1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2012 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 /*
29 * This file and its contents are supplied under the terms of the
30 * Common Development and Distribution License ("CDDL"), version 1.0.
31 * You may only use this file in accordance with the terms of version
32 * 1.0 of the CDDL.
33 *
34 * A full copy of the text of the CDDL should have accompanied this
35 * source. A copy of the CDDL is also available via the Internet at
36 * http://www.illumos.org/license/CDDL.
37 *
38 * Copyright 2020 Oxide Computer Company
39 */
40
41 /*
42 * Memory ranges are represented with an RB tree. On insertion, the range
43 * is checked for overlaps. On lookup, the key has the same base and limit
44 * so it can be searched within the range.
45 */
46
47
48 #include <sys/types.h>
49 #include <sys/errno.h>
50 #include <sys/tree.h>
51 #include <machine/vmm.h>
52
53 #include <assert.h>
54 #include <err.h>
55 #include <pthread.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <vmmapi.h>
59
60 #include "mem.h"
61
62 struct mmio_rb_range {
63 RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */
64 struct mem_range mr_param;
65 uint64_t mr_base;
66 uint64_t mr_end;
67 };
68
69 struct mmio_rb_tree;
70 RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
71
72 static RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback;
73
74 /*
75 * Per-vCPU cache. Since most accesses from a vCPU will be to
76 * consecutive addresses in a range, it makes sense to cache the
77 * result of a lookup.
78 */
79 static struct mmio_rb_range **mmio_hint;
80 static int mmio_ncpu;
81
82 static pthread_rwlock_t mmio_rwlock;
83
84 static int
mmio_rb_range_compare(struct mmio_rb_range * a,struct mmio_rb_range * b)85 mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
86 {
87 if (a->mr_end < b->mr_base)
88 return (-1);
89 else if (a->mr_base > b->mr_end)
90 return (1);
91 return (0);
92 }
93
94 static int
mmio_rb_lookup(struct mmio_rb_tree * rbt,uint64_t addr,struct mmio_rb_range ** entry)95 mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr,
96 struct mmio_rb_range **entry)
97 {
98 struct mmio_rb_range find, *res;
99
100 find.mr_base = find.mr_end = addr;
101
102 res = RB_FIND(mmio_rb_tree, rbt, &find);
103
104 if (res != NULL) {
105 *entry = res;
106 return (0);
107 }
108
109 return (ENOENT);
110 }
111
112 static int
mmio_rb_add(struct mmio_rb_tree * rbt,struct mmio_rb_range * new)113 mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new)
114 {
115 struct mmio_rb_range *overlap;
116
117 overlap = RB_INSERT(mmio_rb_tree, rbt, new);
118
119 if (overlap != NULL) {
120 #ifdef RB_DEBUG
121 printf("overlap detected: new %lx:%lx, tree %lx:%lx, '%s' "
122 "claims region already claimed for '%s'\n",
123 new->mr_base, new->mr_end,
124 overlap->mr_base, overlap->mr_end,
125 new->mr_param.name, overlap->mr_param.name);
126 #endif
127
128 return (EEXIST);
129 }
130
131 return (0);
132 }
133
134 #if 0
135 static void
136 mmio_rb_dump(struct mmio_rb_tree *rbt)
137 {
138 int perror;
139 struct mmio_rb_range *np;
140
141 pthread_rwlock_rdlock(&mmio_rwlock);
142 RB_FOREACH(np, mmio_rb_tree, rbt) {
143 printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
144 np->mr_param.name);
145 }
146 perror = pthread_rwlock_unlock(&mmio_rwlock);
147 assert(perror == 0);
148 }
149 #endif
150
151 RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
152
153 typedef int (mem_cb_t)(struct vcpu *vcpu, uint64_t gpa, struct mem_range *mr,
154 void *arg);
155
156 static int
mem_read(struct vcpu * vcpu,uint64_t gpa,uint64_t * rval,int size,void * arg)157 mem_read(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg)
158 {
159 int error;
160 struct mem_range *mr = arg;
161
162 error = (*mr->handler)(vcpu, MEM_F_READ, gpa, size, rval, mr->arg1,
163 mr->arg2);
164 return (error);
165 }
166
167 static int
mem_write(struct vcpu * vcpu,uint64_t gpa,uint64_t wval,int size,void * arg)168 mem_write(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size, void *arg)
169 {
170 int error;
171 struct mem_range *mr = arg;
172
173 error = (*mr->handler)(vcpu, MEM_F_WRITE, gpa, size, &wval, mr->arg1,
174 mr->arg2);
175 return (error);
176 }
177
178 static int
access_memory(struct vcpu * vcpu,uint64_t paddr,mem_cb_t * cb,void * arg)179 access_memory(struct vcpu *vcpu, uint64_t paddr, mem_cb_t *cb, void *arg)
180 {
181 struct mmio_rb_range *entry;
182 int err, perror, immutable, vcpuid;
183
184 vcpuid = vcpu_id(vcpu);
185 pthread_rwlock_rdlock(&mmio_rwlock);
186 /*
187 * First check the per-vCPU cache
188 */
189 if (mmio_hint[vcpuid] &&
190 paddr >= mmio_hint[vcpuid]->mr_base &&
191 paddr <= mmio_hint[vcpuid]->mr_end) {
192 entry = mmio_hint[vcpuid];
193 } else
194 entry = NULL;
195
196 if (entry == NULL) {
197 if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0) {
198 /* Update the per-vCPU cache */
199 mmio_hint[vcpuid] = entry;
200 } else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) {
201 perror = pthread_rwlock_unlock(&mmio_rwlock);
202 assert(perror == 0);
203 return (ESRCH);
204 }
205 }
206
207 assert(entry != NULL);
208
209 /*
210 * An 'immutable' memory range is guaranteed to be never removed
211 * so there is no need to hold 'mmio_rwlock' while calling the
212 * handler.
213 *
214 * XXX writes to the PCIR_COMMAND register can cause register_mem()
215 * to be called. If the guest is using PCI extended config space
216 * to modify the PCIR_COMMAND register then register_mem() can
217 * deadlock on 'mmio_rwlock'. However by registering the extended
218 * config space window as 'immutable' the deadlock can be avoided.
219 */
220 immutable = (entry->mr_param.flags & MEM_F_IMMUTABLE);
221 if (immutable) {
222 perror = pthread_rwlock_unlock(&mmio_rwlock);
223 assert(perror == 0);
224 }
225
226 err = cb(vcpu, paddr, &entry->mr_param, arg);
227
228 if (!immutable) {
229 perror = pthread_rwlock_unlock(&mmio_rwlock);
230 assert(perror == 0);
231 }
232
233 return (err);
234 }
235
236 static int
emulate_mem_cb(struct vcpu * vcpu,uint64_t paddr,struct mem_range * mr,void * arg)237 emulate_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr,
238 void *arg)
239 {
240 struct vm_mmio *mmio;
241 int err = 0;
242
243 mmio = arg;
244
245 if (mmio->read != 0) {
246 err = mem_read(vcpu, paddr, &mmio->data, mmio->bytes, mr);
247 } else {
248 err = mem_write(vcpu, paddr, mmio->data, mmio->bytes, mr);
249 }
250
251 return (err);
252 }
253
254 int
emulate_mem(struct vcpu * vcpu,struct vm_mmio * mmio)255 emulate_mem(struct vcpu *vcpu, struct vm_mmio *mmio)
256 {
257 return (access_memory(vcpu, mmio->gpa, emulate_mem_cb, mmio));
258 }
259
260 struct rw_mem_args {
261 uint64_t *val;
262 int size;
263 int operation;
264 };
265
266 static int
rw_mem_cb(struct vcpu * vcpu,uint64_t paddr,struct mem_range * mr,void * arg)267 rw_mem_cb(struct vcpu *vcpu, uint64_t paddr, struct mem_range *mr,
268 void *arg)
269 {
270 struct rw_mem_args *rma;
271
272 rma = arg;
273 return (mr->handler(vcpu, rma->operation, paddr, rma->size,
274 rma->val, mr->arg1, mr->arg2));
275 }
276
277 int
read_mem(struct vcpu * vcpu,uint64_t gpa,uint64_t * rval,int size)278 read_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, int size)
279 {
280 struct rw_mem_args rma;
281
282 rma.val = rval;
283 rma.size = size;
284 rma.operation = MEM_F_READ;
285 return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
286 }
287
288 int
write_mem(struct vcpu * vcpu,uint64_t gpa,uint64_t wval,int size)289 write_mem(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, int size)
290 {
291 struct rw_mem_args rma;
292
293 rma.val = &wval;
294 rma.size = size;
295 rma.operation = MEM_F_WRITE;
296 return (access_memory(vcpu, gpa, rw_mem_cb, &rma));
297 }
298
299 static int
register_mem_int(struct mmio_rb_tree * rbt,struct mem_range * memp)300 register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
301 {
302 struct mmio_rb_range *entry, *mrp;
303 int err, perror;
304
305 err = 0;
306
307 mrp = malloc(sizeof(struct mmio_rb_range));
308 if (mrp == NULL) {
309 warn("%s: couldn't allocate memory for mrp\n",
310 __func__);
311 err = ENOMEM;
312 } else {
313 mrp->mr_param = *memp;
314 mrp->mr_base = memp->base;
315 mrp->mr_end = memp->base + memp->size - 1;
316 pthread_rwlock_wrlock(&mmio_rwlock);
317 if (mmio_rb_lookup(rbt, memp->base, &entry) != 0)
318 err = mmio_rb_add(rbt, mrp);
319 #ifndef __FreeBSD__
320 else /* smatch warn: possible memory leak of 'mrp' */
321 free(mrp);
322 #endif
323 perror = pthread_rwlock_unlock(&mmio_rwlock);
324 assert(perror == 0);
325 if (err)
326 free(mrp);
327 }
328
329 return (err);
330 }
331
332 int
register_mem(struct mem_range * memp)333 register_mem(struct mem_range *memp)
334 {
335
336 return (register_mem_int(&mmio_rb_root, memp));
337 }
338
339 int
register_mem_fallback(struct mem_range * memp)340 register_mem_fallback(struct mem_range *memp)
341 {
342
343 return (register_mem_int(&mmio_rb_fallback, memp));
344 }
345
346 int
unregister_mem(struct mem_range * memp)347 unregister_mem(struct mem_range *memp)
348 {
349 struct mem_range *mr;
350 struct mmio_rb_range *entry = NULL;
351 int err, perror, i;
352
353 pthread_rwlock_wrlock(&mmio_rwlock);
354 err = mmio_rb_lookup(&mmio_rb_root, memp->base, &entry);
355 if (err == 0) {
356 mr = &entry->mr_param;
357 assert(mr->name == memp->name);
358 assert(mr->base == memp->base && mr->size == memp->size);
359 assert((mr->flags & MEM_F_IMMUTABLE) == 0);
360 RB_REMOVE(mmio_rb_tree, &mmio_rb_root, entry);
361
362 /* flush Per-vCPU cache */
363 for (i = 0; i < mmio_ncpu; i++) {
364 if (mmio_hint[i] == entry)
365 mmio_hint[i] = NULL;
366 }
367 }
368 perror = pthread_rwlock_unlock(&mmio_rwlock);
369 assert(perror == 0);
370
371 if (entry)
372 free(entry);
373
374 return (err);
375 }
376
377 void
init_mem(int ncpu)378 init_mem(int ncpu)
379 {
380
381 mmio_ncpu = ncpu;
382 mmio_hint = calloc(ncpu, sizeof(*mmio_hint));
383 RB_INIT(&mmio_rb_root);
384 RB_INIT(&mmio_rb_fallback);
385 pthread_rwlock_init(&mmio_rwlock, NULL);
386 }
387