1 /*-
2 * Copyright (c) 2004 Marcel Moolenaar
3 * Copyright (c) 2001 Doug Rabson
4 * Copyright (c) 2016, 2018 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_acpi.h"
34
35 #include <sys/param.h>
36 #include <sys/efi.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/linker.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/clock.h>
46 #include <sys/proc.h>
47 #include <sys/reboot.h>
48 #include <sys/rwlock.h>
49 #include <sys/sched.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54
55 #include <machine/fpu.h>
56 #include <machine/efi.h>
57 #include <machine/metadata.h>
58 #include <machine/vmparam.h>
59
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63
64 #ifdef DEV_ACPI
65 #include <contrib/dev/acpica/include/acpi.h>
66 #endif
67
68 #define EFI_TABLE_ALLOC_MAX 0x800000
69
70 static struct efi_systbl *efi_systbl;
71 static eventhandler_tag efi_shutdown_tag;
72 /*
73 * The following pointers point to tables in the EFI runtime service data pages.
74 * Care should be taken to make sure that we've properly entered the EFI runtime
75 * environment (efi_enter()) before dereferencing them.
76 */
77 static struct efi_cfgtbl *efi_cfgtbl;
78 static struct efi_rt *efi_runtime;
79
80 static int efi_status2err[25] = {
81 0, /* EFI_SUCCESS */
82 ENOEXEC, /* EFI_LOAD_ERROR */
83 EINVAL, /* EFI_INVALID_PARAMETER */
84 ENOSYS, /* EFI_UNSUPPORTED */
85 EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */
86 EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */
87 EBUSY, /* EFI_NOT_READY */
88 EIO, /* EFI_DEVICE_ERROR */
89 EROFS, /* EFI_WRITE_PROTECTED */
90 EAGAIN, /* EFI_OUT_OF_RESOURCES */
91 EIO, /* EFI_VOLUME_CORRUPTED */
92 ENOSPC, /* EFI_VOLUME_FULL */
93 ENXIO, /* EFI_NO_MEDIA */
94 ESTALE, /* EFI_MEDIA_CHANGED */
95 ENOENT, /* EFI_NOT_FOUND */
96 EACCES, /* EFI_ACCESS_DENIED */
97 ETIMEDOUT, /* EFI_NO_RESPONSE */
98 EADDRNOTAVAIL, /* EFI_NO_MAPPING */
99 ETIMEDOUT, /* EFI_TIMEOUT */
100 EDOOFUS, /* EFI_NOT_STARTED */
101 EALREADY, /* EFI_ALREADY_STARTED */
102 ECANCELED, /* EFI_ABORTED */
103 EPROTO, /* EFI_ICMP_ERROR */
104 EPROTO, /* EFI_TFTP_ERROR */
105 EPROTO /* EFI_PROTOCOL_ERROR */
106 };
107
108 enum efi_table_type {
109 TYPE_ESRT = 0,
110 TYPE_PROP
111 };
112
113 static int efi_enter(void);
114 static void efi_leave(void);
115
116 int
efi_status_to_errno(efi_status status)117 efi_status_to_errno(efi_status status)
118 {
119 u_long code;
120
121 code = status & 0x3ffffffffffffffful;
122 return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
123 }
124
125 static struct mtx efi_lock;
126 SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
127 "EFI");
128 static bool efi_poweroff = true;
129 SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
130 "If true, use EFI runtime services to power off in preference to ACPI");
131 extern int print_efirt_faults;
132 SYSCTL_INT(_hw_efi, OID_AUTO, print_faults, CTLFLAG_RWTUN,
133 &print_efirt_faults, 0,
134 "Print fault information upon trap from EFIRT calls: "
135 "0 - never, 1 - once, 2 - always");
136 extern u_long cnt_efirt_faults;
137 SYSCTL_ULONG(_hw_efi, OID_AUTO, total_faults, CTLFLAG_RD,
138 &cnt_efirt_faults, 0,
139 "Total number of faults that occurred during EFIRT calls");
140
141 static bool
efi_is_in_map(struct efi_md * map,int ndesc,int descsz,vm_offset_t addr)142 efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
143 {
144 struct efi_md *p;
145 int i;
146
147 for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
148 descsz)) {
149 if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
150 continue;
151
152 if (addr >= p->md_virt &&
153 addr < p->md_virt + p->md_pages * EFI_PAGE_SIZE)
154 return (true);
155 }
156
157 return (false);
158 }
159
160 static void
efi_shutdown_final(void * dummy __unused,int howto)161 efi_shutdown_final(void *dummy __unused, int howto)
162 {
163
164 /*
165 * On some systems, ACPI S5 is missing or does not function properly.
166 * When present, shutdown via EFI Runtime Services instead, unless
167 * disabled.
168 */
169 if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
170 (void)efi_reset_system(EFI_RESET_SHUTDOWN);
171 }
172
173 static int
efi_init(void)174 efi_init(void)
175 {
176 struct efi_map_header *efihdr;
177 struct efi_md *map;
178 struct efi_rt *rtdm;
179 size_t efisz;
180 int ndesc, rt_disabled;
181
182 rt_disabled = 0;
183 TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
184 if (rt_disabled == 1)
185 return (0);
186 mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
187
188 if (efi_systbl_phys == 0) {
189 if (bootverbose)
190 printf("EFI systbl not available\n");
191 return (0);
192 }
193
194 efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
195 if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
196 efi_systbl = NULL;
197 if (bootverbose)
198 printf("EFI systbl signature invalid\n");
199 return (0);
200 }
201 efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
202 (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
203 if (efi_cfgtbl == NULL) {
204 if (bootverbose)
205 printf("EFI config table is not present\n");
206 }
207
208 efihdr = (struct efi_map_header *)preload_search_info(preload_kmdp,
209 MODINFO_METADATA | MODINFOMD_EFI_MAP);
210 if (efihdr == NULL) {
211 if (bootverbose)
212 printf("EFI map is not present\n");
213 return (0);
214 }
215 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
216 map = (struct efi_md *)((uint8_t *)efihdr + efisz);
217 if (efihdr->descriptor_size == 0)
218 return (ENOMEM);
219
220 ndesc = efihdr->memory_size / efihdr->descriptor_size;
221 if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
222 if (bootverbose)
223 printf("EFI cannot create runtime map\n");
224 return (ENOMEM);
225 }
226
227 efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
228 (struct efi_rt *)efi_systbl->st_rt;
229 if (efi_runtime == NULL) {
230 if (bootverbose)
231 printf("EFI runtime services table is not present\n");
232 efi_destroy_1t1_map();
233 return (ENXIO);
234 }
235
236 #if defined(__aarch64__) || defined(__amd64__)
237 /*
238 * Some UEFI implementations have multiple implementations of the
239 * RS->GetTime function. They switch from one we can only use early
240 * in the boot process to one valid as a RunTime service only when we
241 * call RS->SetVirtualAddressMap. As this is not always the case, e.g.
242 * with an old loader.efi, check if the RS->GetTime function is within
243 * the EFI map, and fail to attach if not.
244 */
245 rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
246 if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
247 (vm_offset_t)rtdm->rt_gettime)) {
248 if (bootverbose)
249 printf(
250 "EFI runtime services table has an invalid pointer\n");
251 efi_runtime = NULL;
252 efi_destroy_1t1_map();
253 return (ENXIO);
254 }
255 #endif
256
257 /*
258 * We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
259 */
260 efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
261 efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
262
263 return (0);
264 }
265
266 static void
efi_uninit(void)267 efi_uninit(void)
268 {
269
270 /* Most likely disabled by tunable */
271 if (efi_runtime == NULL)
272 return;
273 if (efi_shutdown_tag != NULL)
274 EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
275 efi_destroy_1t1_map();
276
277 efi_systbl = NULL;
278 efi_cfgtbl = NULL;
279 efi_runtime = NULL;
280
281 mtx_destroy(&efi_lock);
282 }
283
284 static int
rt_ok(void)285 rt_ok(void)
286 {
287
288 if (efi_runtime == NULL)
289 return (ENXIO);
290 return (0);
291 }
292
293 /*
294 * The fpu_kern_enter() call in allows firmware to use FPU, as
295 * mandated by the specification. It also enters a critical section,
296 * giving us neccessary protection against context switches.
297 */
298 static int
efi_enter(void)299 efi_enter(void)
300 {
301 struct thread *td;
302 pmap_t curpmap;
303 int error;
304
305 if (efi_runtime == NULL)
306 return (ENXIO);
307 td = curthread;
308 curpmap = &td->td_proc->p_vmspace->vm_pmap;
309 PMAP_LOCK(curpmap);
310 mtx_lock(&efi_lock);
311 fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
312 error = efi_arch_enter();
313 if (error != 0) {
314 fpu_kern_leave(td, NULL);
315 mtx_unlock(&efi_lock);
316 PMAP_UNLOCK(curpmap);
317 } else {
318 MPASS((td->td_pflags & TDP_EFIRT) == 0);
319 td->td_pflags |= TDP_EFIRT;
320 }
321 return (error);
322 }
323
324 static void
efi_leave(void)325 efi_leave(void)
326 {
327 struct thread *td;
328 pmap_t curpmap;
329
330 td = curthread;
331 MPASS((td->td_pflags & TDP_EFIRT) != 0);
332 td->td_pflags &= ~TDP_EFIRT;
333
334 efi_arch_leave();
335
336 curpmap = &curproc->p_vmspace->vm_pmap;
337 fpu_kern_leave(td, NULL);
338 mtx_unlock(&efi_lock);
339 PMAP_UNLOCK(curpmap);
340 }
341
342 static int
get_table(struct uuid * uuid,void ** ptr)343 get_table(struct uuid *uuid, void **ptr)
344 {
345 struct efi_cfgtbl *ct;
346 u_long count;
347 int error;
348
349 if (efi_cfgtbl == NULL || efi_systbl == NULL)
350 return (ENXIO);
351 error = efi_enter();
352 if (error != 0)
353 return (error);
354 count = efi_systbl->st_entries;
355 ct = efi_cfgtbl;
356 while (count--) {
357 if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
358 *ptr = ct->ct_data;
359 efi_leave();
360 return (0);
361 }
362 ct++;
363 }
364
365 efi_leave();
366 return (ENOENT);
367 }
368
369 static int
get_table_length(enum efi_table_type type,size_t * table_len,void ** taddr)370 get_table_length(enum efi_table_type type, size_t *table_len, void **taddr)
371 {
372 switch (type) {
373 case TYPE_ESRT:
374 {
375 struct efi_esrt_table *esrt = NULL;
376 struct uuid uuid = EFI_TABLE_ESRT;
377 uint32_t fw_resource_count = 0;
378 size_t len = sizeof(*esrt);
379 int error;
380 void *buf;
381
382 error = efi_get_table(&uuid, (void **)&esrt);
383 if (error != 0)
384 return (error);
385
386 buf = malloc(len, M_TEMP, M_WAITOK);
387 error = physcopyout((vm_paddr_t)esrt, buf, len);
388 if (error != 0) {
389 free(buf, M_TEMP);
390 return (error);
391 }
392
393 /* Check ESRT version */
394 if (((struct efi_esrt_table *)buf)->fw_resource_version !=
395 ESRT_FIRMWARE_RESOURCE_VERSION) {
396 free(buf, M_TEMP);
397 return (ENODEV);
398 }
399
400 fw_resource_count = ((struct efi_esrt_table *)buf)->
401 fw_resource_count;
402 if (fw_resource_count > EFI_TABLE_ALLOC_MAX /
403 sizeof(struct efi_esrt_entry_v1)) {
404 free(buf, M_TEMP);
405 return (ENOMEM);
406 }
407
408 len += fw_resource_count * sizeof(struct efi_esrt_entry_v1);
409 *table_len = len;
410
411 if (taddr != NULL)
412 *taddr = esrt;
413 free(buf, M_TEMP);
414 return (0);
415 }
416 case TYPE_PROP:
417 {
418 struct uuid uuid = EFI_PROPERTIES_TABLE;
419 struct efi_prop_table *prop;
420 size_t len = sizeof(*prop);
421 uint32_t prop_len;
422 int error;
423 void *buf;
424
425 error = efi_get_table(&uuid, (void **)&prop);
426 if (error != 0)
427 return (error);
428
429 buf = malloc(len, M_TEMP, M_WAITOK);
430 error = physcopyout((vm_paddr_t)prop, buf, len);
431 if (error != 0) {
432 free(buf, M_TEMP);
433 return (error);
434 }
435
436 prop_len = ((struct efi_prop_table *)buf)->length;
437 if (prop_len > EFI_TABLE_ALLOC_MAX) {
438 free(buf, M_TEMP);
439 return (ENOMEM);
440 }
441 *table_len = prop_len;
442
443 if (taddr != NULL)
444 *taddr = prop;
445 free(buf, M_TEMP);
446 return (0);
447 }
448 }
449 return (ENOENT);
450 }
451
452 static int
copy_table(struct uuid * uuid,void ** buf,size_t buf_len,size_t * table_len)453 copy_table(struct uuid *uuid, void **buf, size_t buf_len, size_t *table_len)
454 {
455 static const struct known_table {
456 struct uuid uuid;
457 enum efi_table_type type;
458 } tables[] = {
459 { EFI_TABLE_ESRT, TYPE_ESRT },
460 { EFI_PROPERTIES_TABLE, TYPE_PROP }
461 };
462 size_t table_idx;
463 void *taddr;
464 int rc;
465
466 for (table_idx = 0; table_idx < nitems(tables); table_idx++) {
467 if (!bcmp(&tables[table_idx].uuid, uuid, sizeof(*uuid)))
468 break;
469 }
470
471 if (table_idx == nitems(tables))
472 return (EINVAL);
473
474 rc = get_table_length(tables[table_idx].type, table_len, &taddr);
475 if (rc != 0)
476 return rc;
477
478 /* return table length to userspace */
479 if (buf == NULL)
480 return (0);
481
482 *buf = malloc(*table_len, M_TEMP, M_WAITOK);
483 rc = physcopyout((vm_paddr_t)taddr, *buf, *table_len);
484 return (rc);
485 }
486
487 static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
488 SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
489 &efi_rt_handle_faults, 0,
490 "Call EFI RT methods with fault handler wrapper around");
491
492 static int
efi_rt_arch_call_nofault(struct efirt_callinfo * ec)493 efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
494 {
495
496 switch (ec->ec_argcnt) {
497 case 0:
498 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(void))
499 ec->ec_fptr)();
500 break;
501 case 1:
502 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(register_t))
503 ec->ec_fptr)(ec->ec_arg1);
504 break;
505 case 2:
506 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(register_t,
507 register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
508 break;
509 case 3:
510 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(register_t,
511 register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
512 ec->ec_arg2, ec->ec_arg3);
513 break;
514 case 4:
515 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(register_t,
516 register_t, register_t, register_t))ec->ec_fptr)(
517 ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
518 break;
519 case 5:
520 ec->ec_efi_status = ((register_t EFIABI_ATTR (*)(register_t,
521 register_t, register_t, register_t, register_t))
522 ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2, ec->ec_arg3,
523 ec->ec_arg4, ec->ec_arg5);
524 break;
525 default:
526 panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
527 }
528
529 return (0);
530 }
531
532 static int
efi_call(struct efirt_callinfo * ecp)533 efi_call(struct efirt_callinfo *ecp)
534 {
535 int error;
536
537 error = efi_enter();
538 if (error != 0)
539 return (error);
540 error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
541 efi_rt_arch_call_nofault(ecp);
542 efi_leave();
543 if (error == 0)
544 error = efi_status_to_errno(ecp->ec_efi_status);
545 else if (bootverbose)
546 printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
547 return (error);
548 }
549
550 #define EFI_RT_METHOD_PA(method) \
551 ((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t) \
552 efi_runtime))->method)
553
554 static int
efi_get_time_locked(struct efi_tm * tm,struct efi_tmcap * tmcap)555 efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
556 {
557 struct efirt_callinfo ec;
558 int error;
559
560 EFI_TIME_OWNED();
561 if (efi_runtime == NULL)
562 return (ENXIO);
563 bzero(&ec, sizeof(ec));
564 ec.ec_name = "rt_gettime";
565 ec.ec_argcnt = 2;
566 ec.ec_arg1 = (uintptr_t)tm;
567 ec.ec_arg2 = (uintptr_t)tmcap;
568 ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
569 error = efi_call(&ec);
570 if (error == 0)
571 kmsan_mark(tm, sizeof(*tm), KMSAN_STATE_INITED);
572 return (error);
573 }
574
575 static int
get_time(struct efi_tm * tm)576 get_time(struct efi_tm *tm)
577 {
578 struct efi_tmcap dummy;
579 int error;
580
581 if (efi_runtime == NULL)
582 return (ENXIO);
583 EFI_TIME_LOCK();
584 /*
585 * UEFI spec states that the Capabilities argument to GetTime is
586 * optional, but some UEFI implementations choke when passed a NULL
587 * pointer. Pass a dummy efi_tmcap, even though we won't use it,
588 * to workaround such implementations.
589 */
590 error = efi_get_time_locked(tm, &dummy);
591 EFI_TIME_UNLOCK();
592 return (error);
593 }
594
595 static int
get_waketime(uint8_t * enabled,uint8_t * pending,struct efi_tm * tm)596 get_waketime(uint8_t *enabled, uint8_t *pending, struct efi_tm *tm)
597 {
598 struct efirt_callinfo ec;
599 int error;
600 #ifdef DEV_ACPI
601 UINT32 acpiRtcEnabled;
602 #endif
603
604 if (efi_runtime == NULL)
605 return (ENXIO);
606
607 EFI_TIME_LOCK();
608 bzero(&ec, sizeof(ec));
609 ec.ec_name = "rt_getwaketime";
610 ec.ec_argcnt = 3;
611 ec.ec_arg1 = (uintptr_t)enabled;
612 ec.ec_arg2 = (uintptr_t)pending;
613 ec.ec_arg3 = (uintptr_t)tm;
614 ec.ec_fptr = EFI_RT_METHOD_PA(rt_getwaketime);
615 error = efi_call(&ec);
616 EFI_TIME_UNLOCK();
617
618 #ifdef DEV_ACPI
619 if (error == 0) {
620 error = AcpiReadBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
621 &acpiRtcEnabled);
622 if (ACPI_SUCCESS(error)) {
623 *enabled = *enabled && acpiRtcEnabled;
624 } else
625 error = EIO;
626 }
627 #endif
628
629 return (error);
630 }
631
632 static int
set_waketime(uint8_t enable,struct efi_tm * tm)633 set_waketime(uint8_t enable, struct efi_tm *tm)
634 {
635 struct efirt_callinfo ec;
636 int error;
637
638 if (efi_runtime == NULL)
639 return (ENXIO);
640
641 EFI_TIME_LOCK();
642 bzero(&ec, sizeof(ec));
643 ec.ec_name = "rt_setwaketime";
644 ec.ec_argcnt = 2;
645 ec.ec_arg1 = (uintptr_t)enable;
646 ec.ec_arg2 = (uintptr_t)tm;
647 ec.ec_fptr = EFI_RT_METHOD_PA(rt_setwaketime);
648 error = efi_call(&ec);
649 EFI_TIME_UNLOCK();
650
651 #ifdef DEV_ACPI
652 if (error == 0) {
653 error = AcpiWriteBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
654 (enable != 0) ? 1 : 0);
655 if (ACPI_FAILURE(error))
656 error = EIO;
657 }
658 #endif
659
660 return (error);
661 }
662
663 static int
get_time_capabilities(struct efi_tmcap * tmcap)664 get_time_capabilities(struct efi_tmcap *tmcap)
665 {
666 struct efi_tm dummy;
667 int error;
668
669 if (efi_runtime == NULL)
670 return (ENXIO);
671 EFI_TIME_LOCK();
672 error = efi_get_time_locked(&dummy, tmcap);
673 EFI_TIME_UNLOCK();
674 return (error);
675 }
676
677 static int
reset_system(enum efi_reset type)678 reset_system(enum efi_reset type)
679 {
680 struct efirt_callinfo ec;
681
682 switch (type) {
683 case EFI_RESET_COLD:
684 case EFI_RESET_WARM:
685 case EFI_RESET_SHUTDOWN:
686 break;
687 default:
688 return (EINVAL);
689 }
690 if (efi_runtime == NULL)
691 return (ENXIO);
692 bzero(&ec, sizeof(ec));
693 ec.ec_name = "rt_reset";
694 ec.ec_argcnt = 4;
695 ec.ec_arg1 = (uintptr_t)type;
696 ec.ec_arg2 = (uintptr_t)0;
697 ec.ec_arg3 = (uintptr_t)0;
698 ec.ec_arg4 = (uintptr_t)NULL;
699 ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
700 return (efi_call(&ec));
701 }
702
703 static int
efi_set_time_locked(struct efi_tm * tm)704 efi_set_time_locked(struct efi_tm *tm)
705 {
706 struct efirt_callinfo ec;
707
708 EFI_TIME_OWNED();
709 if (efi_runtime == NULL)
710 return (ENXIO);
711 bzero(&ec, sizeof(ec));
712 ec.ec_name = "rt_settime";
713 ec.ec_argcnt = 1;
714 ec.ec_arg1 = (uintptr_t)tm;
715 ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
716 return (efi_call(&ec));
717 }
718
719 static int
set_time(struct efi_tm * tm)720 set_time(struct efi_tm *tm)
721 {
722 int error;
723
724 if (efi_runtime == NULL)
725 return (ENXIO);
726 EFI_TIME_LOCK();
727 error = efi_set_time_locked(tm);
728 EFI_TIME_UNLOCK();
729 return (error);
730 }
731
732 static int
var_get(efi_char * name,struct uuid * vendor,uint32_t * attrib,size_t * datasize,void * data)733 var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
734 size_t *datasize, void *data)
735 {
736 struct efirt_callinfo ec;
737 int error;
738
739 if (efi_runtime == NULL)
740 return (ENXIO);
741 bzero(&ec, sizeof(ec));
742 ec.ec_argcnt = 5;
743 ec.ec_name = "rt_getvar";
744 ec.ec_arg1 = (uintptr_t)name;
745 ec.ec_arg2 = (uintptr_t)vendor;
746 ec.ec_arg3 = (uintptr_t)attrib;
747 ec.ec_arg4 = (uintptr_t)datasize;
748 ec.ec_arg5 = (uintptr_t)data;
749 ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
750 error = efi_call(&ec);
751 if (error == 0)
752 kmsan_mark(data, *datasize, KMSAN_STATE_INITED);
753 return (error);
754 }
755
756 static int
var_nextname(size_t * namesize,efi_char * name,struct uuid * vendor)757 var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
758 {
759 struct efirt_callinfo ec;
760 int error;
761
762 if (efi_runtime == NULL)
763 return (ENXIO);
764 bzero(&ec, sizeof(ec));
765 ec.ec_argcnt = 3;
766 ec.ec_name = "rt_scanvar";
767 ec.ec_arg1 = (uintptr_t)namesize;
768 ec.ec_arg2 = (uintptr_t)name;
769 ec.ec_arg3 = (uintptr_t)vendor;
770 ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
771 error = efi_call(&ec);
772 if (error == 0)
773 kmsan_mark(name, *namesize, KMSAN_STATE_INITED);
774 return (error);
775 }
776
777 static int
var_set(efi_char * name,struct uuid * vendor,uint32_t attrib,size_t datasize,void * data)778 var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
779 size_t datasize, void *data)
780 {
781 struct efirt_callinfo ec;
782
783 if (efi_runtime == NULL)
784 return (ENXIO);
785 bzero(&ec, sizeof(ec));
786 ec.ec_argcnt = 5;
787 ec.ec_name = "rt_setvar";
788 ec.ec_arg1 = (uintptr_t)name;
789 ec.ec_arg2 = (uintptr_t)vendor;
790 ec.ec_arg3 = (uintptr_t)attrib;
791 ec.ec_arg4 = (uintptr_t)datasize;
792 ec.ec_arg5 = (uintptr_t)data;
793 ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
794 return (efi_call(&ec));
795 }
796
797 const static struct efi_ops efi_ops = {
798 .rt_ok = rt_ok,
799 .get_table = get_table,
800 .copy_table = copy_table,
801 .get_time = get_time,
802 .get_time_capabilities = get_time_capabilities,
803 .reset_system = reset_system,
804 .set_time = set_time,
805 .get_waketime = get_waketime,
806 .set_waketime = set_waketime,
807 .var_get = var_get,
808 .var_nextname = var_nextname,
809 .var_set = var_set,
810 };
811 const struct efi_ops *active_efi_ops = &efi_ops;
812
813 static int
efirt_modevents(module_t m,int event,void * arg __unused)814 efirt_modevents(module_t m, int event, void *arg __unused)
815 {
816
817 switch (event) {
818 case MOD_LOAD:
819 return (efi_init());
820
821 case MOD_UNLOAD:
822 efi_uninit();
823 return (0);
824
825 case MOD_SHUTDOWN:
826 return (0);
827
828 default:
829 return (EOPNOTSUPP);
830 }
831 }
832
833 static moduledata_t efirt_moddata = {
834 .name = "efirt",
835 .evhand = efirt_modevents,
836 .priv = NULL,
837 };
838 /* After fpuinitstate, before efidev */
839 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
840 MODULE_VERSION(efirt, 1);
841