte;
3964
3965 /*
3966 * Remap the given PTE to the new page's PFN. Invalidate only
3967 * on this CPU.
3968 */
3969 #ifdef DEBUG
3970 htable_t *ht;
3971 uint_t entry;
3972
3973 ASSERT(IS_PAGEALIGNED(va));
3974 ASSERT(!IN_VA_HOLE(va));
3975 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3976 ASSERT(ht != NULL);
3977 ASSERT(ht->ht_level == 0);
3978 ASSERT(ht->ht_valid_cnt > 0);
3979 ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3980 htable_release(ht);
3981 #endif
3982 XPV_DISALLOW_MIGRATE();
3983 pte = hati_mkpte(pfn, attr, 0, flags);
3984 #ifdef __xpv
3985 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3986 panic("HYPERVISOR_update_va_mapping() failed");
3987 #else
3988 {
3989 x86pte_t *pteptr;
3990
3991 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3992 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3993 if (mmu.pae_hat)
3994 *(x86pte_t *)pteptr = pte;
3995 else
3996 *(x86pte32_t *)pteptr = (x86pte32_t)pte;
3997 mmu_tlbflush_entry(addr);
3998 x86pte_mapout();
3999 }
4000 #endif
4001 XPV_ALLOW_MIGRATE();
4002 }
4003
4004
4005
4006 /*
4007 * Hat locking functions
4008 * XXX - these two functions are currently being used by hatstats
4009 * they can be removed by using a per-as mutex for hatstats.
4010 */
4011 void
hat_enter(hat_t * hat)4012 hat_enter(hat_t *hat)
4013 {
4014 mutex_enter(&hat->hat_mutex);
4015 }
4016
4017 void
hat_exit(hat_t * hat)4018 hat_exit(hat_t *hat)
4019 {
4020 mutex_exit(&hat->hat_mutex);
4021 }
4022
4023 /*
4024 * HAT part of cpu initialization.
4025 */
4026 void
hat_cpu_online(struct cpu * cpup)4027 hat_cpu_online(struct cpu *cpup)
4028 {
4029 if (cpup != CPU) {
4030 x86pte_cpu_init(cpup);
4031 hat_vlp_setup(cpup);
4032 }
4033 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4034 }
4035
4036 /*
4037 * HAT part of cpu deletion.
4038 * (currently, we only call this after the cpu is safely passivated.)
4039 */
4040 void
hat_cpu_offline(struct cpu * cpup)4041 hat_cpu_offline(struct cpu *cpup)
4042 {
4043 ASSERT(cpup != CPU);
4044
4045 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4046 hat_vlp_teardown(cpup);
4047 x86pte_cpu_fini(cpup);
4048 }
4049
4050 /*
4051 * Function called after all CPUs are brought online.
4052 * Used to remove low address boot mappings.
4053 */
4054 void
clear_boot_mappings(uintptr_t low,uintptr_t high)4055 clear_boot_mappings(uintptr_t low, uintptr_t high)
4056 {
4057 uintptr_t vaddr = low;
4058 htable_t *ht = NULL;
4059 level_t level;
4060 uint_t entry;
4061 x86pte_t pte;
4062
4063 /*
4064 * On 1st CPU we can unload the prom mappings, basically we blow away
4065 * all virtual mappings under _userlimit.
4066 */
4067 while (vaddr < high) {
4068 pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4069 if (ht == NULL)
4070 break;
4071
4072 level = ht->ht_level;
4073 entry = htable_va2entry(vaddr, ht);
4074 ASSERT(level <= mmu.max_page_level);
4075 ASSERT(PTE_ISPAGE(pte, level));
4076
4077 /*
4078 * Unload the mapping from the page tables.
4079 */
4080 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE);
4081 ASSERT(ht->ht_valid_cnt > 0);
4082 HTABLE_DEC(ht->ht_valid_cnt);
4083 PGCNT_DEC(ht->ht_hat, ht->ht_level);
4084
4085 vaddr += LEVEL_SIZE(ht->ht_level);
4086 }
4087 if (ht)
4088 htable_release(ht);
4089 }
4090
4091 /*
4092 * Atomically update a new translation for a single page. If the
4093 * currently installed PTE doesn't match the value we expect to find,
4094 * it's not updated and we return the PTE we found.
4095 *
4096 * If activating nosync or NOWRITE and the page was modified we need to sync
4097 * with the page_t. Also sync with page_t if clearing ref/mod bits.
4098 */
4099 static x86pte_t
hati_update_pte(htable_t * ht,uint_t entry,x86pte_t expected,x86pte_t new)4100 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4101 {
4102 page_t *pp;
4103 uint_t rm = 0;
4104 x86pte_t replaced;
4105
4106 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4107 PTE_GET(expected, PT_MOD | PT_REF) &&
4108 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4109 !PTE_GET(new, PT_MOD | PT_REF))) {
4110
4111 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4112 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4113 ASSERT(pp != NULL);
4114 if (PTE_GET(expected, PT_MOD))
4115 rm |= P_MOD;
4116 if (PTE_GET(expected, PT_REF))
4117 rm |= P_REF;
4118 PTE_CLR(new, PT_MOD | PT_REF);
4119 }
4120
4121 replaced = x86pte_update(ht, entry, expected, new);
4122 if (replaced != expected)
4123 return (replaced);
4124
4125 if (rm) {
4126 /*
4127 * sync to all constituent pages of a large page
4128 */
4129 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4130 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4131 while (pgcnt-- > 0) {
4132 /*
4133 * hat_page_demote() can't decrease
4134 * pszc below this mapping size
4135 * since large mapping existed after we
4136 * took mlist lock.
4137 */
4138 ASSERT(pp->p_szc >= ht->ht_level);
4139 hat_page_setattr(pp, rm);
4140 ++pp;
4141 }
4142 }
4143
4144 return (0);
4145 }
4146
4147 /* ARGSUSED */
4148 void
hat_join_srd(struct hat * hat,vnode_t * evp)4149 hat_join_srd(struct hat *hat, vnode_t *evp)
4150 {
4151 }
4152
4153 /* ARGSUSED */
4154 hat_region_cookie_t
hat_join_region(struct hat * hat,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff,uchar_t r_perm,uchar_t r_pgszc,hat_rgn_cb_func_t r_cb_function,uint_t flags)4155 hat_join_region(struct hat *hat,
4156 caddr_t r_saddr,
4157 size_t r_size,
4158 void *r_obj,
4159 u_offset_t r_objoff,
4160 uchar_t r_perm,
4161 uchar_t r_pgszc,
4162 hat_rgn_cb_func_t r_cb_function,
4163 uint_t flags)
4164 {
4165 panic("No shared region support on x86");
4166 return (HAT_INVALID_REGION_COOKIE);
4167 }
4168
4169 /* ARGSUSED */
4170 void
hat_leave_region(struct hat * hat,hat_region_cookie_t rcookie,uint_t flags)4171 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4172 {
4173 panic("No shared region support on x86");
4174 }
4175
4176 /* ARGSUSED */
4177 void
hat_dup_region(struct hat * hat,hat_region_cookie_t rcookie)4178 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4179 {
4180 panic("No shared region support on x86");
4181 }
4182
4183
4184 /*
4185 * Kernel Physical Mapping (kpm) facility
4186 *
4187 * Most of the routines needed to support segkpm are almost no-ops on the
4188 * x86 platform. We map in the entire segment when it is created and leave
4189 * it mapped in, so there is no additional work required to set up and tear
4190 * down individual mappings. All of these routines were created to support
4191 * SPARC platforms that have to avoid aliasing in their virtually indexed
4192 * caches.
4193 *
4194 * Most of the routines have sanity checks in them (e.g. verifying that the
4195 * passed-in page is locked). We don't actually care about most of these
4196 * checks on x86, but we leave them in place to identify problems in the
4197 * upper levels.
4198 */
4199
4200 /*
4201 * Map in a locked page and return the vaddr.
4202 */
4203 /*ARGSUSED*/
4204 caddr_t
hat_kpm_mapin(struct page * pp,struct kpme * kpme)4205 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4206 {
4207 caddr_t vaddr;
4208
4209 #ifdef DEBUG
4210 if (kpm_enable == 0) {
4211 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4212 return ((caddr_t)NULL);
4213 }
4214
4215 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4216 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4217 return ((caddr_t)NULL);
4218 }
4219 #endif
4220
4221 vaddr = hat_kpm_page2va(pp, 1);
4222
4223 return (vaddr);
4224 }
4225
4226 /*
4227 * Mapout a locked page.
4228 */
4229 /*ARGSUSED*/
4230 void
hat_kpm_mapout(struct page * pp,struct kpme * kpme,caddr_t vaddr)4231 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4232 {
4233 #ifdef DEBUG
4234 if (kpm_enable == 0) {
4235 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4236 return;
4237 }
4238
4239 if (IS_KPM_ADDR(vaddr) == 0) {
4240 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4241 return;
4242 }
4243
4244 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4245 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4246 return;
4247 }
4248 #endif
4249 }
4250
4251 /*
4252 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4253 * memory addresses that are not described by a page_t. It can
4254 * also be used for normal pages that are not locked, but beware
4255 * this is dangerous - no locking is performed, so the identity of
4256 * the page could change. hat_kpm_mapin_pfn is not supported when
4257 * vac_colors > 1, because the chosen va depends on the page identity,
4258 * which could change.
4259 * The caller must only pass pfn's for valid physical addresses; violation
4260 * of this rule will cause panic.
4261 */
4262 caddr_t
hat_kpm_mapin_pfn(pfn_t pfn)4263 hat_kpm_mapin_pfn(pfn_t pfn)
4264 {
4265 caddr_t paddr, vaddr;
4266
4267 if (kpm_enable == 0)
4268 return ((caddr_t)NULL);
4269
4270 paddr = (caddr_t)ptob(pfn);
4271 vaddr = (uintptr_t)kpm_vbase + paddr;
4272
4273 return ((caddr_t)vaddr);
4274 }
4275
4276 /*ARGSUSED*/
4277 void
hat_kpm_mapout_pfn(pfn_t pfn)4278 hat_kpm_mapout_pfn(pfn_t pfn)
4279 {
4280 /* empty */
4281 }
4282
4283 /*
4284 * Return the kpm virtual address for a specific pfn
4285 */
4286 caddr_t
hat_kpm_pfn2va(pfn_t pfn)4287 hat_kpm_pfn2va(pfn_t pfn)
4288 {
4289 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4290
4291 ASSERT(!pfn_is_foreign(pfn));
4292 return ((caddr_t)vaddr);
4293 }
4294
4295 /*
4296 * Return the kpm virtual address for the page at pp.
4297 */
4298 /*ARGSUSED*/
4299 caddr_t
hat_kpm_page2va(struct page * pp,int checkswap)4300 hat_kpm_page2va(struct page *pp, int checkswap)
4301 {
4302 return (hat_kpm_pfn2va(pp->p_pagenum));
4303 }
4304
4305 /*
4306 * Return the page frame number for the kpm virtual address vaddr.
4307 */
4308 pfn_t
hat_kpm_va2pfn(caddr_t vaddr)4309 hat_kpm_va2pfn(caddr_t vaddr)
4310 {
4311 pfn_t pfn;
4312
4313 ASSERT(IS_KPM_ADDR(vaddr));
4314
4315 pfn = (pfn_t)btop(vaddr - kpm_vbase);
4316
4317 return (pfn);
4318 }
4319
4320
4321 /*
4322 * Return the page for the kpm virtual address vaddr.
4323 */
4324 page_t *
hat_kpm_vaddr2page(caddr_t vaddr)4325 hat_kpm_vaddr2page(caddr_t vaddr)
4326 {
4327 pfn_t pfn;
4328
4329 ASSERT(IS_KPM_ADDR(vaddr));
4330
4331 pfn = hat_kpm_va2pfn(vaddr);
4332
4333 return (page_numtopp_nolock(pfn));
4334 }
4335
4336 /*
4337 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4338 * KPM page. This should never happen on x86
4339 */
4340 int
hat_kpm_fault(hat_t * hat,caddr_t vaddr)4341 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4342 {
4343 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p",
4344 (void *)hat, (void *)vaddr);
4345
4346 return (0);
4347 }
4348
4349 /*ARGSUSED*/
4350 void
hat_kpm_mseghash_clear(int nentries)4351 hat_kpm_mseghash_clear(int nentries)
4352 {}
4353
4354 /*ARGSUSED*/
4355 void
hat_kpm_mseghash_update(pgcnt_t inx,struct memseg * msp)4356 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4357 {}
4358
4359 #ifndef __xpv
4360 void
hat_kpm_addmem_mseg_update(struct memseg * msp,pgcnt_t nkpmpgs,offset_t kpm_pages_off)4361 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4362 offset_t kpm_pages_off)
4363 {
4364 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4365 pfn_t base, end;
4366
4367 /*
4368 * kphysm_add_memory_dynamic() does not set nkpmpgs
4369 * when page_t memory is externally allocated. That
4370 * code must properly calculate nkpmpgs in all cases
4371 * if nkpmpgs needs to be used at some point.
4372 */
4373
4374 /*
4375 * The meta (page_t) pages for dynamically added memory are allocated
4376 * either from the incoming memory itself or from existing memory.
4377 * In the former case the base of the incoming pages will be different
4378 * than the base of the dynamic segment so call memseg_get_start() to
4379 * get the actual base of the incoming memory for each case.
4380 */
4381
4382 base = memseg_get_start(msp);
4383 end = msp->pages_end;
4384
4385 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4386 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4387 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4388 }
4389
4390 void
hat_kpm_addmem_mseg_insert(struct memseg * msp)4391 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4392 {
4393 _NOTE(ARGUNUSED(msp));
4394 }
4395
4396 void
hat_kpm_addmem_memsegs_update(struct memseg * msp)4397 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4398 {
4399 _NOTE(ARGUNUSED(msp));
4400 }
4401
4402 /*
4403 * Return end of metadata for an already setup memseg.
4404 * X86 platforms don't need per-page meta data to support kpm.
4405 */
4406 caddr_t
hat_kpm_mseg_reuse(struct memseg * msp)4407 hat_kpm_mseg_reuse(struct memseg *msp)
4408 {
4409 return ((caddr_t)msp->epages);
4410 }
4411
4412 void
hat_kpm_delmem_mseg_update(struct memseg * msp,struct memseg ** mspp)4413 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4414 {
4415 _NOTE(ARGUNUSED(msp, mspp));
4416 ASSERT(0);
4417 }
4418
4419 void
hat_kpm_split_mseg_update(struct memseg * msp,struct memseg ** mspp,struct memseg * lo,struct memseg * mid,struct memseg * hi)4420 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4421 struct memseg *lo, struct memseg *mid, struct memseg *hi)
4422 {
4423 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4424 ASSERT(0);
4425 }
4426
4427 /*
4428 * Walk the memsegs chain, applying func to each memseg span.
4429 */
4430 void
hat_kpm_walk(void (* func)(void *,void *,size_t),void * arg)4431 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4432 {
4433 pfn_t pbase, pend;
4434 void *base;
4435 size_t size;
4436 struct memseg *msp;
4437
4438 for (msp = memsegs; msp; msp = msp->next) {
4439 pbase = msp->pages_base;
4440 pend = msp->pages_end;
4441 base = ptob(pbase) + kpm_vbase;
4442 size = ptob(pend - pbase);
4443 func(arg, base, size);
4444 }
4445 }
4446
4447 #else /* __xpv */
4448
4449 /*
4450 * There are specific Hypervisor calls to establish and remove mappings
4451 * to grant table references and the privcmd driver. We have to ensure
4452 * that a page table actually exists.
4453 */
4454 void
hat_prepare_mapping(hat_t * hat,caddr_t addr,uint64_t * pte_ma)4455 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4456 {
4457 maddr_t base_ma;
4458 htable_t *ht;
4459 uint_t entry;
4460
4461 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4462 XPV_DISALLOW_MIGRATE();
4463 ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4464
4465 /*
4466 * if an address for pte_ma is passed in, return the MA of the pte
4467 * for this specific address. This address is only valid as long
4468 * as the htable stays locked.
4469 */
4470 if (pte_ma != NULL) {
4471 entry = htable_va2entry((uintptr_t)addr, ht);
4472 base_ma = pa_to_ma(ptob(ht->ht_pfn));
4473 *pte_ma = base_ma + (entry << mmu.pte_size_shift);
4474 }
4475 XPV_ALLOW_MIGRATE();
4476 }
4477
4478 void
hat_release_mapping(hat_t * hat,caddr_t addr)4479 hat_release_mapping(hat_t *hat, caddr_t addr)
4480 {
4481 htable_t *ht;
4482
4483 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4484 XPV_DISALLOW_MIGRATE();
4485 ht = htable_lookup(hat, (uintptr_t)addr, 0);
4486 ASSERT(ht != NULL);
4487 ASSERT(ht->ht_busy >= 2);
4488 htable_release(ht);
4489 htable_release(ht);
4490 XPV_ALLOW_MIGRATE();
4491 }
4492 #endif /* __xpv */
4493