1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
57 PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
58 PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
59 PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
61
62 PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
63 PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
64 PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
65 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
66 PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
67 PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
68 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
69
70 PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
71
72 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
73 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
74
75 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
76 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
77 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
78 PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
79
80 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
81 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
82 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
83 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
84 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
85
86 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
87 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
88 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
89 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
90 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
91 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
92 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
93 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
95
96 PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
97 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
98 PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
99
100 /* Intel(R) - em-class devices */
101 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
102 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
104 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
105 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
106 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
108 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
109 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
110 PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
113 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
114 PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
115 PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
116 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
117 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
118 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
119 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
120 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
121 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
123 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
124 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
125 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
126 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
127 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
128 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
129 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
130 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
131 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
132 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
133 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
134 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
135 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
136 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
137 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
138 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
139 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
140 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
141 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
142 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
143 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
144 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
145 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
146 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
147 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
148 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
149 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
150 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
151 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
152 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
153 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
154 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
155 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
156 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
157 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
158 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
159 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
160 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
161 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
162 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
163 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
164 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
165 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
166 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
167 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
168 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
169 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
170 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
171 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
172 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
173 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
174 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
175 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
176 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
177 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
178 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
179 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
180 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
181 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
182 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
183 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
184 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
185 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
186 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
187 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
188 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
189 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
190 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
191 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
192 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
193 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
194 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
195 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
196 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19, "Intel(R) I219-LM ADL(19)"),
197 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19, "Intel(R) I219-V ADL(19)"),
198 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"),
199 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"),
200 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"),
201 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"),
202 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"),
203 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"),
204 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"),
205 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"),
206 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"),
207 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"),
208 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"),
209 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"),
210 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"),
211 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"),
212 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"),
213 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"),
214 /* required last entry */
215 PVID_END
216 };
217
218 static const pci_vendor_info_t igb_vendor_info_array[] =
219 {
220 /* Intel(R) - igb-class devices */
221 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
222 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
223 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
224 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
225 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
226 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
227 PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
228 PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
229 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
230 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
231 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
232 PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
233 PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
234 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
235 PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
236 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
237 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
238 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
239 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
240 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
241 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
242 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
243 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
244 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
245 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
246 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
247 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
248 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
249 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
250 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
251 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
252 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
253 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
254 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
255 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
256 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
257 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
258 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
259 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
260 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
261 /* required last entry */
262 PVID_END
263 };
264
265 /*********************************************************************
266 * Function prototypes
267 *********************************************************************/
268 static void *em_register(device_t);
269 static void *igb_register(device_t);
270 static int em_if_attach_pre(if_ctx_t);
271 static int em_if_attach_post(if_ctx_t);
272 static int em_if_detach(if_ctx_t);
273 static int em_if_shutdown(if_ctx_t);
274 static int em_if_suspend(if_ctx_t);
275 static int em_if_resume(if_ctx_t);
276
277 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
278 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
279 static void em_if_queues_free(if_ctx_t);
280
281 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
282 static void em_if_init(if_ctx_t);
283 static void em_if_stop(if_ctx_t);
284 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
285 static int em_if_media_change(if_ctx_t);
286 static int em_if_mtu_set(if_ctx_t, uint32_t);
287 static void em_if_timer(if_ctx_t, uint16_t);
288 static void em_if_vlan_register(if_ctx_t, u16);
289 static void em_if_vlan_unregister(if_ctx_t, u16);
290 static void em_if_watchdog_reset(if_ctx_t);
291 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
292
293 static void em_identify_hardware(if_ctx_t);
294 static int em_allocate_pci_resources(if_ctx_t);
295 static void em_free_pci_resources(if_ctx_t);
296 static void em_reset(if_ctx_t);
297 static int em_setup_interface(if_ctx_t);
298 static int em_setup_msix(if_ctx_t);
299
300 static void em_initialize_transmit_unit(if_ctx_t);
301 static void em_initialize_receive_unit(if_ctx_t);
302
303 static void em_if_intr_enable(if_ctx_t);
304 static void em_if_intr_disable(if_ctx_t);
305 static void igb_if_intr_enable(if_ctx_t);
306 static void igb_if_intr_disable(if_ctx_t);
307 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
308 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
309 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
310 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
311 static void em_if_multi_set(if_ctx_t);
312 static void em_if_update_admin_status(if_ctx_t);
313 static void em_if_debug(if_ctx_t);
314 static void em_update_stats_counters(struct e1000_softc *);
315 static void em_add_hw_stats(struct e1000_softc *);
316 static int em_if_set_promisc(if_ctx_t, int);
317 static bool em_if_vlan_filter_capable(if_ctx_t);
318 static bool em_if_vlan_filter_used(if_ctx_t);
319 static void em_if_vlan_filter_enable(struct e1000_softc *);
320 static void em_if_vlan_filter_disable(struct e1000_softc *);
321 static void em_if_vlan_filter_write(struct e1000_softc *);
322 static void em_setup_vlan_hw_support(if_ctx_t ctx);
323 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
324 static void em_print_nvm_info(struct e1000_softc *);
325 static void em_fw_version_locked(if_ctx_t);
326 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
327 static void em_print_fw_version(struct e1000_softc *);
328 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
329 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
330 static int em_get_rs(SYSCTL_HANDLER_ARGS);
331 static void em_print_debug_info(struct e1000_softc *);
332 static int em_is_valid_ether_addr(u8 *);
333 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
334 struct tx_ring *, struct rx_ring *);
335 static bool em_automask_tso(if_ctx_t);
336 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
337 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
338 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
339 const char *, struct em_int_delay_info *, int, int);
340 /* Management and WOL Support */
341 static void em_init_manageability(struct e1000_softc *);
342 static void em_release_manageability(struct e1000_softc *);
343 static void em_get_hw_control(struct e1000_softc *);
344 static void em_release_hw_control(struct e1000_softc *);
345 static void em_get_wakeup(if_ctx_t);
346 static void em_enable_wakeup(if_ctx_t);
347 static int em_enable_phy_wakeup(struct e1000_softc *);
348 static void em_disable_aspm(struct e1000_softc *);
349
350 int em_intr(void *);
351
352 /* MSI-X handlers */
353 static int em_if_msix_intr_assign(if_ctx_t, int);
354 static int em_msix_link(void *);
355 static void em_handle_link(void *);
356
357 static void em_enable_vectors_82574(if_ctx_t);
358
359 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
360 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
361 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
362 static void em_if_led_func(if_ctx_t, int);
363
364 static int em_get_regs(SYSCTL_HANDLER_ARGS);
365
366 static void lem_smartspeed(struct e1000_softc *);
367 static void igb_configure_queues(struct e1000_softc *);
368 static void em_flush_desc_rings(struct e1000_softc *);
369
370
371 /*********************************************************************
372 * FreeBSD Device Interface Entry Points
373 *********************************************************************/
374 static device_method_t em_methods[] = {
375 /* Device interface */
376 DEVMETHOD(device_register, em_register),
377 DEVMETHOD(device_probe, iflib_device_probe),
378 DEVMETHOD(device_attach, iflib_device_attach),
379 DEVMETHOD(device_detach, iflib_device_detach),
380 DEVMETHOD(device_shutdown, iflib_device_shutdown),
381 DEVMETHOD(device_suspend, iflib_device_suspend),
382 DEVMETHOD(device_resume, iflib_device_resume),
383 DEVMETHOD_END
384 };
385
386 static device_method_t igb_methods[] = {
387 /* Device interface */
388 DEVMETHOD(device_register, igb_register),
389 DEVMETHOD(device_probe, iflib_device_probe),
390 DEVMETHOD(device_attach, iflib_device_attach),
391 DEVMETHOD(device_detach, iflib_device_detach),
392 DEVMETHOD(device_shutdown, iflib_device_shutdown),
393 DEVMETHOD(device_suspend, iflib_device_suspend),
394 DEVMETHOD(device_resume, iflib_device_resume),
395 DEVMETHOD_END
396 };
397
398
399 static driver_t em_driver = {
400 "em", em_methods, sizeof(struct e1000_softc),
401 };
402
403 DRIVER_MODULE(em, pci, em_driver, 0, 0);
404
405 MODULE_DEPEND(em, pci, 1, 1, 1);
406 MODULE_DEPEND(em, ether, 1, 1, 1);
407 MODULE_DEPEND(em, iflib, 1, 1, 1);
408
409 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
410
411 static driver_t igb_driver = {
412 "igb", igb_methods, sizeof(struct e1000_softc),
413 };
414
415 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
416
417 MODULE_DEPEND(igb, pci, 1, 1, 1);
418 MODULE_DEPEND(igb, ether, 1, 1, 1);
419 MODULE_DEPEND(igb, iflib, 1, 1, 1);
420
421 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
422
423 static device_method_t em_if_methods[] = {
424 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
425 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
426 DEVMETHOD(ifdi_detach, em_if_detach),
427 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
428 DEVMETHOD(ifdi_suspend, em_if_suspend),
429 DEVMETHOD(ifdi_resume, em_if_resume),
430 DEVMETHOD(ifdi_init, em_if_init),
431 DEVMETHOD(ifdi_stop, em_if_stop),
432 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
433 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
434 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
435 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
436 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
437 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
438 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
439 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
440 DEVMETHOD(ifdi_media_status, em_if_media_status),
441 DEVMETHOD(ifdi_media_change, em_if_media_change),
442 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
443 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
444 DEVMETHOD(ifdi_timer, em_if_timer),
445 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
446 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
447 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
448 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
449 DEVMETHOD(ifdi_led_func, em_if_led_func),
450 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
451 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
452 DEVMETHOD(ifdi_debug, em_if_debug),
453 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
454 DEVMETHOD_END
455 };
456
457 static driver_t em_if_driver = {
458 "em_if", em_if_methods, sizeof(struct e1000_softc)
459 };
460
461 static device_method_t igb_if_methods[] = {
462 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
463 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
464 DEVMETHOD(ifdi_detach, em_if_detach),
465 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
466 DEVMETHOD(ifdi_suspend, em_if_suspend),
467 DEVMETHOD(ifdi_resume, em_if_resume),
468 DEVMETHOD(ifdi_init, em_if_init),
469 DEVMETHOD(ifdi_stop, em_if_stop),
470 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
471 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
472 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
473 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
474 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
475 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
476 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
477 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
478 DEVMETHOD(ifdi_media_status, em_if_media_status),
479 DEVMETHOD(ifdi_media_change, em_if_media_change),
480 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
481 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
482 DEVMETHOD(ifdi_timer, em_if_timer),
483 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
484 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
485 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
486 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
487 DEVMETHOD(ifdi_led_func, em_if_led_func),
488 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
489 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
490 DEVMETHOD(ifdi_debug, em_if_debug),
491 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
492 DEVMETHOD_END
493 };
494
495 static driver_t igb_if_driver = {
496 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
497 };
498
499 /*********************************************************************
500 * Tunable default values.
501 *********************************************************************/
502
503 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
504 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
505
506 /* Allow common code without TSO */
507 #ifndef CSUM_TSO
508 #define CSUM_TSO 0
509 #endif
510
511 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
512 "EM driver parameters");
513
514 static int em_disable_crc_stripping = 0;
515 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
516 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
517
518 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
519 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
520 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
521 0, "Default transmit interrupt delay in usecs");
522 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
523 0, "Default receive interrupt delay in usecs");
524
525 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
526 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
527 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
528 &em_tx_abs_int_delay_dflt, 0,
529 "Default transmit interrupt delay limit in usecs");
530 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
531 &em_rx_abs_int_delay_dflt, 0,
532 "Default receive interrupt delay limit in usecs");
533
534 static int em_smart_pwr_down = false;
535 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
536 0, "Set to true to leave smart power down enabled on newer adapters");
537
538 static bool em_unsupported_tso = false;
539 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
540 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
541
542 /* Controls whether promiscuous also shows bad packets */
543 static int em_debug_sbp = false;
544 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
545 "Show bad packets in promiscuous mode");
546
547 /* Energy efficient ethernet - default to OFF */
548 static int eee_setting = 1;
549 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
550 "Enable Energy Efficient Ethernet");
551
552 /*
553 * AIM: Adaptive Interrupt Moderation
554 * which means that the interrupt rate is varied over time based on the
555 * traffic for that interrupt vector
556 */
557 static int em_enable_aim = 1;
558 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
559 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
560
561 /*
562 ** Tuneable Interrupt rate
563 */
564 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
565 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
566 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
567
568 /* Global used in WOL setup with multiport cards */
569 static int global_quad_port_a = 0;
570
571 extern struct if_txrx igb_txrx;
572 extern struct if_txrx em_txrx;
573 extern struct if_txrx lem_txrx;
574
575 static struct if_shared_ctx em_sctx_init = {
576 .isc_magic = IFLIB_MAGIC,
577 .isc_q_align = PAGE_SIZE,
578 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
579 .isc_tx_maxsegsize = PAGE_SIZE,
580 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
581 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
582 .isc_rx_maxsize = MJUM9BYTES,
583 .isc_rx_nsegments = 1,
584 .isc_rx_maxsegsize = MJUM9BYTES,
585 .isc_nfl = 1,
586 .isc_nrxqs = 1,
587 .isc_ntxqs = 1,
588 .isc_admin_intrcnt = 1,
589 .isc_vendor_info = em_vendor_info_array,
590 .isc_driver_version = em_driver_version,
591 .isc_driver = &em_if_driver,
592 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
593
594 .isc_nrxd_min = {EM_MIN_RXD},
595 .isc_ntxd_min = {EM_MIN_TXD},
596 .isc_nrxd_max = {EM_MAX_RXD},
597 .isc_ntxd_max = {EM_MAX_TXD},
598 .isc_nrxd_default = {EM_DEFAULT_RXD},
599 .isc_ntxd_default = {EM_DEFAULT_TXD},
600 };
601
602 static struct if_shared_ctx igb_sctx_init = {
603 .isc_magic = IFLIB_MAGIC,
604 .isc_q_align = PAGE_SIZE,
605 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
606 .isc_tx_maxsegsize = PAGE_SIZE,
607 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
608 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
609 .isc_rx_maxsize = MJUM9BYTES,
610 .isc_rx_nsegments = 1,
611 .isc_rx_maxsegsize = MJUM9BYTES,
612 .isc_nfl = 1,
613 .isc_nrxqs = 1,
614 .isc_ntxqs = 1,
615 .isc_admin_intrcnt = 1,
616 .isc_vendor_info = igb_vendor_info_array,
617 .isc_driver_version = igb_driver_version,
618 .isc_driver = &igb_if_driver,
619 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
620
621 .isc_nrxd_min = {EM_MIN_RXD},
622 .isc_ntxd_min = {EM_MIN_TXD},
623 .isc_nrxd_max = {IGB_MAX_RXD},
624 .isc_ntxd_max = {IGB_MAX_TXD},
625 .isc_nrxd_default = {EM_DEFAULT_RXD},
626 .isc_ntxd_default = {EM_DEFAULT_TXD},
627 };
628
629 /*****************************************************************
630 *
631 * Dump Registers
632 *
633 ****************************************************************/
634 #define IGB_REGS_LEN 739
635
em_get_regs(SYSCTL_HANDLER_ARGS)636 static int em_get_regs(SYSCTL_HANDLER_ARGS)
637 {
638 struct e1000_softc *sc = (struct e1000_softc *)arg1;
639 struct e1000_hw *hw = &sc->hw;
640 struct sbuf *sb;
641 u32 *regs_buff;
642 int rc;
643
644 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
645 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
646
647 rc = sysctl_wire_old_buffer(req, 0);
648 MPASS(rc == 0);
649 if (rc != 0) {
650 free(regs_buff, M_DEVBUF);
651 return (rc);
652 }
653
654 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
655 MPASS(sb != NULL);
656 if (sb == NULL) {
657 free(regs_buff, M_DEVBUF);
658 return (ENOMEM);
659 }
660
661 /* General Registers */
662 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
663 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
664 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
665 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
666 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
667 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
668 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
669 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
670 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
671 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
672 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
673 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
674 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
675 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
676 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
677 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
678 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
679 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
680 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
681 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
682 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
683 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
684
685 sbuf_printf(sb, "General Registers\n");
686 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
687 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
688 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
689
690 sbuf_printf(sb, "Interrupt Registers\n");
691 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
692
693 sbuf_printf(sb, "RX Registers\n");
694 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
695 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
696 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
697 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
698 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
699 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
700 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
701
702 sbuf_printf(sb, "TX Registers\n");
703 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
704 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
705 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
706 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
707 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
708 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
709 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
710 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
711 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
712 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
713 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
714
715 free(regs_buff, M_DEVBUF);
716
717 #ifdef DUMP_DESCS
718 {
719 if_softc_ctx_t scctx = sc->shared;
720 struct rx_ring *rxr = &rx_que->rxr;
721 struct tx_ring *txr = &tx_que->txr;
722 int ntxd = scctx->isc_ntxd[0];
723 int nrxd = scctx->isc_nrxd[0];
724 int j;
725
726 for (j = 0; j < nrxd; j++) {
727 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
728 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
729 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
730 }
731
732 for (j = 0; j < min(ntxd, 256); j++) {
733 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
734
735 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n",
736 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
737 buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
738
739 }
740 }
741 #endif
742
743 rc = sbuf_finish(sb);
744 sbuf_delete(sb);
745 return(rc);
746 }
747
748 static void *
em_register(device_t dev)749 em_register(device_t dev)
750 {
751 return (&em_sctx_init);
752 }
753
754 static void *
igb_register(device_t dev)755 igb_register(device_t dev)
756 {
757 return (&igb_sctx_init);
758 }
759
760 static int
em_set_num_queues(if_ctx_t ctx)761 em_set_num_queues(if_ctx_t ctx)
762 {
763 struct e1000_softc *sc = iflib_get_softc(ctx);
764 int maxqueues;
765
766 /* Sanity check based on HW */
767 switch (sc->hw.mac.type) {
768 case e1000_82576:
769 case e1000_82580:
770 case e1000_i350:
771 case e1000_i354:
772 maxqueues = 8;
773 break;
774 case e1000_i210:
775 case e1000_82575:
776 maxqueues = 4;
777 break;
778 case e1000_i211:
779 case e1000_82574:
780 maxqueues = 2;
781 break;
782 default:
783 maxqueues = 1;
784 break;
785 }
786
787 return (maxqueues);
788 }
789
790 #define LEM_CAPS \
791 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
792 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
793 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
794
795 #define EM_CAPS \
796 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
797 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
798 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
799 IFCAP_TSO6
800
801 #define IGB_CAPS \
802 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
803 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
804 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
805 IFCAP_TSO6
806
807 /*********************************************************************
808 * Device initialization routine
809 *
810 * The attach entry point is called when the driver is being loaded.
811 * This routine identifies the type of hardware, allocates all resources
812 * and initializes the hardware.
813 *
814 * return 0 on success, positive on failure
815 *********************************************************************/
816 static int
em_if_attach_pre(if_ctx_t ctx)817 em_if_attach_pre(if_ctx_t ctx)
818 {
819 struct e1000_softc *sc;
820 if_softc_ctx_t scctx;
821 device_t dev;
822 struct e1000_hw *hw;
823 struct sysctl_oid_list *child;
824 struct sysctl_ctx_list *ctx_list;
825 int error = 0;
826
827 INIT_DEBUGOUT("em_if_attach_pre: begin");
828 dev = iflib_get_dev(ctx);
829 sc = iflib_get_softc(ctx);
830
831 sc->ctx = sc->osdep.ctx = ctx;
832 sc->dev = sc->osdep.dev = dev;
833 scctx = sc->shared = iflib_get_softc_ctx(ctx);
834 sc->media = iflib_get_media(ctx);
835 hw = &sc->hw;
836
837 /* Determine hardware and mac info */
838 em_identify_hardware(ctx);
839
840 /* SYSCTL stuff */
841 ctx_list = device_get_sysctl_ctx(dev);
842 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
843
844 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
845 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
846 em_sysctl_nvm_info, "I", "NVM Information");
847
848 sc->enable_aim = em_enable_aim;
849 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
850 CTLFLAG_RW, &sc->enable_aim, 0,
851 "Interrupt Moderation (1=normal, 2=lowlatency)");
852
853 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
854 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
855 em_sysctl_print_fw_version, "A",
856 "Prints FW/NVM Versions");
857
858 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
859 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
860 em_sysctl_debug_info, "I", "Debug Information");
861
862 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
863 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
864 em_set_flowcntl, "I", "Flow Control");
865
866 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
867 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
868 em_get_regs, "A", "Dump Registers");
869
870 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
871 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
872 em_get_rs, "I", "Dump RS indexes");
873
874 if (hw->mac.type >= e1000_i350) {
875 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
876 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
877 igb_sysctl_dmac, "I", "DMA Coalesce");
878 }
879
880 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
881 "tso_tcp_flags_mask_first_segment",
882 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
883 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
884 "TSO TCP flags mask for first segment");
885
886 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
887 "tso_tcp_flags_mask_middle_segment",
888 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
889 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
890 "TSO TCP flags mask for middle segment");
891
892 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
893 "tso_tcp_flags_mask_last_segment",
894 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
895 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
896 "TSO TCP flags mask for last segment");
897
898 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
899 scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
900 if (bootverbose)
901 device_printf(dev, "attach_pre capping queues at %d\n",
902 scctx->isc_ntxqsets_max);
903
904 if (hw->mac.type >= igb_mac_min) {
905 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
906 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
907 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
908 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
909 scctx->isc_txrx = &igb_txrx;
910 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
911 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
912 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
913 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
914 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
915 CSUM_IP6_TCP | CSUM_IP6_UDP;
916 if (hw->mac.type != e1000_82575)
917 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
918 /*
919 ** Some new devices, as with ixgbe, now may
920 ** use a different BAR, so we need to keep
921 ** track of which is used.
922 */
923 scctx->isc_msix_bar = pci_msix_table_bar(dev);
924 } else if (hw->mac.type >= em_mac_min) {
925 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
926 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
927 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
928 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
929 scctx->isc_txrx = &em_txrx;
930 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
931 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
932 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
933 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
934 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
935 CSUM_IP6_TCP | CSUM_IP6_UDP;
936
937 /* Disable TSO on all em(4) until ring stalls can be debugged */
938 scctx->isc_capenable &= ~IFCAP_TSO;
939
940 /*
941 * Disable TSO on SPT due to errata that downclocks DMA performance
942 * i218-i219 Specification Update 1.5.4.5
943 */
944 if (hw->mac.type == e1000_pch_spt)
945 scctx->isc_capenable &= ~IFCAP_TSO;
946
947 /*
948 * We support MSI-X with 82574 only, but indicate to iflib(4)
949 * that it shall give MSI at least a try with other devices.
950 */
951 if (hw->mac.type == e1000_82574) {
952 scctx->isc_msix_bar = pci_msix_table_bar(dev);
953 } else {
954 scctx->isc_msix_bar = -1;
955 scctx->isc_disable_msix = 1;
956 }
957 } else {
958 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
959 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
960 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
961 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
962 scctx->isc_txrx = &lem_txrx;
963 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
964 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
965 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
966 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
967 if (em_unsupported_tso)
968 scctx->isc_capabilities |= IFCAP_TSO6;
969 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
970 CSUM_IP6_TCP | CSUM_IP6_UDP;
971
972 /* Disable TSO on all lem(4) until ring stalls can be debugged */
973 scctx->isc_capenable &= ~IFCAP_TSO;
974
975 /* 82541ER doesn't do HW tagging */
976 if (hw->device_id == E1000_DEV_ID_82541ER ||
977 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
978 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
979 scctx->isc_capenable = scctx->isc_capabilities;
980 }
981 /* This is the first e1000 chip and it does not do offloads */
982 if (hw->mac.type == e1000_82542) {
983 scctx->isc_capabilities &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
984 IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWTAGGING |
985 IFCAP_VLAN_HWFILTER | IFCAP_TSO | IFCAP_VLAN_HWTSO);
986 scctx->isc_capenable = scctx->isc_capabilities;
987 }
988 /* These can't do TSO for various reasons */
989 if (hw->mac.type < e1000_82544 || hw->mac.type == e1000_82547 ||
990 hw->mac.type == e1000_82547_rev_2) {
991 scctx->isc_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO);
992 scctx->isc_capenable = scctx->isc_capabilities;
993 }
994 /* XXXKB: No IPv6 before this? */
995 if (hw->mac.type < e1000_82545){
996 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
997 scctx->isc_capenable = scctx->isc_capabilities;
998 }
999 /* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */
1000 if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2)
1001 scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1002 IFCAP_HWCSUM_IPV6);
1003
1004 /* INTx only */
1005 scctx->isc_msix_bar = 0;
1006 }
1007
1008 /* Setup PCI resources */
1009 if (em_allocate_pci_resources(ctx)) {
1010 device_printf(dev, "Allocation of PCI resources failed\n");
1011 error = ENXIO;
1012 goto err_pci;
1013 }
1014
1015 /*
1016 ** For ICH8 and family we need to
1017 ** map the flash memory, and this
1018 ** must happen after the MAC is
1019 ** identified
1020 */
1021 if ((hw->mac.type == e1000_ich8lan) ||
1022 (hw->mac.type == e1000_ich9lan) ||
1023 (hw->mac.type == e1000_ich10lan) ||
1024 (hw->mac.type == e1000_pchlan) ||
1025 (hw->mac.type == e1000_pch2lan) ||
1026 (hw->mac.type == e1000_pch_lpt)) {
1027 int rid = EM_BAR_TYPE_FLASH;
1028 sc->flash = bus_alloc_resource_any(dev,
1029 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1030 if (sc->flash == NULL) {
1031 device_printf(dev, "Mapping of Flash failed\n");
1032 error = ENXIO;
1033 goto err_pci;
1034 }
1035 /* This is used in the shared code */
1036 hw->flash_address = (u8 *)sc->flash;
1037 sc->osdep.flash_bus_space_tag =
1038 rman_get_bustag(sc->flash);
1039 sc->osdep.flash_bus_space_handle =
1040 rman_get_bushandle(sc->flash);
1041 }
1042 /*
1043 ** In the new SPT device flash is not a
1044 ** separate BAR, rather it is also in BAR0,
1045 ** so use the same tag and an offset handle for the
1046 ** FLASH read/write macros in the shared code.
1047 */
1048 else if (hw->mac.type >= e1000_pch_spt) {
1049 sc->osdep.flash_bus_space_tag =
1050 sc->osdep.mem_bus_space_tag;
1051 sc->osdep.flash_bus_space_handle =
1052 sc->osdep.mem_bus_space_handle
1053 + E1000_FLASH_BASE_ADDR;
1054 }
1055
1056 /* Do Shared Code initialization */
1057 error = e1000_setup_init_funcs(hw, true);
1058 if (error) {
1059 device_printf(dev, "Setup of Shared code failed, error %d\n",
1060 error);
1061 error = ENXIO;
1062 goto err_pci;
1063 }
1064
1065 em_setup_msix(ctx);
1066 e1000_get_bus_info(hw);
1067
1068 /* Set up some sysctls for the tunable interrupt delays */
1069 if (hw->mac.type < igb_mac_min) {
1070 em_add_int_delay_sysctl(sc, "rx_int_delay",
1071 "receive interrupt delay in usecs", &sc->rx_int_delay,
1072 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1073 em_add_int_delay_sysctl(sc, "tx_int_delay",
1074 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1075 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1076 }
1077 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1078 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1079 "receive interrupt delay limit in usecs", &sc->rx_abs_int_delay,
1080 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1081 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1082 "transmit interrupt delay limit in usecs", &sc->tx_abs_int_delay,
1083 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1084 em_add_int_delay_sysctl(sc, "itr",
1085 "interrupt delay limit in usecs/4", &sc->tx_itr,
1086 E1000_REGISTER(hw, E1000_ITR),
1087 EM_INTS_TO_ITR(em_max_interrupt_rate));
1088 }
1089
1090 hw->mac.autoneg = DO_AUTO_NEG;
1091 hw->phy.autoneg_wait_to_complete = false;
1092 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1093
1094 if (hw->mac.type < em_mac_min) {
1095 e1000_init_script_state_82541(hw, true);
1096 e1000_set_tbi_compatibility_82543(hw, true);
1097 }
1098 /* Copper options */
1099 if (hw->phy.media_type == e1000_media_type_copper) {
1100 hw->phy.mdix = AUTO_ALL_MODES;
1101 hw->phy.disable_polarity_correction = false;
1102 hw->phy.ms_type = EM_MASTER_SLAVE;
1103 }
1104
1105 /*
1106 * Set the frame limits assuming
1107 * standard ethernet sized frames.
1108 */
1109 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1110 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1111
1112 /*
1113 * This controls when hardware reports transmit completion
1114 * status.
1115 */
1116 hw->mac.report_tx_early = 1;
1117
1118 /* Allocate multicast array memory. */
1119 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1120 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1121 if (sc->mta == NULL) {
1122 device_printf(dev, "Can not allocate multicast setup array\n");
1123 error = ENOMEM;
1124 goto err_late;
1125 }
1126
1127 /* Clear the IFCAP_TSO auto mask */
1128 sc->tso_automasked = 0;
1129
1130 /* Check SOL/IDER usage */
1131 if (e1000_check_reset_block(hw))
1132 device_printf(dev, "PHY reset is blocked"
1133 " due to SOL/IDER session.\n");
1134
1135 /* Sysctl for setting Energy Efficient Ethernet */
1136 if (hw->mac.type < igb_mac_min)
1137 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1138 else
1139 hw->dev_spec._82575.eee_disable = eee_setting;
1140 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1141 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1142 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1143
1144 /*
1145 ** Start from a known state, this is
1146 ** important in reading the nvm and
1147 ** mac from that.
1148 */
1149 e1000_reset_hw(hw);
1150
1151 /* Make sure we have a good EEPROM before we read from it */
1152 if (e1000_validate_nvm_checksum(hw) < 0) {
1153 /*
1154 ** Some PCI-E parts fail the first check due to
1155 ** the link being in sleep state, call it again,
1156 ** if it fails a second time its a real issue.
1157 */
1158 if (e1000_validate_nvm_checksum(hw) < 0) {
1159 device_printf(dev,
1160 "The EEPROM Checksum Is Not Valid\n");
1161 error = EIO;
1162 goto err_late;
1163 }
1164 }
1165
1166 /* Copy the permanent MAC address out of the EEPROM */
1167 if (e1000_read_mac_addr(hw) < 0) {
1168 device_printf(dev, "EEPROM read error while reading MAC"
1169 " address\n");
1170 error = EIO;
1171 goto err_late;
1172 }
1173
1174 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1175 if (sc->vf_ifp) {
1176 ether_gen_addr(iflib_get_ifp(ctx),
1177 (struct ether_addr *)hw->mac.addr);
1178 } else {
1179 device_printf(dev, "Invalid MAC address\n");
1180 error = EIO;
1181 goto err_late;
1182 }
1183 }
1184
1185 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1186 em_fw_version_locked(ctx);
1187
1188 em_print_fw_version(sc);
1189
1190 /*
1191 * Get Wake-on-Lan and Management info for later use
1192 */
1193 em_get_wakeup(ctx);
1194
1195 /* Enable only WOL MAGIC by default */
1196 scctx->isc_capenable &= ~IFCAP_WOL;
1197 if (sc->wol != 0)
1198 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1199
1200 iflib_set_mac(ctx, hw->mac.addr);
1201
1202 return (0);
1203
1204 err_late:
1205 em_release_hw_control(sc);
1206 err_pci:
1207 em_free_pci_resources(ctx);
1208 free(sc->mta, M_DEVBUF);
1209
1210 return (error);
1211 }
1212
1213 static int
em_if_attach_post(if_ctx_t ctx)1214 em_if_attach_post(if_ctx_t ctx)
1215 {
1216 struct e1000_softc *sc = iflib_get_softc(ctx);
1217 struct e1000_hw *hw = &sc->hw;
1218 int error = 0;
1219
1220 /* Setup OS specific network interface */
1221 error = em_setup_interface(ctx);
1222 if (error != 0) {
1223 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1224 goto err_late;
1225 }
1226
1227 em_reset(ctx);
1228
1229 /* Initialize statistics */
1230 em_update_stats_counters(sc);
1231 hw->mac.get_link_status = 1;
1232 em_if_update_admin_status(ctx);
1233 em_add_hw_stats(sc);
1234
1235 /* Non-AMT based hardware can now take control from firmware */
1236 if (sc->has_manage && !sc->has_amt)
1237 em_get_hw_control(sc);
1238
1239 INIT_DEBUGOUT("em_if_attach_post: end");
1240
1241 return (0);
1242
1243 err_late:
1244 /* upon attach_post() error, iflib calls _if_detach() to free resources. */
1245 return (error);
1246 }
1247
1248 /*********************************************************************
1249 * Device removal routine
1250 *
1251 * The detach entry point is called when the driver is being removed.
1252 * This routine stops the adapter and deallocates all the resources
1253 * that were allocated for driver operation.
1254 *
1255 * return 0 on success, positive on failure
1256 *********************************************************************/
1257 static int
em_if_detach(if_ctx_t ctx)1258 em_if_detach(if_ctx_t ctx)
1259 {
1260 struct e1000_softc *sc = iflib_get_softc(ctx);
1261
1262 INIT_DEBUGOUT("em_if_detach: begin");
1263
1264 e1000_phy_hw_reset(&sc->hw);
1265
1266 em_release_manageability(sc);
1267 em_release_hw_control(sc);
1268 em_free_pci_resources(ctx);
1269 free(sc->mta, M_DEVBUF);
1270 sc->mta = NULL;
1271
1272 return (0);
1273 }
1274
1275 /*********************************************************************
1276 *
1277 * Shutdown entry point
1278 *
1279 **********************************************************************/
1280
1281 static int
em_if_shutdown(if_ctx_t ctx)1282 em_if_shutdown(if_ctx_t ctx)
1283 {
1284 return em_if_suspend(ctx);
1285 }
1286
1287 /*
1288 * Suspend/resume device methods.
1289 */
1290 static int
em_if_suspend(if_ctx_t ctx)1291 em_if_suspend(if_ctx_t ctx)
1292 {
1293 struct e1000_softc *sc = iflib_get_softc(ctx);
1294
1295 em_release_manageability(sc);
1296 em_release_hw_control(sc);
1297 em_enable_wakeup(ctx);
1298 return (0);
1299 }
1300
1301 static int
em_if_resume(if_ctx_t ctx)1302 em_if_resume(if_ctx_t ctx)
1303 {
1304 struct e1000_softc *sc = iflib_get_softc(ctx);
1305
1306 if (sc->hw.mac.type == e1000_pch2lan)
1307 e1000_resume_workarounds_pchlan(&sc->hw);
1308 em_if_init(ctx);
1309 em_init_manageability(sc);
1310
1311 return(0);
1312 }
1313
1314 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1315 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1316 {
1317 int max_frame_size;
1318 struct e1000_softc *sc = iflib_get_softc(ctx);
1319 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1320
1321 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1322
1323 switch (sc->hw.mac.type) {
1324 case e1000_82571:
1325 case e1000_82572:
1326 case e1000_ich9lan:
1327 case e1000_ich10lan:
1328 case e1000_pch2lan:
1329 case e1000_pch_lpt:
1330 case e1000_pch_spt:
1331 case e1000_pch_cnp:
1332 case e1000_pch_tgp:
1333 case e1000_pch_adp:
1334 case e1000_pch_mtp:
1335 case e1000_pch_ptp:
1336 case e1000_82574:
1337 case e1000_82583:
1338 case e1000_80003es2lan:
1339 /* 9K Jumbo Frame size */
1340 max_frame_size = 9234;
1341 break;
1342 case e1000_pchlan:
1343 max_frame_size = 4096;
1344 break;
1345 case e1000_82542:
1346 case e1000_ich8lan:
1347 /* Adapters that do not support jumbo frames */
1348 max_frame_size = ETHER_MAX_LEN;
1349 break;
1350 default:
1351 if (sc->hw.mac.type >= igb_mac_min)
1352 max_frame_size = 9234;
1353 else /* lem */
1354 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1355 }
1356 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1357 return (EINVAL);
1358 }
1359
1360 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1361 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1362 return (0);
1363 }
1364
1365 /*********************************************************************
1366 * Init entry point
1367 *
1368 * This routine is used in two ways. It is used by the stack as
1369 * init entry point in network interface structure. It is also used
1370 * by the driver as a hw/sw initialization routine to get to a
1371 * consistent state.
1372 *
1373 **********************************************************************/
1374 static void
em_if_init(if_ctx_t ctx)1375 em_if_init(if_ctx_t ctx)
1376 {
1377 struct e1000_softc *sc = iflib_get_softc(ctx);
1378 if_softc_ctx_t scctx = sc->shared;
1379 if_t ifp = iflib_get_ifp(ctx);
1380 struct em_tx_queue *tx_que;
1381 int i;
1382
1383 INIT_DEBUGOUT("em_if_init: begin");
1384
1385 /* Get the latest mac address, User can use a LAA */
1386 bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1387 ETHER_ADDR_LEN);
1388
1389 /* Put the address into the Receive Address Array */
1390 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1391
1392 /*
1393 * With the 82571 adapter, RAR[0] may be overwritten
1394 * when the other port is reset, we make a duplicate
1395 * in RAR[14] for that eventuality, this assures
1396 * the interface continues to function.
1397 */
1398 if (sc->hw.mac.type == e1000_82571) {
1399 e1000_set_laa_state_82571(&sc->hw, true);
1400 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1401 E1000_RAR_ENTRIES - 1);
1402 }
1403
1404 /* Initialize the hardware */
1405 em_reset(ctx);
1406 em_if_update_admin_status(ctx);
1407
1408 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1409 struct tx_ring *txr = &tx_que->txr;
1410
1411 txr->tx_rs_cidx = txr->tx_rs_pidx;
1412
1413 /* Initialize the last processed descriptor to be the end of
1414 * the ring, rather than the start, so that we avoid an
1415 * off-by-one error when calculating how many descriptors are
1416 * done in the credits_update function.
1417 */
1418 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1419 }
1420
1421 /* Setup VLAN support, basic and offload if available */
1422 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1423
1424 /* Clear bad data from Rx FIFOs */
1425 if (sc->hw.mac.type >= igb_mac_min)
1426 e1000_rx_fifo_flush_base(&sc->hw);
1427
1428 /* Configure for OS presence */
1429 em_init_manageability(sc);
1430
1431 /* Prepare transmit descriptors and buffers */
1432 em_initialize_transmit_unit(ctx);
1433
1434 /* Setup Multicast table */
1435 em_if_multi_set(ctx);
1436
1437 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1438 em_initialize_receive_unit(ctx);
1439
1440 /* Set up VLAN support and filter */
1441 em_setup_vlan_hw_support(ctx);
1442
1443 /* Don't lose promiscuous settings */
1444 em_if_set_promisc(ctx, if_getflags(ifp));
1445 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1446
1447 /* MSI-X configuration for 82574 */
1448 if (sc->hw.mac.type == e1000_82574) {
1449 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1450
1451 tmp |= E1000_CTRL_EXT_PBA_CLR;
1452 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1453 /* Set the IVAR - interrupt vector routing. */
1454 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1455 } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1456 igb_configure_queues(sc);
1457
1458 /* this clears any pending interrupts */
1459 E1000_READ_REG(&sc->hw, E1000_ICR);
1460 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1461
1462 /* AMT based hardware can now take control from firmware */
1463 if (sc->has_manage && sc->has_amt)
1464 em_get_hw_control(sc);
1465
1466 /* Set Energy Efficient Ethernet */
1467 if (sc->hw.mac.type >= igb_mac_min &&
1468 sc->hw.phy.media_type == e1000_media_type_copper) {
1469 if (sc->hw.mac.type == e1000_i354)
1470 e1000_set_eee_i354(&sc->hw, true, true);
1471 else
1472 e1000_set_eee_i350(&sc->hw, true, true);
1473 }
1474 }
1475
1476 enum itr_latency_target {
1477 itr_latency_disabled = 0,
1478 itr_latency_lowest = 1,
1479 itr_latency_low = 2,
1480 itr_latency_bulk = 3
1481 };
1482 /*********************************************************************
1483 *
1484 * Helper to calculate next (E)ITR value for AIM
1485 *
1486 *********************************************************************/
1487 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1488 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1489 struct tx_ring *txr, struct rx_ring *rxr)
1490 {
1491 struct e1000_hw *hw = &sc->hw;
1492 u32 newitr;
1493 u32 bytes;
1494 u32 bytes_packets;
1495 u32 packets;
1496 u8 nextlatency;
1497
1498 /* Idle, do nothing */
1499 if ((txr->tx_bytes == 0) && (rxr->rx_bytes == 0))
1500 return;
1501
1502 newitr = 0;
1503
1504 if (sc->enable_aim) {
1505 nextlatency = rxr->rx_nextlatency;
1506
1507 /* Use half default (4K) ITR if sub-gig */
1508 if (sc->link_speed != 1000) {
1509 newitr = EM_INTS_4K;
1510 goto em_set_next_itr;
1511 }
1512 /* Want at least enough packet buffer for two frames to AIM */
1513 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1514 newitr = em_max_interrupt_rate;
1515 sc->enable_aim = 0;
1516 goto em_set_next_itr;
1517 }
1518
1519 /* Get the largest values from the associated tx and rx ring */
1520 if (txr->tx_bytes && txr->tx_packets) {
1521 bytes = txr->tx_bytes;
1522 bytes_packets = txr->tx_bytes/txr->tx_packets;
1523 packets = txr->tx_packets;
1524 }
1525 if (rxr->rx_bytes && rxr->rx_packets) {
1526 bytes = max(bytes, rxr->rx_bytes);
1527 bytes_packets = max(bytes_packets, rxr->rx_bytes/rxr->rx_packets);
1528 packets = max(packets, rxr->rx_packets);
1529 }
1530
1531 /* Latency state machine */
1532 switch (nextlatency) {
1533 case itr_latency_disabled: /* Bootstrapping */
1534 nextlatency = itr_latency_low;
1535 break;
1536 case itr_latency_lowest: /* 70k ints/s */
1537 /* TSO and jumbo frames */
1538 if (bytes_packets > 8000)
1539 nextlatency = itr_latency_bulk;
1540 else if ((packets < 5) && (bytes > 512))
1541 nextlatency = itr_latency_low;
1542 break;
1543 case itr_latency_low: /* 20k ints/s */
1544 if (bytes > 10000) {
1545 /* Handle TSO */
1546 if (bytes_packets > 8000)
1547 nextlatency = itr_latency_bulk;
1548 else if ((packets < 10) || (bytes_packets > 1200))
1549 nextlatency = itr_latency_bulk;
1550 else if (packets > 35)
1551 nextlatency = itr_latency_lowest;
1552 } else if (bytes_packets > 2000) {
1553 nextlatency = itr_latency_bulk;
1554 } else if (packets < 3 && bytes < 512) {
1555 nextlatency = itr_latency_lowest;
1556 }
1557 break;
1558 case itr_latency_bulk: /* 4k ints/s */
1559 if (bytes > 25000) {
1560 if (packets > 35)
1561 nextlatency = itr_latency_low;
1562 } else if (bytes < 1500)
1563 nextlatency = itr_latency_low;
1564 break;
1565 default:
1566 nextlatency = itr_latency_low;
1567 device_printf(sc->dev, "Unexpected newitr transition %d\n",
1568 nextlatency);
1569 break;
1570 }
1571
1572 /* Trim itr_latency_lowest for default AIM setting */
1573 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1574 nextlatency = itr_latency_low;
1575
1576 /* Request new latency */
1577 rxr->rx_nextlatency = nextlatency;
1578 } else {
1579 /* We may have toggled to AIM disabled */
1580 nextlatency = itr_latency_disabled;
1581 rxr->rx_nextlatency = nextlatency;
1582 }
1583
1584 /* ITR state machine */
1585 switch(nextlatency) {
1586 case itr_latency_lowest:
1587 newitr = EM_INTS_70K;
1588 break;
1589 case itr_latency_low:
1590 newitr = EM_INTS_20K;
1591 break;
1592 case itr_latency_bulk:
1593 newitr = EM_INTS_4K;
1594 break;
1595 case itr_latency_disabled:
1596 default:
1597 newitr = em_max_interrupt_rate;
1598 break;
1599 }
1600
1601 em_set_next_itr:
1602 if (hw->mac.type >= igb_mac_min) {
1603 newitr = IGB_INTS_TO_EITR(newitr);
1604
1605 if (hw->mac.type == e1000_82575)
1606 newitr |= newitr << 16;
1607 else
1608 newitr |= E1000_EITR_CNT_IGNR;
1609
1610 if (newitr != que->itr_setting) {
1611 que->itr_setting = newitr;
1612 E1000_WRITE_REG(hw, E1000_EITR(que->msix), que->itr_setting);
1613 }
1614 } else {
1615 newitr = EM_INTS_TO_ITR(newitr);
1616
1617 if (newitr != que->itr_setting) {
1618 que->itr_setting = newitr;
1619 if (hw->mac.type == e1000_82574 && que->msix) {
1620 E1000_WRITE_REG(hw,
1621 E1000_EITR_82574(que->msix), que->itr_setting);
1622 } else {
1623 E1000_WRITE_REG(hw, E1000_ITR, que->itr_setting);
1624 }
1625 }
1626 }
1627 }
1628
1629 /*********************************************************************
1630 *
1631 * Fast Legacy/MSI Combined Interrupt Service routine
1632 *
1633 *********************************************************************/
1634 int
em_intr(void * arg)1635 em_intr(void *arg)
1636 {
1637 struct e1000_softc *sc = arg;
1638 struct e1000_hw *hw = &sc->hw;
1639 struct em_rx_queue *que = &sc->rx_queues[0];
1640 struct tx_ring *txr = &sc->tx_queues[0].txr;
1641 struct rx_ring *rxr = &que->rxr;
1642 if_ctx_t ctx = sc->ctx;
1643 u32 reg_icr;
1644
1645 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1646
1647 /* Hot eject? */
1648 if (reg_icr == 0xffffffff)
1649 return FILTER_STRAY;
1650
1651 /* Definitely not our interrupt. */
1652 if (reg_icr == 0x0)
1653 return FILTER_STRAY;
1654
1655 /*
1656 * Starting with the 82571 chip, bit 31 should be used to
1657 * determine whether the interrupt belongs to us.
1658 */
1659 if (hw->mac.type >= e1000_82571 &&
1660 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1661 return FILTER_STRAY;
1662
1663 /*
1664 * Only MSI-X interrupts have one-shot behavior by taking advantage
1665 * of the EIAC register. Thus, explicitly disable interrupts. This
1666 * also works around the MSI message reordering errata on certain
1667 * systems.
1668 */
1669 IFDI_INTR_DISABLE(ctx);
1670
1671 /* Link status change */
1672 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1673 em_handle_link(ctx);
1674
1675 if (reg_icr & E1000_ICR_RXO)
1676 sc->rx_overruns++;
1677
1678 if (hw->mac.type >= e1000_82540)
1679 em_newitr(sc, que, txr, rxr);
1680
1681 /* Reset state */
1682 txr->tx_bytes = 0;
1683 txr->tx_packets = 0;
1684 rxr->rx_bytes = 0;
1685 rxr->rx_packets = 0;
1686
1687 return (FILTER_SCHEDULE_THREAD);
1688 }
1689
1690 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1691 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1692 {
1693 struct e1000_softc *sc = iflib_get_softc(ctx);
1694 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1695
1696 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1697 return (0);
1698 }
1699
1700 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1701 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1702 {
1703 struct e1000_softc *sc = iflib_get_softc(ctx);
1704 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1705
1706 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1707 return (0);
1708 }
1709
1710 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1711 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1712 {
1713 struct e1000_softc *sc = iflib_get_softc(ctx);
1714 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1715
1716 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1717 return (0);
1718 }
1719
1720 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1721 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1722 {
1723 struct e1000_softc *sc = iflib_get_softc(ctx);
1724 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1725
1726 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1727 return (0);
1728 }
1729
1730 /*********************************************************************
1731 *
1732 * MSI-X RX Interrupt Service routine
1733 *
1734 **********************************************************************/
1735 static int
em_msix_que(void * arg)1736 em_msix_que(void *arg)
1737 {
1738 struct em_rx_queue *que = arg;
1739 struct e1000_softc *sc = que->sc;
1740 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1741 struct rx_ring *rxr = &que->rxr;
1742
1743 ++que->irqs;
1744
1745 em_newitr(sc, que, txr, rxr);
1746
1747 /* Reset state */
1748 txr->tx_bytes = 0;
1749 txr->tx_packets = 0;
1750 rxr->rx_bytes = 0;
1751 rxr->rx_packets = 0;
1752
1753 return (FILTER_SCHEDULE_THREAD);
1754 }
1755
1756 /*********************************************************************
1757 *
1758 * MSI-X Link Fast Interrupt Service routine
1759 *
1760 **********************************************************************/
1761 static int
em_msix_link(void * arg)1762 em_msix_link(void *arg)
1763 {
1764 struct e1000_softc *sc = arg;
1765 u32 reg_icr;
1766
1767 ++sc->link_irq;
1768 MPASS(sc->hw.back != NULL);
1769 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1770
1771 if (reg_icr & E1000_ICR_RXO)
1772 sc->rx_overruns++;
1773
1774 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1775 em_handle_link(sc->ctx);
1776
1777 /* Re-arm unconditionally */
1778 if (sc->hw.mac.type >= igb_mac_min) {
1779 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1780 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1781 } else if (sc->hw.mac.type == e1000_82574) {
1782 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1783 E1000_IMS_OTHER);
1784 /*
1785 * Because we must read the ICR for this interrupt it may
1786 * clear other causes using autoclear, for this reason we
1787 * simply create a soft interrupt for all these vectors.
1788 */
1789 if (reg_icr)
1790 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1791 } else
1792 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1793
1794 return (FILTER_HANDLED);
1795 }
1796
1797 static void
em_handle_link(void * context)1798 em_handle_link(void *context)
1799 {
1800 if_ctx_t ctx = context;
1801 struct e1000_softc *sc = iflib_get_softc(ctx);
1802
1803 sc->hw.mac.get_link_status = 1;
1804 iflib_admin_intr_deferred(ctx);
1805 }
1806
1807 /*********************************************************************
1808 *
1809 * Media Ioctl callback
1810 *
1811 * This routine is called whenever the user queries the status of
1812 * the interface using ifconfig.
1813 *
1814 **********************************************************************/
1815 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1816 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1817 {
1818 struct e1000_softc *sc = iflib_get_softc(ctx);
1819 u_char fiber_type = IFM_1000_SX;
1820
1821 INIT_DEBUGOUT("em_if_media_status: begin");
1822
1823 iflib_admin_intr_deferred(ctx);
1824
1825 ifmr->ifm_status = IFM_AVALID;
1826 ifmr->ifm_active = IFM_ETHER;
1827
1828 if (!sc->link_active) {
1829 return;
1830 }
1831
1832 ifmr->ifm_status |= IFM_ACTIVE;
1833
1834 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1835 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1836 if (sc->hw.mac.type == e1000_82545)
1837 fiber_type = IFM_1000_LX;
1838 ifmr->ifm_active |= fiber_type | IFM_FDX;
1839 } else {
1840 switch (sc->link_speed) {
1841 case 10:
1842 ifmr->ifm_active |= IFM_10_T;
1843 break;
1844 case 100:
1845 ifmr->ifm_active |= IFM_100_TX;
1846 break;
1847 case 1000:
1848 ifmr->ifm_active |= IFM_1000_T;
1849 break;
1850 }
1851 if (sc->link_duplex == FULL_DUPLEX)
1852 ifmr->ifm_active |= IFM_FDX;
1853 else
1854 ifmr->ifm_active |= IFM_HDX;
1855 }
1856 }
1857
1858 /*********************************************************************
1859 *
1860 * Media Ioctl callback
1861 *
1862 * This routine is called when the user changes speed/duplex using
1863 * media/mediopt option with ifconfig.
1864 *
1865 **********************************************************************/
1866 static int
em_if_media_change(if_ctx_t ctx)1867 em_if_media_change(if_ctx_t ctx)
1868 {
1869 struct e1000_softc *sc = iflib_get_softc(ctx);
1870 struct ifmedia *ifm = iflib_get_media(ctx);
1871
1872 INIT_DEBUGOUT("em_if_media_change: begin");
1873
1874 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1875 return (EINVAL);
1876
1877 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1878 case IFM_AUTO:
1879 sc->hw.mac.autoneg = DO_AUTO_NEG;
1880 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1881 break;
1882 case IFM_1000_LX:
1883 case IFM_1000_SX:
1884 case IFM_1000_T:
1885 sc->hw.mac.autoneg = DO_AUTO_NEG;
1886 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1887 break;
1888 case IFM_100_TX:
1889 sc->hw.mac.autoneg = false;
1890 sc->hw.phy.autoneg_advertised = 0;
1891 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1892 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1893 else
1894 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1895 break;
1896 case IFM_10_T:
1897 sc->hw.mac.autoneg = false;
1898 sc->hw.phy.autoneg_advertised = 0;
1899 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1900 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1901 else
1902 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1903 break;
1904 default:
1905 device_printf(sc->dev, "Unsupported media type\n");
1906 }
1907
1908 em_if_init(ctx);
1909
1910 return (0);
1911 }
1912
1913 static int
em_if_set_promisc(if_ctx_t ctx,int flags)1914 em_if_set_promisc(if_ctx_t ctx, int flags)
1915 {
1916 struct e1000_softc *sc = iflib_get_softc(ctx);
1917 if_t ifp = iflib_get_ifp(ctx);
1918 u32 reg_rctl;
1919 int mcnt = 0;
1920
1921 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1922 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1923 if (flags & IFF_ALLMULTI)
1924 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1925 else
1926 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1927
1928 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1929 reg_rctl &= (~E1000_RCTL_MPE);
1930 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1931
1932 if (flags & IFF_PROMISC) {
1933 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1934 em_if_vlan_filter_disable(sc);
1935 /* Turn this on if you want to see bad packets */
1936 if (em_debug_sbp)
1937 reg_rctl |= E1000_RCTL_SBP;
1938 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1939 } else {
1940 if (flags & IFF_ALLMULTI) {
1941 reg_rctl |= E1000_RCTL_MPE;
1942 reg_rctl &= ~E1000_RCTL_UPE;
1943 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1944 }
1945 if (em_if_vlan_filter_used(ctx))
1946 em_if_vlan_filter_enable(sc);
1947 }
1948 return (0);
1949 }
1950
1951 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)1952 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1953 {
1954 u8 *mta = arg;
1955
1956 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1957 return (0);
1958
1959 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1960
1961 return (1);
1962 }
1963
1964 /*********************************************************************
1965 * Multicast Update
1966 *
1967 * This routine is called whenever multicast address list is updated.
1968 *
1969 **********************************************************************/
1970 static void
em_if_multi_set(if_ctx_t ctx)1971 em_if_multi_set(if_ctx_t ctx)
1972 {
1973 struct e1000_softc *sc = iflib_get_softc(ctx);
1974 if_t ifp = iflib_get_ifp(ctx);
1975 u8 *mta; /* Multicast array memory */
1976 u32 reg_rctl = 0;
1977 int mcnt = 0;
1978
1979 IOCTL_DEBUGOUT("em_set_multi: begin");
1980
1981 mta = sc->mta;
1982 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1983
1984 if (sc->hw.mac.type == e1000_82542 &&
1985 sc->hw.revision_id == E1000_REVISION_2) {
1986 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1987 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1988 e1000_pci_clear_mwi(&sc->hw);
1989 reg_rctl |= E1000_RCTL_RST;
1990 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1991 msec_delay(5);
1992 }
1993
1994 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1995
1996 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1997 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1998
1999 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2000
2001 if (if_getflags(ifp) & IFF_PROMISC)
2002 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2003 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2004 if_getflags(ifp) & IFF_ALLMULTI) {
2005 reg_rctl |= E1000_RCTL_MPE;
2006 reg_rctl &= ~E1000_RCTL_UPE;
2007 } else
2008 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2009
2010 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2011
2012 if (sc->hw.mac.type == e1000_82542 &&
2013 sc->hw.revision_id == E1000_REVISION_2) {
2014 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2015 reg_rctl &= ~E1000_RCTL_RST;
2016 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2017 msec_delay(5);
2018 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2019 e1000_pci_set_mwi(&sc->hw);
2020 }
2021 }
2022
2023 /*********************************************************************
2024 * Timer routine
2025 *
2026 * This routine schedules em_if_update_admin_status() to check for
2027 * link status and to gather statistics as well as to perform some
2028 * controller-specific hardware patting.
2029 *
2030 **********************************************************************/
2031 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2032 em_if_timer(if_ctx_t ctx, uint16_t qid)
2033 {
2034
2035 if (qid != 0)
2036 return;
2037
2038 iflib_admin_intr_deferred(ctx);
2039 }
2040
2041 static void
em_if_update_admin_status(if_ctx_t ctx)2042 em_if_update_admin_status(if_ctx_t ctx)
2043 {
2044 struct e1000_softc *sc = iflib_get_softc(ctx);
2045 struct e1000_hw *hw = &sc->hw;
2046 device_t dev = iflib_get_dev(ctx);
2047 u32 link_check, thstat, ctrl;
2048 bool automasked = false;
2049
2050 link_check = thstat = ctrl = 0;
2051 /* Get the cached link value or read phy for real */
2052 switch (hw->phy.media_type) {
2053 case e1000_media_type_copper:
2054 if (hw->mac.get_link_status) {
2055 if (hw->mac.type == e1000_pch_spt)
2056 msec_delay(50);
2057 /* Do the work to read phy */
2058 e1000_check_for_link(hw);
2059 link_check = !hw->mac.get_link_status;
2060 if (link_check) /* ESB2 fix */
2061 e1000_cfg_on_link_up(hw);
2062 } else {
2063 link_check = true;
2064 }
2065 break;
2066 case e1000_media_type_fiber:
2067 e1000_check_for_link(hw);
2068 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2069 E1000_STATUS_LU);
2070 break;
2071 case e1000_media_type_internal_serdes:
2072 e1000_check_for_link(hw);
2073 link_check = hw->mac.serdes_has_link;
2074 break;
2075 /* VF device is type_unknown */
2076 case e1000_media_type_unknown:
2077 e1000_check_for_link(hw);
2078 link_check = !hw->mac.get_link_status;
2079 /* FALLTHROUGH */
2080 default:
2081 break;
2082 }
2083
2084 /* Check for thermal downshift or shutdown */
2085 if (hw->mac.type == e1000_i350) {
2086 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2087 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2088 }
2089
2090 /* Now check for a transition */
2091 if (link_check && (sc->link_active == 0)) {
2092 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2093 &sc->link_duplex);
2094 /* Check if we must disable SPEED_MODE bit on PCI-E */
2095 if ((sc->link_speed != SPEED_1000) &&
2096 ((hw->mac.type == e1000_82571) ||
2097 (hw->mac.type == e1000_82572))) {
2098 int tarc0;
2099 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2100 tarc0 &= ~TARC_SPEED_MODE_BIT;
2101 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2102 }
2103 if (bootverbose)
2104 device_printf(dev, "Link is up %d Mbps %s\n",
2105 sc->link_speed,
2106 ((sc->link_duplex == FULL_DUPLEX) ?
2107 "Full Duplex" : "Half Duplex"));
2108 sc->link_active = 1;
2109 sc->smartspeed = 0;
2110 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2111 E1000_CTRL_EXT_LINK_MODE_GMII &&
2112 (thstat & E1000_THSTAT_LINK_THROTTLE))
2113 device_printf(dev, "Link: thermal downshift\n");
2114 /* Delay Link Up for Phy update */
2115 if (((hw->mac.type == e1000_i210) ||
2116 (hw->mac.type == e1000_i211)) &&
2117 (hw->phy.id == I210_I_PHY_ID))
2118 msec_delay(I210_LINK_DELAY);
2119 /* Reset if the media type changed. */
2120 if (hw->dev_spec._82575.media_changed &&
2121 hw->mac.type >= igb_mac_min) {
2122 hw->dev_spec._82575.media_changed = false;
2123 sc->flags |= IGB_MEDIA_RESET;
2124 em_reset(ctx);
2125 }
2126 /* Only do TSO on gigabit Ethernet for older chips due to errata */
2127 if (hw->mac.type < igb_mac_min)
2128 automasked = em_automask_tso(ctx);
2129
2130 /* Automasking resets the interface, so don't mark it up yet */
2131 if (!automasked)
2132 iflib_link_state_change(ctx, LINK_STATE_UP,
2133 IF_Mbps(sc->link_speed));
2134 } else if (!link_check && (sc->link_active == 1)) {
2135 sc->link_speed = 0;
2136 sc->link_duplex = 0;
2137 sc->link_active = 0;
2138 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2139 }
2140 em_update_stats_counters(sc);
2141
2142 /* Reset LAA into RAR[0] on 82571 */
2143 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2144 e1000_rar_set(hw, hw->mac.addr, 0);
2145
2146 if (hw->mac.type < em_mac_min)
2147 lem_smartspeed(sc);
2148 }
2149
2150 static void
em_if_watchdog_reset(if_ctx_t ctx)2151 em_if_watchdog_reset(if_ctx_t ctx)
2152 {
2153 struct e1000_softc *sc = iflib_get_softc(ctx);
2154
2155 /*
2156 * Just count the event; iflib(4) will already trigger a
2157 * sufficient reset of the controller.
2158 */
2159 sc->watchdog_events++;
2160 }
2161
2162 /*********************************************************************
2163 *
2164 * This routine disables all traffic on the adapter by issuing a
2165 * global reset on the MAC.
2166 *
2167 **********************************************************************/
2168 static void
em_if_stop(if_ctx_t ctx)2169 em_if_stop(if_ctx_t ctx)
2170 {
2171 struct e1000_softc *sc = iflib_get_softc(ctx);
2172
2173 INIT_DEBUGOUT("em_if_stop: begin");
2174
2175 /* I219 needs special flushing to avoid hangs */
2176 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2177 em_flush_desc_rings(sc);
2178
2179 e1000_reset_hw(&sc->hw);
2180 if (sc->hw.mac.type >= e1000_82544)
2181 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2182
2183 e1000_led_off(&sc->hw);
2184 e1000_cleanup_led(&sc->hw);
2185 }
2186
2187 /*********************************************************************
2188 *
2189 * Determine hardware revision.
2190 *
2191 **********************************************************************/
2192 static void
em_identify_hardware(if_ctx_t ctx)2193 em_identify_hardware(if_ctx_t ctx)
2194 {
2195 device_t dev = iflib_get_dev(ctx);
2196 struct e1000_softc *sc = iflib_get_softc(ctx);
2197
2198 /* Make sure our PCI config space has the necessary stuff set */
2199 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2200
2201 /* Save off the information about this board */
2202 sc->hw.vendor_id = pci_get_vendor(dev);
2203 sc->hw.device_id = pci_get_device(dev);
2204 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2205 sc->hw.subsystem_vendor_id =
2206 pci_read_config(dev, PCIR_SUBVEND_0, 2);
2207 sc->hw.subsystem_device_id =
2208 pci_read_config(dev, PCIR_SUBDEV_0, 2);
2209
2210 /* Do Shared Code Init and Setup */
2211 if (e1000_set_mac_type(&sc->hw)) {
2212 device_printf(dev, "Setup init failure\n");
2213 return;
2214 }
2215
2216 /* Are we a VF device? */
2217 if ((sc->hw.mac.type == e1000_vfadapt) ||
2218 (sc->hw.mac.type == e1000_vfadapt_i350))
2219 sc->vf_ifp = 1;
2220 else
2221 sc->vf_ifp = 0;
2222 }
2223
2224 static int
em_allocate_pci_resources(if_ctx_t ctx)2225 em_allocate_pci_resources(if_ctx_t ctx)
2226 {
2227 struct e1000_softc *sc = iflib_get_softc(ctx);
2228 device_t dev = iflib_get_dev(ctx);
2229 int rid, val;
2230
2231 rid = PCIR_BAR(0);
2232 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2233 &rid, RF_ACTIVE);
2234 if (sc->memory == NULL) {
2235 device_printf(dev, "Unable to allocate bus resource: memory\n");
2236 return (ENXIO);
2237 }
2238 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2239 sc->osdep.mem_bus_space_handle =
2240 rman_get_bushandle(sc->memory);
2241 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2242
2243 /* Only older adapters use IO mapping */
2244 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2245 /* Figure our where our IO BAR is ? */
2246 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2247 val = pci_read_config(dev, rid, 4);
2248 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2249 break;
2250 }
2251 rid += 4;
2252 /* check for 64bit BAR */
2253 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2254 rid += 4;
2255 }
2256 if (rid >= PCIR_CIS) {
2257 device_printf(dev, "Unable to locate IO BAR\n");
2258 return (ENXIO);
2259 }
2260 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2261 &rid, RF_ACTIVE);
2262 if (sc->ioport == NULL) {
2263 device_printf(dev, "Unable to allocate bus resource: "
2264 "ioport\n");
2265 return (ENXIO);
2266 }
2267 sc->hw.io_base = 0;
2268 sc->osdep.io_bus_space_tag =
2269 rman_get_bustag(sc->ioport);
2270 sc->osdep.io_bus_space_handle =
2271 rman_get_bushandle(sc->ioport);
2272 }
2273
2274 sc->hw.back = &sc->osdep;
2275
2276 return (0);
2277 }
2278
2279 /*********************************************************************
2280 *
2281 * Set up the MSI-X Interrupt handlers
2282 *
2283 **********************************************************************/
2284 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2285 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2286 {
2287 struct e1000_softc *sc = iflib_get_softc(ctx);
2288 struct em_rx_queue *rx_que = sc->rx_queues;
2289 struct em_tx_queue *tx_que = sc->tx_queues;
2290 int error, rid, i, vector = 0, rx_vectors;
2291 char buf[16];
2292
2293 /* First set up ring resources */
2294 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2295 rid = vector + 1;
2296 snprintf(buf, sizeof(buf), "rxq%d", i);
2297 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2298 if (error) {
2299 device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2300 sc->rx_num_queues = i + 1;
2301 goto fail;
2302 }
2303
2304 rx_que->msix = vector;
2305
2306 /*
2307 * Set the bit to enable interrupt
2308 * in E1000_IMS -- bits 20 and 21
2309 * are for RX0 and RX1, note this has
2310 * NOTHING to do with the MSI-X vector
2311 */
2312 if (sc->hw.mac.type == e1000_82574) {
2313 rx_que->eims = 1 << (20 + i);
2314 sc->ims |= rx_que->eims;
2315 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2316 } else if (sc->hw.mac.type == e1000_82575)
2317 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2318 else
2319 rx_que->eims = 1 << vector;
2320 }
2321 rx_vectors = vector;
2322
2323 vector = 0;
2324 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2325 snprintf(buf, sizeof(buf), "txq%d", i);
2326 tx_que = &sc->tx_queues[i];
2327 iflib_softirq_alloc_generic(ctx,
2328 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2329 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2330
2331 tx_que->msix = (vector % sc->rx_num_queues);
2332
2333 /*
2334 * Set the bit to enable interrupt
2335 * in E1000_IMS -- bits 22 and 23
2336 * are for TX0 and TX1, note this has
2337 * NOTHING to do with the MSI-X vector
2338 */
2339 if (sc->hw.mac.type == e1000_82574) {
2340 tx_que->eims = 1 << (22 + i);
2341 sc->ims |= tx_que->eims;
2342 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2343 } else if (sc->hw.mac.type == e1000_82575) {
2344 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2345 } else {
2346 tx_que->eims = 1 << i;
2347 }
2348 }
2349
2350 /* Link interrupt */
2351 rid = rx_vectors + 1;
2352 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2353
2354 if (error) {
2355 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2356 goto fail;
2357 }
2358 sc->linkvec = rx_vectors;
2359 if (sc->hw.mac.type < igb_mac_min) {
2360 sc->ivars |= (8 | rx_vectors) << 16;
2361 sc->ivars |= 0x80000000;
2362 /* Enable the "Other" interrupt type for link status change */
2363 sc->ims |= E1000_IMS_OTHER;
2364 }
2365
2366 return (0);
2367 fail:
2368 iflib_irq_free(ctx, &sc->irq);
2369 rx_que = sc->rx_queues;
2370 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2371 iflib_irq_free(ctx, &rx_que->que_irq);
2372 return (error);
2373 }
2374
2375 static void
igb_configure_queues(struct e1000_softc * sc)2376 igb_configure_queues(struct e1000_softc *sc)
2377 {
2378 struct e1000_hw *hw = &sc->hw;
2379 struct em_rx_queue *rx_que;
2380 struct em_tx_queue *tx_que;
2381 u32 tmp, ivar = 0, newitr = 0;
2382
2383 /* First turn on RSS capability */
2384 if (hw->mac.type != e1000_82575)
2385 E1000_WRITE_REG(hw, E1000_GPIE,
2386 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2387 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2388
2389 /* Turn on MSI-X */
2390 switch (hw->mac.type) {
2391 case e1000_82580:
2392 case e1000_i350:
2393 case e1000_i354:
2394 case e1000_i210:
2395 case e1000_i211:
2396 case e1000_vfadapt:
2397 case e1000_vfadapt_i350:
2398 /* RX entries */
2399 for (int i = 0; i < sc->rx_num_queues; i++) {
2400 u32 index = i >> 1;
2401 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2402 rx_que = &sc->rx_queues[i];
2403 if (i & 1) {
2404 ivar &= 0xFF00FFFF;
2405 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2406 } else {
2407 ivar &= 0xFFFFFF00;
2408 ivar |= rx_que->msix | E1000_IVAR_VALID;
2409 }
2410 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2411 }
2412 /* TX entries */
2413 for (int i = 0; i < sc->tx_num_queues; i++) {
2414 u32 index = i >> 1;
2415 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2416 tx_que = &sc->tx_queues[i];
2417 if (i & 1) {
2418 ivar &= 0x00FFFFFF;
2419 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2420 } else {
2421 ivar &= 0xFFFF00FF;
2422 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2423 }
2424 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2425 sc->que_mask |= tx_que->eims;
2426 }
2427
2428 /* And for the link interrupt */
2429 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2430 sc->link_mask = 1 << sc->linkvec;
2431 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2432 break;
2433 case e1000_82576:
2434 /* RX entries */
2435 for (int i = 0; i < sc->rx_num_queues; i++) {
2436 u32 index = i & 0x7; /* Each IVAR has two entries */
2437 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2438 rx_que = &sc->rx_queues[i];
2439 if (i < 8) {
2440 ivar &= 0xFFFFFF00;
2441 ivar |= rx_que->msix | E1000_IVAR_VALID;
2442 } else {
2443 ivar &= 0xFF00FFFF;
2444 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2445 }
2446 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2447 sc->que_mask |= rx_que->eims;
2448 }
2449 /* TX entries */
2450 for (int i = 0; i < sc->tx_num_queues; i++) {
2451 u32 index = i & 0x7; /* Each IVAR has two entries */
2452 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2453 tx_que = &sc->tx_queues[i];
2454 if (i < 8) {
2455 ivar &= 0xFFFF00FF;
2456 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2457 } else {
2458 ivar &= 0x00FFFFFF;
2459 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2460 }
2461 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2462 sc->que_mask |= tx_que->eims;
2463 }
2464
2465 /* And for the link interrupt */
2466 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2467 sc->link_mask = 1 << sc->linkvec;
2468 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2469 break;
2470
2471 case e1000_82575:
2472 /* enable MSI-X support*/
2473 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2474 tmp |= E1000_CTRL_EXT_PBA_CLR;
2475 /* Auto-Mask interrupts upon ICR read. */
2476 tmp |= E1000_CTRL_EXT_EIAME;
2477 tmp |= E1000_CTRL_EXT_IRCA;
2478 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2479
2480 /* Queues */
2481 for (int i = 0; i < sc->rx_num_queues; i++) {
2482 rx_que = &sc->rx_queues[i];
2483 tmp = E1000_EICR_RX_QUEUE0 << i;
2484 tmp |= E1000_EICR_TX_QUEUE0 << i;
2485 rx_que->eims = tmp;
2486 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2487 i, rx_que->eims);
2488 sc->que_mask |= rx_que->eims;
2489 }
2490
2491 /* Link */
2492 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2493 E1000_EIMS_OTHER);
2494 sc->link_mask |= E1000_EIMS_OTHER;
2495 default:
2496 break;
2497 }
2498
2499 /* Set the igb starting interrupt rate */
2500 if (em_max_interrupt_rate > 0) {
2501 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2502
2503 if (hw->mac.type == e1000_82575)
2504 newitr |= newitr << 16;
2505 else
2506 newitr |= E1000_EITR_CNT_IGNR;
2507
2508 for (int i = 0; i < sc->rx_num_queues; i++) {
2509 rx_que = &sc->rx_queues[i];
2510 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2511 }
2512 }
2513
2514 return;
2515 }
2516
2517 static void
em_free_pci_resources(if_ctx_t ctx)2518 em_free_pci_resources(if_ctx_t ctx)
2519 {
2520 struct e1000_softc *sc = iflib_get_softc(ctx);
2521 struct em_rx_queue *que = sc->rx_queues;
2522 device_t dev = iflib_get_dev(ctx);
2523
2524 /* Release all MSI-X queue resources */
2525 if (sc->intr_type == IFLIB_INTR_MSIX)
2526 iflib_irq_free(ctx, &sc->irq);
2527
2528 if (que != NULL) {
2529 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2530 iflib_irq_free(ctx, &que->que_irq);
2531 }
2532 }
2533
2534 if (sc->memory != NULL) {
2535 bus_release_resource(dev, SYS_RES_MEMORY,
2536 rman_get_rid(sc->memory), sc->memory);
2537 sc->memory = NULL;
2538 }
2539
2540 if (sc->flash != NULL) {
2541 bus_release_resource(dev, SYS_RES_MEMORY,
2542 rman_get_rid(sc->flash), sc->flash);
2543 sc->flash = NULL;
2544 }
2545
2546 if (sc->ioport != NULL) {
2547 bus_release_resource(dev, SYS_RES_IOPORT,
2548 rman_get_rid(sc->ioport), sc->ioport);
2549 sc->ioport = NULL;
2550 }
2551 }
2552
2553 /* Set up MSI or MSI-X */
2554 static int
em_setup_msix(if_ctx_t ctx)2555 em_setup_msix(if_ctx_t ctx)
2556 {
2557 struct e1000_softc *sc = iflib_get_softc(ctx);
2558
2559 if (sc->hw.mac.type == e1000_82574) {
2560 em_enable_vectors_82574(ctx);
2561 }
2562 return (0);
2563 }
2564
2565 /*********************************************************************
2566 *
2567 * Workaround for SmartSpeed on 82541 and 82547 controllers
2568 *
2569 **********************************************************************/
2570 static void
lem_smartspeed(struct e1000_softc * sc)2571 lem_smartspeed(struct e1000_softc *sc)
2572 {
2573 u16 phy_tmp;
2574
2575 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2576 sc->hw.mac.autoneg == 0 ||
2577 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2578 return;
2579
2580 if (sc->smartspeed == 0) {
2581 /* If Master/Slave config fault is asserted twice,
2582 * we assume back-to-back */
2583 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2584 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2585 return;
2586 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2587 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2588 e1000_read_phy_reg(&sc->hw,
2589 PHY_1000T_CTRL, &phy_tmp);
2590 if(phy_tmp & CR_1000T_MS_ENABLE) {
2591 phy_tmp &= ~CR_1000T_MS_ENABLE;
2592 e1000_write_phy_reg(&sc->hw,
2593 PHY_1000T_CTRL, phy_tmp);
2594 sc->smartspeed++;
2595 if(sc->hw.mac.autoneg &&
2596 !e1000_copper_link_autoneg(&sc->hw) &&
2597 !e1000_read_phy_reg(&sc->hw,
2598 PHY_CONTROL, &phy_tmp)) {
2599 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2600 MII_CR_RESTART_AUTO_NEG);
2601 e1000_write_phy_reg(&sc->hw,
2602 PHY_CONTROL, phy_tmp);
2603 }
2604 }
2605 }
2606 return;
2607 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2608 /* If still no link, perhaps using 2/3 pair cable */
2609 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2610 phy_tmp |= CR_1000T_MS_ENABLE;
2611 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2612 if(sc->hw.mac.autoneg &&
2613 !e1000_copper_link_autoneg(&sc->hw) &&
2614 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2615 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2616 MII_CR_RESTART_AUTO_NEG);
2617 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2618 }
2619 }
2620 /* Restart process after EM_SMARTSPEED_MAX iterations */
2621 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2622 sc->smartspeed = 0;
2623 }
2624
2625 /*********************************************************************
2626 *
2627 * Initialize the DMA Coalescing feature
2628 *
2629 **********************************************************************/
2630 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2631 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2632 {
2633 device_t dev = sc->dev;
2634 struct e1000_hw *hw = &sc->hw;
2635 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2636 u16 hwm;
2637 u16 max_frame_size;
2638
2639 if (hw->mac.type == e1000_i211)
2640 return;
2641
2642 max_frame_size = sc->shared->isc_max_frame_size;
2643 if (hw->mac.type > e1000_82580) {
2644
2645 if (sc->dmac == 0) { /* Disabling it */
2646 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2647 return;
2648 } else
2649 device_printf(dev, "DMA Coalescing enabled\n");
2650
2651 /* Set starting threshold */
2652 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2653
2654 hwm = 64 * pba - max_frame_size / 16;
2655 if (hwm < 64 * (pba - 6))
2656 hwm = 64 * (pba - 6);
2657 reg = E1000_READ_REG(hw, E1000_FCRTC);
2658 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2659 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2660 & E1000_FCRTC_RTH_COAL_MASK);
2661 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2662
2663
2664 dmac = pba - max_frame_size / 512;
2665 if (dmac < pba - 10)
2666 dmac = pba - 10;
2667 reg = E1000_READ_REG(hw, E1000_DMACR);
2668 reg &= ~E1000_DMACR_DMACTHR_MASK;
2669 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2670 & E1000_DMACR_DMACTHR_MASK);
2671
2672 /* transition to L0x or L1 if available..*/
2673 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2674
2675 /* Check if status is 2.5Gb backplane connection
2676 * before configuration of watchdog timer, which is
2677 * in msec values in 12.8usec intervals
2678 * watchdog timer= msec values in 32usec intervals
2679 * for non 2.5Gb connection
2680 */
2681 if (hw->mac.type == e1000_i354) {
2682 int status = E1000_READ_REG(hw, E1000_STATUS);
2683 if ((status & E1000_STATUS_2P5_SKU) &&
2684 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2685 reg |= ((sc->dmac * 5) >> 6);
2686 else
2687 reg |= (sc->dmac >> 5);
2688 } else {
2689 reg |= (sc->dmac >> 5);
2690 }
2691
2692 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2693
2694 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2695
2696 /* Set the interval before transition */
2697 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2698 if (hw->mac.type == e1000_i350)
2699 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2700 /*
2701 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2702 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2703 */
2704 if (hw->mac.type == e1000_i354) {
2705 int status = E1000_READ_REG(hw, E1000_STATUS);
2706 if ((status & E1000_STATUS_2P5_SKU) &&
2707 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2708 reg |= 0xA;
2709 else
2710 reg |= 0x4;
2711 } else {
2712 reg |= 0x4;
2713 }
2714
2715 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2716
2717 /* free space in tx packet buffer to wake from DMA coal */
2718 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2719 (2 * max_frame_size)) >> 6);
2720
2721 /* make low power state decision controlled by DMA coal */
2722 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2723 reg &= ~E1000_PCIEMISC_LX_DECISION;
2724 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2725
2726 } else if (hw->mac.type == e1000_82580) {
2727 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2728 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2729 reg & ~E1000_PCIEMISC_LX_DECISION);
2730 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2731 }
2732 }
2733 /*********************************************************************
2734 * The 3 following flush routines are used as a workaround in the
2735 * I219 client parts and only for them.
2736 *
2737 * em_flush_tx_ring - remove all descriptors from the tx_ring
2738 *
2739 * We want to clear all pending descriptors from the TX ring.
2740 * zeroing happens when the HW reads the regs. We assign the ring itself as
2741 * the data of the next descriptor. We don't care about the data we are about
2742 * to reset the HW.
2743 **********************************************************************/
2744 static void
em_flush_tx_ring(struct e1000_softc * sc)2745 em_flush_tx_ring(struct e1000_softc *sc)
2746 {
2747 struct e1000_hw *hw = &sc->hw;
2748 struct tx_ring *txr = &sc->tx_queues->txr;
2749 struct e1000_tx_desc *txd;
2750 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2751 u16 size = 512;
2752
2753 tctl = E1000_READ_REG(hw, E1000_TCTL);
2754 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2755
2756 txd = &txr->tx_base[txr->tx_cidx_processed];
2757
2758 /* Just use the ring as a dummy buffer addr */
2759 txd->buffer_addr = txr->tx_paddr;
2760 txd->lower.data = htole32(txd_lower | size);
2761 txd->upper.data = 0;
2762
2763 /* flush descriptors to memory before notifying the HW */
2764 wmb();
2765
2766 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2767 mb();
2768 usec_delay(250);
2769 }
2770
2771 /*********************************************************************
2772 * em_flush_rx_ring - remove all descriptors from the rx_ring
2773 *
2774 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2775 **********************************************************************/
2776 static void
em_flush_rx_ring(struct e1000_softc * sc)2777 em_flush_rx_ring(struct e1000_softc *sc)
2778 {
2779 struct e1000_hw *hw = &sc->hw;
2780 u32 rctl, rxdctl;
2781
2782 rctl = E1000_READ_REG(hw, E1000_RCTL);
2783 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2784 E1000_WRITE_FLUSH(hw);
2785 usec_delay(150);
2786
2787 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2788 /* zero the lower 14 bits (prefetch and host thresholds) */
2789 rxdctl &= 0xffffc000;
2790 /*
2791 * update thresholds: prefetch threshold to 31, host threshold to 1
2792 * and make sure the granularity is "descriptors" and not "cache lines"
2793 */
2794 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2795 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2796
2797 /* momentarily enable the RX ring for the changes to take effect */
2798 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2799 E1000_WRITE_FLUSH(hw);
2800 usec_delay(150);
2801 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2802 }
2803
2804 /*********************************************************************
2805 * em_flush_desc_rings - remove all descriptors from the descriptor rings
2806 *
2807 * In I219, the descriptor rings must be emptied before resetting the HW
2808 * or before changing the device state to D3 during runtime (runtime PM).
2809 *
2810 * Failure to do this will cause the HW to enter a unit hang state which can
2811 * only be released by PCI reset on the device
2812 *
2813 **********************************************************************/
2814 static void
em_flush_desc_rings(struct e1000_softc * sc)2815 em_flush_desc_rings(struct e1000_softc *sc)
2816 {
2817 struct e1000_hw *hw = &sc->hw;
2818 device_t dev = sc->dev;
2819 u16 hang_state;
2820 u32 fext_nvm11, tdlen;
2821
2822 /* First, disable MULR fix in FEXTNVM11 */
2823 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2824 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2825 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2826
2827 /* do nothing if we're not in faulty state, or if the queue is empty */
2828 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2829 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2830 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2831 return;
2832 em_flush_tx_ring(sc);
2833
2834 /* recheck, maybe the fault is caused by the rx ring */
2835 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2836 if (hang_state & FLUSH_DESC_REQUIRED)
2837 em_flush_rx_ring(sc);
2838 }
2839
2840
2841 /*********************************************************************
2842 *
2843 * Initialize the hardware to a configuration as specified by the
2844 * sc structure.
2845 *
2846 **********************************************************************/
2847 static void
em_reset(if_ctx_t ctx)2848 em_reset(if_ctx_t ctx)
2849 {
2850 device_t dev = iflib_get_dev(ctx);
2851 struct e1000_softc *sc = iflib_get_softc(ctx);
2852 if_t ifp = iflib_get_ifp(ctx);
2853 struct e1000_hw *hw = &sc->hw;
2854 u32 rx_buffer_size;
2855 u32 pba;
2856
2857 INIT_DEBUGOUT("em_reset: begin");
2858 /* Let the firmware know the OS is in control */
2859 em_get_hw_control(sc);
2860
2861 /* Set up smart power down as default off on newer adapters. */
2862 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2863 hw->mac.type == e1000_82572)) {
2864 u16 phy_tmp = 0;
2865
2866 /* Speed up time to link by disabling smart power down. */
2867 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2868 phy_tmp &= ~IGP02E1000_PM_SPD;
2869 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2870 }
2871
2872 /*
2873 * Packet Buffer Allocation (PBA)
2874 * Writing PBA sets the receive portion of the buffer
2875 * the remainder is used for the transmit buffer.
2876 */
2877 switch (hw->mac.type) {
2878 /* 82547: Total Packet Buffer is 40K */
2879 case e1000_82547:
2880 case e1000_82547_rev_2:
2881 if (hw->mac.max_frame_size > 8192)
2882 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2883 else
2884 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2885 break;
2886 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2887 case e1000_82571:
2888 case e1000_82572:
2889 case e1000_80003es2lan:
2890 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2891 break;
2892 /* 82573: Total Packet Buffer is 32K */
2893 case e1000_82573:
2894 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2895 break;
2896 case e1000_82574:
2897 case e1000_82583:
2898 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2899 break;
2900 case e1000_ich8lan:
2901 pba = E1000_PBA_8K;
2902 break;
2903 case e1000_ich9lan:
2904 case e1000_ich10lan:
2905 /* Boost Receive side for jumbo frames */
2906 if (hw->mac.max_frame_size > 4096)
2907 pba = E1000_PBA_14K;
2908 else
2909 pba = E1000_PBA_10K;
2910 break;
2911 case e1000_pchlan:
2912 case e1000_pch2lan:
2913 case e1000_pch_lpt:
2914 case e1000_pch_spt:
2915 case e1000_pch_cnp:
2916 case e1000_pch_tgp:
2917 case e1000_pch_adp:
2918 case e1000_pch_mtp:
2919 case e1000_pch_ptp:
2920 pba = E1000_PBA_26K;
2921 break;
2922 case e1000_82575:
2923 pba = E1000_PBA_32K;
2924 break;
2925 case e1000_82576:
2926 case e1000_vfadapt:
2927 pba = E1000_READ_REG(hw, E1000_RXPBS);
2928 pba &= E1000_RXPBS_SIZE_MASK_82576;
2929 break;
2930 case e1000_82580:
2931 case e1000_i350:
2932 case e1000_i354:
2933 case e1000_vfadapt_i350:
2934 pba = E1000_READ_REG(hw, E1000_RXPBS);
2935 pba = e1000_rxpbs_adjust_82580(pba);
2936 break;
2937 case e1000_i210:
2938 case e1000_i211:
2939 pba = E1000_PBA_34K;
2940 break;
2941 default:
2942 /* Remaining devices assumed to have a Packet Buffer of 64K. */
2943 if (hw->mac.max_frame_size > 8192)
2944 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2945 else
2946 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2947 }
2948
2949 /* Special needs in case of Jumbo frames */
2950 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
2951 u32 tx_space, min_tx, min_rx;
2952 pba = E1000_READ_REG(hw, E1000_PBA);
2953 tx_space = pba >> 16;
2954 pba &= 0xffff;
2955 min_tx = (hw->mac.max_frame_size +
2956 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2957 min_tx = roundup2(min_tx, 1024);
2958 min_tx >>= 10;
2959 min_rx = hw->mac.max_frame_size;
2960 min_rx = roundup2(min_rx, 1024);
2961 min_rx >>= 10;
2962 if (tx_space < min_tx &&
2963 ((min_tx - tx_space) < pba)) {
2964 pba = pba - (min_tx - tx_space);
2965 /*
2966 * if short on rx space, rx wins
2967 * and must trump tx adjustment
2968 */
2969 if (pba < min_rx)
2970 pba = min_rx;
2971 }
2972 E1000_WRITE_REG(hw, E1000_PBA, pba);
2973 }
2974
2975 if (hw->mac.type < igb_mac_min)
2976 E1000_WRITE_REG(hw, E1000_PBA, pba);
2977
2978 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2979
2980 /*
2981 * These parameters control the automatic generation (Tx) and
2982 * response (Rx) to Ethernet PAUSE frames.
2983 * - High water mark should allow for at least two frames to be
2984 * received after sending an XOFF.
2985 * - Low water mark works best when it is very near the high water mark.
2986 * This allows the receiver to restart by sending XON when it has
2987 * drained a bit. Here we use an arbitrary value of 1500 which will
2988 * restart after one full frame is pulled from the buffer. There
2989 * could be several smaller frames in the buffer and if so they will
2990 * not trigger the XON until their total number reduces the buffer
2991 * by 1500.
2992 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2993 */
2994 rx_buffer_size = (pba & 0xffff) << 10;
2995 hw->fc.high_water = rx_buffer_size -
2996 roundup2(hw->mac.max_frame_size, 1024);
2997 hw->fc.low_water = hw->fc.high_water - 1500;
2998
2999 if (sc->fc) /* locally set flow control value? */
3000 hw->fc.requested_mode = sc->fc;
3001 else
3002 hw->fc.requested_mode = e1000_fc_full;
3003
3004 if (hw->mac.type == e1000_80003es2lan)
3005 hw->fc.pause_time = 0xFFFF;
3006 else
3007 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3008
3009 hw->fc.send_xon = true;
3010
3011 /* Device specific overrides/settings */
3012 switch (hw->mac.type) {
3013 case e1000_pchlan:
3014 /* Workaround: no TX flow ctrl for PCH */
3015 hw->fc.requested_mode = e1000_fc_rx_pause;
3016 hw->fc.pause_time = 0xFFFF; /* override */
3017 if (if_getmtu(ifp) > ETHERMTU) {
3018 hw->fc.high_water = 0x3500;
3019 hw->fc.low_water = 0x1500;
3020 } else {
3021 hw->fc.high_water = 0x5000;
3022 hw->fc.low_water = 0x3000;
3023 }
3024 hw->fc.refresh_time = 0x1000;
3025 break;
3026 case e1000_pch2lan:
3027 case e1000_pch_lpt:
3028 case e1000_pch_spt:
3029 case e1000_pch_cnp:
3030 case e1000_pch_tgp:
3031 case e1000_pch_adp:
3032 case e1000_pch_mtp:
3033 case e1000_pch_ptp:
3034 hw->fc.high_water = 0x5C20;
3035 hw->fc.low_water = 0x5048;
3036 hw->fc.pause_time = 0x0650;
3037 hw->fc.refresh_time = 0x0400;
3038 /* Jumbos need adjusted PBA */
3039 if (if_getmtu(ifp) > ETHERMTU)
3040 E1000_WRITE_REG(hw, E1000_PBA, 12);
3041 else
3042 E1000_WRITE_REG(hw, E1000_PBA, 26);
3043 break;
3044 case e1000_82575:
3045 case e1000_82576:
3046 /* 8-byte granularity */
3047 hw->fc.low_water = hw->fc.high_water - 8;
3048 break;
3049 case e1000_82580:
3050 case e1000_i350:
3051 case e1000_i354:
3052 case e1000_i210:
3053 case e1000_i211:
3054 case e1000_vfadapt:
3055 case e1000_vfadapt_i350:
3056 /* 16-byte granularity */
3057 hw->fc.low_water = hw->fc.high_water - 16;
3058 break;
3059 case e1000_ich9lan:
3060 case e1000_ich10lan:
3061 if (if_getmtu(ifp) > ETHERMTU) {
3062 hw->fc.high_water = 0x2800;
3063 hw->fc.low_water = hw->fc.high_water - 8;
3064 break;
3065 }
3066 /* FALLTHROUGH */
3067 default:
3068 if (hw->mac.type == e1000_80003es2lan)
3069 hw->fc.pause_time = 0xFFFF;
3070 break;
3071 }
3072
3073 /* I219 needs some special flushing to avoid hangs */
3074 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3075 em_flush_desc_rings(sc);
3076
3077 /* Issue a global reset */
3078 e1000_reset_hw(hw);
3079 if (hw->mac.type >= igb_mac_min) {
3080 E1000_WRITE_REG(hw, E1000_WUC, 0);
3081 } else {
3082 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3083 em_disable_aspm(sc);
3084 }
3085 if (sc->flags & IGB_MEDIA_RESET) {
3086 e1000_setup_init_funcs(hw, true);
3087 e1000_get_bus_info(hw);
3088 sc->flags &= ~IGB_MEDIA_RESET;
3089 }
3090 /* and a re-init */
3091 if (e1000_init_hw(hw) < 0) {
3092 device_printf(dev, "Hardware Initialization Failed\n");
3093 return;
3094 }
3095 if (hw->mac.type >= igb_mac_min)
3096 igb_init_dmac(sc, pba);
3097
3098 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3099 sc->pba = pba;
3100
3101 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3102 e1000_get_phy_info(hw);
3103 e1000_check_for_link(hw);
3104 }
3105
3106 /*
3107 * Initialise the RSS mapping for NICs that support multiple transmit/
3108 * receive rings.
3109 */
3110
3111 #define RSSKEYLEN 10
3112 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3113 em_initialize_rss_mapping(struct e1000_softc *sc)
3114 {
3115 uint8_t rss_key[4 * RSSKEYLEN];
3116 uint32_t reta = 0;
3117 struct e1000_hw *hw = &sc->hw;
3118 int i;
3119
3120 /*
3121 * Configure RSS key
3122 */
3123 arc4rand(rss_key, sizeof(rss_key), 0);
3124 for (i = 0; i < RSSKEYLEN; ++i) {
3125 uint32_t rssrk = 0;
3126
3127 rssrk = EM_RSSRK_VAL(rss_key, i);
3128 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3129 }
3130
3131 /*
3132 * Configure RSS redirect table in following fashion:
3133 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3134 */
3135 for (i = 0; i < sizeof(reta); ++i) {
3136 uint32_t q;
3137
3138 q = (i % sc->rx_num_queues) << 7;
3139 reta |= q << (8 * i);
3140 }
3141
3142 for (i = 0; i < 32; ++i)
3143 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3144
3145 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3146 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3147 E1000_MRQC_RSS_FIELD_IPV4 |
3148 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3149 E1000_MRQC_RSS_FIELD_IPV6_EX |
3150 E1000_MRQC_RSS_FIELD_IPV6);
3151 }
3152
3153 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3154 igb_initialize_rss_mapping(struct e1000_softc *sc)
3155 {
3156 struct e1000_hw *hw = &sc->hw;
3157 int i;
3158 int queue_id;
3159 u32 reta;
3160 u32 rss_key[10], mrqc, shift = 0;
3161
3162 /* XXX? */
3163 if (hw->mac.type == e1000_82575)
3164 shift = 6;
3165
3166 /*
3167 * The redirection table controls which destination
3168 * queue each bucket redirects traffic to.
3169 * Each DWORD represents four queues, with the LSB
3170 * being the first queue in the DWORD.
3171 *
3172 * This just allocates buckets to queues using round-robin
3173 * allocation.
3174 *
3175 * NOTE: It Just Happens to line up with the default
3176 * RSS allocation method.
3177 */
3178
3179 /* Warning FM follows */
3180 reta = 0;
3181 for (i = 0; i < 128; i++) {
3182 #ifdef RSS
3183 queue_id = rss_get_indirection_to_bucket(i);
3184 /*
3185 * If we have more queues than buckets, we'll
3186 * end up mapping buckets to a subset of the
3187 * queues.
3188 *
3189 * If we have more buckets than queues, we'll
3190 * end up instead assigning multiple buckets
3191 * to queues.
3192 *
3193 * Both are suboptimal, but we need to handle
3194 * the case so we don't go out of bounds
3195 * indexing arrays and such.
3196 */
3197 queue_id = queue_id % sc->rx_num_queues;
3198 #else
3199 queue_id = (i % sc->rx_num_queues);
3200 #endif
3201 /* Adjust if required */
3202 queue_id = queue_id << shift;
3203
3204 /*
3205 * The low 8 bits are for hash value (n+0);
3206 * The next 8 bits are for hash value (n+1), etc.
3207 */
3208 reta = reta >> 8;
3209 reta = reta | ( ((uint32_t) queue_id) << 24);
3210 if ((i & 3) == 3) {
3211 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3212 reta = 0;
3213 }
3214 }
3215
3216 /* Now fill in hash table */
3217
3218 /*
3219 * MRQC: Multiple Receive Queues Command
3220 * Set queuing to RSS control, number depends on the device.
3221 */
3222 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3223
3224 #ifdef RSS
3225 /* XXX ew typecasting */
3226 rss_getkey((uint8_t *) &rss_key);
3227 #else
3228 arc4rand(&rss_key, sizeof(rss_key), 0);
3229 #endif
3230 for (i = 0; i < 10; i++)
3231 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3232
3233 /*
3234 * Configure the RSS fields to hash upon.
3235 */
3236 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3237 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3238 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3239 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3240 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3241 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3242 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3243 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3244
3245 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3246 }
3247
3248 /*********************************************************************
3249 *
3250 * Setup networking device structure and register interface media.
3251 *
3252 **********************************************************************/
3253 static int
em_setup_interface(if_ctx_t ctx)3254 em_setup_interface(if_ctx_t ctx)
3255 {
3256 if_t ifp = iflib_get_ifp(ctx);
3257 struct e1000_softc *sc = iflib_get_softc(ctx);
3258 if_softc_ctx_t scctx = sc->shared;
3259
3260 INIT_DEBUGOUT("em_setup_interface: begin");
3261
3262 /* Single Queue */
3263 if (sc->tx_num_queues == 1) {
3264 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3265 if_setsendqready(ifp);
3266 }
3267
3268 /*
3269 * Specify the media types supported by this adapter and register
3270 * callbacks to update media and link information
3271 */
3272 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3273 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3274 u_char fiber_type = IFM_1000_SX; /* default type */
3275
3276 if (sc->hw.mac.type == e1000_82545)
3277 fiber_type = IFM_1000_LX;
3278 ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3279 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3280 } else {
3281 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3282 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3283 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3284 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3285 if (sc->hw.phy.type != e1000_phy_ife) {
3286 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3287 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
3288 }
3289 }
3290 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3291 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3292 return (0);
3293 }
3294
3295 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3296 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
3297 {
3298 struct e1000_softc *sc = iflib_get_softc(ctx);
3299 if_softc_ctx_t scctx = sc->shared;
3300 int error = E1000_SUCCESS;
3301 struct em_tx_queue *que;
3302 int i, j;
3303
3304 MPASS(sc->tx_num_queues > 0);
3305 MPASS(sc->tx_num_queues == ntxqsets);
3306
3307 /* First allocate the top level queue structs */
3308 if (!(sc->tx_queues =
3309 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3310 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3311 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3312 return(ENOMEM);
3313 }
3314
3315 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3316 /* Set up some basics */
3317
3318 struct tx_ring *txr = &que->txr;
3319 txr->sc = que->sc = sc;
3320 que->me = txr->me = i;
3321
3322 /* Allocate report status array */
3323 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
3324 device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
3325 error = ENOMEM;
3326 goto fail;
3327 }
3328 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3329 txr->tx_rsq[j] = QIDX_INVALID;
3330 /* get the virtual and physical address of the hardware queues */
3331 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3332 txr->tx_paddr = paddrs[i*ntxqs];
3333 }
3334
3335 if (bootverbose)
3336 device_printf(iflib_get_dev(ctx),
3337 "allocated for %d tx_queues\n", sc->tx_num_queues);
3338 return (0);
3339 fail:
3340 em_if_queues_free(ctx);
3341 return (error);
3342 }
3343
3344 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3345 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
3346 {
3347 struct e1000_softc *sc = iflib_get_softc(ctx);
3348 int error = E1000_SUCCESS;
3349 struct em_rx_queue *que;
3350 int i;
3351
3352 MPASS(sc->rx_num_queues > 0);
3353 MPASS(sc->rx_num_queues == nrxqsets);
3354
3355 /* First allocate the top level queue structs */
3356 if (!(sc->rx_queues =
3357 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3358 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3359 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3360 error = ENOMEM;
3361 goto fail;
3362 }
3363
3364 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3365 /* Set up some basics */
3366 struct rx_ring *rxr = &que->rxr;
3367 rxr->sc = que->sc = sc;
3368 rxr->que = que;
3369 que->me = rxr->me = i;
3370
3371 /* get the virtual and physical address of the hardware queues */
3372 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3373 rxr->rx_paddr = paddrs[i*nrxqs];
3374 }
3375
3376 if (bootverbose)
3377 device_printf(iflib_get_dev(ctx),
3378 "allocated for %d rx_queues\n", sc->rx_num_queues);
3379
3380 return (0);
3381 fail:
3382 em_if_queues_free(ctx);
3383 return (error);
3384 }
3385
3386 static void
em_if_queues_free(if_ctx_t ctx)3387 em_if_queues_free(if_ctx_t ctx)
3388 {
3389 struct e1000_softc *sc = iflib_get_softc(ctx);
3390 struct em_tx_queue *tx_que = sc->tx_queues;
3391 struct em_rx_queue *rx_que = sc->rx_queues;
3392
3393 if (tx_que != NULL) {
3394 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3395 struct tx_ring *txr = &tx_que->txr;
3396 if (txr->tx_rsq == NULL)
3397 break;
3398
3399 free(txr->tx_rsq, M_DEVBUF);
3400 txr->tx_rsq = NULL;
3401 }
3402 free(sc->tx_queues, M_DEVBUF);
3403 sc->tx_queues = NULL;
3404 }
3405
3406 if (rx_que != NULL) {
3407 free(sc->rx_queues, M_DEVBUF);
3408 sc->rx_queues = NULL;
3409 }
3410 }
3411
3412 /*********************************************************************
3413 *
3414 * Enable transmit unit.
3415 *
3416 **********************************************************************/
3417 static void
em_initialize_transmit_unit(if_ctx_t ctx)3418 em_initialize_transmit_unit(if_ctx_t ctx)
3419 {
3420 struct e1000_softc *sc = iflib_get_softc(ctx);
3421 if_softc_ctx_t scctx = sc->shared;
3422 struct em_tx_queue *que;
3423 struct tx_ring *txr;
3424 struct e1000_hw *hw = &sc->hw;
3425 u32 tctl, txdctl = 0, tarc, tipg = 0;
3426
3427 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3428
3429 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3430 u64 bus_addr;
3431 caddr_t offp, endp;
3432
3433 que = &sc->tx_queues[i];
3434 txr = &que->txr;
3435 bus_addr = txr->tx_paddr;
3436
3437 /* Clear checksum offload context. */
3438 offp = (caddr_t)&txr->csum_flags;
3439 endp = (caddr_t)(txr + 1);
3440 bzero(offp, endp - offp);
3441
3442 /* Base and Len of TX Ring */
3443 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3444 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3445 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3446 (u32)(bus_addr >> 32));
3447 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3448 (u32)bus_addr);
3449 /* Init the HEAD/TAIL indices */
3450 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3451 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3452
3453 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3454 E1000_READ_REG(hw, E1000_TDBAL(i)),
3455 E1000_READ_REG(hw, E1000_TDLEN(i)));
3456
3457 txdctl = 0; /* clear txdctl */
3458 txdctl |= 0x1f; /* PTHRESH */
3459 txdctl |= 1 << 8; /* HTHRESH */
3460 txdctl |= 1 << 16;/* WTHRESH */
3461 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3462 txdctl |= E1000_TXDCTL_GRAN;
3463 txdctl |= 1 << 25; /* LWTHRESH */
3464
3465 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3466 }
3467
3468 /* Set the default values for the Tx Inter Packet Gap timer */
3469 switch (hw->mac.type) {
3470 case e1000_80003es2lan:
3471 tipg = DEFAULT_82543_TIPG_IPGR1;
3472 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3473 E1000_TIPG_IPGR2_SHIFT;
3474 break;
3475 case e1000_82542:
3476 tipg = DEFAULT_82542_TIPG_IPGT;
3477 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3478 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3479 break;
3480 default:
3481 if (hw->phy.media_type == e1000_media_type_fiber ||
3482 hw->phy.media_type == e1000_media_type_internal_serdes)
3483 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3484 else
3485 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3486 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3487 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3488 }
3489
3490 if (hw->mac.type < igb_mac_min) {
3491 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3492 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3493
3494 if (sc->tx_int_delay.value > 0)
3495 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3496 }
3497
3498 if (hw->mac.type >= e1000_82540)
3499 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3500
3501 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3502 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3503 tarc |= TARC_SPEED_MODE_BIT;
3504 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3505 } else if (hw->mac.type == e1000_80003es2lan) {
3506 /* errata: program both queues to unweighted RR */
3507 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3508 tarc |= 1;
3509 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3510 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3511 tarc |= 1;
3512 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3513 } else if (hw->mac.type == e1000_82574) {
3514 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3515 tarc |= TARC_ERRATA_BIT;
3516 if ( sc->tx_num_queues > 1) {
3517 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3518 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3519 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3520 } else
3521 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3522 }
3523
3524 /* Program the Transmit Control Register */
3525 tctl = E1000_READ_REG(hw, E1000_TCTL);
3526 tctl &= ~E1000_TCTL_CT;
3527 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3528 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3529
3530 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3531 tctl |= E1000_TCTL_MULR;
3532
3533 /* This write will effectively turn on the transmit unit. */
3534 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3535
3536 /* SPT and KBL errata workarounds */
3537 if (hw->mac.type == e1000_pch_spt) {
3538 u32 reg;
3539 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3540 reg |= E1000_RCTL_RDMTS_HEX;
3541 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3542 /* i218-i219 Specification Update 1.5.4.5 */
3543 reg = E1000_READ_REG(hw, E1000_TARC(0));
3544 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3545 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3546 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3547 }
3548 }
3549
3550 /*********************************************************************
3551 *
3552 * Enable receive unit.
3553 *
3554 **********************************************************************/
3555 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3556
3557 static void
em_initialize_receive_unit(if_ctx_t ctx)3558 em_initialize_receive_unit(if_ctx_t ctx)
3559 {
3560 struct e1000_softc *sc = iflib_get_softc(ctx);
3561 if_softc_ctx_t scctx = sc->shared;
3562 if_t ifp = iflib_get_ifp(ctx);
3563 struct e1000_hw *hw = &sc->hw;
3564 struct em_rx_queue *que;
3565 int i;
3566 uint32_t rctl, rxcsum;
3567
3568 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3569
3570 /*
3571 * Make sure receives are disabled while setting
3572 * up the descriptor ring
3573 */
3574 rctl = E1000_READ_REG(hw, E1000_RCTL);
3575 /* Do not disable if ever enabled on this hardware */
3576 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3577 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3578
3579 /* Setup the Receive Control Register */
3580 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3581 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3582 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3583 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3584
3585 /* Do not store bad packets */
3586 rctl &= ~E1000_RCTL_SBP;
3587
3588 /* Enable Long Packet receive */
3589 if (if_getmtu(ifp) > ETHERMTU)
3590 rctl |= E1000_RCTL_LPE;
3591 else
3592 rctl &= ~E1000_RCTL_LPE;
3593
3594 /* Strip the CRC */
3595 if (!em_disable_crc_stripping)
3596 rctl |= E1000_RCTL_SECRC;
3597
3598 /* lem/em default interrupt moderation */
3599 if (hw->mac.type < igb_mac_min) {
3600 if (hw->mac.type >= e1000_82540) {
3601 E1000_WRITE_REG(hw, E1000_RADV, sc->rx_abs_int_delay.value);
3602
3603 /* Set the default interrupt throttling rate */
3604 E1000_WRITE_REG(hw, E1000_ITR,
3605 EM_INTS_TO_ITR(em_max_interrupt_rate));
3606 }
3607
3608 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3609 * long latencies are observed, like Lenovo X60. This
3610 * change eliminates the problem, but since having positive
3611 * values in RDTR is a known source of problems on other
3612 * platforms another solution is being sought.
3613 */
3614 if (hw->mac.type == e1000_82573)
3615 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3616 else
3617 E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3618 }
3619
3620 if (hw->mac.type >= em_mac_min) {
3621 uint32_t rfctl;
3622 /* Use extended rx descriptor formats */
3623 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3624 rfctl |= E1000_RFCTL_EXTEN;
3625
3626 /*
3627 * When using MSI-X interrupts we need to throttle
3628 * using the EITR register (82574 only)
3629 */
3630 if (hw->mac.type == e1000_82574) {
3631 for (int i = 0; i < 4; i++)
3632 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3633 EM_INTS_TO_ITR(em_max_interrupt_rate));
3634 /* Disable accelerated acknowledge */
3635 rfctl |= E1000_RFCTL_ACK_DIS;
3636 }
3637 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3638 }
3639
3640 /* Set up L3 and L4 csum Rx descriptor offloads */
3641 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3642 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3643 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3644 if (hw->mac.type > e1000_82575)
3645 rxcsum |= E1000_RXCSUM_CRCOFL;
3646 else if (hw->mac.type < em_mac_min &&
3647 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3648 rxcsum |= E1000_RXCSUM_IPV6OFL;
3649 } else {
3650 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3651 if (hw->mac.type > e1000_82575)
3652 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3653 else if (hw->mac.type < em_mac_min)
3654 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3655 }
3656
3657 if (sc->rx_num_queues > 1) {
3658 /* RSS hash needed in the Rx descriptor */
3659 rxcsum |= E1000_RXCSUM_PCSD;
3660
3661 if (hw->mac.type >= igb_mac_min)
3662 igb_initialize_rss_mapping(sc);
3663 else
3664 em_initialize_rss_mapping(sc);
3665 }
3666 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3667
3668 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3669 struct rx_ring *rxr = &que->rxr;
3670 /* Setup the Base and Length of the Rx Descriptor Ring */
3671 u64 bus_addr = rxr->rx_paddr;
3672 #if 0
3673 u32 rdt = sc->rx_num_queues -1; /* default */
3674 #endif
3675
3676 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3677 scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3678 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3679 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3680 /* Setup the Head and Tail Descriptor Pointers */
3681 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3682 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3683 }
3684
3685 /*
3686 * Set PTHRESH for improved jumbo performance
3687 * According to 10.2.5.11 of Intel 82574 Datasheet,
3688 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3689 * Only write to RXDCTL(1) if there is a need for different
3690 * settings.
3691 */
3692 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3693 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3694 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3695 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3696 } else if (hw->mac.type == e1000_82574) {
3697 for (int i = 0; i < sc->rx_num_queues; i++) {
3698 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3699 rxdctl |= 0x20; /* PTHRESH */
3700 rxdctl |= 4 << 8; /* HTHRESH */
3701 rxdctl |= 4 << 16;/* WTHRESH */
3702 rxdctl |= 1 << 24; /* Switch to granularity */
3703 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3704 }
3705 } else if (hw->mac.type >= igb_mac_min) {
3706 u32 psize, srrctl = 0;
3707
3708 if (if_getmtu(ifp) > ETHERMTU) {
3709 psize = scctx->isc_max_frame_size;
3710 /* are we on a vlan? */
3711 if (if_vlantrunkinuse(ifp))
3712 psize += VLAN_TAG_SIZE;
3713
3714 if (sc->vf_ifp)
3715 e1000_rlpml_set_vf(hw, psize);
3716 else
3717 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3718 }
3719
3720 /* Set maximum packet buffer len */
3721 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3722 E1000_SRRCTL_BSIZEPKT_SHIFT;
3723
3724 /*
3725 * If TX flow control is disabled and there's >1 queue defined,
3726 * enable DROP.
3727 *
3728 * This drops frames rather than hanging the RX MAC for all queues.
3729 */
3730 if ((sc->rx_num_queues > 1) &&
3731 (sc->fc == e1000_fc_none ||
3732 sc->fc == e1000_fc_rx_pause)) {
3733 srrctl |= E1000_SRRCTL_DROP_EN;
3734 }
3735 /* Setup the Base and Length of the Rx Descriptor Rings */
3736 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3737 struct rx_ring *rxr = &que->rxr;
3738 u64 bus_addr = rxr->rx_paddr;
3739 u32 rxdctl;
3740
3741 #ifdef notyet
3742 /* Configure for header split? -- ignore for now */
3743 rxr->hdr_split = igb_header_split;
3744 #else
3745 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3746 #endif
3747
3748 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3749 scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3750 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3751 (uint32_t)(bus_addr >> 32));
3752 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3753 (uint32_t)bus_addr);
3754 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3755 /* Enable this Queue */
3756 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3757 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3758 rxdctl &= 0xFFF00000;
3759 rxdctl |= IGB_RX_PTHRESH;
3760 rxdctl |= IGB_RX_HTHRESH << 8;
3761 rxdctl |= IGB_RX_WTHRESH << 16;
3762 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3763 }
3764 } else if (hw->mac.type >= e1000_pch2lan) {
3765 if (if_getmtu(ifp) > ETHERMTU)
3766 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3767 else
3768 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3769 }
3770
3771 /* Make sure VLAN Filters are off */
3772 rctl &= ~E1000_RCTL_VFE;
3773
3774 /* Set up packet buffer size, overridden by per queue srrctl on igb */
3775 if (hw->mac.type < igb_mac_min) {
3776 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3777 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3778 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3779 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3780 else if (sc->rx_mbuf_sz > 8192)
3781 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3782 else {
3783 rctl |= E1000_RCTL_SZ_2048;
3784 rctl &= ~E1000_RCTL_BSEX;
3785 }
3786 } else
3787 rctl |= E1000_RCTL_SZ_2048;
3788
3789 /*
3790 * rctl bits 11:10 are as follows
3791 * lem: reserved
3792 * em: DTYPE
3793 * igb: reserved
3794 * and should be 00 on all of the above
3795 */
3796 rctl &= ~0x00000C00;
3797
3798 /* Write out the settings */
3799 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3800
3801 return;
3802 }
3803
3804 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)3805 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3806 {
3807 struct e1000_softc *sc = iflib_get_softc(ctx);
3808 u32 index, bit;
3809
3810 index = (vtag >> 5) & 0x7F;
3811 bit = vtag & 0x1F;
3812 sc->shadow_vfta[index] |= (1 << bit);
3813 ++sc->num_vlans;
3814 em_if_vlan_filter_write(sc);
3815 }
3816
3817 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)3818 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3819 {
3820 struct e1000_softc *sc = iflib_get_softc(ctx);
3821 u32 index, bit;
3822
3823 index = (vtag >> 5) & 0x7F;
3824 bit = vtag & 0x1F;
3825 sc->shadow_vfta[index] &= ~(1 << bit);
3826 --sc->num_vlans;
3827 em_if_vlan_filter_write(sc);
3828 }
3829
3830 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)3831 em_if_vlan_filter_capable(if_ctx_t ctx)
3832 {
3833 if_t ifp = iflib_get_ifp(ctx);
3834
3835 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
3836 !em_disable_crc_stripping)
3837 return (true);
3838
3839 return (false);
3840 }
3841
3842 static bool
em_if_vlan_filter_used(if_ctx_t ctx)3843 em_if_vlan_filter_used(if_ctx_t ctx)
3844 {
3845 struct e1000_softc *sc = iflib_get_softc(ctx);
3846
3847 if (!em_if_vlan_filter_capable(ctx))
3848 return (false);
3849
3850 for (int i = 0; i < EM_VFTA_SIZE; i++)
3851 if (sc->shadow_vfta[i] != 0)
3852 return (true);
3853
3854 return (false);
3855 }
3856
3857 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)3858 em_if_vlan_filter_enable(struct e1000_softc *sc)
3859 {
3860 struct e1000_hw *hw = &sc->hw;
3861 u32 reg;
3862
3863 reg = E1000_READ_REG(hw, E1000_RCTL);
3864 reg &= ~E1000_RCTL_CFIEN;
3865 reg |= E1000_RCTL_VFE;
3866 E1000_WRITE_REG(hw, E1000_RCTL, reg);
3867 }
3868
3869 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)3870 em_if_vlan_filter_disable(struct e1000_softc *sc)
3871 {
3872 struct e1000_hw *hw = &sc->hw;
3873 u32 reg;
3874
3875 reg = E1000_READ_REG(hw, E1000_RCTL);
3876 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3877 E1000_WRITE_REG(hw, E1000_RCTL, reg);
3878 }
3879
3880 static void
em_if_vlan_filter_write(struct e1000_softc * sc)3881 em_if_vlan_filter_write(struct e1000_softc *sc)
3882 {
3883 struct e1000_hw *hw = &sc->hw;
3884
3885 if (sc->vf_ifp)
3886 return;
3887
3888 /* Disable interrupts for lem-class devices during the filter change */
3889 if (hw->mac.type < em_mac_min)
3890 em_if_intr_disable(sc->ctx);
3891
3892 for (int i = 0; i < EM_VFTA_SIZE; i++)
3893 if (sc->shadow_vfta[i] != 0) {
3894 /* XXXKB: incomplete VF support, we return early above */
3895 if (sc->vf_ifp)
3896 e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3897 else
3898 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3899 }
3900
3901 /* Re-enable interrupts for lem-class devices */
3902 if (hw->mac.type < em_mac_min)
3903 em_if_intr_enable(sc->ctx);
3904 }
3905
3906 static void
em_setup_vlan_hw_support(if_ctx_t ctx)3907 em_setup_vlan_hw_support(if_ctx_t ctx)
3908 {
3909 struct e1000_softc *sc = iflib_get_softc(ctx);
3910 struct e1000_hw *hw = &sc->hw;
3911 if_t ifp = iflib_get_ifp(ctx);
3912 u32 reg;
3913
3914 /* XXXKB: Return early if we are a VF until VF decap and filter management
3915 * is ready and tested.
3916 */
3917 if (sc->vf_ifp)
3918 return;
3919
3920 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
3921 !em_disable_crc_stripping) {
3922 reg = E1000_READ_REG(hw, E1000_CTRL);
3923 reg |= E1000_CTRL_VME;
3924 E1000_WRITE_REG(hw, E1000_CTRL, reg);
3925 } else {
3926 reg = E1000_READ_REG(hw, E1000_CTRL);
3927 reg &= ~E1000_CTRL_VME;
3928 E1000_WRITE_REG(hw, E1000_CTRL, reg);
3929 }
3930
3931 /* If we aren't doing HW filtering, we're done */
3932 if (!em_if_vlan_filter_capable(ctx)) {
3933 em_if_vlan_filter_disable(sc);
3934 return;
3935 }
3936
3937 /*
3938 * A soft reset zero's out the VFTA, so
3939 * we need to repopulate it now.
3940 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
3941 * traffic through. This will write the entire table.
3942 */
3943 em_if_vlan_register(ctx, 0);
3944
3945 /* Enable the Filter Table */
3946 em_if_vlan_filter_enable(sc);
3947 }
3948
3949 static void
em_if_intr_enable(if_ctx_t ctx)3950 em_if_intr_enable(if_ctx_t ctx)
3951 {
3952 struct e1000_softc *sc = iflib_get_softc(ctx);
3953 struct e1000_hw *hw = &sc->hw;
3954 u32 ims_mask = IMS_ENABLE_MASK;
3955
3956 if (sc->intr_type == IFLIB_INTR_MSIX) {
3957 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3958 ims_mask |= sc->ims;
3959 }
3960
3961 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3962 E1000_WRITE_FLUSH(hw);
3963 }
3964
3965 static void
em_if_intr_disable(if_ctx_t ctx)3966 em_if_intr_disable(if_ctx_t ctx)
3967 {
3968 struct e1000_softc *sc = iflib_get_softc(ctx);
3969 struct e1000_hw *hw = &sc->hw;
3970
3971 if (sc->intr_type == IFLIB_INTR_MSIX)
3972 E1000_WRITE_REG(hw, EM_EIAC, 0);
3973 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3974 E1000_WRITE_FLUSH(hw);
3975 }
3976
3977 static void
igb_if_intr_enable(if_ctx_t ctx)3978 igb_if_intr_enable(if_ctx_t ctx)
3979 {
3980 struct e1000_softc *sc = iflib_get_softc(ctx);
3981 struct e1000_hw *hw = &sc->hw;
3982 u32 mask;
3983
3984 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3985 mask = (sc->que_mask | sc->link_mask);
3986 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3987 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3988 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3989 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3990 } else
3991 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3992 E1000_WRITE_FLUSH(hw);
3993 }
3994
3995 static void
igb_if_intr_disable(if_ctx_t ctx)3996 igb_if_intr_disable(if_ctx_t ctx)
3997 {
3998 struct e1000_softc *sc = iflib_get_softc(ctx);
3999 struct e1000_hw *hw = &sc->hw;
4000
4001 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4002 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4003 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4004 }
4005 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4006 E1000_WRITE_FLUSH(hw);
4007 }
4008
4009 /*
4010 * Bit of a misnomer, what this really means is
4011 * to enable OS management of the system... aka
4012 * to disable special hardware management features
4013 */
4014 static void
em_init_manageability(struct e1000_softc * sc)4015 em_init_manageability(struct e1000_softc *sc)
4016 {
4017 /* A shared code workaround */
4018 #define E1000_82542_MANC2H E1000_MANC2H
4019 if (sc->has_manage) {
4020 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4021 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4022
4023 /* disable hardware interception of ARP */
4024 manc &= ~(E1000_MANC_ARP_EN);
4025
4026 /* enable receiving management packets to the host */
4027 manc |= E1000_MANC_EN_MNG2HOST;
4028 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4029 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4030 manc2h |= E1000_MNG2HOST_PORT_623;
4031 manc2h |= E1000_MNG2HOST_PORT_664;
4032 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4033 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4034 }
4035 }
4036
4037 /*
4038 * Give control back to hardware management
4039 * controller if there is one.
4040 */
4041 static void
em_release_manageability(struct e1000_softc * sc)4042 em_release_manageability(struct e1000_softc *sc)
4043 {
4044 if (sc->has_manage) {
4045 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4046
4047 /* re-enable hardware interception of ARP */
4048 manc |= E1000_MANC_ARP_EN;
4049 manc &= ~E1000_MANC_EN_MNG2HOST;
4050
4051 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4052 }
4053 }
4054
4055 /*
4056 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4057 * For ASF and Pass Through versions of f/w this means
4058 * that the driver is loaded. For AMT version type f/w
4059 * this means that the network i/f is open.
4060 */
4061 static void
em_get_hw_control(struct e1000_softc * sc)4062 em_get_hw_control(struct e1000_softc *sc)
4063 {
4064 u32 ctrl_ext, swsm;
4065
4066 if (sc->vf_ifp)
4067 return;
4068
4069 if (sc->hw.mac.type == e1000_82573) {
4070 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4071 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4072 swsm | E1000_SWSM_DRV_LOAD);
4073 return;
4074 }
4075 /* else */
4076 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4077 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4078 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4079 }
4080
4081 /*
4082 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4083 * For ASF and Pass Through versions of f/w this means that
4084 * the driver is no longer loaded. For AMT versions of the
4085 * f/w this means that the network i/f is closed.
4086 */
4087 static void
em_release_hw_control(struct e1000_softc * sc)4088 em_release_hw_control(struct e1000_softc *sc)
4089 {
4090 u32 ctrl_ext, swsm;
4091
4092 if (!sc->has_manage)
4093 return;
4094
4095 if (sc->hw.mac.type == e1000_82573) {
4096 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4097 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4098 swsm & ~E1000_SWSM_DRV_LOAD);
4099 return;
4100 }
4101 /* else */
4102 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4103 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4104 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4105 return;
4106 }
4107
4108 static int
em_is_valid_ether_addr(u8 * addr)4109 em_is_valid_ether_addr(u8 *addr)
4110 {
4111 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4112
4113 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4114 return (false);
4115 }
4116
4117 return (true);
4118 }
4119
4120 static bool
em_automask_tso(if_ctx_t ctx)4121 em_automask_tso(if_ctx_t ctx)
4122 {
4123 struct e1000_softc *sc = iflib_get_softc(ctx);
4124 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4125 if_t ifp = iflib_get_ifp(ctx);
4126
4127 if (!em_unsupported_tso && sc->link_speed &&
4128 sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) {
4129 device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n");
4130 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4131 scctx->isc_capenable &= ~IFCAP_TSO;
4132 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4133 /* iflib_init_locked handles ifnet hwassistbits */
4134 iflib_request_reset(ctx);
4135 return true;
4136 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4137 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4138 scctx->isc_capenable |= sc->tso_automasked;
4139 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4140 sc->tso_automasked = 0;
4141 /* iflib_init_locked handles ifnet hwassistbits */
4142 iflib_request_reset(ctx);
4143 return true;
4144 }
4145
4146 return false;
4147 }
4148
4149 /*
4150 ** Parse the interface capabilities with regard
4151 ** to both system management and wake-on-lan for
4152 ** later use.
4153 */
4154 static void
em_get_wakeup(if_ctx_t ctx)4155 em_get_wakeup(if_ctx_t ctx)
4156 {
4157 struct e1000_softc *sc = iflib_get_softc(ctx);
4158 device_t dev = iflib_get_dev(ctx);
4159 u16 eeprom_data = 0, device_id, apme_mask;
4160
4161 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4162 apme_mask = EM_EEPROM_APME;
4163
4164 switch (sc->hw.mac.type) {
4165 case e1000_82542:
4166 case e1000_82543:
4167 break;
4168 case e1000_82544:
4169 e1000_read_nvm(&sc->hw,
4170 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4171 apme_mask = EM_82544_APME;
4172 break;
4173 case e1000_82546:
4174 case e1000_82546_rev_3:
4175 if (sc->hw.bus.func == 1) {
4176 e1000_read_nvm(&sc->hw,
4177 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4178 break;
4179 } else
4180 e1000_read_nvm(&sc->hw,
4181 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4182 break;
4183 case e1000_82573:
4184 case e1000_82583:
4185 sc->has_amt = true;
4186 /* FALLTHROUGH */
4187 case e1000_82571:
4188 case e1000_82572:
4189 case e1000_80003es2lan:
4190 if (sc->hw.bus.func == 1) {
4191 e1000_read_nvm(&sc->hw,
4192 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4193 break;
4194 } else
4195 e1000_read_nvm(&sc->hw,
4196 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4197 break;
4198 case e1000_ich8lan:
4199 case e1000_ich9lan:
4200 case e1000_ich10lan:
4201 case e1000_pchlan:
4202 case e1000_pch2lan:
4203 case e1000_pch_lpt:
4204 case e1000_pch_spt:
4205 case e1000_82575: /* listing all igb devices */
4206 case e1000_82576:
4207 case e1000_82580:
4208 case e1000_i350:
4209 case e1000_i354:
4210 case e1000_i210:
4211 case e1000_i211:
4212 case e1000_vfadapt:
4213 case e1000_vfadapt_i350:
4214 apme_mask = E1000_WUC_APME;
4215 sc->has_amt = true;
4216 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4217 break;
4218 default:
4219 e1000_read_nvm(&sc->hw,
4220 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4221 break;
4222 }
4223 if (eeprom_data & apme_mask)
4224 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4225 /*
4226 * We have the eeprom settings, now apply the special cases
4227 * where the eeprom may be wrong or the board won't support
4228 * wake on lan on a particular port
4229 */
4230 device_id = pci_get_device(dev);
4231 switch (device_id) {
4232 case E1000_DEV_ID_82546GB_PCIE:
4233 sc->wol = 0;
4234 break;
4235 case E1000_DEV_ID_82546EB_FIBER:
4236 case E1000_DEV_ID_82546GB_FIBER:
4237 /* Wake events only supported on port A for dual fiber
4238 * regardless of eeprom setting */
4239 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4240 E1000_STATUS_FUNC_1)
4241 sc->wol = 0;
4242 break;
4243 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4244 /* if quad port adapter, disable WoL on all but port A */
4245 if (global_quad_port_a != 0)
4246 sc->wol = 0;
4247 /* Reset for multiple quad port adapters */
4248 if (++global_quad_port_a == 4)
4249 global_quad_port_a = 0;
4250 break;
4251 case E1000_DEV_ID_82571EB_FIBER:
4252 /* Wake events only supported on port A for dual fiber
4253 * regardless of eeprom setting */
4254 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4255 E1000_STATUS_FUNC_1)
4256 sc->wol = 0;
4257 break;
4258 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4259 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4260 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4261 /* if quad port adapter, disable WoL on all but port A */
4262 if (global_quad_port_a != 0)
4263 sc->wol = 0;
4264 /* Reset for multiple quad port adapters */
4265 if (++global_quad_port_a == 4)
4266 global_quad_port_a = 0;
4267 break;
4268 }
4269 return;
4270 }
4271
4272
4273 /*
4274 * Enable PCI Wake On Lan capability
4275 */
4276 static void
em_enable_wakeup(if_ctx_t ctx)4277 em_enable_wakeup(if_ctx_t ctx)
4278 {
4279 struct e1000_softc *sc = iflib_get_softc(ctx);
4280 device_t dev = iflib_get_dev(ctx);
4281 if_t ifp = iflib_get_ifp(ctx);
4282 int error = 0;
4283 u32 pmc, ctrl, ctrl_ext, rctl;
4284 u16 status;
4285
4286 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4287 return;
4288
4289 /*
4290 * Determine type of Wakeup: note that wol
4291 * is set with all bits on by default.
4292 */
4293 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4294 sc->wol &= ~E1000_WUFC_MAG;
4295
4296 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4297 sc->wol &= ~E1000_WUFC_EX;
4298
4299 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4300 sc->wol &= ~E1000_WUFC_MC;
4301 else {
4302 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4303 rctl |= E1000_RCTL_MPE;
4304 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4305 }
4306
4307 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4308 goto pme;
4309
4310 /* Advertise the wakeup capability */
4311 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4312 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4313 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4314
4315 /* Keep the laser running on Fiber adapters */
4316 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4317 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4318 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4319 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4320 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4321 }
4322
4323 if ((sc->hw.mac.type == e1000_ich8lan) ||
4324 (sc->hw.mac.type == e1000_pchlan) ||
4325 (sc->hw.mac.type == e1000_ich9lan) ||
4326 (sc->hw.mac.type == e1000_ich10lan))
4327 e1000_suspend_workarounds_ich8lan(&sc->hw);
4328
4329 if ( sc->hw.mac.type >= e1000_pchlan) {
4330 error = em_enable_phy_wakeup(sc);
4331 if (error)
4332 goto pme;
4333 } else {
4334 /* Enable wakeup by the MAC */
4335 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4336 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4337 }
4338
4339 if (sc->hw.phy.type == e1000_phy_igp_3)
4340 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4341
4342 pme:
4343 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4344 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4345 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4346 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4347 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4348
4349 return;
4350 }
4351
4352 /*
4353 * WOL in the newer chipset interfaces (pchlan)
4354 * require thing to be copied into the phy
4355 */
4356 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4357 em_enable_phy_wakeup(struct e1000_softc *sc)
4358 {
4359 struct e1000_hw *hw = &sc->hw;
4360 u32 mreg, ret = 0;
4361 u16 preg;
4362
4363 /* copy MAC RARs to PHY RARs */
4364 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4365
4366 /* copy MAC MTA to PHY MTA */
4367 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4368 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4369 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4370 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4371 (u16)((mreg >> 16) & 0xFFFF));
4372 }
4373
4374 /* configure PHY Rx Control register */
4375 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4376 mreg = E1000_READ_REG(hw, E1000_RCTL);
4377 if (mreg & E1000_RCTL_UPE)
4378 preg |= BM_RCTL_UPE;
4379 if (mreg & E1000_RCTL_MPE)
4380 preg |= BM_RCTL_MPE;
4381 preg &= ~(BM_RCTL_MO_MASK);
4382 if (mreg & E1000_RCTL_MO_3)
4383 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4384 << BM_RCTL_MO_SHIFT);
4385 if (mreg & E1000_RCTL_BAM)
4386 preg |= BM_RCTL_BAM;
4387 if (mreg & E1000_RCTL_PMCF)
4388 preg |= BM_RCTL_PMCF;
4389 mreg = E1000_READ_REG(hw, E1000_CTRL);
4390 if (mreg & E1000_CTRL_RFCE)
4391 preg |= BM_RCTL_RFCE;
4392 e1000_write_phy_reg(hw, BM_RCTL, preg);
4393
4394 /* enable PHY wakeup in MAC register */
4395 E1000_WRITE_REG(hw, E1000_WUC,
4396 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4397 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4398
4399 /* configure and enable PHY wakeup in PHY registers */
4400 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4401 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4402
4403 /* activate PHY wakeup */
4404 ret = hw->phy.ops.acquire(hw);
4405 if (ret) {
4406 printf("Could not acquire PHY\n");
4407 return ret;
4408 }
4409 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4410 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4411 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4412 if (ret) {
4413 printf("Could not read PHY page 769\n");
4414 goto out;
4415 }
4416 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4417 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4418 if (ret)
4419 printf("Could not set PHY Host Wakeup bit\n");
4420 out:
4421 hw->phy.ops.release(hw);
4422
4423 return ret;
4424 }
4425
4426 static void
em_if_led_func(if_ctx_t ctx,int onoff)4427 em_if_led_func(if_ctx_t ctx, int onoff)
4428 {
4429 struct e1000_softc *sc = iflib_get_softc(ctx);
4430
4431 if (onoff) {
4432 e1000_setup_led(&sc->hw);
4433 e1000_led_on(&sc->hw);
4434 } else {
4435 e1000_led_off(&sc->hw);
4436 e1000_cleanup_led(&sc->hw);
4437 }
4438 }
4439
4440 /*
4441 * Disable the L0S and L1 LINK states
4442 */
4443 static void
em_disable_aspm(struct e1000_softc * sc)4444 em_disable_aspm(struct e1000_softc *sc)
4445 {
4446 int base, reg;
4447 u16 link_cap,link_ctrl;
4448 device_t dev = sc->dev;
4449
4450 switch (sc->hw.mac.type) {
4451 case e1000_82573:
4452 case e1000_82574:
4453 case e1000_82583:
4454 break;
4455 default:
4456 return;
4457 }
4458 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4459 return;
4460 reg = base + PCIER_LINK_CAP;
4461 link_cap = pci_read_config(dev, reg, 2);
4462 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4463 return;
4464 reg = base + PCIER_LINK_CTL;
4465 link_ctrl = pci_read_config(dev, reg, 2);
4466 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4467 pci_write_config(dev, reg, link_ctrl, 2);
4468 return;
4469 }
4470
4471 /**********************************************************************
4472 *
4473 * Update the board statistics counters.
4474 *
4475 **********************************************************************/
4476 static void
em_update_stats_counters(struct e1000_softc * sc)4477 em_update_stats_counters(struct e1000_softc *sc)
4478 {
4479 u64 prev_xoffrxc = sc->stats.xoffrxc;
4480
4481 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4482 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4483 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4484 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4485 }
4486 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4487 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4488 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4489 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4490
4491 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4492 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4493 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4494 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4495 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4496 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4497 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4498 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4499 /*
4500 ** For watchdog management we need to know if we have been
4501 ** paused during the last interval, so capture that here.
4502 */
4503 if (sc->stats.xoffrxc != prev_xoffrxc)
4504 sc->shared->isc_pause_frames = 1;
4505 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4506 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4507 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4508 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4509 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4510 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4511 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4512 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4513 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4514 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4515 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4516 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4517
4518 /* For the 64-bit byte counters the low dword must be read first. */
4519 /* Both registers clear on the read of the high dword */
4520
4521 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4522 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4523 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4524 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4525
4526 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4527 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4528 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4529 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4530 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4531
4532 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4533 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4534 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4535
4536 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4537 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4538
4539 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4540 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4541 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4542 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4543 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4544 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4545 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4546 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4547 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4548 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4549
4550 /* Interrupt Counts */
4551
4552 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4553 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4554 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4555 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4556 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4557 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4558 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4559 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4560 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4561
4562 if (sc->hw.mac.type >= e1000_82543) {
4563 sc->stats.algnerrc +=
4564 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4565 sc->stats.rxerrc +=
4566 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4567 sc->stats.tncrs +=
4568 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4569 sc->stats.cexterr +=
4570 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4571 sc->stats.tsctc +=
4572 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4573 sc->stats.tsctfc +=
4574 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4575 }
4576 }
4577
4578 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4579 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4580 {
4581 struct e1000_softc *sc = iflib_get_softc(ctx);
4582 if_t ifp = iflib_get_ifp(ctx);
4583
4584 switch (cnt) {
4585 case IFCOUNTER_COLLISIONS:
4586 return (sc->stats.colc);
4587 case IFCOUNTER_IERRORS:
4588 return (sc->dropped_pkts + sc->stats.rxerrc +
4589 sc->stats.crcerrs + sc->stats.algnerrc +
4590 sc->stats.ruc + sc->stats.roc +
4591 sc->stats.mpc + sc->stats.cexterr);
4592 case IFCOUNTER_OERRORS:
4593 return (sc->stats.ecol + sc->stats.latecol +
4594 sc->watchdog_events);
4595 default:
4596 return (if_get_counter_default(ifp, cnt));
4597 }
4598 }
4599
4600 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4601 * @ctx: iflib context
4602 * @event: event code to check
4603 *
4604 * Defaults to returning false for unknown events.
4605 *
4606 * @returns true if iflib needs to reinit the interface
4607 */
4608 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4609 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4610 {
4611 switch (event) {
4612 case IFLIB_RESTART_VLAN_CONFIG:
4613 default:
4614 return (false);
4615 }
4616 }
4617
4618 /* Export a single 32-bit register via a read-only sysctl. */
4619 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4620 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4621 {
4622 struct e1000_softc *sc;
4623 u_int val;
4624
4625 sc = oidp->oid_arg1;
4626 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4627 return (sysctl_handle_int(oidp, &val, 0, req));
4628 }
4629
4630 /* Per queue holdoff interrupt rate handler */
4631 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4632 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4633 {
4634 struct em_rx_queue *rque;
4635 struct em_tx_queue *tque;
4636 struct e1000_hw *hw;
4637 int error;
4638 u32 reg, usec, rate;
4639
4640 bool tx = oidp->oid_arg2;
4641
4642 if (tx) {
4643 tque = oidp->oid_arg1;
4644 hw = &tque->sc->hw;
4645 if (hw->mac.type >= igb_mac_min)
4646 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4647 else if (hw->mac.type == e1000_82574 && tque->msix)
4648 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4649 else
4650 reg = E1000_READ_REG(hw, E1000_ITR);
4651 } else {
4652 rque = oidp->oid_arg1;
4653 hw = &rque->sc->hw;
4654 if (hw->mac.type >= igb_mac_min)
4655 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4656 else if (hw->mac.type == e1000_82574 && rque->msix)
4657 reg = E1000_READ_REG(hw, E1000_EITR_82574(rque->msix));
4658 else
4659 reg = E1000_READ_REG(hw, E1000_ITR);
4660 }
4661
4662 if (hw->mac.type < igb_mac_min) {
4663 if (reg > 0)
4664 rate = EM_INTS_TO_ITR(reg);
4665 else
4666 rate = 0;
4667 } else {
4668 usec = (reg & IGB_QVECTOR_MASK);
4669 if (usec > 0)
4670 rate = IGB_INTS_TO_EITR(usec);
4671 else
4672 rate = 0;
4673 }
4674
4675 error = sysctl_handle_int(oidp, &rate, 0, req);
4676 if (error || !req->newptr)
4677 return error;
4678 return 0;
4679 }
4680
4681 /*
4682 * Add sysctl variables, one per statistic, to the system.
4683 */
4684 static void
em_add_hw_stats(struct e1000_softc * sc)4685 em_add_hw_stats(struct e1000_softc *sc)
4686 {
4687 device_t dev = iflib_get_dev(sc->ctx);
4688 struct em_tx_queue *tx_que = sc->tx_queues;
4689 struct em_rx_queue *rx_que = sc->rx_queues;
4690
4691 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4692 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4693 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4694 struct e1000_hw_stats *stats = &sc->stats;
4695
4696 struct sysctl_oid *stat_node, *queue_node, *int_node;
4697 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4698
4699 #define QUEUE_NAME_LEN 32
4700 char namebuf[QUEUE_NAME_LEN];
4701
4702 /* Driver Statistics */
4703 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4704 CTLFLAG_RD, &sc->dropped_pkts,
4705 "Driver dropped packets");
4706 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4707 CTLFLAG_RD, &sc->link_irq,
4708 "Link MSI-X IRQ Handled");
4709 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4710 CTLFLAG_RD, &sc->rx_overruns,
4711 "RX overruns");
4712 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4713 CTLFLAG_RD, &sc->watchdog_events,
4714 "Watchdog timeouts");
4715 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4716 CTLTYPE_UINT | CTLFLAG_RD,
4717 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4718 "Device Control Register");
4719 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4720 CTLTYPE_UINT | CTLFLAG_RD,
4721 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4722 "Receiver Control Register");
4723 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4724 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4725 "Flow Control High Watermark");
4726 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4727 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4728 "Flow Control Low Watermark");
4729
4730 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4731 struct tx_ring *txr = &tx_que->txr;
4732 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4733 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4734 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4735 queue_list = SYSCTL_CHILDREN(queue_node);
4736
4737 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4738 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4739 true, em_sysctl_interrupt_rate_handler,
4740 "IU", "Interrupt Rate");
4741
4742 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4743 CTLTYPE_UINT | CTLFLAG_RD, sc,
4744 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4745 "Transmit Descriptor Head");
4746 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4747 CTLTYPE_UINT | CTLFLAG_RD, sc,
4748 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4749 "Transmit Descriptor Tail");
4750 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4751 CTLFLAG_RD, &txr->tx_irq,
4752 "Queue MSI-X Transmit Interrupts");
4753 }
4754
4755 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4756 struct rx_ring *rxr = &rx_que->rxr;
4757 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4758 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4759 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4760 queue_list = SYSCTL_CHILDREN(queue_node);
4761
4762 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4763 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4764 false, em_sysctl_interrupt_rate_handler,
4765 "IU", "Interrupt Rate");
4766
4767 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4768 CTLTYPE_UINT | CTLFLAG_RD, sc,
4769 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4770 "Receive Descriptor Head");
4771 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4772 CTLTYPE_UINT | CTLFLAG_RD, sc,
4773 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4774 "Receive Descriptor Tail");
4775 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4776 CTLFLAG_RD, &rxr->rx_irq,
4777 "Queue MSI-X Receive Interrupts");
4778 }
4779
4780 /* MAC stats get their own sub node */
4781
4782 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4783 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4784 stat_list = SYSCTL_CHILDREN(stat_node);
4785
4786 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4787 CTLFLAG_RD, &stats->ecol,
4788 "Excessive collisions");
4789 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4790 CTLFLAG_RD, &stats->scc,
4791 "Single collisions");
4792 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4793 CTLFLAG_RD, &stats->mcc,
4794 "Multiple collisions");
4795 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4796 CTLFLAG_RD, &stats->latecol,
4797 "Late collisions");
4798 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4799 CTLFLAG_RD, &stats->colc,
4800 "Collision Count");
4801 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4802 CTLFLAG_RD, &sc->stats.symerrs,
4803 "Symbol Errors");
4804 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4805 CTLFLAG_RD, &sc->stats.sec,
4806 "Sequence Errors");
4807 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4808 CTLFLAG_RD, &sc->stats.dc,
4809 "Defer Count");
4810 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4811 CTLFLAG_RD, &sc->stats.mpc,
4812 "Missed Packets");
4813 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
4814 CTLFLAG_RD, &sc->stats.rlec,
4815 "Receive Length Errors");
4816 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4817 CTLFLAG_RD, &sc->stats.rnbc,
4818 "Receive No Buffers");
4819 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4820 CTLFLAG_RD, &sc->stats.ruc,
4821 "Receive Undersize");
4822 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4823 CTLFLAG_RD, &sc->stats.rfc,
4824 "Fragmented Packets Received ");
4825 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4826 CTLFLAG_RD, &sc->stats.roc,
4827 "Oversized Packets Received");
4828 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4829 CTLFLAG_RD, &sc->stats.rjc,
4830 "Recevied Jabber");
4831 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4832 CTLFLAG_RD, &sc->stats.rxerrc,
4833 "Receive Errors");
4834 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4835 CTLFLAG_RD, &sc->stats.crcerrs,
4836 "CRC errors");
4837 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4838 CTLFLAG_RD, &sc->stats.algnerrc,
4839 "Alignment Errors");
4840 /* On 82575 these are collision counts */
4841 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4842 CTLFLAG_RD, &sc->stats.cexterr,
4843 "Collision/Carrier extension errors");
4844 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4845 CTLFLAG_RD, &sc->stats.xonrxc,
4846 "XON Received");
4847 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4848 CTLFLAG_RD, &sc->stats.xontxc,
4849 "XON Transmitted");
4850 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4851 CTLFLAG_RD, &sc->stats.xoffrxc,
4852 "XOFF Received");
4853 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4854 CTLFLAG_RD, &sc->stats.xofftxc,
4855 "XOFF Transmitted");
4856 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
4857 CTLFLAG_RD, &sc->stats.fcruc,
4858 "Unsupported Flow Control Received");
4859 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
4860 CTLFLAG_RD, &sc->stats.mgprc,
4861 "Management Packets Received");
4862 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
4863 CTLFLAG_RD, &sc->stats.mgpdc,
4864 "Management Packets Dropped");
4865 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
4866 CTLFLAG_RD, &sc->stats.mgptc,
4867 "Management Packets Transmitted");
4868
4869 /* Packet Reception Stats */
4870 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4871 CTLFLAG_RD, &sc->stats.tpr,
4872 "Total Packets Received ");
4873 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4874 CTLFLAG_RD, &sc->stats.gprc,
4875 "Good Packets Received");
4876 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4877 CTLFLAG_RD, &sc->stats.bprc,
4878 "Broadcast Packets Received");
4879 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4880 CTLFLAG_RD, &sc->stats.mprc,
4881 "Multicast Packets Received");
4882 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4883 CTLFLAG_RD, &sc->stats.prc64,
4884 "64 byte frames received ");
4885 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4886 CTLFLAG_RD, &sc->stats.prc127,
4887 "65-127 byte frames received");
4888 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4889 CTLFLAG_RD, &sc->stats.prc255,
4890 "128-255 byte frames received");
4891 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4892 CTLFLAG_RD, &sc->stats.prc511,
4893 "256-511 byte frames received");
4894 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4895 CTLFLAG_RD, &sc->stats.prc1023,
4896 "512-1023 byte frames received");
4897 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4898 CTLFLAG_RD, &sc->stats.prc1522,
4899 "1023-1522 byte frames received");
4900 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4901 CTLFLAG_RD, &sc->stats.gorc,
4902 "Good Octets Received");
4903
4904 /* Packet Transmission Stats */
4905 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4906 CTLFLAG_RD, &sc->stats.gotc,
4907 "Good Octets Transmitted");
4908 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4909 CTLFLAG_RD, &sc->stats.tpt,
4910 "Total Packets Transmitted");
4911 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4912 CTLFLAG_RD, &sc->stats.gptc,
4913 "Good Packets Transmitted");
4914 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4915 CTLFLAG_RD, &sc->stats.bptc,
4916 "Broadcast Packets Transmitted");
4917 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4918 CTLFLAG_RD, &sc->stats.mptc,
4919 "Multicast Packets Transmitted");
4920 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4921 CTLFLAG_RD, &sc->stats.ptc64,
4922 "64 byte frames transmitted ");
4923 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4924 CTLFLAG_RD, &sc->stats.ptc127,
4925 "65-127 byte frames transmitted");
4926 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4927 CTLFLAG_RD, &sc->stats.ptc255,
4928 "128-255 byte frames transmitted");
4929 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4930 CTLFLAG_RD, &sc->stats.ptc511,
4931 "256-511 byte frames transmitted");
4932 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4933 CTLFLAG_RD, &sc->stats.ptc1023,
4934 "512-1023 byte frames transmitted");
4935 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4936 CTLFLAG_RD, &sc->stats.ptc1522,
4937 "1024-1522 byte frames transmitted");
4938 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4939 CTLFLAG_RD, &sc->stats.tsctc,
4940 "TSO Contexts Transmitted");
4941 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4942 CTLFLAG_RD, &sc->stats.tsctfc,
4943 "TSO Contexts Failed");
4944
4945
4946 /* Interrupt Stats */
4947
4948 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4949 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4950 int_list = SYSCTL_CHILDREN(int_node);
4951
4952 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4953 CTLFLAG_RD, &sc->stats.iac,
4954 "Interrupt Assertion Count");
4955
4956 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4957 CTLFLAG_RD, &sc->stats.icrxptc,
4958 "Interrupt Cause Rx Pkt Timer Expire Count");
4959
4960 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4961 CTLFLAG_RD, &sc->stats.icrxatc,
4962 "Interrupt Cause Rx Abs Timer Expire Count");
4963
4964 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4965 CTLFLAG_RD, &sc->stats.ictxptc,
4966 "Interrupt Cause Tx Pkt Timer Expire Count");
4967
4968 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4969 CTLFLAG_RD, &sc->stats.ictxatc,
4970 "Interrupt Cause Tx Abs Timer Expire Count");
4971
4972 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4973 CTLFLAG_RD, &sc->stats.ictxqec,
4974 "Interrupt Cause Tx Queue Empty Count");
4975
4976 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4977 CTLFLAG_RD, &sc->stats.ictxqmtc,
4978 "Interrupt Cause Tx Queue Min Thresh Count");
4979
4980 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4981 CTLFLAG_RD, &sc->stats.icrxdmtc,
4982 "Interrupt Cause Rx Desc Min Thresh Count");
4983
4984 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4985 CTLFLAG_RD, &sc->stats.icrxoc,
4986 "Interrupt Cause Receiver Overrun Count");
4987 }
4988
4989 static void
em_fw_version_locked(if_ctx_t ctx)4990 em_fw_version_locked(if_ctx_t ctx)
4991 {
4992 struct e1000_softc *sc = iflib_get_softc(ctx);
4993 struct e1000_hw *hw = &sc->hw;
4994 struct e1000_fw_version *fw_ver = &sc->fw_ver;
4995 uint16_t eep = 0;
4996
4997 /*
4998 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
4999 * NVM locking model, so we do it in em_if_attach_pre() and store the
5000 * info in the softc
5001 */
5002 ASSERT_CTX_LOCK_HELD(hw);
5003
5004 *fw_ver = (struct e1000_fw_version){0};
5005
5006 if (hw->mac.type >= igb_mac_min) {
5007 /*
5008 * Use the Shared Code for igb(4)
5009 */
5010 e1000_get_fw_version(hw, fw_ver);
5011 } else {
5012 /*
5013 * Otherwise, EEPROM version should be present on (almost?) all
5014 * devices here
5015 */
5016 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5017 INIT_DEBUGOUT("can't get EEPROM version");
5018 return;
5019 }
5020
5021 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5022 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5023 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5024 }
5025 }
5026
5027 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5028 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5029 {
5030 const char *space = "";
5031
5032 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5033 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5034 fw_ver->eep_minor, fw_ver->eep_build);
5035 space = " ";
5036 }
5037
5038 if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
5039 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5040 space, fw_ver->invm_major, fw_ver->invm_minor,
5041 fw_ver->invm_img_type);
5042 space = " ";
5043 }
5044
5045 if (fw_ver->or_valid) {
5046 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5047 space, fw_ver->or_major, fw_ver->or_build,
5048 fw_ver->or_patch);
5049 space = " ";
5050 }
5051
5052 if (fw_ver->etrack_id)
5053 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5054 }
5055
5056 static void
em_print_fw_version(struct e1000_softc * sc)5057 em_print_fw_version(struct e1000_softc *sc )
5058 {
5059 device_t dev = sc->dev;
5060 struct sbuf *buf;
5061 int error = 0;
5062
5063 buf = sbuf_new_auto();
5064 if (!buf) {
5065 device_printf(dev, "Could not allocate sbuf for output.\n");
5066 return;
5067 }
5068
5069 em_sbuf_fw_version(&sc->fw_ver, buf);
5070
5071 error = sbuf_finish(buf);
5072 if (error)
5073 device_printf(dev, "Error finishing sbuf: %d\n", error);
5074 else if (sbuf_len(buf))
5075 device_printf(dev, "%s\n", sbuf_data(buf));
5076
5077 sbuf_delete(buf);
5078 }
5079
5080 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5081 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5082 {
5083 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5084 device_t dev = sc->dev;
5085 struct sbuf *buf;
5086 int error = 0;
5087
5088 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5089 if (!buf) {
5090 device_printf(dev, "Could not allocate sbuf for output.\n");
5091 return (ENOMEM);
5092 }
5093
5094 em_sbuf_fw_version(&sc->fw_ver, buf);
5095
5096 error = sbuf_finish(buf);
5097 if (error)
5098 device_printf(dev, "Error finishing sbuf: %d\n", error);
5099
5100 sbuf_delete(buf);
5101
5102 return (0);
5103 }
5104
5105 /**********************************************************************
5106 *
5107 * This routine provides a way to dump out the adapter eeprom,
5108 * often a useful debug/service tool. This only dumps the first
5109 * 32 words, stuff that matters is in that extent.
5110 *
5111 **********************************************************************/
5112 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5113 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5114 {
5115 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5116 int error;
5117 int result;
5118
5119 result = -1;
5120 error = sysctl_handle_int(oidp, &result, 0, req);
5121
5122 if (error || !req->newptr)
5123 return (error);
5124
5125 /*
5126 * This value will cause a hex dump of the
5127 * first 32 16-bit words of the EEPROM to
5128 * the screen.
5129 */
5130 if (result == 1)
5131 em_print_nvm_info(sc);
5132
5133 return (error);
5134 }
5135
5136 static void
em_print_nvm_info(struct e1000_softc * sc)5137 em_print_nvm_info(struct e1000_softc *sc)
5138 {
5139 struct e1000_hw *hw = &sc->hw;
5140 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5141 u16 eeprom_data;
5142 int i, j, row = 0;
5143
5144 /* Its a bit crude, but it gets the job done */
5145 printf("\nInterface EEPROM Dump:\n");
5146 printf("Offset\n0x0000 ");
5147
5148 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5149 sx_xlock(iflib_ctx_lock);
5150 ASSERT_CTX_LOCK_HELD(hw);
5151 for (i = 0, j = 0; i < 32; i++, j++) {
5152 if (j == 8) { /* Make the offset block */
5153 j = 0; ++row;
5154 printf("\n0x00%x0 ",row);
5155 }
5156 e1000_read_nvm(hw, i, 1, &eeprom_data);
5157 printf("%04x ", eeprom_data);
5158 }
5159 sx_xunlock(iflib_ctx_lock);
5160 printf("\n");
5161 }
5162
5163 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5164 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5165 {
5166 struct em_int_delay_info *info;
5167 struct e1000_softc *sc;
5168 u32 regval;
5169 int error, usecs, ticks;
5170
5171 info = (struct em_int_delay_info *) arg1;
5172 usecs = info->value;
5173 error = sysctl_handle_int(oidp, &usecs, 0, req);
5174 if (error != 0 || req->newptr == NULL)
5175 return (error);
5176 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5177 return (EINVAL);
5178 info->value = usecs;
5179 ticks = EM_USECS_TO_TICKS(usecs);
5180 if (info->offset == E1000_ITR) /* units are 256ns here */
5181 ticks *= 4;
5182
5183 sc = info->sc;
5184
5185 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5186 regval = (regval & ~0xffff) | (ticks & 0xffff);
5187 /* Handle a few special cases. */
5188 switch (info->offset) {
5189 case E1000_RDTR:
5190 break;
5191 case E1000_TIDV:
5192 if (ticks == 0) {
5193 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5194 /* Don't write 0 into the TIDV register. */
5195 regval++;
5196 } else
5197 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5198 break;
5199 }
5200 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5201 return (0);
5202 }
5203
5204 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5205 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5206 {
5207 struct e1000_softc *sc;
5208 u32 reg, val, shift;
5209 int error, mask;
5210
5211 sc = oidp->oid_arg1;
5212 switch (oidp->oid_arg2) {
5213 case 0:
5214 reg = E1000_DTXTCPFLGL;
5215 shift = 0;
5216 break;
5217 case 1:
5218 reg = E1000_DTXTCPFLGL;
5219 shift = 16;
5220 break;
5221 case 2:
5222 reg = E1000_DTXTCPFLGH;
5223 shift = 0;
5224 break;
5225 default:
5226 return (EINVAL);
5227 break;
5228 }
5229 val = E1000_READ_REG(&sc->hw, reg);
5230 mask = (val >> shift) & 0xfff;
5231 error = sysctl_handle_int(oidp, &mask, 0, req);
5232 if (error != 0 || req->newptr == NULL)
5233 return (error);
5234 if (mask < 0 || mask > 0xfff)
5235 return (EINVAL);
5236 val = (val & ~(0xfff << shift)) | (mask << shift);
5237 E1000_WRITE_REG(&sc->hw, reg, val);
5238 return (0);
5239 }
5240
5241 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5242 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5243 const char *description, struct em_int_delay_info *info,
5244 int offset, int value)
5245 {
5246 info->sc = sc;
5247 info->offset = offset;
5248 info->value = value;
5249 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5250 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5251 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5252 info, 0, em_sysctl_int_delay, "I", description);
5253 }
5254
5255 /*
5256 * Set flow control using sysctl:
5257 * Flow control values:
5258 * 0 - off
5259 * 1 - rx pause
5260 * 2 - tx pause
5261 * 3 - full
5262 */
5263 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5264 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5265 {
5266 int error;
5267 static int input = 3; /* default is full */
5268 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5269
5270 error = sysctl_handle_int(oidp, &input, 0, req);
5271
5272 if ((error) || (req->newptr == NULL))
5273 return (error);
5274
5275 if (input == sc->fc) /* no change? */
5276 return (error);
5277
5278 switch (input) {
5279 case e1000_fc_rx_pause:
5280 case e1000_fc_tx_pause:
5281 case e1000_fc_full:
5282 case e1000_fc_none:
5283 sc->hw.fc.requested_mode = input;
5284 sc->fc = input;
5285 break;
5286 default:
5287 /* Do nothing */
5288 return (error);
5289 }
5290
5291 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5292 e1000_force_mac_fc(&sc->hw);
5293 return (error);
5294 }
5295
5296 /*
5297 * Manage DMA Coalesce:
5298 * Control values:
5299 * 0/1 - off/on
5300 * Legal timer values are:
5301 * 250,500,1000-10000 in thousands
5302 */
5303 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5304 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5305 {
5306 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5307 int error;
5308
5309 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5310
5311 if ((error) || (req->newptr == NULL))
5312 return (error);
5313
5314 switch (sc->dmac) {
5315 case 0:
5316 /* Disabling */
5317 break;
5318 case 1: /* Just enable and use default */
5319 sc->dmac = 1000;
5320 break;
5321 case 250:
5322 case 500:
5323 case 1000:
5324 case 2000:
5325 case 3000:
5326 case 4000:
5327 case 5000:
5328 case 6000:
5329 case 7000:
5330 case 8000:
5331 case 9000:
5332 case 10000:
5333 /* Legal values - allow */
5334 break;
5335 default:
5336 /* Do nothing, illegal value */
5337 sc->dmac = 0;
5338 return (EINVAL);
5339 }
5340 /* Reinit the interface */
5341 em_if_init(sc->ctx);
5342 return (error);
5343 }
5344
5345 /*
5346 * Manage Energy Efficient Ethernet:
5347 * Control values:
5348 * 0/1 - enabled/disabled
5349 */
5350 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5351 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5352 {
5353 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5354 int error, value;
5355
5356 if (sc->hw.mac.type < igb_mac_min)
5357 value = sc->hw.dev_spec.ich8lan.eee_disable;
5358 else
5359 value = sc->hw.dev_spec._82575.eee_disable;
5360 error = sysctl_handle_int(oidp, &value, 0, req);
5361 if (error || req->newptr == NULL)
5362 return (error);
5363 if (sc->hw.mac.type < igb_mac_min)
5364 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5365 else
5366 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5367 em_if_init(sc->ctx);
5368
5369 return (0);
5370 }
5371
5372 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5373 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5374 {
5375 struct e1000_softc *sc;
5376 int error;
5377 int result;
5378
5379 result = -1;
5380 error = sysctl_handle_int(oidp, &result, 0, req);
5381
5382 if (error || !req->newptr)
5383 return (error);
5384
5385 if (result == 1) {
5386 sc = (struct e1000_softc *) arg1;
5387 em_print_debug_info(sc);
5388 }
5389
5390 return (error);
5391 }
5392
5393 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5394 em_get_rs(SYSCTL_HANDLER_ARGS)
5395 {
5396 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5397 int error;
5398 int result;
5399
5400 result = 0;
5401 error = sysctl_handle_int(oidp, &result, 0, req);
5402
5403 if (error || !req->newptr || result != 1)
5404 return (error);
5405 em_dump_rs(sc);
5406
5407 return (error);
5408 }
5409
5410 static void
em_if_debug(if_ctx_t ctx)5411 em_if_debug(if_ctx_t ctx)
5412 {
5413 em_dump_rs(iflib_get_softc(ctx));
5414 }
5415
5416 /*
5417 * This routine is meant to be fluid, add whatever is
5418 * needed for debugging a problem. -jfv
5419 */
5420 static void
em_print_debug_info(struct e1000_softc * sc)5421 em_print_debug_info(struct e1000_softc *sc)
5422 {
5423 device_t dev = iflib_get_dev(sc->ctx);
5424 if_t ifp = iflib_get_ifp(sc->ctx);
5425 struct tx_ring *txr = &sc->tx_queues->txr;
5426 struct rx_ring *rxr = &sc->rx_queues->rxr;
5427
5428 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5429 printf("Interface is RUNNING ");
5430 else
5431 printf("Interface is NOT RUNNING\n");
5432
5433 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5434 printf("and INACTIVE\n");
5435 else
5436 printf("and ACTIVE\n");
5437
5438 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5439 device_printf(dev, "TX Queue %d ------\n", i);
5440 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5441 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5442 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5443
5444 }
5445 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5446 device_printf(dev, "RX Queue %d ------\n", j);
5447 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5448 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5449 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5450 }
5451 }
5452
5453 /*
5454 * 82574 only:
5455 * Write a new value to the EEPROM increasing the number of MSI-X
5456 * vectors from 3 to 5, for proper multiqueue support.
5457 */
5458 static void
em_enable_vectors_82574(if_ctx_t ctx)5459 em_enable_vectors_82574(if_ctx_t ctx)
5460 {
5461 struct e1000_softc *sc = iflib_get_softc(ctx);
5462 struct e1000_hw *hw = &sc->hw;
5463 device_t dev = iflib_get_dev(ctx);
5464 u16 edata;
5465
5466 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5467 if (bootverbose)
5468 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5469 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5470 device_printf(dev, "Writing to eeprom: increasing "
5471 "reported MSI-X vectors from 3 to 5...\n");
5472 edata &= ~(EM_NVM_MSIX_N_MASK);
5473 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5474 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5475 e1000_update_nvm_checksum(hw);
5476 device_printf(dev, "Writing to eeprom: done\n");
5477 }
5478 }
5479