1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015, Joyent, Inc.
25 */
26
27 /* LINTLIBRARY */
28
29 /*
30 * String conversion routine for hardware capabilities types.
31 */
32 #include <strings.h>
33 #include <stdio.h>
34 #include <ctype.h>
35 #include <sys/machelf.h>
36 #include <sys/elf.h>
37 #include <sys/auxv_SPARC.h>
38 #include <sys/auxv_386.h>
39 #include <elfcap.h>
40
41 /*
42 * Given a literal string, generate an initialization for an
43 * elfcap_str_t value.
44 */
45 #define STRDESC(_str) { _str, sizeof (_str) - 1 }
46
47 /*
48 * The items in the elfcap_desc_t arrays are required to be
49 * ordered so that the array index is related to the
50 * c_val field as:
51 *
52 * array[ndx].c_val = 2^ndx
53 *
54 * meaning that
55 *
56 * array[0].c_val = 2^0 = 1
57 * array[1].c_val = 2^1 = 2
58 * array[2].c_val = 2^2 = 4
59 * .
60 * .
61 * .
62 *
63 * Since 0 is not a valid value for the c_val field, we use it to
64 * mark an array entry that is a placeholder. This can happen if there
65 * is a hole in the assigned bits.
66 *
67 * The RESERVED_ELFCAP_DESC macro is used to reserve such holes.
68 */
69 #define RESERVED_ELFCAP_DESC { 0, { NULL, 0 }, { NULL, 0 }, { NULL, 0 } }
70
71 /*
72 * Define separators for output string processing. This must be kept in
73 * sync with the elfcap_fmt_t values in elfcap.h.
74 */
75 static const elfcap_str_t format[] = {
76 STRDESC(" "), /* ELFCAP_FMT_SNGSPACE */
77 STRDESC(" "), /* ELFCAP_FMT_DBLSPACE */
78 STRDESC(" | ") /* ELFCAP_FMT_PIPSPACE */
79 };
80 #define FORMAT_NELTS (sizeof (format) / sizeof (format[0]))
81
82
83
84 /*
85 * Define all known software capabilities in all the supported styles.
86 * Order the capabilities by their numeric value. See SF1_SUNW_
87 * values in sys/elf.h.
88 */
89 static const elfcap_desc_t sf1[ELFCAP_NUM_SF1] = {
90 { /* 0x00000001 */
91 SF1_SUNW_FPKNWN, STRDESC("SF1_SUNW_FPKNWN"),
92 STRDESC("FPKNWN"), STRDESC("fpknwn")
93 },
94 { /* 0x00000002 */
95 SF1_SUNW_FPUSED, STRDESC("SF1_SUNW_FPUSED"),
96 STRDESC("FPUSED"), STRDESC("fpused"),
97 },
98 { /* 0x00000004 */
99 SF1_SUNW_ADDR32, STRDESC("SF1_SUNW_ADDR32"),
100 STRDESC("ADDR32"), STRDESC("addr32"),
101 }
102 };
103
104
105
106 /*
107 * Order the SPARC hardware capabilities to match their numeric value. See
108 * AV_SPARC_ values in sys/auxv_SPARC.h.
109 */
110 static const elfcap_desc_t hw1_sparc[ELFCAP_NUM_HW1_SPARC] = {
111 { /* 0x00000001 */
112 AV_SPARC_MUL32, STRDESC("AV_SPARC_MUL32"),
113 STRDESC("MUL32"), STRDESC("mul32"),
114 },
115 { /* 0x00000002 */
116 AV_SPARC_DIV32, STRDESC("AV_SPARC_DIV32"),
117 STRDESC("DIV32"), STRDESC("div32"),
118 },
119 { /* 0x00000004 */
120 AV_SPARC_FSMULD, STRDESC("AV_SPARC_FSMULD"),
121 STRDESC("FSMULD"), STRDESC("fsmuld"),
122 },
123 { /* 0x00000008 */
124 AV_SPARC_V8PLUS, STRDESC("AV_SPARC_V8PLUS"),
125 STRDESC("V8PLUS"), STRDESC("v8plus"),
126 },
127 { /* 0x00000010 */
128 AV_SPARC_POPC, STRDESC("AV_SPARC_POPC"),
129 STRDESC("POPC"), STRDESC("popc"),
130 },
131 { /* 0x00000020 */
132 AV_SPARC_VIS, STRDESC("AV_SPARC_VIS"),
133 STRDESC("VIS"), STRDESC("vis"),
134 },
135 { /* 0x00000040 */
136 AV_SPARC_VIS2, STRDESC("AV_SPARC_VIS2"),
137 STRDESC("VIS2"), STRDESC("vis2"),
138 },
139 { /* 0x00000080 */
140 AV_SPARC_ASI_BLK_INIT, STRDESC("AV_SPARC_ASI_BLK_INIT"),
141 STRDESC("ASI_BLK_INIT"), STRDESC("asi_blk_init"),
142 },
143 { /* 0x00000100 */
144 AV_SPARC_FMAF, STRDESC("AV_SPARC_FMAF"),
145 STRDESC("FMAF"), STRDESC("fmaf"),
146 },
147 RESERVED_ELFCAP_DESC, /* 0x00000200 */
148 { /* 0x00000400 */
149 AV_SPARC_VIS3, STRDESC("AV_SPARC_VIS3"),
150 STRDESC("VIS3"), STRDESC("vis3"),
151 },
152 { /* 0x00000800 */
153 AV_SPARC_HPC, STRDESC("AV_SPARC_HPC"),
154 STRDESC("HPC"), STRDESC("hpc"),
155 },
156 { /* 0x00001000 */
157 AV_SPARC_RANDOM, STRDESC("AV_SPARC_RANDOM"),
158 STRDESC("RANDOM"), STRDESC("random"),
159 },
160 { /* 0x00002000 */
161 AV_SPARC_TRANS, STRDESC("AV_SPARC_TRANS"),
162 STRDESC("TRANS"), STRDESC("trans"),
163 },
164 { /* 0x00004000 */
165 AV_SPARC_FJFMAU, STRDESC("AV_SPARC_FJFMAU"),
166 STRDESC("FJFMAU"), STRDESC("fjfmau"),
167 },
168 { /* 0x00008000 */
169 AV_SPARC_IMA, STRDESC("AV_SPARC_IMA"),
170 STRDESC("IMA"), STRDESC("ima"),
171 },
172 { /* 0x00010000 */
173 AV_SPARC_ASI_CACHE_SPARING,
174 STRDESC("AV_SPARC_ASI_CACHE_SPARING"),
175 STRDESC("CSPARE"), STRDESC("cspare"),
176 }
177 };
178
179
180
181 /*
182 * Order the Intel hardware capabilities to match their numeric value. See
183 * AV_386_ values in sys/auxv_386.h.
184 */
185 static const elfcap_desc_t hw1_386[ELFCAP_NUM_HW1_386] = {
186 { /* 0x00000001 */
187 AV_386_FPU, STRDESC("AV_386_FPU"),
188 STRDESC("FPU"), STRDESC("fpu"),
189 },
190 { /* 0x00000002 */
191 AV_386_TSC, STRDESC("AV_386_TSC"),
192 STRDESC("TSC"), STRDESC("tsc"),
193 },
194 { /* 0x00000004 */
195 AV_386_CX8, STRDESC("AV_386_CX8"),
196 STRDESC("CX8"), STRDESC("cx8"),
197 },
198 { /* 0x00000008 */
199 AV_386_SEP, STRDESC("AV_386_SEP"),
200 STRDESC("SEP"), STRDESC("sep"),
201 },
202 { /* 0x00000010 */
203 AV_386_AMD_SYSC, STRDESC("AV_386_AMD_SYSC"),
204 STRDESC("AMD_SYSC"), STRDESC("amd_sysc"),
205 },
206 { /* 0x00000020 */
207 AV_386_CMOV, STRDESC("AV_386_CMOV"),
208 STRDESC("CMOV"), STRDESC("cmov"),
209 },
210 { /* 0x00000040 */
211 AV_386_MMX, STRDESC("AV_386_MMX"),
212 STRDESC("MMX"), STRDESC("mmx"),
213 },
214 { /* 0x00000080 */
215 AV_386_AMD_MMX, STRDESC("AV_386_AMD_MMX"),
216 STRDESC("AMD_MMX"), STRDESC("amd_mmx"),
217 },
218 { /* 0x00000100 */
219 AV_386_AMD_3DNow, STRDESC("AV_386_AMD_3DNow"),
220 STRDESC("AMD_3DNow"), STRDESC("amd_3dnow"),
221 },
222 { /* 0x00000200 */
223 AV_386_AMD_3DNowx, STRDESC("AV_386_AMD_3DNowx"),
224 STRDESC("AMD_3DNowx"), STRDESC("amd_3dnowx"),
225 },
226 { /* 0x00000400 */
227 AV_386_FXSR, STRDESC("AV_386_FXSR"),
228 STRDESC("FXSR"), STRDESC("fxsr"),
229 },
230 { /* 0x00000800 */
231 AV_386_SSE, STRDESC("AV_386_SSE"),
232 STRDESC("SSE"), STRDESC("sse"),
233 },
234 { /* 0x00001000 */
235 AV_386_SSE2, STRDESC("AV_386_SSE2"),
236 STRDESC("SSE2"), STRDESC("sse2"),
237 },
238 /* 0x02000 withdrawn - do not assign */
239 { /* 0x00004000 */
240 AV_386_SSE3, STRDESC("AV_386_SSE3"),
241 STRDESC("SSE3"), STRDESC("sse3"),
242 },
243 /* 0x08000 withdrawn - do not assign */
244 { /* 0x00010000 */
245 AV_386_CX16, STRDESC("AV_386_CX16"),
246 STRDESC("CX16"), STRDESC("cx16"),
247 },
248 { /* 0x00020000 */
249 AV_386_AHF, STRDESC("AV_386_AHF"),
250 STRDESC("AHF"), STRDESC("ahf"),
251 },
252 { /* 0x00040000 */
253 AV_386_TSCP, STRDESC("AV_386_TSCP"),
254 STRDESC("TSCP"), STRDESC("tscp"),
255 },
256 { /* 0x00080000 */
257 AV_386_AMD_SSE4A, STRDESC("AV_386_AMD_SSE4A"),
258 STRDESC("AMD_SSE4A"), STRDESC("amd_sse4a"),
259 },
260 { /* 0x00100000 */
261 AV_386_POPCNT, STRDESC("AV_386_POPCNT"),
262 STRDESC("POPCNT"), STRDESC("popcnt"),
263 },
264 { /* 0x00200000 */
265 AV_386_AMD_LZCNT, STRDESC("AV_386_AMD_LZCNT"),
266 STRDESC("AMD_LZCNT"), STRDESC("amd_lzcnt"),
267 },
268 { /* 0x00400000 */
269 AV_386_SSSE3, STRDESC("AV_386_SSSE3"),
270 STRDESC("SSSE3"), STRDESC("ssse3"),
271 },
272 { /* 0x00800000 */
273 AV_386_SSE4_1, STRDESC("AV_386_SSE4_1"),
274 STRDESC("SSE4.1"), STRDESC("sse4.1"),
275 },
276 { /* 0x01000000 */
277 AV_386_SSE4_2, STRDESC("AV_386_SSE4_2"),
278 STRDESC("SSE4.2"), STRDESC("sse4.2"),
279 },
280 { /* 0x02000000 */
281 AV_386_MOVBE, STRDESC("AV_386_MOVBE"),
282 STRDESC("MOVBE"), STRDESC("movbe"),
283 },
284 { /* 0x04000000 */
285 AV_386_AES, STRDESC("AV_386_AES"),
286 STRDESC("AES"), STRDESC("aes"),
287 },
288 { /* 0x08000000 */
289 AV_386_PCLMULQDQ, STRDESC("AV_386_PCLMULQDQ"),
290 STRDESC("PCLMULQDQ"), STRDESC("pclmulqdq"),
291 },
292 { /* 0x10000000 */
293 AV_386_XSAVE, STRDESC("AV_386_XSAVE"),
294 STRDESC("XSAVE"), STRDESC("xsave"),
295 },
296 { /* 0x20000000 */
297 AV_386_AVX, STRDESC("AV_386_AVX"),
298 STRDESC("AVX"), STRDESC("avx"),
299 },
300 { /* 0x40000000 */
301 AV_386_VMX, STRDESC("AV_386_VMX"),
302 STRDESC("VMX"), STRDESC("vmx"),
303 },
304 { /* 0x80000000 */
305 AV_386_AMD_SVM, STRDESC("AV_386_AMD_SVM"),
306 STRDESC("AMD_SVM"), STRDESC("amd_svm"),
307 }
308 };
309
310 static const elfcap_desc_t hw2_386[ELFCAP_NUM_HW2_386] = {
311 { /* 0x00000001 */
312 AV_386_2_F16C, STRDESC("AV_386_2_F16C"),
313 STRDESC("F16C"), STRDESC("f16c"),
314 },
315 { /* 0x00000002 */
316 AV_386_2_RDRAND, STRDESC("AV_386_2_RDRAND"),
317 STRDESC("RDRAND"), STRDESC("rdrand"),
318 },
319 { /* 0x00000004 */
320 AV_386_2_BMI1, STRDESC("AV_386_2_BMI1"),
321 STRDESC("BMI1"), STRDESC("bmi1"),
322 },
323 { /* 0x00000008 */
324 AV_386_2_BMI2, STRDESC("AV_386_2_BMI2"),
325 STRDESC("BMI2"), STRDESC("bmi2"),
326 },
327 { /* 0x00000010 */
328 AV_386_2_FMA, STRDESC("AV_386_2_FMA"),
329 STRDESC("FMA"), STRDESC("fma"),
330 },
331 { /* 0x00000020 */
332 AV_386_2_AVX2, STRDESC("AV_386_2_AVX2"),
333 STRDESC("AVX2"), STRDESC("avx2"),
334 },
335 };
336
337 /*
338 * Concatenate a token to the string buffer. This can be a capabilities token
339 * or a separator token.
340 */
341 static elfcap_err_t
token(char ** ostr,size_t * olen,const elfcap_str_t * nstr)342 token(char **ostr, size_t *olen, const elfcap_str_t *nstr)
343 {
344 if (*olen < nstr->s_len)
345 return (ELFCAP_ERR_BUFOVFL);
346
347 (void) strcat(*ostr, nstr->s_str);
348 *ostr += nstr->s_len;
349 *olen -= nstr->s_len;
350
351 return (ELFCAP_ERR_NONE);
352 }
353
354 static elfcap_err_t
get_str_desc(elfcap_style_t style,const elfcap_desc_t * cdp,const elfcap_str_t ** ret_str)355 get_str_desc(elfcap_style_t style, const elfcap_desc_t *cdp,
356 const elfcap_str_t **ret_str)
357 {
358 switch (ELFCAP_STYLE_MASK(style)) {
359 case ELFCAP_STYLE_FULL:
360 *ret_str = &cdp->c_full;
361 break;
362 case ELFCAP_STYLE_UC:
363 *ret_str = &cdp->c_uc;
364 break;
365 case ELFCAP_STYLE_LC:
366 *ret_str = &cdp->c_lc;
367 break;
368 default:
369 return (ELFCAP_ERR_INVSTYLE);
370 }
371
372 return (ELFCAP_ERR_NONE);
373 }
374
375
376 /*
377 * Expand a capabilities value into the strings defined in the associated
378 * capabilities descriptor.
379 */
380 static elfcap_err_t
expand(elfcap_style_t style,elfcap_mask_t val,const elfcap_desc_t * cdp,uint_t cnum,char * str,size_t slen,elfcap_fmt_t fmt)381 expand(elfcap_style_t style, elfcap_mask_t val, const elfcap_desc_t *cdp,
382 uint_t cnum, char *str, size_t slen, elfcap_fmt_t fmt)
383 {
384 uint_t cnt;
385 int follow = 0, err;
386 const elfcap_str_t *nstr;
387
388 if (val == 0)
389 return (ELFCAP_ERR_NONE);
390
391 for (cnt = cnum; cnt > 0; cnt--) {
392 uint_t mask = cdp[cnt - 1].c_val;
393
394 if ((val & mask) != 0) {
395 if (follow++ && ((err = token(&str, &slen,
396 &format[fmt])) != ELFCAP_ERR_NONE))
397 return (err);
398
399 err = get_str_desc(style, &cdp[cnt - 1], &nstr);
400 if (err != ELFCAP_ERR_NONE)
401 return (err);
402 if ((err = token(&str, &slen, nstr)) != ELFCAP_ERR_NONE)
403 return (err);
404
405 val = val & ~mask;
406 }
407 }
408
409 /*
410 * If there are any unknown bits remaining display the numeric value.
411 */
412 if (val) {
413 if (follow && ((err = token(&str, &slen, &format[fmt])) !=
414 ELFCAP_ERR_NONE))
415 return (err);
416
417 (void) snprintf(str, slen, "0x%x", val);
418 }
419 return (ELFCAP_ERR_NONE);
420 }
421
422 /*
423 * Expand a CA_SUNW_HW_1 value.
424 */
425 elfcap_err_t
elfcap_hw1_to_str(elfcap_style_t style,elfcap_mask_t val,char * str,size_t len,elfcap_fmt_t fmt,ushort_t mach)426 elfcap_hw1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
427 size_t len, elfcap_fmt_t fmt, ushort_t mach)
428 {
429 /*
430 * Initialize the string buffer, and validate the format request.
431 */
432 *str = '\0';
433 if ((fmt < 0) || (fmt >= FORMAT_NELTS))
434 return (ELFCAP_ERR_INVFMT);
435
436 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
437 return (expand(style, val, &hw1_386[0], ELFCAP_NUM_HW1_386,
438 str, len, fmt));
439
440 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) ||
441 (mach == EM_SPARCV9))
442 return (expand(style, val, hw1_sparc, ELFCAP_NUM_HW1_SPARC,
443 str, len, fmt));
444
445 return (ELFCAP_ERR_UNKMACH);
446 }
447
448 /*
449 * Expand a CA_SUNW_HW_2 value.
450 */
451 elfcap_err_t
elfcap_hw2_to_str(elfcap_style_t style,elfcap_mask_t val,char * str,size_t len,elfcap_fmt_t fmt,ushort_t mach)452 elfcap_hw2_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
453 size_t len, elfcap_fmt_t fmt, ushort_t mach)
454 {
455 /*
456 * Initialize the string buffer, and validate the format request.
457 */
458 *str = '\0';
459 if ((fmt < 0) || (fmt >= FORMAT_NELTS))
460 return (ELFCAP_ERR_INVFMT);
461
462 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
463 return (expand(style, val, &hw2_386[0], ELFCAP_NUM_HW2_386,
464 str, len, fmt));
465
466 return (expand(style, val, NULL, 0, str, len, fmt));
467 }
468
469 /*
470 * Expand a CA_SUNW_SF_1 value. Note, that at present these capabilities are
471 * common across all platforms. The use of "mach" is therefore redundant, but
472 * is retained for compatibility with the interface of elfcap_hw1_to_str(), and
473 * possible future expansion.
474 */
475 elfcap_err_t
476 /* ARGSUSED4 */
elfcap_sf1_to_str(elfcap_style_t style,elfcap_mask_t val,char * str,size_t len,elfcap_fmt_t fmt,ushort_t mach)477 elfcap_sf1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str,
478 size_t len, elfcap_fmt_t fmt, ushort_t mach)
479 {
480 /*
481 * Initialize the string buffer, and validate the format request.
482 */
483 *str = '\0';
484 if ((fmt < 0) || (fmt >= FORMAT_NELTS))
485 return (ELFCAP_ERR_INVFMT);
486
487 return (expand(style, val, &sf1[0], ELFCAP_NUM_SF1, str, len, fmt));
488 }
489
490 /*
491 * Given a capability tag type and value, map it to a string representation.
492 */
493 elfcap_err_t
elfcap_tag_to_str(elfcap_style_t style,uint64_t tag,elfcap_mask_t val,char * str,size_t len,elfcap_fmt_t fmt,ushort_t mach)494 elfcap_tag_to_str(elfcap_style_t style, uint64_t tag, elfcap_mask_t val,
495 char *str, size_t len, elfcap_fmt_t fmt, ushort_t mach)
496 {
497 switch (tag) {
498 case CA_SUNW_HW_1:
499 return (elfcap_hw1_to_str(style, val, str, len, fmt, mach));
500
501 case CA_SUNW_SF_1:
502 return (elfcap_sf1_to_str(style, val, str, len, fmt, mach));
503
504 case CA_SUNW_HW_2:
505 return (elfcap_hw2_to_str(style, val, str, len, fmt, mach));
506
507 }
508
509 return (ELFCAP_ERR_UNKTAG);
510 }
511
512 /*
513 * Determine a capabilities value from a capabilities string.
514 */
515 static elfcap_mask_t
value(elfcap_style_t style,const char * str,const elfcap_desc_t * cdp,uint_t cnum)516 value(elfcap_style_t style, const char *str, const elfcap_desc_t *cdp,
517 uint_t cnum)
518 {
519 const elfcap_str_t *nstr;
520 uint_t num;
521 int err;
522
523 for (num = 0; num < cnum; num++) {
524 /*
525 * Skip "reserved" bits. These are unassigned bits in the
526 * middle of the assigned range.
527 */
528 if (cdp[num].c_val == 0)
529 continue;
530
531 if ((err = get_str_desc(style, &cdp[num], &nstr)) != 0)
532 return (err);
533 if (style & ELFCAP_STYLE_F_ICMP) {
534 if (strcasecmp(str, nstr->s_str) == 0)
535 return (cdp[num].c_val);
536 } else {
537 if (strcmp(str, nstr->s_str) == 0)
538 return (cdp[num].c_val);
539 }
540 }
541
542 return (0);
543 }
544
545 elfcap_mask_t
elfcap_sf1_from_str(elfcap_style_t style,const char * str,ushort_t mach)546 elfcap_sf1_from_str(elfcap_style_t style, const char *str, ushort_t mach)
547 {
548 return (value(style, str, &sf1[0], ELFCAP_NUM_SF1));
549 }
550
551 elfcap_mask_t
elfcap_hw1_from_str(elfcap_style_t style,const char * str,ushort_t mach)552 elfcap_hw1_from_str(elfcap_style_t style, const char *str, ushort_t mach)
553 {
554 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
555 return (value(style, str, &hw1_386[0], ELFCAP_NUM_HW1_386));
556
557 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) ||
558 (mach == EM_SPARCV9))
559 return (value(style, str, hw1_sparc, ELFCAP_NUM_HW1_SPARC));
560
561 return (0);
562 }
563 elfcap_mask_t
elfcap_hw2_from_str(elfcap_style_t style,const char * str,ushort_t mach)564 elfcap_hw2_from_str(elfcap_style_t style, const char *str, ushort_t mach)
565 {
566 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64))
567 return (value(style, str, &hw2_386[0], ELFCAP_NUM_HW2_386));
568
569 return (0);
570 }
571
572 /*
573 * Given a capability tag type and value, return the capabilities values
574 * contained in the string.
575 */
576 elfcap_mask_t
elfcap_tag_from_str(elfcap_style_t style,uint64_t tag,const char * str,ushort_t mach)577 elfcap_tag_from_str(elfcap_style_t style, uint64_t tag, const char *str,
578 ushort_t mach)
579 {
580 switch (tag) {
581 case CA_SUNW_HW_1:
582 return (elfcap_hw1_from_str(style, str, mach));
583
584 case CA_SUNW_SF_1:
585 return (elfcap_sf1_from_str(style, str, mach));
586
587 case CA_SUNW_HW_2:
588 return (elfcap_hw2_from_str(style, str, mach));
589 }
590
591 return (0);
592 }
593
594 /*
595 * These functions allow the caller to get direct access to the
596 * cap descriptors.
597 */
598 const elfcap_desc_t *
elfcap_getdesc_hw1_sparc(void)599 elfcap_getdesc_hw1_sparc(void)
600 {
601 return (hw1_sparc);
602 }
603
604 const elfcap_desc_t *
elfcap_getdesc_hw1_386(void)605 elfcap_getdesc_hw1_386(void)
606 {
607 return (hw1_386);
608 }
609
610 const elfcap_desc_t *
elfcap_getdesc_sf1(void)611 elfcap_getdesc_sf1(void)
612 {
613 return (sf1);
614 }
615