xref: /titanic_44/usr/src/uts/common/io/usb/hcd/ehci/ehci_util.c (revision 6a634c9dca3093f3922e4b7ab826d7bdf17bf78e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * EHCI Host Controller Driver (EHCI)
28  *
29  * The EHCI driver is a software driver which interfaces to the Universal
30  * Serial Bus layer (USBA) and the Host Controller (HC). The interface to
31  * the Host Controller is defined by the EHCI Host Controller Interface.
32  *
33  * This module contains the main EHCI driver code which handles all USB
34  * transfers, bandwidth allocations and other general functionalities.
35  */
36 
37 #include <sys/usb/hcd/ehci/ehcid.h>
38 #include <sys/usb/hcd/ehci/ehci_isoch.h>
39 #include <sys/usb/hcd/ehci/ehci_xfer.h>
40 
41 /*
42  * EHCI MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms except for the
45  * EHCI controller of ULI1575 South bridge.
46  */
47 boolean_t ehci_enable_msi = B_TRUE;
48 
49 /* Pointer to the state structure */
50 extern void *ehci_statep;
51 
52 extern void ehci_handle_endpoint_reclaimation(ehci_state_t *);
53 
54 extern uint_t ehci_vt62x2_workaround;
55 extern int force_ehci_off;
56 
57 /* Adjustable variables for the size of the pools */
58 int ehci_qh_pool_size = EHCI_QH_POOL_SIZE;
59 int ehci_qtd_pool_size = EHCI_QTD_POOL_SIZE;
60 
61 /*
62  * Initialize the values which the order of 32ms intr qh are executed
63  * by the host controller in the lattice tree.
64  */
65 static uchar_t ehci_index[EHCI_NUM_INTR_QH_LISTS] =
66 	{0x00, 0x10, 0x08, 0x18,
67 	0x04, 0x14, 0x0c, 0x1c,
68 	0x02, 0x12, 0x0a, 0x1a,
69 	0x06, 0x16, 0x0e, 0x1e,
70 	0x01, 0x11, 0x09, 0x19,
71 	0x05, 0x15, 0x0d, 0x1d,
72 	0x03, 0x13, 0x0b, 0x1b,
73 	0x07, 0x17, 0x0f, 0x1f};
74 
75 /*
76  * Initialize the values which are used to calculate start split mask
77  * for the low/full/high speed interrupt and isochronous endpoints.
78  */
79 static uint_t ehci_start_split_mask[15] = {
80 		/*
81 		 * For high/full/low speed usb devices. For high speed
82 		 * device with polling interval greater than or equal
83 		 * to 8us (125us).
84 		 */
85 		0x01,	/* 00000001 */
86 		0x02,	/* 00000010 */
87 		0x04,	/* 00000100 */
88 		0x08,	/* 00001000 */
89 		0x10,	/* 00010000 */
90 		0x20,	/* 00100000 */
91 		0x40,	/* 01000000 */
92 		0x80,	/* 10000000 */
93 
94 		/* Only for high speed devices with polling interval 4us */
95 		0x11,	/* 00010001 */
96 		0x22,	/* 00100010 */
97 		0x44,	/* 01000100 */
98 		0x88,	/* 10001000 */
99 
100 		/* Only for high speed devices with polling interval 2us */
101 		0x55,	/* 01010101 */
102 		0xaa,	/* 10101010 */
103 
104 		/* Only for high speed devices with polling interval 1us */
105 		0xff	/* 11111111 */
106 };
107 
108 /*
109  * Initialize the values which are used to calculate complete split mask
110  * for the low/full speed interrupt and isochronous endpoints.
111  */
112 static uint_t ehci_intr_complete_split_mask[7] = {
113 		/* Only full/low speed devices */
114 		0x1c,	/* 00011100 */
115 		0x38,	/* 00111000 */
116 		0x70,	/* 01110000 */
117 		0xe0,	/* 11100000 */
118 		0x00,	/* Need FSTN feature */
119 		0x00,	/* Need FSTN feature */
120 		0x00	/* Need FSTN feature */
121 };
122 
123 
124 /*
125  * EHCI Internal Function Prototypes
126  */
127 
128 /* Host Controller Driver (HCD) initialization functions */
129 void		ehci_set_dma_attributes(ehci_state_t	*ehcip);
130 int		ehci_allocate_pools(ehci_state_t	*ehcip);
131 void		ehci_decode_ddi_dma_addr_bind_handle_result(
132 				ehci_state_t		*ehcip,
133 				int			result);
134 int		ehci_map_regs(ehci_state_t		*ehcip);
135 int		ehci_register_intrs_and_init_mutex(
136 				ehci_state_t		*ehcip);
137 static int	ehci_add_intrs(ehci_state_t		*ehcip,
138 				int			intr_type);
139 int		ehci_init_ctlr(ehci_state_t		*ehcip,
140 				int			init_type);
141 static int	ehci_take_control(ehci_state_t		*ehcip);
142 static int	ehci_init_periodic_frame_lst_table(
143 				ehci_state_t		*ehcip);
144 static void	ehci_build_interrupt_lattice(
145 				ehci_state_t		*ehcip);
146 usba_hcdi_ops_t *ehci_alloc_hcdi_ops(ehci_state_t	*ehcip);
147 
148 /* Host Controller Driver (HCD) deinitialization functions */
149 int		ehci_cleanup(ehci_state_t		*ehcip);
150 static void	ehci_rem_intrs(ehci_state_t		*ehcip);
151 int		ehci_cpr_suspend(ehci_state_t		*ehcip);
152 int		ehci_cpr_resume(ehci_state_t		*ehcip);
153 
154 /* Bandwidth Allocation functions */
155 int		ehci_allocate_bandwidth(ehci_state_t	*ehcip,
156 				usba_pipe_handle_data_t	*ph,
157 				uint_t			*pnode,
158 				uchar_t			*smask,
159 				uchar_t			*cmask);
160 static int	ehci_allocate_high_speed_bandwidth(
161 				ehci_state_t		*ehcip,
162 				usba_pipe_handle_data_t	*ph,
163 				uint_t			*hnode,
164 				uchar_t			*smask,
165 				uchar_t			*cmask);
166 static int	ehci_allocate_classic_tt_bandwidth(
167 				ehci_state_t		*ehcip,
168 				usba_pipe_handle_data_t	*ph,
169 				uint_t			pnode);
170 void		ehci_deallocate_bandwidth(ehci_state_t	*ehcip,
171 				usba_pipe_handle_data_t	*ph,
172 				uint_t			pnode,
173 				uchar_t			smask,
174 				uchar_t			cmask);
175 static void	ehci_deallocate_high_speed_bandwidth(
176 				ehci_state_t		*ehcip,
177 				usba_pipe_handle_data_t	*ph,
178 				uint_t			hnode,
179 				uchar_t			smask,
180 				uchar_t			cmask);
181 static void	ehci_deallocate_classic_tt_bandwidth(
182 				ehci_state_t		*ehcip,
183 				usba_pipe_handle_data_t	*ph,
184 				uint_t			pnode);
185 static int	ehci_compute_high_speed_bandwidth(
186 				ehci_state_t		*ehcip,
187 				usb_ep_descr_t		*endpoint,
188 				usb_port_status_t	port_status,
189 				uint_t			*sbandwidth,
190 				uint_t			*cbandwidth);
191 static int	ehci_compute_classic_bandwidth(
192 				usb_ep_descr_t		*endpoint,
193 				usb_port_status_t	port_status,
194 				uint_t			*bandwidth);
195 int		ehci_adjust_polling_interval(
196 				ehci_state_t		*ehcip,
197 				usb_ep_descr_t		*endpoint,
198 				usb_port_status_t	port_status);
199 static int	ehci_adjust_high_speed_polling_interval(
200 				ehci_state_t		*ehcip,
201 				usb_ep_descr_t		*endpoint);
202 static uint_t	ehci_lattice_height(uint_t		interval);
203 static uint_t	ehci_lattice_parent(uint_t		node);
204 static uint_t	ehci_find_periodic_node(
205 				uint_t			leaf,
206 				int			interval);
207 static uint_t	ehci_leftmost_leaf(uint_t		node,
208 				uint_t			height);
209 static uint_t	ehci_pow_2(uint_t x);
210 static uint_t	ehci_log_2(uint_t x);
211 static int	ehci_find_bestfit_hs_mask(
212 				ehci_state_t		*ehcip,
213 				uchar_t			*smask,
214 				uint_t			*pnode,
215 				usb_ep_descr_t		*endpoint,
216 				uint_t			bandwidth,
217 				int			interval);
218 static int	ehci_find_bestfit_ls_intr_mask(
219 				ehci_state_t		*ehcip,
220 				uchar_t			*smask,
221 				uchar_t			*cmask,
222 				uint_t			*pnode,
223 				uint_t			sbandwidth,
224 				uint_t			cbandwidth,
225 				int			interval);
226 static int	ehci_find_bestfit_sitd_in_mask(
227 				ehci_state_t		*ehcip,
228 				uchar_t			*smask,
229 				uchar_t			*cmask,
230 				uint_t			*pnode,
231 				uint_t			sbandwidth,
232 				uint_t			cbandwidth,
233 				int			interval);
234 static int	ehci_find_bestfit_sitd_out_mask(
235 				ehci_state_t		*ehcip,
236 				uchar_t			*smask,
237 				uint_t			*pnode,
238 				uint_t			sbandwidth,
239 				int			interval);
240 static uint_t	ehci_calculate_bw_availability_mask(
241 				ehci_state_t		*ehcip,
242 				uint_t			bandwidth,
243 				int			leaf,
244 				int			leaf_count,
245 				uchar_t			*bw_mask);
246 static void	ehci_update_bw_availability(
247 				ehci_state_t		*ehcip,
248 				int			bandwidth,
249 				int			leftmost_leaf,
250 				int			leaf_count,
251 				uchar_t			mask);
252 
253 /* Miscellaneous functions */
254 ehci_state_t	*ehci_obtain_state(
255 				dev_info_t		*dip);
256 int		ehci_state_is_operational(
257 				ehci_state_t		*ehcip);
258 int		ehci_do_soft_reset(
259 				ehci_state_t		*ehcip);
260 usb_req_attrs_t ehci_get_xfer_attrs(ehci_state_t	*ehcip,
261 				ehci_pipe_private_t	*pp,
262 				ehci_trans_wrapper_t	*tw);
263 usb_frame_number_t ehci_get_current_frame_number(
264 				ehci_state_t		*ehcip);
265 static void	ehci_cpr_cleanup(
266 				ehci_state_t		*ehcip);
267 int		ehci_wait_for_sof(
268 				ehci_state_t		*ehcip);
269 void		ehci_toggle_scheduler(
270 				ehci_state_t		*ehcip);
271 void		ehci_print_caps(ehci_state_t		*ehcip);
272 void		ehci_print_regs(ehci_state_t		*ehcip);
273 void		ehci_print_qh(ehci_state_t		*ehcip,
274 				ehci_qh_t		*qh);
275 void		ehci_print_qtd(ehci_state_t		*ehcip,
276 				ehci_qtd_t		*qtd);
277 void		ehci_create_stats(ehci_state_t		*ehcip);
278 void		ehci_destroy_stats(ehci_state_t		*ehcip);
279 void		ehci_do_intrs_stats(ehci_state_t	*ehcip,
280 				int		val);
281 void		ehci_do_byte_stats(ehci_state_t		*ehcip,
282 				size_t		len,
283 				uint8_t		attr,
284 				uint8_t		addr);
285 
286 /*
287  * check if this ehci controller can support PM
288  */
289 int
ehci_hcdi_pm_support(dev_info_t * dip)290 ehci_hcdi_pm_support(dev_info_t *dip)
291 {
292 	ehci_state_t *ehcip = ddi_get_soft_state(ehci_statep,
293 	    ddi_get_instance(dip));
294 
295 	if (((ehcip->ehci_vendor_id == PCI_VENDOR_NEC_COMBO) &&
296 	    (ehcip->ehci_device_id == PCI_DEVICE_NEC_COMBO)) ||
297 
298 	    ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
299 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) ||
300 
301 	    (ehcip->ehci_vendor_id == PCI_VENDOR_VIA)) {
302 
303 		return (USB_SUCCESS);
304 	}
305 
306 	return (USB_FAILURE);
307 }
308 
309 void
ehci_dma_attr_workaround(ehci_state_t * ehcip)310 ehci_dma_attr_workaround(ehci_state_t	*ehcip)
311 {
312 	/*
313 	 * Some Nvidia chips can not handle qh dma address above 2G.
314 	 * The bit 31 of the dma address might be omitted and it will
315 	 * cause system crash or other unpredicable result. So force
316 	 * the dma address allocated below 2G to make ehci work.
317 	 */
318 	if (PCI_VENDOR_NVIDIA == ehcip->ehci_vendor_id) {
319 		switch (ehcip->ehci_device_id) {
320 			case PCI_DEVICE_NVIDIA_CK804:
321 			case PCI_DEVICE_NVIDIA_MCP04:
322 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
323 				    ehcip->ehci_log_hdl,
324 				    "ehci_dma_attr_workaround: NVIDIA dma "
325 				    "workaround enabled, force dma address "
326 				    "to be allocated below 2G");
327 				ehcip->ehci_dma_attr.dma_attr_addr_hi =
328 				    0x7fffffffull;
329 				break;
330 			default:
331 				break;
332 
333 		}
334 	}
335 }
336 
337 /*
338  * Host Controller Driver (HCD) initialization functions
339  */
340 
341 /*
342  * ehci_set_dma_attributes:
343  *
344  * Set the limits in the DMA attributes structure. Most of the values used
345  * in the  DMA limit structures are the default values as specified by	the
346  * Writing PCI device drivers document.
347  */
348 void
ehci_set_dma_attributes(ehci_state_t * ehcip)349 ehci_set_dma_attributes(ehci_state_t	*ehcip)
350 {
351 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
352 	    "ehci_set_dma_attributes:");
353 
354 	/* Initialize the DMA attributes */
355 	ehcip->ehci_dma_attr.dma_attr_version = DMA_ATTR_V0;
356 	ehcip->ehci_dma_attr.dma_attr_addr_lo = 0x00000000ull;
357 	ehcip->ehci_dma_attr.dma_attr_addr_hi = 0xfffffffeull;
358 
359 	/* 32 bit addressing */
360 	ehcip->ehci_dma_attr.dma_attr_count_max = EHCI_DMA_ATTR_COUNT_MAX;
361 
362 	/* Byte alignment */
363 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
364 
365 	/*
366 	 * Since PCI  specification is byte alignment, the
367 	 * burst size field should be set to 1 for PCI devices.
368 	 */
369 	ehcip->ehci_dma_attr.dma_attr_burstsizes = 0x1;
370 
371 	ehcip->ehci_dma_attr.dma_attr_minxfer = 0x1;
372 	ehcip->ehci_dma_attr.dma_attr_maxxfer = EHCI_DMA_ATTR_MAX_XFER;
373 	ehcip->ehci_dma_attr.dma_attr_seg = 0xffffffffull;
374 	ehcip->ehci_dma_attr.dma_attr_sgllen = 1;
375 	ehcip->ehci_dma_attr.dma_attr_granular = EHCI_DMA_ATTR_GRANULAR;
376 	ehcip->ehci_dma_attr.dma_attr_flags = 0;
377 	ehci_dma_attr_workaround(ehcip);
378 }
379 
380 
381 /*
382  * ehci_allocate_pools:
383  *
384  * Allocate the system memory for the Endpoint Descriptor (QH) and for the
385  * Transfer Descriptor (QTD) pools. Both QH and QTD structures must be aligned
386  * to a 16 byte boundary.
387  */
388 int
ehci_allocate_pools(ehci_state_t * ehcip)389 ehci_allocate_pools(ehci_state_t	*ehcip)
390 {
391 	ddi_device_acc_attr_t		dev_attr;
392 	size_t				real_length;
393 	int				result;
394 	uint_t				ccount;
395 	int				i;
396 
397 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
398 	    "ehci_allocate_pools:");
399 
400 	/* The host controller will be little endian */
401 	dev_attr.devacc_attr_version	= DDI_DEVICE_ATTR_V0;
402 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
403 	dev_attr.devacc_attr_dataorder	= DDI_STRICTORDER_ACC;
404 
405 	/* Byte alignment */
406 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_TD_QH_ALIGNMENT;
407 
408 	/* Allocate the QTD pool DMA handle */
409 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
410 	    DDI_DMA_SLEEP, 0,
411 	    &ehcip->ehci_qtd_pool_dma_handle) != DDI_SUCCESS) {
412 
413 		goto failure;
414 	}
415 
416 	/* Allocate the memory for the QTD pool */
417 	if (ddi_dma_mem_alloc(ehcip->ehci_qtd_pool_dma_handle,
418 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t),
419 	    &dev_attr,
420 	    DDI_DMA_CONSISTENT,
421 	    DDI_DMA_SLEEP,
422 	    0,
423 	    (caddr_t *)&ehcip->ehci_qtd_pool_addr,
424 	    &real_length,
425 	    &ehcip->ehci_qtd_pool_mem_handle)) {
426 
427 		goto failure;
428 	}
429 
430 	/* Map the QTD pool into the I/O address space */
431 	result = ddi_dma_addr_bind_handle(
432 	    ehcip->ehci_qtd_pool_dma_handle,
433 	    NULL,
434 	    (caddr_t)ehcip->ehci_qtd_pool_addr,
435 	    real_length,
436 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
437 	    DDI_DMA_SLEEP,
438 	    NULL,
439 	    &ehcip->ehci_qtd_pool_cookie,
440 	    &ccount);
441 
442 	bzero((void *)ehcip->ehci_qtd_pool_addr,
443 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t));
444 
445 	/* Process the result */
446 	if (result == DDI_DMA_MAPPED) {
447 		/* The cookie count should be 1 */
448 		if (ccount != 1) {
449 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
450 			    "ehci_allocate_pools: More than 1 cookie");
451 
452 		goto failure;
453 		}
454 	} else {
455 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
456 		    "ehci_allocate_pools: Result = %d", result);
457 
458 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
459 
460 		goto failure;
461 	}
462 
463 	/*
464 	 * DMA addresses for QTD pools are bound
465 	 */
466 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QTD_POOL_BOUND;
467 
468 	/* Initialize the QTD pool */
469 	for (i = 0; i < ehci_qtd_pool_size; i ++) {
470 		Set_QTD(ehcip->ehci_qtd_pool_addr[i].
471 		    qtd_state, EHCI_QTD_FREE);
472 	}
473 
474 	/* Allocate the QTD pool DMA handle */
475 	if (ddi_dma_alloc_handle(ehcip->ehci_dip,
476 	    &ehcip->ehci_dma_attr,
477 	    DDI_DMA_SLEEP,
478 	    0,
479 	    &ehcip->ehci_qh_pool_dma_handle) != DDI_SUCCESS) {
480 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
481 		    "ehci_allocate_pools: ddi_dma_alloc_handle failed");
482 
483 		goto failure;
484 	}
485 
486 	/* Allocate the memory for the QH pool */
487 	if (ddi_dma_mem_alloc(ehcip->ehci_qh_pool_dma_handle,
488 	    ehci_qh_pool_size * sizeof (ehci_qh_t),
489 	    &dev_attr,
490 	    DDI_DMA_CONSISTENT,
491 	    DDI_DMA_SLEEP,
492 	    0,
493 	    (caddr_t *)&ehcip->ehci_qh_pool_addr,
494 	    &real_length,
495 	    &ehcip->ehci_qh_pool_mem_handle) != DDI_SUCCESS) {
496 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
497 		    "ehci_allocate_pools: ddi_dma_mem_alloc failed");
498 
499 		goto failure;
500 	}
501 
502 	result = ddi_dma_addr_bind_handle(ehcip->ehci_qh_pool_dma_handle,
503 	    NULL,
504 	    (caddr_t)ehcip->ehci_qh_pool_addr,
505 	    real_length,
506 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
507 	    DDI_DMA_SLEEP,
508 	    NULL,
509 	    &ehcip->ehci_qh_pool_cookie,
510 	    &ccount);
511 
512 	bzero((void *)ehcip->ehci_qh_pool_addr,
513 	    ehci_qh_pool_size * sizeof (ehci_qh_t));
514 
515 	/* Process the result */
516 	if (result == DDI_DMA_MAPPED) {
517 		/* The cookie count should be 1 */
518 		if (ccount != 1) {
519 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
520 			    "ehci_allocate_pools: More than 1 cookie");
521 
522 			goto failure;
523 		}
524 	} else {
525 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
526 
527 		goto failure;
528 	}
529 
530 	/*
531 	 * DMA addresses for QH pools are bound
532 	 */
533 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QH_POOL_BOUND;
534 
535 	/* Initialize the QH pool */
536 	for (i = 0; i < ehci_qh_pool_size; i ++) {
537 		Set_QH(ehcip->ehci_qh_pool_addr[i].qh_state, EHCI_QH_FREE);
538 	}
539 
540 	/* Byte alignment */
541 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
542 
543 	return (DDI_SUCCESS);
544 
545 failure:
546 	/* Byte alignment */
547 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
548 
549 	return (DDI_FAILURE);
550 }
551 
552 
553 /*
554  * ehci_decode_ddi_dma_addr_bind_handle_result:
555  *
556  * Process the return values of ddi_dma_addr_bind_handle()
557  */
558 void
ehci_decode_ddi_dma_addr_bind_handle_result(ehci_state_t * ehcip,int result)559 ehci_decode_ddi_dma_addr_bind_handle_result(
560 	ehci_state_t	*ehcip,
561 	int		result)
562 {
563 	USB_DPRINTF_L2(PRINT_MASK_ALLOC, ehcip->ehci_log_hdl,
564 	    "ehci_decode_ddi_dma_addr_bind_handle_result:");
565 
566 	switch (result) {
567 	case DDI_DMA_PARTIAL_MAP:
568 		USB_DPRINTF_L2(PRINT_MASK_ALL, ehcip->ehci_log_hdl,
569 		    "Partial transfers not allowed");
570 		break;
571 	case DDI_DMA_INUSE:
572 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
573 		    "Handle is in use");
574 		break;
575 	case DDI_DMA_NORESOURCES:
576 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
577 		    "No resources");
578 		break;
579 	case DDI_DMA_NOMAPPING:
580 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
581 		    "No mapping");
582 		break;
583 	case DDI_DMA_TOOBIG:
584 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
585 		    "Object is too big");
586 		break;
587 	default:
588 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
589 		    "Unknown dma error");
590 	}
591 }
592 
593 
594 /*
595  * ehci_map_regs:
596  *
597  * The Host Controller (HC) contains a set of on-chip operational registers
598  * and which should be mapped into a non-cacheable portion of the  system
599  * addressable space.
600  */
601 int
ehci_map_regs(ehci_state_t * ehcip)602 ehci_map_regs(ehci_state_t	*ehcip)
603 {
604 	ddi_device_acc_attr_t	attr;
605 	uint16_t		cmd_reg;
606 	uint_t			length;
607 
608 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_map_regs:");
609 
610 	/* Check to make sure we have memory access */
611 	if (pci_config_setup(ehcip->ehci_dip,
612 	    &ehcip->ehci_config_handle) != DDI_SUCCESS) {
613 
614 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
615 		    "ehci_map_regs: Config error");
616 
617 		return (DDI_FAILURE);
618 	}
619 
620 	/* Make sure Memory Access Enable is set */
621 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
622 
623 	if (!(cmd_reg & PCI_COMM_MAE)) {
624 
625 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
626 		    "ehci_map_regs: Memory base address access disabled");
627 
628 		return (DDI_FAILURE);
629 	}
630 
631 	/* The host controller will be little endian */
632 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
633 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
634 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
635 
636 	/* Map in EHCI Capability registers */
637 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
638 	    (caddr_t *)&ehcip->ehci_capsp, 0,
639 	    sizeof (ehci_caps_t), &attr,
640 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
641 
642 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
643 		    "ehci_map_regs: Map setup error");
644 
645 		return (DDI_FAILURE);
646 	}
647 
648 	length = ddi_get8(ehcip->ehci_caps_handle,
649 	    (uint8_t *)&ehcip->ehci_capsp->ehci_caps_length);
650 
651 	/* Free the original mapping */
652 	ddi_regs_map_free(&ehcip->ehci_caps_handle);
653 
654 	/* Re-map in EHCI Capability and Operational registers */
655 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
656 	    (caddr_t *)&ehcip->ehci_capsp, 0,
657 	    length + sizeof (ehci_regs_t), &attr,
658 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
659 
660 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
661 		    "ehci_map_regs: Map setup error");
662 
663 		return (DDI_FAILURE);
664 	}
665 
666 	/* Get the pointer to EHCI Operational Register */
667 	ehcip->ehci_regsp = (ehci_regs_t *)
668 	    ((uintptr_t)ehcip->ehci_capsp + length);
669 
670 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
671 	    "ehci_map_regs: Capsp 0x%p Regsp 0x%p\n",
672 	    (void *)ehcip->ehci_capsp, (void *)ehcip->ehci_regsp);
673 
674 	return (DDI_SUCCESS);
675 }
676 
677 /*
678  * The following simulated polling is for debugging purposes only.
679  * It is activated on x86 by setting usb-polling=true in GRUB or ehci.conf.
680  */
681 static int
ehci_is_polled(dev_info_t * dip)682 ehci_is_polled(dev_info_t *dip)
683 {
684 	int ret;
685 	char *propval;
686 
687 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
688 	    "usb-polling", &propval) != DDI_SUCCESS)
689 
690 		return (0);
691 
692 	ret = (strcmp(propval, "true") == 0);
693 	ddi_prop_free(propval);
694 
695 	return (ret);
696 }
697 
698 static void
ehci_poll_intr(void * arg)699 ehci_poll_intr(void *arg)
700 {
701 	/* poll every msec */
702 	for (;;) {
703 		(void) ehci_intr(arg, NULL);
704 		delay(drv_usectohz(1000));
705 	}
706 }
707 
708 /*
709  * ehci_register_intrs_and_init_mutex:
710  *
711  * Register interrupts and initialize each mutex and condition variables
712  */
713 int
ehci_register_intrs_and_init_mutex(ehci_state_t * ehcip)714 ehci_register_intrs_and_init_mutex(ehci_state_t	*ehcip)
715 {
716 	int	intr_types;
717 
718 #if defined(__x86)
719 	uint8_t iline;
720 #endif
721 
722 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
723 	    "ehci_register_intrs_and_init_mutex:");
724 
725 	/*
726 	 * There is a known MSI hardware bug with the EHCI controller
727 	 * of ULI1575 southbridge. Hence MSI is disabled for this chip.
728 	 */
729 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
730 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) {
731 		ehcip->ehci_msi_enabled = B_FALSE;
732 	} else {
733 		/* Set the MSI enable flag from the global EHCI MSI tunable */
734 		ehcip->ehci_msi_enabled = ehci_enable_msi;
735 	}
736 
737 	/* launch polling thread instead of enabling pci interrupt */
738 	if (ehci_is_polled(ehcip->ehci_dip)) {
739 		extern pri_t maxclsyspri;
740 
741 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
742 		    "ehci_register_intrs_and_init_mutex: "
743 		    "running in simulated polled mode");
744 
745 		(void) thread_create(NULL, 0, ehci_poll_intr, ehcip, 0, &p0,
746 		    TS_RUN, maxclsyspri);
747 
748 		goto skip_intr;
749 	}
750 
751 #if defined(__x86)
752 	/*
753 	 * Make sure that the interrupt pin is connected to the
754 	 * interrupt controller on x86.	 Interrupt line 255 means
755 	 * "unknown" or "not connected" (PCI spec 6.2.4, footnote 43).
756 	 * If we would return failure when interrupt line equals 255, then
757 	 * high speed devices will be routed to companion host controllers.
758 	 * However, it is not necessary to return failure here, and
759 	 * o/uhci codes don't check the interrupt line either.
760 	 * But it's good to log a message here for debug purposes.
761 	 */
762 	iline = pci_config_get8(ehcip->ehci_config_handle,
763 	    PCI_CONF_ILINE);
764 
765 	if (iline == 255) {
766 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
767 		    "ehci_register_intrs_and_init_mutex: "
768 		    "interrupt line value out of range (%d)",
769 		    iline);
770 	}
771 #endif	/* __x86 */
772 
773 	/* Get supported interrupt types */
774 	if (ddi_intr_get_supported_types(ehcip->ehci_dip,
775 	    &intr_types) != DDI_SUCCESS) {
776 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
777 		    "ehci_register_intrs_and_init_mutex: "
778 		    "ddi_intr_get_supported_types failed");
779 
780 		return (DDI_FAILURE);
781 	}
782 
783 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
784 	    "ehci_register_intrs_and_init_mutex: "
785 	    "supported interrupt types 0x%x", intr_types);
786 
787 	if ((intr_types & DDI_INTR_TYPE_MSI) && ehcip->ehci_msi_enabled) {
788 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_MSI)
789 		    != DDI_SUCCESS) {
790 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
791 			    "ehci_register_intrs_and_init_mutex: MSI "
792 			    "registration failed, trying FIXED interrupt \n");
793 		} else {
794 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
795 			    "ehci_register_intrs_and_init_mutex: "
796 			    "Using MSI interrupt type\n");
797 
798 			ehcip->ehci_intr_type = DDI_INTR_TYPE_MSI;
799 			ehcip->ehci_flags |= EHCI_INTR;
800 		}
801 	}
802 
803 	if ((!(ehcip->ehci_flags & EHCI_INTR)) &&
804 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
805 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_FIXED)
806 		    != DDI_SUCCESS) {
807 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
808 			    "ehci_register_intrs_and_init_mutex: "
809 			    "FIXED interrupt registration failed\n");
810 
811 			return (DDI_FAILURE);
812 		}
813 
814 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
815 		    "ehci_register_intrs_and_init_mutex: "
816 		    "Using FIXED interrupt type\n");
817 
818 		ehcip->ehci_intr_type = DDI_INTR_TYPE_FIXED;
819 		ehcip->ehci_flags |= EHCI_INTR;
820 	}
821 
822 skip_intr:
823 	/* Create prototype for advance on async schedule */
824 	cv_init(&ehcip->ehci_async_schedule_advance_cv,
825 	    NULL, CV_DRIVER, NULL);
826 
827 	return (DDI_SUCCESS);
828 }
829 
830 
831 /*
832  * ehci_add_intrs:
833  *
834  * Register FIXED or MSI interrupts.
835  */
836 static int
ehci_add_intrs(ehci_state_t * ehcip,int intr_type)837 ehci_add_intrs(ehci_state_t	*ehcip,
838 		int		intr_type)
839 {
840 	int	actual, avail, intr_size, count = 0;
841 	int	i, flag, ret;
842 
843 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
844 	    "ehci_add_intrs: interrupt type 0x%x", intr_type);
845 
846 	/* Get number of interrupts */
847 	ret = ddi_intr_get_nintrs(ehcip->ehci_dip, intr_type, &count);
848 	if ((ret != DDI_SUCCESS) || (count == 0)) {
849 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
850 		    "ehci_add_intrs: ddi_intr_get_nintrs() failure, "
851 		    "ret: %d, count: %d", ret, count);
852 
853 		return (DDI_FAILURE);
854 	}
855 
856 	/* Get number of available interrupts */
857 	ret = ddi_intr_get_navail(ehcip->ehci_dip, intr_type, &avail);
858 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
859 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
860 		    "ehci_add_intrs: ddi_intr_get_navail() failure, "
861 		    "ret: %d, count: %d", ret, count);
862 
863 		return (DDI_FAILURE);
864 	}
865 
866 	if (avail < count) {
867 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
868 		    "ehci_add_intrs: ehci_add_intrs: nintrs () "
869 		    "returned %d, navail returned %d\n", count, avail);
870 	}
871 
872 	/* Allocate an array of interrupt handles */
873 	intr_size = count * sizeof (ddi_intr_handle_t);
874 	ehcip->ehci_htable = kmem_zalloc(intr_size, KM_SLEEP);
875 
876 	flag = (intr_type == DDI_INTR_TYPE_MSI) ?
877 	    DDI_INTR_ALLOC_STRICT:DDI_INTR_ALLOC_NORMAL;
878 
879 	/* call ddi_intr_alloc() */
880 	ret = ddi_intr_alloc(ehcip->ehci_dip, ehcip->ehci_htable,
881 	    intr_type, 0, count, &actual, flag);
882 
883 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
884 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
885 		    "ehci_add_intrs: ddi_intr_alloc() failed %d", ret);
886 
887 		kmem_free(ehcip->ehci_htable, intr_size);
888 
889 		return (DDI_FAILURE);
890 	}
891 
892 	if (actual < count) {
893 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
894 		    "ehci_add_intrs: Requested: %d, Received: %d\n",
895 		    count, actual);
896 
897 		for (i = 0; i < actual; i++)
898 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
899 
900 		kmem_free(ehcip->ehci_htable, intr_size);
901 
902 		return (DDI_FAILURE);
903 	}
904 
905 	ehcip->ehci_intr_cnt = actual;
906 
907 	if ((ret = ddi_intr_get_pri(ehcip->ehci_htable[0],
908 	    &ehcip->ehci_intr_pri)) != DDI_SUCCESS) {
909 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
910 		    "ehci_add_intrs: ddi_intr_get_pri() failed %d", ret);
911 
912 		for (i = 0; i < actual; i++)
913 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
914 
915 		kmem_free(ehcip->ehci_htable, intr_size);
916 
917 		return (DDI_FAILURE);
918 	}
919 
920 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
921 	    "ehci_add_intrs: Supported Interrupt priority 0x%x",
922 	    ehcip->ehci_intr_pri);
923 
924 	/* Test for high level mutex */
925 	if (ehcip->ehci_intr_pri >= ddi_intr_get_hilevel_pri()) {
926 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
927 		    "ehci_add_intrs: Hi level interrupt not supported");
928 
929 		for (i = 0; i < actual; i++)
930 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
931 
932 		kmem_free(ehcip->ehci_htable, intr_size);
933 
934 		return (DDI_FAILURE);
935 	}
936 
937 	/* Initialize the mutex */
938 	mutex_init(&ehcip->ehci_int_mutex, NULL, MUTEX_DRIVER,
939 	    DDI_INTR_PRI(ehcip->ehci_intr_pri));
940 
941 	/* Call ddi_intr_add_handler() */
942 	for (i = 0; i < actual; i++) {
943 		if ((ret = ddi_intr_add_handler(ehcip->ehci_htable[i],
944 		    ehci_intr, (caddr_t)ehcip,
945 		    (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
946 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
947 			    "ehci_add_intrs:ddi_intr_add_handler() "
948 			    "failed %d", ret);
949 
950 			for (i = 0; i < actual; i++)
951 				(void) ddi_intr_free(ehcip->ehci_htable[i]);
952 
953 			mutex_destroy(&ehcip->ehci_int_mutex);
954 			kmem_free(ehcip->ehci_htable, intr_size);
955 
956 			return (DDI_FAILURE);
957 		}
958 	}
959 
960 	if ((ret = ddi_intr_get_cap(ehcip->ehci_htable[0],
961 	    &ehcip->ehci_intr_cap)) != DDI_SUCCESS) {
962 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
963 		    "ehci_add_intrs: ddi_intr_get_cap() failed %d", ret);
964 
965 		for (i = 0; i < actual; i++) {
966 			(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
967 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
968 		}
969 
970 		mutex_destroy(&ehcip->ehci_int_mutex);
971 		kmem_free(ehcip->ehci_htable, intr_size);
972 
973 		return (DDI_FAILURE);
974 	}
975 
976 	/* Enable all interrupts */
977 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
978 		/* Call ddi_intr_block_enable() for MSI interrupts */
979 		(void) ddi_intr_block_enable(ehcip->ehci_htable,
980 		    ehcip->ehci_intr_cnt);
981 	} else {
982 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
983 		for (i = 0; i < ehcip->ehci_intr_cnt; i++)
984 			(void) ddi_intr_enable(ehcip->ehci_htable[i]);
985 	}
986 
987 	return (DDI_SUCCESS);
988 }
989 
990 
991 /*
992  * ehci_init_hardware
993  *
994  * take control from BIOS, reset EHCI host controller, and check version, etc.
995  */
996 int
ehci_init_hardware(ehci_state_t * ehcip)997 ehci_init_hardware(ehci_state_t	*ehcip)
998 {
999 	int			revision;
1000 	uint16_t		cmd_reg;
1001 	int			abort_on_BIOS_take_over_failure;
1002 
1003 	/* Take control from the BIOS */
1004 	if (ehci_take_control(ehcip) != USB_SUCCESS) {
1005 
1006 		/* read .conf file properties */
1007 		abort_on_BIOS_take_over_failure =
1008 		    ddi_prop_get_int(DDI_DEV_T_ANY,
1009 		    ehcip->ehci_dip, DDI_PROP_DONTPASS,
1010 		    "abort-on-BIOS-take-over-failure", 0);
1011 
1012 		if (abort_on_BIOS_take_over_failure) {
1013 
1014 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1015 			    "Unable to take control from BIOS.");
1016 
1017 			return (DDI_FAILURE);
1018 		}
1019 
1020 		USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1021 		    "Unable to take control from BIOS. Failure is ignored.");
1022 	}
1023 
1024 	/* set Memory Master Enable */
1025 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
1026 	cmd_reg |= (PCI_COMM_MAE | PCI_COMM_ME);
1027 	pci_config_put16(ehcip->ehci_config_handle, PCI_CONF_COMM, cmd_reg);
1028 
1029 	/* Reset the EHCI host controller */
1030 	Set_OpReg(ehci_command,
1031 	    Get_OpReg(ehci_command) | EHCI_CMD_HOST_CTRL_RESET);
1032 
1033 	/* Wait 10ms for reset to complete */
1034 	drv_usecwait(EHCI_RESET_TIMEWAIT);
1035 
1036 	ASSERT(Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED);
1037 
1038 	/* Verify the version number */
1039 	revision = Get_16Cap(ehci_version);
1040 
1041 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1042 	    "ehci_init_hardware: Revision 0x%x", revision);
1043 
1044 	/*
1045 	 * EHCI driver supports EHCI host controllers compliant to
1046 	 * 0.95 and higher revisions of EHCI specifications.
1047 	 */
1048 	if (revision < EHCI_REVISION_0_95) {
1049 
1050 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1051 		    "Revision 0x%x is not supported", revision);
1052 
1053 		return (DDI_FAILURE);
1054 	}
1055 
1056 	if (ehcip->ehci_hc_soft_state == EHCI_CTLR_INIT_STATE) {
1057 
1058 		/* Initialize the Frame list base address area */
1059 		if (ehci_init_periodic_frame_lst_table(ehcip) != DDI_SUCCESS) {
1060 
1061 			return (DDI_FAILURE);
1062 		}
1063 
1064 		/*
1065 		 * For performance reasons, do not insert anything into the
1066 		 * asynchronous list or activate the asynch list schedule until
1067 		 * there is a valid QH.
1068 		 */
1069 		ehcip->ehci_head_of_async_sched_list = NULL;
1070 
1071 		if ((ehcip->ehci_vendor_id == PCI_VENDOR_VIA) &&
1072 		    (ehci_vt62x2_workaround & EHCI_VIA_ASYNC_SCHEDULE)) {
1073 			/*
1074 			 * The driver is unable to reliably stop the asynch
1075 			 * list schedule on VIA VT6202 controllers, so we
1076 			 * always keep a dummy QH on the list.
1077 			 */
1078 			ehci_qh_t *dummy_async_qh =
1079 			    ehci_alloc_qh(ehcip, NULL, NULL);
1080 
1081 			Set_QH(dummy_async_qh->qh_link_ptr,
1082 			    ((ehci_qh_cpu_to_iommu(ehcip, dummy_async_qh) &
1083 			    EHCI_QH_LINK_PTR) | EHCI_QH_LINK_REF_QH));
1084 
1085 			/* Set this QH to be the "head" of the circular list */
1086 			Set_QH(dummy_async_qh->qh_ctrl,
1087 			    Get_QH(dummy_async_qh->qh_ctrl) |
1088 			    EHCI_QH_CTRL_RECLAIM_HEAD);
1089 
1090 			Set_QH(dummy_async_qh->qh_next_qtd,
1091 			    EHCI_QH_NEXT_QTD_PTR_VALID);
1092 			Set_QH(dummy_async_qh->qh_alt_next_qtd,
1093 			    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1094 
1095 			ehcip->ehci_head_of_async_sched_list = dummy_async_qh;
1096 			ehcip->ehci_open_async_count++;
1097 			ehcip->ehci_async_req_count++;
1098 		}
1099 	}
1100 
1101 	return (DDI_SUCCESS);
1102 }
1103 
1104 
1105 /*
1106  * ehci_init_workaround
1107  *
1108  * some workarounds during initializing ehci
1109  */
1110 int
ehci_init_workaround(ehci_state_t * ehcip)1111 ehci_init_workaround(ehci_state_t	*ehcip)
1112 {
1113 	/*
1114 	 * Acer Labs Inc. M5273 EHCI controller does not send
1115 	 * interrupts unless the Root hub ports are routed to the EHCI
1116 	 * host controller; so route the ports now, before we test for
1117 	 * the presence of SOFs interrupts.
1118 	 */
1119 	if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1120 		/* Route all Root hub ports to EHCI host controller */
1121 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1122 	}
1123 
1124 	/*
1125 	 * VIA chips have some issues and may not work reliably.
1126 	 * Revisions >= 0x80 are part of a southbridge and appear
1127 	 * to be reliable with the workaround.
1128 	 * For revisions < 0x80, if we	were bound using class
1129 	 * complain, else proceed. This will allow the user to
1130 	 * bind ehci specifically to this chip and not have the
1131 	 * warnings
1132 	 */
1133 	if (ehcip->ehci_vendor_id == PCI_VENDOR_VIA) {
1134 
1135 		if (ehcip->ehci_rev_id >= PCI_VIA_REVISION_6212) {
1136 
1137 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1138 			    "ehci_init_workaround: Applying VIA workarounds "
1139 			    "for the 6212 chip.");
1140 
1141 		} else if (strcmp(DEVI(ehcip->ehci_dip)->devi_binding_name,
1142 		    "pciclass,0c0320") == 0) {
1143 
1144 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1145 			    "Due to recently discovered incompatibilities");
1146 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1147 			    "with this USB controller, USB2.x transfer");
1148 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1149 			    "support has been disabled. This device will");
1150 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1151 			    "continue to function as a USB1.x controller.");
1152 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1153 			    "If you are interested in enabling USB2.x");
1154 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1155 			    "support please, refer to the ehci(7D) man page.");
1156 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1157 			    "Please also refer to www.sun.com/io for");
1158 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1159 			    "Solaris Ready products and to");
1160 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1161 			    "www.sun.com/bigadmin/hcl for additional");
1162 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1163 			    "compatible USB products.");
1164 
1165 			return (DDI_FAILURE);
1166 
1167 			} else if (ehci_vt62x2_workaround) {
1168 
1169 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1170 			    "Applying VIA workarounds");
1171 		}
1172 	}
1173 
1174 	return (DDI_SUCCESS);
1175 }
1176 
1177 
1178 /*
1179  * ehci_init_check_status
1180  *
1181  * Check if EHCI host controller is running
1182  */
1183 int
ehci_init_check_status(ehci_state_t * ehcip)1184 ehci_init_check_status(ehci_state_t	*ehcip)
1185 {
1186 	clock_t			sof_time_wait;
1187 
1188 	/*
1189 	 * Get the number of clock ticks to wait.
1190 	 * This is based on the maximum time it takes for a frame list rollover
1191 	 * and maximum time wait for SOFs to begin.
1192 	 */
1193 	sof_time_wait = drv_usectohz((EHCI_NUM_PERIODIC_FRAME_LISTS * 1000) +
1194 	    EHCI_SOF_TIMEWAIT);
1195 
1196 	/* Tell the ISR to broadcast ehci_async_schedule_advance_cv */
1197 	ehcip->ehci_flags |= EHCI_CV_INTR;
1198 
1199 	/* We need to add a delay to allow the chip time to start running */
1200 	(void) cv_reltimedwait(&ehcip->ehci_async_schedule_advance_cv,
1201 	    &ehcip->ehci_int_mutex, sof_time_wait, TR_CLOCK_TICK);
1202 
1203 	/*
1204 	 * Check EHCI host controller is running, otherwise return failure.
1205 	 */
1206 	if ((ehcip->ehci_flags & EHCI_CV_INTR) ||
1207 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
1208 
1209 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1210 		    "No SOF interrupts have been received, this USB EHCI host"
1211 		    "controller is unusable");
1212 
1213 		/*
1214 		 * Route all Root hub ports to Classic host
1215 		 * controller, in case this is an unusable ALI M5273
1216 		 * EHCI controller.
1217 		 */
1218 		if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1219 			Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1220 		}
1221 
1222 		return (DDI_FAILURE);
1223 	}
1224 
1225 	return (DDI_SUCCESS);
1226 }
1227 
1228 
1229 /*
1230  * ehci_init_ctlr:
1231  *
1232  * Initialize the Host Controller (HC).
1233  */
1234 int
ehci_init_ctlr(ehci_state_t * ehcip,int init_type)1235 ehci_init_ctlr(ehci_state_t	*ehcip,
1236 		int		init_type)
1237 {
1238 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_init_ctlr:");
1239 
1240 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1241 
1242 		if (ehci_init_hardware(ehcip) != DDI_SUCCESS) {
1243 
1244 			return (DDI_FAILURE);
1245 		}
1246 	}
1247 
1248 	/*
1249 	 * Check for Asynchronous schedule park capability feature. If this
1250 	 * feature is supported, then, program ehci command register with
1251 	 * appropriate values..
1252 	 */
1253 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_ASYNC_SCHED_PARK_CAP) {
1254 
1255 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1256 		    "ehci_init_ctlr: Async park mode is supported");
1257 
1258 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1259 		    (EHCI_CMD_ASYNC_PARK_ENABLE |
1260 		    EHCI_CMD_ASYNC_PARK_COUNT_3)));
1261 	}
1262 
1263 	/*
1264 	 * Check for programmable periodic frame list feature. If this
1265 	 * feature is supported, then, program ehci command register with
1266 	 * 1024 frame list value.
1267 	 */
1268 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_PROG_FRAME_LIST_FLAG) {
1269 
1270 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1271 		    "ehci_init_ctlr: Variable programmable periodic "
1272 		    "frame list is supported");
1273 
1274 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1275 		    EHCI_CMD_FRAME_1024_SIZE));
1276 	}
1277 
1278 	/*
1279 	 * Currently EHCI driver doesn't support 64 bit addressing.
1280 	 *
1281 	 * If we are using 64 bit addressing capability, then, program
1282 	 * ehci_ctrl_segment register with 4 Gigabyte segment where all
1283 	 * of the interface data structures are allocated.
1284 	 */
1285 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_64BIT_ADDR_CAP) {
1286 
1287 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1288 		    "ehci_init_ctlr: EHCI driver doesn't support "
1289 		    "64 bit addressing");
1290 	}
1291 
1292 	/* 64 bit addressing is not support */
1293 	Set_OpReg(ehci_ctrl_segment, 0x00000000);
1294 
1295 	/* Turn on/off the schedulers */
1296 	ehci_toggle_scheduler(ehcip);
1297 
1298 	/* Set host controller soft state to operational */
1299 	ehcip->ehci_hc_soft_state = EHCI_CTLR_OPERATIONAL_STATE;
1300 
1301 	/*
1302 	 * Set the Periodic Frame List Base Address register with the
1303 	 * starting physical address of the Periodic Frame List.
1304 	 */
1305 	Set_OpReg(ehci_periodic_list_base,
1306 	    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
1307 	    EHCI_PERIODIC_LIST_BASE));
1308 
1309 	/*
1310 	 * Set ehci_interrupt to enable all interrupts except Root
1311 	 * Hub Status change interrupt.
1312 	 */
1313 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
1314 	    EHCI_INTR_FRAME_LIST_ROLLOVER | EHCI_INTR_USB_ERROR |
1315 	    EHCI_INTR_USB);
1316 
1317 	/*
1318 	 * Set the desired interrupt threshold and turn on EHCI host controller.
1319 	 */
1320 	Set_OpReg(ehci_command,
1321 	    ((Get_OpReg(ehci_command) & ~EHCI_CMD_INTR_THRESHOLD) |
1322 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
1323 
1324 	ASSERT(Get_OpReg(ehci_command) & EHCI_CMD_HOST_CTRL_RUN);
1325 
1326 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1327 
1328 		if (ehci_init_workaround(ehcip) != DDI_SUCCESS) {
1329 
1330 			/* Set host controller soft state to error */
1331 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1332 
1333 			return (DDI_FAILURE);
1334 		}
1335 
1336 		if (ehci_init_check_status(ehcip) != DDI_SUCCESS) {
1337 
1338 			/* Set host controller soft state to error */
1339 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1340 
1341 			return (DDI_FAILURE);
1342 		}
1343 
1344 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1345 		    "ehci_init_ctlr: SOF's have started");
1346 	}
1347 
1348 	/* Route all Root hub ports to EHCI host controller */
1349 	Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1350 
1351 	return (DDI_SUCCESS);
1352 }
1353 
1354 /*
1355  * ehci_take_control:
1356  *
1357  * Handshake to take EHCI control from BIOS if necessary.  Its only valid for
1358  * x86 machines, because sparc doesn't have a BIOS.
1359  * On x86 machine, the take control process includes
1360  *    o get the base address of the extended capability list
1361  *    o find out the capability for handoff synchronization in the list.
1362  *    o check if BIOS has owned the host controller.
1363  *    o set the OS Owned semaphore bit, ask the BIOS to release the ownership.
1364  *    o wait for a constant time and check if BIOS has relinquished control.
1365  */
1366 /* ARGSUSED */
1367 static int
ehci_take_control(ehci_state_t * ehcip)1368 ehci_take_control(ehci_state_t *ehcip)
1369 {
1370 #if defined(__x86)
1371 	uint32_t		extended_cap;
1372 	uint32_t		extended_cap_offset;
1373 	uint32_t		extended_cap_id;
1374 	uint_t			retry;
1375 
1376 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1377 	    "ehci_take_control:");
1378 
1379 	/*
1380 	 * According EHCI Spec 2.2.4, get EECP base address from HCCPARAMS
1381 	 * register.
1382 	 */
1383 	extended_cap_offset = (Get_Cap(ehci_hcc_params) & EHCI_HCC_EECP) >>
1384 	    EHCI_HCC_EECP_SHIFT;
1385 
1386 	/*
1387 	 * According EHCI Spec 2.2.4, if the extended capability offset is
1388 	 * less than 40h then its not valid.  This means we don't need to
1389 	 * worry about BIOS handoff.
1390 	 */
1391 	if (extended_cap_offset < EHCI_HCC_EECP_MIN_OFFSET) {
1392 
1393 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1394 		    "ehci_take_control: Hardware doesn't support legacy.");
1395 
1396 		goto success;
1397 	}
1398 
1399 	/*
1400 	 * According EHCI Spec 2.1.7, A zero offset indicates the
1401 	 * end of the extended capability list.
1402 	 */
1403 	while (extended_cap_offset) {
1404 
1405 		/* Get the extended capability value. */
1406 		extended_cap = pci_config_get32(ehcip->ehci_config_handle,
1407 		    extended_cap_offset);
1408 
1409 		/* Get the capability ID */
1410 		extended_cap_id = (extended_cap & EHCI_EX_CAP_ID) >>
1411 		    EHCI_EX_CAP_ID_SHIFT;
1412 
1413 		/* Check if the card support legacy */
1414 		if (extended_cap_id == EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1415 			break;
1416 		}
1417 
1418 		/* Get the offset of the next capability */
1419 		extended_cap_offset = (extended_cap & EHCI_EX_CAP_NEXT_PTR) >>
1420 		    EHCI_EX_CAP_NEXT_PTR_SHIFT;
1421 	}
1422 
1423 	/*
1424 	 * Unable to find legacy support in hardware's extended capability list.
1425 	 * This means we don't need to worry about BIOS handoff.
1426 	 */
1427 	if (extended_cap_id != EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1428 
1429 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1430 		    "ehci_take_control: Hardware doesn't support legacy");
1431 
1432 		goto success;
1433 	}
1434 
1435 	/* Check if BIOS has owned it. */
1436 	if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1437 
1438 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1439 		    "ehci_take_control: BIOS does not own EHCI");
1440 
1441 		goto success;
1442 	}
1443 
1444 	/*
1445 	 * According EHCI Spec 5.1, The OS driver initiates an ownership
1446 	 * request by setting the OS Owned semaphore to a one. The OS
1447 	 * waits for the BIOS Owned bit to go to a zero before attempting
1448 	 * to use the EHCI controller. The time that OS must wait for BIOS
1449 	 * to respond to the request for ownership is beyond the scope of
1450 	 * this specification.
1451 	 * It waits up to EHCI_TAKEOVER_WAIT_COUNT*EHCI_TAKEOVER_DELAY ms
1452 	 * for BIOS to release the ownership.
1453 	 */
1454 	extended_cap |= EHCI_LEGSUP_OS_OWNED_SEM;
1455 	pci_config_put32(ehcip->ehci_config_handle, extended_cap_offset,
1456 	    extended_cap);
1457 
1458 	for (retry = 0; retry < EHCI_TAKEOVER_WAIT_COUNT; retry++) {
1459 
1460 		/* wait a special interval */
1461 #ifndef __lock_lint
1462 		delay(drv_usectohz(EHCI_TAKEOVER_DELAY));
1463 #endif
1464 		/* Check to see if the BIOS has released the ownership */
1465 		extended_cap = pci_config_get32(
1466 		    ehcip->ehci_config_handle, extended_cap_offset);
1467 
1468 		if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1469 
1470 			USB_DPRINTF_L3(PRINT_MASK_ATTA,
1471 			    ehcip->ehci_log_hdl,
1472 			    "ehci_take_control: BIOS has released "
1473 			    "the ownership. retry = %d", retry);
1474 
1475 			goto success;
1476 		}
1477 
1478 	}
1479 
1480 	USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1481 	    "ehci_take_control: take control from BIOS failed.");
1482 
1483 	return (USB_FAILURE);
1484 
1485 success:
1486 
1487 #endif	/* __x86 */
1488 	return (USB_SUCCESS);
1489 }
1490 
1491 
1492 /*
1493  * ehci_init_periodic_frame_list_table :
1494  *
1495  * Allocate the system memory and initialize Host Controller
1496  * Periodic Frame List table area. The starting of the Periodic
1497  * Frame List Table area must be 4096 byte aligned.
1498  */
1499 static int
ehci_init_periodic_frame_lst_table(ehci_state_t * ehcip)1500 ehci_init_periodic_frame_lst_table(ehci_state_t *ehcip)
1501 {
1502 	ddi_device_acc_attr_t	dev_attr;
1503 	size_t			real_length;
1504 	uint_t			ccount;
1505 	int			result;
1506 
1507 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
1508 
1509 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1510 	    "ehci_init_periodic_frame_lst_table:");
1511 
1512 	/* The host controller will be little endian */
1513 	dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1514 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
1515 	dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1516 
1517 	/* Force the required 4K restrictive alignment */
1518 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_PFL_ALIGNMENT;
1519 
1520 	/* Create space for the Periodic Frame List */
1521 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
1522 	    DDI_DMA_SLEEP, 0, &ehcip->ehci_pflt_dma_handle) != DDI_SUCCESS) {
1523 
1524 		goto failure;
1525 	}
1526 
1527 	if (ddi_dma_mem_alloc(ehcip->ehci_pflt_dma_handle,
1528 	    sizeof (ehci_periodic_frame_list_t),
1529 	    &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
1530 	    0, (caddr_t *)&ehcip->ehci_periodic_frame_list_tablep,
1531 	    &real_length, &ehcip->ehci_pflt_mem_handle)) {
1532 
1533 		goto failure;
1534 	}
1535 
1536 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1537 	    "ehci_init_periodic_frame_lst_table: "
1538 	    "Real length %lu", real_length);
1539 
1540 	/* Map the whole Periodic Frame List into the I/O address space */
1541 	result = ddi_dma_addr_bind_handle(ehcip->ehci_pflt_dma_handle,
1542 	    NULL, (caddr_t)ehcip->ehci_periodic_frame_list_tablep,
1543 	    real_length, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1544 	    DDI_DMA_SLEEP, NULL, &ehcip->ehci_pflt_cookie, &ccount);
1545 
1546 	if (result == DDI_DMA_MAPPED) {
1547 		/* The cookie count should be 1 */
1548 		if (ccount != 1) {
1549 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1550 			    "ehci_init_periodic_frame_lst_table: "
1551 			    "More than 1 cookie");
1552 
1553 			goto failure;
1554 		}
1555 	} else {
1556 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
1557 
1558 		goto failure;
1559 	}
1560 
1561 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1562 	    "ehci_init_periodic_frame_lst_table: virtual 0x%p physical 0x%x",
1563 	    (void *)ehcip->ehci_periodic_frame_list_tablep,
1564 	    ehcip->ehci_pflt_cookie.dmac_address);
1565 
1566 	/*
1567 	 * DMA addresses for Periodic Frame List are bound.
1568 	 */
1569 	ehcip->ehci_dma_addr_bind_flag |= EHCI_PFLT_DMA_BOUND;
1570 
1571 	bzero((void *)ehcip->ehci_periodic_frame_list_tablep, real_length);
1572 
1573 	/* Initialize the Periodic Frame List */
1574 	ehci_build_interrupt_lattice(ehcip);
1575 
1576 	/* Reset Byte Alignment to Default */
1577 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1578 
1579 	return (DDI_SUCCESS);
1580 failure:
1581 	/* Byte alignment */
1582 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1583 
1584 	return (DDI_FAILURE);
1585 }
1586 
1587 
1588 /*
1589  * ehci_build_interrupt_lattice:
1590  *
1591  * Construct the interrupt lattice tree using static Endpoint Descriptors
1592  * (QH). This interrupt lattice tree will have total of 32 interrupt  QH
1593  * lists and the Host Controller (HC) processes one interrupt QH list in
1594  * every frame. The Host Controller traverses the periodic schedule by
1595  * constructing an array offset reference from the Periodic List Base Address
1596  * register and bits 12 to 3 of Frame Index register. It fetches the element
1597  * and begins traversing the graph of linked schedule data structures.
1598  */
1599 static void
ehci_build_interrupt_lattice(ehci_state_t * ehcip)1600 ehci_build_interrupt_lattice(ehci_state_t	*ehcip)
1601 {
1602 	ehci_qh_t	*list_array = ehcip->ehci_qh_pool_addr;
1603 	ushort_t	ehci_index[EHCI_NUM_PERIODIC_FRAME_LISTS];
1604 	ehci_periodic_frame_list_t *periodic_frame_list =
1605 	    ehcip->ehci_periodic_frame_list_tablep;
1606 	ushort_t	*temp, num_of_nodes;
1607 	uintptr_t	addr;
1608 	int		i, j, k;
1609 
1610 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1611 	    "ehci_build_interrupt_lattice:");
1612 
1613 	/*
1614 	 * Reserve the first 63 Endpoint Descriptor (QH) structures
1615 	 * in the pool as static endpoints & these are required for
1616 	 * constructing interrupt lattice tree.
1617 	 */
1618 	for (i = 0; i < EHCI_NUM_STATIC_NODES; i++) {
1619 		Set_QH(list_array[i].qh_state, EHCI_QH_STATIC);
1620 		Set_QH(list_array[i].qh_status, EHCI_QH_STS_HALTED);
1621 		Set_QH(list_array[i].qh_next_qtd, EHCI_QH_NEXT_QTD_PTR_VALID);
1622 		Set_QH(list_array[i].qh_alt_next_qtd,
1623 		    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1624 	}
1625 
1626 	/*
1627 	 * Make sure that last Endpoint on the periodic frame list terminates
1628 	 * periodic schedule.
1629 	 */
1630 	Set_QH(list_array[0].qh_link_ptr, EHCI_QH_LINK_PTR_VALID);
1631 
1632 	/* Build the interrupt lattice tree */
1633 	for (i = 0; i < (EHCI_NUM_STATIC_NODES / 2); i++) {
1634 		/*
1635 		 * The next  pointer in the host controller  endpoint
1636 		 * descriptor must contain an iommu address. Calculate
1637 		 * the offset into the cpu address and add this to the
1638 		 * starting iommu address.
1639 		 */
1640 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)&list_array[i]);
1641 
1642 		Set_QH(list_array[2*i + 1].qh_link_ptr,
1643 		    addr | EHCI_QH_LINK_REF_QH);
1644 		Set_QH(list_array[2*i + 2].qh_link_ptr,
1645 		    addr | EHCI_QH_LINK_REF_QH);
1646 	}
1647 
1648 	/* Build the tree bottom */
1649 	temp = (unsigned short *)
1650 	    kmem_zalloc(EHCI_NUM_PERIODIC_FRAME_LISTS * 2, KM_SLEEP);
1651 
1652 	num_of_nodes = 1;
1653 
1654 	/*
1655 	 * Initialize the values which are used for setting up head pointers
1656 	 * for the 32ms scheduling lists which starts from the Periodic Frame
1657 	 * List.
1658 	 */
1659 	for (i = 0; i < ehci_log_2(EHCI_NUM_PERIODIC_FRAME_LISTS); i++) {
1660 		for (j = 0, k = 0; k < num_of_nodes; k++, j++) {
1661 			ehci_index[j++] = temp[k];
1662 			ehci_index[j]	= temp[k] + ehci_pow_2(i);
1663 		}
1664 
1665 		num_of_nodes *= 2;
1666 		for (k = 0; k < num_of_nodes; k++)
1667 			temp[k] = ehci_index[k];
1668 	}
1669 
1670 	kmem_free((void *)temp, (EHCI_NUM_PERIODIC_FRAME_LISTS * 2));
1671 
1672 	/*
1673 	 * Initialize the interrupt list in the Periodic Frame List Table
1674 	 * so that it points to the bottom of the tree.
1675 	 */
1676 	for (i = 0, j = 0; i < ehci_pow_2(TREE_HEIGHT); i++) {
1677 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)
1678 		    (&list_array[((EHCI_NUM_STATIC_NODES + 1) / 2) + i - 1]));
1679 
1680 		ASSERT(addr);
1681 
1682 		for (k = 0; k < ehci_pow_2(TREE_HEIGHT); k++) {
1683 			Set_PFLT(periodic_frame_list->
1684 			    ehci_periodic_frame_list_table[ehci_index[j++]],
1685 			    (uint32_t)(addr | EHCI_QH_LINK_REF_QH));
1686 		}
1687 	}
1688 }
1689 
1690 
1691 /*
1692  * ehci_alloc_hcdi_ops:
1693  *
1694  * The HCDI interfaces or entry points are the software interfaces used by
1695  * the Universal Serial Bus Driver  (USBA) to  access the services of the
1696  * Host Controller Driver (HCD).  During HCD initialization, inform  USBA
1697  * about all available HCDI interfaces or entry points.
1698  */
1699 usba_hcdi_ops_t *
ehci_alloc_hcdi_ops(ehci_state_t * ehcip)1700 ehci_alloc_hcdi_ops(ehci_state_t	*ehcip)
1701 {
1702 	usba_hcdi_ops_t			*usba_hcdi_ops;
1703 
1704 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1705 	    "ehci_alloc_hcdi_ops:");
1706 
1707 	usba_hcdi_ops = usba_alloc_hcdi_ops();
1708 
1709 	usba_hcdi_ops->usba_hcdi_ops_version = HCDI_OPS_VERSION;
1710 
1711 	usba_hcdi_ops->usba_hcdi_pm_support = ehci_hcdi_pm_support;
1712 	usba_hcdi_ops->usba_hcdi_pipe_open = ehci_hcdi_pipe_open;
1713 	usba_hcdi_ops->usba_hcdi_pipe_close = ehci_hcdi_pipe_close;
1714 
1715 	usba_hcdi_ops->usba_hcdi_pipe_reset = ehci_hcdi_pipe_reset;
1716 	usba_hcdi_ops->usba_hcdi_pipe_reset_data_toggle =
1717 	    ehci_hcdi_pipe_reset_data_toggle;
1718 
1719 	usba_hcdi_ops->usba_hcdi_pipe_ctrl_xfer = ehci_hcdi_pipe_ctrl_xfer;
1720 	usba_hcdi_ops->usba_hcdi_pipe_bulk_xfer = ehci_hcdi_pipe_bulk_xfer;
1721 	usba_hcdi_ops->usba_hcdi_pipe_intr_xfer = ehci_hcdi_pipe_intr_xfer;
1722 	usba_hcdi_ops->usba_hcdi_pipe_isoc_xfer = ehci_hcdi_pipe_isoc_xfer;
1723 
1724 	usba_hcdi_ops->usba_hcdi_bulk_transfer_size =
1725 	    ehci_hcdi_bulk_transfer_size;
1726 
1727 	usba_hcdi_ops->usba_hcdi_pipe_stop_intr_polling =
1728 	    ehci_hcdi_pipe_stop_intr_polling;
1729 	usba_hcdi_ops->usba_hcdi_pipe_stop_isoc_polling =
1730 	    ehci_hcdi_pipe_stop_isoc_polling;
1731 
1732 	usba_hcdi_ops->usba_hcdi_get_current_frame_number =
1733 	    ehci_hcdi_get_current_frame_number;
1734 	usba_hcdi_ops->usba_hcdi_get_max_isoc_pkts =
1735 	    ehci_hcdi_get_max_isoc_pkts;
1736 
1737 	usba_hcdi_ops->usba_hcdi_console_input_init =
1738 	    ehci_hcdi_polled_input_init;
1739 	usba_hcdi_ops->usba_hcdi_console_input_enter =
1740 	    ehci_hcdi_polled_input_enter;
1741 	usba_hcdi_ops->usba_hcdi_console_read =
1742 	    ehci_hcdi_polled_read;
1743 	usba_hcdi_ops->usba_hcdi_console_input_exit =
1744 	    ehci_hcdi_polled_input_exit;
1745 	usba_hcdi_ops->usba_hcdi_console_input_fini =
1746 	    ehci_hcdi_polled_input_fini;
1747 
1748 	usba_hcdi_ops->usba_hcdi_console_output_init =
1749 	    ehci_hcdi_polled_output_init;
1750 	usba_hcdi_ops->usba_hcdi_console_output_enter =
1751 	    ehci_hcdi_polled_output_enter;
1752 	usba_hcdi_ops->usba_hcdi_console_write =
1753 	    ehci_hcdi_polled_write;
1754 	usba_hcdi_ops->usba_hcdi_console_output_exit =
1755 	    ehci_hcdi_polled_output_exit;
1756 	usba_hcdi_ops->usba_hcdi_console_output_fini =
1757 	    ehci_hcdi_polled_output_fini;
1758 	return (usba_hcdi_ops);
1759 }
1760 
1761 
1762 /*
1763  * Host Controller Driver (HCD) deinitialization functions
1764  */
1765 
1766 /*
1767  * ehci_cleanup:
1768  *
1769  * Cleanup on attach failure or detach
1770  */
1771 int
ehci_cleanup(ehci_state_t * ehcip)1772 ehci_cleanup(ehci_state_t	*ehcip)
1773 {
1774 	ehci_trans_wrapper_t	*tw;
1775 	ehci_pipe_private_t	*pp;
1776 	ehci_qtd_t		*qtd;
1777 	int			i, ctrl, rval;
1778 	int			flags = ehcip->ehci_flags;
1779 
1780 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_cleanup:");
1781 
1782 	if (flags & EHCI_RHREG) {
1783 		/* Unload the root hub driver */
1784 		if (ehci_unload_root_hub_driver(ehcip) != USB_SUCCESS) {
1785 
1786 			return (DDI_FAILURE);
1787 		}
1788 	}
1789 
1790 	if (flags & EHCI_USBAREG) {
1791 		/* Unregister this HCD instance with USBA */
1792 		usba_hcdi_unregister(ehcip->ehci_dip);
1793 	}
1794 
1795 	if (flags & EHCI_INTR) {
1796 
1797 		mutex_enter(&ehcip->ehci_int_mutex);
1798 
1799 		/* Disable all EHCI QH list processing */
1800 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
1801 		    ~(EHCI_CMD_ASYNC_SCHED_ENABLE |
1802 		    EHCI_CMD_PERIODIC_SCHED_ENABLE)));
1803 
1804 		/* Disable all EHCI interrupts */
1805 		Set_OpReg(ehci_interrupt, 0);
1806 
1807 		/* wait for the next SOF */
1808 		(void) ehci_wait_for_sof(ehcip);
1809 
1810 		/* Route all Root hub ports to Classic host controller */
1811 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1812 
1813 		/* Stop the EHCI host controller */
1814 		Set_OpReg(ehci_command,
1815 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
1816 
1817 		mutex_exit(&ehcip->ehci_int_mutex);
1818 
1819 		/* Wait for sometime */
1820 		delay(drv_usectohz(EHCI_TIMEWAIT));
1821 
1822 		ehci_rem_intrs(ehcip);
1823 	}
1824 
1825 	/* Unmap the EHCI registers */
1826 	if (ehcip->ehci_caps_handle) {
1827 		ddi_regs_map_free(&ehcip->ehci_caps_handle);
1828 	}
1829 
1830 	if (ehcip->ehci_config_handle) {
1831 		pci_config_teardown(&ehcip->ehci_config_handle);
1832 	}
1833 
1834 	/* Free all the buffers */
1835 	if (ehcip->ehci_qtd_pool_addr && ehcip->ehci_qtd_pool_mem_handle) {
1836 		for (i = 0; i < ehci_qtd_pool_size; i ++) {
1837 			qtd = &ehcip->ehci_qtd_pool_addr[i];
1838 			ctrl = Get_QTD(ehcip->
1839 			    ehci_qtd_pool_addr[i].qtd_state);
1840 
1841 			if ((ctrl != EHCI_QTD_FREE) &&
1842 			    (ctrl != EHCI_QTD_DUMMY) &&
1843 			    (qtd->qtd_trans_wrapper)) {
1844 
1845 				mutex_enter(&ehcip->ehci_int_mutex);
1846 
1847 				tw = (ehci_trans_wrapper_t *)
1848 				    EHCI_LOOKUP_ID((uint32_t)
1849 				    Get_QTD(qtd->qtd_trans_wrapper));
1850 
1851 				/* Obtain the pipe private structure */
1852 				pp = tw->tw_pipe_private;
1853 
1854 				/* Stop the the transfer timer */
1855 				ehci_stop_xfer_timer(ehcip, tw,
1856 				    EHCI_REMOVE_XFER_ALWAYS);
1857 
1858 				ehci_deallocate_tw(ehcip, pp, tw);
1859 
1860 				mutex_exit(&ehcip->ehci_int_mutex);
1861 			}
1862 		}
1863 
1864 		/*
1865 		 * If EHCI_QTD_POOL_BOUND flag is set, then unbind
1866 		 * the handle for QTD pools.
1867 		 */
1868 		if ((ehcip->ehci_dma_addr_bind_flag &
1869 		    EHCI_QTD_POOL_BOUND) == EHCI_QTD_POOL_BOUND) {
1870 
1871 			rval = ddi_dma_unbind_handle(
1872 			    ehcip->ehci_qtd_pool_dma_handle);
1873 
1874 			ASSERT(rval == DDI_SUCCESS);
1875 		}
1876 		ddi_dma_mem_free(&ehcip->ehci_qtd_pool_mem_handle);
1877 	}
1878 
1879 	/* Free the QTD pool */
1880 	if (ehcip->ehci_qtd_pool_dma_handle) {
1881 		ddi_dma_free_handle(&ehcip->ehci_qtd_pool_dma_handle);
1882 	}
1883 
1884 	if (ehcip->ehci_qh_pool_addr && ehcip->ehci_qh_pool_mem_handle) {
1885 		/*
1886 		 * If EHCI_QH_POOL_BOUND flag is set, then unbind
1887 		 * the handle for QH pools.
1888 		 */
1889 		if ((ehcip->ehci_dma_addr_bind_flag &
1890 		    EHCI_QH_POOL_BOUND) == EHCI_QH_POOL_BOUND) {
1891 
1892 			rval = ddi_dma_unbind_handle(
1893 			    ehcip->ehci_qh_pool_dma_handle);
1894 
1895 			ASSERT(rval == DDI_SUCCESS);
1896 		}
1897 
1898 		ddi_dma_mem_free(&ehcip->ehci_qh_pool_mem_handle);
1899 	}
1900 
1901 	/* Free the QH pool */
1902 	if (ehcip->ehci_qh_pool_dma_handle) {
1903 		ddi_dma_free_handle(&ehcip->ehci_qh_pool_dma_handle);
1904 	}
1905 
1906 	/* Free the Periodic frame list table (PFLT) area */
1907 	if (ehcip->ehci_periodic_frame_list_tablep &&
1908 	    ehcip->ehci_pflt_mem_handle) {
1909 		/*
1910 		 * If EHCI_PFLT_DMA_BOUND flag is set, then unbind
1911 		 * the handle for PFLT.
1912 		 */
1913 		if ((ehcip->ehci_dma_addr_bind_flag &
1914 		    EHCI_PFLT_DMA_BOUND) == EHCI_PFLT_DMA_BOUND) {
1915 
1916 			rval = ddi_dma_unbind_handle(
1917 			    ehcip->ehci_pflt_dma_handle);
1918 
1919 			ASSERT(rval == DDI_SUCCESS);
1920 		}
1921 
1922 		ddi_dma_mem_free(&ehcip->ehci_pflt_mem_handle);
1923 	}
1924 
1925 	(void) ehci_isoc_cleanup(ehcip);
1926 
1927 	if (ehcip->ehci_pflt_dma_handle) {
1928 		ddi_dma_free_handle(&ehcip->ehci_pflt_dma_handle);
1929 	}
1930 
1931 	if (flags & EHCI_INTR) {
1932 		/* Destroy the mutex */
1933 		mutex_destroy(&ehcip->ehci_int_mutex);
1934 
1935 		/* Destroy the async schedule advance condition variable */
1936 		cv_destroy(&ehcip->ehci_async_schedule_advance_cv);
1937 	}
1938 
1939 	/* clean up kstat structs */
1940 	ehci_destroy_stats(ehcip);
1941 
1942 	/* Free ehci hcdi ops */
1943 	if (ehcip->ehci_hcdi_ops) {
1944 		usba_free_hcdi_ops(ehcip->ehci_hcdi_ops);
1945 	}
1946 
1947 	if (flags & EHCI_ZALLOC) {
1948 
1949 		usb_free_log_hdl(ehcip->ehci_log_hdl);
1950 
1951 		/* Remove all properties that might have been created */
1952 		ddi_prop_remove_all(ehcip->ehci_dip);
1953 
1954 		/* Free the soft state */
1955 		ddi_soft_state_free(ehci_statep,
1956 		    ddi_get_instance(ehcip->ehci_dip));
1957 	}
1958 
1959 	return (DDI_SUCCESS);
1960 }
1961 
1962 
1963 /*
1964  * ehci_rem_intrs:
1965  *
1966  * Unregister FIXED or MSI interrupts
1967  */
1968 static void
ehci_rem_intrs(ehci_state_t * ehcip)1969 ehci_rem_intrs(ehci_state_t	*ehcip)
1970 {
1971 	int	i;
1972 
1973 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1974 	    "ehci_rem_intrs: interrupt type 0x%x", ehcip->ehci_intr_type);
1975 
1976 	/* Disable all interrupts */
1977 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
1978 		(void) ddi_intr_block_disable(ehcip->ehci_htable,
1979 		    ehcip->ehci_intr_cnt);
1980 	} else {
1981 		for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
1982 			(void) ddi_intr_disable(ehcip->ehci_htable[i]);
1983 		}
1984 	}
1985 
1986 	/* Call ddi_intr_remove_handler() */
1987 	for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
1988 		(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
1989 		(void) ddi_intr_free(ehcip->ehci_htable[i]);
1990 	}
1991 
1992 	kmem_free(ehcip->ehci_htable,
1993 	    ehcip->ehci_intr_cnt * sizeof (ddi_intr_handle_t));
1994 }
1995 
1996 
1997 /*
1998  * ehci_cpr_suspend
1999  */
2000 int
ehci_cpr_suspend(ehci_state_t * ehcip)2001 ehci_cpr_suspend(ehci_state_t	*ehcip)
2002 {
2003 	int	i;
2004 
2005 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2006 	    "ehci_cpr_suspend:");
2007 
2008 	/* Call into the root hub and suspend it */
2009 	if (usba_hubdi_detach(ehcip->ehci_dip, DDI_SUSPEND) != DDI_SUCCESS) {
2010 
2011 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2012 		    "ehci_cpr_suspend: root hub fails to suspend");
2013 
2014 		return (DDI_FAILURE);
2015 	}
2016 
2017 	/* Only root hub's intr pipe should be open at this time */
2018 	mutex_enter(&ehcip->ehci_int_mutex);
2019 
2020 	ASSERT(ehcip->ehci_open_pipe_count == 0);
2021 
2022 	/* Just wait till all resources are reclaimed */
2023 	i = 0;
2024 	while ((ehcip->ehci_reclaim_list != NULL) && (i++ < 3)) {
2025 		ehci_handle_endpoint_reclaimation(ehcip);
2026 		(void) ehci_wait_for_sof(ehcip);
2027 	}
2028 	ASSERT(ehcip->ehci_reclaim_list == NULL);
2029 
2030 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2031 	    "ehci_cpr_suspend: Disable HC QH list processing");
2032 
2033 	/* Disable all EHCI QH list processing */
2034 	Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
2035 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE)));
2036 
2037 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2038 	    "ehci_cpr_suspend: Disable HC interrupts");
2039 
2040 	/* Disable all EHCI interrupts */
2041 	Set_OpReg(ehci_interrupt, 0);
2042 
2043 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2044 	    "ehci_cpr_suspend: Wait for the next SOF");
2045 
2046 	/* Wait for the next SOF */
2047 	if (ehci_wait_for_sof(ehcip) != USB_SUCCESS) {
2048 
2049 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2050 		    "ehci_cpr_suspend: ehci host controller suspend failed");
2051 
2052 		mutex_exit(&ehcip->ehci_int_mutex);
2053 		return (DDI_FAILURE);
2054 	}
2055 
2056 	/*
2057 	 * Stop the ehci host controller
2058 	 * if usb keyboard is not connected.
2059 	 */
2060 	if (ehcip->ehci_polled_kbd_count == 0 || force_ehci_off != 0) {
2061 		Set_OpReg(ehci_command,
2062 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
2063 
2064 	}
2065 
2066 	/* Set host controller soft state to suspend */
2067 	ehcip->ehci_hc_soft_state = EHCI_CTLR_SUSPEND_STATE;
2068 
2069 	mutex_exit(&ehcip->ehci_int_mutex);
2070 
2071 	return (DDI_SUCCESS);
2072 }
2073 
2074 
2075 /*
2076  * ehci_cpr_resume
2077  */
2078 int
ehci_cpr_resume(ehci_state_t * ehcip)2079 ehci_cpr_resume(ehci_state_t	*ehcip)
2080 {
2081 	mutex_enter(&ehcip->ehci_int_mutex);
2082 
2083 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2084 	    "ehci_cpr_resume: Restart the controller");
2085 
2086 	/* Cleanup ehci specific information across cpr */
2087 	ehci_cpr_cleanup(ehcip);
2088 
2089 	/* Restart the controller */
2090 	if (ehci_init_ctlr(ehcip, EHCI_NORMAL_INITIALIZATION) != DDI_SUCCESS) {
2091 
2092 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2093 		    "ehci_cpr_resume: ehci host controller resume failed ");
2094 
2095 		mutex_exit(&ehcip->ehci_int_mutex);
2096 
2097 		return (DDI_FAILURE);
2098 	}
2099 
2100 	mutex_exit(&ehcip->ehci_int_mutex);
2101 
2102 	/* Now resume the root hub */
2103 	if (usba_hubdi_attach(ehcip->ehci_dip, DDI_RESUME) != DDI_SUCCESS) {
2104 
2105 		return (DDI_FAILURE);
2106 	}
2107 
2108 	return (DDI_SUCCESS);
2109 }
2110 
2111 
2112 /*
2113  * Bandwidth Allocation functions
2114  */
2115 
2116 /*
2117  * ehci_allocate_bandwidth:
2118  *
2119  * Figure out whether or not this interval may be supported. Return the index
2120  * into the  lattice if it can be supported.  Return allocation failure if it
2121  * can not be supported.
2122  */
2123 int
ehci_allocate_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t * pnode,uchar_t * smask,uchar_t * cmask)2124 ehci_allocate_bandwidth(
2125 	ehci_state_t		*ehcip,
2126 	usba_pipe_handle_data_t	*ph,
2127 	uint_t			*pnode,
2128 	uchar_t			*smask,
2129 	uchar_t			*cmask)
2130 {
2131 	int			error = USB_SUCCESS;
2132 
2133 	/* This routine is protected by the ehci_int_mutex */
2134 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2135 
2136 	/* Reset the pnode to the last checked pnode */
2137 	*pnode = 0;
2138 
2139 	/* Allocate high speed bandwidth */
2140 	if ((error = ehci_allocate_high_speed_bandwidth(ehcip,
2141 	    ph, pnode, smask, cmask)) != USB_SUCCESS) {
2142 
2143 		return (error);
2144 	}
2145 
2146 	/*
2147 	 * For low/full speed usb devices, allocate classic TT bandwidth
2148 	 * in additional to high speed bandwidth.
2149 	 */
2150 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2151 
2152 		/* Allocate classic TT bandwidth */
2153 		if ((error = ehci_allocate_classic_tt_bandwidth(
2154 		    ehcip, ph, *pnode)) != USB_SUCCESS) {
2155 
2156 			/* Deallocate high speed bandwidth */
2157 			ehci_deallocate_high_speed_bandwidth(
2158 			    ehcip, ph, *pnode, *smask, *cmask);
2159 		}
2160 	}
2161 
2162 	return (error);
2163 }
2164 
2165 
2166 /*
2167  * ehci_allocate_high_speed_bandwidth:
2168  *
2169  * Allocate high speed bandwidth for the low/full/high speed interrupt and
2170  * isochronous endpoints.
2171  */
2172 static int
ehci_allocate_high_speed_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t * pnode,uchar_t * smask,uchar_t * cmask)2173 ehci_allocate_high_speed_bandwidth(
2174 	ehci_state_t		*ehcip,
2175 	usba_pipe_handle_data_t	*ph,
2176 	uint_t			*pnode,
2177 	uchar_t			*smask,
2178 	uchar_t			*cmask)
2179 {
2180 	uint_t			sbandwidth, cbandwidth;
2181 	int			interval;
2182 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2183 	usba_device_t		*child_ud;
2184 	usb_port_status_t	port_status;
2185 	int			error;
2186 
2187 	/* This routine is protected by the ehci_int_mutex */
2188 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2189 
2190 	/* Get child's usba device structure */
2191 	child_ud = ph->p_usba_device;
2192 
2193 	mutex_enter(&child_ud->usb_mutex);
2194 
2195 	/* Get the current usb device's port status */
2196 	port_status = ph->p_usba_device->usb_port_status;
2197 
2198 	mutex_exit(&child_ud->usb_mutex);
2199 
2200 	/*
2201 	 * Calculate the length in bytes of a transaction on this
2202 	 * periodic endpoint. Return failure if maximum packet is
2203 	 * zero.
2204 	 */
2205 	error = ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2206 	    port_status, &sbandwidth, &cbandwidth);
2207 	if (error != USB_SUCCESS) {
2208 
2209 		return (error);
2210 	}
2211 
2212 	/*
2213 	 * Adjust polling interval to be a power of 2.
2214 	 * If this interval can't be supported, return
2215 	 * allocation failure.
2216 	 */
2217 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2218 	if (interval == USB_FAILURE) {
2219 
2220 		return (USB_FAILURE);
2221 	}
2222 
2223 	if (port_status == USBA_HIGH_SPEED_DEV) {
2224 		/* Allocate bandwidth for high speed devices */
2225 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2226 		    USB_EP_ATTR_ISOCH) {
2227 			error = USB_SUCCESS;
2228 		} else {
2229 
2230 			error = ehci_find_bestfit_hs_mask(ehcip, smask, pnode,
2231 			    endpoint, sbandwidth, interval);
2232 		}
2233 
2234 		*cmask = 0x00;
2235 
2236 	} else {
2237 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2238 		    USB_EP_ATTR_INTR) {
2239 
2240 			/* Allocate bandwidth for low speed interrupt */
2241 			error = ehci_find_bestfit_ls_intr_mask(ehcip,
2242 			    smask, cmask, pnode, sbandwidth, cbandwidth,
2243 			    interval);
2244 		} else {
2245 			if ((endpoint->bEndpointAddress &
2246 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2247 
2248 				/* Allocate bandwidth for sitd in */
2249 				error = ehci_find_bestfit_sitd_in_mask(ehcip,
2250 				    smask, cmask, pnode, sbandwidth, cbandwidth,
2251 				    interval);
2252 			} else {
2253 
2254 				/* Allocate bandwidth for sitd out */
2255 				error = ehci_find_bestfit_sitd_out_mask(ehcip,
2256 				    smask, pnode, sbandwidth, interval);
2257 				*cmask = 0x00;
2258 			}
2259 		}
2260 	}
2261 
2262 	if (error != USB_SUCCESS) {
2263 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2264 		    "ehci_allocate_high_speed_bandwidth: Reached maximum "
2265 		    "bandwidth value and cannot allocate bandwidth for a "
2266 		    "given high-speed periodic endpoint");
2267 
2268 		return (USB_NO_BANDWIDTH);
2269 	}
2270 
2271 	return (error);
2272 }
2273 
2274 
2275 /*
2276  * ehci_allocate_classic_tt_speed_bandwidth:
2277  *
2278  * Allocate classic TT bandwidth for the low/full speed interrupt and
2279  * isochronous endpoints.
2280  */
2281 static int
ehci_allocate_classic_tt_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t pnode)2282 ehci_allocate_classic_tt_bandwidth(
2283 	ehci_state_t		*ehcip,
2284 	usba_pipe_handle_data_t	*ph,
2285 	uint_t			pnode)
2286 {
2287 	uint_t			bandwidth, min;
2288 	uint_t			height, leftmost, list;
2289 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2290 	usba_device_t		*child_ud, *parent_ud;
2291 	usb_port_status_t	port_status;
2292 	int			i, interval;
2293 
2294 	/* This routine is protected by the ehci_int_mutex */
2295 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2296 
2297 	/* Get child's usba device structure */
2298 	child_ud = ph->p_usba_device;
2299 
2300 	mutex_enter(&child_ud->usb_mutex);
2301 
2302 	/* Get the current usb device's port status */
2303 	port_status = child_ud->usb_port_status;
2304 
2305 	/* Get the parent high speed hub's usba device structure */
2306 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2307 
2308 	mutex_exit(&child_ud->usb_mutex);
2309 
2310 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2311 	    "ehci_allocate_classic_tt_bandwidth: "
2312 	    "child_ud 0x%p parent_ud 0x%p",
2313 	    (void *)child_ud, (void *)parent_ud);
2314 
2315 	/*
2316 	 * Calculate the length in bytes of a transaction on this
2317 	 * periodic endpoint. Return failure if maximum packet is
2318 	 * zero.
2319 	 */
2320 	if (ehci_compute_classic_bandwidth(endpoint,
2321 	    port_status, &bandwidth) != USB_SUCCESS) {
2322 
2323 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2324 		    "ehci_allocate_classic_tt_bandwidth: Periodic endpoint "
2325 		    "with zero endpoint maximum packet size is not supported");
2326 
2327 		return (USB_NOT_SUPPORTED);
2328 	}
2329 
2330 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2331 	    "ehci_allocate_classic_tt_bandwidth: bandwidth %d", bandwidth);
2332 
2333 	mutex_enter(&parent_ud->usb_mutex);
2334 
2335 	/*
2336 	 * If the length in bytes plus the allocated bandwidth exceeds
2337 	 * the maximum, return bandwidth allocation failure.
2338 	 */
2339 	if ((parent_ud->usb_hs_hub_min_bandwidth + bandwidth) >
2340 	    FS_PERIODIC_BANDWIDTH) {
2341 
2342 		mutex_exit(&parent_ud->usb_mutex);
2343 
2344 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2345 		    "ehci_allocate_classic_tt_bandwidth: Reached maximum "
2346 		    "bandwidth value and cannot allocate bandwidth for a "
2347 		    "given low/full speed periodic endpoint");
2348 
2349 		return (USB_NO_BANDWIDTH);
2350 	}
2351 
2352 	mutex_exit(&parent_ud->usb_mutex);
2353 
2354 	/* Adjust polling interval to be a power of 2 */
2355 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2356 
2357 	/* Find the height in the tree */
2358 	height = ehci_lattice_height(interval);
2359 
2360 	/* Find the leftmost leaf in the subtree specified by the node. */
2361 	leftmost = ehci_leftmost_leaf(pnode, height);
2362 
2363 	mutex_enter(&parent_ud->usb_mutex);
2364 
2365 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2366 		list = ehci_index[leftmost + i];
2367 
2368 		if ((parent_ud->usb_hs_hub_bandwidth[list] +
2369 		    bandwidth) > FS_PERIODIC_BANDWIDTH) {
2370 
2371 			mutex_exit(&parent_ud->usb_mutex);
2372 
2373 			USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2374 			    "ehci_allocate_classic_tt_bandwidth: Reached "
2375 			    "maximum bandwidth value and cannot allocate "
2376 			    "bandwidth for low/full periodic endpoint");
2377 
2378 			return (USB_NO_BANDWIDTH);
2379 		}
2380 	}
2381 
2382 	/*
2383 	 * All the leaves for this node must be updated with the bandwidth.
2384 	 */
2385 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2386 		list = ehci_index[leftmost + i];
2387 		parent_ud->usb_hs_hub_bandwidth[list] += bandwidth;
2388 	}
2389 
2390 	/* Find the leaf with the smallest allocated bandwidth */
2391 	min = parent_ud->usb_hs_hub_bandwidth[0];
2392 
2393 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2394 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2395 			min = parent_ud->usb_hs_hub_bandwidth[i];
2396 		}
2397 	}
2398 
2399 	/* Save the minimum for later use */
2400 	parent_ud->usb_hs_hub_min_bandwidth = min;
2401 
2402 	mutex_exit(&parent_ud->usb_mutex);
2403 
2404 	return (USB_SUCCESS);
2405 }
2406 
2407 
2408 /*
2409  * ehci_deallocate_bandwidth:
2410  *
2411  * Deallocate bandwidth for the given node in the lattice and the length
2412  * of transfer.
2413  */
2414 void
ehci_deallocate_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t pnode,uchar_t smask,uchar_t cmask)2415 ehci_deallocate_bandwidth(
2416 	ehci_state_t		*ehcip,
2417 	usba_pipe_handle_data_t	*ph,
2418 	uint_t			pnode,
2419 	uchar_t			smask,
2420 	uchar_t			cmask)
2421 {
2422 	/* This routine is protected by the ehci_int_mutex */
2423 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2424 
2425 	ehci_deallocate_high_speed_bandwidth(ehcip, ph, pnode, smask, cmask);
2426 
2427 	/*
2428 	 * For low/full speed usb devices, deallocate classic TT bandwidth
2429 	 * in additional to high speed bandwidth.
2430 	 */
2431 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2432 
2433 		/* Deallocate classic TT bandwidth */
2434 		ehci_deallocate_classic_tt_bandwidth(ehcip, ph, pnode);
2435 	}
2436 }
2437 
2438 
2439 /*
2440  * ehci_deallocate_high_speed_bandwidth:
2441  *
2442  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2443  */
2444 static void
ehci_deallocate_high_speed_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t pnode,uchar_t smask,uchar_t cmask)2445 ehci_deallocate_high_speed_bandwidth(
2446 	ehci_state_t		*ehcip,
2447 	usba_pipe_handle_data_t	*ph,
2448 	uint_t			pnode,
2449 	uchar_t			smask,
2450 	uchar_t			cmask)
2451 {
2452 	uint_t			height, leftmost;
2453 	uint_t			list_count;
2454 	uint_t			sbandwidth, cbandwidth;
2455 	int			interval;
2456 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2457 	usba_device_t		*child_ud;
2458 	usb_port_status_t	port_status;
2459 
2460 	/* This routine is protected by the ehci_int_mutex */
2461 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2462 
2463 	/* Get child's usba device structure */
2464 	child_ud = ph->p_usba_device;
2465 
2466 	mutex_enter(&child_ud->usb_mutex);
2467 
2468 	/* Get the current usb device's port status */
2469 	port_status = ph->p_usba_device->usb_port_status;
2470 
2471 	mutex_exit(&child_ud->usb_mutex);
2472 
2473 	(void) ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2474 	    port_status, &sbandwidth, &cbandwidth);
2475 
2476 	/* Adjust polling interval to be a power of 2 */
2477 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2478 
2479 	/* Find the height in the tree */
2480 	height = ehci_lattice_height(interval);
2481 
2482 	/*
2483 	 * Find the leftmost leaf in the subtree specified by the node
2484 	 */
2485 	leftmost = ehci_leftmost_leaf(pnode, height);
2486 
2487 	list_count = EHCI_NUM_INTR_QH_LISTS/interval;
2488 
2489 	/* Delete the bandwidth from the appropriate lists */
2490 	if (port_status == USBA_HIGH_SPEED_DEV) {
2491 
2492 		ehci_update_bw_availability(ehcip, -sbandwidth,
2493 		    leftmost, list_count, smask);
2494 	} else {
2495 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2496 		    USB_EP_ATTR_INTR) {
2497 
2498 			ehci_update_bw_availability(ehcip, -sbandwidth,
2499 			    leftmost, list_count, smask);
2500 			ehci_update_bw_availability(ehcip, -cbandwidth,
2501 			    leftmost, list_count, cmask);
2502 		} else {
2503 			if ((endpoint->bEndpointAddress &
2504 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2505 
2506 				ehci_update_bw_availability(ehcip, -sbandwidth,
2507 				    leftmost, list_count, smask);
2508 				ehci_update_bw_availability(ehcip,
2509 				    -MAX_UFRAME_SITD_XFER, leftmost,
2510 				    list_count, cmask);
2511 			} else {
2512 
2513 				ehci_update_bw_availability(ehcip,
2514 				    -MAX_UFRAME_SITD_XFER, leftmost,
2515 				    list_count, smask);
2516 			}
2517 		}
2518 	}
2519 }
2520 
2521 /*
2522  * ehci_deallocate_classic_tt_bandwidth:
2523  *
2524  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2525  */
2526 static void
ehci_deallocate_classic_tt_bandwidth(ehci_state_t * ehcip,usba_pipe_handle_data_t * ph,uint_t pnode)2527 ehci_deallocate_classic_tt_bandwidth(
2528 	ehci_state_t		*ehcip,
2529 	usba_pipe_handle_data_t	*ph,
2530 	uint_t			pnode)
2531 {
2532 	uint_t			bandwidth, height, leftmost, list, min;
2533 	int			i, interval;
2534 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2535 	usba_device_t		*child_ud, *parent_ud;
2536 	usb_port_status_t	port_status;
2537 
2538 	/* This routine is protected by the ehci_int_mutex */
2539 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2540 
2541 	/* Get child's usba device structure */
2542 	child_ud = ph->p_usba_device;
2543 
2544 	mutex_enter(&child_ud->usb_mutex);
2545 
2546 	/* Get the current usb device's port status */
2547 	port_status = child_ud->usb_port_status;
2548 
2549 	/* Get the parent high speed hub's usba device structure */
2550 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2551 
2552 	mutex_exit(&child_ud->usb_mutex);
2553 
2554 	/* Obtain the bandwidth */
2555 	(void) ehci_compute_classic_bandwidth(endpoint,
2556 	    port_status, &bandwidth);
2557 
2558 	/* Adjust polling interval to be a power of 2 */
2559 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2560 
2561 	/* Find the height in the tree */
2562 	height = ehci_lattice_height(interval);
2563 
2564 	/* Find the leftmost leaf in the subtree specified by the node */
2565 	leftmost = ehci_leftmost_leaf(pnode, height);
2566 
2567 	mutex_enter(&parent_ud->usb_mutex);
2568 
2569 	/* Delete the bandwidth from the appropriate lists */
2570 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2571 		list = ehci_index[leftmost + i];
2572 		parent_ud->usb_hs_hub_bandwidth[list] -= bandwidth;
2573 	}
2574 
2575 	/* Find the leaf with the smallest allocated bandwidth */
2576 	min = parent_ud->usb_hs_hub_bandwidth[0];
2577 
2578 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2579 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2580 			min = parent_ud->usb_hs_hub_bandwidth[i];
2581 		}
2582 	}
2583 
2584 	/* Save the minimum for later use */
2585 	parent_ud->usb_hs_hub_min_bandwidth = min;
2586 
2587 	mutex_exit(&parent_ud->usb_mutex);
2588 }
2589 
2590 
2591 /*
2592  * ehci_compute_high_speed_bandwidth:
2593  *
2594  * Given a periodic endpoint (interrupt or isochronous) determine the total
2595  * bandwidth for one transaction. The EHCI host controller traverses the
2596  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2597  * services an endpoint, only a single transaction attempt is made. The  HC
2598  * moves to the next Endpoint Descriptor after the first transaction attempt
2599  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2600  * Transfer Descriptor is inserted into the lattice, we will only count the
2601  * number of bytes for one transaction.
2602  *
2603  * The following are the formulas used for  calculating bandwidth in  terms
2604  * bytes and it is for the single USB high speed transaction.  The protocol
2605  * overheads will be different for each of type of USB transfer & all these
2606  * formulas & protocol overheads are derived from the 5.11.3 section of the
2607  * USB 2.0 Specification.
2608  *
2609  * High-Speed:
2610  *		Protocol overhead + ((MaxPktSz * 7)/6) + Host_Delay
2611  *
2612  * Split Transaction: (Low/Full speed devices connected behind usb2.0 hub)
2613  *
2614  *		Protocol overhead + Split transaction overhead +
2615  *			((MaxPktSz * 7)/6) + Host_Delay;
2616  */
2617 /* ARGSUSED */
2618 static int
ehci_compute_high_speed_bandwidth(ehci_state_t * ehcip,usb_ep_descr_t * endpoint,usb_port_status_t port_status,uint_t * sbandwidth,uint_t * cbandwidth)2619 ehci_compute_high_speed_bandwidth(
2620 	ehci_state_t		*ehcip,
2621 	usb_ep_descr_t		*endpoint,
2622 	usb_port_status_t	port_status,
2623 	uint_t			*sbandwidth,
2624 	uint_t			*cbandwidth)
2625 {
2626 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2627 
2628 	/* Return failure if endpoint maximum packet is zero */
2629 	if (maxpacketsize == 0) {
2630 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2631 		    "ehci_allocate_high_speed_bandwidth: Periodic endpoint "
2632 		    "with zero endpoint maximum packet size is not supported");
2633 
2634 		return (USB_NOT_SUPPORTED);
2635 	}
2636 
2637 	/* Add bit-stuffing overhead */
2638 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2639 
2640 	/* Add Host Controller specific delay to required bandwidth */
2641 	*sbandwidth = EHCI_HOST_CONTROLLER_DELAY;
2642 
2643 	/* Add xfer specific protocol overheads */
2644 	if ((endpoint->bmAttributes &
2645 	    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2646 		/* High speed interrupt transaction */
2647 		*sbandwidth += HS_NON_ISOC_PROTO_OVERHEAD;
2648 	} else {
2649 		/* Isochronous transaction */
2650 		*sbandwidth += HS_ISOC_PROTO_OVERHEAD;
2651 	}
2652 
2653 	/*
2654 	 * For low/full speed devices, add split transaction specific
2655 	 * overheads.
2656 	 */
2657 	if (port_status != USBA_HIGH_SPEED_DEV) {
2658 		/*
2659 		 * Add start and complete split transaction
2660 		 * tokens overheads.
2661 		 */
2662 		*cbandwidth = *sbandwidth + COMPLETE_SPLIT_OVERHEAD;
2663 		*sbandwidth += START_SPLIT_OVERHEAD;
2664 
2665 		/* Add data overhead depending on data direction */
2666 		if ((endpoint->bEndpointAddress &
2667 		    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2668 			*cbandwidth += maxpacketsize;
2669 		} else {
2670 			if ((endpoint->bmAttributes &
2671 			    USB_EP_ATTR_MASK) == USB_EP_ATTR_ISOCH) {
2672 				/* There is no compete splits for out */
2673 				*cbandwidth = 0;
2674 			}
2675 			*sbandwidth += maxpacketsize;
2676 		}
2677 	} else {
2678 		uint_t		xactions;
2679 
2680 		/* Get the max transactions per microframe */
2681 		xactions = ((maxpacketsize & USB_EP_MAX_XACTS_MASK) >>
2682 		    USB_EP_MAX_XACTS_SHIFT) + 1;
2683 
2684 		/* High speed transaction */
2685 		*sbandwidth += maxpacketsize;
2686 
2687 		/* Calculate bandwidth per micro-frame */
2688 		*sbandwidth *= xactions;
2689 
2690 		*cbandwidth = 0;
2691 	}
2692 
2693 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2694 	    "ehci_allocate_high_speed_bandwidth: "
2695 	    "Start split bandwidth %d Complete split bandwidth %d",
2696 	    *sbandwidth, *cbandwidth);
2697 
2698 	return (USB_SUCCESS);
2699 }
2700 
2701 
2702 /*
2703  * ehci_compute_classic_bandwidth:
2704  *
2705  * Given a periodic endpoint (interrupt or isochronous) determine the total
2706  * bandwidth for one transaction. The EHCI host controller traverses the
2707  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2708  * services an endpoint, only a single transaction attempt is made. The  HC
2709  * moves to the next Endpoint Descriptor after the first transaction attempt
2710  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2711  * Transfer Descriptor is inserted into the lattice, we will only count the
2712  * number of bytes for one transaction.
2713  *
2714  * The following are the formulas used for  calculating bandwidth in  terms
2715  * bytes and it is for the single USB high speed transaction.  The protocol
2716  * overheads will be different for each of type of USB transfer & all these
2717  * formulas & protocol overheads are derived from the 5.11.3 section of the
2718  * USB 2.0 Specification.
2719  *
2720  * Low-Speed:
2721  *		Protocol overhead + Hub LS overhead +
2722  *		(Low Speed clock * ((MaxPktSz * 7)/6)) + TT_Delay
2723  *
2724  * Full-Speed:
2725  *		Protocol overhead + ((MaxPktSz * 7)/6) + TT_Delay
2726  */
2727 /* ARGSUSED */
2728 static int
ehci_compute_classic_bandwidth(usb_ep_descr_t * endpoint,usb_port_status_t port_status,uint_t * bandwidth)2729 ehci_compute_classic_bandwidth(
2730 	usb_ep_descr_t		*endpoint,
2731 	usb_port_status_t	port_status,
2732 	uint_t			*bandwidth)
2733 {
2734 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2735 
2736 	/*
2737 	 * If endpoint maximum packet is zero, then return immediately.
2738 	 */
2739 	if (maxpacketsize == 0) {
2740 
2741 		return (USB_NOT_SUPPORTED);
2742 	}
2743 
2744 	/* Add TT delay to required bandwidth */
2745 	*bandwidth = TT_DELAY;
2746 
2747 	/* Add bit-stuffing overhead */
2748 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2749 
2750 	switch (port_status) {
2751 	case USBA_LOW_SPEED_DEV:
2752 		/* Low speed interrupt transaction */
2753 		*bandwidth += (LOW_SPEED_PROTO_OVERHEAD +
2754 		    HUB_LOW_SPEED_PROTO_OVERHEAD +
2755 		    (LOW_SPEED_CLOCK * maxpacketsize));
2756 		break;
2757 	case USBA_FULL_SPEED_DEV:
2758 		/* Full speed transaction */
2759 		*bandwidth += maxpacketsize;
2760 
2761 		/* Add xfer specific protocol overheads */
2762 		if ((endpoint->bmAttributes &
2763 		    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2764 			/* Full speed interrupt transaction */
2765 			*bandwidth += FS_NON_ISOC_PROTO_OVERHEAD;
2766 		} else {
2767 			/* Isochronous and input transaction */
2768 			if ((endpoint->bEndpointAddress &
2769 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2770 				*bandwidth += FS_ISOC_INPUT_PROTO_OVERHEAD;
2771 			} else {
2772 				/* Isochronous and output transaction */
2773 				*bandwidth += FS_ISOC_OUTPUT_PROTO_OVERHEAD;
2774 			}
2775 		}
2776 		break;
2777 	}
2778 
2779 	return (USB_SUCCESS);
2780 }
2781 
2782 
2783 /*
2784  * ehci_adjust_polling_interval:
2785  *
2786  * Adjust bandwidth according usb device speed.
2787  */
2788 /* ARGSUSED */
2789 int
ehci_adjust_polling_interval(ehci_state_t * ehcip,usb_ep_descr_t * endpoint,usb_port_status_t port_status)2790 ehci_adjust_polling_interval(
2791 	ehci_state_t		*ehcip,
2792 	usb_ep_descr_t		*endpoint,
2793 	usb_port_status_t	port_status)
2794 {
2795 	uint_t			interval;
2796 	int			i = 0;
2797 
2798 	/* Get the polling interval */
2799 	interval = endpoint->bInterval;
2800 
2801 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2802 	    "ehci_adjust_polling_interval: Polling interval 0x%x", interval);
2803 
2804 	/*
2805 	 * According USB 2.0 Specifications, a high-speed endpoint's
2806 	 * polling intervals are specified interms of 125us or micro
2807 	 * frame, where as full/low endpoint's polling intervals are
2808 	 * specified in milliseconds.
2809 	 *
2810 	 * A high speed interrupt/isochronous endpoints can specify
2811 	 * desired polling interval between 1 to 16 micro-frames,
2812 	 * where as full/low endpoints can specify between 1 to 255
2813 	 * milliseconds.
2814 	 */
2815 	switch (port_status) {
2816 	case USBA_LOW_SPEED_DEV:
2817 		/*
2818 		 * Low speed  endpoints are limited to	specifying
2819 		 * only 8ms to 255ms in this driver. If a device
2820 		 * reports a polling interval that is less than 8ms,
2821 		 * it will use 8 ms instead.
2822 		 */
2823 		if (interval < LS_MIN_POLL_INTERVAL) {
2824 
2825 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2826 			    "Low speed endpoint's poll interval of %d ms "
2827 			    "is below threshold. Rounding up to %d ms",
2828 			    interval, LS_MIN_POLL_INTERVAL);
2829 
2830 			interval = LS_MIN_POLL_INTERVAL;
2831 		}
2832 
2833 		/*
2834 		 * Return an error if the polling interval is greater
2835 		 * than 255ms.
2836 		 */
2837 		if (interval > LS_MAX_POLL_INTERVAL) {
2838 
2839 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2840 			    "Low speed endpoint's poll interval is "
2841 			    "greater than %d ms", LS_MAX_POLL_INTERVAL);
2842 
2843 			return (USB_FAILURE);
2844 		}
2845 		break;
2846 
2847 	case USBA_FULL_SPEED_DEV:
2848 		/*
2849 		 * Return an error if the polling interval is less
2850 		 * than 1ms and greater than 255ms.
2851 		 */
2852 		if ((interval < FS_MIN_POLL_INTERVAL) &&
2853 		    (interval > FS_MAX_POLL_INTERVAL)) {
2854 
2855 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2856 			    "Full speed endpoint's poll interval must "
2857 			    "be between %d and %d ms", FS_MIN_POLL_INTERVAL,
2858 			    FS_MAX_POLL_INTERVAL);
2859 
2860 			return (USB_FAILURE);
2861 		}
2862 		break;
2863 	case USBA_HIGH_SPEED_DEV:
2864 		/*
2865 		 * Return an error if the polling interval is less 1
2866 		 * and greater than 16. Convert this value to 125us
2867 		 * units using 2^(bInterval -1). refer usb 2.0 spec
2868 		 * page 51 for details.
2869 		 */
2870 		if ((interval < HS_MIN_POLL_INTERVAL) &&
2871 		    (interval > HS_MAX_POLL_INTERVAL)) {
2872 
2873 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2874 			    "High speed endpoint's poll interval "
2875 			    "must be between %d and %d units",
2876 			    HS_MIN_POLL_INTERVAL, HS_MAX_POLL_INTERVAL);
2877 
2878 			return (USB_FAILURE);
2879 		}
2880 
2881 		/* Adjust high speed device polling interval */
2882 		interval =
2883 		    ehci_adjust_high_speed_polling_interval(ehcip, endpoint);
2884 
2885 		break;
2886 	}
2887 
2888 	/*
2889 	 * If polling interval is greater than 32ms,
2890 	 * adjust polling interval equal to 32ms.
2891 	 */
2892 	if (interval > EHCI_NUM_INTR_QH_LISTS) {
2893 		interval = EHCI_NUM_INTR_QH_LISTS;
2894 	}
2895 
2896 	/*
2897 	 * Find the nearest power of 2 that's less
2898 	 * than interval.
2899 	 */
2900 	while ((ehci_pow_2(i)) <= interval) {
2901 		i++;
2902 	}
2903 
2904 	return (ehci_pow_2((i - 1)));
2905 }
2906 
2907 
2908 /*
2909  * ehci_adjust_high_speed_polling_interval:
2910  */
2911 /* ARGSUSED */
2912 static int
ehci_adjust_high_speed_polling_interval(ehci_state_t * ehcip,usb_ep_descr_t * endpoint)2913 ehci_adjust_high_speed_polling_interval(
2914 	ehci_state_t		*ehcip,
2915 	usb_ep_descr_t		*endpoint)
2916 {
2917 	uint_t			interval;
2918 
2919 	/* Get the polling interval */
2920 	interval = ehci_pow_2(endpoint->bInterval - 1);
2921 
2922 	/*
2923 	 * Convert polling interval from micro seconds
2924 	 * to milli seconds.
2925 	 */
2926 	if (interval <= EHCI_MAX_UFRAMES) {
2927 		interval = 1;
2928 	} else {
2929 		interval = interval/EHCI_MAX_UFRAMES;
2930 	}
2931 
2932 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2933 	    "ehci_adjust_high_speed_polling_interval: "
2934 	    "High speed adjusted interval 0x%x", interval);
2935 
2936 	return (interval);
2937 }
2938 
2939 
2940 /*
2941  * ehci_lattice_height:
2942  *
2943  * Given the requested bandwidth, find the height in the tree at which the
2944  * nodes for this bandwidth fall.  The height is measured as the number of
2945  * nodes from the leaf to the level specified by bandwidth The root of the
2946  * tree is at height TREE_HEIGHT.
2947  */
2948 static uint_t
ehci_lattice_height(uint_t interval)2949 ehci_lattice_height(uint_t interval)
2950 {
2951 	return (TREE_HEIGHT - (ehci_log_2(interval)));
2952 }
2953 
2954 
2955 /*
2956  * ehci_lattice_parent:
2957  *
2958  * Given a node in the lattice, find the index of the parent node
2959  */
2960 static uint_t
ehci_lattice_parent(uint_t node)2961 ehci_lattice_parent(uint_t node)
2962 {
2963 	if ((node % 2) == 0) {
2964 
2965 		return ((node/2) - 1);
2966 	} else {
2967 
2968 		return ((node + 1)/2 - 1);
2969 	}
2970 }
2971 
2972 
2973 /*
2974  * ehci_find_periodic_node:
2975  *
2976  * Based on the "real" array leaf node and interval, get the periodic node.
2977  */
2978 static uint_t
ehci_find_periodic_node(uint_t leaf,int interval)2979 ehci_find_periodic_node(uint_t leaf, int interval) {
2980 	uint_t	lattice_leaf;
2981 	uint_t	height = ehci_lattice_height(interval);
2982 	uint_t	pnode;
2983 	int	i;
2984 
2985 	/* Get the leaf number in the lattice */
2986 	lattice_leaf = leaf + EHCI_NUM_INTR_QH_LISTS - 1;
2987 
2988 	/* Get the node in the lattice based on the height and leaf */
2989 	pnode = lattice_leaf;
2990 	for (i = 0; i < height; i++) {
2991 		pnode = ehci_lattice_parent(pnode);
2992 	}
2993 
2994 	return (pnode);
2995 }
2996 
2997 
2998 /*
2999  * ehci_leftmost_leaf:
3000  *
3001  * Find the leftmost leaf in the subtree specified by the node. Height refers
3002  * to number of nodes from the bottom of the tree to the node,	including the
3003  * node.
3004  *
3005  * The formula for a zero based tree is:
3006  *     2^H * Node + 2^H - 1
3007  * The leaf of the tree is an array, convert the number for the array.
3008  *     Subtract the size of nodes not in the array
3009  *     2^H * Node + 2^H - 1 - (EHCI_NUM_INTR_QH_LISTS - 1) =
3010  *     2^H * Node + 2^H - EHCI_NUM_INTR_QH_LISTS =
3011  *     2^H * (Node + 1) - EHCI_NUM_INTR_QH_LISTS
3012  *	   0
3013  *	 1   2
3014  *	0 1 2 3
3015  */
3016 static uint_t
ehci_leftmost_leaf(uint_t node,uint_t height)3017 ehci_leftmost_leaf(
3018 	uint_t	node,
3019 	uint_t	height)
3020 {
3021 	return ((ehci_pow_2(height) * (node + 1)) - EHCI_NUM_INTR_QH_LISTS);
3022 }
3023 
3024 
3025 /*
3026  * ehci_pow_2:
3027  *
3028  * Compute 2 to the power
3029  */
3030 static uint_t
ehci_pow_2(uint_t x)3031 ehci_pow_2(uint_t x)
3032 {
3033 	if (x == 0) {
3034 
3035 		return (1);
3036 	} else {
3037 
3038 		return (2 << (x - 1));
3039 	}
3040 }
3041 
3042 
3043 /*
3044  * ehci_log_2:
3045  *
3046  * Compute log base 2 of x
3047  */
3048 static uint_t
ehci_log_2(uint_t x)3049 ehci_log_2(uint_t x)
3050 {
3051 	int i = 0;
3052 
3053 	while (x != 1) {
3054 		x = x >> 1;
3055 		i++;
3056 	}
3057 
3058 	return (i);
3059 }
3060 
3061 
3062 /*
3063  * ehci_find_bestfit_hs_mask:
3064  *
3065  * Find the smask and cmask in the bandwidth allocation, and update the
3066  * bandwidth allocation.
3067  */
3068 static int
ehci_find_bestfit_hs_mask(ehci_state_t * ehcip,uchar_t * smask,uint_t * pnode,usb_ep_descr_t * endpoint,uint_t bandwidth,int interval)3069 ehci_find_bestfit_hs_mask(
3070 	ehci_state_t	*ehcip,
3071 	uchar_t		*smask,
3072 	uint_t		*pnode,
3073 	usb_ep_descr_t	*endpoint,
3074 	uint_t		bandwidth,
3075 	int		interval)
3076 {
3077 	int		i;
3078 	uint_t		elements, index;
3079 	int		array_leaf, best_array_leaf;
3080 	uint_t		node_bandwidth, best_node_bandwidth;
3081 	uint_t		leaf_count;
3082 	uchar_t		bw_mask;
3083 	uchar_t		best_smask;
3084 
3085 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3086 	    "ehci_find_bestfit_hs_mask: ");
3087 
3088 	/* Get all the valid smasks */
3089 	switch (ehci_pow_2(endpoint->bInterval - 1)) {
3090 	case EHCI_INTR_1US_POLL:
3091 		index = EHCI_1US_MASK_INDEX;
3092 		elements = EHCI_INTR_1US_POLL;
3093 		break;
3094 	case EHCI_INTR_2US_POLL:
3095 		index = EHCI_2US_MASK_INDEX;
3096 		elements = EHCI_INTR_2US_POLL;
3097 		break;
3098 	case EHCI_INTR_4US_POLL:
3099 		index = EHCI_4US_MASK_INDEX;
3100 		elements = EHCI_INTR_4US_POLL;
3101 		break;
3102 	case EHCI_INTR_XUS_POLL:
3103 	default:
3104 		index = EHCI_XUS_MASK_INDEX;
3105 		elements = EHCI_INTR_XUS_POLL;
3106 		break;
3107 	}
3108 
3109 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3110 
3111 	/*
3112 	 * Because of the way the leaves are setup, we will automatically
3113 	 * hit the leftmost leaf of every possible node with this interval.
3114 	 */
3115 	best_smask = 0x00;
3116 	best_node_bandwidth = 0;
3117 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3118 		/* Find the bandwidth mask */
3119 		node_bandwidth = ehci_calculate_bw_availability_mask(ehcip,
3120 		    bandwidth, ehci_index[array_leaf], leaf_count, &bw_mask);
3121 
3122 		/*
3123 		 * If this node cannot support our requirements skip to the
3124 		 * next leaf.
3125 		 */
3126 		if (bw_mask == 0x00) {
3127 			continue;
3128 		}
3129 
3130 		/*
3131 		 * Now make sure our bandwidth requirements can be
3132 		 * satisfied with one of smasks in this node.
3133 		 */
3134 		*smask = 0x00;
3135 		for (i = index; i < (index + elements); i++) {
3136 			/* Check the start split mask value */
3137 			if (ehci_start_split_mask[index] & bw_mask) {
3138 				*smask = ehci_start_split_mask[index];
3139 				break;
3140 			}
3141 		}
3142 
3143 		/*
3144 		 * If an appropriate smask is found save the information if:
3145 		 * o best_smask has not been found yet.
3146 		 * - or -
3147 		 * o This is the node with the least amount of bandwidth
3148 		 */
3149 		if ((*smask != 0x00) &&
3150 		    ((best_smask == 0x00) ||
3151 		    (best_node_bandwidth > node_bandwidth))) {
3152 
3153 			best_node_bandwidth = node_bandwidth;
3154 			best_array_leaf = array_leaf;
3155 			best_smask = *smask;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * If we find node that can handle the bandwidth populate the
3161 	 * appropriate variables and return success.
3162 	 */
3163 	if (best_smask) {
3164 		*smask = best_smask;
3165 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3166 		    interval);
3167 		ehci_update_bw_availability(ehcip, bandwidth,
3168 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3169 
3170 		return (USB_SUCCESS);
3171 	}
3172 
3173 	return (USB_FAILURE);
3174 }
3175 
3176 
3177 /*
3178  * ehci_find_bestfit_ls_intr_mask:
3179  *
3180  * Find the smask and cmask in the bandwidth allocation.
3181  */
3182 static int
ehci_find_bestfit_ls_intr_mask(ehci_state_t * ehcip,uchar_t * smask,uchar_t * cmask,uint_t * pnode,uint_t sbandwidth,uint_t cbandwidth,int interval)3183 ehci_find_bestfit_ls_intr_mask(
3184 	ehci_state_t	*ehcip,
3185 	uchar_t		*smask,
3186 	uchar_t		*cmask,
3187 	uint_t		*pnode,
3188 	uint_t		sbandwidth,
3189 	uint_t		cbandwidth,
3190 	int		interval)
3191 {
3192 	int		i;
3193 	uint_t		elements, index;
3194 	int		array_leaf, best_array_leaf;
3195 	uint_t		node_sbandwidth, node_cbandwidth;
3196 	uint_t		best_node_bandwidth;
3197 	uint_t		leaf_count;
3198 	uchar_t		bw_smask, bw_cmask;
3199 	uchar_t		best_smask, best_cmask;
3200 
3201 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3202 	    "ehci_find_bestfit_ls_intr_mask: ");
3203 
3204 	/* For low and full speed devices */
3205 	index = EHCI_XUS_MASK_INDEX;
3206 	elements = EHCI_INTR_4MS_POLL;
3207 
3208 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3209 
3210 	/*
3211 	 * Because of the way the leaves are setup, we will automatically
3212 	 * hit the leftmost leaf of every possible node with this interval.
3213 	 */
3214 	best_smask = 0x00;
3215 	best_node_bandwidth = 0;
3216 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3217 		/* Find the bandwidth mask */
3218 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3219 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3220 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3221 		    cbandwidth, ehci_index[array_leaf], leaf_count, &bw_cmask);
3222 
3223 		/*
3224 		 * If this node cannot support our requirements skip to the
3225 		 * next leaf.
3226 		 */
3227 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3228 			continue;
3229 		}
3230 
3231 		/*
3232 		 * Now make sure our bandwidth requirements can be
3233 		 * satisfied with one of smasks in this node.
3234 		 */
3235 		*smask = 0x00;
3236 		*cmask = 0x00;
3237 		for (i = index; i < (index + elements); i++) {
3238 			/* Check the start split mask value */
3239 			if ((ehci_start_split_mask[index] & bw_smask) &&
3240 			    (ehci_intr_complete_split_mask[index] & bw_cmask)) {
3241 				*smask = ehci_start_split_mask[index];
3242 				*cmask = ehci_intr_complete_split_mask[index];
3243 				break;
3244 			}
3245 		}
3246 
3247 		/*
3248 		 * If an appropriate smask is found save the information if:
3249 		 * o best_smask has not been found yet.
3250 		 * - or -
3251 		 * o This is the node with the least amount of bandwidth
3252 		 */
3253 		if ((*smask != 0x00) &&
3254 		    ((best_smask == 0x00) ||
3255 		    (best_node_bandwidth >
3256 		    (node_sbandwidth + node_cbandwidth)))) {
3257 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3258 			best_array_leaf = array_leaf;
3259 			best_smask = *smask;
3260 			best_cmask = *cmask;
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * If we find node that can handle the bandwidth populate the
3266 	 * appropriate variables and return success.
3267 	 */
3268 	if (best_smask) {
3269 		*smask = best_smask;
3270 		*cmask = best_cmask;
3271 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3272 		    interval);
3273 		ehci_update_bw_availability(ehcip, sbandwidth,
3274 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3275 		ehci_update_bw_availability(ehcip, cbandwidth,
3276 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3277 
3278 		return (USB_SUCCESS);
3279 	}
3280 
3281 	return (USB_FAILURE);
3282 }
3283 
3284 
3285 /*
3286  * ehci_find_bestfit_sitd_in_mask:
3287  *
3288  * Find the smask and cmask in the bandwidth allocation.
3289  */
3290 static int
ehci_find_bestfit_sitd_in_mask(ehci_state_t * ehcip,uchar_t * smask,uchar_t * cmask,uint_t * pnode,uint_t sbandwidth,uint_t cbandwidth,int interval)3291 ehci_find_bestfit_sitd_in_mask(
3292 	ehci_state_t	*ehcip,
3293 	uchar_t		*smask,
3294 	uchar_t		*cmask,
3295 	uint_t		*pnode,
3296 	uint_t		sbandwidth,
3297 	uint_t		cbandwidth,
3298 	int		interval)
3299 {
3300 	int		i, uFrames, found;
3301 	int		array_leaf, best_array_leaf;
3302 	uint_t		node_sbandwidth, node_cbandwidth;
3303 	uint_t		best_node_bandwidth;
3304 	uint_t		leaf_count;
3305 	uchar_t		bw_smask, bw_cmask;
3306 	uchar_t		best_smask, best_cmask;
3307 
3308 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3309 	    "ehci_find_bestfit_sitd_in_mask: ");
3310 
3311 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3312 
3313 	/*
3314 	 * Because of the way the leaves are setup, we will automatically
3315 	 * hit the leftmost leaf of every possible node with this interval.
3316 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3317 	 */
3318 	/*
3319 	 * Need to add an additional 2 uFrames, if the "L"ast
3320 	 * complete split is before uFrame 6.  See section
3321 	 * 11.8.4 in USB 2.0 Spec.  Currently we do not support
3322 	 * the "Back Ptr" which means we support on IN of
3323 	 * ~4*MAX_UFRAME_SITD_XFER bandwidth/
3324 	 */
3325 	uFrames = (cbandwidth / MAX_UFRAME_SITD_XFER) + 2;
3326 	if (cbandwidth % MAX_UFRAME_SITD_XFER) {
3327 		uFrames++;
3328 	}
3329 	if (uFrames > 6) {
3330 
3331 		return (USB_FAILURE);
3332 	}
3333 	*smask = 0x1;
3334 	*cmask = 0x00;
3335 	for (i = 0; i < uFrames; i++) {
3336 		*cmask = *cmask << 1;
3337 		*cmask |= 0x1;
3338 	}
3339 	/* cmask must start 2 frames after the smask */
3340 	*cmask = *cmask << 2;
3341 
3342 	found = 0;
3343 	best_smask = 0x00;
3344 	best_node_bandwidth = 0;
3345 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3346 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3347 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3348 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3349 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3350 		    &bw_cmask);
3351 
3352 		/*
3353 		 * If this node cannot support our requirements skip to the
3354 		 * next leaf.
3355 		 */
3356 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3357 			continue;
3358 		}
3359 
3360 		for (i = 0; i < (EHCI_MAX_UFRAMES - uFrames - 2); i++) {
3361 			if ((*smask & bw_smask) && (*cmask & bw_cmask)) {
3362 				found = 1;
3363 				break;
3364 			}
3365 			*smask = *smask << 1;
3366 			*cmask = *cmask << 1;
3367 		}
3368 
3369 		/*
3370 		 * If an appropriate smask is found save the information if:
3371 		 * o best_smask has not been found yet.
3372 		 * - or -
3373 		 * o This is the node with the least amount of bandwidth
3374 		 */
3375 		if (found &&
3376 		    ((best_smask == 0x00) ||
3377 		    (best_node_bandwidth >
3378 		    (node_sbandwidth + node_cbandwidth)))) {
3379 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3380 			best_array_leaf = array_leaf;
3381 			best_smask = *smask;
3382 			best_cmask = *cmask;
3383 		}
3384 	}
3385 
3386 	/*
3387 	 * If we find node that can handle the bandwidth populate the
3388 	 * appropriate variables and return success.
3389 	 */
3390 	if (best_smask) {
3391 		*smask = best_smask;
3392 		*cmask = best_cmask;
3393 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3394 		    interval);
3395 		ehci_update_bw_availability(ehcip, sbandwidth,
3396 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3397 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3398 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3399 
3400 		return (USB_SUCCESS);
3401 	}
3402 
3403 	return (USB_FAILURE);
3404 }
3405 
3406 
3407 /*
3408  * ehci_find_bestfit_sitd_out_mask:
3409  *
3410  * Find the smask in the bandwidth allocation.
3411  */
3412 static int
ehci_find_bestfit_sitd_out_mask(ehci_state_t * ehcip,uchar_t * smask,uint_t * pnode,uint_t sbandwidth,int interval)3413 ehci_find_bestfit_sitd_out_mask(
3414 	ehci_state_t	*ehcip,
3415 	uchar_t		*smask,
3416 	uint_t		*pnode,
3417 	uint_t		sbandwidth,
3418 	int		interval)
3419 {
3420 	int		i, uFrames, found;
3421 	int		array_leaf, best_array_leaf;
3422 	uint_t		node_sbandwidth;
3423 	uint_t		best_node_bandwidth;
3424 	uint_t		leaf_count;
3425 	uchar_t		bw_smask;
3426 	uchar_t		best_smask;
3427 
3428 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3429 	    "ehci_find_bestfit_sitd_out_mask: ");
3430 
3431 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3432 
3433 	/*
3434 	 * Because of the way the leaves are setup, we will automatically
3435 	 * hit the leftmost leaf of every possible node with this interval.
3436 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3437 	 */
3438 	*smask = 0x00;
3439 	uFrames = sbandwidth / MAX_UFRAME_SITD_XFER;
3440 	if (sbandwidth % MAX_UFRAME_SITD_XFER) {
3441 		uFrames++;
3442 	}
3443 	for (i = 0; i < uFrames; i++) {
3444 		*smask = *smask << 1;
3445 		*smask |= 0x1;
3446 	}
3447 
3448 	found = 0;
3449 	best_smask = 0x00;
3450 	best_node_bandwidth = 0;
3451 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3452 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3453 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3454 		    &bw_smask);
3455 
3456 		/*
3457 		 * If this node cannot support our requirements skip to the
3458 		 * next leaf.
3459 		 */
3460 		if (bw_smask == 0x00) {
3461 			continue;
3462 		}
3463 
3464 		/* You cannot have a start split on the 8th uFrame */
3465 		for (i = 0; (*smask & 0x80) == 0; i++) {
3466 			if (*smask & bw_smask) {
3467 				found = 1;
3468 				break;
3469 			}
3470 			*smask = *smask << 1;
3471 		}
3472 
3473 		/*
3474 		 * If an appropriate smask is found save the information if:
3475 		 * o best_smask has not been found yet.
3476 		 * - or -
3477 		 * o This is the node with the least amount of bandwidth
3478 		 */
3479 		if (found &&
3480 		    ((best_smask == 0x00) ||
3481 		    (best_node_bandwidth > node_sbandwidth))) {
3482 			best_node_bandwidth = node_sbandwidth;
3483 			best_array_leaf = array_leaf;
3484 			best_smask = *smask;
3485 		}
3486 	}
3487 
3488 	/*
3489 	 * If we find node that can handle the bandwidth populate the
3490 	 * appropriate variables and return success.
3491 	 */
3492 	if (best_smask) {
3493 		*smask = best_smask;
3494 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3495 		    interval);
3496 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3497 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3498 
3499 		return (USB_SUCCESS);
3500 	}
3501 
3502 	return (USB_FAILURE);
3503 }
3504 
3505 
3506 /*
3507  * ehci_calculate_bw_availability_mask:
3508  *
3509  * Returns the "total bandwidth used" in this node.
3510  * Populates bw_mask with the uFrames that can support the bandwidth.
3511  *
3512  * If all the Frames cannot support this bandwidth, then bw_mask
3513  * will return 0x00 and the "total bandwidth used" will be invalid.
3514  */
3515 static uint_t
ehci_calculate_bw_availability_mask(ehci_state_t * ehcip,uint_t bandwidth,int leaf,int leaf_count,uchar_t * bw_mask)3516 ehci_calculate_bw_availability_mask(
3517 	ehci_state_t	*ehcip,
3518 	uint_t		bandwidth,
3519 	int		leaf,
3520 	int		leaf_count,
3521 	uchar_t		*bw_mask)
3522 {
3523 	int			i, j;
3524 	uchar_t			bw_uframe;
3525 	int			uframe_total;
3526 	ehci_frame_bandwidth_t	*fbp;
3527 	uint_t			total_bandwidth = 0;
3528 
3529 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3530 	    "ehci_calculate_bw_availability_mask: leaf %d leaf count %d",
3531 	    leaf, leaf_count);
3532 
3533 	/* Start by saying all uFrames are available */
3534 	*bw_mask = 0xFF;
3535 
3536 	for (i = 0; (i < leaf_count) || (*bw_mask == 0x00); i++) {
3537 		fbp = &ehcip->ehci_frame_bandwidth[leaf + i];
3538 
3539 		total_bandwidth += fbp->ehci_allocated_frame_bandwidth;
3540 
3541 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3542 			/*
3543 			 * If the uFrame in bw_mask is available check to see if
3544 			 * it can support the additional bandwidth.
3545 			 */
3546 			bw_uframe = (*bw_mask & (0x1 << j));
3547 			uframe_total =
3548 			    fbp->ehci_micro_frame_bandwidth[j] +
3549 			    bandwidth;
3550 			if ((bw_uframe) &&
3551 			    (uframe_total > HS_PERIODIC_BANDWIDTH)) {
3552 				*bw_mask = *bw_mask & ~bw_uframe;
3553 			}
3554 		}
3555 	}
3556 
3557 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3558 	    "ehci_calculate_bw_availability_mask: bandwidth mask 0x%x",
3559 	    *bw_mask);
3560 
3561 	return (total_bandwidth);
3562 }
3563 
3564 
3565 /*
3566  * ehci_update_bw_availability:
3567  *
3568  * The leftmost leaf needs to be in terms of array position and
3569  * not the actual lattice position.
3570  */
3571 static void
ehci_update_bw_availability(ehci_state_t * ehcip,int bandwidth,int leftmost_leaf,int leaf_count,uchar_t mask)3572 ehci_update_bw_availability(
3573 	ehci_state_t	*ehcip,
3574 	int		bandwidth,
3575 	int		leftmost_leaf,
3576 	int		leaf_count,
3577 	uchar_t		mask)
3578 {
3579 	int			i, j;
3580 	ehci_frame_bandwidth_t	*fbp;
3581 	int			uFrame_bandwidth[8];
3582 
3583 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3584 	    "ehci_update_bw_availability: "
3585 	    "leaf %d count %d bandwidth 0x%x mask 0x%x",
3586 	    leftmost_leaf, leaf_count, bandwidth, mask);
3587 
3588 	ASSERT(leftmost_leaf < 32);
3589 	ASSERT(leftmost_leaf >= 0);
3590 
3591 	for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3592 		if (mask & 0x1) {
3593 			uFrame_bandwidth[j] = bandwidth;
3594 		} else {
3595 			uFrame_bandwidth[j] = 0;
3596 		}
3597 
3598 		mask = mask >> 1;
3599 	}
3600 
3601 	/* Updated all the effected leafs with the bandwidth */
3602 	for (i = 0; i < leaf_count; i++) {
3603 		fbp = &ehcip->ehci_frame_bandwidth[leftmost_leaf + i];
3604 
3605 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3606 			fbp->ehci_micro_frame_bandwidth[j] +=
3607 			    uFrame_bandwidth[j];
3608 			fbp->ehci_allocated_frame_bandwidth +=
3609 			    uFrame_bandwidth[j];
3610 		}
3611 	}
3612 }
3613 
3614 /*
3615  * Miscellaneous functions
3616  */
3617 
3618 /*
3619  * ehci_obtain_state:
3620  *
3621  * NOTE: This function is also called from POLLED MODE.
3622  */
3623 ehci_state_t *
ehci_obtain_state(dev_info_t * dip)3624 ehci_obtain_state(dev_info_t	*dip)
3625 {
3626 	int			instance = ddi_get_instance(dip);
3627 
3628 	ehci_state_t *state = ddi_get_soft_state(ehci_statep, instance);
3629 
3630 	ASSERT(state != NULL);
3631 
3632 	return (state);
3633 }
3634 
3635 
3636 /*
3637  * ehci_state_is_operational:
3638  *
3639  * Check the Host controller state and return proper values.
3640  */
3641 int
ehci_state_is_operational(ehci_state_t * ehcip)3642 ehci_state_is_operational(ehci_state_t	*ehcip)
3643 {
3644 	int	val;
3645 
3646 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3647 
3648 	switch (ehcip->ehci_hc_soft_state) {
3649 	case EHCI_CTLR_INIT_STATE:
3650 	case EHCI_CTLR_SUSPEND_STATE:
3651 		val = USB_FAILURE;
3652 		break;
3653 	case EHCI_CTLR_OPERATIONAL_STATE:
3654 		val = USB_SUCCESS;
3655 		break;
3656 	case EHCI_CTLR_ERROR_STATE:
3657 		val = USB_HC_HARDWARE_ERROR;
3658 		break;
3659 	default:
3660 		val = USB_FAILURE;
3661 		break;
3662 	}
3663 
3664 	return (val);
3665 }
3666 
3667 
3668 /*
3669  * ehci_do_soft_reset
3670  *
3671  * Do soft reset of ehci host controller.
3672  */
3673 int
ehci_do_soft_reset(ehci_state_t * ehcip)3674 ehci_do_soft_reset(ehci_state_t	*ehcip)
3675 {
3676 	usb_frame_number_t	before_frame_number, after_frame_number;
3677 	ehci_regs_t		*ehci_save_regs;
3678 
3679 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3680 
3681 	/* Increment host controller error count */
3682 	ehcip->ehci_hc_error++;
3683 
3684 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3685 	    "ehci_do_soft_reset:"
3686 	    "Reset ehci host controller 0x%x", ehcip->ehci_hc_error);
3687 
3688 	/*
3689 	 * Allocate space for saving current Host Controller
3690 	 * registers. Don't do any recovery if allocation
3691 	 * fails.
3692 	 */
3693 	ehci_save_regs = (ehci_regs_t *)
3694 	    kmem_zalloc(sizeof (ehci_regs_t), KM_NOSLEEP);
3695 
3696 	if (ehci_save_regs == NULL) {
3697 		USB_DPRINTF_L2(PRINT_MASK_INTR,  ehcip->ehci_log_hdl,
3698 		    "ehci_do_soft_reset: kmem_zalloc failed");
3699 
3700 		return (USB_FAILURE);
3701 	}
3702 
3703 	/* Save current ehci registers */
3704 	ehci_save_regs->ehci_command = Get_OpReg(ehci_command);
3705 	ehci_save_regs->ehci_interrupt = Get_OpReg(ehci_interrupt);
3706 	ehci_save_regs->ehci_ctrl_segment = Get_OpReg(ehci_ctrl_segment);
3707 	ehci_save_regs->ehci_async_list_addr = Get_OpReg(ehci_async_list_addr);
3708 	ehci_save_regs->ehci_config_flag = Get_OpReg(ehci_config_flag);
3709 	ehci_save_regs->ehci_periodic_list_base =
3710 	    Get_OpReg(ehci_periodic_list_base);
3711 
3712 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3713 	    "ehci_do_soft_reset: Save reg = 0x%p", (void *)ehci_save_regs);
3714 
3715 	/* Disable all list processing and interrupts */
3716 	Set_OpReg(ehci_command, Get_OpReg(ehci_command) &
3717 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE));
3718 
3719 	/* Disable all EHCI interrupts */
3720 	Set_OpReg(ehci_interrupt, 0);
3721 
3722 	/* Wait for few milliseconds */
3723 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3724 
3725 	/* Do light soft reset of ehci host controller */
3726 	Set_OpReg(ehci_command,
3727 	    Get_OpReg(ehci_command) | EHCI_CMD_LIGHT_HC_RESET);
3728 
3729 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3730 	    "ehci_do_soft_reset: Reset in progress");
3731 
3732 	/* Wait for reset to complete */
3733 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3734 
3735 	/*
3736 	 * Restore previous saved EHCI register value
3737 	 * into the current EHCI registers.
3738 	 */
3739 	Set_OpReg(ehci_ctrl_segment, (uint32_t)
3740 	    ehci_save_regs->ehci_ctrl_segment);
3741 
3742 	Set_OpReg(ehci_periodic_list_base, (uint32_t)
3743 	    ehci_save_regs->ehci_periodic_list_base);
3744 
3745 	Set_OpReg(ehci_async_list_addr, (uint32_t)
3746 	    ehci_save_regs->ehci_async_list_addr);
3747 
3748 	/*
3749 	 * For some reason this register might get nulled out by
3750 	 * the Uli M1575 South Bridge. To workaround the hardware
3751 	 * problem, check the value after write and retry if the
3752 	 * last write fails.
3753 	 */
3754 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
3755 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
3756 	    (ehci_save_regs->ehci_async_list_addr !=
3757 	    Get_OpReg(ehci_async_list_addr))) {
3758 		int retry = 0;
3759 
3760 		Set_OpRegRetry(ehci_async_list_addr, (uint32_t)
3761 		    ehci_save_regs->ehci_async_list_addr, retry);
3762 		if (retry >= EHCI_MAX_RETRY) {
3763 			USB_DPRINTF_L2(PRINT_MASK_ATTA,
3764 			    ehcip->ehci_log_hdl, "ehci_do_soft_reset:"
3765 			    " ASYNCLISTADDR write failed.");
3766 
3767 			return (USB_FAILURE);
3768 		}
3769 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
3770 		    "ehci_do_soft_reset: ASYNCLISTADDR "
3771 		    "write failed, retry=%d", retry);
3772 	}
3773 
3774 	Set_OpReg(ehci_config_flag, (uint32_t)
3775 	    ehci_save_regs->ehci_config_flag);
3776 
3777 	/* Enable both Asynchronous and Periodic Schedule if necessary */
3778 	ehci_toggle_scheduler(ehcip);
3779 
3780 	/*
3781 	 * Set ehci_interrupt to enable all interrupts except Root
3782 	 * Hub Status change and frame list rollover interrupts.
3783 	 */
3784 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
3785 	    EHCI_INTR_FRAME_LIST_ROLLOVER |
3786 	    EHCI_INTR_USB_ERROR |
3787 	    EHCI_INTR_USB);
3788 
3789 	/*
3790 	 * Deallocate the space that allocated for saving
3791 	 * HC registers.
3792 	 */
3793 	kmem_free((void *) ehci_save_regs, sizeof (ehci_regs_t));
3794 
3795 	/*
3796 	 * Set the desired interrupt threshold, frame list size (if
3797 	 * applicable) and turn EHCI host controller.
3798 	 */
3799 	Set_OpReg(ehci_command, ((Get_OpReg(ehci_command) &
3800 	    ~EHCI_CMD_INTR_THRESHOLD) |
3801 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
3802 
3803 	/* Wait 10ms for EHCI to start sending SOF */
3804 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3805 
3806 	/*
3807 	 * Get the current usb frame number before waiting for
3808 	 * few milliseconds.
3809 	 */
3810 	before_frame_number = ehci_get_current_frame_number(ehcip);
3811 
3812 	/* Wait for few milliseconds */
3813 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3814 
3815 	/*
3816 	 * Get the current usb frame number after waiting for
3817 	 * few milliseconds.
3818 	 */
3819 	after_frame_number = ehci_get_current_frame_number(ehcip);
3820 
3821 	USB_DPRINTF_L4(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3822 	    "ehci_do_soft_reset: Before Frame Number 0x%llx "
3823 	    "After Frame Number 0x%llx",
3824 	    (unsigned long long)before_frame_number,
3825 	    (unsigned long long)after_frame_number);
3826 
3827 	if ((after_frame_number <= before_frame_number) &&
3828 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
3829 
3830 		USB_DPRINTF_L2(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3831 		    "ehci_do_soft_reset: Soft reset failed");
3832 
3833 		return (USB_FAILURE);
3834 	}
3835 
3836 	return (USB_SUCCESS);
3837 }
3838 
3839 
3840 /*
3841  * ehci_get_xfer_attrs:
3842  *
3843  * Get the attributes of a particular xfer.
3844  *
3845  * NOTE: This function is also called from POLLED MODE.
3846  */
3847 usb_req_attrs_t
ehci_get_xfer_attrs(ehci_state_t * ehcip,ehci_pipe_private_t * pp,ehci_trans_wrapper_t * tw)3848 ehci_get_xfer_attrs(
3849 	ehci_state_t		*ehcip,
3850 	ehci_pipe_private_t	*pp,
3851 	ehci_trans_wrapper_t	*tw)
3852 {
3853 	usb_ep_descr_t		*eptd = &pp->pp_pipe_handle->p_ep;
3854 	usb_req_attrs_t		attrs = USB_ATTRS_NONE;
3855 
3856 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3857 	    "ehci_get_xfer_attrs:");
3858 
3859 	switch (eptd->bmAttributes & USB_EP_ATTR_MASK) {
3860 	case USB_EP_ATTR_CONTROL:
3861 		attrs = ((usb_ctrl_req_t *)
3862 		    tw->tw_curr_xfer_reqp)->ctrl_attributes;
3863 		break;
3864 	case USB_EP_ATTR_BULK:
3865 		attrs = ((usb_bulk_req_t *)
3866 		    tw->tw_curr_xfer_reqp)->bulk_attributes;
3867 		break;
3868 	case USB_EP_ATTR_INTR:
3869 		attrs = ((usb_intr_req_t *)
3870 		    tw->tw_curr_xfer_reqp)->intr_attributes;
3871 		break;
3872 	}
3873 
3874 	return (attrs);
3875 }
3876 
3877 
3878 /*
3879  * ehci_get_current_frame_number:
3880  *
3881  * Get the current software based usb frame number.
3882  */
3883 usb_frame_number_t
ehci_get_current_frame_number(ehci_state_t * ehcip)3884 ehci_get_current_frame_number(ehci_state_t *ehcip)
3885 {
3886 	usb_frame_number_t	usb_frame_number;
3887 	usb_frame_number_t	ehci_fno, micro_frame_number;
3888 
3889 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3890 
3891 	ehci_fno = ehcip->ehci_fno;
3892 	micro_frame_number = Get_OpReg(ehci_frame_index) & 0x3FFF;
3893 
3894 	/*
3895 	 * Calculate current software based usb frame number.
3896 	 *
3897 	 * This code accounts for the fact that frame number is
3898 	 * updated by the Host Controller before the ehci driver
3899 	 * gets an FrameListRollover interrupt that will adjust
3900 	 * Frame higher part.
3901 	 *
3902 	 * Refer ehci specification 1.0, section 2.3.2, page 21.
3903 	 */
3904 	micro_frame_number = ((micro_frame_number & 0x1FFF) |
3905 	    ehci_fno) + (((micro_frame_number & 0x3FFF) ^
3906 	    ehci_fno) & 0x2000);
3907 
3908 	/*
3909 	 * Micro Frame number is equivalent to 125 usec. Eight
3910 	 * Micro Frame numbers are equivalent to one millsecond
3911 	 * or one usb frame number.
3912 	 */
3913 	usb_frame_number = micro_frame_number >>
3914 	    EHCI_uFRAMES_PER_USB_FRAME_SHIFT;
3915 
3916 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3917 	    "ehci_get_current_frame_number: "
3918 	    "Current usb uframe number = 0x%llx "
3919 	    "Current usb frame number  = 0x%llx",
3920 	    (unsigned long long)micro_frame_number,
3921 	    (unsigned long long)usb_frame_number);
3922 
3923 	return (usb_frame_number);
3924 }
3925 
3926 
3927 /*
3928  * ehci_cpr_cleanup:
3929  *
3930  * Cleanup ehci state and other ehci specific informations across
3931  * Check Point Resume (CPR).
3932  */
3933 static	void
ehci_cpr_cleanup(ehci_state_t * ehcip)3934 ehci_cpr_cleanup(ehci_state_t *ehcip)
3935 {
3936 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3937 
3938 	/* Reset software part of usb frame number */
3939 	ehcip->ehci_fno = 0;
3940 }
3941 
3942 
3943 /*
3944  * ehci_wait_for_sof:
3945  *
3946  * Wait for couple of SOF interrupts
3947  */
3948 int
ehci_wait_for_sof(ehci_state_t * ehcip)3949 ehci_wait_for_sof(ehci_state_t	*ehcip)
3950 {
3951 	usb_frame_number_t	before_frame_number, after_frame_number;
3952 	int			error = USB_SUCCESS;
3953 
3954 	USB_DPRINTF_L4(PRINT_MASK_LISTS,
3955 	    ehcip->ehci_log_hdl, "ehci_wait_for_sof");
3956 
3957 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3958 
3959 	error = ehci_state_is_operational(ehcip);
3960 
3961 	if (error != USB_SUCCESS) {
3962 
3963 		return (error);
3964 	}
3965 
3966 	/* Get the current usb frame number before waiting for two SOFs */
3967 	before_frame_number = ehci_get_current_frame_number(ehcip);
3968 
3969 	mutex_exit(&ehcip->ehci_int_mutex);
3970 
3971 	/* Wait for few milliseconds */
3972 	delay(drv_usectohz(EHCI_SOF_TIMEWAIT));
3973 
3974 	mutex_enter(&ehcip->ehci_int_mutex);
3975 
3976 	/* Get the current usb frame number after woken up */
3977 	after_frame_number = ehci_get_current_frame_number(ehcip);
3978 
3979 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3980 	    "ehci_wait_for_sof: framenumber: before 0x%llx "
3981 	    "after 0x%llx",
3982 	    (unsigned long long)before_frame_number,
3983 	    (unsigned long long)after_frame_number);
3984 
3985 	/* Return failure, if usb frame number has not been changed */
3986 	if (after_frame_number <= before_frame_number) {
3987 
3988 		if ((ehci_do_soft_reset(ehcip)) != USB_SUCCESS) {
3989 
3990 			USB_DPRINTF_L0(PRINT_MASK_LISTS,
3991 			    ehcip->ehci_log_hdl, "No SOF interrupts");
3992 
3993 			/* Set host controller soft state to error */
3994 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
3995 
3996 			return (USB_FAILURE);
3997 		}
3998 
3999 	}
4000 
4001 	return (USB_SUCCESS);
4002 }
4003 
4004 /*
4005  * Toggle the async/periodic schedule based on opened pipe count.
4006  * During pipe cleanup(in pipe reset case), the pipe's QH is temporarily
4007  * disabled. But the TW on the pipe is not freed. In this case, we need
4008  * to disable async/periodic schedule for some non-compatible hardware.
4009  * Otherwise, the hardware will overwrite software's configuration of
4010  * the QH.
4011  */
4012 void
ehci_toggle_scheduler_on_pipe(ehci_state_t * ehcip)4013 ehci_toggle_scheduler_on_pipe(ehci_state_t *ehcip)
4014 {
4015 	uint_t  temp_reg, cmd_reg;
4016 
4017 	cmd_reg = Get_OpReg(ehci_command);
4018 	temp_reg = cmd_reg;
4019 
4020 	/*
4021 	 * Enable/Disable asynchronous scheduler, and
4022 	 * turn on/off async list door bell
4023 	 */
4024 	if (ehcip->ehci_open_async_count) {
4025 		if ((ehcip->ehci_async_req_count > 0) &&
4026 		    ((cmd_reg & EHCI_CMD_ASYNC_SCHED_ENABLE) == 0)) {
4027 			/*
4028 			 * For some reason this address might get nulled out by
4029 			 * the ehci chip. Set it here just in case it is null.
4030 			 */
4031 			Set_OpReg(ehci_async_list_addr,
4032 			    ehci_qh_cpu_to_iommu(ehcip,
4033 			    ehcip->ehci_head_of_async_sched_list));
4034 
4035 			/*
4036 			 * For some reason this register might get nulled out by
4037 			 * the Uli M1575 Southbridge. To workaround the HW
4038 			 * problem, check the value after write and retry if the
4039 			 * last write fails.
4040 			 *
4041 			 * If the ASYNCLISTADDR remains "stuck" after
4042 			 * EHCI_MAX_RETRY retries, then the M1575 is broken
4043 			 * and is stuck in an inconsistent state and is about
4044 			 * to crash the machine with a trn_oor panic when it
4045 			 * does a DMA read from 0x0.  It is better to panic
4046 			 * now rather than wait for the trn_oor crash; this
4047 			 * way Customer Service will have a clean signature
4048 			 * that indicts the M1575 chip rather than a
4049 			 * mysterious and hard-to-diagnose trn_oor panic.
4050 			 */
4051 			if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4052 			    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
4053 			    (ehci_qh_cpu_to_iommu(ehcip,
4054 			    ehcip->ehci_head_of_async_sched_list) !=
4055 			    Get_OpReg(ehci_async_list_addr))) {
4056 				int retry = 0;
4057 
4058 				Set_OpRegRetry(ehci_async_list_addr,
4059 				    ehci_qh_cpu_to_iommu(ehcip,
4060 				    ehcip->ehci_head_of_async_sched_list),
4061 				    retry);
4062 				if (retry >= EHCI_MAX_RETRY)
4063 					cmn_err(CE_PANIC,
4064 					    "ehci_toggle_scheduler_on_pipe: "
4065 					    "ASYNCLISTADDR write failed.");
4066 
4067 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
4068 				    ehcip->ehci_log_hdl,
4069 				    "ehci_toggle_scheduler_on_pipe:"
4070 				    " ASYNCLISTADDR write failed, retry=%d",
4071 				    retry);
4072 			}
4073 
4074 			cmd_reg |= EHCI_CMD_ASYNC_SCHED_ENABLE;
4075 		}
4076 	} else {
4077 		cmd_reg &= ~EHCI_CMD_ASYNC_SCHED_ENABLE;
4078 	}
4079 
4080 	if (ehcip->ehci_open_periodic_count) {
4081 		if ((ehcip->ehci_periodic_req_count > 0) &&
4082 		    ((cmd_reg & EHCI_CMD_PERIODIC_SCHED_ENABLE) == 0)) {
4083 			/*
4084 			 * For some reason this address get's nulled out by
4085 			 * the ehci chip. Set it here just in case it is null.
4086 			 */
4087 			Set_OpReg(ehci_periodic_list_base,
4088 			    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
4089 			    0xFFFFF000));
4090 			cmd_reg |= EHCI_CMD_PERIODIC_SCHED_ENABLE;
4091 		}
4092 	} else {
4093 		cmd_reg &= ~EHCI_CMD_PERIODIC_SCHED_ENABLE;
4094 	}
4095 
4096 	/* Just an optimization */
4097 	if (temp_reg != cmd_reg) {
4098 		Set_OpReg(ehci_command, cmd_reg);
4099 	}
4100 }
4101 
4102 
4103 /*
4104  * ehci_toggle_scheduler:
4105  *
4106  * Turn scheduler based on pipe open count.
4107  */
4108 void
ehci_toggle_scheduler(ehci_state_t * ehcip)4109 ehci_toggle_scheduler(ehci_state_t *ehcip)
4110 {
4111 	uint_t	temp_reg, cmd_reg;
4112 
4113 	/*
4114 	 * For performance optimization, we need to change the bits
4115 	 * if (async == 1||async == 0) OR (periodic == 1||periodic == 0)
4116 	 *
4117 	 * Related bits already enabled if
4118 	 *	async and periodic req counts are > 1
4119 	 *	OR async req count > 1 & no periodic pipe
4120 	 *	OR periodic req count > 1 & no async pipe
4121 	 */
4122 	if (((ehcip->ehci_async_req_count > 1) &&
4123 	    (ehcip->ehci_periodic_req_count > 1)) ||
4124 	    ((ehcip->ehci_async_req_count > 1) &&
4125 	    (ehcip->ehci_open_periodic_count == 0)) ||
4126 	    ((ehcip->ehci_periodic_req_count > 1) &&
4127 	    (ehcip->ehci_open_async_count == 0))) {
4128 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4129 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4130 		    "async/periodic bits no need to change");
4131 
4132 		return;
4133 	}
4134 
4135 	cmd_reg = Get_OpReg(ehci_command);
4136 	temp_reg = cmd_reg;
4137 
4138 	/*
4139 	 * Enable/Disable asynchronous scheduler, and
4140 	 * turn on/off async list door bell
4141 	 */
4142 	if (ehcip->ehci_async_req_count > 1) {
4143 		/* we already enable the async bit */
4144 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4145 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4146 		    "async bit already enabled: cmd_reg=0x%x", cmd_reg);
4147 	} else if (ehcip->ehci_async_req_count == 1) {
4148 		if (!(cmd_reg & EHCI_CMD_ASYNC_SCHED_ENABLE)) {
4149 			/*
4150 			 * For some reason this address might get nulled out by
4151 			 * the ehci chip. Set it here just in case it is null.
4152 			 * If it's not null, we should not reset the
4153 			 * ASYNCLISTADDR, because it's updated by hardware to
4154 			 * point to the next queue head to be executed.
4155 			 */
4156 			if (!Get_OpReg(ehci_async_list_addr)) {
4157 				Set_OpReg(ehci_async_list_addr,
4158 				    ehci_qh_cpu_to_iommu(ehcip,
4159 				    ehcip->ehci_head_of_async_sched_list));
4160 			}
4161 
4162 			/*
4163 			 * For some reason this register might get nulled out by
4164 			 * the Uli M1575 Southbridge. To workaround the HW
4165 			 * problem, check the value after write and retry if the
4166 			 * last write fails.
4167 			 *
4168 			 * If the ASYNCLISTADDR remains "stuck" after
4169 			 * EHCI_MAX_RETRY retries, then the M1575 is broken
4170 			 * and is stuck in an inconsistent state and is about
4171 			 * to crash the machine with a trn_oor panic when it
4172 			 * does a DMA read from 0x0.  It is better to panic
4173 			 * now rather than wait for the trn_oor crash; this
4174 			 * way Customer Service will have a clean signature
4175 			 * that indicts the M1575 chip rather than a
4176 			 * mysterious and hard-to-diagnose trn_oor panic.
4177 			 */
4178 			if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4179 			    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
4180 			    (ehci_qh_cpu_to_iommu(ehcip,
4181 			    ehcip->ehci_head_of_async_sched_list) !=
4182 			    Get_OpReg(ehci_async_list_addr))) {
4183 				int retry = 0;
4184 
4185 				Set_OpRegRetry(ehci_async_list_addr,
4186 				    ehci_qh_cpu_to_iommu(ehcip,
4187 				    ehcip->ehci_head_of_async_sched_list),
4188 				    retry);
4189 				if (retry >= EHCI_MAX_RETRY)
4190 					cmn_err(CE_PANIC,
4191 					    "ehci_toggle_scheduler: "
4192 					    "ASYNCLISTADDR write failed.");
4193 
4194 				USB_DPRINTF_L3(PRINT_MASK_ATTA,
4195 				    ehcip->ehci_log_hdl,
4196 				    "ehci_toggle_scheduler: ASYNCLISTADDR "
4197 				    "write failed, retry=%d", retry);
4198 			}
4199 		}
4200 		cmd_reg |= EHCI_CMD_ASYNC_SCHED_ENABLE;
4201 	} else {
4202 		cmd_reg &= ~EHCI_CMD_ASYNC_SCHED_ENABLE;
4203 	}
4204 
4205 	if (ehcip->ehci_periodic_req_count > 1) {
4206 		/* we already enable the periodic bit. */
4207 		USB_DPRINTF_L4(PRINT_MASK_ATTA,
4208 		    ehcip->ehci_log_hdl, "ehci_toggle_scheduler:"
4209 		    "periodic bit already enabled: cmd_reg=0x%x", cmd_reg);
4210 	} else if (ehcip->ehci_periodic_req_count == 1) {
4211 		if (!(cmd_reg & EHCI_CMD_PERIODIC_SCHED_ENABLE)) {
4212 			/*
4213 			 * For some reason this address get's nulled out by
4214 			 * the ehci chip. Set it here just in case it is null.
4215 			 */
4216 			Set_OpReg(ehci_periodic_list_base,
4217 			    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
4218 			    0xFFFFF000));
4219 		}
4220 		cmd_reg |= EHCI_CMD_PERIODIC_SCHED_ENABLE;
4221 	} else {
4222 		cmd_reg &= ~EHCI_CMD_PERIODIC_SCHED_ENABLE;
4223 	}
4224 
4225 	/* Just an optimization */
4226 	if (temp_reg != cmd_reg) {
4227 		Set_OpReg(ehci_command, cmd_reg);
4228 
4229 		/* To make sure the command register is updated correctly */
4230 		if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4231 		    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) {
4232 			int retry = 0;
4233 
4234 			Set_OpRegRetry(ehci_command, cmd_reg, retry);
4235 			USB_DPRINTF_L3(PRINT_MASK_ATTA,
4236 			    ehcip->ehci_log_hdl,
4237 			    "ehci_toggle_scheduler: CMD write failed, retry=%d",
4238 			    retry);
4239 		}
4240 
4241 	}
4242 }
4243 
4244 /*
4245  * ehci print functions
4246  */
4247 
4248 /*
4249  * ehci_print_caps:
4250  */
4251 void
ehci_print_caps(ehci_state_t * ehcip)4252 ehci_print_caps(ehci_state_t	*ehcip)
4253 {
4254 	uint_t			i;
4255 
4256 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4257 	    "\n\tUSB 2.0 Host Controller Characteristics\n");
4258 
4259 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4260 	    "Caps Length: 0x%x Version: 0x%x\n",
4261 	    Get_8Cap(ehci_caps_length), Get_16Cap(ehci_version));
4262 
4263 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4264 	    "Structural Parameters\n");
4265 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4266 	    "Port indicators: %s", (Get_Cap(ehci_hcs_params) &
4267 	    EHCI_HCS_PORT_INDICATOR) ? "Yes" : "No");
4268 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4269 	    "No of Classic host controllers: 0x%x",
4270 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_COMP_CTRLS)
4271 	    >> EHCI_HCS_NUM_COMP_CTRL_SHIFT);
4272 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4273 	    "No of ports per Classic host controller: 0x%x",
4274 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS_CC)
4275 	    >> EHCI_HCS_NUM_PORTS_CC_SHIFT);
4276 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4277 	    "Port routing rules: %s", (Get_Cap(ehci_hcs_params) &
4278 	    EHCI_HCS_PORT_ROUTING_RULES) ? "Yes" : "No");
4279 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4280 	    "Port power control: %s", (Get_Cap(ehci_hcs_params) &
4281 	    EHCI_HCS_PORT_POWER_CONTROL) ? "Yes" : "No");
4282 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4283 	    "No of root hub ports: 0x%x\n",
4284 	    Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS);
4285 
4286 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4287 	    "Capability Parameters\n");
4288 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4289 	    "EHCI extended capability: %s", (Get_Cap(ehci_hcc_params) &
4290 	    EHCI_HCC_EECP) ? "Yes" : "No");
4291 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4292 	    "Isoch schedule threshold: 0x%x",
4293 	    Get_Cap(ehci_hcc_params) & EHCI_HCC_ISOCH_SCHED_THRESHOLD);
4294 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4295 	    "Async schedule park capability: %s", (Get_Cap(ehci_hcc_params) &
4296 	    EHCI_HCC_ASYNC_SCHED_PARK_CAP) ? "Yes" : "No");
4297 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4298 	    "Programmable frame list flag: %s", (Get_Cap(ehci_hcc_params) &
4299 	    EHCI_HCC_PROG_FRAME_LIST_FLAG) ? "256/512/1024" : "1024");
4300 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4301 	    "64bit addressing capability: %s\n", (Get_Cap(ehci_hcc_params) &
4302 	    EHCI_HCC_64BIT_ADDR_CAP) ? "Yes" : "No");
4303 
4304 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4305 	    "Classic Port Route Description");
4306 
4307 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4308 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4309 		    "\tPort Route 0x%x: 0x%x", i, Get_8Cap(ehci_port_route[i]));
4310 	}
4311 }
4312 
4313 
4314 /*
4315  * ehci_print_regs:
4316  */
4317 void
ehci_print_regs(ehci_state_t * ehcip)4318 ehci_print_regs(ehci_state_t	*ehcip)
4319 {
4320 	uint_t			i;
4321 
4322 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4323 	    "\n\tEHCI%d Operational Registers\n",
4324 	    ddi_get_instance(ehcip->ehci_dip));
4325 
4326 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4327 	    "Command: 0x%x Status: 0x%x",
4328 	    Get_OpReg(ehci_command), Get_OpReg(ehci_status));
4329 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4330 	    "Interrupt: 0x%x Frame Index: 0x%x",
4331 	    Get_OpReg(ehci_interrupt), Get_OpReg(ehci_frame_index));
4332 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4333 	    "Control Segment: 0x%x Periodic List Base: 0x%x",
4334 	    Get_OpReg(ehci_ctrl_segment), Get_OpReg(ehci_periodic_list_base));
4335 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4336 	    "Async List Addr: 0x%x Config Flag: 0x%x",
4337 	    Get_OpReg(ehci_async_list_addr), Get_OpReg(ehci_config_flag));
4338 
4339 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4340 	    "Root Hub Port Status");
4341 
4342 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4343 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4344 		    "\tPort Status 0x%x: 0x%x ", i,
4345 		    Get_OpReg(ehci_rh_port_status[i]));
4346 	}
4347 }
4348 
4349 
4350 /*
4351  * ehci_print_qh:
4352  */
4353 void
ehci_print_qh(ehci_state_t * ehcip,ehci_qh_t * qh)4354 ehci_print_qh(
4355 	ehci_state_t	*ehcip,
4356 	ehci_qh_t	*qh)
4357 {
4358 	uint_t		i;
4359 
4360 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4361 	    "ehci_print_qh: qh = 0x%p", (void *)qh);
4362 
4363 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4364 	    "\tqh_link_ptr: 0x%x ", Get_QH(qh->qh_link_ptr));
4365 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4366 	    "\tqh_ctrl: 0x%x ", Get_QH(qh->qh_ctrl));
4367 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4368 	    "\tqh_split_ctrl: 0x%x ", Get_QH(qh->qh_split_ctrl));
4369 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4370 	    "\tqh_curr_qtd: 0x%x ", Get_QH(qh->qh_curr_qtd));
4371 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4372 	    "\tqh_next_qtd: 0x%x ", Get_QH(qh->qh_next_qtd));
4373 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4374 	    "\tqh_alt_next_qtd: 0x%x ", Get_QH(qh->qh_alt_next_qtd));
4375 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4376 	    "\tqh_status: 0x%x ", Get_QH(qh->qh_status));
4377 
4378 	for (i = 0; i < 5; i++) {
4379 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4380 		    "\tqh_buf[%d]: 0x%x ", i, Get_QH(qh->qh_buf[i]));
4381 	}
4382 
4383 	for (i = 0; i < 5; i++) {
4384 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4385 		    "\tqh_buf_high[%d]: 0x%x ",
4386 		    i, Get_QH(qh->qh_buf_high[i]));
4387 	}
4388 
4389 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4390 	    "\tqh_dummy_qtd: 0x%x ", Get_QH(qh->qh_dummy_qtd));
4391 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4392 	    "\tqh_prev: 0x%x ", Get_QH(qh->qh_prev));
4393 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4394 	    "\tqh_state: 0x%x ", Get_QH(qh->qh_state));
4395 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4396 	    "\tqh_reclaim_next: 0x%x ", Get_QH(qh->qh_reclaim_next));
4397 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4398 	    "\tqh_reclaim_frame: 0x%x ", Get_QH(qh->qh_reclaim_frame));
4399 }
4400 
4401 
4402 /*
4403  * ehci_print_qtd:
4404  */
4405 void
ehci_print_qtd(ehci_state_t * ehcip,ehci_qtd_t * qtd)4406 ehci_print_qtd(
4407 	ehci_state_t	*ehcip,
4408 	ehci_qtd_t	*qtd)
4409 {
4410 	uint_t		i;
4411 
4412 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4413 	    "ehci_print_qtd: qtd = 0x%p", (void *)qtd);
4414 
4415 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4416 	    "\tqtd_next_qtd: 0x%x ", Get_QTD(qtd->qtd_next_qtd));
4417 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4418 	    "\tqtd_alt_next_qtd: 0x%x ", Get_QTD(qtd->qtd_alt_next_qtd));
4419 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4420 	    "\tqtd_ctrl: 0x%x ", Get_QTD(qtd->qtd_ctrl));
4421 
4422 	for (i = 0; i < 5; i++) {
4423 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4424 		    "\tqtd_buf[%d]: 0x%x ", i, Get_QTD(qtd->qtd_buf[i]));
4425 	}
4426 
4427 	for (i = 0; i < 5; i++) {
4428 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4429 		    "\tqtd_buf_high[%d]: 0x%x ",
4430 		    i, Get_QTD(qtd->qtd_buf_high[i]));
4431 	}
4432 
4433 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4434 	    "\tqtd_trans_wrapper: 0x%x ", Get_QTD(qtd->qtd_trans_wrapper));
4435 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4436 	    "\tqtd_tw_next_qtd: 0x%x ", Get_QTD(qtd->qtd_tw_next_qtd));
4437 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4438 	    "\tqtd_active_qtd_next: 0x%x ", Get_QTD(qtd->qtd_active_qtd_next));
4439 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4440 	    "\tqtd_active_qtd_prev: 0x%x ", Get_QTD(qtd->qtd_active_qtd_prev));
4441 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4442 	    "\tqtd_state: 0x%x ", Get_QTD(qtd->qtd_state));
4443 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4444 	    "\tqtd_ctrl_phase: 0x%x ", Get_QTD(qtd->qtd_ctrl_phase));
4445 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4446 	    "\tqtd_xfer_offs: 0x%x ", Get_QTD(qtd->qtd_xfer_offs));
4447 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4448 	    "\tqtd_xfer_len: 0x%x ", Get_QTD(qtd->qtd_xfer_len));
4449 }
4450 
4451 /*
4452  * ehci kstat functions
4453  */
4454 
4455 /*
4456  * ehci_create_stats:
4457  *
4458  * Allocate and initialize the ehci kstat structures
4459  */
4460 void
ehci_create_stats(ehci_state_t * ehcip)4461 ehci_create_stats(ehci_state_t	*ehcip)
4462 {
4463 	char			kstatname[KSTAT_STRLEN];
4464 	const char		*dname = ddi_driver_name(ehcip->ehci_dip);
4465 	char			*usbtypes[USB_N_COUNT_KSTATS] =
4466 	    {"ctrl", "isoch", "bulk", "intr"};
4467 	uint_t			instance = ehcip->ehci_instance;
4468 	ehci_intrs_stats_t	*isp;
4469 	int			i;
4470 
4471 	if (EHCI_INTRS_STATS(ehcip) == NULL) {
4472 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,intrs",
4473 		    dname, instance);
4474 		EHCI_INTRS_STATS(ehcip) = kstat_create("usba", instance,
4475 		    kstatname, "usb_interrupts", KSTAT_TYPE_NAMED,
4476 		    sizeof (ehci_intrs_stats_t) / sizeof (kstat_named_t),
4477 		    KSTAT_FLAG_PERSISTENT);
4478 
4479 		if (EHCI_INTRS_STATS(ehcip)) {
4480 			isp = EHCI_INTRS_STATS_DATA(ehcip);
4481 			kstat_named_init(&isp->ehci_sts_total,
4482 			    "Interrupts Total", KSTAT_DATA_UINT64);
4483 			kstat_named_init(&isp->ehci_sts_not_claimed,
4484 			    "Not Claimed", KSTAT_DATA_UINT64);
4485 			kstat_named_init(&isp->ehci_sts_async_sched_status,
4486 			    "Async schedule status", KSTAT_DATA_UINT64);
4487 			kstat_named_init(&isp->ehci_sts_periodic_sched_status,
4488 			    "Periodic sched status", KSTAT_DATA_UINT64);
4489 			kstat_named_init(&isp->ehci_sts_empty_async_schedule,
4490 			    "Empty async schedule", KSTAT_DATA_UINT64);
4491 			kstat_named_init(&isp->ehci_sts_host_ctrl_halted,
4492 			    "Host controller Halted", KSTAT_DATA_UINT64);
4493 			kstat_named_init(&isp->ehci_sts_async_advance_intr,
4494 			    "Intr on async advance", KSTAT_DATA_UINT64);
4495 			kstat_named_init(&isp->ehci_sts_host_system_error_intr,
4496 			    "Host system error", KSTAT_DATA_UINT64);
4497 			kstat_named_init(&isp->ehci_sts_frm_list_rollover_intr,
4498 			    "Frame list rollover", KSTAT_DATA_UINT64);
4499 			kstat_named_init(&isp->ehci_sts_rh_port_change_intr,
4500 			    "Port change detect", KSTAT_DATA_UINT64);
4501 			kstat_named_init(&isp->ehci_sts_usb_error_intr,
4502 			    "USB error interrupt", KSTAT_DATA_UINT64);
4503 			kstat_named_init(&isp->ehci_sts_usb_intr,
4504 			    "USB interrupt", KSTAT_DATA_UINT64);
4505 
4506 			EHCI_INTRS_STATS(ehcip)->ks_private = ehcip;
4507 			EHCI_INTRS_STATS(ehcip)->ks_update = nulldev;
4508 			kstat_install(EHCI_INTRS_STATS(ehcip));
4509 		}
4510 	}
4511 
4512 	if (EHCI_TOTAL_STATS(ehcip) == NULL) {
4513 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,total",
4514 		    dname, instance);
4515 		EHCI_TOTAL_STATS(ehcip) = kstat_create("usba", instance,
4516 		    kstatname, "usb_byte_count", KSTAT_TYPE_IO, 1,
4517 		    KSTAT_FLAG_PERSISTENT);
4518 
4519 		if (EHCI_TOTAL_STATS(ehcip)) {
4520 			kstat_install(EHCI_TOTAL_STATS(ehcip));
4521 		}
4522 	}
4523 
4524 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4525 		if (ehcip->ehci_count_stats[i] == NULL) {
4526 			(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,%s",
4527 			    dname, instance, usbtypes[i]);
4528 			ehcip->ehci_count_stats[i] = kstat_create("usba",
4529 			    instance, kstatname, "usb_byte_count",
4530 			    KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
4531 
4532 			if (ehcip->ehci_count_stats[i]) {
4533 				kstat_install(ehcip->ehci_count_stats[i]);
4534 			}
4535 		}
4536 	}
4537 }
4538 
4539 
4540 /*
4541  * ehci_destroy_stats:
4542  *
4543  * Clean up ehci kstat structures
4544  */
4545 void
ehci_destroy_stats(ehci_state_t * ehcip)4546 ehci_destroy_stats(ehci_state_t	*ehcip)
4547 {
4548 	int	i;
4549 
4550 	if (EHCI_INTRS_STATS(ehcip)) {
4551 		kstat_delete(EHCI_INTRS_STATS(ehcip));
4552 		EHCI_INTRS_STATS(ehcip) = NULL;
4553 	}
4554 
4555 	if (EHCI_TOTAL_STATS(ehcip)) {
4556 		kstat_delete(EHCI_TOTAL_STATS(ehcip));
4557 		EHCI_TOTAL_STATS(ehcip) = NULL;
4558 	}
4559 
4560 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4561 		if (ehcip->ehci_count_stats[i]) {
4562 			kstat_delete(ehcip->ehci_count_stats[i]);
4563 			ehcip->ehci_count_stats[i] = NULL;
4564 		}
4565 	}
4566 }
4567 
4568 
4569 /*
4570  * ehci_do_intrs_stats:
4571  *
4572  * ehci status information
4573  */
4574 void
ehci_do_intrs_stats(ehci_state_t * ehcip,int val)4575 ehci_do_intrs_stats(
4576 	ehci_state_t	*ehcip,
4577 	int		val)
4578 {
4579 	if (EHCI_INTRS_STATS(ehcip)) {
4580 		EHCI_INTRS_STATS_DATA(ehcip)->ehci_sts_total.value.ui64++;
4581 		switch (val) {
4582 		case EHCI_STS_ASYNC_SCHED_STATUS:
4583 			EHCI_INTRS_STATS_DATA(ehcip)->
4584 			    ehci_sts_async_sched_status.value.ui64++;
4585 			break;
4586 		case EHCI_STS_PERIODIC_SCHED_STATUS:
4587 			EHCI_INTRS_STATS_DATA(ehcip)->
4588 			    ehci_sts_periodic_sched_status.value.ui64++;
4589 			break;
4590 		case EHCI_STS_EMPTY_ASYNC_SCHEDULE:
4591 			EHCI_INTRS_STATS_DATA(ehcip)->
4592 			    ehci_sts_empty_async_schedule.value.ui64++;
4593 			break;
4594 		case EHCI_STS_HOST_CTRL_HALTED:
4595 			EHCI_INTRS_STATS_DATA(ehcip)->
4596 			    ehci_sts_host_ctrl_halted.value.ui64++;
4597 			break;
4598 		case EHCI_STS_ASYNC_ADVANCE_INTR:
4599 			EHCI_INTRS_STATS_DATA(ehcip)->
4600 			    ehci_sts_async_advance_intr.value.ui64++;
4601 			break;
4602 		case EHCI_STS_HOST_SYSTEM_ERROR_INTR:
4603 			EHCI_INTRS_STATS_DATA(ehcip)->
4604 			    ehci_sts_host_system_error_intr.value.ui64++;
4605 			break;
4606 		case EHCI_STS_FRM_LIST_ROLLOVER_INTR:
4607 			EHCI_INTRS_STATS_DATA(ehcip)->
4608 			    ehci_sts_frm_list_rollover_intr.value.ui64++;
4609 			break;
4610 		case EHCI_STS_RH_PORT_CHANGE_INTR:
4611 			EHCI_INTRS_STATS_DATA(ehcip)->
4612 			    ehci_sts_rh_port_change_intr.value.ui64++;
4613 			break;
4614 		case EHCI_STS_USB_ERROR_INTR:
4615 			EHCI_INTRS_STATS_DATA(ehcip)->
4616 			    ehci_sts_usb_error_intr.value.ui64++;
4617 			break;
4618 		case EHCI_STS_USB_INTR:
4619 			EHCI_INTRS_STATS_DATA(ehcip)->
4620 			    ehci_sts_usb_intr.value.ui64++;
4621 			break;
4622 		default:
4623 			EHCI_INTRS_STATS_DATA(ehcip)->
4624 			    ehci_sts_not_claimed.value.ui64++;
4625 			break;
4626 		}
4627 	}
4628 }
4629 
4630 
4631 /*
4632  * ehci_do_byte_stats:
4633  *
4634  * ehci data xfer information
4635  */
4636 void
ehci_do_byte_stats(ehci_state_t * ehcip,size_t len,uint8_t attr,uint8_t addr)4637 ehci_do_byte_stats(
4638 	ehci_state_t	*ehcip,
4639 	size_t		len,
4640 	uint8_t		attr,
4641 	uint8_t		addr)
4642 {
4643 	uint8_t 	type = attr & USB_EP_ATTR_MASK;
4644 	uint8_t 	dir = addr & USB_EP_DIR_MASK;
4645 
4646 	if (dir == USB_EP_DIR_IN) {
4647 		EHCI_TOTAL_STATS_DATA(ehcip)->reads++;
4648 		EHCI_TOTAL_STATS_DATA(ehcip)->nread += len;
4649 		switch (type) {
4650 			case USB_EP_ATTR_CONTROL:
4651 				EHCI_CTRL_STATS(ehcip)->reads++;
4652 				EHCI_CTRL_STATS(ehcip)->nread += len;
4653 				break;
4654 			case USB_EP_ATTR_BULK:
4655 				EHCI_BULK_STATS(ehcip)->reads++;
4656 				EHCI_BULK_STATS(ehcip)->nread += len;
4657 				break;
4658 			case USB_EP_ATTR_INTR:
4659 				EHCI_INTR_STATS(ehcip)->reads++;
4660 				EHCI_INTR_STATS(ehcip)->nread += len;
4661 				break;
4662 			case USB_EP_ATTR_ISOCH:
4663 				EHCI_ISOC_STATS(ehcip)->reads++;
4664 				EHCI_ISOC_STATS(ehcip)->nread += len;
4665 				break;
4666 		}
4667 	} else if (dir == USB_EP_DIR_OUT) {
4668 		EHCI_TOTAL_STATS_DATA(ehcip)->writes++;
4669 		EHCI_TOTAL_STATS_DATA(ehcip)->nwritten += len;
4670 		switch (type) {
4671 			case USB_EP_ATTR_CONTROL:
4672 				EHCI_CTRL_STATS(ehcip)->writes++;
4673 				EHCI_CTRL_STATS(ehcip)->nwritten += len;
4674 				break;
4675 			case USB_EP_ATTR_BULK:
4676 				EHCI_BULK_STATS(ehcip)->writes++;
4677 				EHCI_BULK_STATS(ehcip)->nwritten += len;
4678 				break;
4679 			case USB_EP_ATTR_INTR:
4680 				EHCI_INTR_STATS(ehcip)->writes++;
4681 				EHCI_INTR_STATS(ehcip)->nwritten += len;
4682 				break;
4683 			case USB_EP_ATTR_ISOCH:
4684 				EHCI_ISOC_STATS(ehcip)->writes++;
4685 				EHCI_ISOC_STATS(ehcip)->nwritten += len;
4686 				break;
4687 		}
4688 	}
4689 }
4690