xref: /freebsd/sys/contrib/openzfs/lib/libefi/rdwr_efi.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2018 by Delphix. All rights reserved.
27  */
28 
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <errno.h>
32 #include <string.h>
33 #include <unistd.h>
34 #include <uuid/uuid.h>
35 #include <zlib.h>
36 #include <libintl.h>
37 #include <sys/types.h>
38 #include <sys/dkio.h>
39 #include <sys/mhd.h>
40 #include <sys/param.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/efi_partition.h>
43 #include <sys/byteorder.h>
44 #include <sys/vdev_disk.h>
45 #include <linux/fs.h>
46 #include <linux/blkpg.h>
47 
48 static struct uuid_to_ptag {
49 	struct uuid	uuid;
50 } conversion_array[] = {
51 	{ EFI_UNUSED },
52 	{ EFI_BOOT },
53 	{ EFI_ROOT },
54 	{ EFI_SWAP },
55 	{ EFI_USR },
56 	{ EFI_BACKUP },
57 	{ EFI_UNUSED },		/* STAND is never used */
58 	{ EFI_VAR },
59 	{ EFI_HOME },
60 	{ EFI_ALTSCTR },
61 	{ EFI_UNUSED },		/* CACHE (cachefs) is never used */
62 	{ EFI_RESERVED },
63 	{ EFI_SYSTEM },
64 	{ EFI_LEGACY_MBR },
65 	{ EFI_SYMC_PUB },
66 	{ EFI_SYMC_CDS },
67 	{ EFI_MSFT_RESV },
68 	{ EFI_DELL_BASIC },
69 	{ EFI_DELL_RAID },
70 	{ EFI_DELL_SWAP },
71 	{ EFI_DELL_LVM },
72 	{ EFI_DELL_RESV },
73 	{ EFI_AAPL_HFS },
74 	{ EFI_AAPL_UFS },
75 	{ EFI_FREEBSD_BOOT },
76 	{ EFI_FREEBSD_SWAP },
77 	{ EFI_FREEBSD_UFS },
78 	{ EFI_FREEBSD_VINUM },
79 	{ EFI_FREEBSD_ZFS },
80 	{ EFI_BIOS_BOOT },
81 	{ EFI_INTC_RS },
82 	{ EFI_SNE_BOOT },
83 	{ EFI_LENOVO_BOOT },
84 	{ EFI_MSFT_LDMM },
85 	{ EFI_MSFT_LDMD },
86 	{ EFI_MSFT_RE },
87 	{ EFI_IBM_GPFS },
88 	{ EFI_MSFT_STORAGESPACES },
89 	{ EFI_HPQ_DATA },
90 	{ EFI_HPQ_SVC },
91 	{ EFI_RHT_DATA },
92 	{ EFI_RHT_HOME },
93 	{ EFI_RHT_SRV },
94 	{ EFI_RHT_DMCRYPT },
95 	{ EFI_RHT_LUKS },
96 	{ EFI_FREEBSD_DISKLABEL },
97 	{ EFI_AAPL_RAID },
98 	{ EFI_AAPL_RAIDOFFLINE },
99 	{ EFI_AAPL_BOOT },
100 	{ EFI_AAPL_LABEL },
101 	{ EFI_AAPL_TVRECOVERY },
102 	{ EFI_AAPL_CORESTORAGE },
103 	{ EFI_NETBSD_SWAP },
104 	{ EFI_NETBSD_FFS },
105 	{ EFI_NETBSD_LFS },
106 	{ EFI_NETBSD_RAID },
107 	{ EFI_NETBSD_CAT },
108 	{ EFI_NETBSD_CRYPT },
109 	{ EFI_GOOG_KERN },
110 	{ EFI_GOOG_ROOT },
111 	{ EFI_GOOG_RESV },
112 	{ EFI_HAIKU_BFS },
113 	{ EFI_MIDNIGHTBSD_BOOT },
114 	{ EFI_MIDNIGHTBSD_DATA },
115 	{ EFI_MIDNIGHTBSD_SWAP },
116 	{ EFI_MIDNIGHTBSD_UFS },
117 	{ EFI_MIDNIGHTBSD_VINUM },
118 	{ EFI_MIDNIGHTBSD_ZFS },
119 	{ EFI_CEPH_JOURNAL },
120 	{ EFI_CEPH_DMCRYPTJOURNAL },
121 	{ EFI_CEPH_OSD },
122 	{ EFI_CEPH_DMCRYPTOSD },
123 	{ EFI_CEPH_CREATE },
124 	{ EFI_CEPH_DMCRYPTCREATE },
125 	{ EFI_OPENBSD_DISKLABEL },
126 	{ EFI_BBRY_QNX },
127 	{ EFI_BELL_PLAN9 },
128 	{ EFI_VMW_KCORE },
129 	{ EFI_VMW_VMFS },
130 	{ EFI_VMW_RESV },
131 	{ EFI_RHT_ROOTX86 },
132 	{ EFI_RHT_ROOTAMD64 },
133 	{ EFI_RHT_ROOTARM },
134 	{ EFI_RHT_ROOTARM64 },
135 	{ EFI_ACRONIS_SECUREZONE },
136 	{ EFI_ONIE_BOOT },
137 	{ EFI_ONIE_CONFIG },
138 	{ EFI_IBM_PPRPBOOT },
139 	{ EFI_FREEDESKTOP_BOOT }
140 };
141 
142 int efi_debug = 0;
143 
144 static int efi_read(int, struct dk_gpt *);
145 
146 /*
147  * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
148  * one's conditioning will be handled by crc32() internally.
149  */
150 static uint32_t
efi_crc32(const unsigned char * buf,unsigned int size)151 efi_crc32(const unsigned char *buf, unsigned int size)
152 {
153 	uint32_t crc = crc32(0, Z_NULL, 0);
154 
155 	crc = crc32(crc, buf, size);
156 
157 	return (crc);
158 }
159 
160 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)161 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
162 {
163 	int sector_size;
164 	unsigned long long capacity_size;
165 
166 	if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
167 		return (-1);
168 
169 	if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
170 		return (-1);
171 
172 	*lbsize = (uint_t)sector_size;
173 	*capacity = (diskaddr_t)(capacity_size / sector_size);
174 
175 	return (0);
176 }
177 
178 /*
179  * Return back the device name associated with the file descriptor. The
180  * caller is responsible for freeing the memory associated with the
181  * returned string.
182  */
183 static char *
efi_get_devname(int fd)184 efi_get_devname(int fd)
185 {
186 	char path[32];
187 
188 	/*
189 	 * The libefi API only provides the open fd and not the file path.
190 	 * To handle this realpath(3) is used to resolve the block device
191 	 * name from /proc/self/fd/<fd>.
192 	 */
193 	(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
194 	return (realpath(path, NULL));
195 }
196 
197 static int
efi_get_info(int fd,struct dk_cinfo * dki_info)198 efi_get_info(int fd, struct dk_cinfo *dki_info)
199 {
200 	char *dev_path;
201 	int rval = 0;
202 
203 	memset(dki_info, 0, sizeof (*dki_info));
204 
205 	/*
206 	 * The simplest way to get the partition number under linux is
207 	 * to parse it out of the /dev/<disk><partition> block device name.
208 	 * The kernel creates this using the partition number when it
209 	 * populates /dev/ so it may be trusted.  The tricky bit here is
210 	 * that the naming convention is based on the block device type.
211 	 * So we need to take this in to account when parsing out the
212 	 * partition information.  Aside from the partition number we collect
213 	 * some additional device info.
214 	 */
215 	dev_path = efi_get_devname(fd);
216 	if (dev_path == NULL)
217 		goto error;
218 
219 	if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
220 		strcpy(dki_info->dki_cname, "sd");
221 		dki_info->dki_ctype = DKC_SCSI_CCS;
222 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
223 		    dki_info->dki_dname,
224 		    &dki_info->dki_partition);
225 	} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
226 		strcpy(dki_info->dki_cname, "hd");
227 		dki_info->dki_ctype = DKC_DIRECT;
228 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
229 		    dki_info->dki_dname,
230 		    &dki_info->dki_partition);
231 	} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
232 		strcpy(dki_info->dki_cname, "pseudo");
233 		dki_info->dki_ctype = DKC_MD;
234 		strcpy(dki_info->dki_dname, "md");
235 		rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
236 		    dki_info->dki_dname + 2,
237 		    &dki_info->dki_partition);
238 	} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
239 		strcpy(dki_info->dki_cname, "vd");
240 		dki_info->dki_ctype = DKC_MD;
241 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
242 		    dki_info->dki_dname,
243 		    &dki_info->dki_partition);
244 	} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
245 		strcpy(dki_info->dki_cname, "xvd");
246 		dki_info->dki_ctype = DKC_MD;
247 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
248 		    dki_info->dki_dname,
249 		    &dki_info->dki_partition);
250 	} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
251 		strcpy(dki_info->dki_cname, "zd");
252 		dki_info->dki_ctype = DKC_MD;
253 		strcpy(dki_info->dki_dname, "zd");
254 		rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
255 		    dki_info->dki_dname + 2,
256 		    &dki_info->dki_partition);
257 	} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
258 		strcpy(dki_info->dki_cname, "pseudo");
259 		dki_info->dki_ctype = DKC_VBD;
260 		strcpy(dki_info->dki_dname, "dm-");
261 		rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
262 		    dki_info->dki_dname + 3,
263 		    &dki_info->dki_partition);
264 	} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
265 		strcpy(dki_info->dki_cname, "pseudo");
266 		dki_info->dki_ctype = DKC_PCMCIA_MEM;
267 		strcpy(dki_info->dki_dname, "ram");
268 		rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
269 		    dki_info->dki_dname + 3,
270 		    &dki_info->dki_partition);
271 	} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
272 		strcpy(dki_info->dki_cname, "pseudo");
273 		dki_info->dki_ctype = DKC_VBD;
274 		strcpy(dki_info->dki_dname, "loop");
275 		rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
276 		    dki_info->dki_dname + 4,
277 		    &dki_info->dki_partition);
278 	} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
279 		strcpy(dki_info->dki_cname, "nvme");
280 		dki_info->dki_ctype = DKC_SCSI_CCS;
281 		strcpy(dki_info->dki_dname, "nvme");
282 		(void) sscanf(dev_path, "/dev/nvme%[0-9]",
283 		    dki_info->dki_dname + 4);
284 		size_t controller_length = strlen(
285 		    dki_info->dki_dname);
286 		strcpy(dki_info->dki_dname + controller_length,
287 		    "n");
288 		rval = sscanf(dev_path,
289 		    "/dev/nvme%*[0-9]n%[0-9]p%hu",
290 		    dki_info->dki_dname + controller_length + 1,
291 		    &dki_info->dki_partition);
292 	} else {
293 		strcpy(dki_info->dki_dname, "unknown");
294 		strcpy(dki_info->dki_cname, "unknown");
295 		dki_info->dki_ctype = DKC_UNKNOWN;
296 	}
297 
298 	switch (rval) {
299 	case 0:
300 		errno = EINVAL;
301 		goto error;
302 	case 1:
303 		dki_info->dki_partition = 0;
304 	}
305 
306 	free(dev_path);
307 
308 	return (0);
309 error:
310 	if (efi_debug)
311 		(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
312 
313 	switch (errno) {
314 	case EIO:
315 		return (VT_EIO);
316 	case EINVAL:
317 		return (VT_EINVAL);
318 	default:
319 		return (VT_ERROR);
320 	}
321 }
322 
323 /*
324  * the number of blocks the EFI label takes up (round up to nearest
325  * block)
326  */
327 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
328 				((l) - 1)) / (l)))
329 /* number of partitions -- limited by what we can malloc */
330 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
331 			    sizeof (struct dk_part))
332 
333 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)334 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
335 {
336 	diskaddr_t	capacity = 0;
337 	uint_t		lbsize = 0;
338 	uint_t		nblocks;
339 	size_t		length;
340 	struct dk_gpt	*vptr;
341 	struct uuid	uuid;
342 	struct dk_cinfo	dki_info;
343 
344 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
345 		return (-1);
346 
347 	if (efi_get_info(fd, &dki_info) != 0)
348 		return (-1);
349 
350 	if (dki_info.dki_partition != 0)
351 		return (-1);
352 
353 	if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
354 	    (dki_info.dki_ctype == DKC_VBD) ||
355 	    (dki_info.dki_ctype == DKC_UNKNOWN))
356 		return (-1);
357 
358 	nblocks = NBLOCKS(nparts, lbsize);
359 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
360 		/* 16K plus one block for the GPT */
361 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
362 	}
363 
364 	if (nparts > MAX_PARTS) {
365 		if (efi_debug) {
366 			(void) fprintf(stderr,
367 			"the maximum number of partitions supported is %lu\n",
368 			    MAX_PARTS);
369 		}
370 		return (-1);
371 	}
372 
373 	length = sizeof (struct dk_gpt) +
374 	    sizeof (struct dk_part) * (nparts - 1);
375 
376 	vptr = calloc(1, length);
377 	if (vptr == NULL)
378 		return (-1);
379 
380 	*vtoc = vptr;
381 
382 	vptr->efi_version = EFI_VERSION_CURRENT;
383 	vptr->efi_lbasize = lbsize;
384 	vptr->efi_nparts = nparts;
385 	/*
386 	 * add one block here for the PMBR; on disks with a 512 byte
387 	 * block size and 128 or fewer partitions, efi_first_u_lba
388 	 * should work out to "34"
389 	 */
390 	vptr->efi_first_u_lba = nblocks + 1;
391 	vptr->efi_last_lba = capacity - 1;
392 	vptr->efi_altern_lba = capacity -1;
393 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
394 
395 	(void) uuid_generate((uchar_t *)&uuid);
396 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
397 	return (0);
398 }
399 
400 /*
401  * Read EFI - return partition number upon success.
402  */
403 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)404 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
405 {
406 	int			rval;
407 	uint32_t		nparts;
408 	int			length;
409 	struct dk_gpt		*vptr;
410 
411 	/* figure out the number of entries that would fit into 16K */
412 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
413 	length = (int) sizeof (struct dk_gpt) +
414 	    (int) sizeof (struct dk_part) * (nparts - 1);
415 	vptr = calloc(1, length);
416 
417 	if (vptr == NULL)
418 		return (VT_ERROR);
419 
420 	vptr->efi_nparts = nparts;
421 	rval = efi_read(fd, vptr);
422 
423 	if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
424 		void *tmp;
425 		length = (int) sizeof (struct dk_gpt) +
426 		    (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
427 		if ((tmp = realloc(vptr, length)) == NULL) {
428 			/* cppcheck-suppress doubleFree */
429 			free(vptr);
430 			*vtoc = NULL;
431 			return (VT_ERROR);
432 		} else {
433 			vptr = tmp;
434 			rval = efi_read(fd, vptr);
435 		}
436 	}
437 
438 	if (rval < 0) {
439 		if (efi_debug) {
440 			(void) fprintf(stderr,
441 			    "read of EFI table failed, rval=%d\n", rval);
442 		}
443 		free(vptr);
444 		*vtoc = NULL;
445 	} else {
446 		*vtoc = vptr;
447 	}
448 
449 	return (rval);
450 }
451 
452 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)453 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
454 {
455 	void *data = dk_ioc->dki_data;
456 	int error;
457 	diskaddr_t capacity;
458 	uint_t lbsize;
459 
460 	/*
461 	 * When the IO is not being performed in kernel as an ioctl we need
462 	 * to know the sector size so we can seek to the proper byte offset.
463 	 */
464 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
465 		if (efi_debug)
466 			fprintf(stderr, "unable to read disk info: %d", errno);
467 
468 		errno = EIO;
469 		return (-1);
470 	}
471 
472 	switch (cmd) {
473 	case DKIOCGETEFI:
474 		if (lbsize == 0) {
475 			if (efi_debug)
476 				(void) fprintf(stderr, "DKIOCGETEFI assuming "
477 				    "LBA %d bytes\n", DEV_BSIZE);
478 
479 			lbsize = DEV_BSIZE;
480 		}
481 
482 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
483 		if (error == -1) {
484 			if (efi_debug)
485 				(void) fprintf(stderr, "DKIOCGETEFI lseek "
486 				    "error: %d\n", errno);
487 			return (error);
488 		}
489 
490 		error = read(fd, data, dk_ioc->dki_length);
491 		if (error == -1) {
492 			if (efi_debug)
493 				(void) fprintf(stderr, "DKIOCGETEFI read "
494 				    "error: %d\n", errno);
495 			return (error);
496 		}
497 
498 		if (error != dk_ioc->dki_length) {
499 			if (efi_debug)
500 				(void) fprintf(stderr, "DKIOCGETEFI short "
501 				    "read of %d bytes\n", error);
502 			errno = EIO;
503 			return (-1);
504 		}
505 		error = 0;
506 		break;
507 
508 	case DKIOCSETEFI:
509 		if (lbsize == 0) {
510 			if (efi_debug)
511 				(void) fprintf(stderr, "DKIOCSETEFI unknown "
512 				    "LBA size\n");
513 			errno = EIO;
514 			return (-1);
515 		}
516 
517 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
518 		if (error == -1) {
519 			if (efi_debug)
520 				(void) fprintf(stderr, "DKIOCSETEFI lseek "
521 				    "error: %d\n", errno);
522 			return (error);
523 		}
524 
525 		error = write(fd, data, dk_ioc->dki_length);
526 		if (error == -1) {
527 			if (efi_debug)
528 				(void) fprintf(stderr, "DKIOCSETEFI write "
529 				    "error: %d\n", errno);
530 			return (error);
531 		}
532 
533 		if (error != dk_ioc->dki_length) {
534 			if (efi_debug)
535 				(void) fprintf(stderr, "DKIOCSETEFI short "
536 				    "write of %d bytes\n", error);
537 			errno = EIO;
538 			return (-1);
539 		}
540 
541 		/* Sync the new EFI table to disk */
542 		error = fsync(fd);
543 		if (error == -1)
544 			return (error);
545 
546 		/* Ensure any local disk cache is also flushed */
547 		if (ioctl(fd, BLKFLSBUF, 0) == -1)
548 			return (error);
549 
550 		error = 0;
551 		break;
552 
553 	default:
554 		if (efi_debug)
555 			(void) fprintf(stderr, "unsupported ioctl()\n");
556 
557 		errno = EIO;
558 		return (-1);
559 	}
560 
561 	return (error);
562 }
563 
564 int
efi_rescan(int fd)565 efi_rescan(int fd)
566 {
567 	int retry = 10;
568 
569 	/* Notify the kernel a devices partition table has been updated */
570 	while (ioctl(fd, BLKRRPART) != 0) {
571 		if ((--retry == 0) || (errno != EBUSY)) {
572 			(void) fprintf(stderr, "the kernel failed to rescan "
573 			    "the partition table: %d\n", errno);
574 			return (-1);
575 		}
576 		usleep(50000);
577 	}
578 
579 	return (0);
580 }
581 
582 static int
check_label(int fd,dk_efi_t * dk_ioc)583 check_label(int fd, dk_efi_t *dk_ioc)
584 {
585 	efi_gpt_t		*efi;
586 	uint_t			crc;
587 
588 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
589 		switch (errno) {
590 		case EIO:
591 			return (VT_EIO);
592 		default:
593 			return (VT_ERROR);
594 		}
595 	}
596 	efi = dk_ioc->dki_data;
597 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
598 		if (efi_debug)
599 			(void) fprintf(stderr,
600 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
601 			    (long long)efi->efi_gpt_Signature,
602 			    (long long)LE_64(EFI_SIGNATURE));
603 		return (VT_EINVAL);
604 	}
605 
606 	/*
607 	 * check CRC of the header; the size of the header should
608 	 * never be larger than one block
609 	 */
610 	crc = efi->efi_gpt_HeaderCRC32;
611 	efi->efi_gpt_HeaderCRC32 = 0;
612 	len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
613 
614 	if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
615 		if (efi_debug)
616 			(void) fprintf(stderr,
617 			    "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
618 			    headerSize, EFI_MIN_LABEL_SIZE);
619 	}
620 
621 	if ((headerSize > dk_ioc->dki_length) ||
622 	    crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
623 		if (efi_debug)
624 			(void) fprintf(stderr,
625 			    "Bad EFI CRC: 0x%x != 0x%x\n",
626 			    crc, LE_32(efi_crc32((unsigned char *)efi,
627 			    headerSize)));
628 		return (VT_EINVAL);
629 	}
630 
631 	return (0);
632 }
633 
634 static int
efi_read(int fd,struct dk_gpt * vtoc)635 efi_read(int fd, struct dk_gpt *vtoc)
636 {
637 	int			i, j;
638 	int			label_len;
639 	int			rval = 0;
640 	int			md_flag = 0;
641 	int			vdc_flag = 0;
642 	diskaddr_t		capacity = 0;
643 	uint_t			lbsize = 0;
644 	struct dk_minfo		disk_info;
645 	dk_efi_t		dk_ioc;
646 	efi_gpt_t		*efi;
647 	efi_gpe_t		*efi_parts;
648 	struct dk_cinfo		dki_info;
649 	uint32_t		user_length;
650 	boolean_t		legacy_label = B_FALSE;
651 
652 	/*
653 	 * get the partition number for this file descriptor.
654 	 */
655 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
656 		return (rval);
657 
658 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
659 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
660 		md_flag++;
661 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
662 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
663 		/*
664 		 * The controller and drive name "vdc" (virtual disk client)
665 		 * indicates a LDoms virtual disk.
666 		 */
667 		vdc_flag++;
668 	}
669 
670 	/* get the LBA size */
671 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
672 		if (efi_debug) {
673 			(void) fprintf(stderr,
674 			    "unable to read disk info: %d",
675 			    errno);
676 		}
677 		return (VT_EINVAL);
678 	}
679 
680 	disk_info.dki_lbsize = lbsize;
681 	disk_info.dki_capacity = capacity;
682 
683 	if (disk_info.dki_lbsize == 0) {
684 		if (efi_debug) {
685 			(void) fprintf(stderr,
686 			    "efi_read: assuming LBA 512 bytes\n");
687 		}
688 		disk_info.dki_lbsize = DEV_BSIZE;
689 	}
690 	/*
691 	 * Read the EFI GPT to figure out how many partitions we need
692 	 * to deal with.
693 	 */
694 	dk_ioc.dki_lba = 1;
695 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
696 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
697 	} else {
698 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
699 		    disk_info.dki_lbsize;
700 		if (label_len % disk_info.dki_lbsize) {
701 			/* pad to physical sector size */
702 			label_len += disk_info.dki_lbsize;
703 			label_len &= ~(disk_info.dki_lbsize - 1);
704 		}
705 	}
706 
707 	if (posix_memalign((void **)&dk_ioc.dki_data,
708 	    disk_info.dki_lbsize, label_len))
709 		return (VT_ERROR);
710 
711 	memset(dk_ioc.dki_data, 0, label_len);
712 	dk_ioc.dki_length = disk_info.dki_lbsize;
713 	user_length = vtoc->efi_nparts;
714 	efi = dk_ioc.dki_data;
715 	if (md_flag) {
716 		dk_ioc.dki_length = label_len;
717 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
718 			switch (errno) {
719 			case EIO:
720 				return (VT_EIO);
721 			default:
722 				return (VT_ERROR);
723 			}
724 		}
725 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
726 		/*
727 		 * No valid label here; try the alternate. Note that here
728 		 * we just read GPT header and save it into dk_ioc.data,
729 		 * Later, we will read GUID partition entry array if we
730 		 * can get valid GPT header.
731 		 */
732 
733 		/*
734 		 * This is a workaround for legacy systems. In the past, the
735 		 * last sector of SCSI disk was invisible on x86 platform. At
736 		 * that time, backup label was saved on the next to the last
737 		 * sector. It is possible for users to move a disk from previous
738 		 * solaris system to present system. Here, we attempt to search
739 		 * legacy backup EFI label first.
740 		 */
741 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
742 		dk_ioc.dki_length = disk_info.dki_lbsize;
743 		rval = check_label(fd, &dk_ioc);
744 		if (rval == VT_EINVAL) {
745 			/*
746 			 * we didn't find legacy backup EFI label, try to
747 			 * search backup EFI label in the last block.
748 			 */
749 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
750 			dk_ioc.dki_length = disk_info.dki_lbsize;
751 			rval = check_label(fd, &dk_ioc);
752 			if (rval == 0) {
753 				legacy_label = B_TRUE;
754 				if (efi_debug)
755 					(void) fprintf(stderr,
756 					    "efi_read: primary label corrupt; "
757 					    "using EFI backup label located on"
758 					    " the last block\n");
759 			}
760 		} else {
761 			if ((efi_debug) && (rval == 0))
762 				(void) fprintf(stderr, "efi_read: primary label"
763 				    " corrupt; using legacy EFI backup label "
764 				    " located on the next to last block\n");
765 		}
766 
767 		if (rval == 0) {
768 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
769 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
770 			vtoc->efi_nparts =
771 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
772 			/*
773 			 * Partition tables are between backup GPT header
774 			 * table and ParitionEntryLBA (the starting LBA of
775 			 * the GUID partition entries array). Now that we
776 			 * already got valid GPT header and saved it in
777 			 * dk_ioc.dki_data, we try to get GUID partition
778 			 * entry array here.
779 			 */
780 			/* LINTED */
781 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
782 			    + disk_info.dki_lbsize);
783 			if (legacy_label)
784 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
785 				    dk_ioc.dki_lba;
786 			else
787 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
788 				    dk_ioc.dki_lba;
789 			dk_ioc.dki_length *= disk_info.dki_lbsize;
790 			if (dk_ioc.dki_length >
791 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
792 				rval = VT_EINVAL;
793 			} else {
794 				/*
795 				 * read GUID partition entry array
796 				 */
797 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
798 			}
799 		}
800 
801 	} else if (rval == 0) {
802 
803 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
804 		/* LINTED */
805 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
806 		    + disk_info.dki_lbsize);
807 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
808 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
809 
810 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
811 		/*
812 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
813 		 * ioctl can fail with EINVAL if the virtual disk backend
814 		 * is a ZFS volume serviced by a domain running an old version
815 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
816 		 * initially incorrectly implemented for a ZFS volume and it
817 		 * expected the GPT and GPE to be retrieved with a single ioctl.
818 		 * So we try to read the GPT and the GPE using that old style
819 		 * ioctl.
820 		 */
821 		dk_ioc.dki_lba = 1;
822 		dk_ioc.dki_length = label_len;
823 		rval = check_label(fd, &dk_ioc);
824 	}
825 
826 	if (rval < 0) {
827 		free(efi);
828 		return (rval);
829 	}
830 
831 	/* LINTED -- always longlong aligned */
832 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
833 
834 	/*
835 	 * Assemble this into a "dk_gpt" struct for easier
836 	 * digestibility by applications.
837 	 */
838 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
839 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
840 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
841 	vtoc->efi_lbasize = disk_info.dki_lbsize;
842 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
843 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
844 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
845 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
846 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
847 
848 	/*
849 	 * If the array the user passed in is too small, set the length
850 	 * to what it needs to be and return
851 	 */
852 	if (user_length < vtoc->efi_nparts) {
853 		return (VT_EINVAL);
854 	}
855 
856 	for (i = 0; i < vtoc->efi_nparts; i++) {
857 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
858 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
859 
860 		for (j = 0;
861 		    j < sizeof (conversion_array)
862 		    / sizeof (struct uuid_to_ptag); j++) {
863 
864 			if (memcmp(&vtoc->efi_parts[i].p_guid,
865 			    &conversion_array[j].uuid,
866 			    sizeof (struct uuid)) == 0) {
867 				vtoc->efi_parts[i].p_tag = j;
868 				break;
869 			}
870 		}
871 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
872 			continue;
873 		vtoc->efi_parts[i].p_flag =
874 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
875 		vtoc->efi_parts[i].p_start =
876 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
877 		vtoc->efi_parts[i].p_size =
878 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
879 		    vtoc->efi_parts[i].p_start + 1;
880 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
881 			vtoc->efi_parts[i].p_name[j] =
882 			    (uchar_t)LE_16(
883 			    efi_parts[i].efi_gpe_PartitionName[j]);
884 		}
885 
886 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
887 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
888 	}
889 	free(efi);
890 
891 	return (dki_info.dki_partition);
892 }
893 
894 /* writes a "protective" MBR */
895 static int
write_pmbr(int fd,struct dk_gpt * vtoc)896 write_pmbr(int fd, struct dk_gpt *vtoc)
897 {
898 	dk_efi_t	dk_ioc;
899 	struct mboot	mb;
900 	uchar_t		*cp;
901 	diskaddr_t	size_in_lba;
902 	uchar_t		*buf;
903 	int		len;
904 
905 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
906 	if (posix_memalign((void **)&buf, len, len))
907 		return (VT_ERROR);
908 
909 	/*
910 	 * Preserve any boot code and disk signature if the first block is
911 	 * already an MBR.
912 	 */
913 	memset(buf, 0, len);
914 	dk_ioc.dki_lba = 0;
915 	dk_ioc.dki_length = len;
916 	/* LINTED -- always longlong aligned */
917 	dk_ioc.dki_data = (efi_gpt_t *)buf;
918 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
919 		memset(&mb, 0, sizeof (mb));
920 		mb.signature = LE_16(MBB_MAGIC);
921 	} else {
922 		(void) memcpy(&mb, buf, sizeof (mb));
923 		if (mb.signature != LE_16(MBB_MAGIC)) {
924 			memset(&mb, 0, sizeof (mb));
925 			mb.signature = LE_16(MBB_MAGIC);
926 		}
927 	}
928 
929 	memset(&mb.parts, 0, sizeof (mb.parts));
930 	cp = (uchar_t *)&mb.parts[0];
931 	/* bootable or not */
932 	*cp++ = 0;
933 	/* beginning CHS; 0xffffff if not representable */
934 	*cp++ = 0xff;
935 	*cp++ = 0xff;
936 	*cp++ = 0xff;
937 	/* OS type */
938 	*cp++ = EFI_PMBR;
939 	/* ending CHS; 0xffffff if not representable */
940 	*cp++ = 0xff;
941 	*cp++ = 0xff;
942 	*cp++ = 0xff;
943 	/* starting LBA: 1 (little endian format) by EFI definition */
944 	*cp++ = 0x01;
945 	*cp++ = 0x00;
946 	*cp++ = 0x00;
947 	*cp++ = 0x00;
948 	/* ending LBA: last block on the disk (little endian format) */
949 	size_in_lba = vtoc->efi_last_lba;
950 	if (size_in_lba < 0xffffffff) {
951 		*cp++ = (size_in_lba & 0x000000ff);
952 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
953 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
954 		*cp++ = (size_in_lba & 0xff000000) >> 24;
955 	} else {
956 		*cp++ = 0xff;
957 		*cp++ = 0xff;
958 		*cp++ = 0xff;
959 		*cp++ = 0xff;
960 	}
961 
962 	(void) memcpy(buf, &mb, sizeof (mb));
963 	/* LINTED -- always longlong aligned */
964 	dk_ioc.dki_data = (efi_gpt_t *)buf;
965 	dk_ioc.dki_lba = 0;
966 	dk_ioc.dki_length = len;
967 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
968 		free(buf);
969 		switch (errno) {
970 		case EIO:
971 			return (VT_EIO);
972 		case EINVAL:
973 			return (VT_EINVAL);
974 		default:
975 			return (VT_ERROR);
976 		}
977 	}
978 	free(buf);
979 	return (0);
980 }
981 
982 /* make sure the user specified something reasonable */
983 static int
check_input(struct dk_gpt * vtoc)984 check_input(struct dk_gpt *vtoc)
985 {
986 	int			resv_part = -1;
987 	int			i, j;
988 	diskaddr_t		istart, jstart, isize, jsize, endsect;
989 
990 	/*
991 	 * Sanity-check the input (make sure no partitions overlap)
992 	 */
993 	for (i = 0; i < vtoc->efi_nparts; i++) {
994 		/* It can't be unassigned and have an actual size */
995 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
996 		    (vtoc->efi_parts[i].p_size != 0)) {
997 			if (efi_debug) {
998 				(void) fprintf(stderr, "partition %d is "
999 				    "\"unassigned\" but has a size of %llu",
1000 				    i, vtoc->efi_parts[i].p_size);
1001 			}
1002 			return (VT_EINVAL);
1003 		}
1004 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1005 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1006 				continue;
1007 			/* we have encountered an unknown uuid */
1008 			vtoc->efi_parts[i].p_tag = 0xff;
1009 		}
1010 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1011 			if (resv_part != -1) {
1012 				if (efi_debug) {
1013 					(void) fprintf(stderr, "found "
1014 					    "duplicate reserved partition "
1015 					    "at %d\n", i);
1016 				}
1017 				return (VT_EINVAL);
1018 			}
1019 			resv_part = i;
1020 		}
1021 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1022 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1023 			if (efi_debug) {
1024 				(void) fprintf(stderr,
1025 				    "Partition %d starts at %llu.  ",
1026 				    i,
1027 				    vtoc->efi_parts[i].p_start);
1028 				(void) fprintf(stderr,
1029 				    "It must be between %llu and %llu.\n",
1030 				    vtoc->efi_first_u_lba,
1031 				    vtoc->efi_last_u_lba);
1032 			}
1033 			return (VT_EINVAL);
1034 		}
1035 		if ((vtoc->efi_parts[i].p_start +
1036 		    vtoc->efi_parts[i].p_size <
1037 		    vtoc->efi_first_u_lba) ||
1038 		    (vtoc->efi_parts[i].p_start +
1039 		    vtoc->efi_parts[i].p_size >
1040 		    vtoc->efi_last_u_lba + 1)) {
1041 			if (efi_debug) {
1042 				(void) fprintf(stderr,
1043 				    "Partition %d ends at %llu.  ",
1044 				    i,
1045 				    vtoc->efi_parts[i].p_start +
1046 				    vtoc->efi_parts[i].p_size);
1047 				(void) fprintf(stderr,
1048 				    "It must be between %llu and %llu.\n",
1049 				    vtoc->efi_first_u_lba,
1050 				    vtoc->efi_last_u_lba);
1051 			}
1052 			return (VT_EINVAL);
1053 		}
1054 
1055 		for (j = 0; j < vtoc->efi_nparts; j++) {
1056 			isize = vtoc->efi_parts[i].p_size;
1057 			jsize = vtoc->efi_parts[j].p_size;
1058 			istart = vtoc->efi_parts[i].p_start;
1059 			jstart = vtoc->efi_parts[j].p_start;
1060 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1061 				endsect = jstart + jsize -1;
1062 				if ((jstart <= istart) &&
1063 				    (istart <= endsect)) {
1064 					if (efi_debug) {
1065 						(void) fprintf(stderr,
1066 						    "Partition %d overlaps "
1067 						    "partition %d.", i, j);
1068 					}
1069 					return (VT_EINVAL);
1070 				}
1071 			}
1072 		}
1073 	}
1074 	/* just a warning for now */
1075 	if ((resv_part == -1) && efi_debug) {
1076 		(void) fprintf(stderr,
1077 		    "no reserved partition found\n");
1078 	}
1079 	return (0);
1080 }
1081 
1082 static int
call_blkpg_ioctl(int fd,int command,diskaddr_t start,diskaddr_t size,uint_t pno)1083 call_blkpg_ioctl(int fd, int command, diskaddr_t start,
1084     diskaddr_t size, uint_t pno)
1085 {
1086 	struct blkpg_ioctl_arg ioctl_arg;
1087 	struct blkpg_partition  linux_part;
1088 	memset(&linux_part, 0, sizeof (linux_part));
1089 
1090 	char *path = efi_get_devname(fd);
1091 	if (path == NULL) {
1092 		(void) fprintf(stderr, "failed to retrieve device name\n");
1093 		return (VT_EINVAL);
1094 	}
1095 
1096 	linux_part.start = start;
1097 	linux_part.length = size;
1098 	linux_part.pno = pno;
1099 	snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
1100 	linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
1101 	free(path);
1102 
1103 	ioctl_arg.op = command;
1104 	ioctl_arg.flags = 0;
1105 	ioctl_arg.datalen = sizeof (struct blkpg_partition);
1106 	ioctl_arg.data = &linux_part;
1107 
1108 	return (ioctl(fd, BLKPG, &ioctl_arg));
1109 }
1110 
1111 /*
1112  * add all the unallocated space to the current label
1113  */
1114 int
efi_use_whole_disk(int fd)1115 efi_use_whole_disk(int fd)
1116 {
1117 	struct dk_gpt *efi_label = NULL;
1118 	int rval;
1119 	int i;
1120 	uint_t resv_index = 0, data_index = 0;
1121 	diskaddr_t resv_start = 0, data_start = 0;
1122 	diskaddr_t data_size, limit, difference;
1123 	boolean_t sync_needed = B_FALSE;
1124 	uint_t nblocks;
1125 
1126 	rval = efi_alloc_and_read(fd, &efi_label);
1127 	if (rval < 0) {
1128 		if (efi_label != NULL)
1129 			efi_free(efi_label);
1130 		return (rval);
1131 	}
1132 
1133 	/*
1134 	 * Find the last physically non-zero partition.
1135 	 * This should be the reserved partition.
1136 	 */
1137 	for (i = 0; i < efi_label->efi_nparts; i ++) {
1138 		if (resv_start < efi_label->efi_parts[i].p_start) {
1139 			resv_start = efi_label->efi_parts[i].p_start;
1140 			resv_index = i;
1141 		}
1142 	}
1143 
1144 	/*
1145 	 * Find the last physically non-zero partition before that.
1146 	 * This is the data partition.
1147 	 */
1148 	for (i = 0; i < resv_index; i ++) {
1149 		if (data_start < efi_label->efi_parts[i].p_start) {
1150 			data_start = efi_label->efi_parts[i].p_start;
1151 			data_index = i;
1152 		}
1153 	}
1154 	data_size = efi_label->efi_parts[data_index].p_size;
1155 
1156 	/*
1157 	 * See the "efi_alloc_and_init" function for more information
1158 	 * about where this "nblocks" value comes from.
1159 	 */
1160 	nblocks = efi_label->efi_first_u_lba - 1;
1161 
1162 	/*
1163 	 * Determine if the EFI label is out of sync. We check that:
1164 	 *
1165 	 * 1. the data partition ends at the limit we set, and
1166 	 * 2. the reserved partition starts at the limit we set.
1167 	 *
1168 	 * If either of these conditions is not met, then we need to
1169 	 * resync the EFI label.
1170 	 *
1171 	 * The limit is the last usable LBA, determined by the last LBA
1172 	 * and the first usable LBA fields on the EFI label of the disk
1173 	 * (see the lines directly above). Additionally, we factor in
1174 	 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1175 	 * P2ALIGN it to ensure the partition boundaries are aligned
1176 	 * (for performance reasons). The alignment should match the
1177 	 * alignment used by the "zpool_label_disk" function.
1178 	 */
1179 	limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks -
1180 	    EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t);
1181 	if (data_start + data_size != limit || resv_start != limit)
1182 		sync_needed = B_TRUE;
1183 
1184 	if (efi_debug && sync_needed)
1185 		(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1186 
1187 	/*
1188 	 * If alter_lba is 1, we are using the backup label.
1189 	 * Since we can locate the backup label by disk capacity,
1190 	 * there must be no unallocated space.
1191 	 */
1192 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1193 	    >= efi_label->efi_last_lba && !sync_needed)) {
1194 		if (efi_debug) {
1195 			(void) fprintf(stderr,
1196 			    "efi_use_whole_disk: requested space not found\n");
1197 		}
1198 		efi_free(efi_label);
1199 		return (VT_ENOSPC);
1200 	}
1201 
1202 	/*
1203 	 * Verify that we've found the reserved partition by checking
1204 	 * that it looks the way it did when we created it in zpool_label_disk.
1205 	 * If we've found the incorrect partition, then we know that this
1206 	 * device was reformatted and no longer is solely used by ZFS.
1207 	 */
1208 	if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1209 	    (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1210 	    (resv_index != 8)) {
1211 		if (efi_debug) {
1212 			(void) fprintf(stderr,
1213 			    "efi_use_whole_disk: wholedisk not available\n");
1214 		}
1215 		efi_free(efi_label);
1216 		return (VT_ENOSPC);
1217 	}
1218 
1219 	if (data_start + data_size != resv_start) {
1220 		if (efi_debug) {
1221 			(void) fprintf(stderr,
1222 			    "efi_use_whole_disk: "
1223 			    "data_start (%lli) + "
1224 			    "data_size (%lli) != "
1225 			    "resv_start (%lli)\n",
1226 			    data_start, data_size, resv_start);
1227 		}
1228 
1229 		return (VT_EINVAL);
1230 	}
1231 
1232 	if (limit < resv_start) {
1233 		if (efi_debug) {
1234 			(void) fprintf(stderr,
1235 			    "efi_use_whole_disk: "
1236 			    "limit (%lli) < resv_start (%lli)\n",
1237 			    limit, resv_start);
1238 		}
1239 
1240 		return (VT_EINVAL);
1241 	}
1242 
1243 	difference = limit - resv_start;
1244 
1245 	if (efi_debug)
1246 		(void) fprintf(stderr,
1247 		    "efi_use_whole_disk: difference is %lli\n", difference);
1248 
1249 	/*
1250 	 * Move the reserved partition. There is currently no data in
1251 	 * here except fabricated devids (which get generated via
1252 	 * efi_write()). So there is no need to copy data.
1253 	 */
1254 	efi_label->efi_parts[data_index].p_size += difference;
1255 	efi_label->efi_parts[resv_index].p_start += difference;
1256 	efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1257 
1258 	/*
1259 	 * Rescanning the partition table in the kernel can result
1260 	 * in the device links to be removed (see comment in vdev_disk_open).
1261 	 * If BLKPG_RESIZE_PARTITION is available, then we can resize
1262 	 * the partition table online and avoid having to remove the device
1263 	 * links used by the pool. This provides a very deterministic
1264 	 * approach to resizing devices and does not require any
1265 	 * loops waiting for devices to reappear.
1266 	 */
1267 #ifdef BLKPG_RESIZE_PARTITION
1268 	/*
1269 	 * Delete the reserved partition since we're about to expand
1270 	 * the data partition and it would overlap with the reserved
1271 	 * partition.
1272 	 * NOTE: The starting index for the ioctl is 1 while for the
1273 	 * EFI partitions it's 0. For that reason we have to add one
1274 	 * whenever we make an ioctl call.
1275 	 */
1276 	rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
1277 	if (rval != 0)
1278 		goto out;
1279 
1280 	/*
1281 	 * Expand the data partition
1282 	 */
1283 	rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
1284 	    efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
1285 	    efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
1286 	    data_index + 1);
1287 	if (rval != 0) {
1288 		(void) fprintf(stderr, "Unable to resize data "
1289 		    "partition:  %d\n", rval);
1290 		/*
1291 		 * Since we failed to resize, we need to reset the start
1292 		 * of the reserve partition and re-create it.
1293 		 */
1294 		efi_label->efi_parts[resv_index].p_start -= difference;
1295 	}
1296 
1297 	/*
1298 	 * Re-add the reserved partition. If we've expanded the data partition
1299 	 * then we'll move the reserve partition to the end of the data
1300 	 * partition. Otherwise, we'll recreate the partition in its original
1301 	 * location. Note that we do this as best-effort and ignore any
1302 	 * errors that may arise here. This will ensure that we finish writing
1303 	 * the EFI label.
1304 	 */
1305 	(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
1306 	    efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
1307 	    efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
1308 	    resv_index + 1);
1309 #endif
1310 
1311 	/*
1312 	 * We're now ready to write the EFI label.
1313 	 */
1314 	if (rval == 0) {
1315 		rval = efi_write(fd, efi_label);
1316 		if (rval < 0 && efi_debug) {
1317 			(void) fprintf(stderr, "efi_use_whole_disk:fail "
1318 			    "to write label, rval=%d\n", rval);
1319 		}
1320 	}
1321 
1322 out:
1323 	efi_free(efi_label);
1324 	return (rval);
1325 }
1326 
1327 /*
1328  * write EFI label and backup label
1329  */
1330 int
efi_write(int fd,struct dk_gpt * vtoc)1331 efi_write(int fd, struct dk_gpt *vtoc)
1332 {
1333 	dk_efi_t		dk_ioc;
1334 	efi_gpt_t		*efi;
1335 	efi_gpe_t		*efi_parts;
1336 	int			i, j;
1337 	struct dk_cinfo		dki_info;
1338 	int			rval;
1339 	int			md_flag = 0;
1340 	int			nblocks;
1341 	diskaddr_t		lba_backup_gpt_hdr;
1342 
1343 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
1344 		return (rval);
1345 
1346 	/* check if we are dealing with a metadevice */
1347 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1348 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1349 		md_flag = 1;
1350 	}
1351 
1352 	if (check_input(vtoc)) {
1353 		/*
1354 		 * not valid; if it's a metadevice just pass it down
1355 		 * because SVM will do its own checking
1356 		 */
1357 		if (md_flag == 0) {
1358 			return (VT_EINVAL);
1359 		}
1360 	}
1361 
1362 	dk_ioc.dki_lba = 1;
1363 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1364 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1365 	} else {
1366 		dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts,
1367 		    vtoc->efi_lbasize) *
1368 		    vtoc->efi_lbasize;
1369 	}
1370 
1371 	/*
1372 	 * the number of blocks occupied by GUID partition entry array
1373 	 */
1374 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1375 
1376 	/*
1377 	 * Backup GPT header is located on the block after GUID
1378 	 * partition entry array. Here, we calculate the address
1379 	 * for backup GPT header.
1380 	 */
1381 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1382 	if (posix_memalign((void **)&dk_ioc.dki_data,
1383 	    vtoc->efi_lbasize, dk_ioc.dki_length))
1384 		return (VT_ERROR);
1385 
1386 	memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1387 	efi = dk_ioc.dki_data;
1388 
1389 	/* stuff user's input into EFI struct */
1390 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1391 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1392 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1393 	efi->efi_gpt_Reserved1 = 0;
1394 	efi->efi_gpt_MyLBA = LE_64(1ULL);
1395 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1396 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1397 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1398 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1399 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1400 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1401 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1402 
1403 	/* LINTED -- always longlong aligned */
1404 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1405 
1406 	for (i = 0; i < vtoc->efi_nparts; i++) {
1407 		for (j = 0;
1408 		    j < sizeof (conversion_array) /
1409 		    sizeof (struct uuid_to_ptag); j++) {
1410 
1411 			if (vtoc->efi_parts[i].p_tag == j) {
1412 				UUID_LE_CONVERT(
1413 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
1414 				    conversion_array[j].uuid);
1415 				break;
1416 			}
1417 		}
1418 
1419 		if (j == sizeof (conversion_array) /
1420 		    sizeof (struct uuid_to_ptag)) {
1421 			/*
1422 			 * If we didn't have a matching uuid match, bail here.
1423 			 * Don't write a label with unknown uuid.
1424 			 */
1425 			if (efi_debug) {
1426 				(void) fprintf(stderr,
1427 				    "Unknown uuid for p_tag %d\n",
1428 				    vtoc->efi_parts[i].p_tag);
1429 			}
1430 			return (VT_EINVAL);
1431 		}
1432 
1433 		/* Zero's should be written for empty partitions */
1434 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1435 			continue;
1436 
1437 		efi_parts[i].efi_gpe_StartingLBA =
1438 		    LE_64(vtoc->efi_parts[i].p_start);
1439 		efi_parts[i].efi_gpe_EndingLBA =
1440 		    LE_64(vtoc->efi_parts[i].p_start +
1441 		    vtoc->efi_parts[i].p_size - 1);
1442 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1443 		    LE_16(vtoc->efi_parts[i].p_flag);
1444 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1445 			efi_parts[i].efi_gpe_PartitionName[j] =
1446 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1447 		}
1448 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1449 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1450 			(void) uuid_generate((uchar_t *)
1451 			    &vtoc->efi_parts[i].p_uguid);
1452 		}
1453 		memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
1454 		    &vtoc->efi_parts[i].p_uguid,
1455 		    sizeof (uuid_t));
1456 	}
1457 	efi->efi_gpt_PartitionEntryArrayCRC32 =
1458 	    LE_32(efi_crc32((unsigned char *)efi_parts,
1459 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1460 	efi->efi_gpt_HeaderCRC32 =
1461 	    LE_32(efi_crc32((unsigned char *)efi,
1462 	    LE_32(efi->efi_gpt_HeaderSize)));
1463 
1464 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1465 		free(dk_ioc.dki_data);
1466 		switch (errno) {
1467 		case EIO:
1468 			return (VT_EIO);
1469 		case EINVAL:
1470 			return (VT_EINVAL);
1471 		default:
1472 			return (VT_ERROR);
1473 		}
1474 	}
1475 	/* if it's a metadevice we're done */
1476 	if (md_flag) {
1477 		free(dk_ioc.dki_data);
1478 		return (0);
1479 	}
1480 
1481 	/* write backup partition array */
1482 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1483 	dk_ioc.dki_length -= vtoc->efi_lbasize;
1484 	/* LINTED */
1485 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1486 	    vtoc->efi_lbasize);
1487 
1488 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1489 		/*
1490 		 * we wrote the primary label okay, so don't fail
1491 		 */
1492 		if (efi_debug) {
1493 			(void) fprintf(stderr,
1494 			    "write of backup partitions to block %llu "
1495 			    "failed, errno %d\n",
1496 			    vtoc->efi_last_u_lba + 1,
1497 			    errno);
1498 		}
1499 	}
1500 	/*
1501 	 * now swap MyLBA and AlternateLBA fields and write backup
1502 	 * partition table header
1503 	 */
1504 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1505 	dk_ioc.dki_length = vtoc->efi_lbasize;
1506 	/* LINTED */
1507 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1508 	    vtoc->efi_lbasize);
1509 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1510 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1511 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1512 	efi->efi_gpt_HeaderCRC32 = 0;
1513 	efi->efi_gpt_HeaderCRC32 =
1514 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1515 	    LE_32(efi->efi_gpt_HeaderSize)));
1516 
1517 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1518 		if (efi_debug) {
1519 			(void) fprintf(stderr,
1520 			    "write of backup header to block %llu failed, "
1521 			    "errno %d\n",
1522 			    lba_backup_gpt_hdr,
1523 			    errno);
1524 		}
1525 	}
1526 	/* write the PMBR */
1527 	(void) write_pmbr(fd, vtoc);
1528 	free(dk_ioc.dki_data);
1529 
1530 	return (0);
1531 }
1532 
1533 void
efi_free(struct dk_gpt * ptr)1534 efi_free(struct dk_gpt *ptr)
1535 {
1536 	free(ptr);
1537 }
1538 
1539 void
efi_err_check(struct dk_gpt * vtoc)1540 efi_err_check(struct dk_gpt *vtoc)
1541 {
1542 	int			resv_part = -1;
1543 	int			i, j;
1544 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1545 	int			overlap = 0;
1546 
1547 	/*
1548 	 * make sure no partitions overlap
1549 	 */
1550 	for (i = 0; i < vtoc->efi_nparts; i++) {
1551 		/* It can't be unassigned and have an actual size */
1552 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1553 		    (vtoc->efi_parts[i].p_size != 0)) {
1554 			(void) fprintf(stderr,
1555 			    "partition %d is \"unassigned\" but has a size "
1556 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1557 		}
1558 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1559 			continue;
1560 		}
1561 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1562 			if (resv_part != -1) {
1563 				(void) fprintf(stderr,
1564 				    "found duplicate reserved partition at "
1565 				    "%d\n", i);
1566 			}
1567 			resv_part = i;
1568 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1569 				(void) fprintf(stderr,
1570 				    "Warning: reserved partition size must "
1571 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1572 		}
1573 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1574 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1575 			(void) fprintf(stderr,
1576 			    "Partition %d starts at %llu\n",
1577 			    i,
1578 			    vtoc->efi_parts[i].p_start);
1579 			(void) fprintf(stderr,
1580 			    "It must be between %llu and %llu.\n",
1581 			    vtoc->efi_first_u_lba,
1582 			    vtoc->efi_last_u_lba);
1583 		}
1584 		if ((vtoc->efi_parts[i].p_start +
1585 		    vtoc->efi_parts[i].p_size <
1586 		    vtoc->efi_first_u_lba) ||
1587 		    (vtoc->efi_parts[i].p_start +
1588 		    vtoc->efi_parts[i].p_size >
1589 		    vtoc->efi_last_u_lba + 1)) {
1590 			(void) fprintf(stderr,
1591 			    "Partition %d ends at %llu\n",
1592 			    i,
1593 			    vtoc->efi_parts[i].p_start +
1594 			    vtoc->efi_parts[i].p_size);
1595 			(void) fprintf(stderr,
1596 			    "It must be between %llu and %llu.\n",
1597 			    vtoc->efi_first_u_lba,
1598 			    vtoc->efi_last_u_lba);
1599 		}
1600 
1601 		for (j = 0; j < vtoc->efi_nparts; j++) {
1602 			isize = vtoc->efi_parts[i].p_size;
1603 			jsize = vtoc->efi_parts[j].p_size;
1604 			istart = vtoc->efi_parts[i].p_start;
1605 			jstart = vtoc->efi_parts[j].p_start;
1606 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1607 				endsect = jstart + jsize -1;
1608 				if ((jstart <= istart) &&
1609 				    (istart <= endsect)) {
1610 					if (!overlap) {
1611 					(void) fprintf(stderr,
1612 					    "label error: EFI Labels do not "
1613 					    "support overlapping partitions\n");
1614 					}
1615 					(void) fprintf(stderr,
1616 					    "Partition %d overlaps partition "
1617 					    "%d.\n", i, j);
1618 					overlap = 1;
1619 				}
1620 			}
1621 		}
1622 	}
1623 	/* make sure there is a reserved partition */
1624 	if (resv_part == -1) {
1625 		(void) fprintf(stderr,
1626 		    "no reserved partition found\n");
1627 	}
1628 }
1629