xref: /linux/block/elevator.c (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Block device elevator/IO-scheduler.
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  *
7  * 30042000 Jens Axboe <axboe@kernel.dk> :
8  *
9  * Split the elevator a bit so that it is possible to choose a different
10  * one or even write a new "plug in". There are three pieces:
11  * - elevator_fn, inserts a new request in the queue list
12  * - elevator_merge_fn, decides whether a new buffer can be merged with
13  *   an existing request
14  * - elevator_dequeue_fn, called when a request is taken off the active list
15  *
16  * 20082000 Dave Jones <davej@suse.de> :
17  * Removed tests for max-bomb-segments, which was breaking elvtune
18  *  when run without -bN
19  *
20  * Jens:
21  * - Rework again to work with bio instead of buffer_heads
22  * - loose bi_dev comparisons, partition handling is right now
23  * - completely modularize elevator setup and teardown
24  *
25  */
26 #include <linux/kernel.h>
27 #include <linux/fs.h>
28 #include <linux/blkdev.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/blktrace_api.h>
35 #include <linux/hash.h>
36 #include <linux/uaccess.h>
37 #include <linux/pm_runtime.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "elevator.h"
42 #include "blk.h"
43 #include "blk-mq-sched.h"
44 #include "blk-pm.h"
45 #include "blk-wbt.h"
46 #include "blk-cgroup.h"
47 
48 /* Holding context data for changing elevator */
49 struct elv_change_ctx {
50 	const char *name;
51 	bool no_uevent;
52 
53 	/* for unregistering old elevator */
54 	struct elevator_queue *old;
55 	/* for registering new elevator */
56 	struct elevator_queue *new;
57 };
58 
59 static DEFINE_SPINLOCK(elv_list_lock);
60 static LIST_HEAD(elv_list);
61 
62 /*
63  * Merge hash stuff.
64  */
65 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
66 
67 /*
68  * Query io scheduler to see if the current process issuing bio may be
69  * merged with rq.
70  */
elv_iosched_allow_bio_merge(struct request * rq,struct bio * bio)71 static bool elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio)
72 {
73 	struct request_queue *q = rq->q;
74 	struct elevator_queue *e = q->elevator;
75 
76 	if (e->type->ops.allow_merge)
77 		return e->type->ops.allow_merge(q, rq, bio);
78 
79 	return true;
80 }
81 
82 /*
83  * can we safely merge with this request?
84  */
elv_bio_merge_ok(struct request * rq,struct bio * bio)85 bool elv_bio_merge_ok(struct request *rq, struct bio *bio)
86 {
87 	if (!blk_rq_merge_ok(rq, bio))
88 		return false;
89 
90 	if (!elv_iosched_allow_bio_merge(rq, bio))
91 		return false;
92 
93 	return true;
94 }
95 EXPORT_SYMBOL(elv_bio_merge_ok);
96 
97 /**
98  * elevator_match - Check whether @e's name or alias matches @name
99  * @e: Scheduler to test
100  * @name: Elevator name to test
101  *
102  * Return true if the elevator @e's name or alias matches @name.
103  */
elevator_match(const struct elevator_type * e,const char * name)104 static bool elevator_match(const struct elevator_type *e, const char *name)
105 {
106 	return !strcmp(e->elevator_name, name) ||
107 		(e->elevator_alias && !strcmp(e->elevator_alias, name));
108 }
109 
__elevator_find(const char * name)110 static struct elevator_type *__elevator_find(const char *name)
111 {
112 	struct elevator_type *e;
113 
114 	list_for_each_entry(e, &elv_list, list)
115 		if (elevator_match(e, name))
116 			return e;
117 	return NULL;
118 }
119 
elevator_find_get(const char * name)120 static struct elevator_type *elevator_find_get(const char *name)
121 {
122 	struct elevator_type *e;
123 
124 	spin_lock(&elv_list_lock);
125 	e = __elevator_find(name);
126 	if (e && (!elevator_tryget(e)))
127 		e = NULL;
128 	spin_unlock(&elv_list_lock);
129 	return e;
130 }
131 
132 static const struct kobj_type elv_ktype;
133 
elevator_alloc(struct request_queue * q,struct elevator_type * e)134 struct elevator_queue *elevator_alloc(struct request_queue *q,
135 				  struct elevator_type *e)
136 {
137 	struct elevator_queue *eq;
138 
139 	eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
140 	if (unlikely(!eq))
141 		return NULL;
142 
143 	__elevator_get(e);
144 	eq->type = e;
145 	kobject_init(&eq->kobj, &elv_ktype);
146 	mutex_init(&eq->sysfs_lock);
147 	hash_init(eq->hash);
148 
149 	return eq;
150 }
151 EXPORT_SYMBOL(elevator_alloc);
152 
elevator_release(struct kobject * kobj)153 static void elevator_release(struct kobject *kobj)
154 {
155 	struct elevator_queue *e;
156 
157 	e = container_of(kobj, struct elevator_queue, kobj);
158 	elevator_put(e->type);
159 	kfree(e);
160 }
161 
elevator_exit(struct request_queue * q)162 static void elevator_exit(struct request_queue *q)
163 {
164 	struct elevator_queue *e = q->elevator;
165 
166 	lockdep_assert_held(&q->elevator_lock);
167 
168 	ioc_clear_queue(q);
169 	blk_mq_sched_free_rqs(q);
170 
171 	mutex_lock(&e->sysfs_lock);
172 	blk_mq_exit_sched(q, e);
173 	mutex_unlock(&e->sysfs_lock);
174 }
175 
__elv_rqhash_del(struct request * rq)176 static inline void __elv_rqhash_del(struct request *rq)
177 {
178 	hash_del(&rq->hash);
179 	rq->rq_flags &= ~RQF_HASHED;
180 }
181 
elv_rqhash_del(struct request_queue * q,struct request * rq)182 void elv_rqhash_del(struct request_queue *q, struct request *rq)
183 {
184 	if (ELV_ON_HASH(rq))
185 		__elv_rqhash_del(rq);
186 }
187 EXPORT_SYMBOL_GPL(elv_rqhash_del);
188 
elv_rqhash_add(struct request_queue * q,struct request * rq)189 void elv_rqhash_add(struct request_queue *q, struct request *rq)
190 {
191 	struct elevator_queue *e = q->elevator;
192 
193 	BUG_ON(ELV_ON_HASH(rq));
194 	hash_add(e->hash, &rq->hash, rq_hash_key(rq));
195 	rq->rq_flags |= RQF_HASHED;
196 }
197 EXPORT_SYMBOL_GPL(elv_rqhash_add);
198 
elv_rqhash_reposition(struct request_queue * q,struct request * rq)199 void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
200 {
201 	__elv_rqhash_del(rq);
202 	elv_rqhash_add(q, rq);
203 }
204 
elv_rqhash_find(struct request_queue * q,sector_t offset)205 struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
206 {
207 	struct elevator_queue *e = q->elevator;
208 	struct hlist_node *next;
209 	struct request *rq;
210 
211 	hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
212 		BUG_ON(!ELV_ON_HASH(rq));
213 
214 		if (unlikely(!rq_mergeable(rq))) {
215 			__elv_rqhash_del(rq);
216 			continue;
217 		}
218 
219 		if (rq_hash_key(rq) == offset)
220 			return rq;
221 	}
222 
223 	return NULL;
224 }
225 
226 /*
227  * RB-tree support functions for inserting/lookup/removal of requests
228  * in a sorted RB tree.
229  */
elv_rb_add(struct rb_root * root,struct request * rq)230 void elv_rb_add(struct rb_root *root, struct request *rq)
231 {
232 	struct rb_node **p = &root->rb_node;
233 	struct rb_node *parent = NULL;
234 	struct request *__rq;
235 
236 	while (*p) {
237 		parent = *p;
238 		__rq = rb_entry(parent, struct request, rb_node);
239 
240 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
241 			p = &(*p)->rb_left;
242 		else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
243 			p = &(*p)->rb_right;
244 	}
245 
246 	rb_link_node(&rq->rb_node, parent, p);
247 	rb_insert_color(&rq->rb_node, root);
248 }
249 EXPORT_SYMBOL(elv_rb_add);
250 
elv_rb_del(struct rb_root * root,struct request * rq)251 void elv_rb_del(struct rb_root *root, struct request *rq)
252 {
253 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
254 	rb_erase(&rq->rb_node, root);
255 	RB_CLEAR_NODE(&rq->rb_node);
256 }
257 EXPORT_SYMBOL(elv_rb_del);
258 
elv_rb_find(struct rb_root * root,sector_t sector)259 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
260 {
261 	struct rb_node *n = root->rb_node;
262 	struct request *rq;
263 
264 	while (n) {
265 		rq = rb_entry(n, struct request, rb_node);
266 
267 		if (sector < blk_rq_pos(rq))
268 			n = n->rb_left;
269 		else if (sector > blk_rq_pos(rq))
270 			n = n->rb_right;
271 		else
272 			return rq;
273 	}
274 
275 	return NULL;
276 }
277 EXPORT_SYMBOL(elv_rb_find);
278 
elv_merge(struct request_queue * q,struct request ** req,struct bio * bio)279 enum elv_merge elv_merge(struct request_queue *q, struct request **req,
280 		struct bio *bio)
281 {
282 	struct elevator_queue *e = q->elevator;
283 	struct request *__rq;
284 
285 	/*
286 	 * Levels of merges:
287 	 * 	nomerges:  No merges at all attempted
288 	 * 	noxmerges: Only simple one-hit cache try
289 	 * 	merges:	   All merge tries attempted
290 	 */
291 	if (blk_queue_nomerges(q) || !bio_mergeable(bio))
292 		return ELEVATOR_NO_MERGE;
293 
294 	/*
295 	 * First try one-hit cache.
296 	 */
297 	if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) {
298 		enum elv_merge ret = blk_try_merge(q->last_merge, bio);
299 
300 		if (ret != ELEVATOR_NO_MERGE) {
301 			*req = q->last_merge;
302 			return ret;
303 		}
304 	}
305 
306 	if (blk_queue_noxmerges(q))
307 		return ELEVATOR_NO_MERGE;
308 
309 	/*
310 	 * See if our hash lookup can find a potential backmerge.
311 	 */
312 	__rq = elv_rqhash_find(q, bio->bi_iter.bi_sector);
313 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
314 		*req = __rq;
315 
316 		if (blk_discard_mergable(__rq))
317 			return ELEVATOR_DISCARD_MERGE;
318 		return ELEVATOR_BACK_MERGE;
319 	}
320 
321 	if (e->type->ops.request_merge)
322 		return e->type->ops.request_merge(q, req, bio);
323 
324 	return ELEVATOR_NO_MERGE;
325 }
326 
327 /*
328  * Attempt to do an insertion back merge. Only check for the case where
329  * we can append 'rq' to an existing request, so we can throw 'rq' away
330  * afterwards.
331  *
332  * Returns true if we merged, false otherwise. 'free' will contain all
333  * requests that need to be freed.
334  */
elv_attempt_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)335 bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq,
336 			      struct list_head *free)
337 {
338 	struct request *__rq;
339 	bool ret;
340 
341 	if (blk_queue_nomerges(q))
342 		return false;
343 
344 	/*
345 	 * First try one-hit cache.
346 	 */
347 	if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) {
348 		list_add(&rq->queuelist, free);
349 		return true;
350 	}
351 
352 	if (blk_queue_noxmerges(q))
353 		return false;
354 
355 	ret = false;
356 	/*
357 	 * See if our hash lookup can find a potential backmerge.
358 	 */
359 	while (1) {
360 		__rq = elv_rqhash_find(q, blk_rq_pos(rq));
361 		if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
362 			break;
363 
364 		list_add(&rq->queuelist, free);
365 		/* The merged request could be merged with others, try again */
366 		ret = true;
367 		rq = __rq;
368 	}
369 
370 	return ret;
371 }
372 
elv_merged_request(struct request_queue * q,struct request * rq,enum elv_merge type)373 void elv_merged_request(struct request_queue *q, struct request *rq,
374 		enum elv_merge type)
375 {
376 	struct elevator_queue *e = q->elevator;
377 
378 	if (e->type->ops.request_merged)
379 		e->type->ops.request_merged(q, rq, type);
380 
381 	if (type == ELEVATOR_BACK_MERGE)
382 		elv_rqhash_reposition(q, rq);
383 
384 	q->last_merge = rq;
385 }
386 
elv_merge_requests(struct request_queue * q,struct request * rq,struct request * next)387 void elv_merge_requests(struct request_queue *q, struct request *rq,
388 			     struct request *next)
389 {
390 	struct elevator_queue *e = q->elevator;
391 
392 	if (e->type->ops.requests_merged)
393 		e->type->ops.requests_merged(q, rq, next);
394 
395 	elv_rqhash_reposition(q, rq);
396 	q->last_merge = rq;
397 }
398 
elv_latter_request(struct request_queue * q,struct request * rq)399 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
400 {
401 	struct elevator_queue *e = q->elevator;
402 
403 	if (e->type->ops.next_request)
404 		return e->type->ops.next_request(q, rq);
405 
406 	return NULL;
407 }
408 
elv_former_request(struct request_queue * q,struct request * rq)409 struct request *elv_former_request(struct request_queue *q, struct request *rq)
410 {
411 	struct elevator_queue *e = q->elevator;
412 
413 	if (e->type->ops.former_request)
414 		return e->type->ops.former_request(q, rq);
415 
416 	return NULL;
417 }
418 
419 #define to_elv(atr) container_of_const((atr), struct elv_fs_entry, attr)
420 
421 static ssize_t
elv_attr_show(struct kobject * kobj,struct attribute * attr,char * page)422 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
423 {
424 	const struct elv_fs_entry *entry = to_elv(attr);
425 	struct elevator_queue *e;
426 	ssize_t error = -ENODEV;
427 
428 	if (!entry->show)
429 		return -EIO;
430 
431 	e = container_of(kobj, struct elevator_queue, kobj);
432 	mutex_lock(&e->sysfs_lock);
433 	if (!test_bit(ELEVATOR_FLAG_DYING, &e->flags))
434 		error = entry->show(e, page);
435 	mutex_unlock(&e->sysfs_lock);
436 	return error;
437 }
438 
439 static ssize_t
elv_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)440 elv_attr_store(struct kobject *kobj, struct attribute *attr,
441 	       const char *page, size_t length)
442 {
443 	const struct elv_fs_entry *entry = to_elv(attr);
444 	struct elevator_queue *e;
445 	ssize_t error = -ENODEV;
446 
447 	if (!entry->store)
448 		return -EIO;
449 
450 	e = container_of(kobj, struct elevator_queue, kobj);
451 	mutex_lock(&e->sysfs_lock);
452 	if (!test_bit(ELEVATOR_FLAG_DYING, &e->flags))
453 		error = entry->store(e, page, length);
454 	mutex_unlock(&e->sysfs_lock);
455 	return error;
456 }
457 
458 static const struct sysfs_ops elv_sysfs_ops = {
459 	.show	= elv_attr_show,
460 	.store	= elv_attr_store,
461 };
462 
463 static const struct kobj_type elv_ktype = {
464 	.sysfs_ops	= &elv_sysfs_ops,
465 	.release	= elevator_release,
466 };
467 
elv_register_queue(struct request_queue * q,struct elevator_queue * e,bool uevent)468 static int elv_register_queue(struct request_queue *q,
469 			      struct elevator_queue *e,
470 			      bool uevent)
471 {
472 	int error;
473 
474 	error = kobject_add(&e->kobj, &q->disk->queue_kobj, "iosched");
475 	if (!error) {
476 		const struct elv_fs_entry *attr = e->type->elevator_attrs;
477 		if (attr) {
478 			while (attr->attr.name) {
479 				if (sysfs_create_file(&e->kobj, &attr->attr))
480 					break;
481 				attr++;
482 			}
483 		}
484 		if (uevent)
485 			kobject_uevent(&e->kobj, KOBJ_ADD);
486 
487 		/*
488 		 * Sched is initialized, it is ready to export it via
489 		 * debugfs
490 		 */
491 		blk_mq_sched_reg_debugfs(q);
492 		set_bit(ELEVATOR_FLAG_REGISTERED, &e->flags);
493 	}
494 	return error;
495 }
496 
elv_unregister_queue(struct request_queue * q,struct elevator_queue * e)497 static void elv_unregister_queue(struct request_queue *q,
498 				 struct elevator_queue *e)
499 {
500 	if (e && test_and_clear_bit(ELEVATOR_FLAG_REGISTERED, &e->flags)) {
501 		kobject_uevent(&e->kobj, KOBJ_REMOVE);
502 		kobject_del(&e->kobj);
503 
504 		/* unexport via debugfs before exiting sched */
505 		blk_mq_sched_unreg_debugfs(q);
506 	}
507 }
508 
elv_register(struct elevator_type * e)509 int elv_register(struct elevator_type *e)
510 {
511 	/* finish request is mandatory */
512 	if (WARN_ON_ONCE(!e->ops.finish_request))
513 		return -EINVAL;
514 	/* insert_requests and dispatch_request are mandatory */
515 	if (WARN_ON_ONCE(!e->ops.insert_requests || !e->ops.dispatch_request))
516 		return -EINVAL;
517 
518 	/* create icq_cache if requested */
519 	if (e->icq_size) {
520 		if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
521 		    WARN_ON(e->icq_align < __alignof__(struct io_cq)))
522 			return -EINVAL;
523 
524 		snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
525 			 "%s_io_cq", e->elevator_name);
526 		e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
527 						 e->icq_align, 0, NULL);
528 		if (!e->icq_cache)
529 			return -ENOMEM;
530 	}
531 
532 	/* register, don't allow duplicate names */
533 	spin_lock(&elv_list_lock);
534 	if (__elevator_find(e->elevator_name)) {
535 		spin_unlock(&elv_list_lock);
536 		kmem_cache_destroy(e->icq_cache);
537 		return -EBUSY;
538 	}
539 	list_add_tail(&e->list, &elv_list);
540 	spin_unlock(&elv_list_lock);
541 
542 	printk(KERN_INFO "io scheduler %s registered\n", e->elevator_name);
543 
544 	return 0;
545 }
546 EXPORT_SYMBOL_GPL(elv_register);
547 
elv_unregister(struct elevator_type * e)548 void elv_unregister(struct elevator_type *e)
549 {
550 	/* unregister */
551 	spin_lock(&elv_list_lock);
552 	list_del_init(&e->list);
553 	spin_unlock(&elv_list_lock);
554 
555 	/*
556 	 * Destroy icq_cache if it exists.  icq's are RCU managed.  Make
557 	 * sure all RCU operations are complete before proceeding.
558 	 */
559 	if (e->icq_cache) {
560 		rcu_barrier();
561 		kmem_cache_destroy(e->icq_cache);
562 		e->icq_cache = NULL;
563 	}
564 }
565 EXPORT_SYMBOL_GPL(elv_unregister);
566 
567 /*
568  * Switch to new_e io scheduler.
569  *
570  * If switching fails, we are most likely running out of memory and not able
571  * to restore the old io scheduler, so leaving the io scheduler being none.
572  */
elevator_switch(struct request_queue * q,struct elv_change_ctx * ctx)573 static int elevator_switch(struct request_queue *q, struct elv_change_ctx *ctx)
574 {
575 	struct elevator_type *new_e = NULL;
576 	int ret = 0;
577 
578 	WARN_ON_ONCE(q->mq_freeze_depth == 0);
579 	lockdep_assert_held(&q->elevator_lock);
580 
581 	if (strncmp(ctx->name, "none", 4)) {
582 		new_e = elevator_find_get(ctx->name);
583 		if (!new_e)
584 			return -EINVAL;
585 	}
586 
587 	blk_mq_quiesce_queue(q);
588 
589 	if (q->elevator) {
590 		ctx->old = q->elevator;
591 		elevator_exit(q);
592 	}
593 
594 	if (new_e) {
595 		ret = blk_mq_init_sched(q, new_e);
596 		if (ret)
597 			goto out_unfreeze;
598 		ctx->new = q->elevator;
599 	} else {
600 		blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
601 		q->elevator = NULL;
602 		q->nr_requests = q->tag_set->queue_depth;
603 	}
604 	blk_add_trace_msg(q, "elv switch: %s", ctx->name);
605 
606 out_unfreeze:
607 	blk_mq_unquiesce_queue(q);
608 
609 	if (ret) {
610 		pr_warn("elv: switch to \"%s\" failed, falling back to \"none\"\n",
611 			new_e->elevator_name);
612 	}
613 
614 	if (new_e)
615 		elevator_put(new_e);
616 	return ret;
617 }
618 
elv_exit_and_release(struct request_queue * q)619 static void elv_exit_and_release(struct request_queue *q)
620 {
621 	struct elevator_queue *e;
622 	unsigned memflags;
623 
624 	memflags = blk_mq_freeze_queue(q);
625 	mutex_lock(&q->elevator_lock);
626 	e = q->elevator;
627 	elevator_exit(q);
628 	mutex_unlock(&q->elevator_lock);
629 	blk_mq_unfreeze_queue(q, memflags);
630 	if (e)
631 		kobject_put(&e->kobj);
632 }
633 
elevator_change_done(struct request_queue * q,struct elv_change_ctx * ctx)634 static int elevator_change_done(struct request_queue *q,
635 				struct elv_change_ctx *ctx)
636 {
637 	int ret = 0;
638 
639 	if (ctx->old) {
640 		bool enable_wbt = test_bit(ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT,
641 				&ctx->old->flags);
642 
643 		elv_unregister_queue(q, ctx->old);
644 		kobject_put(&ctx->old->kobj);
645 		if (enable_wbt)
646 			wbt_enable_default(q->disk);
647 	}
648 	if (ctx->new) {
649 		ret = elv_register_queue(q, ctx->new, !ctx->no_uevent);
650 		if (ret)
651 			elv_exit_and_release(q);
652 	}
653 	return ret;
654 }
655 
656 /*
657  * Switch this queue to the given IO scheduler.
658  */
elevator_change(struct request_queue * q,struct elv_change_ctx * ctx)659 static int elevator_change(struct request_queue *q, struct elv_change_ctx *ctx)
660 {
661 	unsigned int memflags;
662 	int ret = 0;
663 
664 	lockdep_assert_held(&q->tag_set->update_nr_hwq_lock);
665 
666 	memflags = blk_mq_freeze_queue(q);
667 	/*
668 	 * May be called before adding disk, when there isn't any FS I/O,
669 	 * so freezing queue plus canceling dispatch work is enough to
670 	 * drain any dispatch activities originated from passthrough
671 	 * requests, then no need to quiesce queue which may add long boot
672 	 * latency, especially when lots of disks are involved.
673 	 *
674 	 * Disk isn't added yet, so verifying queue lock only manually.
675 	 */
676 	blk_mq_cancel_work_sync(q);
677 	mutex_lock(&q->elevator_lock);
678 	if (!(q->elevator && elevator_match(q->elevator->type, ctx->name)))
679 		ret = elevator_switch(q, ctx);
680 	mutex_unlock(&q->elevator_lock);
681 	blk_mq_unfreeze_queue(q, memflags);
682 	if (!ret)
683 		ret = elevator_change_done(q, ctx);
684 
685 	return ret;
686 }
687 
688 /*
689  * The I/O scheduler depends on the number of hardware queues, this forces a
690  * reattachment when nr_hw_queues changes.
691  */
elv_update_nr_hw_queues(struct request_queue * q,struct elevator_type * e)692 void elv_update_nr_hw_queues(struct request_queue *q, struct elevator_type *e)
693 {
694 	struct elv_change_ctx ctx = {};
695 	int ret = -ENODEV;
696 
697 	WARN_ON_ONCE(q->mq_freeze_depth == 0);
698 
699 	if (e && !blk_queue_dying(q) && blk_queue_registered(q)) {
700 		ctx.name = e->elevator_name;
701 
702 		mutex_lock(&q->elevator_lock);
703 		/* force to reattach elevator after nr_hw_queue is updated */
704 		ret = elevator_switch(q, &ctx);
705 		mutex_unlock(&q->elevator_lock);
706 	}
707 	blk_mq_unfreeze_queue_nomemrestore(q);
708 	if (!ret)
709 		WARN_ON_ONCE(elevator_change_done(q, &ctx));
710 }
711 
712 /*
713  * Use the default elevator settings. If the chosen elevator initialization
714  * fails, fall back to the "none" elevator (no elevator).
715  */
elevator_set_default(struct request_queue * q)716 void elevator_set_default(struct request_queue *q)
717 {
718 	struct elv_change_ctx ctx = {
719 		.name = "mq-deadline",
720 		.no_uevent = true,
721 	};
722 	int err;
723 	struct elevator_type *e;
724 
725 	/* now we allow to switch elevator */
726 	blk_queue_flag_clear(QUEUE_FLAG_NO_ELV_SWITCH, q);
727 
728 	if (q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT)
729 		return;
730 
731 	/*
732 	 * For single queue devices, default to using mq-deadline. If we
733 	 * have multiple queues or mq-deadline is not available, default
734 	 * to "none".
735 	 */
736 	e = elevator_find_get(ctx.name);
737 	if (!e)
738 		return;
739 
740 	if ((q->nr_hw_queues == 1 ||
741 			blk_mq_is_shared_tags(q->tag_set->flags))) {
742 		err = elevator_change(q, &ctx);
743 		if (err < 0)
744 			pr_warn("\"%s\" elevator initialization, failed %d, falling back to \"none\"\n",
745 					ctx.name, err);
746 	}
747 	elevator_put(e);
748 }
749 
elevator_set_none(struct request_queue * q)750 void elevator_set_none(struct request_queue *q)
751 {
752 	struct elv_change_ctx ctx = {
753 		.name	= "none",
754 	};
755 	int err;
756 
757 	err = elevator_change(q, &ctx);
758 	if (err < 0)
759 		pr_warn("%s: set none elevator failed %d\n", __func__, err);
760 }
761 
elv_iosched_load_module(const char * elevator_name)762 static void elv_iosched_load_module(const char *elevator_name)
763 {
764 	struct elevator_type *found;
765 
766 	spin_lock(&elv_list_lock);
767 	found = __elevator_find(elevator_name);
768 	spin_unlock(&elv_list_lock);
769 
770 	if (!found)
771 		request_module("%s-iosched", elevator_name);
772 }
773 
elv_iosched_store(struct gendisk * disk,const char * buf,size_t count)774 ssize_t elv_iosched_store(struct gendisk *disk, const char *buf,
775 			  size_t count)
776 {
777 	char elevator_name[ELV_NAME_MAX];
778 	struct elv_change_ctx ctx = {};
779 	int ret;
780 	struct request_queue *q = disk->queue;
781 	struct blk_mq_tag_set *set = q->tag_set;
782 
783 	/* Make sure queue is not in the middle of being removed */
784 	if (!blk_queue_registered(q))
785 		return -ENOENT;
786 
787 	/*
788 	 * If the attribute needs to load a module, do it before freezing the
789 	 * queue to ensure that the module file can be read when the request
790 	 * queue is the one for the device storing the module file.
791 	 */
792 	strscpy(elevator_name, buf, sizeof(elevator_name));
793 	ctx.name = strstrip(elevator_name);
794 
795 	elv_iosched_load_module(ctx.name);
796 
797 	down_read(&set->update_nr_hwq_lock);
798 	if (!blk_queue_no_elv_switch(q)) {
799 		ret = elevator_change(q, &ctx);
800 		if (!ret)
801 			ret = count;
802 	} else {
803 		ret = -ENOENT;
804 	}
805 	up_read(&set->update_nr_hwq_lock);
806 	return ret;
807 }
808 
elv_iosched_show(struct gendisk * disk,char * name)809 ssize_t elv_iosched_show(struct gendisk *disk, char *name)
810 {
811 	struct request_queue *q = disk->queue;
812 	struct elevator_type *cur = NULL, *e;
813 	int len = 0;
814 
815 	mutex_lock(&q->elevator_lock);
816 	if (!q->elevator) {
817 		len += sprintf(name+len, "[none] ");
818 	} else {
819 		len += sprintf(name+len, "none ");
820 		cur = q->elevator->type;
821 	}
822 
823 	spin_lock(&elv_list_lock);
824 	list_for_each_entry(e, &elv_list, list) {
825 		if (e == cur)
826 			len += sprintf(name+len, "[%s] ", e->elevator_name);
827 		else
828 			len += sprintf(name+len, "%s ", e->elevator_name);
829 	}
830 	spin_unlock(&elv_list_lock);
831 
832 	len += sprintf(name+len, "\n");
833 	mutex_unlock(&q->elevator_lock);
834 
835 	return len;
836 }
837 
elv_rb_former_request(struct request_queue * q,struct request * rq)838 struct request *elv_rb_former_request(struct request_queue *q,
839 				      struct request *rq)
840 {
841 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
842 
843 	if (rbprev)
844 		return rb_entry_rq(rbprev);
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(elv_rb_former_request);
849 
elv_rb_latter_request(struct request_queue * q,struct request * rq)850 struct request *elv_rb_latter_request(struct request_queue *q,
851 				      struct request *rq)
852 {
853 	struct rb_node *rbnext = rb_next(&rq->rb_node);
854 
855 	if (rbnext)
856 		return rb_entry_rq(rbnext);
857 
858 	return NULL;
859 }
860 EXPORT_SYMBOL(elv_rb_latter_request);
861 
elevator_setup(char * str)862 static int __init elevator_setup(char *str)
863 {
864 	pr_warn("Kernel parameter elevator= does not have any effect anymore.\n"
865 		"Please use sysfs to set IO scheduler for individual devices.\n");
866 	return 1;
867 }
868 
869 __setup("elevator=", elevator_setup);
870